UNIVERSITY OF OSLO
Department of Informatics

Program Crash
Analysis:
Evaluation and
Application of
Current Methods

Master thesis
60 credits

Hakon Krohn-Hansen

26th April 2012

Program Crash Analysis: Evaluation and
Application of Current Methods

Hakon Krohn-Hansen

26th April 2012

ii

Abstract

After decades of development in computer science, memory corruption
bugs still pose a threat to the reliability of software. Automatic crash repor-
ting and fuzz testing are effective ways of gathering information about pro-
gram bugs. However, these methods can potentially produce thousands of
crash dumps, motivating the need for grouping and prioritizing crashes.
In addition, the time necessary to analyze the root cause of crashes and to
implement a reliable fix in source code should be reduced.

This thesis demonstrates how fuzzing can produce a large set of
different crashes in a real program. An empirical study explores methods
for analyzing these crashes. Automatic bucketing and classification
is performed. Call stack based grouping algorithms are compared,
and modifications are suggested. Taint analysis is demonstrated as a
complementary method to automatic classification based on crash dumps.
Dynamic analysis using execution traces is demonstrated as a method for
root cause analysis. The empirical study suggests some general results
regarding program crash analysis.

Crashes should be grouped based on related crash locations and
identified similarities in call stacks. A distance algorithm can be used for
call stack based grouping and to identify relations between groups. It is
suggested that a weighted priority model should be used for prioritizing
crashes based on a strategic policy. Some possible metrics are frequency,
reliability, severity estimate and relations to already fixed bugs. In order
to properly fix a memory corruption bug, the underlying cause should
be understood at machine-level. Execution traces with logged operands,
differential debugging, Crash Graphs and input analysis might help
developers analyze different aspects of memory corruption bugs.

iii

iv

Contents

I Introduction

1 Background
1.1 Bugsin commercial software
1.2 Developing reliable software

2 Thesis
21 Motivation
22 Objective
23 Thesislayout.

II Theory

3 Program crash analysis
3.1 Memorycorruption L.
32 Crashdumps,
33 Crashdumpanalysis

4 Fuzzing
4.1 Fuzzingstrategies
42 Strategies for triaging errors L.
43 Assessing the effectiveness of a fuzzer

5 Dynamic program analysis
5.1 Methods of dynamicanalysis

6 Related research
6.1 Automatic crash reporting and analysis
6.2 Callstackanalysis.
6.3 Program crash analysis using execution traces

IIT Methods

7 Planning the thesis
71 Methodsoverview
72 Choosing a target program
73 Fuzzingstrategy

11

13
13
18
21

27
27
30
32

35
35

39
39
40
43

47

CONTENTS

7.4 Crash reliability analysis
7.5 Comparison of grouping algorithms . .
7.6 Dynamicanalysis

IV Empirical results

8

10

Fuzzing results
8.1 Crashstatistics.
8.2 Results of the crash verification process

Crash analysis

9.1 Callstackanalysis.
9.2 Prioritizing crashes
9.3 Rootcauseanalysis

Discussion

Answering questions about program crashes
10.1 RQ1: How are crashes related?
10.2 RQ2: How should crashes be prioritized?
10.3 RQ3: How should crashes be fixed? . .
10.4 Automatic program crash analysis . . .

VI Conclusion

11

Conclusion

11.1 Major contributions
11.2 Summary ofresults
11.3 Critical evaluation.
11.4 Futurework
11.5 Finalremarks

Appendices

A

B
C
D

Mutation of a fuzzing template
lexploitable rules

Derivation of an expression for Z(i)
List of unique crashes

Call stack grouping

Vi

57

59
59
63

65
65
69
73

79

101

103
103
104
106
107
108

109
111
113
115
117

119

List of Figures

1.1

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2

51

6.1
6.2

8.1
8.2

9.1
9.2
9.3
94
9.5
9.6

10.1
10.2
10.3
104
10.5
10.6

Microsoft Security Development Lifecycle (SDL)

Paging Unit’s View of 32-bit Linear Address
Page Translation
Example of a programcrash
Example Cprogram.
Windows Error Report
Functioncall
Functionprolog
Stacklayout oo oL
Crash scenario 1: 16 characters - Read Access Violation . . .
Crash scenario 2: 100 characters - Write Access Violation

Crash scenario 3: 27 characters - Unknown crash location . .

Basic blocks of the main function in overflow.c
Converging curve of unique crashes

Differential debugging with BinNavi

A two-level grouping of crashes using representative traces
CrashGraph

Progress of fuzz testing
Frequency count of unique crashes

Call stack reconstruction
Top-down comparison algorithm for call stack grouping
Crash graph of all stack frames
Taint information from three crashes
Excerpts fromgstyped42.c
Overflow of the buffer pts caused by append_simple

Expanding sorttree 0L
A granular distance between individual stack frames

Related crashes showninacrashgraph
Crash graph of call stacks related by gs_typel_interpret . .
Automatic analysis of related crash locations
Triggers and symptoms ofabug

vii

29
34

38

41
42

61
62

66
67
69
72
77
78

A.1 Mutation of a Type42 font description in a PostScript file . . 111

viii

List of Tables

4.1
4.2

8.1

9.1
9.2
9.3
94
9.5

10.1
B.1
D.1

E.1l

Fuzzing taxonomy 28
An example distribution of unique crashes 33
Severity estimate of crashes 60
Comparison of grouping algorithms 68
Comparison of prioritization metrics 71
Recovered stack frames from a stack memory dump 74
Continuation of the call graph from Figure9.1 75
Variable inspection of an execution trace 76
A selection of the groups created by algorithm 10 88
lexploitable rules derived from sourcecode 113
Unique crashes in chronological order 117
Call stack grouping of unique crashes 119

ix

Preface

This thesis is written as a part of my degree "Master of Science in
Informatics: programming and networks” at the University of Oslo,
Faculty of Mathematics and Natural Sciences, Department of Informatics.
The thesis is written in collaboration with the Norwegian Defence Research
Establishment (FFI) and UNIK University Graduate Center.

Acknowledgments

I want to thank FFI for letting me write a thesis about a fascinating topic
of my personal interest. In particular, I would like to thank my supervisor
at FFI, Torgeir Broen, and my supervisor at the Department of Informatics,
Audun Jesang, for excellent guidance and advice.

Others have contributed by draft review and constructive discussions.
Trond Arne Serby, Anders Olaus Granerud and Trond Lenmo have all
contributed to the final result.

Last but not least, I would like to thank my family. With their support,
the work on this thesis has been an enjoyment.

Hdkon Krohn-Hansen
26th April 2012

"Testing shows the presence, not the absence of bugs.” [24]
- E. W. Dijkstra (1930-2002)

xi

xii

Part 1

Introduction

Chapter 1

Background

Development of reliable computer software can be a challenging task [74].
History has shown that it is nearly impossible to produce complex software
without programming errors. Programming errors can be caused by
incorrect design, so-called design flaws, but many errors are also caused
by incorrect implementation of a correct design. Programs do not always
function in the way they were intended. Such programming errors are
known as bugs. Software bugs can lead to abnormal program termination,
a situation commonly known as a crash.

1.1 Bugs in commercial software

Users and customers have a general expectation that commercial software
will function as intended. If this expectation is not met, customers
might look for alternative software. Hence, software companies spend
considerable resources on testing software in order to find and remove
bugs before it is released. Still, some bugs are not discovered until the
software has been put into commercial use.

When a weakness in a product is identified, customers expect it to be
fixed. A unique thing about software, compared to other products, is that
it is possible to distribute fixes automatically to customers at a low cost. A
company’s ability to improve software by continuously fixing bugs can be
crucial to its reputation.

While fixing bugs is important, there is also a public demand for
improved functionality in commercial software. Software companies must
keep up with technological advances and customer needs. This can imply
adding new features that were not invented when the software was first
released. Because of practical and economical reasons, developers will try
to reuse as much as possible of the original program when implementing
new features. A continuous development cycle like this makes it difficult
to always base software on a complete and robust design, and there is a
possibility that new features will introduce new bugs.

This mechanism can be described as two contradicting forces influen-
cing commercial software. On one hand there is a demand for new soft-
ware. On the other hand there is a demand for reliable software. The first

CHAPTER 1. BACKGROUND

adds complexity to software. The second gives stability and robustness.

Considerable effort is put into design and development of operating
systems and compilers in order to minimize the risk of bugs. The
probability of bugs is reduced by compiler-warnings to programmers
about problematic issues. Compilers also add mechanisms to programs
to limit the consequence of bugs that are not caught at compile-time. There
are even programming languages using so-called managed code', hiding
low-level features like memory management from programmers. Still there
could be programming errors because program code is eventually written
by individual developers, and humans make mistakes.

1.2 Developing reliable software

Software development goes through many stages, from design and
implementation to verification and maintenance. Appropriate actions
should be applied at each stage to minimize the amount of bugs. For
example, to minimize the occurrence of security related bugs in their
software, Microsoft are using a methodology they call Security Development
Lifecycle (SDL) [65]. SDL is a security assurance process defining best
practices in seven phases as shown in Figure 1.1.

Establish Security Establish Design Use Approved Dynamic Incident
Requirements Requirements Tools Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe Fuzz Final Security

Training

Gates / Bug Bars Surface Functions Testing Review

Security & Privacy Threat Static Attack Surface Release
Risk Assessment Modeling Analysis Review Archive

Figure 1.1: Microsoft Security Development Lifecycle (SDL)

SDL focuses on security, but the same mindset applies to assuring
stability and robustness. Software customers and consumers expect
applications, device drivers and operating systems to be robust and to
function without errors and crashes. Incidents of system compromise due
to software bugs typically have a negative impact on the customers’ trust
in the software as well as in the developer of that software. Using a
methodology like SDL, software companies try to eliminate bugs as early
as possible in the process. During each phase they try to identify and
fix potential problems. This includes fixing bugs that are discovered in
released software.

1.2.1 Software verification using formal methods

Software wverification [20] is a field of research that aims to verify the
correctness of programs. By using formal methods [28] it might be possible

1”Managed code” is a term used by Microsoft. It is also commonly known as “bytecode”.

4

CHAPTER 1. BACKGROUND

to generate a complete proof that a given program will always behave
correctly. This is especially important for programs dealing with critical
tasks such as financial transactions and air traffic control [38]. However,
in practice formal methods can only handle software modules of relatively
small size.

Recent research has led to the introduction of formal verification in
development of commercial software [19]. For example Microsoft provide
compile-time static verification tools 2 for driver developers. The tools can
detect errors missed by the compiler and by conventional runtime testing.
In the context of SDL, compile-time verification is a form of Static Analysis
while runtime testing is known as Dynamic Analysis.

Formal methods have their limitations and cannot be expected to
remove all bugs from software. There is for instance a problem with
scalability when applying formal methods to complex software systems.
This is mainly a problem when trying to prove the correctness of an
implementation with respect to its formal specification [51]. A program
must work outside a theoretical lab environment.

Formal specification can scale well on its own because formal specifi-
cation languages like UML? [77] offer a high level of abstraction. When
formal methods are used to verify an implementation, scalability is limited
by the complex characteristics of programming languages and computer
architectures. When a program is required to interface with an operating
system (OS) and concrete input data it can be difficult to specify the data
models and state models necessary to conduct a correct formal analysis.
Even if the models could be specified, they would be complex and contain
unknown factors.

1.2.2 Advances in programming languages

Languages like C and C++ [13] are high-level abstractions compared to
machine code, or native code, understood by computers. Still they include
low-level features that give direct access to the underlying architecture. In
particular they leave memory management to the programmer [71]. The
programmer is allowed to operate directly on memory addresses through
pointers. Pointer arithmetic is the foundation of many classes of bugs [34],
such as buffer overflows, null pointer dereferences, double frees and use-
after-free bugs. These kinds of low-level bugs are commonly known as
memory corruption bugs.

Memory corruption bugs are countered by programming languages
such as Java [73] and a set of languages used in the .Net Framework [60].
These languages are purely object-oriented [72]. The programs are running
inside a controlled environment known as the Java Virtual Machine (JVM)
and Common Language Runtime (CLR) respectively. This controlled
environment handles allocation of memory for objects and performs
garbage collection of objects that are no longer needed. Implementation can

2 Static Driver Verifier (SDV) [56] and PREfast for Drivers (PFD) [55] are both included in
the Windows Driver Kit (WDK) [62].
3 Object Management Group (OMG) standard: Unified Modeling Language™

CHAPTER 1. BACKGROUND

be closer to formal specification, which means that formal verification can
be applied more easily.

In such programs, memory is managed by the runtime environment
and cannot as easily be corrupted. However, these programming lan-
guages contain a similar class of low-level bugs which is insufficient excep-
tion handling [25]. Although the languages do not operate with address
pointers, they have object references. If an object reference is not pointing
to an object, it has the value null. Dereferencing a null pointer without
catching the resulting exception will terminate the program. Incorrect use
of an object type can also result in a number of different exceptions which
must be handled explicitly. So if programs running native code and mana-
ged code are compared from a reliability perspective, they are not different
in nature. They both can crash unexpectedly.

Java and .Net provide a safer and more controlled environment for
applications. Still most applications on computers use native code because
of performance. Tasks that need fast processing of large amounts of data
are typically written in C/C++. Another type of software that needs high
performance are operating systems. All modern commercial operating
systems are written in C and Assembler, which both translate into native
code. Device drivers also run as native code, because they operate close to
both hardware and the OS.

Another aspect is that the JVM and CLR run as native code. Memory
corruption bugs in the managed execution environment could lead to
native program crashes triggered from managed code. It is also possible to
import native libraries and even launch native programs from the managed
environment. Client-side scripting languages like JavaScript [42] also result
in the execution of native code by the use of a just-in-time (JIT) compiler.

1.2.3 Input validation

Desktop computers are powerful machines performing complicated tasks.
Web browsers and document readers are expected to support a number
of protocols and data formats. It is infeasible to prove that such complex
programs will function as intended given any input. Instead software
developers are required to expect the unexpected when developing a
program. This applies to both design, implementation and verification.

Expecting the unexpected is particularly important when processing
user input. A program should not assume that input data complies to a
valid format. This fact has gained importance by the increased use of the
Internet, where data often originates from untrusted sources. Missing or
incorrect input validation can result in an unwanted situation [34]. The
program could stop functioning or do something not intended by the
programmer.

Some software bugs can even be exploited by malware* to gain
complete control of a computer [70].

4 malware = malicious software

CHAPTER 1. BACKGROUND

1.2.4 Software testing

When it is not feasible to prove a program’s correctness for all possible
input, another alternative is to run the program through a series of tests
and observe that it behaves correctly for the test cases [37]. The test cases
should include both valid and invalid input. The test runs will prove to
some extent that the program will function as intended and possibly reveal
bugs. Program testing where a program is automatically given invalid and
randomized input is known as Fuzz Testing or Fuzzing [85].

Fuzz testing has proved to be a cost-effective way to discover bugs
before software is released [41]. It can be time-consuming, but since
the process can be automated, fuzzing can be performed with minimal
supervision, running 24 hours a day. It can continue after release and
should be kept running until a new version of the program is ready for
testing.

Memory corruption bugs in native code can be identified during
fuzzing by detecting program crashes. When a program crash is detected,
program memory can be saved in a so-called crash dump [88]. A crash dump
contains detailed technical information about the state of the program at
the moment of crash. A fuzzing run of a million test cases can typically
produce thousands of program crashes.

1.2.5 Automatic crash reporting

Environmental factors on a customers computer can produce errors that
were not thought of during development or caught during testing. There
can for instance be compatibility issues with other software and hardware.
To help identifying and fixing program errors occurring in real-life use,
software companies can let their programs automatically report back over
the Internet when a program crash occurs.

The information reported can include a crash dump together with
details about the system configuration and software versions. For
commercial software with many users, the amount of crash dumps
received can be quite large. For instance Mozilla can receive 2.5 million
crash reports from Firefox users in a single day [86]. Microsoft Windows
Error Reporting (WER) service is provisioned to receive and process over
100 million error reports per day [39].

1.2.6 Program crash analysis

Program crash analysis requires special expertise. The main challenge is
to leverage information about a problem at machine level into finding a
solution in source code. This is mainly an issue with native code crashes.
Managed code is directly linked to source code in a way that greatly
simplifies crash analysis.

A crash dump can give information about where in the program code
the crash occurred. It can also tell how the program crashed, for example
if the program was given an illegal instruction or if an instruction tried to

7

CHAPTER 1. BACKGROUND

access an invalid memory address. The call stack>, which is part of a crash
dump, can show the control flow® leading to the crash. In many cases, the
call stack alone can give enough guidance for developers to know where
to look for the bug. Most bugs are fixed within the top ten functions of the
call stack [78].

However, finding the root cause of a crash can be difficult. It
may require deep knowledge and understanding of the program code.
Since memory corruption happens on machine level, it may also require
understanding of the underlying architecture. This is expertise that
developers normally do not have, because they relate to source code.

5 A ”call stack” is also commonly known as a “stack trace”.
6 The term ”control flow” refers to the order in which different parts of a computer program
are executed.

Chapter 2

Thesis

2.1 Motivation

There are at least two challenging factors concerning program crash
analysis. One challenge is to be able to handle the large number of
crashes that can be generated from fuzzing and automatic crash reporting
systems. This involves identifying similar crashes and prioritizing the
crashes according to specific criteria. The other challenge is the complexity
of finding a solution that fixes the problem in source code.

2.1.1 Grouping and prioritizing crashes

Millions of crashes cannot be analyzed manually. There is a need for
methods that can automatically find relations between crashes. For
example several crashes could be caused by the same bug and should be
grouped. There is also a possibility that a group of similar crashes can be
caused by a number of different bugs.

Another approach could be to prioritize crashes. Common crashes
should be fixed before rare crashes. On the other hand a rare crash could
be more critical by nature and should be given a higher priority.

2.1.2 Finding the underlying cause of crashes

A crash is only a symptom of a program error. The underlying cause can lie
in code located far from the code that generates the crash. A crash dump
gives detailed information about a crash, but it does not necessarily tell
developers what went wrong and why:.

An inherent limitation of a crash dump is that it only shows the state
of the program at the moment of crash. The call stack can give important
historic information, but it does not show the control flow within functions,
nor does it show function calls that have already returned. In a situation of
memory corruption there is also a possibility that the call stack is corrupted.

Methods of dynamic program analysis can provide information about
execution of the program before the crash. Dynamic analysis can be used
as a supplement to crash dump analysis. It could point out where memory
corruption takes place. This could take developers one step closer to

CHAPTER 2. THESIS

finding the cause of the crash. If the corruption can be prevented, the crash
will not occur.

2.2 Objective
This thesis addresses both identified challenges:

* Strategies for categorization and sorting of crashes are explored.

¢ Different methods of crash analysis are examined to see if they can
help developers find the root cause of crashes and ultimately fix
source code.
A set of research questions are used to assess the relevancy of the
explored methods. The methods are evaluated by how they contribute to
answering the following questions about crashes:

e RQ1: How are crashes related?
¢ RQ2: How should crashes be prioritized?

¢ RQ3: How should crashes be fixed?

2.3 Thesis layout
The remainder of the thesis is organized as follows:

Chapter 3: Explains memory corruption and crash dump analysis
Chapter 4: Gives an introduction to fuzzing

Chapter 5: Describes methods used for dynamic program analysis
Chapter 6: Introduces related research on program crash analysis
Chapter 7: Describes the methods used in this thesis

Chapter 8: Presents fuzzing results

Chapter9: Presents results from crash analysis

Chapter 10: Discusses how crash analysis can help reduce the time
needed to locate and fix bugs

Chapter 11: Concludes and suggests future work

10

Part 11

Theory

11

Chapter 3

Program crash analysis

This chapter outlines what a program crash is and how it can be analyzed.
First memory corruption is described in detail. Then crash dump analysis
is demonstrated using a simple example program. The example shows
benefits and limitations of using a crash dump to investigate a crash.

3.1 Memory corruption

Memory corruption in computer software happens if a program operates
on data in an incorrect manner. These types of errors can be difficult to
investigate. It can lead to subtle and random program behavior. It can
exhaust system resources and cause a program to hang or freeze. The
best case scenario of memory corruption is actually a crash [44]. A crash
is a concrete error that can be investigated. To fully understand memory
corruption, it is important to understand how memory is managed on
computers.

3.1.1 Protected mode

The most commonly used computer architecture for desktop and laptop
computers is the Intel x86 [5]. It is supported e.g. by Microsoft Windows,
Linux and Mac OS X. These operating systems are multitasking and rely
on Protected Mode [81] first available on Intel’s 80286 processor in 1982.
Protected mode introduced two important features that still are vital to the
stability of computer systems. One was hardware support for privilege
separation. Another was the isolation of processes by the use of virtual
memory.

In protected mode, the CPU! can operate in one of 4 privilege levels.
The privilege levels are called rings and they are named from ring0 to ring3.
All modern operating systems use ring(for system/kernel code and ring3
for user code. Ring0 and ring3 are also referred to as kernel mode and user
mode. In ring3 the instruction set is limited to non-privileged instructions.
OS components and drivers can be accessed from ring3 by the use of system

1 CPU = Central Processing Unit

13

31

CHAPTER 3. PROGRAM CRASH ANALYSIS

calls. Transitions between ring0 and ring3 are also frequently performed by
the OS because of multitasking.

Multitasking is performed by an OS component known as the task
scheduler. Multiple tasks can run simultaneously on a single CPU because
the task scheduler is constantly switching between the tasks. User
processes usually contain one or more running threads, and all threads
are scheduled as tasks. At a given moment of time, only one thread is
executing code while others are waiting in a scheduling queue. When the
scheduler is switching between two tasks, the state of the old task must be
saved and the state of the new task must be restored. This is known as
context switching.

Protected mode was enhanced when the 80386 processor [48] was
released in 1985. Some of the enhancements were hardware support
for context switching, 32-bit memory addressing and improved memory
paging. A 32-bit address bus combined with memory paging allowed
operating systems to give 4 GB of virtual memory to each process. The
memory is called virtual because it does not refer to physical memory
addresses. Instead a 32-bit virtual memory address refers to a location in a
memory page.

The memory page is located using a two-layered look-up. The 4 GB
of virtual memory is divided into 1 M (1024 x 1024) pages of 4 kB each.
Figure 3.1 shows a 32-bit linear address as seen by the paging unit. The 10
most significant bits (MSB) is an index into a page directory created by the
OS. This gives the address of a page table. The next 10 bits is an index into
this page table, which gives the address of the corresponding page. The 12
least significant bits (LSB) contain an offset into the memory page, which
gives the physical location of the requested memory.

22 21 12 11

Page Group Address Page Address Location within Page
(1-0f-1024d) (1-0f-1024d) (1-0f-4096d)

Figure 3.1: Paging Unit’s View of 32-bit Linear Address [81]

The requested memory page might be located in physical memory, but
it might also be paged out to hard disk in a page file or swap file. This
happens to memory pages that have not been recently accessed. If a process
wants to access a page that is currently paged out, a page fault will be issued.
A page fault is handled by the paging unit which loads the page into
physical memory so the process can continue. This mechanism is hidden
from processes.

Since each process has its own virtual address space, a page directory
must be assigned for each process. This is done by using the CPU control
register CR3 as a pointer to the page directory of the current process. The
page directory is unique for each process, but it is shared between all
threads in the same process. Figure 3.2 shows the translation from virtual
to physical memory as given in the Intel 80386 Programmer’s Reference
Manual.

14

CHAPTER 3. PROGRAM CRASH ANALYSIS

PAGE FRAME

DIR PAGE OFFSET
> PHYSICAL
ADDRESS
PAGE DIRECTORY PAGE TABLE
A
L—»| PG TBL ENTRY !
L » DIR ENTRY
A A

CR3 4

Figure 3.2: Page Translation [48]

Protected mode isolates the memory of each process. One benefit of
this isolation is that if a program crashes, it will not crash the whole
system. The OS and other programs cannot be directly influenced by
memory corruption in one process. Of course a process may cause
memory corruption in other processes and the OS by the use of Inter-
Process Communication (IPC) and system calls. It can even be triggered
from a remote computer over the network. But for that to happen, there
must already be a memory corruption bug in the targeted process or OS
component. The isolation ensures that a bug in one program can only
corrupt the memory of its own process.

3.1.2 Virtual memory

In x86 protected mode each process is given 4 GB of virtual memory.
Memory pointers are 32 bits wide and can theoretically address the whole
range. However, typically only a small percentage of the 4 GB are valid
memory locations. Normally the first 2 GB from 0x00000000 to Ox7 fffffff
is user memory and 0x80000000 and above is reserved for the OS.

The user address space of a process is loaded with code and data
from the executable file of the program. Any external modules that the
program uses must also be loaded into virtual memory. On Windows these
are known as dynamically linked libraries (DLLs). All threads are given
dedicated memory regions for their respective stacks. Process memory also
contains one or more heaps for dynamic memory allocations. In between
these memory regions there is unallocated memory. It is inaccessible
because it refers to non-existing memory pages.

If a process tries to access unallocated memory, the CPU will normally
issue a general protection fault. A general protection fault is used if no other
exceptions apply. An exception can be handled explicitly by the program

15

CHAPTER 3. PROGRAM CRASH ANALYSIS

if an exception handler is registered. If not, it is handled by the default
exception handler which terminates the process. On Windows this kind
of exception is known as an Access Violation and has the exception code
0xC0000005. Figure 3.3 shows a program crash on Windows XP caused by
an access violation.

=+ CAWINDOWS' sy =10] x|

C:Noverflow>overflow AAAAAAAAAAA
AAAAAAAAAAA

C:Noverf low>overflow AAAAAAAAAAAAAAAA

overflow.exe

overflow_exe has encountered a problem and needs to
close. We are sony for the inconvenience.

If you were in the middle of something, the information you were working on
might be lost.

For more information about this error, glick here: Close I

Figure 3.3: Example of a program crash

An access violation can also occur if a process tries to access some
allocated memory in an illegal way. Memory protection in modern
operating systems is enforced using access rights on pages. Each allocated
page is given a combination of the access rights readable (R), writable (W)
and executable (E). Originally only R and W were available, but modern
CPUs support making pages non-executable (NX)?2.

3.1.3 Corruption of process memory

Physical memory is known as Random Access Memory (RAM). Process
memory can be corrupted by hardware errors if bits of RAM are flipped. It
can corrupt program data, code or any data in memory. Bit flips on a hard
disk may also corrupt process memory. Memory of idle processes are often
paged out to disk. If the data is changed on disk and then paged back into
RAM, process memory can be corrupted. This is however not the kind of
memory corruption that is caused by programming errors. Programming
errors cause logical memory corruption.

Logical memory corruption occurs if a program accesses memory in
an unintended manner. In the best case scenario, the access is illegal
and immediately generates an exception. However, many unintended

2 Non-executable pages are given different names by different vendors. Microsoft calls it
Data Execution Prevention (DEP) [16]

16

CHAPTER 3. PROGRAM CRASH ANALYSIS

memory operations are legal with respect to page protection. These kinds
of corruption may change the state of the program so that it behaves
unpredictably and possibly generates an exception at a later point in time.

An example of unintended legal memory access is reading an uninitia-
lized variable. If it is assumed that the variable holds the value zero, it may
cause random behavior depending on what the variable is used for. Dere-
ferencing an uninitialized pointer may cause an exception right away. For
instance dereferencing a NULL pointer will most likely cause a read access
violation. But there is also a chance that the memory location is a valid ad-
dress. This may result in unpredictable behavior depending on the data at
the given address.

Another kind of logical memory corruption happens with incorrect
management of dynamically allocated memory. A pointer does not need
to be uninitialized to point to invalid data. If a data structure or an object
is freed and the pointer is used later, it can point to whatever has been
allocated on the same address. This is known as a use-after-free bug. If the
pointer is freed again, the program will try to free something that should
not be freed, known as a double-free bug.

Unintentionally overwriting memory is another common problem.
This is normally caused by buffer overflows. When accessing memory
buffers, programmers use pointers and indices. If there is insufficient
boundary checking on the pointer values or indices, memory outside the
buffer could be accessed. If this memory is read, the situation is similar to
reading uninitialized data. The program is given unintended data. If data
outside the buffer is written to, it may possibly overwrite other data. Since
data buffers normally lie on the stack or the heap, a buffer overflow may
overwrite important internal data structures as well as program variables.
Again the result can be an exception at some point later when the corrupted
data is used.

Type conversion can cause memory corruption if they are not accounted
for in a program. For example a small negative integer will be interpreted
as a huge positive number if it is treated as an unsigned integer. Integer
overflow can cause the addition of two large numbers to result in a small
number. These kinds of programming issues can lead to buffer overflows,
for example by the incorrect calculation of a buffer length.

Concurrency can also cause memory corruption. If memory is shared
between different threads, there can be race conditions causing unintended
use of memory. This can make one thread corrupt the variables of another
thread.

This is not an exhaustive list of possible memory corruption bugs.
History has shown that new classes of bugs can be discovered. An example
of this is the discovery of format string bugs. The bug class was first noted
in 1989 during reliability testing of UNIX Utilities [66]. These types of bugs
are caused by incorrect use of the C language format string functions like
printf. The possibility of format string bugs had been present from the
development of C, but their implication was not understood until crashes
were discovered during testing of real programs.

17

CHAPTER 3. PROGRAM CRASH ANALYSIS

3.14 Corruption of kernel memory

Kernel memory is the memory used by the OS. Corruption of kernel
memory will in most cases lead to a system crash. On Windows a system
crash is known as a bug check or a blue screen [57]. Memory corruption of
kernel memory can be triggered by ordinary users in at least two ways.
One is through device drivers and the other is through system calls.

Device drivers running in kernel mode can corrupt kernel memory if
they fail to validate input from the device. This can be data from e.g. a USB
device or Ethernet data from a network adapter. A memory corruption bug
in a device driver can lead to a system crash, which is much more critical
than an ordinary program crash. The difference is that a program crash
is limited to one process, while a system crash will terminate the whole
system and force a reboot. The reboot is necessary because the OS cannot
continue running if internal data structures are corrupted.

A system call is a way for user processes to access system services. OS
components export a set of functions available for user processes. Similarly
device drivers can export functions as a way for processes to communicate
with and control a device. When a system call is performed, arguments are
provided by the user process responsible for the call. If these arguments
are not properly validated, important data structures can be overwritten.
This may lead to a system crash. Some of these bugs can also be exploited
by malware to obtain system privileges [64].

The next section and subsequent chapters refer to crashes as program
crashes only, not system crashes.

3.2 Crash dumps

This section shows in detail what information a crash dump can give about
a program crash.

Figure 3.4 shows a simple console program written in C. The program
takes a text string of input as a command-line argument. The string is
copied into a stack buffer (line 21) and the content of this buffer is printed
back to console (line 22). The function stupid_copy is responsible for the
actual copying. The string is first copied into a local stack buffer as an
intermediate storage (line 10). Then it is copied from the local buffer to
the buffer given by the destination argument (line 11). The executable
file overflow.exe was compiled with no optimization and without Buffer
Security Check [23],% to make a program as close to source code as possible.

The possibility of memory corruption in the program lies in the two
buffers with fixed sizes of 10 and 20 bytes. There are no boundary checks
on the length of the input, so the whole string is copied into the buffers.
A short input string causes normal behavior of the program, while longer
strings will make it crash in at least three different ways. Three scenarios
are shown in Section 3.3. Figure 3.3 shows the result of giving the program

3 Visual Studio flags /Od /GS-

18

O IO U1 = WIN —

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CHAPTER 3. PROGRAM CRASH ANALYSIS

// overflow.c
#include <stdio.h>
#include <string .h>
void stupid_copy(charx destination, char* source)
{
char local_buffer[20];
strcpy (local_buffer , source);
strcpy (destination , local_buffer);
}
int main(int argc, charx argv[])
{

char main_buffer[10];
charx buffer_pointer = main_buffer;

if (argec == 2)

stupid_copy (buffer_pointer , argv[1l]);
printf ("%s\n”, buffer_pointer);

return 0;

Figure 3.4: Example C program

an input string of 16 characters on Windows XP. More information about
the error is shown in Figure 3.5.

Figure 3.5 shows that the crashing application was overflow.exe, and
that the crash occurred in the module msvcr90.d11. Included in the error
signature is the version of the crashing module and application. The
module version and offset are important pieces of information. The offset
pinpoints the part of the module generating an exception. The exception
code is 0xC0000005, which means an access violation.

The error report contains system information and detailed information
from the process memory. The information from memory is what is called
a crash dump. It gives information about all the loaded modules, values of
CPU registers and raw dump of important memory regions like the stack.
If there are multiple threads, the CPU registers and stack memory for all
individual threads are dumped.

If the crash dump is sent over the Internet to developers, it can be
loaded into a debugger. Then the developers can investigate the crash as if
they were using a debugger on the system when the crash occurred. This
is known as post-mortem debugging [88, 44].

Normally it is impractical to dump the complete process memory. For
example Windows can create a so-called minidump [44, 39] which contains
enough information to investigate most crashes. In case of heap corruption,
there is an option of dumping heap memory:.

19

CHAPTER 3. PROGRAM CRASH ANALYSIS

overflow.exe .

Error signature

AppName: overflow. exe AppVer 0.0.00 ModName: msverS0.dl
Modver: 9.0.30729.1 Dffset: 000518a8

To view technical information about the error report, click here. Close I

Error Report Contents

The following information about your process will be reported:

Exception Information
Code: OxcO00000S Flags: 0x00000000
Record: 0x0000000000000000 Address: 0x00000000785718a8

Systen Information

indows NT 5.1 Build: 2600

CPU Vendor Code: 756E6547 - 49656E69 - 6C65746E
CPU Version: O000106ES CPU Feature Code: OFEEFEFF
CPU AMD Feature Code: O0O0AAESZ4

odule 1

overflow. exe

Image Base: 0x00400000 Image Size: O0x00000000
Checksum: 0x0001llb4c Time Stamp: O0x4fZebe3?
ersion Information

The following files will be included in this eror report:

CADOCUME ~15ADMINI~1ALOCALS ~1\T emphca?f_appcompat.tst

Close

Figure 3.5: Windows Error Report

20

O IO U1 = WIN —

CHAPTER 3. PROGRAM CRASH ANALYSIS

3.3 Crash dump analysis

To understand how memory can be corrupted by a stack buffer overflow, it
is necessary to understand the memory layout of the stack. A stack is a last-
in-first-out (LIFO) data structure [46] that implements the two operations
push and pop.

In a computer program, each thread is given a memory region to use
for its function stack. The stack grows backward into lower addresses.
Each function call generates a new stack frame which is logically a push
operation. When a function returns, its stack frame is logically popped
from the function stack. Each stack frame can contain arguments to the
function and local function variables. It can contain saved registers so
the function does not change these for the calling function. The stack
frame also contains the return address so the CPU knows where to resume
execution when the function returns. Figure 3.8 shows the stack layout of
overflow.exe.

Since the function stack is implemented as a region of virtual memory,
it does not only support the push and pop operations. Any memory
operation could be performed on the function stack.* Programs do this
when operating on local variables. Two CPU registers are dedicated as
stack pointers. One is ESP®> which points to the top of the stack. The other
is EBP® which is the frame pointer. The frame pointer is normally used to
reference function arguments and local variables.

stupid_copy (buffer_pointer , argv[1]);

00401042 mov ecx ,dword ptr [argv]

00401045 mov edx,dword ptr [ecx+4]
00401048 push edx

00401049 mov eax ,dword ptr [buffer_pointer]
0040104C push eax

0040104D call stupid_copy (401000h)

Figure 3.6: Function call

One can find the memory layout of a specific stack frame by looking
at the function call in Assembler code. Figure 3.6 shows the call to
stupid_copy from main. First the arguments to stupid_copy are pushed
onto the stack in reverse order (lines 5 and 7). When the call instruction is
executed (line 8), the return address is pushed onto the stack. The return
address points to the next instruction after the call. This value will be
assigned to the instruction pointer (EIP7) when stupid_copy returns, so
that execution can continue from the correct location in main.

The rest of the stack frame is set up in the beginning of the called

4 NX may prevent execution of stack memory. Still any read or write operation is allowed.

5 ESP = Extended Stack Pointer

6 EBP = Extended Base Pointer (The compiler can choose to omit the frame pointer and use
EBP as a general purpose register for optimization purposes.)

7 EIP = Extended Instruction Pointer

21

CHAPTER 3. PROGRAM CRASH ANALYSIS

function. This code is known as the function prolog. Figure 3.7 shows
the function prolog of stupid_copy. First the prolog stores the previous
frame pointer by pushing EBP to the stack (line 3). The frame pointer is
then updated to point to the new stack frame (line 4). Line 5 reserves stack
space for the local variables (14h = 20).

1| void stupid_copy(char+ destination, char+ source) {
2

3/ 00401000 push ebp

4100401001 mov ebp, esp

5/ 00401003 sub esp,14h

Figure 3.7: Function prolog

Figure 3.8 shows the stack frames of main and stupid_copy after the
function prolog of stupid_copy has executed. In this figure, the stack grows
upward into lower addresses. Hence, ESP points to the lowest address
at the top of the stack. When stupid_copy was called, a stack frame was
created above the stack frame of main.

The two stack frames show the space reserved for the two stack
buffers. local_buffer is given 20 bytes in the frame of stupid_copy and
main buffer is given 12 bytes in the frame of main. Because of the 32-bit
architecture, all stack variables are aligned to 4 bytes, giving main _buffer
two more bytes than specified in source code.

Offset from ESP | Data Stack Frame
+0x00 local _buffer (lower addresses)
+0x04
+0x08 Local variables
+0x0C
+0x10 d
+0x14 stored EBP previous stack frame stupid.-copy
+0x18 stored EIP return address
+0x1C destination Arguments
+0x20 source
+0x24 main_buffer
:8:223 Local variables
+0x30 buffer_pointer main
+0x34 stored EBP previous stack frame
+0x38 stored EIP return address
+H0x3C argc Arguments
+0x40 argv & (higher addresses)

Figure 3.8: Stack layout

The stack layout shows exactly which data will be overwritten if any

of the stack buffers are overflowed. When strcpy writes to a buffer, it
starts with bytes at lower addresses. Hence, a buffer overflow in Figure 3.8

22

CHAPTER 3. PROGRAM CRASH ANALYSIS

will go downward. If main_buffer is overflowed, it will overwrite
buffer_pointer which is used as an argument to printf (line 22). It could
further overwrite the stored frame pointer, return value and arguments.
A larger overflow would continue to overwrite previous stack frames until
the bottom of the stack is reached. An access violation would not be caused
directly by the overwrites unless the overflow continued past the bottom
of the stack. Then a write access violation would normally occur because
this virtual memory address would refer to a non-existing page.

This simple example program can be used to show some of the chal-
lenges of crash dump analysis. The following three scenarios demonstrate
how crash dumps can be used to investigate program crashes. The call
stack is inspected in order to analyze control flow and identify the crash
location in source code. Values of local variables and arguments at the mo-
ment of crash are inspected with the goal of identifying the cause of the
crashes.

The first scenario demonstrates that stack frames of returned function
calls are missing from the call stack. The two other scenarios demonstrate
how the call stack and crash location can be corrupted.

3.3.1 Scenario 1: Distance between corruption and crash

An input argument of 16 characters will overflow main buffer and
completely overwrite buffer pointer. This results in an unhandled
exception, i.e. a crash, the next time this pointer is used.

Figure 3.9 shows analysis of the resulting crash dump using Microsoft
Windows Debugger (WinDbg) [61]. WinDbg shows values of CPU registers
and the instruction giving an unhandled exception. In this case the
exception is a read access violation. The exception occurred inmsvcr90.d11
as shown in the crash report (Figure 3.5). The failing instruction tests if the
EAX register points to a zero byte. The problem is that the value of EAX is
not a valid memory address. A corrupted pointer is being dereferenced.

In order to trace back where this corrupted pointer comes from, the
call stack can be inspected. The call stack shows all function calls that
has lead execution to the crashing location. In this case, the crash was
reached from a call to printf in the function main on line 22 in overflow.c.
An inspection of the local variables of main shows that buffer_pointer is
indeed overwritten.?

To summarize, this crash dump can show where the crash occurred and
how the program crashed. It gives a stack trace back to a line in source code
of the program. The stack trace can give further information about how the
crashing function was reached in a large program. The stack frames can
show local variables of all functions that have not yet returned. Knowledge
about the program can explain that a pointer variable has been overwritten
by a buffer overflow. But the crash dump does not tell where this overflow
occurred.

The call to stupid_copy has returned and is therefore removed from the

8 0x41 is the hexadecimal byte value of a capital A in ASCII encoding.

23

CHAPTER 3. PROGRAM CRASH ANALYSIS

(13c.7c4): Access violation - code c0000005 (first/second chance not available)
eax=41414141 ebx=00403002 ecx=7ffffffe edx=785bal73 esi=00000000 edi=41414141

eip=785718a8 esp=0012fc94 ebp=0012ff18 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 £s=003b gs=0000 e£1=00010202
msvcr90!_output_1+0x974:

785718a8 803800 cmp byte ptr [eax],0 ds:0023:41414141=77
0:000> kn

ChildEBP RetAddr

00 0012f£f18 78551e3f msvcr90! _output_1+0x974 [output.c @ 1643]

01 0012£f£f5c 00401064 msvcr90!printf+0x73 [printf.c @ 63]

02 0012ff7c 0040l1lce overflow!main+0x34 [overflow.c @ 22]

03 0012ffcO 7c816d4f overflow!__tmainCRTStartup+0x10f [crtexe.c @ 586]
04 0012££f0 00000000 kernel32!BaseProcessStart+0x23

0:000> .frame 2

02 0012ff7c 004011ce overflow!main+0x34 [overflow.c @ 22]

0:000> dv /a
main_buffer = char [10] "AAAAAAAAAAAAAAAA"
buffer_pointer = 0x41414141 "--- memory read error at address 0x41414141 ---"
argc = 2

argv = 0x00332980

Figure 3.9: Crash scenario 1: 16 characters - Read Access Violation

call stack. In this simple example program, there is only one alternative.
The corruption must have happened in the call to stupid_copy which also
takes buffer pointer as an argument. In a real program the distance
between corruption and crash can be much larger. Then it will be nontrivial
to find the root cause of the corruption in source code.

In general it is not possible to tell which code has been executed before
a crash using only a crash dump. The function stack only shows where
functions are called from. The internal control flow within functions is
unknown. This control flow may include many function calls which do
not show in the call stack. The stack frame of a returned function can be
overwritten by any subsequent function call, which means it is no longer
in memory.

Even using source code in combination with a crash dump might not
show where the memory corruption took place. For example the use of
indirect calls of virtual functions can make it impossible to decide from
source code which function is actually called at runtime. In the case of a
stack buffer overflow, the call stack itself can be corrupted so that no trace
could be made back to source code.

3.3.2 Scenario 2: Corruption of call stack

An input argument of e.g. 100 characters will overwrite previous stack
frames. The crash dump will then show where the crash occurred, but the
control flow leading to the crash is missing.

Figure 3.10 shows analysis of the resulting crash dump. This time
the crash is a write access violation on the invalid address pointed to
by EDI. The crash is traced back to line 11 in the function stupid_copy.

24

CHAPTER 3. PROGRAM CRASH ANALYSIS

(7a4.4d4): Access violation - code c0000005 (first/second chance not available)
eax=7efefefe ebx=00000000 ecx=0012ff4c edx=41414141 esi=00000001 edi=41414141
eip=7855b439 esp=0012ff38 ebp=0012ff5c iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 £s=003b gs=0000 ef1=00010246
MSVCR90! strcat+0x89:

7855b439 8917 mov dword ptr [edi],edx ds:0023:41414141=77?77777?7
0:000> kn

ChildEBP RetAddr

00 0012££38 00401023 MSVCRI0!strcat+0x89 [strcat.asm @ 178]

01 0012ff5c 41414141 overflow!stupid_copy+0x23 [overflow.c @ 11]

WARNING: Frame IP not in any known module. Following frames may be wrong.

02 0012ffcO 7c816d4f 0x41414141

03 0012££f0 00000000 kernel32!BaseProcessStart+0x23

0:000> .frame 1

01 0012ff5c 41414141 overflow!stupid_copy+0x23 [overflow.c @ 11]

0:000> dv /a
local_buffer = char [20] "AAA..."
destination = 0x41414141 "--- memory read error at address 0x41414141 ---"
source = 0x41414141 "--- memory read error at address 0x41414141 ---"

Figure 3.10: Crash scenario 2: 100 characters - Write Access Violation

The destination argument is corrupted, and it is natural to suspect that
this was caused by line 10. The stack layout in Figure 3.8 shows that an
overflow of local_buffer can corrupt the input arguments to stupid_copy.

Again it is possible to trace the crash back to a line in source code using
the crash dump. The cause of the corruption was in the previous line
of the same function, but it could have been more difficult to trace. The
corruption could have happened in a returned function call, not visible in
the call stack. In this scenario the call stack is corrupted so the crash dump
does not even show where stupid_copy was called from.

3.3.3 Scenario 3: Corruption of crash location

In the two previous scenarios, the location of the crash was identified.
Figure 3.11 shows a crash dump where both the crash location itself and
the call stack is corrupted.

An input string of 27 characters will cause 28 bytes to be copied into
local buffer when counting the zero terminator. This will completely
overwrite the return address of stupid_copy while leaving the function
arguments untouched. When the function returns, the instruction pointer
(EIP) points to an invalid address giving a read access violation. Since an
input of this length will also overflow main_buffer, two previous stack
frames are corrupted.

Post-mortem debugging of this crash would not yield much results.
The memory corruption could have happened anywhere in the program,
and the resulting crash could also be anywhere. The program crash would
not have to be occurring at the return of a function. A corrupted function
pointer could give similar symptoms.

A clue given by the crash dump is that the call stack is corrupted. This

25

CHAPTER 3. PROGRAM CRASH ANALYSIS

(28c.78): Access violation - code c0000005 (first/second chance not available)
eax=0012ff6c ebx=00000000 ecx=0012ff64 edx=00414141 esi=00000001 edi=00403384

eip=00414141 esp=0012ff64 ebp=41414141 iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 £s=003b gs=0000 e£1=00000206
00414141 ?? 7?7

0:000> kn

ChildEBP RetAddr

WARNING: Frame IP not in any known module. Following frames may be wrong.
00 0012ff60 0012ff6c 0x414141

01 0012ffcO 7c816d4f 0x12ff6c

02 0012fff0 00000000 kernel32!BaseProcessStart+0x23

Figure 3.11: Crash scenario 3: 27 characters - Unknown crash location

information could guide developers into looking at stack buffers. Another
clue is the pattern of the data on the stack. If the data can be recognized, it
might be possible to guess which buffer is overflowed.

3.3.4 Limitations of crash dump analysis

The three example scenarios show some possible uses and limitations
of crash dumps for investigating program crashes. They illustrate the
potential difficulty of finding the link between a crash and its underlying
cause.

A crash dump can tell exactly how a program crashed, but it can only
give hints about why a particular crash occurred. Useful hints are the crash
location and the call stack. They can guide developers to the code that
needs review, but a crash dump can never pinpoint the code that caused the
crash. The examples also show how a stack buffer overflow might corrupt
the call stack and the crash location, removing the most important hints
from the crash dump.

If the original input of the program is available, it may be possible to
reproduce the crash. Then dynamic analysis of the program can reveal
much information that is not present in a crash dump. For example, it
can produce a complete call graph® showing all function calls, including
functions that have returned. The call graph can be used to reconstruct a
corrupted call stack. If the crash location is undefined, dynamic analysis
can also reveal the last known location in the program before the crash.

In a crash reporting system, isolating the original program input can be
difficult. Program behavior is influenced by a combination of user input
and environmental factors like system configuration, available resources
etc. Logging all the input variables that lead to a specific crash can prove
to be impossible in practice.

The situation is opposite when crashes are discovered by developers
during runtime testing like fuzzing. Then crashes are logged in a controlled
environment where all input variables are known.

9 A ”call graph” is also commonly known as a “Control Flow Graph” (CFG)

26

Chapter 4

Fuzzing

Fuzzing is a term used for generating random input to a program. The
researchers performing the mentioned empirical study of the reliability
of UNIX Utilities [66] in 1989 developed a tool they called ”fuzz” which
generated random characters.

This chapter describes how fuzzing can be an effective way to identify
memory corruption bugs. It should be applied in the verification phase of
a development lifecycle. Chapter 7 shows in practice how this method can
generate crashes in a program for further analysis. Chapter 8 shows the
actual results of the fuzzing run performed in this thesis.

4.1 Fuzzing strategies

There are several strategies to consider when creating a fuzzer, as described
in Table 4.1.

There are two common strategies for fuzzing input to a program. One is
called Generational Fuzzing. The other is Mutational Fuzzing. Generational
Fuzzing creates input from a data model such as a network protocol or
file format. Mutational Fuzzing takes valid input and performs various
mutations on it. A random mutation of an input file is showed in
Appendix A. Mutations can also be based on a data model. A detailed
data model is what separates a smart fuzzer from a dumb fuzzer.

An example of an open source fuzzing framework is the Peach Fuzzing
Platform [36]. Peach is a smart fuzzer that is capable of performing both
generational and mutational fuzzing. Using an XML-file referred to as a
PeachPit it is possible to define complex data models of the input. The data
models affect how the data is being mutated. For example, a number is
mutated in a different way than a text string.

411 Code coverage

An important metric of the efficiency of a given fuzzer is code coverage.
Ideally a fuzzer should explore as many code paths in a program as
possible. Intuitively, if a software bug is to be discovered by fuzzing, the
erroneous code must first be executed.

27

CHAPTER 4. FUZZING

Term Definition

Dumb fuzzing Corruption of data randomly without aware-
ness of data structure.

Smart fuzzing Corruption of data with awareness of the data

structure, such as encodings (for example, base-
64 encoding) and relations (checksums, bits
indicating the presence of some fields, fields
indicating offsets or lengths of other fields).
Black-box fuzzing | Sending of malformed data without actual
verification of which code paths were hit and
which were not.

White-box fuzzing | Sending of malformed data with verification
that all target code paths were hit, modifying
software configuration and the fuzzed data to
traverse all data validations in the tested code.

Generation Generation of fuzzed data automatically, not
based on any previous input.
Mutation Corruption of valid data according to defect

patterns, to produce fuzzed data.

Mutation template | Well-formed buffer that represents an equiva-
lence class of the input. The fuzzer takes the
mutation template as an input, producing a
fuzzed buffer to be sent to the tested software.
Code coverage Technology that allows inspection of which
code paths were executed during testing. This
is useful for verification of test effectiveness
and improvement of test coverage.

Table 4.1: Fuzzing taxonomy [71]

Dumb fuzzing by nature gives smaller code coverage than smart
fuzzing. The chance of exploring all code paths is larger if the fuzzer is
aware of the type of data that is being mutated. To compensate for this,
code coverage analysis can be performed when selecting input for a dumb
fuzzer. A case study of fuzzing four different commercial applications in
2010 showed that careful selection of input could create a quite effective
dumb fuzzer [67].

The input used for mutational fuzzing is known as a template. For
example when fuzzing a file parser, templates would be valid files of a
specific file format. A set of templates can be reduced to a minimum set by
using code coverage analysis. This is performed by logging which parts
of a program that are visited when given the individual template files.
A master template can be identified by comparing the logs. The master
template is the single file that generated the largest code coverage. The log
for each input file is then compared to the log of the master template. Only
templates that cause exploration of new parts of the program are included
in the minimum set.

28

CHAPTER 4. FUZZING

Peach 2.3.8 includes a tool called minset.py [35] which can be used
to perform code coverage analysis and create a minimum set of template
files. The tool first identifies the basic blocks of the program and then uses
Pin [54] to instrument the program and log which basic blocks are visited.
Instrumentation is covered in detail in Chapter 5.

A basic block is a sequence of code or statements that are not
interrupted by branching. A branch can be a jump instruction (goto) or
conditional jumps created by conditional statements like if-then-else. It can
be used as an atomic measure for code coverage. If a basic block is reached,
then the rest of the block must be executed, unless the code generates an
exception. An exception may pass execution to another basic block. This
makes logging of basic blocks an accurate measure of code coverage.

Figure 4.1 shows the three basic blocks of the main function in
overflow.c from Section 3.2.! There are three basic blocks because of the
if-statement (line 19). The function stupid_copy contains only one basic
block, because there are no conditional statements in the function.

push ebp
mow ebp, esp
cub esp, 18h
lea eax, [ebp+main_buffer]
mou [ebp+buffer_pointer], eax
cmp [ebp+argc], 2
jnz short loc_4810867
¢' [
mou ecx, [ebp+argu]
moy edx, [ecx+4]
push edx ; source
mov eax, [ebp+buffer_pointer]
push eax ; destination
call _stupid copy
add esp, 8
mou ecx, [ebp+buffer pointer]
push ecx
push offset Format ; "%shwn
call ds: imp_ printf
add esp, 8
v ¥
loc_h@1867:
®or eax, eax
mov esp, ebp
pop ebp
retn

Figure 4.1: Basic blocks of the main function in overflow.c

The main function illustrates how important code coverage is for
fuzzing results. If the input string given to overflow.exe contains one
or more white-space characters, it will never crash the program, regardless
of how long the string is. Only a single input argument will be accepted,
making argc == 2. Any other value of argc will make the program jump
to the last basic block and return.

L overflow.exe was disassembled using the Interactive disassembler (IDA) [4]

29

CHAPTER 4. FUZZING

4.1.2 White-box fuzzing

The fuzzing strategies covered so far can all be performed as Black-box
fuzzing. This means running the program through the tests without
actual verification of which code paths were hit and which were not. A
more effective approach is known as White-box fuzzing [41]. According to
Microsoft their white-box fuzzer SAGE ? found roughly one third of all the
bugs discovered by file fuzzing during the development of Windows 7 [40].
SAGE is CPU intensive and is typically run after all other tests. That means
that the bugs found by SAGE were missed by all other methods, including
static program analysis and black-box fuzzing.

White-box fuzzing involves symbolic execution [26] of the program with
concrete input. Whenever a branch is reached, an SMT?® solver [31, 30] is
given the task of manipulating the input so that the other branch is taken.
If the solver finds a solution, the program is run again with the new input.
This way input is mutated with the concrete goal of exploring new code
paths.

4.2 Strategies for triaging errors

The previous section showed different strategies for generating invalid
input to a program. Common for all the strategies is that they are of no use
if program errors are not detected during the test cases. For each iteration
of input, the target program could be run through a runtime test specifically
made for detecting abnormal behavior. This could for example be useful to
validate complex state machines. Memory corruption bugs are normally
discovered by detecting program crashes.

During a fuzzing run, a program is likely to crash many times, but it
is unlikely that all the crashes are unique. Some of the crashes will occur
in the exact same location. Others may be similar although not exactly the
same. A fuzzer may use a bucketing* algorithm [39] to log similar crashes
together for analysis. Another aspect is that developers could need help
in prioritizing the crashes. Automatic crash dump analysis could classify
crashes in categories by severity.

Some of the tools that can be used for automatic bucketing of crashes
are !exploitable [59] for Windows, CrashWrangler [89] for Mac OS X and
the Valgrind [69] tool Memcheck for Linux and Mac OS X. lexploitable and
CrashWrangler are both integrated in Peach.

There is one important benefit from crashes generated by fuzzing.
It answers the question ”is the problematic code reachable by an atta-
cker?” [29]. Because fuzzing only changes user input, anyone who are al-
lowed to give input to the program, could create the crash. A program
crash could also be caused by some internal failure which is not triggered

2 SAGE = Scalable Automated Guided Execution

3 SMT = Satisfiability Modulo Theories

4 bucket (noun): A collection of error reports likely caused by the same bug.
bucket (verb): To triage error reports into buckets. [39]

30

CHAPTER 4. FUZZING

by user input. But such a bug would not be as critical to fix as a bug that
could allow someone to make the program crash deliberately.

4.2.1 !exploitable

lexploitable (pronounced “bang exploitable”) is an extension for WinDbg
published by Microsoft in 2009. It was created based on the experiences
Microsoft had with fuzzing during the development of Windows Vista [29].
It performs both automatic bucketing and prioritization of crashes.

The algorithm that is used by !exploitable to determine the severity of
a crash is based on its predicted security implication. All crashes produced
by fuzzing can be triggered by an attacker. In that sense there are no false
positives, and all the crashes should be fixed [14]. However, some crashes
are more likely than others to be exploited by malware to gain control
of a computer. The specific kind of exploitation addressed, is the ability
to hijack control flow with the goal of executing arbitrary code [70, 15].
Given a vulnerable program, it might be possible to force the CPU to run
malicious code injected via user input [17].

Exploitability is determined by a set of rules listed in Appendix B. A
crash is placed in a category based on multiple factors. The factors are not
shown in the table, but when they have consequence for the classification,
they are mentioned in the description in the second column. Important
factors are the exception type, register values and code analysis within the
basic block in which the crash occurred. The rules are applied in the order
of the table. The last column shows if rules are final or not. Rules that are
not final may be overridden by another following rule. The last three rows
are fallback rules that are used if no other rules apply.

To separate unique crashes from each other, lexploitable creates a hash
of the call stack. The hash consists of a major and minor component.
The major hash is by default based on the top five stack frames, and
the threshold of five is configurable in source code. The offset into each
function is not used when calculating the major hash. The minor hash
includes the offsets and is also based on all available stack frames.

The minor hash is conservative regarding uniqueness. All stack frames
must be exactly equal to produce the same minor hash. The major hash can
serve as a bucket for similar crashes. If the function names of the top N
stack frames are equal, it will produce the same major hash. This will catch
two types of relations between crashes. One type is crashes occurring in
different locations of the same function and the function calls leading to the
crashing function are the same. The other type is when there are irrelevant
differences further down the call stack, but the top N stack frames are equal.

Peach uses the results of !exploitable to group equal crashes. Crashes
with equal classifications, descriptions and hashes are treated as equal. In
the remainder of the thesis this will be referred to as the unique name of a
crash.

Although lexploitable was created to triage crashes produced by
fuzzing, it can be used to analyze any crash. It relies only on the
crash dump, not the input that generated the crash. This would make

31

CHAPTER 4. FUZZING

it applicable to automatic crash reporting systems where the amount of
crashes can be much larger than what can be generated with fuzzing.

4.3 Assessing the effectiveness of a fuzzer

A practical question when it comes to fuzzing, is when to stop a fuzzer.
When doing white-box fuzzing, it is possible to use code coverage as an
indicator. If all program paths have been explored, it is close to giving
actual verification of the program [40]. In practice it may be infeasible to
reach all program paths. Even if all paths are reached, it is not feasible to
execute all code with all possible input.

When doing black-box fuzzing, code coverage is not measured. It
is only limited by how many iterations of input the fuzzer can create.
Depending on the data model, the number of possible inputs could be
infinite. The iterations could be created in a deterministic manner. This
is the default strategy used by Peach. Then each iteration does only one
mutation of one data element and a finite set of iterations is produced. The
average time used on each iteration gives an indication of how long it will
take to run all iterations. Peach also supports a random strategy which can
run forever. The random strategy can also mutate multiple data elements
in a single iteration.

4.3.1 Counting unique crashes

An indicator that can be used to assess the progress of a fuzzing run, is
the current amount of unique crashes identified. Intuitively, the amount of
unique crashes can only increase. Every new unique crash that is identified
will increment the counter. For each iteration, the probability that new
crashes are unique will decrease. As more and more unique crashes are
identified, there is an increased possibility that new crashes will be equal
to an already detected crash. Plotting the counter over time should produce
a curve that converges toward a horizontal line [67].

A mathematical model of this curve could be constructed by conside-
ring balls in a basket. The basket is filled with Q balls representing all pos-
sible inputs to a program that an imaginary fuzzer can produce. Drawing
a ball from the basket is the equivalent of a fuzzing iteration. In order to
create a simple data model, we assume a constant probability of drawing a
given ball. Balls are picked randomly by equal probability and they are put
back into the basket after each iteration. This is analog to the random fuz-
zing strategy of Peach. The deterministic strategy would be the equivalent
of picking balls in a given order and never picking the same ball twice.

The balls are of different types marked by integer numbers ranging
from 0 to k. The numbers are not unique, so many balls could have the
same number. Picking a ball with the number zero means no crash is
detected. There are m balls in the basket with numbers greater than zero.
These correspond to inputs that will generate crashes.

Among the m balls, there is a distribution of types defined by a set of
constants. The amount of balls of a specific type j is given by the constant

32

CHAPTER 4. FUZZING

g; and Z;-‘Zl qj = m. If one of the m balls are picked, a copy is made of the
ball. The original ball is put back into the basket, and the copy is put in
one of k buckets according to the number on the ball. If all buckets have at
least one ball, the fuzzer has produced all crashes that theoretically can be
produced under the specific assumptions.

For each new bucket that is filled with its first ball, the amount of unique
crashes is incremented. This amount will increase and converge toward a
ceiling of k. Appendix C derives the following expression for the curve of
unique crashes:

where i represents iterations. At iteration zero Z(0) = 0. Appendix C also
shows that Z (i) converges to k as i increases toward infinity.

The shape of the curve will depend on the distribution of the constants
g; and the mutual relations between k, m and Q. None of these variables can
be known for a specific fuzz case, but we can assume k < m < Q and an
uneven distribution of g;. The expression can be used to reason about the
shape and characteristics of such a curve. Chapter 8 puts this mathematical
model in the context of actual fuzzing results.

Figure 4.2 shows an example curve created by choosing a simple
distribution of a small number of unique crashes. The example uses
Q = 100000, m = 2000 and k = 8. The distribution of q; is shown in
Table 4.2.

j1112(3, 4|56 7|8
gi (1 12{7 (30|60 200|700 | 1000

Table 4.2: An example distribution of unique crashes

The distribution is chosen so that some crashes are much more common
than others. This results in a curve that increases rather quickly in the
beginning. After approximately 1500 iterations half of the buckets are filled
with balls. Because some of the crashes are rare, the curve does not quickly
converge, but rather slowly increases in an almost linear shape toward the
ceiling of eight. If there were several rare crashes, this effect would be even
more apparent.

If the curve becomes close to horizontal, it is time to stop fuzzing. For
example one could consider running a fuzzer for one more week. If at least
one new unique crash was detected during the last two weeks, one could
argue that the interval between unique crashes is still under 14 days. Then
there would be more than 50% chance that a new unique crash would be
detected in the next seven days. Bearing in mind that a fuzzer can run
without human interaction, it could be cost-effective to keep it running.

When there is a long time interval since the last unique crash, the fuzzer
has reached its potential. It has probably found all crashes it is capable of
finding. An alternative to ending the fuzzing run could be to change the

33

CHAPTER 4. FUZZING

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lterations (i)

Figure 4.2: Converging curve of unique crashes

fuzzing strategy. This could involve creating a more complex data model or
go from black-box to white-box fuzzing. A change of strategy might raise
the ceiling, making the curve converge toward a new level.

34

Chapter 5

Dynamic program analysis

A program crash is only a symptom of a program error. Crash dump
analysis can be used to investigate program crashes, but there are
limitations when it comes to finding the underlying cause of a crash.

As shown in Section 3.3 a crash dump contains the state of the program
at the moment of crash. Historic information about execution paths is
limited to the call stack. There is also a possibility that the call stack and
the crash location is corrupted, so that no direct link can be made to source
code.

If the input generating a crash is known or the crash is possible to
reproduce, dynamic methods can be applied to further investigate the
crash. Dynamic methods can provide information about the control flow
and data flow of a specific execution.

5.1 Methods of dynamic analysis

When a program is analyzed dynamically, the program is executed with a
specific input. The analysis does not consider all possible execution flows,
but rather one specific execution. Dynamic analysis enables inspection
of the program state during execution from start to end. It can include
pausing and even changing the course of the program. The most common
method is to use a debugger.

5.1.1 Debuggers

A debugger can be attached to an existing process, or it can create a new
process from an executable file. The debugger will start its own thread
within the process. This debug thread is responsible for showing the state
of the real threads of the process during execution.

Execution can be paused, e.g. by a user breakpoint or by an access
violation. A machine-level debugger can step through single instructions
and show the state of the CPU and memory at each step. It is also possible
to automatically trace all instructions. This is performed by constant
context switching between program threads and the debug thread. The
debug thread will then log the instruction pointer at every step.

35

CHAPTER 5. DYNAMIC PROGRAM ANALYSIS

Example of debuggers are gdb [2] for Linux and WinDbg [61] for
Windows. Both of these are capable of source-level and machine-level
debugging.

5.1.2 Emulators

Some debuggers are capable of Instruction Set Simulation (ISS). This makes
it possible to simulate a different architecture. Another possible use is to
simulate execution without actually running the program on the machine.
This can be useful for malware analysis.

ISS done by hardware was originally called emulation. The term emulator
is now often used even if it is done by software. Modern emulators like
QEMU [6] use dynamic binary translation [21] to send chunks of instructions
to the CPU. Typically a whole basic block is sent at once. This reduces the
need for context switching between the emulated system and the emulator.

5.1.3 Dynamic binary instrumentation

When a process is emulated with dynamic binary translation, it is also
possible to add some analysis code to the chunk of instructions. This is
known as dynamic binary instrumentation. After a code chunk is executed,
the analysis code is executed independently. This code can be used to
inspect some dynamic properties of the emulated process.

Examples of binary instrumentation frameworks are DynamoRIO [1],
Valgrind [69] and Pin [54]. Both Valgrind and DynamoRIO are open-source
projects. Pin is freely available from Intel.

The power of instrumentation lies in the ability to modify code at
runtime. When using instrumentation to create an execution trace, it is not
only possible to log the instruction pointer. The value of each instruction
operand can be logged so that a trace contains a complete picture of the
code executed. Instruction logging gives the control flow, while operand
logging gives the data flow of a specific execution.

Since the main purpose of instrumentation is to do runtime program
analysis, it is in general more efficient than using a debugger for
tracing. While a debugger must be able to pause execution at any time,
instrumentation runs continuously. Pin uses a code cache and a JIT
compiler which optimizes code and is claimed to give better performance.

The speed depends on the granularity of the instrumentation. For
example Pin can instrument per function, basic block or instruction. It also
depends on the amount of analysis code which is applied. Instrumentation
will typically slow down execution by a factor of 10 to 100. To avoid
instrumenting every part of a large program, it is possible to specify where
in the program to start and stop instrumenting. When not instrumented,
the program will run at normal speed.

5.1.4 Whole-system instrumentation

A research project at the University of California, Berkeley has developed
a framework for binary analysis called BitBlaze [22]. The dynamic analysis

36

CHAPTER 5. DYNAMIC PROGRAM ANALYSIS

component of BitBlaze is called TEMU [82]. It is developed on the basis of
QEMU, which is a whole-system emulator.

TEMU runs on Linux and is capable of emulating Windows 2000,
Windows XP and Linux operating systems. The emulated OS is referred
to as the guest while the OS that runs TEMU is referred to as the host.
The purpose of TEMU is to control the guest system by starting processes,
giving input and collecting execution traces. This is done by using a
command-line interface similar to QEMU.

One challenge of interfacing with processes in a guest OS, is that the
emulator sees the physical memory as the guest kernel does. Furthermore
physical memory pages can be swapped out to disk. To deal with this,
TEMU reads the CR3 register which points to the physical address of
the page directory of the current process. For Linux guests, TEMU uses
open-source kernel structures to enumerate processes and query process
information. For Windows a support driver must be installed on the guest.

For Windows guests TEMU also uses the FS segment register which
points to the Thread Environment Block (TEB) of the currently running
thread. This pointer is a virtual address as with all process memory. TEMU
therefore has to use the page directory to find the correct page table and
manually load the physical memory page.

An advantage of emulating the whole OS, is that the instrumentation
is really transparent to the processes being instrumented. While ordinary
instrumentation modifies code and exists in the same process as the
instrumented program, whole-system instrumentation exists outside the
guest OS [82]. The only impact on a Windows guest, is that the support
driver is loaded and that execution in general is slower than normal.
Another advantage of whole-system emulation is that it enables whole-
system taint-tracking.

5.1.5 Dynamic taint analysis

Dynamic taint analysis [79] is a form of data flow analysis. The purpose is
to track data as it flows through a program or OS.

In the context of program crash analysis, it can be used to decide if the
corrupted memory generating a crash originates from user input or not.
Even though a crash can be triggered by user input, it is not necessarily so
that the corrupted memory can be controlled by the input data. This is a
vital factor to decide the exploitability of a memory corruption bug.

With TEMU, execution traces can be started on any process and input
can be given as e.g keystrokes, network traffic and files. The input can be
marked as tainted. This makes it possible to see if some data originates
from user input or not. Tainted input data is propagated throughout the
OS, even though the trace is only made for the target process. The tainted
data is for example tracked while being buffered or processed by the OS,
but it is only collected as part of the execution trace.

A challenge is how to deal with modifications of data. The data should
be tracked even though it is changed by e.g. arithmetic operations. At a
given point of execution, a piece of memory may be influenced by several

37

CHAPTER 5. DYNAMIC PROGRAM ANALYSIS

pieces of input data. For performance reasons TEMU stores only one taint
influence per byte of memory.

5.1.6 Differential debugging

Traditional dynamic analysis is the analysis of control flow and data flow of
one concrete execution of a program. It is also possible to compare different
executions. This is known as differential debugging [75].

This method can be used to understand how a program behaves in
different ways given different inputs. In the case of program crash analysis,
differential debugging can be used to compare normal execution with
execution that leads to a crash. Specifically, for a crash produced by
mutational fuzzing it is possible to compare executions of the program
when given the fuzzing template and the mutated input [68].

Two program executions may be compared by call graphs, basic blocks
or single instructions. An example of a debugging framework capable of
comparing basic blocks of execution is BinNavi [8]. Figure 5.1 shows a
comparison of basic blocks reached by two different executions of the same
function. Since the release of BinNavi 3.0 in 2010, it is also possible to record
data flow of different executions. Instruction operands and the content
of involved memory locations can be logged each time an instruction is
executed [75].

Similarly, two execution traces produced by TEMU can be compared
in order to identify the parts where execution diverges between the traces.
A diverging point of execution can be an important factor when trying to
understand the underlying cause of a crash created by mutational fuzzing.
This is a part of the program that behaves differently when given valid and
invalid inputs [68].

Figure 5.1: Differential debugging with BinNavi

38

Chapter 6

Related research

This chapter gives an introduction to recent research in program crash
analysis.

6.1 Automatic crash reporting and analysis

Windows Error Reporting (WER) represents by far the largest system
for automatic crash reporting [39]. The system is not only available
for Microsoft software. Any software, firmware or hardware running
together with the Windows platform can take advantage of the service.
WER receives crash reports from Windows applications, Windows OS
components and third-party device drivers and applications. In addition
all JavaScript code running on Windows Live web-sites report crashes to
WER regardless of which Internet browser is used.

Third-party desktop application and hardware developers can access
the WER service at sysdev.microsoft.com!. The “Windows Dev Center
Dashboard” provides vendors with detailed statistics about the stability
of their products. Automatic bucketing and analysis of crashes helps
developers fix bugs in their software and firmware.

Crash reporting systems can be used not only to catch bugs after release.
WER is used by Microsoft during both internal testing and testing through
beta-releases. This removes many problematic issues before software is
released to the public.

WER contains empirical data about bug fixes and crashes from billions
of computers. This data set is unparallelled in both size and completeness.
Ten years of experience with WER was summarized in an article in
2009 [39]. The article points out some general aspects of bucketing
algorithms.

6.1.1 Bucketing algorithms

An ideal bucketing algorithm manages to assign exactly one bucket for
each bug. It also groups all crash reports belonging to a specific bug into

1 The "Windows Dev Center Dashboard” was formerly known as “Windows Quality
Online Services” or “Winqual”.

39

CHAPTER 6. RELATED RESEARCH

the correct bucket. As stated by Microsoft such an ideal algorithm is not
known. Instead a collection of heuristics are applied in order to achieve a
form of bucketing that can be useful in practice.

Labeling heuristics are performed on clients in order to minimize server
load. The labeling consists of identifying meta-information about a crash.
This is the type of information shown in Figure 3.5. The label is sent
to a WER server which analyzes if additional information is needed. If
the label shows a previously known issue, there is no need to request a
minidump for analysis. A known solution might be a software upgrade
or configuration change. Third-party vendors can even use this service to
provide customized troubleshooting messages to customers.

If there is a need for additional information, a minidump is sent
together with a detailed technical report containing system information.
The minidump is analyzed automatically, using the WinDbg extension
lanalyze. It applies classifying heuristics which assigns a bucket to crashes
based on how they occurred. A notable result in the article is that the
module offset, i.e. the crash location, contributed to the bucketing in almost
68% of the cases.

The article does not mention !exploitable as a tool for automatic
classification of crashes. A plausible cause for this, is that the article
was published in 2009, the same year that !exploitable was released to
the public. It can provide extended automatic analysis to estimate the
severity of a crash and do bucketing based on the call stack. The automatic
analysis described serves as an initial analysis for developers. Finding the
underlying cause and a fix in source code is a task that requires manual
analysis.

There are two complementing types of heuristics influencing the total
number of buckets created from a set of incoming crash reports. The first
type is expanding heuristics. These will increase the amount of buckets with
the purpose that no bucket should contain crash reports from more than
one bug. The second type is condensing heuristics. These will decrease the
amount of buckets so that no two buckets contain crash reports from the
same bug.

6.2 Call stack analysis

The call stack, or stack trace, is an important part of a crash dump. An
empirical study conducted by Premraj et al. in 2010 shed some light on the
subject. The result of the study was summarized in an article entitled “Do
Stack Traces Help Developers Fix Bugs?” [78].

The study analyzed bug reports that contained stack traces. Of the bugs
that were fixed, up to 60% of the fixes involved changes to one of the stack
frames. Furthermore, it showed that most bugs are fixed in one of the top
ten stack frames. It also showed that several stack traces submitted to a
single bug report could provide developers with additional information.
More stack traces could give multiple perspectives on the same bug.

Stack traces are commonly used to group similar crashes with the goal

40

CHAPTER 6. RELATED RESEARCH

of having one group for each bug. Within a group, the different stack traces
can be used to understand how the bug is triggered and possibly how it
should be fixed.

6.2.1 Crash grouping based on call stacks

lexploitable uses a hash algorithm to compare different call stacks. The
minor hash can be used to identify strictly unique stack traces. The major
hash can be used to group call stacks where the N top function names
are equal. A more detailed comparison of call stacks was suggested by
Dhaliwal et al. in 2011 [33].

Their study analyzed crash dumps from users of Mozilla Firefox
through the automatic bug reporting system Socorro [86]. A simple, yet
effective grouping algorithm was proposed. The algorithm calculates
the Levenshtein distance (LD) [52] between stack traces. This approach
is conceptually different from using application specific heuristics. It is
a generic algorithm which can be applied to any set of crash reports
containing stack traces.

1.Compare the top method

signature and select a crash-type o ’

all Crash-Type 1

New Crash-
Report

/
/
/
/

Crash-Type 2

subgroupl subgroup2 Subgroup N

subgroupl subgroup2 Subgroup N

_1

1]

]

Represen

tative
Trace

2.Compare with the
representative trace of
each subgroup in the
selected crash-type

Crash-Type N

subgroupl

subgroup2

Subgroup N

Figure 6.1: A two-level grouping of crashes using representative traces [33]

The Levenshtein distance between two sequences is defined as the
number of changes needed to transform one sequence into the other. The
legal change operations are insertion, deletion or substitution of a single
element. The calculated distance is used to measure the similarity between
call stacks.

Within a group of stack traces, it is possible to calculate the average
Levenshtein distance between the traces. This is referred to as the Trace
Diversity (TD) of the group. The Levenshtein distance between different
call stacks can be used as a threshold for when a new group should be
created. The data set in the study suggested that a threshold of five could
ensure that crashes in one group all belonged to a single bug.

The study argues that grouping crashes belonging to different bugs has
the worst impact on bug fixing time. Developers are most efficient when
given crashes that belong to a single bug. Even if crashes belonging to a

41

CHAPTER 6. RELATED RESEARCH

single bug were divided into different groups, the study argues that this
is less harmful for bug fixing time than grouping crashes belonging to
different bugs.

Two groups represent significantly different stack traces. If two groups
actually are caused by the same bug, choosing a stack trace from each group
provides two perspectives on the bug, which is shown to reduce bug fixing
time. This argument suggests that over-condensing rules in general have
more negative impact on effective grouping than over-expanding rules.

The proposed grouping algorithm includes two additional features
which are important for the practical implementation in an automatic crash
reporting system. One is the idea of incremental grouping. The other is that
the proposed algorithm uses a two-level grouping approach as shown in
Figure 6.1. These features are important when considering a large amount
of crashes arriving as a continuous stream into the grouping algorithm.

The first level of grouping is based on the top stack frame, which is the
crash location. A group of crashes sharing crash locations is referred to as
a crash-type. The Levenshtein distance is only calculated between crashes
belonging to the same crash-type. This considerably reduces the necessary
computation. The groups in the second level are referred to as subgroups.

In theory, new stack traces could cause reorganization of the subgroups.
This is an undesirable effect. ~Crash grouping should be persistent
throughout the bug fixing process. To compensate for this, a representative
trace is maintained for each subgroup. New crashes in a crash-type are
compared only to the representative traces of the subgroups. A crash is put
in the subgroup giving the smallest Levenshtein distance. If the distance
is larger than the threshold for all representative traces, a new subgroup is
created.

6.2.2 Call stack graph visualization

In 2011 Kim et al. proposed the use of Crash Graphs as a method for
improving crash triaging [50].

The proposed graphs give an aggrega-
ted view of all stack traces within a group.
In such a graph, the nodes represent called
functions, i.e. stack frames. The edges of
the graph represent the call relations bet-
ween functions. Both the nodes and edges
can be weighted if more than one stack
trace contain the same functions or call re-
lations.

There are two prop(.)sed‘ appl‘icatio‘ns Figure 6.2: Crash Graph [50]
for such graphs. The first is to identify
duplicate grouping, i.e. crashes from two
groups belonging to the same bug. The second is to use Crash Graphs to
analyze the root cause of crashes. This approach can give developers a
more complete view of the context of crashes and possibly show features
that a single crash dump cannot reveal.

42

CHAPTER 6. RELATED RESEARCH

6.3 Program crash analysis using execution traces

In 2010 Miller et al. presented their work on program crash analysis
using methods and tools from the BitBlaze project [68]. The results were
presented through case studies, analyzing execution traces generated by
TEMU. The case studies addressed the limitations of crash dump analysis
and automatic classification with tools like !exploitable. It was claimed that
crash analysis with BitBlaze could help in both assessing the severity of a
crash and finding the underlying cause.

6.3.1 Crash severity

An important question when assessing the severity of a crash, is if the crash
can be controlled by user input.

lexploitable performs taint analysis within the last basic block. The
output of this analysis can for example tell if the corrupted data is used
as an input argument to a function or if it may be used as the return value
of the crashing function. This serves to give a description of individual
crashes. The analysis is conservative in the sense that it assumes that all
data is tainted.

Since a crash dump only gives the saved state at the moment of
crash, !exploitable cannot know if data is influenced by user input or not.
For instance if the program crashed during a memory copy operation,
the tool assumes that an attacker can control both the source address,
the destination address and the length of the copy. This approach may
overestimate the possibilities of an attacker.

By using whole-system taint-tracking, the case studies demonstrated
how taint information can be included in an execution trace. The important
question was if the memory address giving an access violation was tainted.
This resulted in reclassification of some crashes.

While this method can give a more accurate classification of crashes,
it can be impractical to use as part of a sorting algorithm. The reason
is that it typically takes several hours to generate a trace. The proposed
working method is to use crash dumps for initial classification and generate
execution traces on the most severe crashes.

A limitation of an execution trace is that it does not answer what would
happen if there was no unhandled exception. For instance, in the case of
a read access violation, the corrupted memory address could have been
pointing to an incorrect, yet valid memory region. This could happen by
coincidence, or the situation could be produced by a technique known as
heap spraying [83]. The technique works by allocating several large chunks
of memory. This decreases the probability that a given random address is
invalid.

If execution were allowed to continue, the memory corruption would
most likely result in a later crash. Such a situation could effectively turn
a read access violation into a write access violation, which is generally
classified as more severe.

A factor related to severity, is the reliability of a crash. A crash that

43

CHAPTER 6. RELATED RESEARCH

occurs every time given the same input, is more critical to fix than a crash
that is more random [32]. Random crashes are not guaranteed to occur
during dynamic analysis, which makes them more difficult to analyze
dynamically. An execution trace can therefore be even more important in
these cases. If an execution trace of a rare crash is successfully produced,
the bug could be analyzed and fixed without the need to trigger the crash
again.

6.3.2 The underlying cause of crashes

An execution trace generated with TEMU contains operand values so that
both control flow and data flow can be analyzed. With this information, an
analyst can step forward and backward in the code and always know why
the program behaved the way it did, at least on the machine level. This
reduces the need for additional dynamic analysis.

An alternative is to run the application through a debugger, set
breakpoints and step through code manually to inspect the program state.
A problem is that it is not always obvious to know where to set breakpoints.
Also the problematic code can be run several times before leading to a
crash. Manual dynamic analysis can therefore be a long process of trial
and error.

An advantage with BitBlaze that is pointed out, is the integration of
dynamic and static analysis methods. This is illustrated by the use of static
analysis on execution traces. A method called slicing can be performed
on an operand to filter out the instructions earlier in the trace that may
influence the value of that operand. This could help an analyst to focus on
the code that was important for the crash in a large program.

Differential debugging can be performed by comparing traces. The
case studies demonstrated aligning of a good trace produced by using a
fuzzing template and a bad trace produced by using the mutated input. A
trace alignment is a matching between instructions in two traces, while
preserving the ordering of the instructions. The result of an alignment
shows the parts of the traces that are equal, and where there are differences.
This could pinpoint where control flow diverges. At the diverging points,
data flow analysis may answer why the bad trace takes a different path
than the good trace.

In 2011 a method called differential slicing [49] was proposed to further
isolate the differences between two executions. This method outputs
a causal difference graph showing relations between differences in input
(cause) and differences in execution (effect). Another application for
differential slicing is analysis of malware with environmental-dependent
behaviors.

TEMU is also capable of recording information about dynamic memory
allocations and deallocations. Memory addresses in a trace can then be
queried for information about where it was allocated and the size of the
allocation. If an allocation is not found, the allocation closest in memory
is shown. This could be useful to understand heap buffer overflows and
other bug classes involving dynamically allocated memory.

44

CHAPTER 6. RELATED RESEARCH

6.3.3 Time and cost issues

One reason why fuzzing has proven to be effective, is that it can run
without human interaction. If a task can be automated and distributed
over a cluster of computers 24 hours a day, it can be less expensive than the
human resources needed to perform the task manually. Even if a human
expert could perform the task quicker than computers, human expertise
is in general more expensive per hour, and the amount of work hours of
humans per day is limited.

Miller et al. [68] argues that the same logic could apply to crash analysis
using execution traces. In the case studies, generating tracing could take
hours. Slicing could also take a couple of hours to complete, depending
on how far back it was possible to slice. While these automated tasks
take time, they can be useful when analyzing many different crashes.
Tracing and automatic trace analysis can run in the background while an
analyst is performing manual analysis of already produced traces, slices
and alignments.

Others have also suggested that semi-automization is more productive
than trying to automate a whole process involving program analysis.
Routine aspects of the process should be automated giving an analyst
the freedom to focus on certain key portions. This has been stated in
the context of both automatic vulnerability detection [43] and automatic
exploitation [32]. These areas are related to program crash analysis and bug
fixing, because they may require understanding of programs at machine
level. The methods must also be able to scale to real-world programs.

45

46

Part 111

Methods

47

Chapter 7

Planning the thesis

The goal of this thesis is to explore how software developers can benefit
more from program crash analysis. Specifically, it addresses the challenges
developers face when presented with thousands and millions of crash
dumps.

7.1 Methods overview

Existing research on automatic crash reporting systems suggests how
crashes can be grouped in order to reduce bug fixing time [33]. Strategies
for prioritizing crashes has been proposed in the context of fuzzing
results [59, 68]. Dynamic binary instrumentation can give additional
information about a crash. This information is claimed to help in both
prioritizing and finding the root cause of crashes [68].

7.1.1 Data collection methods

In order to evaluate the different claims, this thesis analyzes a data set
consisting of real crashes from a real program. Before the analysis could
be performed, a set of crashes was generated. The crashes were produced
by using black-box, dumb, mutational fuzzing [36].

There are some advantages of analyzing fuzzing results compared to
field crash reports:

¢ The program version and system configuration can be controlled, so
that this is the same for all crashes.

¢ The data set includes the program input producing each crash.

An automatic crash reporting system may contain crash dumps from
several major and minor releases of a program. This generates the
need for signatures of stack frames which are invariant between program
versions [33]. In fuzzing results of one program version, a stack frame
consists of a module, function and offset which makes it trivial to identify
equal and different stack frames.

When the program input of each individual crash is known, it is
possible to reproduce crashes. This makes it possible to measure the

49

CHAPTER 7. PLANNING THE THESIS

stability, or reliability, of crashes. Such an analysis can answer if a crash
occurs every time, or if it was a random and rare event. Some invalid
input might even produce different crashes on each program run. This can
only be discovered if the original input is available. Another advantage of
having the original input, is that it can be used to perform dynamic analysis
of the crash.

There can also be disadvantages of analyzing fuzzing results compared
to field crash reports:

¢ The data set might be smaller than a set of field crash reports.
¢ Information about bug fixing time is not included.
¢ The actual links between crashes and bugs are missing.

The amount of crashes that can be generated by a simple fuzzing run
can never be as large as the crash databases of commercial crash reporting
systems like WER [39] and Socorro [86]. To compensate for this to some
extent, the target program and fuzzing strategy is chosen with the goal of
maximizing the amount of different crashes.

It is outside the scope of this thesis to actually find a source code fix for
all crashes produced. Consequently, only assumptions can be made about
bug fixing time and the links between bugs and crashes. The analysis will
rely on the results of existing research when it comes to criteria for effective
grouping and prioritization.

7.1.2 Data analysis methods

The crash dumps created by fuzzing are analyzed with the objective of
grouping and prioritizing the crashes:

¢ Different grouping algorithms based on stack traces are explored.
Levenshtein distance is used to measure the effect of different
grouping algorithms.

¢ Automatic classification, frequency and reliability are criteria used for
prioritizing crashes.

Crash dumps can be used to uniquely identify, group and prioritize
crashes, but they do not contain information about the program states prior
to the crash. This thesis uses dynamic binary instrumentation in three
different ways:

* Corrupted call stacks can be reconstructed, providing more correct
information to the grouping algorithms.

¢ Taint-analysis can provide additional information for classification
and prioritization of crashes.

* An execution trace with operand values can help identifying the root
cause of a crash.

50

CHAPTER 7. PLANNING THE THESIS

7.2 Choosing a target program

The target program was chosen based on several criteria. It should be a
program simple enough to be suitable for fuzzing and complex enough to
produce a large set of different crashes within the time frame of this thesis.

7.2.1 A program suitable for quick fuzzing

A command-line file processor is a suitable target for fuzzing. It takes a file
as input, does something based on the content of the file and then exits. If
the program exits without crashing, there are two alternatives. Either the
file contained valid data, or the program dealt with any invalid input in a
proper way.

The goal of a fuzzing run is to produce corrupt input which will make
the target program crash. To produce many different crashes, the program
must be run several times with different input files. If a crash occurs,
information about the crash is collected as well as the corrupted input
file. This process will in general go faster with a console program than
a program with a graphical user interface.

7.2.2 A program liable to contain memory corruption bugs

A suitable file processor would be one that parses a complex file format. A
binary file format would be preferred, because it in general gives a more
compact data representation. This makes dumb fuzzing mutations like bit-
flipping more probable of exploring new code paths.

An old program is preferred over a newer program. Advances in
compilers may have introduced mechanisms that will make memory
corruption bugs more rare. Early versions of a program are also in general
more immature, while newer versions have been made more robust by
applying multiple bug fixes.

7.2.3 Criteria

In addition to the described criteria, it is natural to choose an open
source project, so the analysis can be performed from the perspective of
developers. The criteria for the target program can be summarized as
follows:

* itis a console application (command-line utility)

e itissmall

* itis an early version of a program

* it has some specific, complex functionality

¢ itreads a file as input and processes the file content

* it is open source

51

CHAPTER 7. PLANNING THE THESIS

7.2.4 The target - GNU Ghostscript 6.51

The choice for a target program is GNU! Ghostscript [12], an open
source program that can be used to interpret PostScript™ [47] files (.PS).
Ghostscript includes a command-line utility which can be used to convert a
PostScript file into the Portable Document Format (PDF) [11]. This is a task
that requires complex parsing of the input file and the generation of many
complex data structures for the output file. The conversion is executed by
the command: gswin32c.exe -dNOPAUSE -dBATCH -sDEVICE=pdfwrite
-sOutputFile=outputfile.pdf inputfile.ps

Ghostscript is written entirely in C/C++, and supports many platforms,
such as Microsoft Windows, Apple Mac OS, Linux and Unix systems.
It is copyrighted by Artifex Software, Inc. Before 2004 Ghostscript was
licensed under Aladdin Free Public License (AFPL). The current version is
licensed under GNU General Public License (GPL). Version 9.04 for 32-bit
Windows was compiled 2011-08-05. Older binary releases are available for
download.

The oldest binary release available is GNU Ghostscript 6.51, compiled
2001-07-31 [10] for Windows. Using the original binary release for fuzzing
increases the probability of producing many different crashes. This version
of the program is not only created from old source code. It was also created
by an old compiler. Even if fuzz testing was known at the time, it is
unlikely that the program from 2001 was sufficiently fuzz tested. Advances
in computation speed over the last decade also increases the chance of
producing a suitable data set for the analysis.

The program consists of the executable file gswin32c.exe and the li-
brary gsd1132.d11, which are both found in the directory gs\gs6.51\bin.
The conversion also depends on some files in the directories gs\gs6.51\1ib
and gs\fonts. These directories are kept unchanged as created by the de-
fault installation. The code that does the actual parsing and conversion is
in gsd1132.d11. The program uses three third-party libraries which are
statically linked. These are:

e jpeg 6b (1998-03-28)
e libpng 1.0.8 (2000-07-24)
e z1ib 1.1.3 (1998-07-10)

7.2.5 Symbols

One disadvantage of using the original binary release, is that the original
debug symbols are not available. When compiling a program for Windows,
a Program Database (PDB) [58] of each executable file can be created. This
file includes names of functions and variables. In particular, it can be used
to link binary program locations to lines in source code.

To compensate for this, the source files were compiled into new
executable files using the correct version of all third-party libraries. Then

! The name “GNU” is a recursive acronym for “GNU’s Not Unix!”

52

CHAPTER 7. PLANNING THE THESIS

the Interactive Disassembler (IDA) [4] was used to create a program
database (IDB) for the original version of gsd1132.d11 and the new version
which included a PDB.

An IDA plugin called BinDiff [7] can be used to port symbols from
one program database to another. With this tool, symbols were ported
from the IDB with symbols to the IDB file of the original library. This
provided function names and variable names for static analysis of crashes
at machine level. The symbols were used to manually find links between
binary program locations and source code. However, dynamic analysis
with WinDbg did not benefit from these symbols.

When debugging DLL-files without a PDB file, WinDbg uses the export
symbols defined in the DLL. These contain the names of all functions
exported by the DLL. Since !exploitable is a WinDbg extension it also
requires a PDB file to correctly display stack frames. To compensate for this,
the stack traces were post-processed using a function mapping exported
from the IDB. The major and minor hashes were also recalculated based on
the new stack frames.

7.3 Fuzzing strategy

A discussion of the choice of fuzzing strategy does not directly answer any
of the research questions asked in Chapter 2. However, it documents and
explains how raw material was produced for further analysis. As shown in
Chapter 8, the fuzzing run gave a large set of different crashes, which made
the analysis interesting.

The choice of fuzzing strategy depends on both the target program,
the input format and available resources. In the case of the PostScript-
format, the data model is quite complex. This makes a dumb fuzzing
strategy much simpler to implement. White-box fuzzing would probably
produce more crashes than black-box fuzzing [40]. However, previous
research has shown that random black-box testing can be effective against
real programs [37, 67]. Black-box fuzzing is simpler to implement, and
there are several available fuzzing frameworks that are capable of doing
black-box fuzzing.

Peach Fuzzing Platform [36] was chosen for this thesis. It is capable
of performing black-box mutational fuzzing using predefined mutators on
a specified data model. It also supports using !exploitable for automatic
classification and bucketing of crashes. When using Peach to fuzz PS-files,
it is possible to define two different simple data models for the files.

The simplest data model defines the whole file as one piece of binary
data called Blob?. Since PS-files contain mostly text, it would also be natural
to use a data model which defines the whole file as one String. While these
data models are simple, Peach makes use of several different mutators to
generate changes to the data. When using such simple data models, code
coverage will strongly depend on the set of files used as fuzzing templates.

2 Blob = binary large object

53

CHAPTER 7. PLANNING THE THESIS

7.3.1 Creating a set of fuzzing templates

The fuzzing templates should contain different kinds of features, so that
different parts of the target program would be explored. Instead of
generating a large set of files based on a data model, it would be more
efficient to download a large set of real-world PS-files from the Internet.
The set should be a random and representative selection of files.

The website www.FindFiles.net has indexed over 700 million files of
different file formats, including PS. By searching for a keyword, up to 300
download links are listed. It was possible to download 10.000 random
files in a work day by selecting random keywords from a word list and
automatically download all files listed. A file size limit of 2 MB was set
in order to restrict the computational complexity of both code coverage
analysis and fuzzing.

The files were reduced to a minimum set based on code coverage by
using the tool minset.py [35] released with Peach. The code coverage
analysis making coverage traces for all input files can be run in parallel.
This analysis was run on eight CPUs over a period of one week producing
coverage traces for over 6000 files. The analysis also provided a master
template, which is the file that produced the largest coverage of unique
basic blocks. Comparing all traces resulted in a minimum set of 369 PS-
files.

7.3.2 Fuzzing procedure

Peach was run in parallel on eight virtual machines (VMs) [87]. First all
files from the minimum set were fuzzed sequentially using the Blob data
model. While the smallest files could be run with all iterations, a limit
of 20.000 iterations was set for the larger files. This limit was based on a
calculation of average iterations per day, and that all files should be fuzzed
within a reasonable time frame.

After the sequential run was finished, the random fuzzing strategy was
applied with the String data model. Then Peach would use both the Blob-
mutators and the String-mutators. The random strategy was configured
to switch input files randomly after 15.000 iterations. It could also do a
maximum of seven mutations to each file at once.

Peach automatically gathers information about crashes and stores it in
a log directory. A new directory is created for each instance of Peach. When
fuzzing files sequentially, each new fuzz template creates a new instance.
Crashes that are considered equal, are automatically grouped, but only if
they were detected during the same instance. A shared root directory was
used as log directory for all the VMs. This directory tree became the raw
material for the further analysis of crashes.

7.4 Crash reliability analysis

A crash found by fuzzing should be reproduced by running the test case
again [71, 32]. Each new unique crash should be verified. This can

54

CHAPTER 7. PLANNING THE THESIS

determine the reliability of the crashes.

A single corrupt input could potentially produce a number of different
crashes depending on how deterministic the program is. Even if some
crashes are not verified, they should be saved for analysis. They could be
related to other crashes or give clues on a bug that was not easily triggered
by fuzzing.

In general, a crash that occurs every time by a given input, is more
critical than a crash that occurs less often. On the other hand an unreliable
crash can be the symptom of a subtle program bug. Investigating such
program crashes may be important to enhance the stability and robustness
of programs.

The questions asked for each crash in the verification process are:

e Is the crash verified /reproducible?

* How often is the crash reproduced?

Does the same input produce different crashes?

Are there produced any new unique crashes?

Are there produced any crashes already registered?

The verification process was automated in such a way that the input
of all unique crashes could be given N times to the target program. The
results were automatically compared with the original crashes. If the
verification produced different crashes than the original, the new crashes
were automatically compared to other unique crashes. This could identify
previously unknown relations between different crashes.

7.5 Comparison of grouping algorithms

Grouping algorithms are compared using the methods of Dhaliwal et
al. [33] To be able to compare results, Levenshtein distance (LD) and trace
diversity (TD) is calculated as described in their article. LD is based on the
top ten stack frames, using only the function name. TD of a group is the
average LD of call stacks in a group. A low TD means a high similarity
within the group.

Silhouette validation [76] is also used to evaluate the grouping genera-
ted by the different algorithms. A Silhouette value (S) is a value between
—1and 1 which measures how well a data set is grouped. For a given crash,
a silhouette value close to —1 implies that the crash should belong to ano-
ther group. A value near zero indicates that a new group should be created
for the crash. A value close to 1 means that the crash belongs to the correct
group.

For a crash i the silhouette value S(i) is defined as:

CHAPTER 7. PLANNING THE THESIS

where a(i) is the average dissimilarity between the crash i and all other
crashes in the same group, and b(i) is the smallest average dissimilarity
between i and all crashes in other groups. To gain a positive S(i), a crash
should be more similar to the crashes within its own group than to crashes
in other groups. Similarity is measured by the LD between call stacks. A
higher LD means a larger dissimilarity.

Silhouette values were used by Dhaliwal et al. to validate that their
two-level grouping approach produced a well-clustered set of groups.
However, in the calculation of b(i) they compared crashes only to other
subgroups of the same crash-type. This might overestimate how good the
grouping is, because it will not account for similarities between groups of
different crash-types. In this thesis, silhouette validation is therefore based
on comparison with all other groups.

Silhouette values are only calculated for groups with more than one
unique crash. Otherwise, a(i) would be zero and S(i) would be 1 regardless
of how similar the crash is to crashes in other groups. S(7) can also not be
calculated for a single group, because other groups are needed to decide
the value of b(i).

7.6 Dynamic analysis

BitBlaze [82] was chosen as a framework for performing dynamic analysis
of crashes. Some equivalent analysis could possibly have been done by
using a debugger like WinDbg or another instrumentation framework like
Pin. However, BitBlaze provides ready functionality that may serve the
research questions of this thesis.

The TEMU plugin tracecap can produce execution traces that log
all executed instructions of a process, including the values of instruction
operands. Furthermore, the traces show taint information propagated from
tainted input and into the process memory. All this can be performed
without any modification or addition to the freely available code [22].

The traces are saved in a binary file format. These files can be read by
the program trace_reader to show the information in text format. The
same program can also be used to generate a complete call graph from an
execution trace.

The methods utilizing BitBlaze in this thesis are based on the paper
”Crash analysis with BitBlaze” [68] by Miller et al.

56

Part IV

Empirical results

57

Chapter 8

Fuzzing results

This chapter analyzes the results of the fuzzing run described in Section 7.3.
After fuzzing, the reliability of crashes was measured by the crash
verification process described in Section 7.4. First the concrete output from
fuzzing is described. Then the results of the reliability analysis is presented.

8.1 Crash statistics

The fuzz testing of Ghostscript 6.51 ran over a period of seven weeks. In
this period, over 5000 crashes were collected in almost 700 log directories.
Crashes were automatically grouped and classified by lexploitable. Unique
crashes were sorted chronologically and plotted in a graph in order to
assess the progress of the fuzz testing. In addition, the instruction pointer
(EIP) of all unique crashes were compared, giving a set of unique crash
locations.

8.1.1 Automatic grouping and classification

Automatic grouping and classification by !exploitable gave 62 unique crash
names listed chronologically in Appendix D. The unique names given
by Peach consist of elements from the analysis done by !exploitable, i.e.
classification, description and call stack hashes. In addition, each unique
crash was assigned a three-digit number for reference.

In the set of 62 unique names, there were 61 unique call stacks. The rea-
son is that two unique crashes had equal call stacks:

005_PROBABLY_NOT_EXPLOITABLE_Read AVNearNull_0x13554811_0x4f4a1368
021_UNKNOWN_Read AV_0x13554811_0x4f4a1368

Their hashes are equal, but they were given different names because of
register values. 005 is described as Read AVNearNull while 021 is given the
description Read AV.!

The stack frames in the crash dumps are given as offsets into functions
of an executable module, on the form module!function+toffset, or

L AV = Access Violation

59

CHAPTER 8. FUZZING RESULTS

module+offset if symbols are not available for the module. The base
address of a module can change between program instances. This is
especially the case if ASLR? is used [53]. That makes an offset a more
reliable reference than a virtual address.

The top stack frame gives the location in a module where an unhandled
exception occurred. From the data set produced, it was found that all
crashes occurred in gsdl132.d11. The version of the module and the
base address were the same for all crashes. This gives a one-to-one
relationship between the top stack frame and the virtual address of the
failing instruction (EIP). The terms crash location and EIP are therefore used
interchangeably in the remainder of the thesis.

Since the top stack frame is the same as the crash location, the number
of unique EIPs can only be less than or equal to the number of unique
call stacks. The minor hash calculated by !exploitable is depending on the
complete call stack, including the crash location. Following from the hash
algorithm, a new EIP will generate a new unique call stack hash.

The number of unique crash locations was 29. In the two-level grouping
approach described in Section 6.2, the EIP groups would correspond to
crash-types. Alternatively, if only function names were used, it would give
21 function groups. There were large variations between the EIP groups.
About two thirds of the groups had exactly one call stack. The remaining
third had more than one call stack. The largest group had 19 different call
stacks.

Table 8.1 gives a summary of the classifications given by !exploitable.
About 71% of the 62 groups of unique crashes were classified as Unknown.
That is 87% of the total crashes shown in the third column. Only six unique
crashes with five different EIPs were classified as Exploitable or Probably
Exploitable. That is under 10% of the unique crashes.

Classification Unique ‘ Total ‘
Exploitable 3 3
Probably Exploitable 3 84
Unknown 44 4758
Probably Not Exploitable 12 617

| Sum | 62 | 5462 |

Table 8.1: Severity estimate of crashes

8.1.2 Analysis of the fuzzing progress

In the log directory tree, each instance of Peach performed individual
bucketing of the crashes detected during that instance. To keep track of the
fuzzing progress, all crashes were collected from the log tree and sorted
chronologically.

The chronological set was used to identify when each unique crash
name was first detected. At this point, the counter of unique crashes

2 ASLR = Address Space Layout Randomization

60

CHAPTER 8. FUZZING RESULTS

Crashes (days)

70

60

50

40

30

20

10

0
24.10.2011

I . |
-
]
. u
m Unique crashes]
=Model for unique crashes -
4 Unique EIPs -
1 Days since last unique EIP .
.I
-
u
-
|
: — -
u -
: -
] -
u
- un
-~ :
-~ ———
~ 7
/ -I.
/ | - - AL AL MER A AR
/ - 'Yy
| [¥ VvV %
]
7 = An
] y N
/ n ™
u A
| A
/] J Ty
u A
] | A A
| A M A
/ | Al A
u FAVASINaY.Y
u Y
u A
[| A
EEE B AR A
B EEAL AMMS A
HA AA
A
x x
b4 X *
x X o z
Iy < 23T % X
03.11.2011 13.11.2011 23.11.2011 03.12.2011 13.12.2011
Date

Figure 8.1: Progress of fuzz testing

61

CHAPTER 8. FUZZING RESULTS

was incremented. Similarly, it was identified when new EIPs were first
detected, incrementing the counter of unique EIPs. These two counters
were plotted in a graph shown in Figure 8.1. The graph also shows a
theoretical curve for the unique crashes and the observed amount of days
between unique EIPs. Time is used for the x-axis rather than iterations.
There is a practical reason for this. The 8 VMs running Peach all had
asynchronous iteration counters, but the time of each crash was logged.

The empirical curves show an almost linear increase of unique crashes
and EIPs. Exceptions are in the beginning and the end of the curves. In
the beginning the two curves quickly increase, and in the end they become
horizontal. The first seven crashes were discovered by running the fuzzing
templates. In fact 24 of the 10.000 PS files downloaded generated a crash
without being mutated. These crashes had seven unique call stacks and six
EIPs. The middle part of the curves show that new unique crashes were
detected regularly throughout the fuzzing run.

Figure 8.2 shows how many times each unique crash was detected on a
logarithmic scale. There are large variations among the crash groups. For
example the four crash groups 001, 002, 004 and 028 contain 81.5% of all
crashes while only representing 6.5% of the groups.

10000

1000

100

Crash count on a logarithmic scale

AN e I |||| | 11l

62 unique crash names in cronological order

Figure 8.2: Frequency count of unique crashes

One interpretation of the frequency distribution is that most of the crash
groups were rare during the fuzzing run. A trend can also be seen over
time. An increasing part of new crashes were triggered only three times
or less. During the second half of the fuzzing run, only rare crashes were
added to the set of unique crashes.

The curve of unique crashes can be compared to the theoretical model
described in Chapter 4 by using the observed frequency distribution. The
theoretical curve shown in Figure 8.1 was produced by using k = 62 and
m = 5462. The frequency count for each unique crash was used as the

62

CHAPTER 8. FUZZING RESULTS

constants g to ge2. The value of Q affects the time horizon of the theoretical
curve. It was adjusted manually to fit the empirical curve.

The empirical curve is more linear than the theoretical model. An
explanation for this can be the distribution of program functionality among
the fuzzing templates. Instead of picking a random mutation from a
random template on each iteration, many iterations were run on a template
before changing files. Each time a new template was picked, this would
probably increase code coverage. This could be seen as a change of strategy.
As described in Section 4.3 a change of strategy might raise the ceiling.
When continuously exploring new parts of the program, new unique
crashes were detected.

The last nine days of fuzzing did not give any additional unique
crashes. However, as the graph shows, there were crashes, and the crashes
collected in this period could add information to the existing crash groups.
Since the crash counters were constant for a long period, it was decided
to stop the fuzzing run. The data set was also assessed to be sufficiently
diverse. The 62 crash names includes all four classifications and nine of the
possible descriptions from the rules of !exploitable (Appendix B).

8.2 Results of the crash verification process

Crashes were verified by running one mutated input file from each group
of unique crashes ten times. All crashes were verified, but none of the
inputs produced a crash every time. This unreliability was unexpected in
a single-threaded program given a single input file. Crash verification was
also run against other versions of the program.

8.2.1 Analysis of reliability

The verification process showed a large variation in reliability. Some
crashes were verified one out of ten times, others eight out of ten. A lesson
from this, is that it is not sufficient to run a test case once more and see if the
same crash occurs. Running the test several times can give an indication of
the reliability of the crash. Also, a single input can give multiple crashes
with different probabilities. This can only be discovered if the same input
is run several times.

A probable cause for the unreliability is the use of uninitialized
variables. Uninitialized data can have random values. If such random
values are interpreted as memory addresses it could lead to an access
violation on the instruction dereferencing the address. An access violation
would only occur if the corrupted address points to an invalid memory
region. If the address was corrupt but valid, the instruction would execute,
leading only to a change in program behavior. It could lead to a different
crash or the corruption could be properly handled and the program could
exit with an error code.

During reliability testing it was also identified an inherent instability
in the target program. This occurred when running Ghostscript on

63

CHAPTER 8. FUZZING RESULTS

Windows XP. Unfortunately this was the OS used during fuzzing, so crash
verification also had to be performed on Windows XP.

The instability occurred even when a non-existing input file name was
given as an argument. The correct behavior is a program termination
with “exit code 17, but this happened only three out of four times.
Approximately one out of four executions resulted in an early exit with
the error code gs_error Fatal (-100). This affected the measurement of
reliability and made automatic verification difficult.

The randomness seemed to be related to system resources and OS
memory management. After running the program several times, the error
became more frequent. The random fatal error is not a crash, but it
causes an abnormal termination with an error code. It is reproducible and
independent of input. The error code is a symptom of a bug, and in that
respect the situation is equivalent to a crash.

From the set of unique crash names 60 out of 62 crashes were
reproduced on Windows XP with the same result as during the fuzz testing.
The inputs for crashes 006 and 007 both produced the same result as
001. These two crashes were discovered and logged on Windows 7 on
the initial run of all downloaded PS-files. They were reliably reproduced
on Windows 7. Running all test cases on Windows 7 produced different
results. Most crashes were verified, some did not produce a crash and
others produced different crashes. All crashes on Windows 7 were reliable,
i.e. either 0% or 100%.

8.2.2 Verification of test cases on other program versions

Since the verification process was automated, it was possible to run the
same test cases on different versions of the program. This could test the
assumption regarding the compilation of Ghostscript 6.51. It was assumed
that the original executable files from 2001 would produce more crashes
than a new compiled version.

The results showed a small reduction in unique crashes compared to the
fuzz testing. 54 unique crashes were reproduced on 25 EIPs. Crashes 004
and 026 were not reproduced, and some of the different crashes produced
the same result with the new program. Since the two programs were
compiled with the same source code, the difference must lie in the compiler
used. This comparison supports the assumption that the original was a
better target for producing many different crashes.

Another natural task was to run the verification process on the newest
version of Ghostscript. The test cases were run on version 9.04. This
resulted in four unique call stacks and two new crash descriptions. The
first one was PROBABLY_EXPLOITABLE_TaintedDataControlsCodeFlow
produced by 054. The second was EXPLOITABLE StackCodeExecution
produced by 025, 043, 044 and 046.

The original five crash groups had ten equal stack frames counting from
the top. The four new crashes also had similar call stacks. As expected,
input files producing related crashes in the old program also gave related
crashes in the new program. These relations are discussed in Chapter 10.

64

Chapter 9

Crash analysis

This chapter demonstrates crash dump analysis and dynamic analysis
using the set of crashes from Chapter 8. The chapter is divided into three
sections corresponding to the research questions of this thesis. Section 9.1
illustrates how relations between crashes can be identified by comparing
call stacks (RQ1). Section 9.2 describes how crashes can be prioritized
(RQ2). Section 9.3 is a case study of root cause analysis using different
methods (RQ3).

9.1 Call stack analysis

This section compares different methods of grouping crashes based on
their call stacks. Before grouping methods were analyzed, some call stacks
needed to be reconstructed.

9.1.1 Reconstruction of call stack

A call stack is an ordered list of functions that have been called but not yet
returned. In the context of native program crashes, the call stack is a list of
addresses. Each address points to the current program location in the called
functions. The current location in the top stack frame equals the instruction
pointer (EIP). For all other stack frames, it is the return address of the called
functions, which is the saved EIP. If a return address is overwritten, the
function responsible for that particular call will not show in the call stack.
The top stack frame can also be missing if EIP points to an invalid address.

In the data set of crashes in gsd1132.d11, three unique crashes had
corrupted call stacks:

e 023_UNKNOWN _TaintedDataPassed ToFunction

- corruption of all frames but the top stack frame (crash location)

e 045_EXPLOITABLE_WriteAV

- corruption of all frames but the five top stack frames

e 052_EXPLOITABLE Read AVonIP

- corruption of all stack frames, including the crash location

65

CHAPTER 9. CRASH ANALYSIS

Execution traces were produced with TEMU using the input files that
generated the three crashes. From each trace, a complete call graph was
extracted as a chronological list of all function calls and returns. Figure 9.1
shows part of one of the call graphs and the corresponding call stack
generated from this part only.

A call stack can be reconstructed from a call graph by simulating how
the function stack works during execution. A stack data structure can be
used to represent the function stack. For every function call in the call
graph, the return address is pushed onto the stack. For every return, the
top element is popped.

Call graph

353 CALL z42_string_proc (14) Call stack

367 CALL string_array_access_proc (15) (16) array_get (top frame)

372 CALL alloca_probe (16) = (15) string_array_access_proc+0x36
384 RET alloca_probe (16) (14) z42_string_proc+0x20

395 CALL array.-get (16) (13) default_get_outline+0x195

Figure 9.1: Call stack reconstruction

Parsing the call graph in Figure 9.1 gives a call stack with four stack
frames. The top frame is the last function called. The other three frames are
return addresses. The stack frame of alloca_probe is not shown because it
has returned. The bottom frame shows a function name not present in the
call graph. This is the function containing the first CALL instruction.

The numbers before the CALL and RET instructions are indexes into the
execution trace used as the source of the call graph. For CALL instructions
this index reveals the return address of the function call. The return
addresses were resolved into function offsets by using the known start
addresses of all functions. The numbers in parentheses show the current
level of nested function calls, or stack depth.

The reconstructed call stacks of 023 and 045 were similar to the call
stacks of other crashes. These relations were identified by using call stack
based grouping algorithms. 052 did not group with any other crashes based
on call stack, but Section 9.3 will show that it is in fact closely linked to 045.

9.1.2 Call stack based grouping algorithms

The purpose of crash grouping is to isolate crashes that are caused by the
same bug. The data set of 62 unique crashes showed a grouping potential.
For example 048 and 057 had a sequence of 17 equal stack frames counting
from the top. When most bugs are fixed within the top ten stack frames [78],
it is very likely that these two unique crashes are caused by the same bug.
Chapters 4 and 6 describe two algorithms for grouping crashes based
on call stacks. One is a hash algorithm used by !exploitable. Another is a
two-level approach using crash location for the first level and Levenshtein
distance (LD) of call stacks for the second level. In addition to the described

66

CHAPTER 9. CRASH ANALYSIS

algorithms, a simple comparison algorithm was created for this thesis.
Variations of the algorithms were also tested.

The algorithm shown in Figure 9.2 performs a top-down sequential
comparison of stack frames. The call stacks are grouped by always
preferring call stacks with the longest chain of equal stack frames.

Input: cs < list of call stacks, depth <— 0, maxdepth < integer > 1
procedure TOPDOWN(cs, depth)

if cs = @ then
return @

if depth = maxdepth then
return GROUP(maxdepth — 1, cs)

if len(cs) = 1 then
return GROUP(depth, cs)

groups < @
unique < list of unique frames at current depth
for all f € unique do
equals < list of elements from cs with frame = f at current depth
subgroups <— TOPDOWN(equals, depth + 1)
if LENGTH(subgroups) = LENGTH(equals) then
groups < groups + GROUP(depth, equals)
else
groups <— groups + subgroups

return groups

Output: List of group elements of the form (d,cs) where cs is a list of
grouped call stacks and d is the depth at which the grouping was
performed.

Figure 9.2: Top-down comparison algorithm for call stack grouping

The two-level approach of the LD algorithm is proposed mainly to
minimize the computation needed to do the grouping. A possible negative
side-effect is that different crash locations can separate crashes with
otherwise identical call stacks. If it is feasible for a given number of crashes,
a one-level approach might create a grouping that corresponds more to the
actual bugs in the program.

An open question is if function offsets should be included in the
comparison of stack frames. If there are large functions, omitting the offsets
might cause grouping of unrelated crashes. On the other hand, if stack
frames with equal functions and different offsets are treated as unequal, it
might cause separation of related crashes.

To answer what effect the choice of grouping algorithm might have,
several algorithms were tested. The LD algorithm was implemented
with and without function offset. A one-level LD algorithm was also
tested, treating all crashes as one crash-type. The LD algorithms were
implemented with incremental grouping and representative traces.

67

CHAPTER 9. CRASH ANALYSIS

9.1.3 Comparison of grouping algorithms

Table 9.1 shows a comparison of the tested grouping algorithms. Levensh-
tein distances were calculated between all unique crashes in a group. Trace
diversity and Silhouette values were calculated for all groups containing
more than one unique crash. Hence TD;yq and S;q are not affected by the
single groups.

Algorithm H groups ‘ >1 ‘ largest ‘ LD ax ‘ TD 0 ‘ TDgvg ‘ Siin ‘ Savg
0 Unique names 1 1 62 10 8.37 837 | N/A | N/A
1 lexploitable minor hash 61 1 2 0 0.00 0.00 1.00 | 1.00
2 lexploitable major hash 26 10 16 4 4.00 1.17 0.00 | 0.77
3 Crash function+offset 29 11 19 9 7.00 2.89 | -1.00 | -0.28
4 Top-down compare offset 36 16 6 7 7.00 1.62 | -1.00 | 0.19
5 Two-level LD offset 38 10 10 1 1.00 0.15 | -1.00 | 0.03
6 One-level LD offset 30 10 16 1 0.53 0.05 0.84 | 094
7 Crash function 21 9 27 9 6.00 2.85 | -043 | 0.39
8 Top-down compare function 29 13 9 6 6.00 0.77 033 | 0.95
9 Two-level LD function 30 10 16 1 0.53 0.05 084 | 094

10 One-level LD function 28 11 16 2 2.00 0.32 0.00 | 0.88

Table 9.1: Comparison of grouping algorithms

Table 9.1 shows that the number of groups should lie somewhere
between 26 and 30. Five of the algorithms (2, 6, 8, 9 and 10) produce a
grouping within this range while keeping TD;ye low and S, high. Two
of these algorithms (2 and 10) give an S, of zero. This indicates that at
least one crash in these groups should be separated into its own group.
Section 10.1 discusses Table 9.1 in more detail.

9.1.4 Crash graph analysis

The tested grouping algorithms compare the top stack frames in order to
find relations between call stacks. These relations can be visualized by
using a Crash Graph [50] as described by Kim et al. Figure 9.3 shows
the graph generated from all stack frames within gswin32c.exe and
gsd1132.d11. It was created using Gephi [3], an open source software for
graph visualization and manipulation.

This crash graph is a directed graph containing 179 nodes and 205
edges. The nodes are stack frames, and the edges are function calls. First all
unique stack frames were identified, comparing both functions and offsets.
Then each unique call stack was traversed bottom-up, generating directed
edges between stack frames.

The edges are weighted by the occurrence of a particular call relation in
the set of call stacks. Similarly, nodes are weighted by the occurrence of a
particular stack frame. In addition, a linearly increasing weight is added
to the ten nodes closest to crash nodes. There are 29 crash nodes shown in

68

CHAPTER 9. CRASH ANALYSIS

° o® o o®
® ‘ Q ‘e
g —&)— / *
p /(7" \ h y / . []
, N \ y vy Ny)
- e \ p \/>/
/ \ o 7»;\; A /l,‘/ ‘
Q . 4 .. ° o N N\\k’) -
// ,’ . \X\(‘\\ . '.
| X
S S
T
-
o ° /
!"7// . ®
°

Figure 9.3: Crash graph of all stack frames

black. They are identified as the top stack frames and correspond to the EIP
groups.

The topology of the graph shows some characteristics of the data set.
Starting from the bottom there is a sequence of thick edges. This path is
shared by most of the call stacks, and is probably irrelevant to the crashes.
Some crash nodes are close, while others are more isolated. For example the
crash node to the upper right is in the end of a sequence of 11 stack frames
not shared with any other call stack. The largest node of the graph, to the
left, is the stack frame of check_component. This stack frame is shared by 27
different call stacks resulting in seven different crashes in append_simple,
represented by black nodes.

Six crash nodes at the top of the graph are shown in more detail in
Figure 10.3. These are all crashes containing stack frames from the function
gs_typel_interpret. Section 10.1 discusses how a crash graph can be used
to identify and understand relations between crashes.

9.2 Prioritizing crashes

The crashes which are most frequent in field crash reports should be given
a high priority. Removing the most common crashes first will improve
stability of the program and fix problems for a large segment of users. This
strategy is recommended for developers using WER [39].

It may be assumed that this is the case also for crashes produced by
fuzzing. A crash that can be triggered by many different inputs is more
liable to occur in ordinary use than a crash that is rare during fuzz testing.
On the other hand, a rare crash can be classified as more severe, giving it a
higher priority for fixing. Reliability is another aspect related to frequency.
A crash occurring reliably during testing might affect more users than an
unreliable crash.

69

CHAPTER 9. CRASH ANALYSIS

This section presents calculated metrics for the crashes of this thesis.
Then taint analysis is demonstrated as a method for assessing the possible
security impact of a crash. This can be a complementing method to
automatic classification based on crash dump analysis.

9.2.1 Comparison of prioritization metrics

Figure 8.2 showed a large variation in frequency among the unique crashes.
Chapter 8 also discussed a large variation in reliability. Table 8.1 showed
severity estimates for the crashes. These three metrics can all be used to
prioritize the crashes for bug fixing.

Table 9.2 shows a comparison of metrics for all 29 crash locations.
The table is sorted by frequency. Since some crash locations are much
more frequent than others, starting from the top of the list might remove
problems for most users first. For example removing the cause of 20% of
the crash locations could remove 95% of the crashes. This would mean
analyzing and fixing only the top six crash locations from the sorted list.

The bottom part of the table shows the most rare crashes. Among
the most rare crashes are also the most severe classifications. These
classifications can be used to give severe crashes a higher priority.
For instance crashes with a classification of EXPLOITABLE or PROBA-
BLY_EXPLOITABLE could be fixed before all others. This is particularly
important if the program receives input from the Internet, making it a pos-
sible attack vector for malware.

The fifth column of Table 9.2 shows the maximum reliability of crashes
for each crash location. This is the average verification rate of the most
reliable crash within the group. All 5462 input files were tested in order to
find the most reliable inputs. Because of the inherent instability discussed
in Section 8.2, no crash is given a higher reliability than 75%.

It would be easier to use this column for prioritization if some crashes
were 100% reliable. The most reliable crashes should be given the highest
priority, but if the accuracy of the measurement is low, this might not serve
its purpose. However, there seems to be a relationship between frequency
and reliability. The more frequent crashes are more likely to be reproduced.

9.2.2 Taint analysis

Execution traces were produced for the crashes that needed call stack
reconstruction. The size of the traces varied from about 15 to 100 GB, and
it took several hours to produce each trace. The discussed unreliability in
the target program combined with available time and disk storage made
automatic tracing of all crashes impractical. Consequently only a few
example traces were produced.

Taint analysis was performed by marking the whole content of the
input files as tainted. The tainted data was propagated through the system
by TEMU. In the execution traces, taint information was logged for each
instruction operand. If an operand is marked as tainted, it means that its
value is influenced by tainted data.

70

CHAPTER 9. CRASH ANALYSIS

Table 9.2: Comparison of prioritization metrics

Crash location source frequency | stacks | max rel.”| max exp.}
ref_param_make_int+0xe iparam.c 2687 1 75% 2
igc_reloc_struct_ptr+0x7f igc.c 775 1 45% 2
append_simple+0xa8 gstyped2.c 630 19 75% 2
s_filter_close+0x80 stream.c 581 2 75% 2
pdf_put_colored_pattern+0x24 gdevpdfv.c 417 2 75% 1
s-DCTD_process+0x1f sdctd.c 103 1 75% 2
pdf_font_notify_proc+0x8b gdevpdfw.c 101 3 50% 1
pdf_write_embedded _font+0x143 | gdevpdfe.c 83 2 75% 3
gs-text_replaced _width+0x99 gstext.c 43 3 75% 2
gs_typel_interpret+0x249 gstypel.c 7 5 60% 1
cos_dict_elements_write+0xa gdevpdfo.c 6 1 60% 2
append_simple+0x43b gstyped2.c 4 1 50% 2
igc_reloc_struct_ptr+0x57 ige.c 3 2 0% 2
append_simple+0x408 gstyped2.c 3 2 60% 2
restore_finalize+0x81 isave.c 3 1 40% 2
gx_path_add_line_notes+0x12 gxpath.c 2 1 75% 2
append_simple+0x58 gstyped2.c 2 2 50% 2
refset_null new+0x29 iutil.c 1 1 60% 4
append_outline+0x10d gstyped2.c 1 1 60% 4
append_simple+0x538 gstyped2.c 1 1 40% 4
gx_path_add_curve_notes+0x195 | gxtypel.c 1 1 30% 3
gs_typel_endchar+0x18b gxtypel.c 1 1 70% 2
append_simple+0x34e gstyped2.c 1 1 60% 2
append_simple+0x480 gstyped2.c 1 1 50% 2
gs_typel_interpret+Oxbae gstypel.c 1 1 45% 2
append_component+0xe4 gstyped2.c 1 1 40% 2
s_zlib_free+0x93 szlib.c 1 1 40% 2
pixel_resize+0x55 gdevpsdi.c 1 1 35% 2
typel_apply_path_hints+0x1c gxhint3.c 1 1 75% 1

* max reliability

¥ This crash location is not reproduced on Windows XP, only on Windows 7

¥ max exploitability

1 =PROBABLY_NOT_EXPLOITABLE

2 = UNKNOWN
3 = PROBABLY_EXPLOITABLE
4 = EXPLOITABLE

71

CHAPTER 9. CRASH ANALYSIS

In general, if the operands of a failing instruction are tainted, it increases
the chance that the crash can be controlled and exploited. This is in
particular true for write access violations. If an invalid write operation can
be manipulated into overwriting an important data structure, it might be
used to hijack control flow [70].

Figure 9.4 shows the result of taint propagation for three execution
traces. Read and write operations are marked by R and W. Untainted values
are marked by TO and tainted values are marked by T1. CPU registers
are marked by R@, and memory locations are marked by M@. The taint
information shows a pair of integers for each tainted byte. The first is an
identifier for the tainted data, and the second is an offset into the data.!

052_EXPLOITABLE ReadAVonIP

mov esp,ebp R@ebp [0x0006ebac] [4] (R) TO R@esp[0x0006e6e4][4] (W) TO

pop ebp M@0x0006ebac [0x04e8dd98][4] (R)
T1 {15 (634, 778290) (634, 778290) (634, 778290) (634, 778290)}
R@ebp [0x0006ebac] [4] (W) TO

ret M@0x0006ebb0 [0x£f£fa961a8] [4] (R)
T1 {15 (634, 778290) (634, 778290) (634, 778290) (634, 778290)}

023_UNKNOWN_TaintedDataPassedToFunction

mov ecx, [ebp+8] M@0x0006bb68[0x00025000][4] (R)
T1 {15 (980, 507939) (980, 507939) (980, 507939) (980, 507939)}
R@ecx[0x00000003] [4] (W)
T1 {15 (980, 507939) (980, 507939) (980, 507939) (980, 507939)}
mov edx, [ecx+8] M@0x00025008 [0x00000000][4](R) TO
R@edx [0x0000ab92] [4] (W)
T1 {15 (980, 507939) (980, 507939) (980, 507939) (980, 507939}

003_PROBABLY NOT_EXPLOITABLE ReadAVNearNull

mov edx, [ebp+0x10] M@0x0006c5dc[0x00000000] [4] (R) TO R@edx[0x00000000][4] (W) TO
mov eax, [edx+Oxlc] M@0x0000001c[0x00000000][4](R) TO R@eax[0x0006ca74][4](W) TO

Figure 9.4: Taint information from three crashes

The first trace shows two tainted values being read from the stack.
The first value is the restored frame pointer, and the second value is the
return address. The fact that all four bytes of these values are marked as
tainted, strengthens the assumption that this crash may be controlled by
user input. This may allow malware to take control of the program and
possibly compromise the system.

The second trace shows the dereference of an invalid address, 0x25008.
The address is calculated as an offset of eight from a tainted value (ECX).
This is a situation described by Miller et al. to be uncertain [68]. An
invalid read not near null might pass if memory were allocated on this

115 = 0x1111 is a bitmap showing that all four bytes are tainted. Only the first taint of a
byte is logged, even if it is actually influenced by multiple sources.

72

CHAPTER 9. CRASH ANALYSIS

address. The data at this location would then be passed as a function
argument. Depending on the called function this may or may not result
in an exploitable situation.

The called function is typel_apply_path hints which may be given
an invalid pointer ppath as an argument. In fact another unique crash
occurred at the beginning of this function while dereferencing ppath. The
last trace shows this crash, which is a null pointer dereference classified as
probably not exploitable. Taint analysis supports this classification because
the null pointer (EDX) is not tainted.

9.3 Root cause analysis

Root cause analysis was performed on one of the unique crashes. The name
of the crash is 052_EXPLOITABLE_Read AVonIP. Crash dump analysis was
used to inspect the program state at the moment of crash. An execution
trace was used to inspect historic program states, leading to the crash.

9.3.1 Crash dump analysis

A crash dump usually reveals the crash location and a call stack showing
previous stack frames. However, automatic analysis of crash 052 revealed
no stack frames, and the crash location was invalid. An unhandled
exception occurred because the instruction pointer (EIP) contained an
invalid address, and the last valid EIP is not present in the crash dump.
This is similar to the scenario showed in Figure 3.11. Dynamic methods
can be applied to reconstruct the call stack and the crash location. It might
also be necessary to use dynamic analysis to understand the root cause, but
the crash dump might contain valuable information.

Inspection of the stack memory in the crash dump showed a distinct
data pattern at the top of the stack, given by the stack pointer (ESP). The
pattern was a continuous array of elements of eight bytes. The array went
far down the stack, indicating a stack buffer overflow. The values of EIP
and the frame pointer (EBP) could be found at [ESP-4] and [ESP-8]. This
indicates that these stack locations contain the return address and saved
frame pointer of a stack frame.

As showed in Figure 3.8, the saved frame pointers form a singly linked
list. Each saved frame pointer points to the stack location of the frame
pointer from the previous stack frame. The return address is stored directly
below the frame pointer. This can be used to identify stack frames of
returned functions.

A minidump does not contain stack memory of returned functions.
However, a complete dump of the stack memory region revealed six return
addresses above the overflow pattern, on lower addresses. The frames
were identified by performing a backward traversal of the singly linked
list of frame pointers. This was done by manually searching for the
addresses of stack locations containing frame pointers. The result is shown
in Table 9.3. The revealed stack frames correspond to the last functions of
the call graph, shown in Table 9.4.

73

CHAPTER 9. CRASH ANALYSIS

Address

Value

Return address — Called function

0006e584

0006e5b0

0006e588

10020386

gsdll32!string array access_proc+0x36 — array.get

0006e5b0

0006e5cc

0006e5b4

10020741

gsdl1l32!z42_string proc+0x20 — string_array_access_proc

0006e5cc

0006e5£8

0006e5d0

10020££9

gsdll32!default_get_outline+0x195 — z42_string_proc

0006e5£8

0006e658

0006e5fc

10021e34

gsdll32!total _points+0x22 — default_get_outline

0006e658

0006e6c¢c4

0006e65c

10022a76

gsdl132!append_component0x169 — total_points

0006e6c4

0006ebac

0006e6c8

10021d7a

gsdll32!append_outline+0x76 — append_component

0006eba8

££fa9b194

0006ebac

04e8dd98

([ESP-8] EBP = 0x04e8dd98)

0006ebb0

ffa961a8

([ESP-4] = EIP = 0xffa961a8)

0006ebb4

04e76£80

(ESP = 0x0006ebb4)

0006ebb8

ffa953e8

0006£fd1c

0006£d34

0006£d20

10007264

gsdll32!gsdll_init+0x94 — gsmain_init with_args

0006£d34

0006£d54

0006£d38

00401c16

gswin32c!gsdll _class::init+0xdd — gsdll_init

0006£d54

0006££70

0006£d58

00401182

gswin32c!newmain+0xb2 — gsdll_class::init

0006££70

0006££80

0006££74

00401222

gswin32c!main+0xld — new.main

0006££80

0006££cO

0006££84

00402e91

gswin32c!start+0xc5 — main

0006££c0O

0006£££0

0006ffc4

7c816d4f

kernel32!RegisterWaitForInputIdle+0x49

Table 9.3: Recovered stack frames from a stack memory dump

74

CHAPTER 9. CRASH ANALYSIS

Table 9.3 also shows return addresses from below the overflow pattern.
These could not be found by following frame pointers, because the linked
list was disrupted by the overflow. They were identified by analyzing
addresses stored on the stack. Addresses that were in the address range
of executable modules, were resolved into function offsets.

A return address can be identified as referencing a program location
immediately following a function call. This can be used to avoid false
positives. For example a function pointer references the beginning of a
function, and can therefore not be a return address. When the first return
address was found, the rest of the existing stack frames were identified by
traversing the list of saved frame pointers.

This example shows that manual inspection of a crash dump might
reconstruct parts of a corrupted call stack. Also a complete stack dump
might contain the stack frames of returned function calls. In this particular
case, it indicates that the stack frame of append_outline was overflowed.
This could be found by inspecting only the program memory at the
moment of crash. The source code in Figure 9.5 shows that append_outline
contains a stack buffer named pts (line 879).

Identifying an overflowed buffer might be enough information to fix
the bug. However, to properly understand the root cause, more questions
should be asked. One question is where in the program the overflow took
place. A second question is why the overflow was allowed to happen.
These two questions cannot be properly answered by analyzing the crash
dump, because it contains no reference to the responsible function.

Last part of the call graph for 052_Read AVonIP
438 RET array_get (16)

468 RET string array_access_proc (15)

471 RET z42_string_proc (14)

482 RET default_get_outline (13)

536 RET total_points (12)

548 RET append_component (11)

553 RET spurious (0) (Invalid return address)

Table 9.4: Continuation of the call graph from Figure 9.1

9.3.2 Analysis of an execution trace

An execution trace of crash 052 was produced, and a complete call graph
was extracted from the trace. The last part of this call graph is shown
in Table 9.4. The last instructions of the execution trace are shown in
Figure 9.4. The addresses of these instructions confirmed that the crash
occurred at the return of append_outline. The call stack was reconstructed
from the call graph. This revealed 15 additional return addresses that were
overwritten in the crash dump.

To answer where the overflow took place, a search was performed

75

CHAPTER 9. CRASH ANALYSIS

backward in the execution trace for the address 0x0006ebb0. This is the
stack location of the corrupted return address, as shown in Table 9.3. The
approach is similar yet simpler than the methods shown in case studies
by Miller et al.[68] They used slicing, aligning and allocation tracking to
isolate important code. The approach used here performs only a simple
text search for references to an important memory location.

The last reference to the stack location was a write operation in the
function append_simple. In fact, the overwrite occurred in the same
location as the write access violation of crash 045. Call stack reconstruction
at this point in the execution trace showed that the top five stack frames
were equal to the call stack of 045. The last of these five stack frames was
also the last valid stack frame from the crash dump of 045. It was the
return address from append_component into append_outline. This close
relationship could not be found without dynamic analysis of 052, because
it required information about program states prior to the crash.

To understand how a write operation was able to write past the end of a
buffer, consider the source code shown in Figure 9.5. The overflowed buffer
is pts (line 879) defined in append_outline. If the variable num_points is
150 or less, the stack buffer is used. If it is greater than 150, a buffer is
dynamically allocated on the heap, not shown in this code listing. The
buffer pointer is passed as an argument to subsequent function calls.

Furthermore, the function append_component may add the value of
point_index to the buffer pointer (line 808). The index variable starts with
the value zero (line 881) and may be incremented in a loop (line 850). This
gives check_component an argument ppts that may point beyond the start
of the buffer. This argument is passed to append_simple (line 791) which
copies point values with an element size of eight bytes into the buffer (line
685). The length of the copy is limited by the variables numCountours and
last_point which are both calculated from gdata (lines 582-649).

The execution trace can help understand what went wrong by showing
the values of certain variables. The values can be inspected by searching
backward for program locations where the respective variables are used.
In this case, the search was performed from the point in the trace where
the overflow occurred and backward. The results of the search is shown in
Table 9.5.

Variable Value

num_points 63

point_index 60

numContours 2
last_point 513

Table 9.5: Variable inspection of 052_EXPLOITABLE_Read AVonIP

Crash dump analysis of 045 showed that it created an access violation
during the overflow when trying to write past the bottom of the stack. A
value inspection of last_point in the execution trace of 045 showed that

76

579

582
583

638
642
649
682
683
684
685
772

782

785

791

800

807
808

820

846
847

850
851
852

857

875
876
877
878
879
880
881

CHAPTER 9. CRASH ANALYSIS

// append_simple

int numContours = S16(gdata);
const byte xpends = gdata + 10;

for (i = 0, np = 0; i < numContours; ++i) {
uint last_point = Ul6(pends + i = 2);
for (; np <= last_point; —reps, ++np) {
pt.x += dpt.x, pt.y += dpt.y;
if (ppts) /* return the points =/
pptsinp] = pt;
// 052: overflow here. 045: overflow resulting in Write AV

//check_component

code = pfont—>data.get_outline (pfont, glyph_index,
&glyph_string);

gdata = glyph_string.data;
code = append_simple(gdata, sbw, pmat, ppath, ppts, pfont);
// append_component

code = check_component(glyph_index, pmat, ppath, pfont,
ppts + point_index, &gdata);

do {
' code = append_component(comp_index, &mat, ppath, ppts,
point_index , pfont);
point_.index += total_points(pfont, comp_index);
while (flags & cg-moreComponents) ;

// append_outline

#define MAXSTACKPTS 150 /* usually enough =/
int num_points = total_points(pfont, glyph_index);

if (num_points <= MAXSTACKTPTS) {
gs_fixed_point pts [MAXSTACKTPTS];

return append_component(glyph_index, pmat, ppath, pts, 0,
pfont);
// 052: Read AV on EIP at the return from append_outline

Figure 9.5: Excerpts from gstype42.c

77

CHAPTER 9. CRASH ANALYSIS

it had the large value 3331. In the case of 052, all write operations of the
overflow were legal. The upper limit last_point was large enough to
overflow the buffer, but small enough to avoid writing past the stack. The
crash did not occur until an overwritten return address was used.

Figure 9.6 shows the layout of the buffer pts and how different
variables affect the overflow. If num points were greater than 150, the
buffer would be allocated on the heap. This might result in a heap overflow
starting at num_points.

point_index num_points - 1 point_index + last_point

0 60 62 149 (MAX_STACK_PTS - 1) 573

Figure 9.6: Overflow of the buffer pts caused by append_simple

The overflow could be avoided by passing num_points as an argument
to append_component (line 881) giving the number of points in the
buffer. This value should be updated by subtracting point_index giving
the amount of points left as an argument to check_component and
append_simple. This argument could be used to calculate an upper
boundary for last_point.

If last_point exceeds the upper boundary, the program should
perform suitable error handling. An alternative is to dynamically increase
the buffer size if the buffer is found too small to contain the point array.
This cannot be done for a stack buffer, which is statically allocated, but a
heap buffer may be reallocated to a new size at runtime.

9.3.3 Input analysis

Operand values from the execution trace of 052 showed that the stack
overflow was caused by improper boundary checking of the variable
last_point. A still unanswered question is why this variable became so
large in the first place.

The value comes from gdata = glyph_string.data (line 785). Com-
paring the mutated file with the original showed a mutation inside a
Type42 [9] font description embedded in the PostScript file. A Type42 font
is a TrueType [27] font encapsulated in PostScript format. The mutation
causing crash 052 is shown in Appendix A.

It is likely that the mutated font descriptions generating crashes 045 and
052 are invalid with respect to the data format of font descriptions. If so, the
source code responsible for reading the font descriptions from input should
also be reviewed. Proper input validation may enable error handling at an
early stage, so that invalid font descriptions are not used by the program.

78

Part V

Discussion

79

Chapter 10

Answering questions about
program crashes

This chapter discusses how the methods demonstrated in Chapter 9 can
help answering the three research questions of this thesis. The methods are
discussed in the context of fixing bugs. This discussion is based on both
existing research and the experiences made by exploring current methods.

10.1 RQ1: How are crashes related?

This section discusses different strategies of finding relations between
crashes. Ideally, one group should be created for each bug, and the crashes
should be grouped accordingly [39]. However, the actual relations between
crashes and bugs are not yet known at the time of grouping. Grouping
strategies use a set of condensing and expanding rules to group and separate
crashes with the goal of reducing the time needed to fix each individual
bug.

10.1.1 Expanding rules

Expanding rules are used to separate crashes that may be caused by
different bugs. An example is the two-level algorithm using Levenshtein
distances [33]. First crashes are separated into crash-types based on
their crash locations. Then crashes within a crash-type are separated
into subgroups by comparing call stacks. Table 9.2 shows a potential of
extending this approach to more levels.

Some crashes occurred at different offsets within a function. The
grouping algorithms tested in Section 9.1 either used the function name
or the offsets in functions to compare stack frames. A different approach
could be to do both. Crashes could be grouped by function on one level
and by function offset on the next level. It could also be possible to group
crashes by source file. This could be a level between module and function.
A program may also contain more than one process, which means that
process name can be used as a top level.

81

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

Field crashes and crashes generated by fuzz testing of a program could
first be separated into groups based on the crashing process. Grouping
at the next levels could be decided by the crashing module, source file
and function. Crashes could be further separated based on the crash
location inside functions. A final expanding rule could separate crashes
with different call stacks.

Figure 10.1 shows a generic example of such an expanding sort tree.
When moving down the tree, the number of groups is increasing, and the
amount of crashes in the groups is decreasing. The nodes at the bottom
level contain individual crashes. In such a tree structure, each node is a
superset of its children.

process
/\
modulel module2
sourcel source?2 source3
funcl func2 func3 func4
N
locl loc2 oc3 loc4 loc5
N A
cs2 cs3 cs5 cs6 cs/ cs8 cs9
m /N 7\
c2 3 4 b c6 7 8 9 10 11 cl2 13

process 2 module O source DO function D location D call stack D crash

Figure 10.1: Expanding sort tree

It will depend on the program how many levels that are suitable for
an expanding sort tree. Also there must be a one-to-many relationship
between the levels. For example, one source file may contain several
functions, and one function may contain several crash locations.

An advantage of the expanding sort tree is that a bucketing algorithm
can be used for grouping crashes. Such an algorithm sorts each new crash
in a deterministic manner. It does not matter in which order new crashes
arrive to the grouping algorithm. Also new crashes can be grouped without
comparing to the existing crashes.

When unique call stacks are identified by !exploitable, a hash algorithm
is used. The hash can be used for labeling buckets. The call stack level of
the sort tree could be extended by using both the major and minor hash
algorithms of !exploitable. Crashes could first be grouped by major hash.
Then the groups could be expanded by the minor hash.

82

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

10.1.2 Condensing rules

Condensing rules are used to group crashes that may be caused by the same
bug. As shown in Section 9.1 the crash location and call stack can be used
to find relations between crashes.

The sort tree shown in Figure 10.1 is strictly expanding. However,
source files might be shared between modules. Different modules might
also use the same functions from these source files. This gives a potential
for grouping crashes across different modules, if the crashing functions are
equal. Using the top stack frame to perform grouping can therefore be seen
as a condensing rule with respect to the expanding sort tree.

Call stack comparison and crash graph analysis might identify simila-
rities further down the call stacks. This can motivate grouping of crashes
with different crash locations. This could be seen as a further condensing
rule, reducing the amount of groups.

10.1.3 Call stack based grouping algorithms

Call stack grouping is used to identify crashes that are caused by the same
bug. Call stacks can be used for this purpose, because they contain program
paths leading toward crashes [78, 33]. The method is effective because it
can compare control flow by using crash dumps only. An exception is if the
call stack is corrupted. This is normally caused by stack buffer overflows,
and these crashes should anyway be given special attention because of their
possible security implications [15, 70].

Table 9.1 shows a comparison of different call stack based grouping
algorithms. The algorithms are evaluated by comparing trace diversity
and Silhouette values. The best algorithms minimize the number of groups
while keeping trace diversity low and Silhouette values high. Algorithms
6 and 9 produce the best groupings by these criteria. The two algorithms
both produce the same set of 30 groups. These are listed in Appendix E.

No analysis was done to assess whether the 30 call stack groups really
correspond to 30 different bugs. Instead, the evaluation is based on the
results of Dhaliwal et al. [33] A key element is that it is better to separate
into more groups than to group crashes from different bugs. If two call
stacks are significantly different, the crashes should be analyzed separately,
even if they are caused by the same bug.

To understand how the call stack groups can affect bug fixing time,
they can be compared to the 29 EIP groups (algorithm 3). The largest
Levenshtein distance (LD;;,x) within the call stack groups is one, while
it is nine for the EIP groups. This gives a TDgyq of 0.05 for the call stack
groups and 2.89 for the EIP groups. This means that the crashes within the
call stack groups are much more similar than the crashes within the EIP
groups. Sgye is 0.94 for the call stack groups and -0.28 for the EIP groups. A
negative Silhouette value for a given crash means that it is more similar to
crashes in another group than to the crashes within its own group.

The negative value of S, indicates that a large portion of the 29 EIP
groups contain crashes that belong to different bugs. By using call stack

83

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

comparison it was possible to produce a set of 30 groups with similar call
stacks. The crashes in these groups are more likely to be caused by the same
bug. Since the amount of groups is almost the same, it is probable that the
total amount of time needed to locate and fix the bugs will be reduced.
According to Dhaliwal et al. this approach could reduce bug fixing time in
a set of field crash reports by more than 5%.

10.1.4 Variations of grouping algorithms

Testing of different grouping algorithms showed that small adjustments to
the algorithms could have a large impact on grouping. This supports the
assumption that grouping algorithms should be tuned to fit different sets
of crashes, for example by adjusting the grouping threshold [33].

The LD algorithms (5, 6, 9 and 10) use a threshold value for when new
groups should be created. The stack trace of new crashes are compared
to representative traces of the existing subgroups of the crash-type. A
new subgroup is created if the LD between the new stack trace and each
representative trace is greater than the threshold.

The use of representative traces showed to be necessary in order to
keep TD below the threshold. The two-level LD algorithm was first
implemented by comparing new call stacks to the first call stack in a group.
This gave an LD, of eight in the largest group when using a threshold
of five. All call stacks had a distance of five or less to the first call stack,
but their differences went in many directions. This gave a high TD for the
group.

A threshold of five was suitable for the algorithm developed by
Dhaliwal et al. [33] when grouping field crash reports. However, such a
high threshold was not ideal for the fuzzing data set of this thesis. Fuzz
testing of one specific program functionality might produce more similar
crashes than the user generated crashes of a field crash reporting system.
In any case, it is suggested that the threshold value should be adjusted to
fit the properties of different programs.

A high threshold gives a high TD within groups. This increases the
chance that a crash is more similar to other groups than its own. The
threshold could therefore be tuned to find an ideal grouping. A threshold
of two was chosen for the LD algorithms, giving a low TD and a high
Silhouette value. The Silhouette validation used in this thesis compared
crashes to all other groups, not only the groups within its crash-type. This
factor may have contributed to why the threshold had to be lowered to
produce high Silhouette values.

For this data set, the use of function offsets did not produce good
results. Algorithms 3, 4 and 5 produced more groups with higher TD;ye
and lower Sgy, compared to algorithms 7, 8 and 9. An exception is
algorithm 6 which produced the exact same grouping as algorithm 9. What
separates algorithm 6 from the three others (3, 4 and 5) is that it does
not require the top stack frame to be equal within a group. It treats all
crashes as belonging to the same crash-type. This algorithm performs
significantly better than the three others. This is a strong indication that

84

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

the bias created by an initial level of grouping can have a negative effect if
it is too expanding.

One could argue that this comparison is unfavorable for the algorithms
using offsets. The comparison shown in Table 9.1 uses only function names
to calculate LD, which is used for Silhouette validation. However, similar
results are produced by using function name and offset for LD. Algorithms
3, 4 and 5 are given a lower S;,, than 7, 8 and 9 respectively, and these
values are significantly lower than the S, for algorithm 6.

Table 9.1 shows that three of the LD based grouping algorithms
produced good results (6, 9 and 10). This is as expected when the
evaluation is based on LD. An interesting observation is that the major hash
grouping (algorithm 2) and top-down compare of functions (algorithm 8)
produced competitive results. Both of these use only function name to
compare stack frames, and they group crashes with N equal stack frames
counting from the top. For the !exploitable major hash, N is a fixed value
of five.

These algorithms have in common that they do not allow any replace-
ment or reordering of stack frames. Only sequentially equal stack frames
are counted. Still they produce a relatively small amount of groups. Ano-
ther aspect is that these algorithms favor similarities within the top stack
frames, which are closest to the crash. An advantage unique to the hash
based algorithm, is that each new crash can be put in a group without com-
paring with other call stacks.

10.1.5 Consequences of a two-level grouping approach

For performance reasons it might be necessary to do an initial grouping
before starting call stack grouping [33]. This is identified as being more
important in an automatic crash reporting system than when grouping
crashes from fuzzing. If the amount of crashes from fuzzing reaches a level
of millions per day, a two-level approach would probably be necessary also
in this context.

There are several options for how to perform a first level of grouping.
A crash-type can contain all crashes from one module or one function. If
all crashes are from the same version of the program, function offsets can
also be used. Otherwise the offsets may vary between versions. A hash
algorithm or heuristics depending on a few stack frames could also be used
to decide the crash-type.

When the first level of grouping is based on the top stack frame, crashes
can only be grouped if their crash locations are equal. This might hide
relations between crashes from different crash-types. It is argued that
grouping crashes caused by different bugs has a more negative impact on
bug-fixing time than separating crashes belonging to the same bug [33].
On the other hand, if an existing relation is not known by analysts, it
could require deep analysis of both groups before it is realized that they are
caused by the same bug [50]. In this perspective, it might be cost-effective
to show these relations without affecting the existing groups.

One solution could be to allow crashes to belong to more than one

85

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

group. This could be confusing, and it is argued that crash groups should
be kept static throughout the lifetime of a bug [33]. Instead relations could
be identified without influencing the grouping. Topological relations in the
crash graph could be identified manually or automatically. Levenshtein
distance can be used as a measure of similarity across groups. The
distance between two groups can be calculated as the distance between
the representative traces of each group. As shown in Section 10.2 these
relations can be used for prioritizing crashes for bug fixing.

10.1.6 Suggested changes to the distance algorithm

There may be no ideal algorithm for grouping crashes [39]. A more general
result is therefore how a particular grouping can be evaluated. Calculating
Levenshtein distances between crashes is shown to be a useful measure of
similarity. Trace diversity and Silhouette values can be calculated using
any similarity measure, so these methods are valid even if the distance
algorithm is modified or replaced.

A distance algorithm can be used to affect grouping, but also to identify
similarities between groups. A distance algorithm works by comparing
individual elements of a sequence. When used for call stack comparison,
the elements are stack frames. The stack frames compared in this thesis
contain a module name, a function name and a function offset. Different
LD algorithms were implemented by including or omitting the offset when
comparing stack frames. In both cases the distance between individual
stack frames were either one or zero.

A compromise could be to use a distance of 0.5 between stack frames
with equal function names and different offsets. This would reflect that
these frames are neither equal nor completely different. Similarly, stack
frames from different functions within the same module or source file could
be given a distance of e.g. 0.8. This would add more granularity to the
distance. Table 10.2 illustrates this approach.

Modules | Functions | Offsets | Distance

unequal - - 1.0
equal unequal - 0.8
equal equal unequal 0.5
equal equal equal 0.0

Figure 10.2: A granular distance between individual stack frames

The values of the distance constants could be fine tuned to fit the
properties of different programs. They could even be customized for
individual functions or modules. For example different offsets in a large
function could count more than different offsets in a small function. This
would reflect the fact that different parts of a large function could be
completely unrelated. Such a modified distance algorithm could give a
more true measurement of similarity between call stacks.

The distance algorithm used in this thesis gives an equal weight of
all similarities within the top ten frames. Only the top frame is given

86

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

extra weight, when used to decide the crash-type in a two-level approach.
Differences in the call stack far from the crash are unlikely to say anything
about the reason for the crash [78]. This is accounted for to some extent by
comparing only the top ten stack frames.

However, when there is a hard boundary at the tenth frame, it might
have unwanted side-effects. A difference at the eleventh frame is not
counted, but a difference at the tenth frame counts as much as a difference
in the second frame. A solution could be to use a linear weighting of stack
frame distances based on proximity to the crash. The following example of
crash graph analysis gives a supporting argument for this approach.

Empirical studies could explore the possible effects of the proposed
changes to the distance algorithm. The LD algorithm can be modified
to use different distance values between individual elements. This is e.g.
necessary when comparing with representative traces [33]. However, no
exact implementation is suggested for favoring similarities near the top
stack frame. This is a topic for future research.

10.1.7 Applications of crash graphs

The crash graph in Figure 9.3 showed an aggregated view of all unique
call stacks. Figure 10.3 shows six related EIP groups represented by black
nodes. The two EIP groups to the left have a crash location in the function
gs_typel_interpret. The crash graph shows that this function is also in
the second or third stack frame of four additional EIP groups.

010
GSDLL32Igx_path_add_line_notes+0x12

055 003 :
GSDLL32ltype1_apply_path_hints+0x1c

A
GSDLL32Igx _path_add _curve_notes+0x195 ‘038
023 g v GSDLL32!gs_typel_endchar+0x18b

GSDLL32Igs typel_interpret+Oxbae
025, 043, 044 -wr

046, 054

/
‘ GSDLL32!gs_type1_endchar+0x1a7
GSDLL32Igs typel1_interpret+0x1eac o
h g

GSDLL32!gs_typel_interpret+Oxdad

|
GSDLL32Igs_typel_interpret+0x249
GSDLL32Igs_type1_interpret+0x1040

\ \

Figure 10.3: Related crashes shown in a crash graph

The nodes in Figure 10.3 represent strictly unique stack frames by
comparing both function names and offsets. Nodes could also be created
by comparing only the function name. Alternatively a function node could
be a supernode containing subnodes of offsets. A granular distance value
between stack frames could also be used to visualize their similarities.
Proximity of nodes in the visualization could be influenced by the granular
distance between node pairs.

Table 10.1 shows how algorithm 10 grouped the crashes from Fi-

87

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

gure 10.3 by splitting one EIP group and joining others. 003 and 038 are
grouped, reflecting that these crashes are topologically close in the crash
graph. 023 and 055 are grouped with their respective subsets of the left-
most crash location. This means that five different call stacks sharing crash
location are divided into two groups. One that is more similar to 023 and
one that is more similar to 055. The resulting four groups contain only
crashes involving gs_typel_interpret. No other call stacks were similar
enough to join these groups.

Group | Crashes TD
1 003, 038 2
2 010 0
3 023, 043, 044 0
4 025, 046, 054,055 | 1

Table 10.1: A selection of the groups created by algorithm 10

The crash graph in Figure 10.4 shows the complete call stacks of
the crashes from Figure 10.3. Inspection of the crash graph shows that
differences in the eighth, ninth and tenth stack frames are affecting the
grouping. If these differences are not counted, it would result in only two
groups. One for the crashes in the upper right and one for the crashes in
the lower right. This supports the use of a weighted distance algorithm,
making differences near the top stack frames count more than differences
further down the call stack.

o —o_
\ .. 025, 043, 044
N 046, 054 ‘25

Ny

AN
/ O\\ \i 043, 044

- /

@ \C/

%@38 O/'C/ \/\D/
O\o—(f 025, 046, 054, 055

010

Figure 10.4: Crash graph of call stacks related by gs_typel_interpret
Regardless of how grouping is performed, this example shows how

a crash graph can be useful to understand relations between different
call stacks. A distance algorithm may provide a quantitative measure of

88

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

similarity, but a crash graph provides more qualitative information about
similarities and differences.

Distance algorithms are suitable for measuring similarities between
sequences, and call stacks are ordered sequences of stack frames. A crash
graph on the other hand, is a network of stack frames created from multiple
call stacks. Instead of using a distance algorithm, there might be graph
algorithms suitable for finding relations and grouping crashes based on
the complete graph of all call stacks.

A stack frame in this context is a link between two program points.
The first point is where a function call was performed. More accurately,
the return address points to the instruction directly following the call
instruction. The second point is a location inside the called function. The
program points are historic in the sense that the crash dump shows that
these function calls have been executed.

Using dynamic analysis, more historic program points can be logged.
An extension of the call stack is a complete call graph of all function calls
and returns. An execution trace might further extend this by logging basic
blocks or individual instructions.

There is no qualitative difference between these program points and
the stack frames from call stacks. They all give a chronologically ordered
sequence of executed code, i.e. control flow. A crash graph might therefore
be extended to contain all function calls or even a complete execution trace.

The question is whether this will help developers understand and fix
bugs. If the data can be collected automatically and be presented in a
manageable way to an analyst, it is possible. This could be answered by
more research on crash graphs.

10.1.8 Crash dump analysis of related crashes

Section 8.2 described how input from related crashes in Ghostscript 6.51
produced related crashes in version 9.04. The new crashes were 100%
reliable, i.e. they were verified in ten out of ten times. This indicates that
the stability of the program has increased over ten years.

However, the crashes in the new program were classified as more
severe than the original crashes. The crashes in the old program were
all named PROBABLY _NOT_EXPLOITABLE Read AVNearNull while the
new crashes were PROBABLY _EXPLOITABLE and EXPLOITABLE. The
classifications indicate that these particular input files produce more
security critical situations in the new program than the old program. This
serves as a reminder that exploitability is not a property of corrupted data,
but how the program handles the corrupted data.

The descriptions given by !exploitable for the new crashes are quite
explanatory. The crashes occur in the context of an indirect call. Figure 10.5
shows the code from the crash dumps. The first crash happens by the
dereference of an invalid function pointer, EAX (line 1). Taint analysis
performed by !exploitable within the basic block shows that EAX may
control code flow if it contains a valid address.

For the second crash, EAX does contain a valid address. The data at

89

= W N =

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

mov edx,dword ptr [eax] ; crash 1: TaintedDataControlsCodeFlow
push ecx

push esi

call edx ; crash 2: StackCodeExecution

Figure 10.5: Automatic analysis of related crash locations

this location is assigned to EDX and used as a function pointer. If EDX
was assigned an invalid address, it would generate an exception on the call
instruction (line 4). However, EDX contains a stack address. This leads
to stack memory being interpreted as code. Then an unhandled exception
occurs while running code on the stack.

The two related crash locations are at offsets close to each other within
the same function. However, comparing the interval between offsets is not
an accurate measure of similarity between two program locations. Two
program locations in a function are closely related if they are topologically
close in the graph of basic blocks. For example if they belong to the same
or adjacent basic blocks. This metric could influence the granular distance
between two stack frames.

This example shows that automatic analysis of crash dumps may
provide useful information for understanding how crashes occur. It also
shows relationships between classifications and descriptions. The fact that
a read access violation might be changed into an exploitable situation is
discussed in Section 10.2.

10.1.9 Summary of answers to RQ1

This section has showed that bucketing of crashes can be performed in
multiple levels of an expanding sort tree. Condensing rules can be applied
by grouping crashes based on crash location and call stack.

The crash location can be used as an initial level of grouping to
determine the crash-type. Call stack comparison can divide a crash-type
into subgroups of similar call stacks. If possible in practice, a one-level
approach could provide more flexibility to a grouping algorithm, allowing
it to group crashes with different crash locations.

Two possible changes to the distance algorithm were proposed. The
first was to use a granular distance between individual stack frames. The
second was to give a linear weighting of distances based on proximity to
the top stack frame. It was also suggested that a distance algorithm can be
used to identify relations between different groups of crashes.

Crash graphs were used to illustrate relations between stack frames
and call stacks. It was also suggested that more control flow could be
added by including a complete call graph or even basic blocks or individual
instructions.

90

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

10.2 RQ2: How should crashes be prioritized?

In the context of field crash reports and fuzzing results, the number of
crashes can be large. A given amount of time is required to locate and
fix the corresponding bugs. Prioritizing crashes can help developers fix the
most important bugs first.

Prioritizing program crashes is a matter of identifying certain properties
and finding an algorithm for how crashes should be ordered based on those
properties. For example one crash might be more security critical than
others. Another crash might be more frequent and affect more users. A
third property to consider is whether a crash is related to already fixed
bugs.

10.2.1 Security implications of crashes

If a program is to be used in a context where input might come from
untrusted sources, a severity estimate of crashes can be an important
priority factor. If some crashes stand out as more likely to be exploited,
these should be fixed first. A software company might also consider an
out-of-band [84] security update for exploitable bugs.

Table 8.1 showed that a large portion of the crashes were classified
as Unknown by !exploitable. Such a classification indicates that a crash
may or may not be exploitable. Section 9.2 showed how taint analysis can
provide more certainty to a classification. By showing if user input may
influence the value of the operands responsible for the crash, the severity
estimate can be raised or lowered. Neither of the methods can give a certain
estimate of exploitability.

A disadvantage of using execution traces for analysis of read access
violations, is that it cannot answer what would happen if the read
operation was valid. A read access violation might lead to an exploitable
situation if the invalid address could be changed into a valid address.
The first crash shown in Figure 10.5 is a read access violation classified
as Probably Exploitable. The second crash showed that a more severe
situation occurred when EAX contained a stack address.

This relationship was found because different fuzzing inputs generated
the two situations. Depending on black-box fuzzing to uncover such
situations is inefficient because of its random nature. Instead it could
be possible to perform such an analysis automatically for all read access
violations. For instance, if a crash is classified as not exploitable by
CrashWrangler, it is recommended to run the test case again allowing
read access violations by dynamically allocating memory at the invalid
address [89].

White-box fuzzing can be used to automatically change the input so
that a read operation is valid. If a solution is not found, an alternative
is to allocate memory at the invalid address. This can simulate heap
spraying [83] which was briefly described in Section 6.3. The method can
also apply to whole-system binary instrumentation, allowing one or more
read access violations. This can extend an execution trace to contain the

91

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

possible control flow and data flow after the crash.

Conservative severity estimates are recommended [14]. For example
lexploitable classifies a stack buffer overflow as Exploitable without
knowing if the crash can be controlled by user input. It might be possible
to know that a given bug is exploitable, e.g. if Proof of Concept [63] exploit
code has been developed, or the bug has been exploited by malware.
However, it might be impossible to prove the opposite, that a given bug
cannot be exploited. In any case, developers should not put more effort
into determining the security implications of a bug than the effort needed
to fix it.

10.2.2 A weighted priority model based on a strategic policy

Security implication is only one possible factor for prioritizing crashes.
Another factor is how many users may be affected by a given crash.
To estimate this, frequency and reliability of crashes are useful metrics.
Knowledge about the program and user statistics can also help estimate
if a given crash will be common or rare in practical use.

Frequency analysis of field crash reports can give a good indication
of the affect on users. However, some users choose not to submit crash
reports, or they cannot because their system is not connected to the
Internet. The frequency of a crash in fuzzing results might also estimate the
possible affect on users. Reliability of crashes can be seen in combination
with frequency. An unreliable crash is less likely to occur in normal use
than a reliable crash. Reliability can also affect severity estimates, because
reliable crashes are more likely to be exploited [32].

Different parts of a program serve different purposes. A bug may be
considered more important if it occurs in a vital part of the program. It
can for instance be in a function called by many other functions. The
function can be necessary for the program to run, or it can be part of a rare
functionality used by only a few customers. A software company could
maintain a strategic priority policy, guiding developers toward the most
important crashes.

An expanding sort tree as shown in Figure 10.1 can be used to prioritize
different program parts. A frequent source file or function could be
prioritized, such as gstype42.c or append_simple. A priority policy could
for example give a low priority to all crashes in a module that is rarely
used. Available resources can also affect the priority policy. For instance
if the developer of a complex module is temporarily unavailable, it might
be cost-effective to postpone analysis of a crash in this module until the
developer is available. The discussed factors indicate that there is no ideal
algorithm to prioritize crashes. A priority algorithm should rather depend
on a strategic priority policy.

Table 9.2 shows how different factors could affect crash priority. For
example nine crash locations are in one of three append-functions in the
source file gstype42.c. Two of these are classified as Exploitable. The
crash locations are sorted first by frequency, then by severity and last by
reliability. Instead a weighted priority model could be used. This could

92

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

give a priority score to each crash based on differently weighted metrics and
heuristics. The weighting should be determined by strategic priorities.

A priority score can be calculated for groups of crashes by e.g using
the maximum or mean score of all crashes in a group. This could produce
an ordering of the 30 call stack groups discussed in Section 10.1 based on
strategic priorities. The score could also be calculated for each node in an
expanding sort tree. The priority score of a node could be based on the
score of the child nodes. It could also be influenced by a priority policy for
each level in the tree, e.g. by giving different weight to different modules.

10.2.3 Prioritizing crashes related to fixed bugs

Frequency analysis can be used e.g. to prioritize a module, source file or
function for bug fixing. Even though there might be multiple bugs causing
the crashes, there might be synergy effects when focusing on one part of
the program. Understanding the algorithms and data structures involved
is necessary to implement a reliable fix in source code.

Table 9.2 shows that 29 unique call stacks have a crash location in the
most frequent source file. This is nearly half of all unique call stacks. One
could assume that fixing these crashes would require nearly half of the total
fixing time. Automatic grouping caused these crashes to be put into six
groups containing all the 29 call stacks and no other crashes. The six groups
are only 20% of the 30 groups created by algorithms 6 and 9 (Appendix E).

The six groups are created because there are six significantly different
call stacks. This might correspond to six different bugs. There can also be
fewer bugs triggered in six different ways. It is likely that analysis of the
crashes will show a pattern that will make fixing time decrease from group
to group. Prioritizing the most frequent crashing functions could therefore
be an effective way of quickly removing the most common problems.

The root cause analysis in Section 9.3 targeted this specific source file.
Crashes 052 and 045 were shown to be caused by the same bug. If these
are grouped, there are only five groups from the same source file. There are
seven additional call stacks in the same group as 045. They should also be
considered when locating and fixing this bug. After that it would be natural
to prioritize the four remaining groups before the 24 unrelated groups.
The recently acquired program knowledge could then be efficiently reused.
This would probably reduce the analysis time of the related groups.

As discussed in Section 10.1, related groups can be identified automati-
cally by using a distance algorithm on call stacks. A crash graph can also
be used for this purpose. A threshold can be used when comparing un-
fixed groups and fixed groups. Only groups that are more similar than the
threshold are treated as related. The calculated similarity can be used as a
weighted factor in a priority algorithm.

10.2.4 Summary of answers to RQ2

This section suggests that strategic priorities should be reflected in a
weighted priority model. Possible metrics can be frequency, reliability,

93

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

severity estimate and identified relations to fixed bugs.

Methods for determining exploitability were discussed. Automatic
classification can give an indication. Taint analysis can provide more
certainty. Proof-of-Concept exploit code or observed exploitation by
malware can prove exploitability. However, proof of the opposite might be
infeasible, and exploitability should never be ruled out as being impossible.
Hence, conservative estimates are recommended.

Frequency analysis of crash locations can help identifying program
parts that should be prioritized for analysis. This should be balanced with
strategic priorities, e.g. the estimated user impact of crashes in specific
program parts. A reliability measurement can help estimate the user
impact of individual crashes, both concerning the probability that a crash
will occur during ordinary use and the possible security implication of the
crash.

10.3 RQ3: How should crashes be fixed?

Section 9.3 demonstrated different methods of root cause analysis. The
methods were crash dump analysis, dynamic analysis using execution
traces and input analysis. The different methods provide different
information and have different advantages and limitations.

The underlying cause of memory corruption bugs should be analyzed
in order to fix them completely without introducing new bugs [68]. To
understand how program crashes caused by access violations should be
fixed, it is necessary to understand their possible causes at machine-level.

10.3.1 Causes of access violations

Access violations are caused by illegal operations on virtual memory
addresses. The failing instruction may attempt to read, write or execute
a memory address without having the required permissions. In most cases
the address generating an exception is non-existing, i.e. it is not a valid
memory address for any operation.

Before a memory address is used in an illegal operation, it originates
from a set of valid instructions. The address may be composed from a
number of valid sources and arithmetic operations. Using an execution
trace with logged operands, it is possible to track memory assignments
backward in time starting from the failing instruction. The sources of the
illegal operand are stored in valid memory locations. A general approach
of root cause analysis is therefore to ask why these locations contain values
that result in illegal memory access.

For example, an invalid address X might be read via an address pointer
Y pointing to the memory location containing X. If it is possible to find an
assignment to this memory location before the crash, it might explain why
X is invalid. On the other hand, if this memory location is not previously
written to by the program, it can mean several things. The data could
be uninitialized. It could be assigned by a different process via shared

94

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

memory. Also the address pointer Y could be corrupted, and it must be
checked for previous references to the memory location containing Y.

To summarize, access violations can have different causes. The
following is a non-exhaustive list:

* Source(s) corrupted by legal, unintended write operation(s):

— explicit overwrite, e.g. caused by incorrect use of data pointers

— implicit overwrite, e.g. buffer overflow caused by improper
boundary checking or size calculations

- changing an array index to point outside the lower or upper
boundaries of the array might cause the dereference of an
invalid address

* Source(s) not corrupted, but used in an unintended manner

use of uninitialized data

null pointer dereference

reuse of a data pointer after its data has been freed

violation of access rights, e.g. trying to write to memory that is
not writable

10.3.2 Crash dump analysis

A crash dump can reveal the location of a crash, the type of unhandled
exception and a stack trace. Section 3.3 showed how function variables
and arguments of stack frames can be inspected. If heap memory is
dumped, values of dynamically allocated data can be analyzed. As shown
in Section 9.3, even stack frames of returned functions can be identified
by traversing frame pointers. These stack frames can also be inspected
for local variables and arguments. This suggests that the complete stack
memory should be included by default in a crash dump.

The main limitation of a crash dump is that it shows only the last
program state. For example, the last values of variables and arguments can
be inspected, but previous values are not present. Also the stack frames of
returned functions might have been overwritten by subsequent function
calls. The crash dump analysis of crash 052 performed in Section 9.3
identified a function stack frame destroyed by a buffer overflow. However,
the stack frame of the function responsible for the overflow was not present
in the crash dump.

The main advantage of a crash dump is that it can be generated
automatically when a crash occurs. It can also be analyzed automatically to
some extent. For example a call stack can be generated by using WinDbg.
It could also be possible to display available stack frames of returned
functions automatically. In the case of a corrupted call stack, Section 9.3
demonstrated recovery of unaffected stack frames.

This process is more challenging to automate, because the chain of
frame pointers may be broken. Another aspect is that some stack frames

95

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

do not contain frame pointers. This can make it impossible to know if a
given return address is part of the current call stack or if it belongs to a
returned function. In any case, each identified return address is a historic
program point which may give a clue about the path leading to a crash.

To summarize, crash dumps can be used efficiently to determine where
and how a crash occurred, but they cannot in general tell why a crash
occurred. Available stack frames give only small pieces of control flow and
data flow. The crash location and stack trace might guide developers in
the right direction [78], but for deeper understanding of a crash, dynamic
analysis may be required [68].

10.3.3 Dynamic analysis

Section 9.3 demonstrated how an execution trace with logged operands
can be analyzed by searching for important addresses. First the address
of a stack location containing a return address was searched for to find
an unintended overwrite of this stack location. Then key variables were
inspected by searching for code addresses of instructions operating on the
respective variables.

This method can be used generically to find code that has an impact on
a program crash. For example, in the case of a null pointer dereference,
the method can be used to find code that assigned null to the pointer. It
can also find previous use of the pointer, e.g. if it has been passed as a
function argument or if it has been checked for a null value. Because a null
pointer dereference occurred, one or two code elements are missing from
the particular program execution. The pointer should either have been
checked for a null value before it was used, or some part of the program
should have assigned a valid address to it. These two program points
cannot be found using this method, because they were not executed.

Differential debugging can on the other hand identify code that should
have been executed. For example the good trace might initialize data which
the bad trace for some reason fails to initialize [68]. This could be identified
as a diverging point. Comparing operand values at this part of the trace
might uncover a logical error in the program. This could be e.g. improper
validation of input data or improper handling of an identified error.

The information given by dynamic analysis is complete control flow
and data flow. It shows the code paths executed before a crash and
the previous values of variables and arguments. It is possible to use a
debugger to inspect runtime values of variables and which code paths are
taken. However, an input file can cause the crashing function to be called
several times before the crash [68]. In addition, there might be variations in
control flow and data flow between program runs. If an unreliable crash is
analyzed with a debugger, the crash might not occur.

The advantage of an execution trace is that it is possible to track data
flow and control flow from the crash and backward in time. While a
debugging session must be restarted to analyze previous program states,
an execution trace enables repetitive analysis of one concrete program run.
A limitation is the time and disk space needed to produce even short

96

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

execution traces [21]. Tracing can be started in a function near the top of the
call stack. TEMU can also start tracing when reaching an address for the
Nth time. This will generate a smaller trace, but information important to
the crash might also be lost. Slicing and aligning traces can be used to isolate
code important for a crash [68]. This can enable faster variable inspection,
but there is also a risk of missing code operating on a memory location.

Execution traces have an additional limitation compared to crash
dumps and dynamic analysis using a debugger. Even though operand
values are logged, the complete memory content is not logged for each
program point. A debugger can inspect all valid memory locations at any
given point, not only the memory involved in the current instruction. A
crash dump is a snapshot of important parts of process memory which can
be inspected using a debugger.

For instance, the call stack is present in the stack memory region of a
crash dump. In an execution trace, the call stack is not stored at any point
in the trace. However, by reading the execution trace from beginning to
end, the call stack can be reconstructed for all points. Similarly, the values
of accessed memory locations can be saved in a simulated memory layout.
As different parts of memory are being read and modified, the simulated
memory layout can provide a more complete picture of the program state
at any given point of execution.

10.3.4 Input analysis

An advantage of analyzing fuzzing results compared to field crash reports,
is that the input generating the crash is available. When doing mutational
fuzzing, two inputs are known for each crash, i.e. the fuzzing template and
the mutated input.

Section 9.3 showed how comparison of input files might help explai-
ning why a crash occurred. In the example, it was identified that a muta-
tion was performed inside an embedded font description. For a simple data
model, it is necessary to compare inputs to know how a mutation affected
input. If multiple mutations are performed per iteration, it can be useful to
isolate the mutation or mutations responsible for generating the crash. If it
is possible to use a complete data model, the fuzzer can tell exactly what
kind of data was mutated for each iteration generating a crash.

In the data set of this thesis, equal crashes were produced by different
mutations of different fuzzing templates. A subject for future research
could be differential input analysis. Analyzing different inputs giving the
same crash could help developers understand the bug. This subject is
possibly related to differential slicing [49]. A noteworthy distinction is that
plain input analysis does not require execution tracing nor taint analysis.
Instead, the mutated inputs generating crashes might give developers clues
about what kind of invalid input the program should be able to handle.
This can help them expect the unexpected.

97

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

10.3.5 Consequences of unreliability

One could argue that there are no false positives when analyzing
crashes [14]. Regardless of how reliable a crash is, it has evidently happe-
ned at least once and should be analyzed. However, it can be challenging
to collect more information from the crash if it cannot be reproduced.

When crashes cannot be reliably reproduced, dynamic analysis can
be challenging. For instance, it might be necessary to produce several
execution traces until the crash is captured in a trace. If such a trace can be
created, it might be more valuable than the trace of a 100% reliable crash.

Before producing execution traces, it could be beneficial to analyze the
variations between inputs producing the same crash. It might be possible
to show that some inputs are more reliable than others. Doing an automatic
verification of all inputs in a crash group could point out the most reliable
input. This input could be the best candidate for dynamic analysis. Such a
process was performed for all crashes in this thesis. It was used to calculate
max reliability in Table 9.2. However, all produced execution traces came
from crashes that occurred exactly once during fuzzing. Hence, only one
input candidate was available from each analyzed group.

The test cases in a crash group could be used to verify that a fix in
source code really removes the problem created by the mutated inputs.
The identified reliability of inputs should be considered in this verification
process. Since testing shows the presence, not the absence of bugs [24],
such verification can only be used to detect if there is still a problem. It
cannot prove that the bug was fixed properly, nor that the changed source
code did not introduce any new bugs. If an input generated a crash only
two out of ten times in the original program, it must be run a minimum of
five times on the fixed program to serve as an indication that the bug was
fixed. Because of the uncertainty of the reliability measurement it should
probably be run more.

It is also not sufficient to test only one input from the crash group.
One input may produce different crashes, and some inputs could produce
new crashes that are only discovered after the first problem is fixed. This
suggests that all inputs in a crash group should be tested for the verification
of a fix. In an automatic crash reporting system, this can be impractical.
Instead verification can be based on the fact that no crash reports from the
updated program version are similar to the old crash reports of fixed bugs.

10.3.6 Early versus late error handling

Many program paths may lead to the same crash. The crash graph in
Figure 10.4 showed a possible example of this. It can be understood as the
same bug being triggered from different parts of the program via function
calls. One bug might also cause crashes in several locations depending on
input. This is shown in the crash graph as two paths resulting in three crash
nodes each. It was not proven that these six crashes were caused by only
two bugs. However, call stack based grouping made this probable.

Figure 10.6 shows how a bug can have multiple triggers and multiple

98

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

symptoms. A symptom in this context is a program crash. There is no fixed
relationship between triggers and symptoms.

Triggers Proactive measures

Underlying cause Bug

Symptoms Reactive measures

Figure 10.6: Triggers and symptoms of a bug

Depending on the bug and the program, a bug fix could involve both
triggers and crash locations in addition to the location of an identified
bug. Proper input validation can be seen as proactive bug elimination. This
could prevent corrupt data of reaching complex data processing code, more
liable to contain errors. It does not mean that the actual bug should not
be fixed. It should be fixed in order to make the program more robust.
A supporting argument is that there might be other code paths that can
trigger the bug [68], still not identified by fuzzing nor field crash reports.

Handling corrupt data at an early stage can help prevent unanticipated
problems. As a reactive measure, the crashing code could also be made
more robust, e.g. by validating pointers before using them. Crash dump
analysis might give enough information to fix code at a crash location.
Dynamic analysis may be needed to locate the underlying bug. Dynamic
analysis can be supported by crash graph analysis, differential debugging
and input analysis to identify different triggers. In addition, methods not
described in this thesis can be used. For example static analysis tools can be
updated with the new bug pattern to identify other potential triggers and
to reveal similar bugs in other parts of the program [18, 45].

Section 9.3 suggested a bug fix for crashes 052 and 045. The fix involved
changes to four functions. This was necessary to pass information about a
buffer limit from the function allocating the buffer to the function writing to
the buffer. It might also be necessary to review other parts of the program
using these functions, i.e. other potential triggers. As a reactive measure, a
stack cookie [23] could be added by the compiler, and DEP [16] combined
with ASLR [53] could mitigate control flow hijacking [70]. These features
are security mechanisms that can make it more difficult for an attacker to
exploit memory corruption bugs [34]. They would not remove the bug,
and the program would still crash. However, the possibility of system
compromise could be reduced.

Fixing a bug at the location of the crash can be seen as removing a
symptom, not the cause. If the crash happens because of some corrupted
data structure, like uninitialized data, then the underlying problem lies
in the creation of the data. If it is possible to create corrupted data, then
this data could possibly be used by a different function and produce a
previously unknown crash.

99

CHAPTER 10. ANSWERING QUESTIONS ABOUT PROGRAM CRASHES

10.3.7 Summary of answers to RQ3

Memory corruption bugs should be completely understood at machine-
level in order to find appropriate solutions in source code.

Crash dump analysis and dynamic analysis can provide the data flow
and control flow needed to understand the underlying cause of a crash.
Using a machine-level debugger or execution traces, memory locations
and individual CPU instructions can be inspected. A main advantage
of execution traces with logged operands is that they allow inspection of
control flow and data flow from the crash location and backward in time.
This was described as a generic approach for root cause analysis.

A bug may have several triggers and several symptoms. All triggers
should be identified and data corruption should be detected before the data
is used. Early input validation and error handling might prevent other
unknown bugs from being triggered. Reactive measures can be applied to
minimize the consequences of bugs.

Reviewing information about crashes can help developers realize
weaknesses in design. Insufficient input validation can be caused by
developers not anticipating all possible error situations. Crash reports and
fuzzing results might show developers unexpected situations and corner
cases, so that the program can be redesigned to be more robust.

10.4 Automatic program crash analysis

The analysis of crashes performed in this thesis is a combination of
automatic and manual methods. It is in general impossible to automate
the whole process from crash to fix. This is supported by the results of
related research [68, 43, 32]. However, certain parts of the process can
be automated. Identifying these parts and letting automatic and manual
analysis work together might be crucial to reducing bug fixing time.

Fuzz testing and crash reporting systems are automatic methods for
identifying program bugs. These methods can identify problems that
were missed during development and automated static analysis. Program
crashes are only symptoms of program bugs. The challenge is therefore
how to identify the root causes of crashes, and how to correct source code
using that knowledge. If the main goal is to reduce the time needed to fix
each bug, a key factor should be to automate as much as possible of the
process.

Because of the large number of crashes, automatic grouping might
reduce the necessary time of manual analysis. Automatic classification,
frequency analysis and reliability analysis can help developers prioritize
crashes. Automatic identification of relations between groups might speed
up crash analysis and reduce bug fixing time.

Section 9.1 showed how call stack reconstruction from an execution
trace can be automated. Section 9.3 showed a potential for automatic
recovery of stack frames from a crash dump. Other methods could be made
semi-automatic. For example variable inspection in execution traces and
comparing mutated input files with their fuzzing templates.

100

Part VI

Conclusion

101

Chapter 11

Conclusion

During the work on this thesis, different methods for analyzing program
crashes were tested. The methods were applied and evaluated in the
context of reducing bug fixing time.

11.1 Major contributions

This thesis shows that different methods of program crash analysis are
applicable to analyze fuzzing results. Evaluation methods for grouping
algorithms are taken from the context of automatic crash reporting systems
and applied to the context of fuzzing. Proposed grouping algorithms from
crash reporting systems and fuzzing contexts are compared.

Grouping algorithms using Levenshtein distance as a threshold proved
to be competitive compared to the other algorithms tested. A two-layer
grouping approach should only be used if it is necessary for performance
reasons. To compensate for the bias created by an initial level of
grouping, relations between crash groups could be identified automatically
by comparing representative traces. These relations could also be used
as a prioritization metric. Two suggested modifications to the distance
algorithm might give a more accurate measure of similarities between
call stacks. The modifications were inspired and supported by empirical
studies of crash graphs as described in this thesis.

Prioritization of crashes for bug fixing is discussed with the goal of
reducing the possible impact on users. In this context, security implications
and probability of occurrence are two important factors. This thesis
suggests how a priority model could be based on differently weighted
metrics according to a strategic policy.

Crash dump analysis performed in this thesis showed a potential for
automatically recovering available stack frames from a corrupted call stack.
It was also identified that the stack frames of recently returned functions
could be recovered automatically. In the case study, these stack frames were
used to recover a corrupted crash location. This suggests that a larger part
of the stack memory region should be included in a stack dump by default.

Miller et al. [68] demonstrated how root cause analysis using Bit-
Blaze [22, 82] can help to determine exploitability. This thesis demonstrates

103

CHAPTER 11. CONCLUSION

how it can be used to suggest a fix in source code. The generic approach
of finding the source of memory corruption in an execution trace is simpler
than the methods described by Miller et al. The case study performed in
this thesis, showed that it can be performed automatically with only mini-
mal knowledge of assembly code. The method can be used to point out in
source code where the corruption took place and automatically reconstruct
the call stack at the moment of corruption.

11.2 Summary of results

Program crashes from a real program were produced. The crashes were
produced by using dumb, black-box, mutational fuzzing. The fuzzing
statistics showed that most crashes were rare. Still new unique crashes
were produced in a regular manner. This confirms the results of C. Miller,
presented at CanSecWest in 2010 [67].

Automatic classification and bucketing of crashes was performed by
using the l!exploitable Crash Analyzer. 87% of the total crashes were
classified as Unknown. Under 10% of the unique crashes were classified
as Probably Exploitable or Exploitable. There was a large variation of
frequency and reliability among the crashes. An inherent instability of the
target program added uncertainty to the reliability measurement.

Different call stack based grouping algorithms were tested. The
resulting groupings were evaluated by comparing trace diversity and
Silhouette values as proposed by Dhaliwal et al. [33] in 2011. The
algorithms using a similarity threshold performed best. The threshold
was adjusted with the goal of minimizing the amount of groups while
producing low trace diversity and high Silhouette values for the groups.

It was discussed how expanding and condensing rules can affect
grouping. Bucketing could be performed in a strictly expanding sort tree
with multiple levels. Condensing rules could be based on crash location
and call stack similarities.

Comparison of grouping algorithms showed that small variations in the
algorithms could have a large impact on grouping. For the data set of this
thesis, the algorithms performed overall better when comparing function
names of stack frames and ignoring the offsets.

It was also identified that a two-level approach can have a negative
effect on grouping if the initial grouping criteria are too discriminating.
Crashes in a group should be more similar to other crashes within its group
than to crashes in other groups. To ensure this, crashes belonging to the
same bug might be divided into more than one group. This effect can
be compensated for by automatically identifying relations between crash
groups.

Two modifications of the distance algorithm were suggested. The first
is to calculate a granular distance between individual stack frames. This
could reflect that some stack frames are related, although not equal. The
second is to favor similarities near the top stack frame. No concrete
implementation for these modifications are described. Future research

104

CHAPTER 11. CONCLUSION

could answer if this would give a more accurate measurement of similarity
between call stacks.

Analysis of Crash Graphs described by Kim et al. [50] was demonstra-
ted as a method for identifying relations between crashes. Graphs were
produced for the complete set of call stacks and for selected crash groups.
Weighting of nodes and edges was used to identify call stack relations.
Frequent stack frames and call paths were identified as large nodes and
thick edges. Related crashes were identified as being topologically close.

Frequency and reliability of crashes was compared and discussed as
metrics for prioritizing crashes. Taint analysis was demonstrated as a
complementary method to automatic severity estimates based on crash
dumps. Relations between fixed and unfixed crash groups was proposed
as an additional prioritization metric.

A weighted priority model based on different metrics was suggested. A
priority score could be calculated for crash groups to help prioritize the
groups for bug fixing. The score could be used to create a prioritized list
of crash groups. It could also be calculated for each node in an expanding
sort tree for strategic prioritization of different program parts.

Call stack reconstruction was performed by using execution traces. Re-
covery of available stack frames from a crash dump was also demonstra-
ted. These methods give information about control flow leading to crashes.
Root cause analysis was demonstrated by using a crash dump, an execu-
tion trace and input analysis. The analysis resulted in a suggested solution
in source code.

A generic method of root cause analysis using execution traces was
demonstrated. By searching for a specific memory location it was possible
to identify code that corrupted memory at this location. Data flow was
analyzed by inspecting instruction operands in the trace. Differential
debugging was discussed as a method for identifying diverging points
of execution. This could e.g. show where a variable should have been
initialized.

Advantages and limitations of crash dumps and execution traces were
discussed. A crash dump is fast to produce, but gives less information
about control flow and data flow. An execution trace provides more
information, but requires more time and disk space to produce. Input
analysis was discussed as a method for understanding the trigger of a
bug. Because of unreliability of crashes, it might be insufficient to analyze
only one of the inputs causing a particular crash. In addition, different
inputs causing the same crash represent different triggers. Differential input
analysis was suggested as a method for comparing different triggers of the
same bug.

Two improvements were suggested for the use of dynamic analysis
using execution traces. The first is to use dynamic instrumentation to
allow one or more read access violations to pass, simulating heap spraying.
This could answer what would happen if an invalid read address can be
controlled by user input. The second is to reconstruct a simulated memory
layout of the virtual address space of a process by reading the values of
operands. This is similar to reconstructing the call stack at a given point in

105

CHAPTER 11. CONCLUSION

the trace.

When fixing a bug, it was suggested that triggers and crash locations
should be considered in addition to the actual bug. Crash dump analysis
can help analyze and fix code at a crash location. Dynamic analysis can
help understand the underlying cause of the crash. In particular, this
thesis shows how the link between memory corruption and crash can be
found by using an execution trace with logged operand values. Crash
graphs, differential debugging and input analysis are methods that can
help understanding the underlying cause and different ways to trigger a
bug. Lastly, it was argued that proactive measures are better than reactive
measures when it comes to developing reliable and robust software.

This thesis has showed a potential for automization in many aspects
of program crash analysis. First automatic crash reporting and fuzzing
were described as automatic methods for collecting program crashes. Semi-
automatic code coverage analysis and mutational fuzzing was demonstra-
ted. In addition, potential for automization was identified for all three re-
search questions.

11.3 Critical evaluation

In this thesis some methods were described and discussed but not
demonstrated with examples.

11.3.1 Evaluation of methods

Differential slicing [49] was introduced in 2011, but the article was not
discovered until after the empirical work of this thesis was nearly finalized.
Differential debugging could have been applied to the case study of root
cause analysis. However, this approach was described in detail in case
studies by Miller et al. [68] so enough empirical results were available to
support the discussion of how this method fits in the context of fixing bugs.

The method of searching for addresses in an execution trace was
not compared to slicing and aligning traces to identify influences of a
crash. The methods could have been compared regarding correctness and
time consumption. Only local variables were inspected using address
search. The demonstrated method depends on instructions operating on
the variables. Global variables and heap data could possibly be inspected
in the same way, but this was not attempted. Tracing and taint analysis of
all 62 crashes was not performed. While it could have been feasible, it was
not assessed to be relevant for the research questions.

An effort could have been made to link discovered bugs to historic
bug fixes through analysis of the open source code repository. This could
evaluate the performance of grouping algorithms by knowing exactly
which crashes belonged to which bugs. It could also give answers about
bug fixing time and how the bugs were fixed. However, the open source
development did not include an automatic crash reporting system. Hence,
the historic bug fixes were not based on crash dumps, but rather source
level debugging and source code auditing.

106

CHAPTER 11. CONCLUSION

Crashes were the only bug symptoms used in this thesis. Error
messages and program behavior during fuzzing was ignored. As described
early in this thesis, memory corruption may have other symptoms such as
program freeze and resource exhaustion. These symptoms and bug classes
were not considered.

When comparing call stack based grouping algorithms, the computatio-
nal complexity of the algorithms was not considered. This could be an im-
portant factor in a practical implementation. The two-level approach sug-
gested by Dhaliwal et al.[33] created competitive groupings, and this was
created for performance. However, the computational cost of using a one-
level approach was not assessed. The hash algorithm of !exploitable was
described as efficient because it does not require comparison with other
call stacks, but the algorithm complexity was not assessed.

It was decided to calculate Silhouette values by comparing to all other
crash groups. If Silhouette validation was performed within a crash-
type, the threshold could possibly be increased. This could create less
groups while keeping Silhouette values high. If there were relations across
crash-types, these could be identified by calculating Levenshtein distances
between representative traces of the groups.

11.3.2 Validity of results

The results of this thesis are based on a concrete set of crashes. The crashes
were produced and analyzed by using techniques similar to previous
studies [67, 33, 50, 68]. All methods are described, so the results may be
replicated. The set of fuzzing templates and crashes were produced in a
random manner, so the exact same data set cannot be reproduced.

The reliability measurement may be inaccurate. However, it served to
show that measuring crash reliability can be difficult. Also, it described in
principle how reliability can be used in combination with frequency and
severity to prioritize crashes.

The data set did not include the relations between crashes and bugs.
Neither did it contain information about bug fixing time. This may be
a threat to internal validity. To compensate for this, the discussion was
supported by results of related research [33, 68]. However, results and
conclusions about different methods are presented without knowing for
certain if these methods would reduce bug fixing time for this data set.

This may also be a threat to external validity because it is possible that
these results and conclusions cannot be generalized to other data sets. The
results, conclusions and modifications to current methods given in this
thesis should therefore be taken as suggestions, not exact proof of how the
research questions should be answered.

11.4 Future work

This thesis does not address analysis of system crashes. Nor does it analyze
crashes in programs running managed code. A subject for further research
could be to apply the discussed methods to these kinds of crashes. The

107

CHAPTER 11. CONCLUSION

methods might also be applicable to other architectures, such as ARM [80]
and x86-64 [5]. Future research could also evaluate the suggested changes
to existing methods.

A concrete implementation of a modified distance algorithm should be
developed. It should favor similarities near the top stack frame and use
a granular distance between individual stack frames. Different criteria
for deciding the crash-type in a two-level grouping approach could be
compared. The initial level of grouping should reduce the need for call
stack comparison while not being too discriminating. The new algorithms
should be tested on different data sets, including crash reporting systems
where information about bug fixing time is known. On such a data set, it
could also be evaluated if relations to fixed bugs could be an efficient metric
for prioritizing crash groups.

Crash graphs could be expanded with more control flow data from
execution traces. Relations between nodes in a crash graph could be
visualized by calculating granular distances between stack frames or by
using supernodes and subnodes. It might also be possible to explore graph
algorithms that take the complete crash graph of all call stacks as input.
The application of such algorithms could be both grouping crashes and
identifying relations between crashes or groups of crashes.

An analysis not performed in this thesis is taint propagation of
all crashes. The results could be compared to classification made by
lexploitable. Such a complete analysis was also not performed by Miller
et al. [68] This could evaluate the relevancy and effectiveness of automatic
classification based purely on crash dumps.

Whole-system instrumentation or other methods could be used to allow
one or more read access violations and observe if this could result in a write
access violation. This could provide more certainty to severity estimates of
this particular kind of crashes. Reconstructing the memory layout in an
execution trace may allow more detailed inspection of data flow.

Differential input analysis could be explored as a method for identi-
tying different triggers of a bug. This could be a complementing method to
differential slicing.

11.5 Final remarks

It can seem like a paradox that programs still crash after decades of
development and improvements in the field of computer science. This
thesis aims to enlighten the subject and answer how developers can
investigate and fix these issues. However, program crash analysis can
only help remove the symptoms of inherent weaknesses of computer
architectures. Future operating systems, programming languages and
hardware platforms may be more robust from design. The ultimate goal
must be to avoid the possibility of program crashes, making this field of
research obsolete.

108

Appendices

109

Appendix A : Mutation of a fuzzing template

Figure A.1 shows a random mutation inside a PostScript file used as
a fuzzing template. The characters marked in bold font are the mutated
bytes. The mutation replaced the original characters with non-printable
NULL characters (ASCII value 0x00).

(1line 8333)
%beginsfnt
truedictknown type42known or(%endsfnt)exch fcheckload
/FontMatrix [1 0 O 1 O 0] def
/FontBBox[2048 -319 1 index div -441 2 index div 2147 3 index div \
1985 5 -1 roll div]cvx def
/FontType typed42known{42}{3}ifelse def
systemdict/product 2 copy known{get dup(LaserWriter IIf)eq \
exch(Laserliriter IIg)eq or version(2010.113)eq and not}{pop pop \
true}ifelse{/UniqueID 16#00D2761B

def}if/sfnts[<
000100000009000900090009

6376742043851A570000009C00000648
(1line 9217)

0811182CAFA4EF614C8FFB7E165D60000000000000000000000000072FFDDDIC. . .

Figure A.1: Mutation of a Type42 font description in a PostScript file

111

Appendix B: lexploitable rules

CLASSIFICATION | DESCRIPTION FINAL

NO_EXCEPTION | The current event is not an exception true
EXPLOITABLE Exception from code running in the Stack true
EXPLOITABLE Illegal Instruction Violation true
EXPLOITABLE Privileged Instruction Violation true
EXPLOITABLE Guard Page Violation true
EXPLOITABLE Stack Buffer Overrun (/GS Exception) true
EXPLOITABLE Heap Corruption true
EXPLOITABLE Kernel Mode Data Execution Protection Violation true
EXPLOITABLE Data Execution Protection Violation true
PROBABLY_EXP Data Execution Protection Violation near NULL true
EXPLOITABLE User Mode Write AV true
PROBABLY_EXP User Mode Write AV near NULL true
EXPLOITABLE Write AV in Kernel Memory true
EXPLOITABLE Write AV in Kernel Mode true
EXPLOITABLE Kernel Mode Read AV at the Instruction Pointer true
EXPLOITABLE Read AV at the Instruction Pointer true
PROBABLY_EXP Read AV Near Null at the Instruction Pointer true
EXPLOITABLE Kernel Read AV on Control Flow true
EXPLOITABLE Read AV on Control Flow true
PROBABLY _EXP Read AV on Control Flow near NULL true
PROBABLY_EXP Read AV on Block Data Move true
PROBABLY_EXP | Kernel Memory Read AV on Block Data Move true
PROBABLY_EXP | Memory Read AV on Block Data Move true
PROBABLY_EXP Tainted data controls Code Flow true
PROBABLY_EXP | Tainted data controls subsequent Write Address true
PROB_NOT_EXP Read AV near NULL false
PROB_NOT_EXP | First Chance Kernel Read AV in User Memory false
PROB_NOT_EXP First Chance Kernel Write AV in User Memory false
PROB.NOT_EXP | Integer Divide By Zero false
PROB_NOT_EXP | Float Divide By Zero false
UNKNOWN Breakpoint false
UNKNOWN BugCheck false
UNKNOWN Possible Stack Corruption false
UNKNOWN Kernel Read Access Violation near NULL false
UNKNOWN Tainted data is used in a subsequent Block Data Move false
UNKNOWN Memory Read Access Violation on Block Data Move false
UNKNOWN Tainted data is used as arguments in a Function Call false
UNKNOWN Tainted data may be used as a return value false
UNKNOWN Tainted data controls Branch Selection false
UNKNOWN Read Access Violation true
UNKNOWN Write Access Violation true
UNKNOWN Data Execution Protection Violation true

Table B.1: !exploitable rules derived from source code

113

114

Appendix C : Derivation of an expression for Z (i)

The following sentences derive an expression (C.3) for the accumulative
amount of unique crashes, as described in Section 4.3. Crashes are repre-
sented by numbered balls.

Z(i) is the amount of unique numbers picked after i iterations. It is defined
recursively by:

Z(0)=0
Z(i)=Z(i—1)+u(i)Vie N\ {0}

where u(i) is the probability that the it ball has a new unique number grea-
ter than zero, i.e. it belongs to an empty bucket.

The probability of picking a ball with the number j is constant throughout
the iterations. It is given by:

.
Pi=70

If bucket j is empty, j must not have been picked in any of the previous ite-

rations. That gives the following expression for the probability that bucket
j is filled with its first ball on iteration i:

pix (1—p)""
The expression evaluates to p; when i = 1 and decreases for each iteration.
This reflects that all buckets are empty in the beginning. Also, a higher g;
will result in a faster decrease of the probability that bucket j is still empty.

u(i) is the sum of probabilities for all buckets. #(0) is undefined and u (i) is
given by:

u@)=px (1—p1) '+ .+ pex (1—pp)!
The expression for Z(i) then becomes:
Z(i) = 2(i = 1) + i (pj x (1= p))

which can be written as a sum of sums:

i k
Z(i) = ; <Z (pix (1 —pj)”1)> vieN\ {0}

=1

115

APPENDIX C. DERIVATION OF AN EXPRESSION FOR Z ()

The expression can be simplified by extracting the sums for each bucket.

2() = Zi(i) + -+ Ze(i) |

26) = 3 (pox (0"t bt L e (1= p™)

Zi(i) = pi+pix(1—p)+.+px1—p)* (C.1)
(1—pj) xZi(i) = pjx(1=p)+..+pjx(1—p) (C2)

Subtracting equation C.2 from C.1 results in the following:

pix Zi(i) = pj—pjx (1—p))
Zi(i) = 1-(1—-p)

The expression for Z(i) is the sum of Z;(i) for all k buckets:

k k
2() = Lz =L (1-a-p))
7= =
k k
z(i) = Yy 1-) (1-p)
j=1 j=1
Z() = k—f(—g>lVieN (C3)

Expression C.3 is defined for all positive integers and zero. Z(0) evaluates
to zero because the sum evaluates to k if i = 0. When i approaches infinity,
the sum converges to zero, and Z(i) converges to k:

0<p;j<1Vintegersjec [1,k] = lim Z;(i) =1 A lim Z(i) = k

i—00 i—00

116

Appendix D : List of unique crashes

Table D.1 lists all unique crashes produced in Ghostscript 6.51. The major
and minor hashes were recalculated based on correct symbols.

Table D.1: Unique crashes in chronological order

Name

001

UNKNOWN _TaintedDataPassed ToFunction_0x6a591068_0x571a5al6

002

UNKNOWN_TaintedDataControlsBranchSelection_0x355b2a31_0x42182e6¢

003

PROBABLY _NOT_EXPLOITABLE_Read AVNearNull_0x171d7605-0x052e6a21

004

PROBABLY _NOT_EXPLOITABLE _Read AVNearNull_0x3b341d03_0x13633d7f

005

PROBABLY NOT_EXPLOITABLE Read AVNearNull 0x13554811_0x4f4a1368

006

UNKNOWN _TaintedDataReturned FromFunction_0x475f0d70_0x40414f11

007

UNKNOWN _TaintedDataReturned FromFunction_0x475f0d70_0x40414£10

008

UNKNOWN _Read AV _0x32542264 _0x5c193e2a

009

PROBABLY_EXPLOITABLE_Read AVonControlFlow_0x19654837_0x5464783¢

010

UNKNOWN_TaintedDataControlsBranchSelection_0x5d500e11_0x441a5d65

011

PROBABLY_NOT_EXPLOITABLE_Read AVNearNull_0x7c744f06_0x280d7{63

012

PROBABLY _NOT_EXPLOITABLE_Read AVNearNull_0x77437800_-0x607ble7e

013

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x4a707b3d

014

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x4e342d79

015

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x7{67273e

016

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x2c6e3503

017

UNKNOWN _TaintedDataControlsBranchSelection_0x4e68534b_0x370a5e62

018

UNKNOWN _TaintedDataControlsBranchSelection_0x355b2a31_0x196b4045

019

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x314c1206

020

UNKNOWN _Read AV _0x3e064a33_0x314c4606

021

UNKNOWN _Read AV _0x13554811_0x4f4a1368

022

UNKNOWN _TaintedDataControlsBranchSelection_0x66637c08_0x58793b67

023

UNKNOWN _TaintedDataPassed ToFunction_0x22163c41_0x3c6e0e64

024

PROBABLY_EXPLOITABLE_Read AVonControlFlow_0x19654837_0x61166701

025

PROBABLY NOT_EXPLOITABLE Read AVNearNull 0x22163c41_0x02514a2a

026

PROBABLY _NOT_EXPLOITABLE _Read AVNearNull_0x7c744f06_0x1d7f605e

027

UNKNOWN_TaintedDataControlsBranchSelection_0x4e68534b_0x7d02657a

028

UNKNOWN _TaintedDataReturned FromFunction_0x25072£39_0x4f164e5b

029

UNKNOWN _Read AV _0x424d592f_0x60044050

030

UNKNOWN _TaintedDataPassed ToFunction_0x75662e1d_0x6c437725

031

UNKNOWN_TaintedDataControlsBranchSelection_0x59496a7f_0x4147175f

Continued on next page

117

APPENDIX D. LIST OF UNIQUE CRASHES

Table D.1 - continued from previous page

Name

032

UNKNOWN _TaintedDataPassed ToFunction_0x7d250953_0x0715452¢

033

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x71714c0e

034

UNKNOWN_Tainted DataControlsBranchSelection_0x3e064a33_0x44035333

035

UNKNOWN _Read AV _0x3e064a33_0x314c2906

036

UNKNOWN _TaintedDataControlsBranchSelection_0x52757738_0x2c¢653567

037

UNKNOWN _Read AV _0x3e064a33_0x2c6e0903

038

UNKNOWN _TaintedDataControlsBranchSelection_0x4c483f7d_0x32003858

039

UNKNOWN _Read AV _0x4e68534b_0x370a3b62

040

UNKNOWN _TaintedDataControlsBranchSelection_0x52757738_0x2c633567

041

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x1e6e3503

042

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x034c1206

043

PROBABLY_NOT_EXPLOITABLE Read AVNearNull_0x22163c41_0x3c370e64

044

PROBABLY_NOT_EXPLOITABLE Read AVNearNull_0x22163c41_0x78334a32

045

EXPLOITABLE _WriteAV _0x52757738_0x2c655267

046

PROBABLY _NOT_EXPLOITABLE Read AVNearNull 0x22163c41_0x074c680d

047

PROBABLY_NOT_EXPLOITABLE _Read AVNearNull_0x7c744£06_0x28057f63

048

UNKNOWN_TaintedDataControlsBranchSelection_0x52757738_0x4a7b7b59

049

UNKNOWN _Read AV _0x3e064a33_0x4e344879

050

EXPLOITABLE _WriteAV_0x515a442d_0x67287c10

051

UNKNOWN _Tainted DataControlsBranchSelection_0x52757738_0x1c6a275a

052

EXPLOITABLE _Read AVonIP_0x5b525c40_0x4b051e6a

053

UNKNOWN _TaintedDataControlsBranchSelection_0x3e064a33_0x39521519

054

PROBABLY NOT_EXPLOITABLE Read AVNearNull 0x22163c41_0x2a44760a

055

PROBABLY_EXP_TaintedDataControlsWriteAddress_0x5562253a_0x3f6d4276

056

UNKNOWN_Read AV _0x3e064a33_0x4e347979

057

UNKNOWN _TaintedDataControlsBranchSelection_0x52757738_0x4e3f2d1d

058

UNKNOWN _Read AV _0x23381138_0x536b3b49

059

UNKNOWN _Tainted DataControlsBranchSelection_0x52757738_0x7{f6c275a

060

UNKNOWN_TaintedDataControlsBranchSelection_0x52757738_0x4e392d1d

061

UNKNOWN_Read AV _0x3e064a33_0x4a701e3d

062

UNKNOWN _Read AV _0x424d592f_0x60047250

118

Appendix E : Call stack grouping

Table E.1 shows the 30 groups produced by algorithms 6 and 9 from
Table 9.1. These are LD algorithms using a threshold of two.

Crash function

Unique crashes

=
w)

append_simple (1)

013-016, 019, 020, 033-035, 037, 041, 042, 049, 053, 056, 061

append_simple (2)

036, 040, 045, 048, 051, 057, 059, 060

gs-typel_interpret (1)

023, 043, 044

0.5

0

0
gs_typel_interpret (2) 025, 046, 054 0
pdf_write_embedded_font (1) | 009, 024 0
s_.DCTD_process 005, 021 0
igc_reloc_struct_ptr (1) 006, 007 0
gs_text_replaced_width (1) 029, 062 0
pdf_font_notify_proc (1) 011, 047 0
append_simple (3) 017, 039 0
append_simple (4) 027 0
igc_reloc_struct_ptr (2) 028 0
gs_text_replaced_width (2) 008 0
pdf_font_notify_proc (2) 026 0
s_filter_close (1) 002 0
s_filter_close (2) 018 0
pdf_put_colored_pattern (1) 004 0
pdf_put_colored_pattern (2) | 012 0
append_component 058 0
append_outline 052 0
cos_dict_elements_write 032 0
gs_typel_endchar 038 0
gx_path_add_line notes 010 0
gXx_path_add_curve_notes 055 0
pixel_resize 030 0
ref_param_make_int 001 0
refset_null_new 050 0
restore_finalize 022 0
s_zlib_free 031 0
typel_apply_path_hints 003 0

Table E.1: Call stack grouping of unique crashes

119

120

Bibliography

[1] DynamoRIO Dynamic Instrumentation Tool Platform.
http://dynamorio.org (Accessed April 2012).

[2] GDB - The GNU Project Debugger.
http://www.gnu.org/software/gdb (Accessed April 2012).

[3] Gephi, an open source graph visualization and manipulation soft-
ware. http://gephi.org (Accessed April 2012).

[4] Hex-Rays IDA Pro.
http://www.hex-rays.com/idapro (Accessed April 2012).

[5] Intel® 64 and IA-32 Architectures Software Developer Manuals.
http://www.intel.com /content/www /us/en/processors/architectures-
software-developer-manuals.html (Accessed April 2012).

[6] QEMU open source processor emulator.
http://wiki.qemu.org (Accessed April 2012).

[7] zynamics BinDiff. © Copyright 2004 to 2011 by Google Inc.
http://www.zynamics.com/bindiff.html (Accessed April 2012).

[8] zynamics BinNavi. © Copyright 2005 to 2011 by Google Inc.
http://www.zynamics.com/binnavi.html (Accessed April 2012).

[9] The Type 42 Font Format Specification. Adobe Developer Support
- Technical Note # 5012, July 1998. http://partners.adobe.com/public/
developer/en/font/5012. Type42_Spec.pdf (accessed April 2012).

[10] GNU Ghostscript 6.51, © Artifex Software, July 2001.
http://sourceforge.net/projects/ghostscript/files/gnu-gs/6.51/
(Accessed April 2012).

[11] Portable Document Format, PDF, (ISO 32000-1), 2008.

[12] Ghostscript Home Page, June 2011.
http://pages.cs.wisc.edu/~ghost/ (Accessed April 2012).

[13] The C++ Resources Network, 2011.
http://www.cplusplus.com (Accessed April 2012).

121

BIBLIOGRAPHY

[14]

[21]

[24]

[25]

S. Lambert G. Wroblewski A. Abouchaev, D. Hasse. Crash Course
- Analyze Crashes to Find Security Vulnerabilities in Your Apps.
MSDN Magazine, November 2007. http://msdn.microsoft.com/en-us/
magazine/cc163311.aspx (Accessed April 2012).

Alephl. Smashing The Stack For Fun And Profit. Phrack, 7(49), No-
vember 1996. http://phrack.com /issues.html?issue=49&id=14 (Acces-
sed April 2012).

Starr Andersen and Vincent Abella. Memory Protection Technologies.
Changes to Functionality in Microsoft Windows XP Service Pack 2,
Part 3, September 2004. http://go.microsoft.com/fwlink/Linkld=28022
(Accessed April 2012).

Chris Anley, Jack Koziol, Felix Linder, and Gerardo Richarte. The
Shellcoder’s Handbook: Discovering and Exploiting Security Holes. John
Wiley & Sons, Inc., New York, NY, USA, 2007.

Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John
Penix, and William Pugh. Using static analysis to find bugs. IEEE
Softw., 25(5):22-29, September 2008.

Bernhard Beckert and Claude Marché, editors. FoVeOOS’10: Procee-
dings of the 2010 international conference on Formal verification of object-
oriented software, Berlin, Heidelberg, 2011. Springer-Verlag.

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen. Systems and Software Verification: Model-Checking
Techniques and Tools. Springer Publishing Company, Incorporated, 1st
edition, 2010.

Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron
Murray, Milenko Drini¢, Darek Mihocka, and Joe Chau. Framework
for instruction-level tracing and analysis of program executions.
In Proceedings of the 2nd international conference on Virtual execution
environments, VEE '06, pages 154-163, New York, NY, USA, 2006.
ACM.

BitBlaze: Binary Analysis for Computer Security.
http://bitblaze.cs.berkeley.edu/ (Accessed April 2012).

Brandon Bray. Compiler Security Checks In Depth. MSDN, February
2002. http://msdn.microsoft.com/en-us/library/Aa290051 (Accessed
April 2012).

J. N. Buxton and B. Randell, editors. Software Engineering Techniques:
Report of a conference sponsored by the NATO Science Committee, Rome,
Italy, 27-31 Oct. 1969, Brussels, Scientific Affairs Division, NATO. 1970.

Bruno Cabral and Paulo Marques. Exception handling: A field study
in java and .net. In Erik Ernst, editor, ECOOP 2007 — Object-Oriented
Programming, volume 4609 of Lecture Notes in Computer Science, pages
151-175. Springer Berlin / Heidelberg, 2007.

122

BIBLIOGRAPHY

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasa-
reanu, Koushik Sen, Nikolai Tillmann, and Willem Visser. Symbolic
execution for software testing in practice: preliminary assessment. In
Richard N. Taylor, Harald Gall, and Nenad Medvidovic, editors, ICSE,
pages 1066-1071. ACM, 2011.

Apple Computer. TrueType Reference Manual, December 2002.
http://developer.apple.com/fonts/TTRefMan/ (Accessed April 2012).

Jean-Pierre Courtiat, Piotr Dembinski, Gerard]J. Holzmann, Luigi
Logrippo, Harry Rudin, and Pamela Zave. Formal methods after
15 years: status and trends: a paper based on contributions of the
panelists at the formal technique 95 conference, montreal, october
1995. Comput. Netw. ISDN Syst., 28:1845-1855, October 1996.

Microsoft Security Engineering Center (MSEC) Dave Weinstein,
Jason Shirk. The History of the !exploitable Crash Analy-
zer. Microsoft TechNet Blogs, Security Research & Defense, April
2009. http://blogs.technet.com/b/srd/archive/2009/04/08/the-history-
of-the-exploitable-crash-analyzer.aspx (Accessed April 2012).

Leonardo De Moura and Nikolaj Bjerner. Z3: an efficient smt solver.
In Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis of
systems, TACAS'08/ETAPS'08, pages 337-340, Berlin, Heidelberg,
2008. Springer-Verlag.

Leonardo de Moura, Bruno Dutertre, and Natarajan Shankar. A
tutorial on satisfiability modulo theories. In Proceedings of the 19th
international conference on Computer aided verification, CAV’'07, pages 20—
36, Berlin, Heidelberg, 2007. Springer-Verlag.

Jared D. DeMott, Richard]J. Enbody, and William F. Punch. Towards
an automatic exploit pipeline. In Proceedings of the 6th International
Conference for Internet Technology and Secured Transactions (ICITST-
2011), pages 323-329. IEEE, Dec 2011.

Tejinder Dhaliwal, Foutse Khomh, and Ying Zou. Classifying field
crash reports for fixing bugs: A case study of mozilla firefox. In ICSM,
pages 333-342. IEEE, 2011.

Mark Dowd, John McDonald, and Justin Schuh. The Art of Software
Security Assessment: Identifying and Preventing Software Vulnerabilities.
Addison-Wesley Professional, 2006.

Michael Eddington. Peach code coverage tool minset.py.
http://peachfuzzer.com/Tools (Accessed April 2012).

Michael Eddington. Peach Fuzzing Platform.
http://peachfuzzer.com (Accessed April 2012).

123

BIBLIOGRAPHY

[37] Justin E. Forrester and Barton P. Miller. An empirical study of the
robustness of windows nt applications using random testing. In
Proceedings of the 4th conference on USENIX Windows Systems Symposium
- Volume 4, WSS'00, pages 6-6, Berkeley, CA, USA, 2000. USENIX
Association.

[38] Susan Gerhart, Dan Craigen, and Ted Ralston. Experience with formal
methods in critical systems. IEEE Softw., 11:21-28, January 1994.

[39] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel
Aul, Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle,
and Galen Hunt. Debugging in the (very) large: ten years of
implementation and experience. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP '09, pages 103—
116, New York, NY, USA, 2009. ACM.

[40] Patrice Godefroid, Michael Y. Levin, and David Molnar. SAGE:
Whitebox Fuzzing for Security Testing. Queue, 10(1):20:20-20:27,
January 2012.

[41] Patrice Godefroid, Michael Y. Levin, and David A Molnar. Automated
whitebox fuzz testing. In Network Distributed Security Symposium
(NDSS). Internet Society, 2008.

[42] Danny Goodman, Michael Morrison, and Brendan Eich.
JavaScript® Bible, Sixth Edition. John Wiley & Sons, Inc., New
York, NY, USA, 2007.

[43] Sean Heelan. Vulnerability detection systems: Think cyborg, not
robot. IEEE Security and Privacy, 9:74-77, May 2011.

[44] Mario Hewardt and Daniel Pravat. Advanced windows debugging.
Addison-Wesley Professional, first edition, 2007.

[45] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92-106, December 2004.

[46] R.Hyde. The Art of Assembly Language. Number v. 1 in No Starch Press
Series. No Starch Press, 2003.

[47] Adobe Systems Inc. PostScript language reference (3rd ed.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[48] Intel Corporation, Santa Clara, California. Intel 80386 Programmer’s
Reference Manual, 1986.

[49] Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCa-
mant, Pongsin Poosankam, Daniel Reynaud, and Dawn Song. Dif-
ferential slicing: Identifying causal execution differences for security
applications. In Proceedings of the 2011 IEEE Symposium on Security
and Privacy, SP "11, pages 347-362, Washington, DC, USA, 2011. IEEE
Computer Society.

124

BIBLIOGRAPHY

[50] Sunghun Kim, Thomas Zimmermann, and Nachiappan Nagappan.
Crash graphs: An aggregated view of multiple crashes to improve
crash triage (practical experience report). In Proceedings of the 2011
IEEE/IFIP International Conference on Dependable Systems and Networks,
June 2011.

[61] Ralf Kneuper. Limits of formal methods. Formal Aspects of Computing,
9:0934-5043, 1997.

[52] Joseph B. Kruskal. An Overview of Sequence Comparison: Time
Warps, String Edits, and Macromolecules. SIAM Review, 25(2):201-
237,1983.

[53] Lixin Li, James E. Just, and R. Sekar. Address-space randomization for
windows systems. In Proceedings of the 22nd Annual Computer Security
Applications Conference, ACSAC 06, pages 329-338, Washington, DC,
USA, 2006. IEEE Computer Society.

[64] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, PLDI 05,
pages 190-200, New York, NY, USA, 2005. ACM.
http://www.pintool.org (Accessed April 2012).

[55] Microsoft. About PREfast for Drivers. MSDN. http://msdn.microsoft.
com/en-us/windows/hardware/gg487345 (Accessed April 2012).

[56] Microsoft. About Static Driver Verifier (SDV). MSDN.
http://msdn.microsoft.com/en-us/windows/hardware /gg487498.aspx
(Accessed April 2012).

[57] Microsoft. Blue Screen Data. MSDN. http://msdn.microsoft.com/en-
us/library /ff538869(v=vs.85).aspx (Accessed April 2012).

[58] Microsoft. Debugger Project Settings: Program Database Files
(C++). MSDN. http://msdn.microsoft.com/en-us/library/yd4f8bd1.aspx
(Accessed April 2012).

[59] Microsoft. !exploitable Crash Analyzer. MSEC Debugger Extensions.
http://msecdbg.codeplex.com (Accessed April 2012).

[60] Microsoft. .Net Framework. http://www.microsoft.com/net
(Accessed April 2012).

[61] Microsoft. Windows Debugger (WinDbg). Debugging Tools for
Windows. http://www.windbg.org (Accessed April 2012).

[62] Microsoft. Windows Driver Kit (WDK). MSDN.
http://msdn.microsoft.com/en-us/windows/hardware/gg487428
(Accessed April 2012).

125

BIBLIOGRAPHY

[63] Microsoft. Proof of Concept Code Published Affecting the Remote
Access Connection Manager Service. Security TechCenter, Microsoft
Security Advisory (921923), June 2006. http://technet.microsoft.com/
en-us/security/advisory /921923 (Accessed April 2012).

[64] Microsoft. Win32k Insufficient Data Validation Vulnerability, CVE-
2009-2513. Security Bulletin MS09-065, November 2009. http://
technet.microsoft.com/en-us/security/bulletin/MS09-065
(Accessed April 2012).

[65] Microsoft. Simplified Implementation of the Microsoft SDL, Novem-
ber 2010. http://www.microsoft.com/security/sdl/discover
(Accessed April 2012).

[66] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study
of the reliability of unix utilities. Commun. ACM, 33:32-44, December
1990.

[67] Charlie Miller. Babysitting an army of monkeys - an analysis of
fuzzing 4 products with 5 lines of python. Vancouver, March
2010. CanSecWest. http://securityevaluators.com/files/slides/cmiller_
CSW_2010.ppt (Accessed October 2011) http://www.scribd.com/doc/
60008912 /cmiller-CSW-2010 (Accessed April 2012).

[68] Charlie Miller, Juan Caballero, Noah M. Johnson, Min Gyung Kang,
Stephen McCamant, Pongsin Poosankam, and Dawn Song. Crash
analysis using BitBlaze. Las Vegas, NV, USA, July 2010. Black
Hat USA. http://securityevaluators.com/files/papers/CrashAnalysis.pdf
(Accessed April 2012).

[69] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
2007 ACM SIGPLAN conference on Programming language design and
implementation, PLDI "07, pages 89-100, New York, NY, USA, 2007.
ACM. http://valgrind.org (Accessed April 2012).

[70] James Newsome. Detecting and preventing control-flow hijacking attacks
in commodity software. ~PhD thesis, Pittsburgh, PA, USA, 2008.
AAI3365680.

[71] John Neystadt. = Automated penetration testing with white-box
fuzzing. MSDN, February 2008. http://msdn.microsoft.com/en-us/
library /cc162782.aspx (Accessed April 2012).

[72] Kristen Nygaard and Ole-Johan Dahl. History of programming
languages I. chapter The development of the SIMULA languages,
pages 439-480. ACM, New York, NY, USA, 1981.

[73] Oracle. Java™. http://www.oracle.com/us/technologies/java/overview/
(Accessed April 2012).

126

BIBLIOGRAPHY

[74] Doron A. Peled, David Gries, and Fred B. Schneider, editors. Software
reliability methods. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2001.

[75] Sebastian Porst. BinNavi 3.0 Preview: Improved Differential Debug-
ging. Zynamics Blog, January 2010. http://blog.zynamics.com/2010/
01/19/binnavi-3-0-preview-improved-differential-debugging/ (Accessed
April 2012).

[76] Peter Rousseeuw. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math., 20(1):53-65,
November 1987.

[77] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling
Language Reference Manual. Addison-Wesley Professional, 2nd edition,
2010.

[78] Adrian Schroter, Nicolas Bettenburg, and Rahul Premraj. Do stack
traces help developers fix bugs? In Jim Whitehead and Thomas
Zimmermann, editors, MSR, pages 118-121. IEEE, 2010.

[79] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In Proceedings
of the 2010 IEEE Symposium on Security and Privacy, SP "10, pages 317-
331, Washington, DC, USA, 2010. IEEE Computer Society.

[80] D. Seal. ARM architecture reference manual. Addison-Wesley, 2000.

[81] Tom Shanley. Protected Mode Software Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[82] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager,
Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosan-
kam, and Prateek Saxena. BitBlaze: A new approach to computer se-
curity via binary analysis. In Proceedings of the 4th International Confe-
rence on Information Systems Security. Keynote invited paper., Hyderabad,
India, December 2008.

[83] Alexander Sotirov. Heap Feng Shui in JavaScript. Amsterdam, 2007.
Black Hat Europe. http://www.blackhat.com/presentations/bh-europe-
07 /Sotirov/Presentation /bh-eu-07-sotirov-aprl9.pdf
(Accessed April 2012).

[84] George Stathakopoulos. Security Advisory 979352 - Going
out of Band. Microsoft TechNet Blogs, MSRC, January 2010.
http://blogs.technet.com/b/msrc/archive/2010/01/19/security-
advisory-979352-going-out-of-band.aspx (Accessed April 2012).

[85] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley Professional, 2007.

127

BIBLIOGRAPHY

[86] Laura Thomson. Socorro: Mozilla’s Crash Reporting System, May
2010. http://blog.mozilla.com /webdev/2010/05/19/socorro-mozilla-
crash-reports/ (Accessed April 2012).

[87] VMware. Virtualization Basics - Virtual Machine. http://www.vmware.
com/virtualization/virtual-machine.html (Accessed April 2012).

[88] Dmitry Vostokov. Memory Dump Analysis Anthology, Volume 2.
Opentask, 2008.

[89] Drew Yao. Announcing crashwrangler. SecurityFocus - Focus on
Apple, July 2009. http://www.securityfocus.com/archive/142/504791/
30/0/threaded (Accessed April 2012).

128

