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Abstract

The demand for reduced area and power consumption have usually been met with
improvements in processing techniques, allowing for increased integration and
a reduction in the power supply voltage. Some technology improvements have
also occurred, such as strained silicon and silicon-on-insulator. But some design
techniques also feature a significant reduction in area and power consumption,
such the asynchronous design approach. Reducing the amountof interconnects is
another approach, for which multiple-valued logic might bean ideal candidate.

This thesis explores the multiple-input common-gate FGUVMOS transistor and
the design of multiple-valued logic circuits using this transistor. We examine in
detail a UV-programming technique for initializing the floating-gate. There is no
need for any extra programming circuitry with this programming method, since it
utilizes the supply rail of the nMOS transistor to place a charge on the floating-
gate. An important benefit of the floating-gate initialization is a matching of the
pMOS and nMOS transistor at a predetermined current level. We also look closer
at some of the layout issues concerning FGUVMOS circuits.

We also explore a new area of application for the FGUVMOS transistor, namely
multiple-valued logic. The main design parameter of the FGUVMOS transistor–
the capacitive division ratios of the coupling capacitors to the floating-gate–is
well suited for designing voltage-mode multiple-valued logic circuits. Several
multiple-valued logic circuits are examined in detail and several design issues are
addressed. Measurements on a fabricated chip are supplied,as well as simulations
of the various circuits. And the voltage output functions for the presented circuits
are also developed.
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Chapter 1

Introduction

The demand for increased integration–especially in the area of mobile communi-
cation and hand-held computing devices–necessitates morecomputational power
per area in order to either reduce the size of the devices or toachieve more func-
tionality. There also exists a need for a reduction in the power consumption to
prolong reliable power supply and to ease the cooling requirements, since an in-
crease in device density leads to a higher heat density.

The conventional solutions to these problems have come fromvarious refinements
of the processing techniques for integrated circuits. Microelectronic devices have
been scaled down mainly through improvements in lithography. The reduction in
power supply voltage is merely an obligatory side effect of this downscaling in
order to avoid breakdown in the devices. There are, however,some approaches to
achieve these goals that do not rely on the refinement of processing techniques.

There have been some improvements in the technology used forfabricating the
integrated circuits. Two notable improvements have been strained silicon and SOI
(silicon-on-insulator)[1]. Strained silicon enhances the electron/hole mobility by
straining the silicon lattice, while SOI reduces the parasitic capacitances present
in the devices by adding an insulator on top of the substrate.This combination not
only yields an increase in speed, but also reduces the power consumption of the
devices.

But there exists solutions to the problem of power consumption that can be found
in the design step. Various low-power design methodologieshave been able to re-
duce the power consumption in logic circuit systems beyond what is possible with
the traditional static CMOS designs, although static CMOS is a very power effi-
cient technology. Most of the extraneous energy consumption from static CMOS
comes from the charging and discharging of the gate and diffusion capacitance

1



2 Chapter 1. Introduction

due to spurious transitions on the input. However, as mentioned above, the re-
duction of the power supply and transistor sizes–thereby shrinking the gate and
diffusion capacitances–is what affects the overall power consumption the most.

One way of reducing the power supply voltage–which will result in a cubic reduc-
tion in power consumption[2]–is through the employment of floating-gate transis-
tors. With such a solution one can lower the voltage supply even further than nor-
mally possible with static CMOS. This can be achieved by placing a charge on the
floating-gate, which effectively shifts the threshold voltage of the transistors[3].
Ultra low-power applications (Vdd < 1V ) can be achieved through this method.
An alternative way of shifting the threshold voltage is through back-gating, i.e. by
applying a voltage to the back-gate of the transistor.

While there exists various methods for decreasing the powerconsumption due to
spurious transitions, most of these methods relies on a precharging phase which
increases the activity of the devices, thereby consuming more power overall. An-
other method, which also reduces the overall power consumption, is asynchronous
circuit design[4]. Asynchronous circuits have successfully been used to reduce
power consumption in commercial integrated circuits[5]. Alarge part of the re-
duction in power consumption comes from a reduction in the amount of intercon-
nects used for clock distribution. The resistance and the capacitance of the clock
distribution network–coupled with frequent charging and discharging–has made
the clock network an ample target for those who seek to reducepower consump-
tion in integrated circuits.

However, with all the methods above for reducing the power consumption, the
limited information conveyed by the binary logic system still remains. A large
amount of the die area is still being used for interconnects between circuit ele-
ments and modules. While an analog electronic system could theoretically have
an infinite information density, there might be a problem with reliably detect-
ing and retrieving the information. The advantage of binarylogic coupled with
two-state logic devices, such as the MOSFET transistor, over an analog electronic
system when it comes to robustness is evident, but a middle-ground might be de-
sirable. This middle-ground is provided by MVL (multiple-valued logic), where
the information density is larger than for binary logic, while it is still possible to
maintain a reasonable level of robustness.

1.1 Multiple-Valued Logic

The main issue with interconnects in modern digital systemsis well known. The
problem is usually described as twofold with the first problem being the limited



1.1 Multiple-Valued Logic 3

number of edge connections. The space allotted for edge connections grows only
linearly with lengthn, while the general die area grows asn2[6]. This has led
to several different package types to accommodate the growing need for more
pins[7]. Parallel communication leads to a higher pin countand also suffers the
problem of multiple delay paths. These delay paths have to besynchronized in
order to ensure the integrity of the overall signal. This is usually achieved by
decreasing the speed of all the delay paths to accommodate the slowest one. These
problems can be avoided by either serializing the communication or by using MV
(multiple-valued) signals1.

The second problem is the ratio of interconnects to active circuit area on the die.
The limited information that is conveyed by a two-level logic system means that
a large amount of the die area–one interconnect for each bit that makes up the
signal–is used for interconnects, since a larger number of devices must be used to
realize complex functions than for MVL (multiple-valued logic) systems2. Earlier
observations suggest that of a VLSI die area, approximatelyseventy percent is de-
voted to interconnects, twenty percent to spacing consisting of insulation and only
around ten percent for the actual devices[8]. These observations has led to more
compact designs for interconnects such as buses, and increased self-sufficient
modularity[6] in an effort to reduce intermodule communication. However, the
number of interconnects within these modules increases as aconsequence and the
problem still remains, although at a different level.

By using multiple-valued signals on the interconnects, a reduction in the routing
cost may follow, since interconnects will carry more information without an in-
crease in area cost. Despite this obvious solution to the interconnect problem,
multiple-valued logic has not gained wide acceptance. The reason for this mostly
stems from the fact that there exists no integrated multi-state device. Efficient and
robust two-state devices is the main reason for the prevalence of binary logic.

There are many different methods for designing MVL circuits. The method pre-
sented in this thesis uses a floating-gate to construct the MVL circuits. The
floating-gate has certain advantageous characteristics with regards to MV signals.
With these advantages it might be possible to reduce area andpower consumption
for the computing devices by using floating-gates to construct the MVL circuits.

1The use of MV signals for off-chip communication is not advantageous. The MV signals are
usually converted into binary signals before being sent off-chip.

2Se section 2.1 for an elaboration on the number of logic functions in a digital system.
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1.2 Floating-Gate Circuits

Floating-gate devices have mainly been deployed as memory elements for struc-
tures such as EPROM, EEPROM and flash memory[9, 10]. It was notuntil Shibata
and Ohmi introduced the MIFG (multiple-input floating-gate) transistor[11], that
circuits using floating-gates as an active circuit element started emerging.

These active floating-gate circuits make use of MIFG transistors as their active
devices. The input signals of the MIFG transistor are not coupled directly to the
gate, which is the standard configuration for MOS transistors. Instead, a coupling
capacitor is used. This configuration allows for several inputs, each coupled to the
gate of the MIFG transistor by a separate coupling capacitor.

The signal from each of the coupled inputs is attenuated by the ratio of the cou-
pling capacitor to the sum of all the coupling capacitors3. This capacitive divi-
sion relationship between the various inputs is an important design parameter for
MIFG transistors, especially since it is possible to form highly accurate capacitor
ratios in integrated circuits[12].

It is also possible to place a permanent charge on the gate4 using several different
programming methods, due to the fact that the gate is isolated. The most com-
mon programming method5 utilized is a combination of hot-electron injection and
Fowler-Nordheim tunneling. Another common method for placing a charge on the
floating-gate is through UV-light programming. A variant ofthe latter method is
used in this thesis.

1.3 Overview of the Thesis

The main objective of this thesis is to introduce a new methodfor initializing a
FGUVMOS (floating-gate ultra-violet MOS) transistor and demonstrate its use as
a MIFG transistor by using it to design MVL circuits.

The thesis is divided into the following sections:

• Chapter 1 contains an introduction to the motivation for the thesis. It ex-
amines the various methods for reducing area and power consumption. It

3Note that there are several other capacitances to consider,such as various parasitic capaci-
tances arising from the MOS transistor itself. Se section 3.2 for details.

4There will always be some leakage through the gate oxide, butfor modern processes in the
lower submicron and nanometer range, the leakage will be significantly larger. This is due to the
downscaling of the gate oxide along with the rest of the device geometry[13].

5This programming method is used in devices such as EEPROM andflash memory.
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also has an introduction to multiple-valued logic and floating-gate circuits.

• Chapter 2presents the concepts behind multiple-valued logic. An overview
of the various design methods used in the construction of multiple-valued
logic circuits is presented. Various aspects of multiple-valued logic algebra
is examined and the cost and complexity of multiple-valued logic systems
are discussed. Different signal representation are examined in more detail
and the advantages of MIFG MVL is addressed. The importance of signal
integrity is also pointed out.

• Chapter 3 has floating-gate devices as its topic. The development toward
active floating-gate circuits is presented. The FGUVMOS transistor is in-
troduced, its principal design parameter is examined and its equations are
shown. The programming technique is presented and implementation con-
siderations are explored.

• Chapter 4 presents various multiple-valued circuits using FGUVMOS tran-
sistors. The basic building blocks for multiple-valued logic circuits are in-
troduced. The various multiple-valued logic circuits withtheir descriptions
and equations are presented. Simulations for the circuits and measurements
on a fabricated chip are given.

• Chapter 5 summarizes the thesis as a whole and gives pointers to where
further research on the topics presented in this thesis should the focused.





Chapter 2

Multiple-Valued Logic

2.1 Introduction

Much as the decimal system has dominated our understanding of arithmetic, so
has the binary system dominated our understanding of logic.This connection
is so strong in fact, that the term logic implies binary logic, even though binary
logic is merely a subset of multiple-valued logic1. When arithmetic operations on
the decimal system are to be performed, one often makes use ofbinary logic. A
radix ten logic system would be more appropriate, since the values would map
directly and no information would be discarded, as is the case with binary-coded
decimals. The prevalence of binary logic in digital circuits today, stems mainly
from the availability of two-state physical devices.

Multiple-valued logic is by no means a new construct. Its origin dates back to the
novel work of Post in 1921[14], who published the first paper detailing a func-
tionally complete algebra for any finite radixn, wheren ≥ 2. And there existed
practical implementations of multiple-valued logic systems before the solid-state
devices entered the arena. Back then, the electromagnetic relays were the prin-
ciple component within switching systems[15]. Although the simplest ones were
binary, there existed multi-state switches. As a result, a wide range of applications
with multi-state devices were in use. But with the advent of solid-state devices,
switching systems with more than two states were largely lost due to efficient and
robust two-state devices, such as the MOSFET transistor.

The latter-day developments makes use of either binary or analog circuits–or a

1There are many additional names used to describe multiple-valued logic, such as multi-valued,
multivalue and many-valued logic. In the case of radix threelogic, the term ternary or trinary logic
is preferred.

7



8 Chapter 2. Multiple-Valued Logic

combination thereof–to construct multiple-valued logic,since a true multi-state
device seems elusive. The earlier multiple-valued logic circuits were implemented
using discrete BJT or MOS transistors[15]. The implementations could be divided
into two broad categories. One was the current-mode approach where the current
levels where divided into discrete steps. The other category was the voltage-mode
approach, which made use of several different power supply rails. Both design
approaches had in common a heavy reliance on resistors, and were therefore not
suited for implementation in integrated circuits.

Integrated multiple-valued logic realizations generallyfavor three commonly used
design approaches, closely connected to the signal representation used[6]. Charge
used in charge-coupled devices[16] in one of the common design approaches, al-
though voltage is used both as an internal variable and for the external interface.
Current used in integrated injection logic[17] is another approach, but again volt-
age is used both as an internal variable and for the external interface. There also
exists a design approach using the voltage as the signal representation. These are
usually ternary logic circuits exploiting the difference between threshold voltages
in enhancement and depletion devices[18].

2.2 Algebraic Notation

The radix signifies the number of logic levels in a multiple-valued logic system.
A higher radix gives you more computational complexity, i.e. the possibility to
form a higher number of different logic functions.

Most multiple-valued logic systems are formed from logic values that are a con-
tinuous monotonic set of integers. Extending the binary notation–where the set of
logic values is given as{0, 1}–in the positive direction is one method of form-
ing a continuous monotonic set of integers. The set of logic values resulting
from such an extension is given as{0, 1, ..., r − 1} wherer is the radix, and
is called an unbalanced system (or unsigned system). Unbalanced systems has
an even radix,r = 2n; n ∈ Z

+. Balanced systems are formed when the
radix is odd,r = 2n − 1; n ∈ Z

+. Here the value set is usually given as
{−r−1

2
,−r−3

2
, ..., 0, ..., r−3

2
, r−1

2
}, which includes negative integers. The ternary

logic value set would then be given as{−1, 0, 1}.

For binary logic, the inverted of a logic state is well definedand no ambiguity
exists, since each state has the other as its inverted. However, for the superset of
MVL, this is not possible. In logic it is normal to define inversion as a reversible
state transformation, where a state that is transformed twoconsecutive times is
returned to its original state. Such a unary negation operator for multiple-valued
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logic can be given asx = (r − 1) − x wherer is the radix[15]. For continuously
monotonic balanced systems, this means that the inverted ofthe pivot point, given
asx = r−1

2
; x = (r − 1) − r−1

2
= r−1

2
, is in fact itself. The pivot point for

a continuously monotonic unbalanced system is not a defined logic state, and
consequently no state has itself as the inverted.

The MVL system presented in this thesis has a continuous monotonic and unbal-
anced logic value set. The logic value set is merely an extension of the binary
one

{0, 1, ..., r − 1} (2.1)

wherer is the radix.

2.3 Radix and Complexity

A general two-input, calledA andB, one-output, calledF , digital system can
form max(F )(max(A)·max(B)) different logic functions, assuming the inputs are not
correlated. For a binary signal, this amounts to22∗2 = 16 possible logic functions.
With multiple-valued logic, that number increases greatly. For a multiple-valued
logic system of radix three,33∗3 = 19683 possible logic functions can be formed.

We can generalize this for an arbitrary number of inputs, each with their own
radix. The requirement of one output is retained. We haven inputs, given as
the sequence{0, ..., i, ..., n − 1}. The input radices are given as the sequence
{r0, ..., ri, ..., rn−1} with the output radix given asrout. Each input can take on
ri different values and we assume the inputs are uncorrelated.For each possible
combination of input values, the single output can take onrout different output
values. The number of possible logic functions in a mixed radix multiple-valued

logic system is then given asr
Qn−1

i=0
ri

out .

With so many radices to choose from, one wonders if there are any radices that
have a special position. The computational complexity of anMVL system arising
from higher radices almost certainly does not come without acost. This naturally
raises the question of which–if any–radix is the optimal. For many logic systems,
the radix is given as an inherent characteristic. However, the inherent radix might
not be optimal for reducing costs. Hurst has suggested that the cost (or complex-
ity), C, of the system hardware[15] is given as

C = k (r · d) = k

[

r
ln N

ln r

]

(2.2)
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wherek is some constant,r is the radix andd is the number of digits in a nu-
merical system necessary to express a range ofN numbers, whereN = rd. By
considering the radix as a real variable and the cost function,C, as a continuously
differentiable function, we can take the derivative of (2.2) with respect to the radix

∂C

∂r
=

∂

∂r
k

[

r
lnN

ln r

]

= k ln N
∂
∂r

r · ln r − ∂
∂r

ln r · r

(ln r)2
= k ln N

ln r − 1

ln2 r

from which we need to find the zeros

∂C

∂r
= 0 ⇔ k ln N

ln r − 1

ln2 r
= 0

ln r − 1 = 0 ⇔ r = e ≈ 3

and the result indicates an optimal point exists where the cost of increasing the
radix is equal to increasing the number of digits, and that ternary logic is the theo-
retically optimal radix for a logic system with an increasing cost for an increasing
radix. The cost function given in (2.2) only holds for the circuits in this thesis that
converts between binary and multiple-valued signals. Increasing the radix usually
means that another capacitor or transistor has to be added tothe circuit. The same
applies for increasing the amount of digits.

For the circuits that only process multiple-valued signals, however, the cost of
increasing the radix usually means that only a small adjustment has to be made
to the capacitor relationships2. For this case, where the cost does not increase
proportionally with the radix, Hurst has suggested an alternative cost function[15]

C = kd = k

[

ln N

ln r

]

(2.3)

where the cost is decreasing with an increasing radix. The optimal system cost
would then have to take into account the ratio of converter circuits to circuits only
processing multiple-valued signals.

The power-of-two radices also have a special position in MVL, especially when
interacting with binary logic. The power-of-two radices are defined as

r = 2n; n ∈ Z
+ (2.4)

They are optimal for interacting with binary logic systems since no information
is discarded in the conversation between binary and multiple-valued signals. This
also means that if the radix in a conversion circuit is between the steps defined
by equation (2.4), then there is no cost associated with increasing the radix to the
nearest step.

2Increasing the number of digits, however, has a cost similarto the conversion circuits.



2.4 Signal Representation 11

Ia
Wa
La

Ib
Wb
Lb Ix

Ia

Ib

(a) (b)

Figure 2.1: (a) Scaling can be done by using a current mirror in the current-
mode approach. The lengths,La andLb, are equal. The widths,Wa andWb, are
different with the scale factor given asWb/Wa andIb ≈ Ia ·Wb/Wa. (b) Addition
in the current-mode approach is done by simply connecting the wires together.
Here the output current is given asIx = Ia + Ib.

2.4 Signal Representation

There are many ways to represent digital signals, for instance as voltage, current,
charge or frequency. Although with binary logic, voltage isusually chosen as
the signal representation, most likely due to the availability of voltage controlled
two-state devices, e.g. the MOSFET transistor. However, the choice of signal
representation is not so clear when it comes to MVL, since there is no readily
available multi-state device. Each of the different signalrepresentations have cer-
tain advantages and disadvantages with regards to MVL.

One technique regarded as promising for designing MVL circuits is the CMOS
current-mode approach[19]. Here the logic levels are defined as multiples of a
base current. Some operations, such as scaling, can be preformed by using a cur-
rent mirror, as depicted in Figure 2.1. Other operations, such as addition, can
be performed even simpler, by just connecting the wires together. The cost ef-
fectiveness of several operations in the current-mode approach can contribute to
alleviating the areas cost for this design approach.

There are, however, several disadvantages to the current-mode approach[19, 15].
While static CMOS binary circuits have extremely low power dissipation in both
of the stable states, the current-mode approach has a rail-to-rail current flow in
all states and thus a high amount of static power dissipation. This is due to the
biasing of the current mirrors used in the circuits. Since there exists no multi-state
devices in the current-mode approach either, there exists aprofound problem of
signal integrity. Another important disadvantage with thecurrent-mode approach
is that the circuit delay is directly proportional to the logic level. The base current–
which is usually also the lowest logic level–sets the maximum delay path. The
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higher logic levels therefore draw a larger amount of current compared to the
lower logic levels–increasing the overall power consumption–without providing
an overall speed increase. These points leads to inefficiency in area and power
dissipation, despite the inherent advantages mention above.

The voltage-mode approach in CMOS MVL have usually consisted in exploiting
the difference between voltage thresholds for the depletion and enhancement de-
vices. However, this approach is only suited for low radix operations. By exploit-
ing the capacitive division relationship inherent in MIFG (multiple-input floating-
gate) transistors[11], we achieve several advantages. We can match the transistors
by placing a charge on the floating-gate, meaning minimum device sizes can be
used for both the nMOS and pMOS transistor. Fewer transistors are used, since
most of the circuit complexity is place inside the devices themselves. Low-voltage
operation is also possible due to the matching of the transistors, however, low
noise margins might then become a problem for robust circuitoperations. The
radix can be of an arbitrary size, but again, low noise margins pose a problem
with an increase in the radix.

Unfortunately, also MIFG MVL uses the quantization of an analog signal carrier–
voltage in this case. This means that there is a rail-to-railcurrent flow for all logic
states. There are also no stable logic states, meaning thereis no inherent signal
restoration. Like with the current-mode approach, signal integrity is a prominent
issue.

2.5 Signal Integrity

Signal integrity is an important aspect in any electronic system. If the signal infor-
mation in a circuit can not be reliably retrieved, then the system is of no practical
use. There currently exists no readily available multi-state physical device for
use in electronic systems. This means that most MVL systems rely on the quan-
tization of an analog signal carrier to represent the MV signal. This gives the
system greater sensitivity to various noise sources, such as crosstalk arising from
coupling to nearby interconnects or power rail spikes arising from switching cir-
cuits that draw large amounts of current. Process variations might also lead to
unwanted shifts in the logic levels due to mismatch in the physical devices, such
as variations in capacitor sizes.

The single most important task a two-state device performs for binary logic is sig-
nal restoration. Every physical device in a binary logic system restores the signal
to a pristine state, making noise margins large and increasing system robustness.
This is not the case with MVL. Since there is no multi-state device, there is also
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no automatic signal restoration. A signal restoration circuit will have to be used
instead for cascaded systems. The signal restoration circuit should only be used at
periodic intervals, dependent upon such characteristics as process variation, noise
and radix, due to the area and power consumption cost such a circuit would incur.

2.6 Summary

This chapter has presented an historic overview of the development of MVL cir-
cuits. Multiple-valued electromagnetic switches were in use before solid-state
devices came about. The methods used for discrete components was precluded
from being used for integrated circuits due to a heavy reliance on resistors. We
were then presented with the algebraic notation for MVL and the difference be-
tween balanced and unbalanced systems was explained. The next topic was the
radix and complexity of MVL systems, where two different cost functions were
presented. And the number of logic functions possible with amultiple-valued
logic system was found. The special power-of-two radices were also discussed.
We then looked more in detail at some of the various methods for constructing
integrated MVL circuits. The advantages and disadvantagesof MIFG MVL was
also explored. Lastly, the importance of signal integrity–and the role played by
signal restoration devices–was pointed out.





Chapter 3

Floating-Gate UVMOS Devices

3.1 Introduction

Since the first floating-gate structure was reported by Kahngand Sze in 1967[20],
the FGMOS (floating-gate MOS) transistor has mainly been used as a non-volatile
memory device for digital applications. Various implementations of non-volatile
memory devices have evolved, such as EPROM, EEPROM and flash memory[9,
10]. These non-volatile memory devices are normally only available in specialized
processes.

The FGMOS transistor has also been used as a non-volatile storage element in
analog applications. The charge on the floating-gate has been used to increase
accuracy and matching of circuit parameters[21]. It has also been used in neuro-
morphic circuits and neural-network implementations as a weighted parameter in
learning algorithms[22, 23].

The development toward active floating-gate circuits came from computational
methods in neuromorphic systems[24]. While the ETANN chip[23] still used the
floating-gates for analog storage, the output current from these devices were used
by multiplier circuits. Carver Mead presented an adaptive retina circuit, which
was the first example of a continuously reconfiguring circuits using FGMOS[25].
Thomsen and Brooke demonstrated the use of electron tunneling in a standard
double polysilicon process[26], allowing for experimentation with floating-gate
structures in more accessible processes.

An EEPROM addressing structure, called a dual control-gate, was introduced by
Heida et. al.[27]. It had two control-gates that were capacitively coupled into a
floating-gate, and the capacitors were of equal size for eachof the two control-

15
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gates. It had one control-gate for the row and another for thecolumn, to address a
single cell. When the cell received a signal on both of the control-gates, it would
initiate a write cycle using Fowler-Nordheim tunneling.

As a generalization of the dual control-gate EEPROM, Shibata and Ohmi[11] in-
troduced theνMOS (neuMOS, also called neuron-MOS) transistor for use as an
active circuit element. The name came from a loose analogy tohow synapses in
the nervous system works. This was the first time a floating-gate structure had
been used as an active circuit element.

Berg et. al. set forth a new programming technique for floating-gate transistors[3].
This method made use of UV-light to set and remove charge fromthe floating-
gate. The programming technique ensured matching of the transistors by placing
a charge on the floating-gate. This charge effectively shifted the threshold voltage,
allowing for ultra low-power applications.

3.2 Floating-Gate UVMOS Transistor

The FGUVMOS (floating-gate ultra-violet metal-oxide semiconductor) transistor
has a structure similar to theνMOS transistor. The main difference lies in the pro-
gramming technique, which will be discussed later on in section 3.5. The FGU-
VMOS transistor, shown in Figure 3.1 (a), has multiple inputs, each capacitively
coupled to the floating gate. These voltage inputs determine, through capacitive
voltage division, the floating-gate potential. In turn, thefloating-gate potential
modulates the current in the channel. This adds more complexity–both in design
and functionality–to the transistors, from which we can hope to achieve overall
simpler circuits that will consume less area and power. The capacitive voltage di-
vision is the essential operating parameter of the FGUVMOS transistor in relation
to its use in multiple-valued logic. The pMOS transistor is not shown, since only
the nMOS transistor is different from the standard MOSFET device with the pro-
gramming method used in this thesis. We can see a basic layoutof a FGUVMOS
transistor in Figure 3.1 (b).

The process used for the circuits in this thesis is the AMS0.6µ CUX CMOS
process with three metal layers and two polysilicon layers.Any double polysilicon
layer process will be adequate, however, most modern submicron and nanometer
processes will have excessive gate leakage due to the thinning of the gate oxide,
and are therefore not suitable for constructing non-volatile floating-gates[13].
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Figure 3.1:(a) FGUVMOS nMOS transistor symbol. The symbol shows several
input signals capacitively coupled into the floating-gate.The circle enclosing
the floating-gate and the source terminal is symbolizing theUV-hole used in the
programming of the transistor. The pMOS transistor is not shown since it is not
involved in the UV-programming.(b) FGUVMOS transistor layout. The UV-
hole encompasses the source diffusion and the polysilicon gate. The coupling
capacitors consists of stacked polysilicon layers, forming poly-poly capacitors.
The routing between the floating gates and the capacitors aredone in the lower
polysilicon layer (poly1, which is also used for the gate of the transistor). The
upper polysilicon layer is connected to the input node through the metal1 layer.

C0 C1

V0
0Q

1V
V Q1

Figure 3.2:Capacitive division relationship. The floating node,V , has two ca-
pacitively coupled, throughC0 andC1, voltage inputs,V0 andV1. The inputs have
the two related charges,Q0 andQ1

3.3 Capacitive Voltage Division

To fully understand the operating principle of the FGUVMOS transistor, we will
first have to examine the capacitive division relationshipsemployed by it, and how
the floating-gate potential is modulated by the capacitively coupled voltage inputs.

In Figure 3.2, we can see a simple setup to determine the floating potentialV . We
have the relationshipQ = CV and assuming that no net charge is stored on the
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0C

1C

Cn−1
n−1V

V1

V0

Vd

Vs

Cfgs

Cox Cdep

Ψs

Cb
Vfg

Qfg

Cfgd

Figure 3.3:Equivalent circuit used for deriving the capacitive division relation-
ships for the FGUVMOS transistor. All the parasitic capacitances are taken into
consideration. Also the capacitively coupled channel surface potential feedback
to the floating gate is addressed. Only the nMOS transistor isshown. For the
pMOS transistor (given a p-type substrate with a n-well), a charge on the bulk
terminal may also have to be taken into consideration, if back-gate modulation
techniques are used to fine-tune the device. This applies to the nMOS transistor
as well when using a process that employs wells for all diffusions, such as a SOI
process.

nodeV , we get

−Q0 − Q1 = 0

−C0(V0 − V ) − C1(V1 − V ) = 0

V =
C0

C0 + C1
V0 +

C1

C0 + C1
V1

due to the law of conservation.

We can translate this to the FGMOS transistor by generalizing for a finite amount
of capacitively coupled voltage inputs. The floating node will be the floating-gate,
Vfg, and the parasitic capacitances are taken into consideration. We then get the
setup shown in Figure 3.3[11].

If we in addition assume that a charge is present at the nodeVfg, we have the
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charge on the floating-gate,Qfg, given as

Qfg = Cox(Vfg − Ψs) + CbVfg −
n−1
∑

i=0

Ci(Vi − Vfg)

− Cfgs(Vs − Vfg) − Cfgd(Vd − Vfg) (3.1)

whereΨs is the channel surface potential. We then rearrange to get the floating-
gate potential

Vfg =
Cox

C∗

T

Ψs +
Qfg

C∗

T

+

n−1
∑

i=0

Ci

C∗

T

Vi +
Cfgs

C∗

T

Vs +
Cfgd

C∗

T

Vd (3.2)

whereC∗

T = Cprc +CT , with CT =
∑n−1

i=0 Ci andCprc = Cox +Cb +Cfgs +Cfgd.
Most of these parasitic capacitances can be ignored for hand-calculations–which
we will do for all the calculation in this thesis. But the gatecapacitance might
effect the size of any capacitor shunting the output and the floating-gate. Specifi-
cally, the size of this shunting capacitor would have to be reduced to account for
the gate capacitance.

3.4 FGUVMOS Transistor Equations

The FGUVMOS transistors are programmed in an inverter configuration to satisfy
an output ofVout = Vdd/2 when the input isVin = Vdd/2 in order to ensure
a symmetrical equilibrium point, and thus a matching of the pMOS and NMOS
transistor. The current at the equilibrium point1–which is determined by the input
voltage during the programming of the circuit–is given asIbec.

The equations for the weak inversion region are chosen as a matter of convenience,
but weak inversion is not a prerequisite for circuit operations. The current equa-
tions for the multiple-input FGUVMOS transistor can be expressed as[28, 29, 30]

Ids,n = Ibec

n−1
∏

i=0

exp

(

1

ηUT

(Vi − Vdd/2)ki

)

(3.3)

Ids,p = Ibec

n−1
∏

i=0

exp

(

1

ηUT
(Vdd/2 − Vi)ki

)

(3.4)

1It is natural to connect the equilibrium point to the pivot point, which was discussed in section
2.2.
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whereUT = kT
q

is the thermally exited voltage wherek is Boltzmann’s constant,
q is the electron charge andT is the temperature in Kelvin,η is the slope fac-
tor of the transistor andki = Ci

CT
with CT =

∑n−1
i=0 Ci . η is usually between 1

and 2, depending on the current level, whileUT = 25mV at room temperature
(300K). It is important to note that these equations are simplifications that do not
include the effect of channel shortening or velocity saturation, and should there-
fore only be used in connection with long channel devices. Itshould also be noted
that the floating-gate voltage will always remain at the programmed equilibrium
point. The equations above merely describe voltage differences on the coupling
capacitors that modulate the equilibrium current.

3.5 Programming Technique

An FGUVMOS circuit always comes with a stacked height of two.One pMOS
transistor stacked on one nMOS transistor. This leaves us with an inverter as
the fundamental circuit topology, although one might also use several nMOS or
pMOS transistors in parallel. Although this might seem as a restrictive design
limitation, complex circuit functions can still be achieved through the capacitive
division relationships on the inputs. In addition, the capacitive division relation-
ships design methodology lends itself as a natural choice for certain circuits such
as multiple-valued logic circuits.

Fowler-Nordheim tunneling (electron tunneling) and hot electrons (electron in-
jection) are traditionally used to remove and add charge to the floating-gate[31],
respectively. The UV-programming method instead uses shortwave UV (ultra-
violet) light in the UV-C range (254nm to be exact). This wave length is in com-
mon use in UV-erasers/programmers, normally used for programming or erasing
ROMs and EPROMs. When the source and gate region is exposed toUV-light,
a UV-activated conductance is created across the separating oxide. UV-activated
conductances is a convenient way to simplify the underlyingmodel.

It should also be noted that this programming method ensurescalibration of the
floating-gate[32]. The floating-gate is set to a known quantity. This is different
from the combination of tunneling and injection, which cannot set the floating-
gate to a known quantity, thus requiring UV exposure to calibrate.

The earlier UV-programming method[33] of the FGUVMOS transistors used a
split-gate configuration, as seen in Figure 3.4. This allowed for separate tuning of
the current-level since the pMOS and the nMOS transistor could have a different
charge on the floating-gate. This technique was a good match for ultra low-power
applications since the threshold could be shifted. However, there were problems
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Vfg,p

Vfg,n

Cin,p

V in

Cin,n

Vout

Vdd

Figure 3.4:A split-gate FGUVMOS inverter. The split-gate inverter hasa sep-
arate floating-gate for the nMOS and pMOS transistor. This allows for different
charges to be placed on the floating-gates and the threshold can be effectively
shifted. It also allows for the current level to be tuned by setting different charges
on the floating-gates.

with the programming of the pMOS transistor due to its weakerworkfunction,
resulting in a large workfunction difference between the nMOS and the pMOS
transistor. By instead using a common-gate configuration–where the pMOS and
nMOS transistor share the floating-gate–these problems aresolved. However, one
ends up with one less tuning parameter, and therefore the current level cannot
be arbitrarily set, like in the case with a split-gate configuration. This makes the
common-gate topology less useful for ultra low-power applications, but requires
less area to implement. It is also easier to program since theprogramming step
only involves the nMOS transistor.

A normal biased common-gate FGUVMOS inverter circuit is shown in Figure 3.5
(a). This circuit is in the operational mode. In this mode, there is no conductive
connection between the source diffusion and the floating-gate. When UV-light is
applied to the circuit, however, an increase in conductivity occurs. This increase
in conductivity is called photoconductivity and is modeledusing UV-activated
conductances[34], as seen in Figure 3.5 (b). The only desirable UV-activated
conductances is the conductive connection between the source diffusion and the
floating-gate,Gfgs,n. While metal shielding is in place to ensure illumination of
only the desired area, some UV-light will be reflected under the metal shielding.
This stray UV-light gives rise to several unwanted UV-activated conductances.
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Figure 3.5:(a) The operative mode (or normal biased mode) of the common-gate
FGUVMOS inverter. Since most of the natural UV-C light is stopped in the outer
atmosphere, it is not strictly necessary to shelter the UV-hole during normal op-
eration. However, it is a prudent measure to undertake in case of artificial UV-C
sources. In any case, such a protective measure is necessaryduring the program-
ming of the FGUVMOS circuit.(b) The programming mode of the FGUVMOS
circuit. When UV-light is applied, the UV-holes will allow for UV-activated con-
ductances to be "created". OnlyGfgs,n is the wanted UV-activated conductance.
All the other UV-activated conductances are considered parasitic. The parasitic
UV-conductance associated with the pMOS transistor for a common-gate con-
figuration will be significantly smaller than for a split-gate configuration. This is
because the distance to the UV-hole is larger with the common-gate configuration.

The energy of the UV-light is given asE = hv = hc
λ

, whereh is Planck’s con-
stant (4.14 · 10−15eV s), v is the frequency of the radiation,c is the speed of light
(3 · 108m/s) andλ is the wavelength of the radiation[35]. For UV-C radiation
(λ = 254nm), we then getE = hc

λ
= 4.14·10−15eV s·3·108

254·10−9m
≈ 4.9eV for the pho-

ton energy. In theSi-SiO2-Si structure making up the connection between the
source diffusion and the floating-gate, theSiO2 presents a4eV barrier for the
electrons[34]. We can see from the above calculations that UV-C radiation im-
parts enough energy to allow the electrons to surmount that barrier. The excited
electrons in the valence band of theSi layer then enters the conduction band in the
SiO2 layer. The electrons are then swept through the oxide layer by the voltage
gradient, as can be seen in Figure 3.6.
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UV−light

Si Si

Ev

cE

2SiO

Figure 3.6:Energy band explanation of the UV-programming procedure. ASi-
SiO2-Si sandwich is shown, as well as the energy levels of the valenceband,
Ev, and the conductance band,Ec. Energy from the UV-light will excite the elec-
trons in theSi valence band and cause some of them to enter theSiO2 region.
There they will support a current flow through theSiO2 region due to the voltage
gradient.

The programming procedure consists of applying the desiredswitching voltage on
the inputs and a higher potential onVss than onVdd. This leads to the source and
drain changing place on the transistors, thus giving us a lowoutput impedance.
Unlike most programming methods, this technique does not require any program-
ming circuitry since the floating-gates are programming from theVss rail.

The programming technique entails the following steps:

1. Decide upon the supply voltage,Vdd. This is the supply voltage
that will be used in the normal operating mode. It will vary between
applications.

2. Apply Vdd/2 to all external inputs. When the programming is over,
all internal and external nodes will have reachedVdd/2.

3. Apply the programming voltages,V− at Vdd and V+ at Vss, to the
supply rails. Instead of using extra programming circuitry, which
would be used when programming from the gate, we use the supply
rails instead. This gives reduced area overhead in the circuit designs.

4. Apply the UV-light. The nMOS transistor has a UV-hole to allow
the UV-light to excite electrons in theSi valence band to theSiO2
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conductance band. The applied electric field will sweep the electrons
through the oxide layer.

5. Terminate the programming by removing the UV-light when the
outputs converge toVdd/2. The circuit is now ready to be operated
in the normal biased mode and perform its desired function.

The programming method ensures matching of the nMOS and pMOStransis-
tors. One benefit of this is that the minimum size for the transistors can be used.
There is no need to scale the pMOS transistor to compensate for charge mobil-
ity. The transistor must, however, be scaled to achieve the current level desired.
The matching of the nMOS and pMOS transistors is achieved by the charge being
placed on the floating-gate via the UV-activated conductances. This charge forces
an equilibrium point–a voltage point where the nMOS and pMOScurrents match–
which is decided by the voltage set on the coupling capacitors to the floating-gate.
The current level, however, is decided through normal device sizing means.

The programming time for an inverter circuit is normally on the order of minutes
to tens of minutes. The programming time can be reduced by increasing the de-
sired UV-activated conductances. This can be achieved by either increasing the
luminance of the UV-light source or by moving the light source closer to the de-
sired exposure point, however, an increase in temperature might pose a problem.
The UV-activated conductances can also be increased by increasing the source-
gate perimeter2. Another way to reduce the programming time is by minimizing
the parasitic conductances. This can be done through effective shielding. One
might expect some undercutting when the hole in the passivation layer is etched.
Therefore the hole must be larger than the intended exposurearea3. Combined
with the diffraction of the UV-light from the hole in the passivation layer down to
the desired exposure point, there is a need for further shielding of the transistor.
This shielding is done in the upper metal layer for reasons ofconvenience. The
shield should cover the entire transistor, with a hole cut out only over the intended
exposure area. Common-gate circuits should have an advantage here over split-
gate circuits, since there is a larger distance from the exposure point to several of
the parasitic UV-activated conductances. This means that the escape routes for
the programming currents–which is the role parasitic UV-activated conductances
play–should be less effective. It is also important to note that the programming
time is independent of the number of circuits, since all of the circuits are pro-
grammed simultaneously.

2See section 3.6 for a discussion on transistor topologies.
3This is especially important if wet etching is used. With dryetching, this might not pose much

of a problem.
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3.6 Layout Considerations

While the desired level of circuit performance is normally attainable during sim-
ulation, there are several factors that have to be taken intoaccount to achieve the
same level of performance with a processed circuit. These factors are mostly
affected by the layout of the individual circuit element andthe overall circuit
topology. It is important that great care is taken when laying out sensitive ana-
log circuits. The considerations presented here are those that are especially perti-
nent to–or have the greatest impact on the performance of–the circuits presented
in this thesis. Many of the reduced performance characteristics comes from pro-
cess variations in the basic devices. However, there are ways of minimizing those
variations, even to the point of making them a non-issue. There are two main
devices for FGUVMOS that has to be considered when laying outthe circuits in
this thesis, namely the transistors and the capacitors.

3.6.1 Transistors

The programming method used in this thesis, which is described in section 3.5,
ensures matching of the stacked pMOS and nMOS transistor. There is no need
to take into account the difference between carrier mobility in the nMOS and
pMOS transistor, and minimum sizes for the transistors may be used. However,
the nMOS transistor is being used in the programming of the circuit. It is therefore
prudent to examine how the programming performance can be enhanced by tuning
various transistor characteristics.

One important factor is the reduction of the programming time. This reduction
can be achieved by increasing the size of the UV-activated conductances. The
UV-activated conductance involved in the programming, as can be seen in Figure
3.5, is the source-gate conductance. It is therefore possible to increase the conduc-
tance by increasing the source-gate perimeter[34]. There exists several transistor
topologies to achieve this goal, such as u-shaped or ring transistors, which can be
seen in Figure 3.7.

An noticeably reduction in programming time can be achievedby utilizing one of
these transistor topologies. The ring transistor has the largest source-gate perime-
ter, and therefore takes the shortest time to program. However, the minimum
transistor size is larger with a ring transistor due to the larger gate perimeter, thus
yielding a larger area consumption. One added benefit with the ring transistor
is the greater distance from the UV-hole to the gate-substrate boundary, mean-
ing that the parasitic UV-activated conductance connecting the floating-gate to the
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Figure 3.7:(a) Ring transistor layout. The ring transistor gives the largest source-
gate perimeter relative to transistor width. It also has theadded benefit of the
smallest drain capacitance area to width ratio, increasingthe speed of circuit
operations due to less loading capacitance.(b) U-shaped transistor layout. While
the ratios are not as beneficial as for the ring transistor, smaller minimum size
transistors can be created with the U-shaped transistor.

substrate,Gfgb,n, will be smaller than for a regular or the U-shaped transistor.

3.6.2 Capacitors

Traditional CMOS circuits are concerned with transistor matching and scaling,
due to the difference in carrier mobility. FGUVMOS circuits, on the other hand,
is more concerned with the matching of capacitors due to the inherent matching
of the transistors. It is therefore important that proper consideration is given to the
layout of the capacitors in FGUVMOS circuits. The most important consequence
for not giving capacitor layout proper consideration is reduced noise margins,
leading to problems with reliably detection of logic levels, especially in cascaded
systems.

Several possibilities exists for making capacitors in a standard CMOS process[12].
Junction capacitors are made by exploiting a reverse biasedjunction. MOS capac-
itors are constructed by connecting the drain and source, using the channel as one
electrode and the gate as the other, with the thin-oxide as the dielectric. Poly-poly
capacitors are made by stacking two polysilicon layers using the interlayer oxide
as the dielectric. The performance of the various capacitors can be characterized
by the amount of process variation expected, the voltage coefficient, temperature
coefficient and area consumption. The poly-poly capacitorsusually have small
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Figure 3.8:Unit capacitor array. The unit capacitor array consists of unit ca-
pacitors in a square (or as near to a square as possible) with dummy capacitors
to complete the array. A non-unitary capacitor should be used if the capacitance
desired is not an integer multiple of the unit capacitance. Aring of dummy capac-
itors can be used as shielding against horizontal fringing fields emanating from
nearby leads. These shielding capacitors should have the electrodes connected
together and they should be grounded.

process variation and a low voltage coefficient, but sufferers from large area con-
sumption due to the thickness of the interlayer oxide, whichis used as the di-
electric. Some processes offers other dielectrics with a higher dielectric constant
thanSiO2 for poly-poly capacitors, meaning smaller areas can be usedto get the
same value of capacitance. Both the junction capacitor and the MOS capacitor
have a high voltage coefficient, meaning they should only be operated within a
small voltage differences from the biasing voltage, if a consistent capacitance is
desired. Since rail-to-rail signals can be expected–and a high degree of match-
ing is needed–in FGUVMOS circuits, poly-poly capacitors seems to be the best
choice for constructing capacitances.

Polysilicon capacitors usually exhibit a much lower voltage and temperature de-
pendency than alternative capacitances. Integrated capacitors may experience sig-
nificant process variations leading to tolerances as high as±20 − 30%. However,
they can be matched to another capacitor with good accuracy (as high as±0.1% )
without using any trimming, provided that some guidelines are followed[12, 36].

To achieve good matching when laying out capacitors, one should always try to
make use of arrays of unit capacitors, as can be seen in Figure3.8. A unit capacitor
should be decided upon, with all other capacitors being a multiple of that size.
Capacitors with a size that is not a multiple of the unit capacitor size needs to add
a non-unitary capacitor to complete the capacitance. The capacitors should be laid
out in a square fashion–with dummy capacitors completing the square–in order to
minimize periphery-to-area mismatch.
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An important source of mismatch is the base structure that the capacitor is laid
upon. A nonuniform base structure can lead to variations in parasitics for the
different capacitors. Surface discontinuities, such as those found in the thick ox-
ide near the transistors, causes variations in the topography of the capacitor di-
electrics. It would be desirable to keep the overall size of circuits to a minimum
by placing the capacitor arrays close to the transistors. However, to achieve good
matching, the capacitors should be placed well away from thethick oxide, and
instead be placed over the field oxide. One should also place the circuits closer to
the middle of the die area to avoid the bulk of the variation due to process stress
on the devices. To minimize the process stress even further,one should cut of the
corners on the capacitors[37]. And the optimal capacitor sizes, found to be around
20 − 50µm[38, 39]4, should be used for the unit capacitor size.

There are also several ways to minimize the effect of noise through various layout
techniques. To minimize noise under operation, no leads should be run over or
close to the capacitors. Guardbars should be used to avoid substrate noise, espe-
cially if binary or high frequency analog circuits are present in the nearby area.
One can also enclose the perimeter of the capacitor with dummy capacitors to re-
duce noise from any nearby lateral fields, and shielding can be used to avoid any
noise from the vertical direction. The leads from and to the capacitors should be
of equal width and laid out in a similar fashion to match the parasitics.

3.7 Noise Margins

The noise margins describes the amount of noise that can be present on the input
of a circuit without a shift in the output level occurring. The upper and lower
limits of the noise margins are shown in Figure 3.9. In the ideal case, the up-
per noise margin would equal the lower noise margin, and the transition between
logic levels would be instantaneous. However, since the transition is actually non-
instantaneous, there is a indeterminate region between theupper and the lower
noise margin. The indeterminate region can be decreased by increasing the gain
of the circuit in order to get a more abrupt transition.

It is desirable to have high gain inverters to improve signaldetection–thereby im-
proving the noise margins of the circuit. Unfortunately, high gain affects the
speed of operation, as high gain FGUVMOS inverters require large coupling
capacitance–since this increases the capacitive divisionratio–to deliver a larger
amount of the signal to the gate. The traditional way of increasing the length of
the transistors will also effect the gain, but comes at the cost of reduced speed

4Although this is process dependent.
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Figure 3.9: Noise margins for an inverter circuit. The lower and upper noise
margins,VIL and VIH respectively, are usually found by determining the unity
gain at either end of the voltage swing. The output voltage inthe region in between
the lower and the upper noise margins is considered indeterminable. Thus no
valid logic level should be greater thanVIL or less thanVIH (while obviously
being greater thanVIL). The noise margin of the inverter can be increased by
increasing the gain (making the transition more abrupt, thus increasingVIL and
decreasingVIH).

of operation. Both of these methods decrease the speed of operation. The first
method by increasing the demand for current from the previous circuit element,
while the second will reduce the supply of current to the nextcircuit element. In-
creasing the width of the transistor in order to compensate for the lack of available
current, will only result in an increased area cost for the circuit, and a decrease in
the gain and noise margins.

Although most of the problems regarding noise margins are due to process vari-
ances, signal noise might also affect the performance of thecircuits. One of the
prevalent noise sources in mixed signal circuits5 is ground noise. Due to the resis-
tance in the substrate6, ground loops may form if attention is not payed to proper
grounding methods[40]. Since higher frequency signals follow the path of least
inductance, return currents will flow in as close proximity as possible to the signal
currents. It is therefore important to separate the analog and digital portions of
the circuit. No digital leads should flow near an analog circuit. Since the pro-
cess stress is smaller–which in turn leads to less process variation–closer to the
center of the die, as mentioned in section 3.6, the analog circuits relying on ca-

5The multiple-valued logic system presented in this thesis is in essence an analog system.
6This is not relevant for circuits based on SOI technology.
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Analog
 Pads

Analog
circuits

Digital
circuits
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corridor
Interconnect

Analog

Low stress area

Figure 3.10:Die layout for reduction in noise and process variation. Theana-
log circuits (which are dependent on capacitor and transistor matching) should
be placed in the low stress area near the middle of the die. Especially sensitive
circuits should be placed on the axes of symmetry. A corridorof analog intercon-
nects to the pads should be established where no digital interconnects are allow
to cross.

pacitor relationships should be placed here. The digital circuits can be placed
closer to the die periphery. Another problem is power rail spikes resulting from
massive amounts of current beeing drawn by the synchronous digital circuits dur-
ing switching. Separate power supply rails should be provided for the analog and
digital circuits. The ideal layout of the die can be seen in Figure 3.10.

3.8 Summary

In this chapter we started with chronicling the developmenttoward active floating-
gate devices. The FGUVMOS transistor was then presented with both the tran-
sistor symbol and a conceptual layout. We then examined closer the principal
design parameter for FGUVMOS circuits, namely the capacitive voltage divi-
sion. The transistor equations were then presented. These equations will lay
the groundwork for developing the circuits in the next chapter. The program-
ming technique–involving UV-activated conductances–wasdescribed, as well as
the differences between the split-gate and common-gate configuration. Various
methods for reducing the programming time was discussed. The layout methods
for the FGUVMOS circuits was considered next. We saw that thering transis-
tor had several advantages over a regular transistor and that unit capacitor arrays
would minimize capacitor mismatch. The importance of shielding with regards
to parasitic UV-activated conductances was pointed out. Lastly, an explanation
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of circuit noise margins was given, and we looked at how various noise sources
might have a negative impact on FGUVMOS circuit performance.





Chapter 4

FGUVMOS MVL Circuits

4.1 Introduction

All of the FGUVMOS multiple-valued logic circuits presented in this thesis are
based on a few fundamental building blocks. These building blocks are the FGU-
VMOS binary inverter and the FGUVMOS multiple-valued inverter. Although it
might seem restrictive to base all FGUVMOS MVL circuits on only these two
building blocks, most of the complexity of the circuit design is actually placed
into the FGUVMOS devices themselves. The main design feature of FGUVMOS
MVL is the capacitive division relationships, and we will therefore make substan-
tial use of this design parameter in order to realize the functions performed by
the circuits presented in this chapter. From these fundamental building blocks, a
binary to multiple-valued converter, a multiple-valued tobinary converter and a
multiple-valued full-adder will be presented.

Conversion between binary and multiple-valued signals aremore efficient if some
care is taken when choosing which radix to employ. By choosing a radix that is
a power of two, as given in equation (2.4), no information will be left unused or
discarded when converting between binary and multiple-valued logic systems. It
would be natural to choosen in equation (2.4) to represent the number of bits in
the binary system.

The circuits presented in this thesis are therefore all of radix eight,r = 23 = 8,
although higher intermittent radix will be present in some of the circuit topologies.
These higher intermittent radices will also be a power-of-two radix, thus satisfying
equation (2.4). By using a different topology, it might be possible to remove these
higher intermittent radix signals from the design all together, but possibly at the
cost of increased area and power consumption.

33
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Even though all of the circuits presented here are of radix eight, it is entirely fea-
sible to use the same techniques for even higher radices. Theuse of a higher radix
will, however, stress the noise margins of the MVL steps evenfurther, making
reliable signal detection difficult. It will also leave little room for capacitance
mismatch, especially for cascaded systems. This can, however, be countered by
increasing the dynamic range of the MVL circuits by increasing the supply volt-
age. Signal restoration circuits will have to be employed for cascaded systems to
achieve reliable signal detection.

All of the simulations were performed in spectreS inside Cadence. The simulation
setup for the different circuits can be seen in appendix A. The Matlab scripts used
for the simulations can be found in appendix D.1. The measurements were per-
formed on a chip fabricated in the AMS0.6µm CMOS CUX process with three
metal layers and two polysilicon layers. The layout of the circuits can be seen in
appendix C. The equipment used to take the measurements–as well as the overall
setup of the measurement equipment–can be seen in appendix B. The measure-
ments were performed in Matlab (using a GPIB interface to theinstruments) with
the scripts in appendix D.2.

4.2 Binary Inverter

The binary inverter, which can be seen in Figure 4.1, is one oftwo fundamen-
tal building blocks in FGUVMOS MVL. The binary inverter consists of a pMOS
transistor stacked upon an nMOS transistor, thus forming aninverter configura-
tion. The nMOS transistor has a UV-hole covering the source diffusion and the
gate in order to allow for programming of the circuit. Multiple voltage inputs are
coupled to the floating-gate, each through a separate capacitor.

The response of the binary inverter to a piecewise linear voltage input is shown in
Figure 4.2. We assume here that the inverter only has one input calledVin. The
similarities between the standard static CMOS binary inverter and the FGUVMOS
binary inverter are clearly shown. The main difference between them lies in the
fact that the FGUVMOS binary inverter has multiple inputs available.

However, that difference is an important factor which makesthe operating princi-
ples of the FGUVMOS binary inverter more akin to a capacitivethreshold logic
device[41]. Here the output is the result of a threshold operation. This is similar
to how neurones in the nervous system will only fire if a presetthreshold is exceed
by the accumulated potential coming in from the synapses. This threshold oper-
ation can clearly be seen from the equation for the voltage output of the binary
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Figure 4.1:(a) FGUVMOS binary inverter transistor schematics. The FGUVMOS
binary inverter consists of an ordinary binary inverter with one or more voltage
inputs with a capacitor signifying the capacitive couplingon the inputs.(b) FGU-
VMOS binary inverter symbol.

inverter, given as

Vout =

{

0 if
∑n−1

i=0 kiVi > Vdd

2

∑n−1
i=0 ki

Vdd if
∑n−1

i=0 kiVi < Vdd

2

∑n−1
i=0 ki

(4.1)

from which we can see that that if the combined weighted potential of the input
voltages exceed a given threshold, here given asVdd/2, the state of the output
voltage will be altered. The term

∑n−1
i=0 ki = 1, so the right-hand side of the

inequality can be written simply asVdd/2, which is the switching voltage all of the
FGUVMOS circuits in this thesis are programmed to satisfy. However, as we shall
see later on, these extra unity terms eases the solving of theequations used to find
the capacitive division factors. Now, it should be mentioned that equation (4.1) is
merely a simplification of the operating characteristics ofthe binary inverter that
is adequate for the purpose of hand-calculations. A more complex model would
use standard static CMOS binary inverter equations with theinput voltage given
in equation (3.2).

An important task in any electronic system is the ability to reliably detect the
information contained within the signal, i.e. to decode thesignal. As stated in
section 2.5, this task is not as easily accomplished for MVL as for binary logic.
The task of detecting the MVL steps in FGUVMOS MVL circuits isleft up to
the binary inverter. This detection process is depicted in Figure 4.3 and shows the
response of the binary inverter to an MV (multiple-valued) signal.
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Figure 4.2:This simulation shows the response of the FGUVMOS binary inverter
to a linear input voltage. As can be seen from the figure, the response is similar to
a standard static CMOS binary inverter. However, the FGUVMOS binary inverter
has the advantage of being able to accept multiple inputs. The gain of the inverter
is of special interest, since it directly affects the ability to detect multiple-valued
signals.

The binary inverter is able to discriminate signals aboveVdd/2 from signals below
Vdd/2 due to the threshold operation shown in equation (4.1). The accuracy of the
discrimination depends upon two things. First of all, if thenoise margins of the
steps in the MV signal are high, then a higher degree of accuracy can be achieved.
This stems from the simple fact that the gain of the binary inverter is not actually
infinite, unlike what the abstraction of binary logic dictates. The operation of
the binary inverter is highly analog in nature, as is evidentin its response to a
linear input voltage, shown in Figure 4.2. There are two waysto increase the
noise margins. One can either increase the supply voltage1, which will result
in increased power consumption, or decrease the radix, thereby decreasing the
available information contained in the signal.

The other main route that can be taken to increase the abilityto discriminate, is to
increase the gain of the inverter. This will reduce the inputvoltage range around

1It might not be possible to increase the supply voltage due tothe possibility of device break-
down.
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Figure 4.3:In this simulation we can see the response of the FGUVMOS binary
inverter to an MV signal. We can clearly see that the FGUVMOS binary inverter
has the ability to detect the MSB of an MV signal on the form given in equation
(2.4). We are also able to see how the gain of the FGUVMOS binary inverter
affects the output signal for MVL steps aroundVdd/2. The finite gain of the binary
inverter causes the output signals not to extend all the way to the rails for these
MVL steps.

Vdd/2 where the output signal does not reach the rails, which was discussed in
section 3.7. Therefore a high gain binary inverter is the keyto achieving a higher
noise margin without reducing the radix or increasing the supply voltage. There
are two ways to achieve an increase to the gain of the binary inverter. One can
either increase the length of the transistors–thereby reducing the output conduc-
tance and increasing the area consumption for the transistor–to get a higher gain
directly. Or one can increase the coupling capacitor in relation to the MOS gate
capacitance to deliver more of the signal to the gate, i.e. one can increase the
capacitive division factor for the input signal.

Note that for high speed operations, the RC delay, involvingthe output conduc-
tance of the transistor and the capacitive load on the output, will have to be taken
into consideration. This RC delay is a limiting factor whichwill reduce the noise
margins if the circuits is operated above a certain speed. Anincrease in the width–
which increases the available current–will solve this problem at the cost of in-
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Figure 4.4: (a)FGUVMOS multiple-valued inverter transistor schematic. The
analog inverter consists of an FGUVMOS binary inverter withthe addition of
a feedback capacitor. This feedback capacitor ensures an extended linear region–
at the cost of gain–by operating both transistors in saturation. (b) FGUVMOS
multiple-valued inverter symbol.

creased area and power consumption and a decrease in gain andnoise margins.

4.3 Multiple-Valued Inverter

FGUVMOS MVL operations primarily rely on the multiple-valued inverter due
to its highly linear operation over a large dynamic range. A single input multiple-
valued inverter ideally deliversVout = Vdd − Vin = V ∗

in, i.e. the voltage output is
the complement of the voltage input, which is the definition of an analog inverter.
It also conforms to the definition of the multiple-valued unary negation operator
seen in section 2.2. However, as the output approaches the rails, one of the transis-
tors will enter the linear operating region–the pMOS transistor when we approach
the Vdd rail and the nMOS transistor when we approach theVss rail–while the
other transistor stays in the saturated region. This leads to a degradation of the
linear performance–which in terms of multiple-valued logic circuits will lead to
a compression of the dynamic range for the logic values near the rails–and con-
sequently nonuniform voltage steps. It is therefore necessary to take appropriate
measures in order to avoid this situation. Shibata[11] switched the pMOS and
nMOS transistors to achieve the desired effect. Although a large linear dynamic
range is achieved in this manner, it comes at some significantdisadvantages. The
decreased speed of the circuits and lack of gain control is two major concerns, and
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Figure 4.5:A simulation showing the response of the FGUVMOS analog inverter
to a linear voltage input. As can be seen from the figure, the output does not extend
all the way to the rails, meaning the gain is less thenAv = −1. This is done on
purpose do avoid the area near the rails where one of the transistors enters the
linear operating region.

another solution is therefore desirable.

Most operational amplifiers employ negative feedback to extend the linear dy-
namic range, and this is also the solution used by the multiple-valued inverter,
which is shown in Figure 4.4. The multiple-valued inverter consists of a pMOS
transistor stacked upon an nMOS transistor, forming an inverter configuration. It
also has multiple capacitively coupled inputs connecting to a floating-gate. The
only difference between the binary inverter and the multiple-valued inverter is the
feedback capacitor. This feedback capacitor gives the multiple-valued inverter
variable gain control, which can be used to avoid the problems of degradation of
linear performance and is therefore a vital design parameter.

The only characteristic that separates an analog inverter,which produces the com-
plement of the input on the output, and the FGUVMOS multiple-valued inverter,
are the multiple inputs of the multiple-valued inverter. Since the multiple-valued
inverter is not a physical multi-state device, as describedin section 2.4, the idea
of multiple discrete steps of logic values is merely an abstraction. The physical
nature of the multiple-valued inverter is analog, thus the output signal is in reality
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Figure 4.6:A simulation of the voltage gain,Av, of the FGUVMOS analog in-
verter. The voltage gain is fairly linear over the range of input voltages.

continuous, both in time and value, as can be seen in Figure 4.5. Here we assume
only one voltage input, calledVin, is capacitively coupled to the floating-gate.

The feedback capacitor from the output to the floating-gate allows for the gain
to be arbitrarily set. The amplification can, in the ideal case, be tuned viaAv =
Pn−1

i=0
Ci

Cf
. This allows for tuning the size of the linear dynamic range,seen in Figure

4.6, which shows the gain of the multiple-valued inverter for a piecewise linear
input voltage.

The voltage output of the multiple-valued inverter can be found by settingIds,n =
Ids,p and utilizing equations (3.3) - (3.4)2

Ids,n = Ids,p

m

Ibec

n−1
∏

i=0

exp

(

1

ηUT

(Vi − Vdd/2)ki

)

· exp

(

1

ηUT

(Vout − Vdd/2)kf

)

= Ibec

n−1
∏

i=0

exp

(

1

ηUT
(Vdd/2 − Vi)ki

)

· exp

(

1

ηUT
(Vdd/2 − Vout)kf

)

2It should be noted that it is not a prerequisite that the transistors are operated in the weak
inversion region.
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m
n−1
∑

i=0

1

ηUT
(Vi − Vdd/2)ki +

1

ηUT
(Vout − Vdd/2)kf

=
n−1
∑

i=0

1

ηUT

(Vdd/2 − Vi)ki +
1

ηUT

(Vdd/2 − Vout)kf

where the sums can be written out as follows

(V0 − Vdd/2)k0 + ... + (Vi − Vdd/2)ki + ... + (Vn−1 − Vdd/2)kn−1 + (Vout − Vdd/2)kf =

(Vdd/2 − V0)k0 + ... + (Vdd/2 − Vi)ki + ... + (Vdd/2 − Vn−1)kn−1 + (Vdd/2 − Vout)kf

and the terms can be grouped according to the different voltages

2kfVout =

(

n−1
∑

i=0

ki + kf

)

Vdd − 2
n−1
∑

i=0

kiVi

Vout =

(

∑n−1
i=0 ki

kf
+ 1

)

Vdd/2 −

∑n−1
i=0 kiVi

kf

The amplification factor,Av, for the multiple-valued inverter is given as

Av =

∑n−1
i=0 ki

kf

(4.2)

By substituting the equation for the gain into the expression for the voltage output,
we get the final expression for the voltage output of the multiple-valued inverter

Vout =

(

1 + Av

2

)

Vdd −

∑n−1
i=0 kiVi

kf
(4.3)

whereki = Ci/CT , kf = Cf/CT andCT =
∑n−1

i=0 Ci + Cf in the ideal case.

If the multiple-valued inverter has only one voltage input,calledVin, and we have
unity gain,Av = kin/kf = 1, then equation (4.3) reduces to

Vout =

(

1 + Av

2

)

Vdd −
kinVin

kf

Vout = Vdd − Vin = V ∗

in (4.4)

and we get the analog inversion of the input. Equation (4.4) clearly show that
the multiple-valued inverter is merely an analog inverter with multiple inputs and
a tunable gain, which is given in equation (4.2). Both of these features of the
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Figure 4.7:FGUVMOS radix eight BMVC schematic. The BMVC is nothing more
than the multiple-valued inverter building block with the correct capacitive divi-
sion factors in place to perform the conversion operation. The number of capaci-
tively coupled inputs equallog2 r, wherer is a radix on the form given by equation
(2.4).

multiple-valued inverter can be used as design parameters for constructing FGU-
VMOS MVL circuit, as we shall see in the course of this chapter.

Both of the fundamental building blocks are in an inverter configuration. This can
lead to a problem of redundant inversions in cascaded systems if this is not taken
into consideration in the overall circuit design. It shouldbe noted that there is
currently no overall design method for FGUVMOS MVL. The capacitance rela-
tionships in the building blocks can be decided by solving the equations presented
in this section, and the previous one, through linear algebra. The topology of the
circuit, however, has to be found through other means. Although we will see in
the course of this chapter that finding the topology for arithmetic operations is a
straight forward task.

4.4 Binary to Multiple-Valued Converter

Since the domain of digital circuitry mainly consists of binary circuits, there is
a need to convert between FGUVMOS MVL and binary logic3. This is the pur-
pose of the BMVC (binary to multiple-valued converter)–to provide an interface
from the binary circuits to the FGUVMOS MVL circuits–which is essential for
accomplishing integration with existing binary circuitry.

Sending multiple-valued signals off-chip has some desirable effects, such as a
reduction in the number of interconnects on the PCB and a reduced number of

3The focus here is standard static CMOS binary logic.
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pins on the chip4. It does, however, require a more sophisticated output buffer–to
provide enough drive strength at high speeds–than for binary circuits. For binary
circuits, it is common to simply use a pair of inverters as an output buffer. For
high speeds or large loads, the output buffer will consists of several pairs of in-
verters, with increasing width toward the pad. This will further increase the drive
current, although a delay will incur in the signal propagation. For multiple-valued
circuits, signal levels have to be maintained. One way of maintaining signal lev-
els is through a linear circuit capable of providing large amounts of drive current.
Multiple-valued inverters, with increasing width in orderto provide the neces-
sary current, is one option. Another option is an operational amplifier in a source
follower configuration. In both cases, linearity is the key to robust performance.

As can be seen from the circuit in Figure 4.7, the BMVC uses capacitive division
relationships to achieve its operating function. It is alsoclear from the schematic
that the BMVC is nothing more than one of the fundamental building blocks–
namely the multiple-valued inverter–with the correct capacitive division factors
in place. To determine these capacitive division factors–thereby finding the ca-
pacitances for the coupling capacitors–we will first need todevelop the output
voltage function for the BMVC. We will also have to examine the gain of the
BMVC–which relates to the linear dynamic range of the outputsignal–before the
capacitor relationships can be determined.

The voltage output of the BMVC can be obtained by rewriting equation (4.3)

VMV =

(

1 + Av

2

)

Vdd −

∑n−1
i=0 kiVi

kf

(4.5)

The measurement setup for the BMVC can be seen in appendix B. For the mea-
surement of the linear performance of the BMVC, we can assumethe circuit only
has one voltage input5, calledVBn. A piecewise linear voltage signal is applied to
the input, resulting in the output voltage,VMV , shown in Figure 4.8. To assure an
even spread of the MVL steps–thus a uniform size for all the logic levels–a high
degree of linearity over the entire dynamic range is needed.Figure 4.9 examines
the linearity closer by looking at the deviance from ideal linearity. The deviance
is small–on the order of a fewmV –and is probably due to mismatch in the capac-
itor sizes and possibly some contributions from the variousparasitic capacitances
depicted in Figure 3.3.

The gain of the BMVC is purposely set below unity, which can beseen in Figure

4However, since most of the digital circuits of today are binary in nature, it is advantageous to
send the signals off-chip in a binary form.

5This can be achieved for a multiple-input FGUVMOS device by connecting the inputs to-
gether, which was done for the measurements in this thesis.
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Figure 4.8:The measurement of the response of the BMVC to a piecewise linear
voltage input is shown as the solid line. The ideal voltage response is depicted
as the dashed line and is match to a first order to the amplification factor of the
BMVC.
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Figure 4.9:The deviance from the ideal response for the measured response of the
BMVC to a piecewise linear voltage input.



4.4 Binary to Multiple-Valued Converter 45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.745

−0.74

−0.735

−0.73

−0.725

−0.72

−0.715

−0.71

dV
M

V
/d

V
B

n (
V

)

V
Bn

 (V)

ideal
actual

Figure 4.10: The voltage gain of the measured response of the BMVC to a piece-
wise linear voltage input is shown as the solid line. The lineis smoothed using
cubic splines to better show the trend. The dashed line showsthe amplification
factor of the ideal response.

4.10, to avoid discrepancies near the rails. The cause of these discrepancies is the
transition of the transistors from the saturated region to the linear operating region.
While a lower gain reduces the dynamic range of the circuit, it is necessary to
avoid compression of the dynamic range of the logic levels near the rails in order
for the MVL steps to be of uniform size. Shibata[11] switchedthe nMOS and
pMOS transistors to achieve this effect. A better method, asemployed by the
BMVC, is to introduce a feedback capacitor to get a tunable voltage gain. By
adjusting the size of the feedback capacitor,Cf , we can adjust the size of the
linear dynamic range by assuring that the two transistors remain in the saturated
region for a greater range of output voltages.

Several measures might be taken to avoid the non-linear behavior–which leads to a
compression of the MVL steps near the rails–associated withunity gain. This non-
linear behavior is caused by one of the transistors leaving the saturated region–and
entering the linear region–when the output signal approaches the rail. By limiting
the input voltage range–while maintaining unity gain–the input voltage will not
approach the rails. Neither will the output voltages due to the unity gain. However,
this necessitates limiting the voltage range of the input signal. A natural place to
perform such a voltage range limiting operation would be as apart of the binary to
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multiple-valued conversion6. If the voltage amplification,Av, is set below unity,
this would impose such a voltage range limiting operation. The amplification
would have to be set sufficiently low as to impede either of thetransistors from
leaving the saturated region.

In general, the voltage gain of a circuit is expressed asAv = Vout/Vin. We can
define the output voltage range,VDR, for which the transistors operate in the satu-
rated region–thereby assuring a linear output voltage overthis voltage range. The
input voltage is binary, therefore the gain becomesAv = VDR/Vdd, assuming
Vss = 0V . As stated, the output voltage range should only include thetransistor
operating region where both transistors are in saturation.This can be achieved
by choosing the boundaries of the output voltage range to match the saturation
voltages for the transistors, thusVDR = Vdsat,p − Vdsat,n. For the switching point
voltage–where both the transistors are in saturation–we haveVin = Vout = Vdd/2,
due to the programming of the circuit. The saturation voltages–the voltage points
where the transistors enters the saturated region–is givenas

Vdsat,p = Vdd − Vgs − Vt,p = Vdd/2 − Vt,p (4.6)

Vdsat,n = Vgs − Vt,n = Vdd/2 − Vt,n (4.7)

which gives us the following dynamic range for which both thetransistors are in
saturation

VDR = Vdsat,p − Vdsat,n = Vdd/2 − Vt,p − (Vdd/2 − Vt,n)

m

VDR = −Vt,p + Vt,n (4.8)

For the AMS 0.6µm CUX CMOS process, a value ofAv = 0.8 was found to be
appropriate.

By assuming unity gain, we can more easily solve the equations for finding the
appropriate capacitor sizes for the coupling capacitors and the feedback capacitor.
To transform the circuit from unity gain,Av,unity, back to the original gain,Av,
we can multiply the gain of the BMVC, given by equation (4.2),by the actual gain
desired

Av,unity · Av =

∑n−1
i=0 ki

kf

· Av =

∑n−1
i=0 Av · ki

kf

=

∑n−1
i=0 ki

kf/Av

(4.9)

which means the correct capacitance for the original gain,Av, can be retrieved
from a unity gain circuit by either multiplying all of the input coupling capaci-
tances byAv or by dividing the feedback capacitance byAv.

6The BMVC is not the only place in FGUVMOS MVL where binary to multiple-valued signal
conversions occur, as we shall see when we examine the multiple-valued full-adder.
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B2 B1 B0 MV
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Table 4.1:Truth table for the radix eight BMVC. The first three columns lists the
binary input. The last column lists the logic values for the multiple-valued output.
Note that the output is inverted.

The capacitances for the BMVC can now be found by assuming unity gain,Av =
1. The actual size of the capacitances for the BMVC in this thesis, which has a
gain ofAv = 0.8, can be retrieved as described above. We first start by writing out
the sums of the complement of equation (4.5), taking into account the statements
made above

V ∗

MV = k0VB0
+ k1VB1

+ ... + kn−1VBn−1
(4.10)

whereki = Ci

CT
andCT =

∑n−1
i=0 Ci + Cf in the ideal case7.

More specifically, the radix eight BMVC has three input capacitances

V ∗

MV = k0VB0 + k1VB1 + k2VB2 (4.11)

where the capacitive division relationships are unknown and have to be decided
upon to achieve the desired output function. The truth tableof the radix eight
BMVC, listed in Table 4.1, shows the desired logic levels forthe multiple-valued
output compared to the binary input.

The measured response of the BMVC to a three-bit binary signal going from000
to 111 in logic value is shown in Figure 4.11. As we can see from the figure,
the output logic levels are evenly distributed over the entire dynamic range, thus
ensuring a uniform size for the logic value steps in the MV signal. The output
signal does not swing from rail to rail, thus demonstrating the effect of the reduced
gain of the BMVC, which is needed to ensure a linear performance for the entire
dynamic range. This reduction in the gain of the BMVC will lead to a reduction
in the size of the MVL steps, making the circuit more sensitive to noise or device
mismatch resulting from the processing step. The invertingproperty of the BMVC

7We disregard the parasitic capacitances in the ideal case.



48 Chapter 4. FGUVMOS MVL Circuits

VB2
VB1

VB0
V ∗

MV V ∗

MV∗

0 0 0 0 0.200
0 0 2 1

7
Vdd 0.429

0 2 0 2
7
Vdd 0.657

0 2 2 3
7
Vdd 0.886

2 0 0 4
7
Vdd 1.114

2 0 2 5
7
Vdd 1.343

2 2 0 6
7
Vdd 1.571

2 2 2 Vdd 1.800

Table 4.2:Voltage table for the radix eight BMVC. The three first columns lists
the binary input voltages. The next to last column lists the multiple-valued output
voltages for a unity gain BMVC. The last column lists the multiple-valued output
voltages for a BMVC with a gain ofAv = 0.8, which is the gain found adequate
for the AMS0.6µm CUX CMOS process used in this thesis. Note that the output
of the BMVC is inverted.

is also clearly shown in the figure. There is, however, a smalldeviance from
the ideal response. This can further be seen in Figure 4.12 where the difference
between the measured response and the ideal response is shown. Although the
largest deviation is around10mV , this is less than1/20th the size of the MVL
step size and therefore only of concern for cascaded systems.

While the logical values are given as the sequence{0, ..., i, ..., 7} for a radix
eight FGUVMOS MVL circuit, the actual voltage levels, assuming unity gain,
are given as{0, ..., i

r−1
Vdd, ..., Vdd}. Table 4.2 relates the binary input voltages to

the multiple-valued output voltage. From this table we should be able to deter-
mine the capacitance–or at least the relationship between the capacitor values–for
the coupling capacitors.

The might be a way of intuitively grasping the capacitor relationships for the
BMVC. The binary inputB2 is twice as significant as the inputB1, which in turn
is twice as significant asB0. Coupled with the linear operation of the BMVC, one
would come to the conclusion that the capacitors should probably conform to the
same relationship. This naturally leads toC2 = 2C1 = 2C0. However, a more
formal approach may be appreciated.

Since we have three unknown variables, namelyCT , C1 andC2
8, we will need

three equations to find the capacitance values of the circuit. It should be noted
that certain values of the input greatly eases the solving ofthese equations. The
first (starting from zero), second and fourth entry in Table 4.2 are used to construct

8C0 is chosen as the base capacitance, and therefore be of an arbitrary size.
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Figure 4.11:Measurement of the response of the BMVC to a binary voltage input
signal. The binary input is given in Table 4.1. The x-axis lists the logic values
for the binary inputs, since the waveforms of the binary input signals are of little
interest.

Figure 4.12: Deviance from ideal response for the measured response of the
BMVC to a binary voltage input signal.
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the equations

I:
1

7
· 2 = k0 · 2 + k1 · 0 + k2 · 0 ⇔ k0 =

1

7

II:
2

7
· 2 = k0 · 0 + k1 · 2 + k2 · 0 ⇔ k1 =

2

7

III:
4

7
· 2 = k0 · 0 + k1 · 0 + k2 · 2 ⇔ k2 =

4

7

We can see that the total sums up to one,k0 + k1 + k2 = 1
7

+ 2
7

+ 4
7

= 1. By
substitutingki = Ci

CT
, we get

I: k0 =
C0

CT
=

1

7
⇔ CT = 7C0 (4.12)

II: k1 =
C1

CT
=

2

7
⇔ C1 = 2C0 (4.13)

III: k2 =
C2

CT
=

4

7
⇔ C2 = 4C0 (4.14)

which means that once we have determined the base capacitor,C0–which is usu-
ally set to the minimum size capacitor for the process at handto reduce area
consumption–the rest of the capacitor sizes are given in theequations above. Al-
though it might be necessary to adjust the capacitor sizes for a non-unity gain
BMVC–which was shown in equation (4.9).

The cost of higher radices increase in a linear fashion. For each increment in a
power-of-two radix–as specified in equation (2.4)–one extra capacitor has to be
added to the converter. This capacitance will have to be twice the size of the cur-
rent MSB-capacitance. The feedback capacitor would also have to be increased
with twice the size of the current MSB-capacitance. This type of cost increase–
which also holds for the converter circuit presented in the next section–is in ac-
cordance with the first cost function presented in section 2.3, equation (2.2).

4.5 Multiple-Valued to Binary Converter

A method for converting from multiple-valued signals to binary signals is needed
to complement the BMVC. We may need to convert to binary signal levels before
going off-chip to communicate with binary peripheral circuits. The need for inter-
action with binary modules in a mixed signal integrated circuit is another relevant
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Figure 4.13: FGUVMOS radix eight MVBC schematic. The circuit has one
multiple-valued input, calledVMV and log2 r binary outputs–withr defined in
equation(2.4)–calledVBi

. The MVBC haslog2 r stages. Each stage is respon-
sible for converting one of thelog2 r bits in the binary output. The FGUVMOS
binary inverter in the first stage can be exchanged with a standard static CMOS
binary inverter (as can all single input FGUVMOS binary inverters). However,
the benefits of the UV-programming will then be lost.

need. With a multiple-valued to binary converter, we will have a comprehensive
interface between binary logic and FGUVMOS MVL.

The FGUVMOS MVL circuit that accomplishes this task is called the MVBC
(multiple-valued to binary converter). As can be seen from Figure 4.13, the
MVBC only makes use of the FGUVMOS binary inverter. This is anobvious
choice, considering that a single input binary inverter actually preforms a one-bit
AD (analog-to-digital) conversion. Since this is a radix eight MVBC–which re-
sults in a three-bit binary output–there are three stages inthe circuit. Each stage
consists of one binary inverter responsible for convertingone of the bits in the bi-
nary output. The simulation of the MVBC in response to a multiple-valued input
signal is shown in Figure 4.14.

As previously mentioned, the binary inverter preforms a one-bit AD operation,
due to the fact that the switching point is programmed toVdd/2. Thus, assuming
ideal behavior, the output voltage of the single input binary inverter, with the input
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Figure 4.14:A simulation of the response of the MVBC to a multiple-valuedinput
signal. The deviance from the rail in the voltage outputs is due to the finite voltage
gain of the binary inverters. If a rail-to-rail voltage signal is desired, then a binary
buffer will most likely have to be added to the binary outputs.
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VMV and the outputVB, is given as

VB =

{

0 if VMV > Vdd

2

Vdd if VMV < Vdd

2

according to equation (4.1) with the input voltage calledVMV and the output volt-
age calledVB. The voltage and logic value of the input are related in the following
manner

VMV =
MV

r − 1
Vdd

whereMV is the logic value of the multiple-valued input signal. We can then
express the function of the single input binary inverter in terms of logic values in
the following manner

B =

{

0 if MV > r−1
2

1 if MV < r−1
2

whereB is the logic value of the binary output signal. We can see thatthe binary
inverter will convert the MSB (most significant bit) in an MV signal on the form
given in equation (2.4), since it can detect whether an MV signal is lesser or
greater thanr−1

2
. Note that the output will be inverted due to the inverting property

of the circuit.

The conversion operation, in terms of logic values, for the radix eight MVBC is
given in Table 4.3. The conversion procedure consists of several stages. At the
first stage, the AD conversion can be done directly using one single input binary
inverter, since the transition point for the MSB already lies atVdd/2. This can be
seen in Table 4.4, which lists the voltages corresponding tothe logic levels given
in Table 4.3. We can assume that the multiple-valued signal has a rail-to-rail
dynamic range in order to make the equations a little easier to solve.

The transition of the next bit, MSB-1, does not only lie atVdd/2. According to
Figure 4.15, which combines Table 4.3 and Table 4.4, the set of transition points
is given as

{

3

14
Vdd,

Vdd

2
,
11

14
Vdd

}

Since the binary inverters are programmed to switch atVdd/2, we need to shift
the MV signal so the relevant transition points will be seated at Vdd/2. For the
transition point 3

14
Vdd we need to add4

14
Vdd. For the transition point11

14
Vdd we
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MV B2 B1 B0

0 1 1 1
1 1 1 0
2 1 0 1
3 1 0 0
4 0 1 1
5 0 1 0
6 0 0 1
7 0 0 0

Table 4.3: Truth table for the radix eight MVBC. The first column lists the
multiple-valued input signal. The three last columns liststhe binary output sig-
nals. Note that the outputs are inverted.

VMV VMV∗
VB2

VB1
VB0

0 0.200 2 2 2
1
7
Vdd 0.429 2 2 0

2
7
Vdd 0.657 2 0 2

3
7
Vdd 0.885 2 0 0

4
7
Vdd 1.114 0 2 2

5
7
Vdd 1.343 0 2 0

6
7
Vdd 1.571 0 0 2
Vdd 1.800 0 0 0

Table 4.4: Voltage table for the radix eight MVBC. The first column liststhe
multiple-valued input for a non-limited voltage signal. The next column list a
voltage limited multiple-valued input signal which is usedby the circuits in this
thesis. The three last columns lists the binary output voltages. Note that the out-
puts are inverted.

need to subtract4
14

Vdd. And for the transition pointVdd/2, no shifting of the MV
signal should occur.

The voltage shift on the floating-gate can be found by lookingat the following
part of equation (3.3)

k1(V1 − Vdd/2) + k2(V2 − Vdd/2)

For this stage we have two signals available, namely the MV signal, VMV , and
the MSB signal,VB2

. For the transition pointVMV = 3
14

Vdd, the MSB is given as
VB2

= Vdd according to Figure 4.15. The shift in the floating-gate voltage for this
transition point is then given as

k1(Vdd − Vdd/2) + k2(VMV − Vdd/2)
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Vdd
B1B0B2

1/14

3/14

5/14

7/14

9/14

11/14

13/14

0

1/7

2/7

3/7

4/7

5/7

6/7

0 1 2 43 5 6 7

110

100

011

001

000

010

101

111 MV

Figure 4.15:A combination of Table 4.3 and Table 4.4 in order to determinethe
transitions in the binary output signals for the different transition points in the
multiple-valued input signal. The logic levels of the multiple-valued input signal
is given along the x-axis and the logic levels of the binary output signal is given
along the y-axis. The multiple-valued input voltages are given along the staircase,
along with the voltage for the transition points, marked by the bullet points. These
last two sequences of values should all be multiplied byVdd.

= k1Vdd/2 + k2(VMV − Vdd/2)

which addsk1Vdd/2 to the MV signal. For the transition pointVMV = 11
14

Vdd, the
MSB is given asVB2

= 0V . This gives us a shift in the floating-gate voltage of

k1(0V − Vdd/2) + k2(VMV − Vdd/2)

= −k1Vdd/2 + k2(VMV − Vdd/2)

andk1Vdd/2 is subtracted from the MV signal. For the last transition point,VMV =
Vdd/2, the MSB is also at the transition point and is given asVB2

= Vdd/2. The
shift in the floating-gate voltage then becomes

k1(Vdd/2 − Vdd/2) + k2(VMV − Vdd/2)

= k2(VMV − Vdd/2)

and the MV signal is not shifted. Table 4.5 lists the floating-gate voltage on the
second stage binary inverter based on the transition points. The pattern of volt-
age shifts of MV signal in this table coincides with the assumptions made above.
However, in order for the MV signal to be shifted by the correct amount, the cor-
rect capacitor values will first have to be found.

The same procedure of shifting the MV signal can also be employed by the LSB
stage. Here the transition point set is given as

{

1

14
Vdd,

3

14
Vdd,

5

14
Vdd,

Vdd

2
,

9

14
Vdd,

11

14
Vdd,

13

14
Vdd

}
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VMV VB2
Vfg1

3
14

Vdd Vdd k1
Vdd

2
+ k2

(

VMV − Vdd

2

)

Vdd

2
Vdd

2
k2

(

VMV − Vdd

2

)

11
14

Vdd 0V −k1
Vdd

2
+ k2

(

VMV − Vdd

2

)

Table 4.5: MVBC second stage transition voltages. The first column lists the
transition points for the multiple-valued signal. The nextcolumn lists the value of
the MSB signal at those transition points. The last column lists the shifts in the
floating-gate voltage of the second stage binary inverter.

VMV VB2
VB1

Vfg2

1
14

Vdd Vdd Vdd k3
Vdd

2
+ k4

Vdd

2
+ k5

(

VMV − Vdd

2

)

3
14

Vdd Vdd
Vdd

2
k4

Vdd

2
+ k5

(

VMV − Vdd

2

)

5
14

Vdd Vdd 0V −k3
Vdd

2
+ k4

Vdd

2
+ k5

(

VMV − Vdd

2

)

Vdd

2
Vdd

2
Vdd

2
k5

(

VMV − Vdd

2

)

9
14

Vdd 0V Vdd k3
Vdd

2
− k4

Vdd

2
+ k5

(

VMV − Vdd

2

)

11
14

Vdd 0V 0V −k4
Vdd

2
+ k5

(

VMV − Vdd

2

)

13
14

Vdd 0V 0V −k3
Vdd

2
− k4

Vdd

2
+ k5

(

VMV − Vdd

2

)

Table 4.6:MVBC third stage transition voltages. The first column liststhe tran-
sition points for the multiple-valued signal. The next column lists the value of
the MSB signal at those transition points. The third column lists the value of the
MSB-1 signal at the multiple-valued signal transition points. The last column lists
the shifts in the floating-gate voltage of the third stage binary inverter.

Again we need to shift the transition points in the MV signal toVdd/2. The voltage
shift on the floating gate of the third stage binary inverter is given as the following
part of equation (3.3)

k3(V3 − Vdd/2) + k4(V4 − Vdd/2) + k5(V5 − Vdd/2)

For the third stage binary inverter we have three signals available, namely the
MSB signal,VB2

, the MSB-1 signal,VB1
, and the MV signal,VMV . Table 4.6 lists

the floating-gate voltage shifts on the third stage inverterbased on the transition
point set given above.

Again the correct pattern for shifting the MV signal has beenfound. By using
Figure 4.15–which includes the voltages at the potential transition points–we can
also find the correct capacitor values. From equation (4.1) for the binary inverter,
we can see that by setting

n−1
∑

i=0

kiVi =
Vdd

2

n−1
∑

i=0

ki (4.15)



4.5 Multiple-Valued to Binary Converter 57

we can find the correct capacitor relationships–which sets the voltage threshold
switching point–needed to get the desired operating function from the circuit. By
setting the correct capacitor values, we are not actually altering the switching point
of the binary inverter–which is already programmed to beVdd/2. We are instead
weighting the voltage inputs in such a manner that the effective switching point,
with regards to the inputs, is shifted.

The capacitor value of the first stage in the MVBC can be set freely. For capac-
itances that can be set freely, the minimum capacitance is usually chosen. The
justification is reduced area consumption, although choosing a larger capacitance
will increase the gain of the stage. For the second stage conversion, we can set
the capacitance for the MSB input,C1, freely. We can then express the capaci-
tance of the MV signal as a scale factor ofC1. For the transitionVMV = 1

7
Vdd to

VMV = 2
7
Vdd, the MSB signal isVdd. The switching voltage for this transition is

VMV = 3
14

Vdd. The capacitance division relationships for the first stageis then,
according to equation (4.15)

k1VB2
+ k2VMV =

Vdd

2
(k1 + k2)

k1Vdd + k2
3

14
Vdd =

Vdd

2
k1 +

Vdd

2
k2

(1 −
1

2
)k1 = (

1

2
−

3

14
)k2

k2 =
7

4
k1 ⇔ C2 =

7

4
C1

We can now verify that the capacitor ratios are correct with regards to the voltage
shifts on the floating-gate. The capacitor ratios for the second stage is given as

CT = C1 + C2 = C1 +
7

4
C1 =

11

4
C1

k1 =
C1

CT
=

C1

7
11

C1

=
4

11

k2 =
C2

CT
=

7
4
C1

7
11

C1

=
7

11

By using equation (3.2), and disregarding the parasitic capacitances, we get

Vfg1
=

1
∑

i=0

kiVi = k1V1 + k2V2 =
4

11
Vdd +

7

11

3

14
Vdd = Vdd/2

and we can see that the first switching point at3
14

Vdd is in fact shifted toVdd/2.
The other transition points can be developed in a similar manner.
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For the last stage of the conversion, we will first look at the transition fromVMV =
2
7
Vdd to VMV = 3

7
Vdd. Here the MSB signal is given asVB2

= Vdd and the MSB-
1 signal is given asVB1

= Vdd, according to Figure 4.15. The switching point
voltage for this transition is given asVMV = 1/14 · Vdd. For the second equation–
we only need two since the capacitance for the MSB-1 signal input can be set
freely–we look at the transition fromVMV = 0V to VMV = 1

7
Vdd. The MSB

signal is given asVB2
= Vdd with the MSB-1 signal given asVB1

= 0V for this
transition. Here the switching point voltage is given asVMV = 5

14
Vdd. We then set

this into equation (4.15), and we get

I: k3VB1
+ k4VB2

+ k5VMV =
Vdd

2
(k3 + k4 + k5)

k3Vdd + k4Vdd + k5
1

14
Vdd =

Vdd

2
k3 +

Vdd

2
k4 +

Vdd

2
k5

1

2
k3 +

1

2
k4 = (

1

2
−

1

14
)k5

II: k3VB1
+ k4VB2

+ k5VMV =
Vdd

2
(k3 + k4 + k5)

k3 · 0V + k4Vdd + k5
5

14
Vdd =

Vdd

2
k3 +

Vdd

2
k4 +

Vdd

2
k5

1

2
k4 −

1

2
k3 = (

1

2
−

5

14
)k5

I: k5 =
7

6
(k3 + k4)

II:
1

2
(k4 − k3) =

1

7
k5

1

2
(k4 − k3) =

1

6
(k3 + k4)

k4 = 2k3 ⇔ C4 = 2C3

I: k5 =
7

6
(k3 + 2k3)

k5 =
7

2
k3 ⇔ C5 =

7

2
C3

This gives the radix eight MVBC the following set of capacitor values

C0 = C1 = C3 = Cmin (4.16)

C2 =
7

4
C1 (4.17)

C4 = 2C3 (4.18)

C5 =
7

2
C3 (4.19)
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whereCmin can be set arbitrarily, although it is usually set to the minimum size
allowed by the process in question in order to minimize the area used by the
circuit.

The procedure of shifting the transition points toVdd/2 holds for even higher
radices. For thenth bit stage, then − 1 former bits are added or subtracted
from the floating-gate in such a manner as to shift the transition points of the MV
signal toVdd/2. Eventually, however, we are bound to run into fan-out problems
with higher radices. With higher radices, we also get a largeamounts of input
coupling capacitors that all have to be matched. The size of the MV signal input
coupling capacitor in the LSB stage will also be a problem. For a radix eight
circuit, however, none of these issues presents a problem.

4.6 Multiple-Valued Full-Adder

The FGUVMOS multiple-valued full-adder, which can be seen in Figure 4.16,
takes two MV input signals,VA and VB. Since this circuit is a full-adder, as
opposed to a half-adder, it also takes a carry-in input,VCin

. This carry-in input
is a binary signal, causing the circuit to have a mixed radix input. The output is
the arithmetic sum,VS, of the two multiple-valued signals, as well as the binary
carry-in signal, and also has the same radix as the MV input signals. Since the
output sum signal has the same radix as the MV input signals, there is also a need
for a carry-out signal,VCout

. As with the carry-in signal, this signal is also binary.

The carry-out signal can be coupled to the carry-in input of another full-adder
to form a(log2 r · m)-bit ripple adder, wherer is the radix as given in equation
(2.4) andm is the number of full-adder stages. The amount of stages–andthus
the delay caused by cascading–is less than for a standard binary ripple adder,
assumingr > 2.

The full-adder has been simulated and verified for the complete set of possible
combinations, which is8 ∗ 8 ∗ 2 = 128. However, only a selected value range,
given byB = 3; A = 0 → 7; Ci = 0 → 1, is shown to better illustrate the
operating function of the full-adder. The three topmost binary signals shown in
Figure 4.17 are the signal inputs to a BMVC which generates the multiple-valued
inputVA. TheVS multiple-valued output is feed into an MVBC and the resulting
binary outputs are shown as the three last signals. Figure 4.18 shows the multiple-
valued inputs and outputs of the full-adder, as well as the internal signal,VZ , and
the binary carry-in and carry-out signals.

The input signals, including the carry-in signal, are addedtogether in the first
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VA

VB

C0

1C

C2

C4

5C

C3
Vfg0

Cf0

Cf1

VZ

VCout

VS
VCin

Vfg1

Vfg2

1st 2nd

3rd

Figure 4.16:FGUVMOS MV full-adder schematic. The circuit has two multiple-
valued inputs,VA andVB, and one binary input signal, which is the carry-in signal
VCin

. The outputs consists of the multiple-valued sum,VS, and the binary carry-
out signal,VCout

. The full-adder consists of three stages. The first stage adds the
input signals together, and we get a higher radix signal on the internal node,VZ .
The next stage generates the carry-out signal,VCout

. The last stage converts the
internal signal,VZ , to a lower radix signal,VS, by removing the carry-out portion
of the signal. The output sum signal has the same radix as the multiple-valued
input signals.

stage of the full-adder. This addition operation is defined as

Z = A + B + Ci (4.20)

due to the inverting property of the multiple-valued inverter. In general, the in-
verted of an MV signal, with a value set as given in equation (2.1), can be found
by taking the complement. Thus we havex = (r − 1)− x and in order to find the
non-inverted function, we first have to determine the radix of the internal signal,
Z. The radix can be found by examining the maximum values that can be as-
sumed by the input signals, which, for an MV signal on the formdescribed above,
is r − 1. Thus the maximum value that can be assumed by the output signal from
the first stage is

max(Z) = max(A) + max(B) + max(Ci) =

(r − 1) + (r − 1) + 1 = 2r − 1

which gives us a radix of2r for the internal sum signalZ. The non-inverted output
then becomes

Z = (2r − 1) − (A + B + Ci) (4.21)

wherer is the radix of the MV input signals, which are assumed to be ofequal
radix. In order to find the coupling capacitances, we first need to define the ad-
dition operation in terms of input and output voltages. The input voltages to the
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Figure 4.17:A simulation of the response of the FGUVMOS MV full-adder show-
ing the binary signals of the input and output converters. The VB signal is held
fixed atB = 3. This figure only shows the binary signal inputs to the BMVC
that generates theVA input signal, and the binary output signals from the MVBC,
whose input is theVS signal. The carry-in and carry-out signals are shown in the
next figure, although it should be noted that they would have to be inverted before
they can be used in conjunction with the binary signals shownhere.
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Figure 4.18:A simulation of the response of the FGUVMOS MV full-adder show-
ing the MV signals. TheVB signal is held fixed atB = 3. This figure shows the
MV input and output signals,VA andVS. The internal radix2r signal,VZ, is also
included. The binary carry signals,VCin

andVCout
, are shown as well.
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full-adder and the output voltage of the first stage,VZ, can be expressed in terms
of the logic values in the following manner

VA =
A

r − 1
Vdd ⇔ A =

r − 1

Vdd
VA (4.22)

VB =
B

r − 1
Vdd ⇔ B =

r − 1

Vdd
VB (4.23)

VCin
= CiVdd ⇔ Ci =

VCin

Vdd
(4.24)

VZ =
Z

2r − 1
Vdd ⇔ Z =

2r − 1

Vdd
VZ (4.25)

wherer is the radix of the MV input signals. Equation (4.21) can thenbe ex-
pressed in terms of voltages instead of logic levels by usingequations (4.22) -
(4.25) as follows

Z = (2r − 1) − (A + B + Ci)

2r − 1

Vdd
VZ = (2r − 1) −

(

r − 1

Vdd
VA +

r − 1

Vdd
VB +

1

Vdd
VCin

)

VZ = Vdd −

(

r − 1

2r − 1
VA +

r − 1

2r − 1
VB +

1

2r − 1
VCin

)

(4.26)

By using a multiple-valued inverter, we can implement equation (4.26). We could
find the capacitive division relationships by constructinga series of equations–
based on a truth table for the adder–to find the unknown division factors. However,
we have equation (4.26), with separate terms for each voltage input, which we can
use instead. By setting this equation equal to equation (4.3), we get

VZ = Vout

Vdd −

(

r − 1

2r − 1
VA +

r − 1

2r − 1
VB +

1

2r − 1
VCin

)

=
1 +

P

2

i=0
ki

kf

2
Vdd −

(

k0

kf

VA +
k1

kf

VB +
k2

kf

VCin

)

Assume we have unity gain (we will check that this is correct later on), we then
get

1

2r − 1
[(r − 1)VA + (r − 1)VB + VCin

] =
k2

kf
(
k0

k2
VA +

k1

k2
VB + VCin

)

and we can then see which terms corresponds. We then set the corresponding
terms equal to each other

k0

k2
= (r − 1) ⇔ k0 = (r − 1)k2 ⇔ C0 = (r − 1)C2
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k1

k2
= (r − 1) ⇔ k1 = (r − 1)k2 ⇔ C1 = (r − 1)C2

k2

kf
=

1

2r − 1
⇔ kf = (2r − 1)k2 ⇔ Cf = (2r − 1)C2

from which we get
∑2

i=0 ki = (2r − 1)C2 and we have unity gain according
to equation (4.2). TheC2 capacitor can be set freely and is usually set to the
minimum capacitor size available for the process in question,C2 = Cmin.

We can see from the first stage in the full-adder that mixed radix input is possible
and that the output can have a higher radix than any of the input signals. In
general, it is possible to mix any radix desired on the input of the binary and
multiple-valued inverter. The output radix of the binary inverter will always be
binary, while the output radix of the multiple-valued inverter will either be lower,
equal or higher than any of the input radices. The output radix of a FGUVMOS
fundamental building block is given as

rout = 1 + max

(

1,
Cf

C0

· (r0 − 1), ...,
Cf

Ci

· (ri − 1), ...,
Cf

Cn−1

· (rn−1 − 1)

)

(4.27)

assuming an MV signal on the form given by equation (2.1). Thenumber of inputs
is n andri is the radix associated with theith input. Since the binary inverter does
not have a feedback capacitor,rout = 2 and the output has a binary radix. For the
first stage in the full-adder, the output radix is given asrout = 1+ 2r−1·C2

r−1·C2

(r−1) =
2r, which coincides with what was found earlier.

The carry-out signal,Co, is generated in the second stage of the full-adder. This
signal should be generated whenZ > (r − 1) and conversely should not be gen-
erated whenZ < (r − 1). However, the internal signal has a radix of2r, and the
expression for the carry-out signal generation should takethis into consideration.
By also accounting for the inverting property of the first stage, we get

Co =

{

0 if Z > 2r−1
2

1 if Z < 2r−1
2

(4.28)

for when the carry-out signal should be generated in terms oflogical values. When
we take into account equation (4.25), we can then express this in terms of voltages

VCout
=

{

0 if VZ > Vdd

2

Vdd if VZ < Vdd

2

(4.29)

and the carry-out signal can therefore be converted directly using a binary inverter
and the capacitor,C3, can be chosen freely. The FGUVMOS binary inverter in this
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stage can be exchanged with a standard static CMOS binary inverter, however, the
benefits from the UV-programming will then be lost.

The output sum signal, calledS, is produced in the last stage of the full-adder.
This output signal has the same radix as the multiple-valuedinput signalsA and
B. The output sum signal can be generated by adding all of the input signals
together and then remove the portion that constitutes the carry-out signal. The
carry-out signal has a logical value of either1 or 0 since it has a binary radix.
However, the value signified is eitherr or 0. The output sum signal can therefore
be defined in the following manner

S = (A + B + Ci) − rCo (4.30)

The voltage output signals from the full-adder,VS andVCout
, can be expressed in

terms of logical values in the following manner

VS =
S

r − 1
Vdd ⇔ S =

r − 1

Vdd
VS (4.31)

VCout
= CoVdd ⇔ Co =

VCout

Vdd

(4.32)

since the output sum signal should have the same radix as the multiple-valued
input signals. When we also take into account equations (4.22) - (4.24), we can
express equation (4.30) in terms of voltages

r − 1

Vdd
VS =

(

r − 1

Vdd
VA +

r − 1

Vdd
VB +

VCin

Vdd

)

−
r

Vdd
VCout

VS =

(

VA + VB +
1

r − 1
VCin

)

−
r

r − 1
VCout

(4.33)

The expression for the output sum signal can be implemented using a multiple-
valued inverter. The capacitive division relationships for the multiple-valued in-
verter can be found by setting equation (4.33) equal to equation (4.3)

VS = Vout

VS =

(

1 + Av

2

)

Vdd −

(

k4

kf

VCout
+

k5

kf

VZ

)

and we can substituteVZ as defined in equation (4.26) andVS as defined in equa-
tion (4.33)

VS =

(

1 + Av

2

)

Vdd −
k4

kf
VCout

−
k5

kf

(

Vdd −
r − 1

2r − 1
VA −

r − 1

2r − 1
VB −

1

2r − 1
VCin

)
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m
(

VA + VB +
1

r − 1
VCin

)

−
r

r − 1
VCout

=

(

1 + Av

2
−

k5

kf

)

Vdd +
k5

kf

r − 1

2r − 1

(

VA + VB +
1

r − 1
VCin

)

−
k4

kf
VCout

The corresponding terms on either side then becomes clear. There is, however,
one exception. The term proceedingVdd on the right-hand side does not have any
equivalent term on the left side. This right-hand term will then have to resolve to
zero in order for both sides of the equation to match up. Sincethis term includes
all of the unknown variables, we will try to resolve all of theother terms first by
setting them equal to each other

k4

kf
=

r

r − 1
⇔ k4 =

r

r − 1
kf ⇔ C4 =

r

r − 1
Cf (4.34)

k5

kf

r − 1

2r − 1
= 1 ⇔ k5 =

2r − 1

r − 1
kf ⇔ C5 =

2r − 1

r − 1
Cf (4.35)

and the last capacitor value,Cf , can be set freely. We can now examine the last
unresolved term–the term precedingVdd on the right-hand side–which must re-
solve to zero. This term can be resolved, by substitutingAv as defined in equation
(4.2)

1 + Av

2
−

k5

kf

=
1 + k4

kf
− k5

kf

2
=

r−1
r−1

+ r
r−1

− 2r−1
r−1

2
= 0

and we see that the term resolves to zero and all the terms of the equation match
up.

One last noteworthy point is the amplification of the last stage. Since we want the
multiple-valued output sum signal to be of radixr, and the input signals to the last
stage,VZ andVCout

, were not of radixr, then clearly a non-unity amplification is
needed. We can express this statement in the following manner

S

max(S)
Av =

S

r − 1

m

Av =
max(S)

r − 1
=

max(Z) + r · max(Co)

r − 1
=

(r − 1) + (r − 1) + 1 + r · 1

r − 1
=

3r − 1

r − 1

and we can see that the sum of the input signals on the floating-gate on the last
stage of the full-adder has a radix of3r. Thus a gain ofAv = 3r−1

r−1
is necessary



4.7 Summary 67

to get an output signal of radixr. We can also see that the gain for the last stage,

as defined by equation (4.2), isAv =
P

5

i=4
ki

kf
= 3r−1

r−1
by using equations (4.34) -

(4.35).

The size of the voltage input coupling capacitors are radix dependent due to the
binary carry-in signal. If the carry-in signal had been multiple-valued, all of the
input coupling capacitors would have been of equal size and they would all have
been radix independent. The carry-out signal generating stage is radix indepen-
dent. And the last stage also only has minimal changes in capacitor values with
an increase in the radix, suggesting that the second cost function in section2.3,
equation (2.3), might be appropriate for this circuit. One hurdle for higher radix
in this circuit is the radix2r intermittent signal. A different topology might avoid
this higher intermittent radix signal.

4.7 Summary

We started this chapter with discussing which radices were used for the circuits
in this thesis, and what tools were used to measure and simulate them. We then
presented the first of the fundamental building blocks, the FGUVMOS binary
inverter. We showed the equation for the output voltage and discussed ways of
improving signal detection. We then looked at the other fundamental building
block, the FGUVMOS multiple-valued inverter. We discussedthe problem of
compression of the voltage levels near the rails and how the tunable gain provided
by the feedback capacitor deals with this issue. We then developed equations for
the voltage output and the tunable gain. We then moved on to the BMVC. We
discussed the need for converting between binary and multiple-valued signals.
We saw that the equation for the voltage output was similar tothe multiple-valued
inverter and several measurements on a fabricated chip wereshown. We then
discussed the gain of the BMVC and the voltage limiting operation it performs.
At last we developed the capacitor relationships for the BMVC. We then presented
the complement of the BMVC, namely the MVBC. We discussed howthe binary
inverter preforms a one-bit AD operation. Next, we showed some simulations
for the circuit. We looked at switching point sets and how thevoltage on the
floating-gate was effectively shifted using the capacitivedivision relationships.
We subsequently found the capacitor values for the circuit and discussed how this
method of conversion would scale. Lastly, we presented the FGUVMOS multiple-
valued adder. We show some simulations and discussed how to find the inverted of
a FGUVMOS multiple-valued circuit and which output radix wewould get with
a mixed radix input. We then developed the voltage equationsfor every stage in
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the circuit, as well as the capacitor sizes for each stage.



Chapter 5

Conclusion And Further Work

5.1 Summary

The main topics in this thesis have been the multiple-input common-gate FGU-
VMOS transistor and the design of multiple-valued logic circuits using this tran-
sistor. We have focused our attention on the common-gate programming method
for the FGUVMOS transistor and its characteristics. We havealso seen how the
FGUVMOS transistor is an ideal candidate for constructing multiple-valued logic
circuits using the voltage-mode approach.

5.1.1 Common-Gate FGUVMOS Transistor

We have presented a new UV-programming technique for initializing the FGU-
VMOS transistor by using only the nMOS transistor in the programming step.
This solved the problems associated with the split-gate programming technique
due to the workfunction differences between the nMOS and pMOS transistor.
There are, however, some drawbacks to the new programming technique. We
loose the ability to arbitrarily set the current level, meaning ultra-low power ap-
plications are no longer a viable candidate for the utilization of the common-gate
FGUVMOS transistor.

The common-gate programming method also comes with severaladvantages. A
reduction in programming time might be forthcoming, since only the nMOS tran-
sistor is involved in the programming step. There is also a saving in areas cost
since the floating-gate is shared by the nMOS and pMOS transistor–cutting the
coupling capacitors needed in half.

69



70 Chapter 5. Conclusion And Further Work

5.1.2 Multiple-Valued Logic Application

We have also looked at a new area of application for the FGUVMOS transistor,
namely multiple-valued logic. The main design parameter ofthe FGUVMOS
transistor–the capacitive division relationships between the coupling capacitors to
the floating-gate–is well suited for designing voltage-mode multiple-valued logic
circuits. Along with the multiple voltage inputs, a tunablegain which allows
for conversion between radices and the new programming technique, they make
the common-mode FGUVMOS transistor an ideal candidate for multiple-valued
logic.

The FGUVMOS MVL circuits have, unfortunately, one major drawback. There
is no inherent signal restoration built into the FGUVMOS devices. Thus signal
restoration circuits have to be employed at periodic intervals–depending on pro-
cess variations, noise, radix and similar characteristics–to ensure robust circuit
operation. This drawback is shared with other multiple-valued logic circuits using
different design approaches, since there currently existsno physical multi-state
device for solid-state integrated circuits.

5.1.3 Layout Issues

The topic of proper layout of the transistors and capacitors, and the effect it has
on circuit performance both in the operational and programming mode, has been
thoroughly discussed in this thesis. These discussions area result of problems
with programming the circuits on the fabricated chip. This is also the reason why
measurements are only presented for the BMVC.

While the exact cause of the problems is unknown, there are some strong indi-
cations. First of all, since we were able to get measurementsfrom the BMVC,
this suggest that the problem is not with the programming method. The prob-
lems more likely resides with the regular shaped transistors, greatly increasing the
significance of the parasitic UV-activated conductances. Another relevant issue
might be the internal contacts on the floating-gate, especially those that were in
proximity to the transistor. This might have lead to some gate leakage, however,
nothing was found in the available literature to support this assumption.
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VMV MVBC BMVC VMV

Figure 5.1:Straight forward signal restoration scheme. The multiple-valued sig-
nal is first converted to binary by an MVBC and is then converted back to a
multiple-valued signal by the BMVC. An extra digital buffercan be added to en-
sure rail-to-rail binary signals.

5.2 Further work

A signal restoration scheme is needed to ensure robust circuit operation, espe-
cially for cascaded systems. Such a scheme is needed becausethere is no inherent
signal restoration built into the FGUVMOS transistor, since the FGUVMOS tran-
sistor is not a multi-state device. There is one straight forward way to regenerate
the signal. We can convert the MV signal to binary then back toa multiple-valued
signal using a chain of circuits consisting of an MVBC and a BMVC. To ensure a
rail-to-rail binary signal after the conversion preformedby the MVBC, one might
want to include a binary signal buffer. The entire setup can be seen in Figure
5.1. Although such a signal restoration scheme will work, the area cost is signif-
icant. It should therefore only be used at periodic intervals dependent on process
variations, noise, radix and similar characteristics.

Another way of solving the signal restoration problem, might be to embed a regen-
eration capability into the FGUVMOS multiple-valued inverter itself. This might
be done by adding several different power rails to the circuit. These extra power
rails can be generated locally by stacking transistor with their gate and drain con-
nected together. The appropriate power rail can then be selected and shunted to the
voltage output using a pass-transistor. The overall suggested topology is depicted
in Figure 5.2. The pass transistor selection circuit consists of several FGUVMOS
binary transistors were only one pass transistor can be selected at any given time.
This is done by shifting the switching threshold of the binary inverters depending
on the output from the FGUVMOS multiple-valued inverter. Again, there is a
significant increase in area cost, and this signal restoration scheme should only be
used at intermittent intervals in a cascaded system.

While we showed a method for determining the capacitor relationships through
linear algebra, no generalized method for designing FGUVMOS circuits (as well
as FGUVMOS MVL circuits) exists. A numerical method for selecting the capac-
itor values–maybe also taking into consideration the gate capacitance–is a starting
point. However, also the topology of the circuits needs to betaken into consider-
ation. There is no method for determining which topology a FGUVMOS circuit
should have to performed a given function.
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outV

Vdd

Vss

Vdd

V1

n−1V

V0

Figure 5.2:Suggested topology for an FGUVMOS multiple-valued inverter with
embedded signal restoration for a radix four multiple-valued logic system. The
signal is regenerated by selecting one of several power rails, which are connected
to the output by a pass transistor. The problem lies in selecting the appropriate
capacitor ratios for the FGUVMOS binary inverters.

There is a need to investigate the possible causes for gate leakage in the FGU-
VMOS transistors. Several layout techniques should be explored to see what the
consequences are not only to gate leakage, but also programming time. To be
on the safe side, FGUVMOS transistors should have no internal contacts on the
floating-gate and they should have a ring topology.

The FGUVMOS MVL circuits presented in this thesis preform only a small se-
lection of the functions necessary to form a comprehensive logic system. One
should explore further the relation between Post algebra and FGUVMOS MVL.
Also, a more in depth look at the various multiple-valued logic operations[42]
should be taken, and equivalent FGUVMOS MVL circuits shouldbe constructed.
A universal logic gate–such as an FGUVMOS MVL multiplexer–should also be
constructed. A good starting point might be the pass transistor selection circuit in
Figure 5.2.
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Capacitive Threshold-Logic Gate. IEEE Journal of Solid-State Circuits,
vol. 31, pp. 1141–1150, August 1996.

[42] K. C. Smith.Multiple Valued Logic: A Tutorial And Appreciation . Com-
puter, vol. 21, no. 4, pp. 17–27, April 1988.



List of Figures

2.1 (a) Scaling can be done by using a current mirror in the current-
mode approach. The lengths,La andLb, are equal. The widths,
Wa and Wb, are different with the scale factor given asWb/Wa

andIb ≈ Ia · Wb/Wa. (b) Addition in the current-mode approach
is done by simply connecting the wires together. Here the output
current is given asIx = Ia + Ib. . . . . . . . . . . . . . . . . . . 11

3.1 (a) FGUVMOS nMOS transistor symbol. The symbol shows sev-
eral input signals capacitively coupled into the floating-gate. The
circle enclosing the floating-gate and the source terminal is sym-
bolizing the UV-hole used in the programming of the transistor.
The pMOS transistor is not shown since it is not involved in the
UV-programming. (b) FGUVMOS transistor layout. The UV-
hole encompasses the source diffusion and the polysilicon gate.
The coupling capacitors consists of stacked polysilicon layers,
forming poly-poly capacitors. The routing between the floating
gates and the capacitors are done in the lower polysilicon layer
(poly1, which is also used for the gate of the transistor). The up-
per polysilicon layer is connected to the input node throughthe
metal1 layer.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Capacitive division relationship. The floating node,V , has two
capacitively coupled, throughC0 andC1, voltage inputs,V0 and
V1. The inputs have the two related charges,Q0 andQ1 . . . . . . 17
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3.3 Equivalent circuit used for deriving the capacitive division rela-
tionships for the FGUVMOS transistor. All the parasitic capac-
itances are taken into consideration. Also the capacitively cou-
pled channel surface potential feedback to the floating gateis
addressed. Only the nMOS transistor is shown. For the pMOS
transistor (given a p-type substrate with a n-well), a charge on
the bulk terminal may also have to be taken into consideration, if
back-gate modulation techniques are used to fine-tune the device.
This applies to the nMOS transistor as well when using a process
that employs wells for all diffusions, such as a SOI process.. . . . 18

3.4 A split-gate FGUVMOS inverter. The split-gate inverter hasa
separate floating-gate for the nMOS and pMOS transistor. This
allows for different charges to be placed on the floating-gates and
the threshold can be effectively shifted. It also allows forthe cur-
rent level to be tuned by setting different charges on the floating-
gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 (a) The operative mode (or normal biased mode) of the common-
gate FGUVMOS inverter. Since most of the natural UV-C light is
stopped in the outer atmosphere, it is not strictly necessary to shel-
ter the UV-hole during normal operation. However, it is a prudent
measure to undertake in case of artificial UV-C sources. In any
case, such a protective measure is necessary during the program-
ming of the FGUVMOS circuit.(b) The programming mode of
the FGUVMOS circuit. When UV-light is applied, the UV-holes
will allow for UV-activated conductances to be "created". Only
Gfgs,n is the wanted UV-activated conductance. All the other
UV-activated conductances are considered parasitic. The para-
sitic UV-conductance associated with the pMOS transistor for a
common-gate configuration will be significantly smaller than for
a split-gate configuration. This is because the distance to the UV-
hole is larger with the common-gate configuration.. . . . . . . . 22

3.6 Energy band explanation of the UV-programming procedure. A
Si-SiO2-Si sandwich is shown, as well as the energy levels of the
valence band,Ev, and the conductance band,Ec. Energy from the
UV-light will excite the electrons in theSi valence band and cause
some of them to enter theSiO2 region. There they will support a
current flow through theSiO2 region due to the voltage gradient.. 23
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3.7 (a) Ring transistor layout. The ring transistor gives the largest
source-gate perimeter relative to transistor width. It also has the
added benefit of the smallest drain capacitance area to widthra-
tio, increasing the speed of circuit operations due to less loading
capacitance.(b) U-shaped transistor layout. While the ratios are
not as beneficial as for the ring transistor, smaller minimumsize
transistors can be created with the U-shaped transistor.. . . . . . 26

3.8 Unit capacitor array. The unit capacitor array consists of unit
capacitors in a square (or as near to a square as possible) with
dummy capacitors to complete the array. A non-unitary capac-
itor should be used if the capacitance desired is not an integer
multiple of the unit capacitance. A ring of dummy capacitorscan
be used as shielding against horizontal fringing fields emanating
from nearby leads. These shielding capacitors should have the
electrodes connected together and they should be grounded.. . . 27

3.9 Noise margins for an inverter circuit. The lower and upper noise
margins,VIL and VIH respectively, are usually found by deter-
mining the unity gain at either end of the voltage swing. The
output voltage in the region in between the lower and the upper
noise margins is considered indeterminable. Thus no valid logic
level should be greater thanVIL or less thanVIH (while obviously
being greater thanVIL). The noise margin of the inverter can
be increased by increasing the gain (making the transition more
abrupt, thus increasingVIL and decreasingVIH). . . . . . . . . . 29

3.10 Die layout for reduction in noise and process variation. Theana-
log circuits (which are dependent on capacitor and transistor match-
ing) should be placed in the low stress area near the middle ofthe
die. Especially sensitive circuits should be placed on the axes of
symmetry. A corridor of analog interconnects to the pads should
be established where no digital interconnects are allow to cross. . 30

4.1 (a) FGUVMOS binary inverter transistor schematics. The FGU-
VMOS binary inverter consists of an ordinary binary inverter with
one or more voltage inputs with a capacitor signifying the capac-
itive coupling on the inputs.(b) FGUVMOS binary inverter symbol.35
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4.2 This simulation shows the response of the FGUVMOS binary in-
verter to a linear input voltage. As can be seen from the figure,
the response is similar to a standard static CMOS binary inverter.
However, the FGUVMOS binary inverter has the advantage of
being able to accept multiple inputs. The gain of the inverter
is of special interest, since it directly affects the ability to detect
multiple-valued signals.. . . . . . . . . . . . . . . . . . . . . . . 36

4.3 In this simulation we can see the response of the FGUVMOS bi-
nary inverter to an MV signal. We can clearly see that the FGU-
VMOS binary inverter has the ability to detect the MSB of an MV
signal on the form given in equation(2.4). We are also able to see
how the gain of the FGUVMOS binary inverter affects the output
signal for MVL steps aroundVdd/2. The finite gain of the binary
inverter causes the output signals not to extend all the way to the
rails for these MVL steps.. . . . . . . . . . . . . . . . . . . . . . 37

4.4 (a)FGUVMOS multiple-valued inverter transistor schematic. The
analog inverter consists of an FGUVMOS binary inverter withthe
addition of a feedback capacitor. This feedback capacitor ensures
an extended linear region–at the cost of gain–by operating both
transistors in saturation.(b) FGUVMOS multiple-valued inverter
symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 A simulation showing the response of the FGUVMOS analog in-
verter to a linear voltage input. As can be seen from the figure,
the output does not extend all the way to the rails, meaning the
gain is less thenAv = −1. This is done on purpose do avoid the
area near the rails where one of the transistors enters the linear
operating region. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 A simulation of the voltage gain,Av, of the FGUVMOS analog
inverter. The voltage gain is fairly linear over the range ofinput
voltages.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 FGUVMOS radix eight BMVC schematic. The BMVC is noth-
ing more than the multiple-valued inverter building block with the
correct capacitive division factors in place to perform theconver-
sion operation. The number of capacitively coupled inputs equal
log2 r, wherer is a radix on the form given by equation(2.4). . . . 42

4.8 The measurement of the response of the BMVC to a piecewise
linear voltage input is shown as the solid line. The ideal voltage
response is depicted as the dashed line and is match to a first order
to the amplification factor of the BMVC.. . . . . . . . . . . . . . 44

4.9 The deviance from the ideal response for the measured response
of the BMVC to a piecewise linear voltage input.. . . . . . . . . 44



LIST OF FIGURES 81

4.10 The voltage gain of the measured response of the BMVC to a
piecewise linear voltage input is shown as the solid line. The line
is smoothed using cubic splines to better show the trend. The
dashed line shows the amplification factor of the ideal response. . 45

4.11 Measurement of the response of the BMVC to a binary voltage
input signal. The binary input is given in Table 4.1. The x-axis
lists the logic values for the binary inputs, since the waveforms of
the binary input signals are of little interest.. . . . . . . . . . . . 49
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4.13 FGUVMOS radix eight MVBC schematic. The circuit has one
multiple-valued input, calledVMV andlog2 r binary outputs–with
r defined in equation(2.4)–called VBi

. The MVBC haslog2 r
stages. Each stage is responsible for converting one of thelog2 r
bits in the binary output. The FGUVMOS binary inverter in the
first stage can be exchanged with a standard static CMOS bi-
nary inverter (as can all single input FGUVMOS binary invert-
ers). However, the benefits of the UV-programming will then be
lost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.14 A simulation of the response of the MVBC to a multiple-valued
input signal. The deviance from the rail in the voltage outputs is
due to the finite voltage gain of the binary inverters. If a rail-to-
rail voltage signal is desired, then a binary buffer will most likely
have to be added to the binary outputs.. . . . . . . . . . . . . . . 52

4.15 A combination of Table 4.3 and Table 4.4 in order to determine
the transitions in the binary output signals for the different transi-
tion points in the multiple-valued input signal. The logic levels of
the multiple-valued input signal is given along the x-axis and the
logic levels of the binary output signal is given along the y-axis.
The multiple-valued input voltages are given along the staircase,
along with the voltage for the transition points, marked by the
bullet points. These last two sequences of values should allbe
multiplied byVdd. . . . . . . . . . . . . . . . . . . . . . . . . . . 55



82 LIST OF FIGURES
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A.1 BMVC schematic from Cadence. The circuit has three binary in-
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note that the nMOS and pMOS transistor are of equal size.. . . . 87
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Appendix A

Simulation Setup

All the simulations were preformed in spectreS inside Cadence. The following
series of figures shows the schematics of the circuits that were simulated, followed
by the simulation setup for the circuits. The former is necessary to fully appreciate
the simulation setup.

All the Vss terminals are for simulation purposes coupled to ground. The pro-
gramming is simulated by placing a charge on the floating-gate which results in
an output ofVdd/2 when the input is set toVdd/2. This is checked in the simula-
tions by using a piecewise linear input signal ofVdd/2. If the output is alsoVdd/2,
then the actual circuits simulation can be preformed correctly.

Figure A.1:BMVC schematic from Cadence. The circuit has three binary inputs,
da_b0 - da_b2, and one multiple-valued output,da_mv. The capacitor values
are listed above the capacitors. One should also note that the nMOS and pMOS
transistor are of equal size.
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Figure A.2:BMVC simulation setup from Cadence. Two sets of signal sources are
used. One for the linear voltage input simulation (the set atthe bottom) and the
second for the binary signal inputs (the set at the top). The binary voltage inputs
uses the piecewise linear voltage source to check the floating-gate charge.



89

Figure A.3:MVBC schematic from Cadence. The circuit has one multiple-valued
input, ad_mv, and three binary outputs,ad_b0 − ad_b2. The capacitor values
are listed above the capacitors. One should note that all of the nMOS and pMOS
transistors are of equal size.
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Figure A.4: MVBC simulation setup from Cadence. The multiple-valued input
signal is constructed using a linear piecewise voltage source, which has eighteen
steps going from0.2V to1.8V , including the steps necessary to check the floating-
gate charge.
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Figure A.5: MV full-adder schematic from Cadence. The circuits has two
multiple-valued inputs of the same radix,add_mv0 and add_mv1. It also has
one binary input, calledadd_cin. There is one multiple-valued output of the same
radix as the multiple-valued inputs,add_mvsum, and one binary output, called
add_cout. The capacitor values are listed above capacitors. Note that all of the
transistors in the circuit are of the same size.
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Figure A.6:MV full-adder simulation setup from Cadence. The two circuits on the
left (both are BMVCs) generate the multiple-valued signal inputs using the voltage
sources at the bottom of the figure. The left most voltage source is used to generate
the binary carry-in signal. The three circuits on the right (which constitutes the
three stages in an MVBC) takes the multiple-valued sum signal and converts it to
binary.



Appendix B

Measurement Setup

B.1 Measurement Equipment

Various different instruments were used to measure and to drive the circuits. The
instruments were programmable from Matlab via a GPIB network connected to a
SUN workstation. The Keithly 617, seen in Figure B.1 (c), wasused to measure
the voltage output of the BMVC. The Keithly 236, which can be seen in Figure
B.1 (b), was used to measure the BMVC current. The last instrument used was
the Keithley 213, which was used to drive the circuits.

(a)

(b) (c)

Figure B.1: (a) Keithley 213. A quadruple voltage source.(b) Keithley 236.
A voltage source/amperemeter or current source/voltmeter. (c) Keithley 617. A
programmable multimeter with a single voltage source.
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B.2 Measurement Schematic

The measurement setup for the BMVC is shown in Figure B.2. Thecurrent is
measured at the source terminal, which due to the programming technique is not
connected to the substrate. This might cause some body effect during normal
biased operation, unless the routing resistance is kept to aminimum1. The same
applies for the n-well contacts of the pMOS transistor. Theyare not connected to
theVdd supply rail in order to allow for back-gating.

A V

C0

C1

C2

CfVfg

Vdd

Vnwell

Vss

AMV VMV

VB1

VB0

VB2

Figure B.2:Measurement setup of the BMVC. The voltage output and the current
through the nMOS transistor is measured. There is also a voltage source con-
nected to the back-gate of the pMOS transistor, which can be used to fine-tune the
circuit. Also note that theVdd terminal is not connected to the n-well and theVss

terminal is not connected to ground.

1This is not a special circumstance for FGUVMOS circuits. Routing resistances for signal
ground should always be kept to a minimum to avoid the formation of ground loops.



Appendix C

Chip Layout

C.1 Layout

The overall layout of the die and padring–as well as the layout of the circuits–were
created using Virtuoso, the layout editor inside Cadence. The overall die layout,
including the padring, can be seen in Figure C.1. The layout was developed in
accordance with the layout guidelines for the AMS0.6µm CUX CMOS process.
The circuits were not constructed using the guidelines presented in section 3.6,
and are thus more vulnerable for process variations which might cause device
mismatch, especially for the capacitors. One can also clearly see the the internal
contacts on the floating-gate and that the transistors does not have a ring topology.
This is a problem which is discussed further in section 5.1.3. One noteworthy
detail all the circuit layouts have in common, is the metal shielding covering the
nMOS transistor. The layout of the binary to multiple-valued converter is shown
in Figure C.2. In Figure C.3, we can see the layout of the multiple-valued to
binary converter. And the layout of the multiple-valued full-adder can be seen in
Figure C.4.
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Figure C.1:Overall die layout with pad descriptions. The BMVC circuit is located
at the bottom left corner. In the upper left corner, the MVBC circuit can be found.
And in the upper right corner, the multiple-valued full-adder is situated.
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Figure C.2: Layout of the binary to multiple-valued converter. The three input
coupling capacitors can be seen in the left side of the figure.The uppermost input
coupling capacitor is for the MSB of the binary input signal,while the lowermost
input coupling capacitor is for the LSB. The feedback capacitor is located in the
middle.
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Figure C.3:Layout of the multiple-valued to binary converter. The firstconversion
stage–the stage responsible for converting the MSB part of the binary signal–is
located on the left side, second stage in the middle and the LSB stage on the right
side of the figure.
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Figure C.4:Layout of the multiple-valued full-adder. The input stage which adds
the multiple-valued signal together–as well as the binary carry-in signal–is lo-
cated on the left side. The two uppermost capacitor are for the multiple-valued
input signals, while the lowermost is for the binary carry-in signal. In the middle
we have the stage which generated the carry-out signal. And on the right side of
the figure we can see the stage which generates the multiple-valued output sum
signal.
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C.2 Fabricated Chip

The fabricated chip is shown in Figure C.5 (a). The chip was fabricated using the
AMS 0.6µm CUX CMOS process. The process features three metal layers and
two polysilicon layers. However, to fabricate the chips in this thesis, any standard
CMOS double polysilicon layer process will suffice. A photography of the die
through a microscope is shown in Figure C.5 (b).

(a) (b)

Figure C.5:(a) Photography of the chip. The die can be seen in the middle of the
chip. (b) Photography of the die through a microscope. The bondwires are visible
at the picture edge, with the padring encircling interconnects to the circuits in the
middle of the die.



Appendix D

Matlab Scripts

D.1 Simulations

Scripts related to various simulation tasks are presented in this section. These
scripts extract data from a text file produced by the spectreSsimulation program.
The simulation data is then processed by the scripts to make it presentable for the
thesis. Please refer to appendix A for a description of the simulation setups used
to produce the text files containing the simulation data.

D.1.1 Binary Inverter Presentation

% Extract simulation data for the binary inverter and
% make the results presentable.

% binary inverter response to linear input
clear;
figure(1); clf; ylabel(’V_{out} (V)’);
xlabel(’V_{in} (V)’); grid on; hold on;

% remove the top lines
! tail +4 bin_lin.txt > bin_lin.dat

% read in the simultion data with reference to time
[time, MV, Bn] = textread(’bin_lin.dat’,’ %f %f %f’);

101
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% plot the binary inverter response to linear input
figure(1);
plot(MV, Bn);
print -deps2 ../../figs/bin_linear.eps;

% ----------------------------------------------------------

% binary inverter response to mv input
clear;
figure(2); clf; ylabel(’V_{in}, V_{out} (V)’);
xlabel(’time (s)’); grid on; hold on;

% remove the top lines
! tail +4 bin_mv.txt > bin_mv.dat

% read in the simultion data with reference to time
[time, MV, Bn] = textread(’bin_mv.dat’,’ %f %f %f’);

% find the starting point of the simulation
start_idx=find(MV==0.2);
axis([time(start_idx(1)) time(length(time)) 0 2]);

% plot the binary inverter response to mv input
figure(2);
plot(time(start_idx(1):length(time)), ...

MV(start_idx(1):length(time)),’--k’);
plot(time(start_idx(1):length(time)), ...

Bn(start_idx(1):length(time)));
legend(’V_{in}’,’V_{out}’, 0);
print -deps2 ../../figs/bin_mv.eps;

D.1.2 Multiple-Valued Inverter Presentation

% Transforms the simulations for the multiple-valued inverter
% into a presentable form.

% mv inverter response to linear voltage input
% mv inverter amplification (gm)
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clear;

figure(1); clf; ylabel(’V_{out} (V)’);
xlabel(’V_{in} (V)’); grid on; hold on;

figure(2); clf; ylabel(’dV_{out}/dV_{in} (V)’);
xlabel(’V_{in} (V)’); grid on; hold on;

% remove the top lines
! tail +4 mv_inv.txt > mv_inv.dat

% read in simulation data with referance to time
[time, Bn, MV, dMV] = textread(’mv_inv.dat’,’ %f %f %f %f’);

% plot mv inverter linear voltage input response
figure(1);
plot(Bn, MV);
print -deps2 ../../figs/mv_linear.eps;

% find the starting and stopping point of the transition region
start_idx_array=find(Bn==0);
start_idx=start_idx_array(length(start_idx_array));
stop_idx_arrray=find(Bn==2);
stop_idx=stop_idx_arrray(1);

% plot mv inverter amplification
figure(2);
plot(Bn(start_idx+1:stop_idx), dMV(start_idx+1:stop_idx)./100);
print -deps2 ../../figs/mv_amp.eps;

D.1.3 Binary to Multiple-Valued Converter Presentation

% All the simulations performed on the binary to multiple-valued
% converter are processed into a presentable form.

% bmvc response to binary input
clear;
figure(3); clf;
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% remove the top lines
! tail +4 bmvc.txt > bmvc.dat

% read in simulation data with reference to time
[time, B0, B1, B2, MV] = ...

textread(’bmvc.dat’,’ %f %f %f %f %f’);

% find starting point of simulation
start_idx=find(B0==2);

% plot bmvc response to binary input
figure(3);
subplot(4,1,1);
axis([time(start_idx(1)) time(length(time)) 0 2]);
grid on; hold on; ylabel(’V_{B0} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(start_idx(1):length(time)), ...

B0(start_idx(1):length(time)));

subplot(4,1,2);
axis([time(start_idx(1)) time(length(time)) 0 2]);
grid on; hold on; ylabel(’V_{B1} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(start_idx(1):length(time)), ...

B1(start_idx(1):length(time)));

subplot(4,1,3);
axis([time(start_idx(1)) time(length(time)) 0 2]);
grid on; hold on; ylabel(’V_{B2} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(start_idx(1):length(time)), ...

B2(start_idx(1):length(time)));

subplot(4,1,4);
axis([time(start_idx(1)) time(length(time)) 0 2]);
grid on; hold on; ylabel(’V_{MV} (V)’);
xlabel(’time (s)’);
plot(time(start_idx(1):length(time)), ...

MV(start_idx(1):length(time)));
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print -deps2 ../../figs/bmvc_mv.eps;

D.1.4 Multiple-Valued to Binary Converter Presentation

% Processing of all the simulations done on the multiple-valued to
% binary converter to transform them into a presentable form.

% MVBC response to mv input
clear;
figure(1); clf;

% remove the top lines
! tail +4 mvbc.txt > mvbc.dat

% read in the simulation data with reference to time
[time, MV, B0, B1, B2] = ...

textread(’mvbc.dat’,’%f %f %f %f %f’);

% find the starting point of the simulation
start_idx=find(MV==0.2);

% plot the mvbc response to mv input
figure(1);
subplot(4,1,1);
axis([time(start_idx(1)) time(length(time)) 0 2]);
grid on; hold on; ylabel(’V_{MV} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(start_idx(1):length(time)), ...

MV(start_idx(1):length(time)));

subplot(4,1,2);
axis([time(start_idx(1)) time(length(time)) 0 2]);
grid on; hold on; ylabel(’V_{B0} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(start_idx(1):length(time)), ...

B0(start_idx(1):length(time)));

subplot(4,1,3);
axis([time(start_idx(1)) time(length(time)) 0 2]);
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grid on; hold on; ylabel(’V_{B1} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(start_idx(1):length(time)), ...

B1(start_idx(1):length(time)));

subplot(4,1,4);
axis([time(start_idx(1)) time(length(time)) 0 2]);
grid on; hold on; ylabel(’V_{B2} (V)’);
xlabel(’time (s)’);
plot(time(start_idx(1):length(time)), ...

B2(start_idx(1):length(time)));

print -deps2 ../../figs/mvbc_mv.eps;

D.1.5 Multiple-Valued Adder Presentation

% Proccess simulations done on the multiple-valued full-adder
% in order to make them presentable for the thesis.

% mv adder response to binary input
clear;

% remove the top lines
! tail +4 adder.txt > adder.dat

% read in the simulation data with reference to time
[time, B0_A, B1_A, B2_A, B0_B, B1_B, B2_B, ...

add_ci, add_B, add_A, ...
add_Z, add_co, add_S, ...
B2_S, B1_S, B0_S] = ...

textread(’adder.dat’,’%f %f %f %f %f %f %f %f %f’ ...
’%f %f %f %f %f %f %f’);

% find starting point of simulation
start_idx=find(B0_A==0);

% plots of add_A, add_B, add_ci,
% add_Z, add_S, add_co
% and B0_A, B1_A, B2_A, B0_B, B1_B, B2_B
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% and B2_S, B1_S, B0_S
%figure(1); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’V_{MV0} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...

% add_mv0(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_mv0.eps;

%figure(2); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’V_{MV1} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...

% add_mv1(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_mv1.eps;

%figure(3); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’V_{Ci} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% add_cin(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_cin.eps;

%figure(4); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’V_{int} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% add_mvint(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_mvint.eps;

%figure(5); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’V_{sum} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% add_mvsum(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_mvsum.eps;

%figure(6); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’V_{Co} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% add_cout(start_idx(1):length(time)));
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%print -deps2 ../../figs/adder_cout.eps;

%figure(7); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B0_{MV0} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% B0_MV0(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B0_MV0.eps;

%figure(8); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B1_{MV0} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% B1_MV0(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B1_MV0.eps;

%figure(9); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B2_{MV0} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% B2_MV0(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B2_MV0.eps;

%figure(10); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B0_{MV1} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% B0_MV1(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B0_MV1.eps;

%figure(11); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B1_{MV1} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% B1_MV1(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B1_MV1.eps;

%figure(12); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B2_{MV1} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
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% B2_MV1(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B2_MV1.eps;

%figure(13); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B0_{sum} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% B0_sum(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B0_sum.eps;

%figure(14); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B1_{sum} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% B1_sum(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B1_sum.eps;

%figure(15); clf;
%axis([time(start_idx(1)) time(length(time)) 0 2]);
%ylabel(’B2_{sum} (V)’); xlabel(’time (s)’); grid on; hold on;
%plot(time(start_idx(1):length(time)), ...
% B2_sum(start_idx(1):length(time)));
%print -deps2 ../../figs/adder_B2_sum.eps;

% plot a region (B=3) for all signals in 2 subplots
% find B=3 region, B0=0, B1=0, B2=2

% find indecies for the regions
region_idx1=find((B0_B == 0) & (B1_B==0) & ...

(B2_B==2) & (add_ci==2));
region_idx2=find((B0_B == 0) & (B1_B==0) & ...

(B2_B==2) & (add_ci==0));

% timeshift the second region to make the plot look nicer
timeshift=time(region_idx2(1)) - ...

time(region_idx1((length(region_idx1))));
time(region_idx2) = time(region_idx2) - timeshift;

% concat the regions
region_idx=[region_idx1; region_idx2];
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start_idx=region_idx(1);
end_idx=region_idx(length(region_idx));

% plot binary signals
figure(16); clf; grid on; hold on;

subplot(6,1,1);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{A,B0} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), B0_A(region_idx));

subplot(6,1,2);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{A,B1} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), B1_A(region_idx));

subplot(6,1,3);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{A,B2} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), B2_A(region_idx));

subplot(6,1,4);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{S,B0} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), B0_S(region_idx));

subplot(6,1,5);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{S,B1} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), B1_S(region_idx));

subplot(6,1,6);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{S,B2} (V)’);
xlabel(’time (s)’);
plot(time(region_idx), B2_S(region_idx));
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print -deps2 ../../figs/adder_region.eps;

% plot multiple-valued signals
figure(17); clf; grid on; hold on;

subplot(5,1,1);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{A} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), add_A(region_idx));

subplot(5,1,2);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{Ci} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), add_ci(region_idx));

subplot(5,1,3);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{Z} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), add_Z(region_idx));

subplot(5,1,4);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{S} (V)’);
set(gca,’XTickLabel’,[]);
plot(time(region_idx), add_S(region_idx));

subplot(5,1,5);
axis([time(start_idx) time(end_idx) 0 2]);
grid on; hold on; ylabel(’V_{Co} (V)’);
xlabel(’time (s)’);
plot(time(region_idx), add_co(region_idx));

print -deps2 ../../figs/adder_region2.eps;
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D.2 Measurements

Several scripts pertaining to the measurement of the BMVC are presented here.
They control the measurement equipment, timing of the UV-programming and
set the inputs of and receive outputs from the measurement equipment during
normal biased operation. There are also scripts that extract the data and make it
presentable for the thesis. Please refer to appendix B for a detailed description of
the measurement setup.

D.2.1 UV-light Control

% Turns the UV-light on using a relay controlled by K213

! echo ‘date‘ : UV light on
K213_SetDigital(255, ’K213A’);

% Turns the UV-light off using a relay controlled by K213

! echo ‘date‘ : UV light off
K213_SetDigital(0, ’K213A’);

D.2.2 Programming Voltages

% Sets the programming voltages to use for later on

function prog(ProgVss, ProgVdd)

save prog.mat ProgVss ProgVdd

D.2.3 UV-light Programming

% Preforms the UV-light programming cycle and the
% convergence measurements.

function[a_uvl, v_uvl, time] = uv_light_prog(sec, Vdev, Adev)

uv_on;



D.2 Measurements 113

tic; % start timer
pause(sec); % program for sec seconds
v_uvl = K617_ReadQuick(Vdev); % get convergence voltage
a_uvl = K236_ReadQuick(Adev); % get convergence current
time = toc; % end timer
uv_off;

D.2.4 Initializing Measurement Equipment

% Initializes all the measurement equipment to a known state
% before performing the measurements.

%init UV light
uv_off;

% init K617 (3)

K617_Reset(’K617A’);
pause(1);
K617_Init(’K617A’);
pause(1);
K617_SetMode(’V’, ’K617A’);

K617_Reset(’K617B’);
pause(1);
K617_Init(’K617B’);
pause(1);
K617_SetMode(’V’, ’K617B’);

K617_Reset(’K617C’);
pause(1);
K617_Init(’K617C’);
pause(1);
K617_SetMode(’V’, ’K617C’);

% init K213 (2)
K213_182Init(’K213A’);
pause(1);
K213_Init(’K213A’);
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pause(1);
K213_SetVoltage(0, 1, ’K213A’);
K213_SetVoltage(0, 2, ’K213A’);
K213_SetVoltage(0, 3, ’K213A’);
K213_SetVoltage(0, 4, ’K213A’);

K213_182Init(’K213B’);
pause(1);
K213_Init(’K213B’);
pause(1);
K213_SetVoltage(0, 1, ’K213B’);
K213_SetVoltage(0, 2, ’K213B’);
K213_SetVoltage(0, 3, ’K213B’);
K213_SetVoltage(0, 4, ’K213B’);

% init K236, current and vdd
%K236_182Init(’K236A’);
K236_Init(’K236A’);
K236_SetMeasure(’A’, ’K236A’);
K236_SetVolt(0, ’K236A’);
pause(1);
K236_Operate(’K236A’);

D.2.5 BMVC Measurements

% Performs the measurements on the BMVC.

% DC response for 3-bit BMVC using binary input

! echo DAC measurement starting...
clear;
vdd = 2;
vss = 0;
figure(1); clf; ylabel(’V’); xlabel(’time’);
title(’convergence, with UV light’); grid on; hold on;

figure(2); clf; ylabel(’A’); xlabel(’time’);
title(’convergence, with UV light’); grid on; hold on;
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figure(3); clf; ylabel(’V’); xlabel(’time’);
title(’convergence, no UV light’); grid on; hold on;

figure(4); clf; ylabel(’A’); xlabel(’time’);
title(’convergence, no UV light’); grid on; hold on;

figure(5); clf; ylabel(’V’); xlabel(’gate (V)’);
title(’linear measurement, voltage’); grid on; hold on;

figure(6); clf; ylabel(’A’); xlabel(’gate (V)’);
title(’linear measurement, current’); grid on; hold on;

figure(7); clf; ylabel(’V’); xlabel(’index’);
title(’MV measurement, voltage’); grid on; hold on;

figure(8); clf; ylabel(’A’); xlabel(’index’);
title(’MV measurement, voltage’); grid on; hold on;

% set timestamp for measurement files
! echo ‘date +%y%m%d%H‘ > datefile

% init all the equipment
! echo init all equipment...

init_equip;
Adev=’K236A’;
Vdev=’K617B’;

% program the chip with UV light
step_sec = 120; % in sec (120)
prog_time = 120; % in min (120)
load prog.mat % ProgVss
ProgVss
ProgVdd
V_UVL = [];
A_UVL = [];
V_noUVL = [];
A_noUVL = [];
Time = [];
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! echo starting UV programming...

K213_SetVoltage(vdd/2, 1, ’K213A’); % B0
K213_SetVoltage(vdd/2, 2, ’K213A’); % B1
K213_SetVoltage(vdd/2, 3, ’K213A’); % B2
K213_SetVoltage(vdd, 1, ’K213B’); % NWell

% programming and measurement of convergence time
for i=0:step_sec:prog_time*60
K213_SetVoltage(ProgVdd, 3, ’K213B’); % Vdd
K236_SetVolt(ProgVss, ’K236A’); % Gnd
[a_uvl, v_uvl, time] = uv_light_prog(step_sec, Vdev, Adev);
pause(3);
K213_SetVoltage(vdd, 3, ’K213B’); % Vdd
K236_SetVolt(vss, ’K236A’); % Gnd
pause(3);
v_nouvl = K617_ReadQuick(Vdev); % get programmed voltage
a_nouvl = K236_ReadQuick(Adev); % get programmed current
v_nouvl
% add values to vector
V_UVL = [V_UVL, v_uvl];
A_UVL = [A_UVL, a_uvl];
V_noUVL = [V_noUVL, v_nouvl];
A_noUVL = [A_noUVL, a_nouvl];
% previous time index, to get the time right
t = i/step_sec;
if t <= 0

Time = [Time, time];
else

Time = [Time, time+Time(t)];
end
figure(1); plot(Time, V_UVL);
figure(2); plot(Time, A_UVL);
figure(3); plot(Time, V_noUVL);
figure(4); plot(Time, A_noUVL);

end

% uniquely store data for later
save dac_uv.mat ProgVdd vdd ProgVss vss ...

Time V_UVL V_noUVL A_UVL A_noUVL
! cp dac_uv.mat dac/dac_uv.‘cat datefile‘.mat
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! echo starting measurement run...

% set all voltages
K213_SetVoltage(vdd, 1, ’K213B’); % NWell
K213_SetVoltage(vdd, 3, ’K213B’); % Vdd
K236_SetVolt(vss, ’K236A’); % Gnd

% measure and store in vector and file

% linear measurement
Vdac = [];
Adac = [];
Din = [];
for din=0:0.01:2
K213_SetVoltage(din, 1, ’K213A’); % B0
K213_SetVoltage(din, 2, ’K213A’); % B1
K213_SetVoltage(din, 3, ’K213A’); % B2
pause(3);
[resV, ovflA] = K617_ReadQuick(Vdev);
[resA, ovflA] = K236_ReadQuick(Adev);
din
resV
Din = [Din, din];
Vdac = [Vdac, resV];
Adac = [Adac, resA];
figure(5); plot(Din, Vdac);
figure(6); plot(Din, Adac);

end
save dac_lin.mat vdd vss Din Vdac Adac
! cp dac_lin.mat dac/dac_lin.‘cat datefile‘.mat

% set all voltages
K213_SetVoltage(vdd, 1, ’K213B’); % NWell
K213_SetVoltage(vdd, 3, ’K213B’); % Vdd
K236_SetVolt(vss, ’K236A’); % Gnd

% MV measurement
BitVal = [0 0 0
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0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1];

Vdac = [];
Adac = [];
Din = [];
for din=1:8
for i=1:10

K213_SetVoltage(BitVal(din, 3)*vdd, 1, ’K213A’); % B0
K213_SetVoltage(BitVal(din, 2)*vdd, 2, ’K213A’); % B1
K213_SetVoltage(BitVal(din, 1)*vdd, 3, ’K213A’); % B2
pause(3);
[resV, ovflA] = K617_ReadQuick(Vdev);
[resA, ovflA] = K236_ReadQuick(Adev);
din
resV
Din = [Din, din];
Vdac = [Vdac, resV];
Adac = [Adac, resA];
figure(7); plot(Vdac);
figure(8); plot(Adac);

end
end

save dac_mv.mat vdd vss Din Vdac Adac
! cp dac_mv.mat dac/dac_mv.‘cat datefile‘.mat

! echo DAC measurement ending...

D.2.6 BMVC Presentation

% Makes the BMVC measurement data presentable.

% plot measurements for the BMVC
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clear;
% ready figure windows

% linear with ideal+actual
figure(1); clf; ylabel(’V_{MV} (V)’);
xlabel(’V_{Bn} (V)’); grid on; hold on;

% linear with deviance of actual from ideal
figure(2); clf; ylabel(’V_{MV},ideal - V_{MV},actual (V)’);
xlabel(’V_{Bn} (V)’); grid on; hold on;

% linear amp with ideal+actual
figure(3); clf; ylabel(’dV_{MV}/dV_{Bn} (V)’);
xlabel(’V_{Bn} (V)’); grid on; hold on;

% mv with ideal+actual
figure(4); clf; ylabel(’V_{MV} (V)’);
xlabel(’Binary input (B_{2}B_{1}B_{0})’); grid on; hold on;
set(gca,’XTickLabel’,[’ ’]);

% mv with deviance of actual from ideal
figure(5); clf; ylabel(’V_{MV},ideal - V_{MV},actual (V)’);
xlabel(’Binary input (B_{2}B_{1}B_{0})’); grid on; hold on;
set(gca,’XTickLabel’,[’ ’]);

% mv amp with ideal+actual
% $$$ figure(6); clf; ylabel(’V_{MV}/dV_{Bn} (V)’);
% $$$ xlabel(’Binary input (B_{2}B_{1}B_{0})’); grid on; hold on;
% $$$ set(gca,’XTickLabel’,[’ ’]);

% -----------------------

% load file with linear measurements
load(’dac_lin.mat’);

% linear with ideal+actual
X=0:2/(length(V_mv)-1):2;
y(1)=V_mv(1);
y(2)=1;
y(3)=V_mv(length(V_mv));
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x=[0 1 2];
z=polyfit(x, y, 1);
V_mv_ideal=polyval(z, X);
figure(1); plot(X, V_mv_ideal, ’b--’);

%plot linear actual
X=0:2/(length(V_mv)-1):2;
figure(1); plot(V_bin, V_mv,’k-’); legend(’ideal’,’actual’, 0);

print -deps2 ../../figs/dac_linear.eps;

% linear with deviance of actual from ideal
X=0:2/(length(V_mv)-1):2;
y(1)=V_mv(1);
y(2)=1;
y(3)=V_mv(length(V_mv));
x=[0 1 2];
z=polyfit(x, y, 1);
V_mv_ideal=polyval(z, X);
%V_mv_dev=abs(V_mv_ideal - V_mv);
V_mv_dev=V_mv_ideal - V_mv;
figure(2); plot(X, V_mv_dev,’k-’);

print -deps2 ../../figs/dac_linear_dev.eps;

% linear amp with ideal+actual
X=0:2/(length(V_mv)-1):2;
Vin_diff=diff(X);
y(1)=V_mv(1);
y(2)=1;
y(3)=V_mv(length(V_mv));
x=[0 1 2];
z=polyfit(x, y, 1);
V_mv_ideal=polyval(z, X);
V_mv_ideal_diff=diff(V_mv_ideal);
X=0+2/(length(V_mv)-1):2/(length(V_mv)-1):2;
figure(3); plot(X, V_mv_ideal_diff./Vin_diff,’b--’);

V_mv_diff=diff(V_mv);
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%figure(3); plot(X, V_mv_diff./Vin_diff,’k-’);
Vsmooth = csaps(X, V_mv_diff./Vin_diff, 0.5, X);
figure(3); plot(X, Vsmooth,’k-’); legend(’ideal’,’actual’, 0);

print -deps ../../figs/dac_linear_amp.eps;

% -----------------------

% load file with measurements
load(’dac_mv.mat’);

% mv with ideal+actual
low_ind = find(V_bin==1);
high_ind = find(V_bin==8);
low_mean = mean(V_mv(low_ind));
high_mean = mean(V_mv(high_ind));
mv_steps = (high_mean - low_mean) / 7 ;
V_mv_ideal = [];
for i=1:8
for j=1:10
V_mv_ideal = [V_mv_ideal low_mean + (mv_steps*(i-1))];

end
end
figure(4); plot(V_mv_ideal,’b--’);

figure(4); plot(V_mv,’k-’); legend(’ideal’,’actual’, 0);

print -deps2 ../../figs/dac_mv.eps;

% mv with deviance of actual from ideal

low_ind = find(V_bin==1);
high_ind = find(V_bin==8);
low_mean = mean(V_mv(low_ind));
high_mean = mean(V_mv(high_ind));
mv_steps = (high_mean - low_mean) / 7 ;
V_mv_ideal = [];
for i=1:8
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for j=1:10
V_mv_ideal = [V_mv_ideal low_mean + (mv_steps*(i-1))];

end
end
%V_mv_dev=abs(V_mv_ideal - V_mv);
V_mv_dev=V_mv_ideal - V_mv;
figure(5); plot(V_mv_dev,’k-’);

print -deps2 ../../figs/dac_mv_dev.eps;

% mv amp with ideal+actual
% linear amp with ideal+actual
% $$$ low_ind = find(V_bin==1);
% $$$ high_ind = find(V_bin==8);
% $$$ low_mean = mean(V_mv(low_ind));
% $$$ high_mean = mean(V_mv(high_ind));
% $$$ mv_steps = (high_mean - low_mean) / 7 ;
% $$$ V_mv_ideal = [];
% $$$ for i=1:8
% $$$ for j=1:10
% $$$ V_mv_ideal = [V_mv_ideal low_mean + (mv_steps*(i-1))];
% $$$ end
% $$$ end
% $$$ V_mv_ideal_amp = [];
% $$$ for i=1:length(V_mv)-10
% $$$ V_mv_ideal_amp(i+10) = V_mv_ideal(i) - V_mv_ideal(i+10);
% $$$ end
% $$$ figure(6); plot(V_mv_ideal_amp,’b--’);
% $$$
% $$$ V_mv_amp = [];
% $$$ for i=1:length(V_mv)-10
% $$$ V_mv_amp(i+10) = V_mv(i) - V_mv(i+10);
% $$$ end
% $$$ figure(6); plot(V_mv_amp,’k-’); legend(’ideal’,’actual’, 0);
% $$$
% $$$ print -deps2 ../../figs/dac_mv_amp.eps;
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