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Abstract

Railway systems designs deal with complex and large-scale, safety-critical
infrastructures, where formal methods play an important role, especially in
verifying the safety of so-called interlockings through model checking. Model
checking deals with state change and rather complex properties, usually in-
curring considerable computational burden. In contrast to this, we focus on
static infrastructure properties, based on design guidelines and heuristics.
The purpose is to automate much of the manual work of the railway engineers
through software that can do verification on-the-fly. In consequence, this
paper describes the integration of formal methods into the design process,
by formalizing relevant technical rules and expert knowledge. We employ
a variant of Datalog and use the standardized “railway markup language”
railML as basis and exchange format for the formalization. We describe a
prototype tool and its (ongoing) integration in industrial railway CAD soft-
ware. We apply this tool chain in a Norwegian railway project, the upgrade
of the Arna railway station.

1 Introduction

Railway systems are complex and large-scale, safety-critical infrastructures, with
increasingly computerized components. The discipline of railway engineering is
characterised by heavy national regulatory oversight, high and long-standing safety
and engineering standards, a need for inter-operability and (national and interna-
tional) standardization. Due to the high safety requirements, the railway design
norms and regulations recommend the use of formal methods (of various kinds),
and for the higher safety integrity levels (SIL), they “highly recommend” them (cf.
e.g. [6][4]).

Railways require thoroughly designed control systems to ensure safety and ef-
ficient operation. The railway signals are used to direct traffic, and the signalling
component layout of a train station can be crucial to its traffic capacity. Another
central part of a railway infrastructure, e.g., of a single railway station, is the so-
called interlocking, which refers generally speaking to the ensemble of systems
tasked to establish safe, conflict-free routes of trains through stations . A more



narrow interpretation of “interlocking” are the principles, the routes, the signalling
and movements of trains have to follow to ensure safe operation (cf. [27]). While
formal methods play a crucial role, especially in designing the signalling and inter-
locking, Railway construction projects are heavy processes that integrate various
fields, engineering disciplines, different companies, stakeholders, and regulatory
bodies. When working out railway designs a large part of the work is repetitive,
involving routine checking of consistency with rules, writing tables, and coordinat-
ing disciplines. Many of these manual checks are simple enough to be automated
with computational results that can be used inside existing engineering software.
The repetition comes from the fact that even small changes in station layout and in-
terlocking may require thorough (re-)investigation to prove that the designs remain
internally consistent and still adhere to the rules and regulations of the national
(and international) rail administration agencies.

This paper presents results on integrating formal methods into the railway de-
sign process, with the purpose of increasing the degree of automation as follows:

e We formalize rules governing track and signalling layout, and interlocking.

e The standardized “railway markup language” railML [31] is used as basis
and exchange format for the formalization.

e We model the concepts describing a railway design in the logic of Datalog;
and develop an automated generation of the model from the railML repre-
sentation.

e The prototype tool has been integrated in existing railway CAD software.

We illustrate the logical representation of signalling principles and show how they
can be implemented and solved efficiently using the Datalog style of logic pro-
gramming [36]. We also show the integration with existing railway engineering
workflow by using CAD models directly. This enables to verify rules continuously
as the design process changes the station layout and interlocking. Based on railML
[31]]as intermediary language, our results can be easily adopted by anyone that uses
this international standard. The work uses as case study the software and the design
(presently under development) used in the Arna-Flgen upgrade project[] a major
infrastructure activity of the Norwegian railway system, with planned completion
in 2020. The Arna train station is located on Northern Europe’s busiest single-track
connection (between Arna and Bergen), which is being extended to a double-track
connection. Thus, the train station is currently undergoing an extensive overhaul,
including significant new tunnel constructions and specifically a replacement of the
entire signalling and control system. The case study is part of an ongoing project
in Anacon AS (now merged with Norconsult), a Norwegian signalling design con-
sultancy. It is used to illustrate the approach, test the implementation, and to verify

lhttp: //www.jernbaneverket.no/Prosjekter/prosjekter/
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that the tool’s performance is acceptable for interactive work within the CAD soft-
ware.

The rest of the paper is organized as follows. Section[2]discusses aspects of the
railway domain relevant for this work. Section [3|proposes a tool chain that extends
CAD with formal representations of signalling layout and interlocking. Section
presents our formalization of the rules and concepts governing general principles
of railway design as logical formulas amenable for the Datalog implementation
and checking. Section [5] provides more information about the implementation,
including details about counterexample presentation and empirical evaluation of
the tool using the case study. We conclude in Section [6] with related and future
work.

2 Background on Railway Signalling Domain

The signalling design process results in a set of documents which can be catego-
rized into (a) track and signalling component layout, and (b) interlocking specifi-
cation, and an (c) automatic train control specification. The first two categories are
considered in this paper.

2.1 Track and Signalling Component Layout

Track layout details, as input to the signalling design, are often given by a separate
division of the railway project. At an early stage and working at a low level of de-
tail, the signalling engineer may challenge the track layout design, and an iterative
process may be initiated.

Railway construction projects rely heavily on computer aided design (CAD)
tools to map out railway station layouts. The various disciplines within a project,
such as ground works, track works, signalling, or catenary power lines, work with
coordinated CAD models. These CAD models contain a major part of the work
performed by engineers, and are a collaboration tool for communcation between
disciplines. The signalling component layout is worked out by the signalling engi-
neer as part of the design process. Placement of signals, train detectors, derailers,
etc. is drawn using symbols in a 2D geographical CAD model.

2.2 Interlocking Specification

An interlocking is an interconnection of signals and switches to ensure that train
movements are performed in a safe sequence [27]. Interlocking is performed elec-
tronically so that, e.g., a green light (or, more precisely, the proceed aspect) com-
municating the movement authority required for a train to travel through a station
can only be lit by the interlocking controller under certain conditions. Conditions
and state are built into the interlocking by relay-based circuitry or by computers
running interlocking software. Most interlocking specifications use a route-based
tabular approach, which means that a train station is divided into possible routes,



which are paths that a train can take from one signal to another. These signals
are called the route entry signal and route exit signal, respectively. An elementary
route contains no other signals in-between. The main part of the interlocking spec-
ification is to tabulate all possible routes and set conditions for their use. Typical
conditions are:

e Switches must be positioned to guide the train to a specified route exit signal.
e Train detectors must show that the route is free of any other trains.

e Conflicting routes, i.e. overlapping routes, must not be in use.

3 Proposed Railway Signalling Design Tool Chain

Next we describe the tool chain that we propose for automating the current man-
ual tasks involved in the design of railway infrastructures. In particular, we are
focused on integrating and automating those simple, yet tedious, rules and condi-
tions usually used to maintain some form of consistency of the railway, and have
these checks done automatically. Whenever the design is changed by an engineer
working with the CAD program, our verification procedure would help, behind the
scenes, verifying any small changes in the model and the output documents. Vi-
olations would either be automatically corrected, if possible, or highlighted to the
engineer. Thus, we are focusing on solutions with small computational overhead
when working with CAD tools (running on standard computers).

3.1 Computer-Aided Design (CAD) Layout Model

CAD models, which ultimately correspond to a database of geometrical objects, are
used in railway signalling engineering. They may be 2D or 3D, and contain mostly
spatial properties and textual annotations, i.e., the CAD models focus on the shapes
of objects and where to place them. The top level of the document, called the model
space block, contains geometrical primitives, such as lines, circles, arcs, text, and
symbols. It also contains block references, which consists of a reference to a block,
and an insertion point where the block is located. Block references are typically
used to create reusable components of a CAD document.

Geometric elements may represent the physical geometry directly, or symboli-
cally, such as text or symbols. A railway signalling CAD model will contain both
physical geometry and symbols, typically track centerlines with horizontal geom-
etry and signalling equipment as symbol blocks with insertion point at their physi-
cal location. However, the verification of signalling and interlocking rules requires
information about object properties and relations between objects such as which
signals and signs are related to which track, and their identification, capabilities,
and use. This information is better modelled by the railway-specific hierarchical
object model called railML [26].
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Figure 1: RailML integrated into a CAD database

3.2 Integrating Layout Model with railML

CAD programs were originally designed to produce paper drawings, and common
practice in the use of CAD programs is to focus on human-readable documents.
The database structure, however, may also be used to store machine-readable in-
formation. In the industry-standard DWG format [10]], each geometrical object in
the database has an associated extension dictionary, where add-on programs may
store any data related to the object. Our tool uses this method to store the railML
fragments associated with each geometrical object or symbol, see Figure|l| Thus,
we can compile the complete railML representation of the station from the CAD
model.

3.3 Interlocking and Automatic Train Control (ATC) Specifications

Besides the CAD model layout, the design of a railway station consists also of spec-
ifications for the interlocking and ATC. These specifications model the behavior of
the signalling, and are tightly linked to the station layout. A formal representation
of the interlocking and ATC specifications is embedded in the CAD document in a
similar way as for the railML infrastructure data, using the document’s global ex-
tension dictionary. Thus, the single CAD document showing the human-readable
layout of the train station also contains a machine-readable model which fully de-
scribes both the component layout and the functional specification of interlocking
and ATC. This allows a full analysis of the operational aspects of the train station
directly in a familiar editable CAD model.

3.4 Overall Tool Chain

Figure [2] shows the overall tool chain. The software allows checking of rules and
regulations of static infrastructure (described in this paper) inside the CAD en-
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Figure 2: Railway design tool chain. The CAD program box shows features which
are directly accessible at design time inside the CAD program, while the export
creates machine-readable (or human-readable) documents which may be further
analysed and verified by external software (shown in dashed boxes).

vironment, while more comprehensive verification and quality assurance can be
performed by special-purpose software for other design and analysis activities.

Generally, analysis and verification tools for railway signalling designs can
have complex inputs, must account for a large variety of situations, and usually
require long running times. Therefore, we limit the verification inside the design
environment to static rules and expert knowledge, as these rules require less dy-
namic information (timetables, rolling stock, etc.) and computational effort, while
still offering valuable insights. This situation may be compared to the tool chain
for writing computer programs. Static analysis can be used at the detailed design
stage (writing the code), but can only verify a limited set of considerations. It can-
not fully replace testing, simulation and other types of analysis, and must as such
be seen as a part of a larger tool chain.

Other tools, that are external to the CAD environment, may be used for these
more calculation heavy or less automated types of analysis, such as:

e Code generation and verification for interlockings, possible through the for-
mal verfication framework of Prover Technologies.



e Capacity analysis and timetabling, performed using OpenTrack, LUKS, or
Treno.

e Building information management (BIM), including such activities as life-
cycle information management and 3D viewing, are already well integrated
with CAD, and can be seen as an extension of CAD.

The transfer of data from the CAD design model to other tools is possible by
using standardized formats such as railML, which in the future will also include an
interlocking specification schema [3]].

4 Formalization of Rule Checking

To achieve our goal of automating checking of the consistency of railway designs
we need formal representations of both the designs and the consistency rules.

The rules can be seen as the static part, e.g., kept in a a domain specific lan-
guage or GUI, thus hiding the logical notation. Obtaining the formal, logical rep-
resentation of the designs will be done on-the-fly through a CAD module, whereas
the logical representation of the rules will be done manually by the engineers
through a domain specific language or GUL

The logical consistency checking that we deal with turns out to require only
simple, computationally tractable, forms of logics. In particular, we do not go into
linear-time temporal logics (LTL) [29] and the automata-based model checking
[21], as needed for checking safety of the actual interlocking programs [S]]. Nev-
ertheless, the verification methodology is the same: The logical representation of
the designs (called the model) and of the rules (called properties) are fed into the
verification engine (SAT/SMT or Datalog) which is doing satisfiability checking,
thus looking for an interpretation of the logical variables that would satisfy the
formulas. More precisely, the rules are first negated, then conjoined with the for-
mulas representing the model. Therefore, looking for a satisfying interpretation is
the same as looking for a way to violate the rules. When found, the interpretation
contains the information about the exact reasons for the violation. The reasons, or
counter-example, always involves some of the negated rules as well as some parts
of the model. In other words, a good railway design is one for which the satisfia-
bility engine returns a negative answer, because it cannot find a satisfying variable
interpretation.

We formalize the correctness properties (i.e., technical rules and expert knowl-
edge) as predicates over finite and real domains. Using a logic programming frame-
work, we will include the following in the logical model:

1. Predicate representation of input document facts, i.e. track layout and inter-
locking.

2. Predicate representation of derived concept rules, such as object properties,
topological properties, and calculation of distances.



3. Predicate representation of technical rules.

Each of these categories are described in more detail below, after we present the
logical framework we employ.

4.1 Datalog

Declarative logic programming is a programming language paradigm which allows
clean separation of logic (meaning) and computation (algorithm). This section
gives a short overview of Datalog concepts. See [36] for more details. In its most
basic form it is a database query, like in the SQL language, over a finite set of atoms
which can be combined using conjunctive queries, i.e. expressions in the fragment
of first-order logic which includes only conjunctions and existential quantification.

Conjunctive queries alone, however, cannot express the properties needed to
verify railway signalling. For example, given the layout of the station with tracks
represented as edges between signalling equipment nodes, graph reachability queries
are required to verify some of the rules. This corresponds to computing the transi-
tive closure of the graph adjacency relation, which is not expressible in first-order
logic [20, Chap. 3].

Adding fixed-point operators to conjunctive queries is a common way to miti-
gate the inexpressibility of this type of graph queries while preserving decidability
and polynomial time complexity. Fixed-point operators on finite structures amount
to some form of iteration producing sets that are monotonically growing. Thus,
when using a finite set of atoms, termination is guaranteed.

The Datalog language is a first-order logic extended with least fixed points.
We define the Datalog language as follows: Terms are either constants (atoms)
or variables. Literals consist of a predicate P with a certain arity n, alongs with
terms corresponding to the predicate arguments, forming an expression like P(a),
where @ = (a1, ag,...,a,). Clauses consist of a head literal and one or more
body literals, such that all variables in the head also appear in the body. Clauses
are written as

Rg(f) - 3371 Rl(f,g),Rg(f,g),...,Rk(f,gj).

Datalog uses the Prolog convention of intepreting identifiers starting with a capital
letter as variables, and other identifiers as constants. E.g., the clause

a(X,Y) = b(X,Z),c(Z,Y)
has the meaning of
Ve,y: ((3z: (b(x, 2) Ae(z,y))) — alz,y)) .

Clauses without body, which cannot then contain any variables, are called facts,
those with one or more literals in the body are called rules. No nesting of literals
is allowed. However, recursive definitions of predicates are possible. For example,



let edge(a, b) be an graph edge relation between vertices a and b. Graph searches
can now be encoded by making a transitive closure over the edge relation:

path(a,b) :— edge(a,b).
path(a,b) — edge(a,x), path(x,b).

In the railway domain, this can be used to define the connected predicate, which
defines whether two objects are connected by railway tracks:

directlyConnected(a, b) — track(t), belongsTo(a,t), belongsTo(b,t).
connected(a,b) — directlyConnected(a,b).
connected(a,b) :— directlyConnected(a,x), connection(z, c),
connected(c,b).

Here, the connection predicate contains switches and other connection types. Fur-
ther details of relevant predicates are given in the sections below.

Another common feature of Datalog implementations is to allow negation, with
negation as failure semantics. This means that negation of predicates in rules is
allowed with the interpretation that when the satisfiability procedure cannot find
a model, the statement is false. To ensure termination and unique solutions, the
negation of predicates must have a stratification, i.e. the dependency graph of
negated predicates must have a topological ordering (see [36, Chap. 3] for details).

Datalog is sufficiently expressive to describe static rules of signalling layout
topology and interlocking. For geometrical properties, it is necessary to take sums
and differences of lengths, which requires extending Datalog with arithmetic op-
erations. A more expressive language is required to cover all aspects of railway
design, e.g. capacity analysis and software verification, but for the properties in
the scope of this paper, a concise, restricted language which ensures termination
and short running times has the advantage of allowing tight integration with the
existing engineering workflow.

4.2 Input Documents Representation

4.2.1 Track and signalling objects layout in the railML format.

Given a complete railML infrastructure document, we consider the set of XML
elements in it that correspond to identifiable objects (this is the set of elements
which inherit properties from the type tElementWithIDAndName). The set of
all IDs which are assigned to XML elements form the finite domain of constants
on which we base our predicates (IDs are assumed unique in railML).

Atoms := {a | element.ID = a} .

We denote a railML element with ID = a as element,. All other data associated
with an element is expressed as predicates with its identifying atom as one of the
arguments, most notably the following:
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e Element type (also called class in railML/XML):

track(a) <—element, is of type track,
signal(a) <—element, is of type signal,
balise(a) <—element, is of type balise,
switch(a) <—element,, is of type switch.

e Element name:
name(a,n) < (element,.name = n).
e Position and absolute position (elements inheriting from tPlacedElement):
pos(a,p) < (element,.pos =p), a € Atoms,p € R,

absPos(a,p) < (element,.absPos = p), a € Atoms,p € R.

e Geographical coordinates (for elements inheriting from tPlacedElement):
geoCoords(a, q) + (element,.geoCoords = ¢q), a € Atoms,q € R.
e Direction (for elements inheriting from tOrientedElement):
dir(a,d) < (element,.dir = d), a € Atoms,d € Direction,

where Direction = {up, down, both, unknown}, indicating whether the
object is visible or functional in only one of the two possible travel direc-
tions, or both.

e Signal properties (for elements of type t Signal):

signal Type(a,t) < (element,.type = t),
a € Atoms, t € {main, distant, shunting, combined} ,

signalFunction(a, f) + (element,.function = f),
a € Atoms, f € {home, intermediate, exit, blocking} .

Consistency axioms would impose that signalType and signalFunction be
applied only to signal elements:

signalType(a,t) = signal(a),
signalFunction(a, f) = signal(a).

The above list give only a few examples of predicates that are extracted from
the railML document. The translator from railML (XML documents) to predicate
form needs only to consider XML elements, attributes and sub-elements, not the
specifics of railML and its type hierarchy. The whole expressivity of railML as
such is carried over directly to the logic programming environment. The switch el-
ement is the object which connects tracks with each other and creates the branching
of paths, see Figure[3] A switch belongs to a single track, but contains connection
sub-elements which point to other connection elements, which are in turn con-
tained in switches, crossings or track ends. For connections, we have the following
predicates:

11



: Switch B

' Switch A
Figure 3: Switches give rise to branching paths

e Connection element and reference:
connection(a) < element, is of type connection,

connection(a, b) « (element,.ref = b).

The connection relation should always be symmetric, i.e. Va, b : connection(a,b) —
connection(b, a), and this will be checked by a consistency predicate.

e Connection course and orientation:

connectionCourse(a, ¢) < (element,.course = c),
a € Atoms, ¢ € {left,straight,right}

connectionOrientation(a, 0) < (element,.orientation = o),
a € Atoms, o € {outgoing,incoming} .

To encode the hierarchical structure of the railML document, a separate pred-
icate encoding the parent/child relationship is added: This is required because the
predicate representation does not implicitly contain the hierarchy of the XML rep-
resentation, where elements are declared inside other elements.

e Object belongs to (e.g. a is a signal belonging to track b):

belongsTo(a,b) < b is the closest XML ancestor of a whose element
type inherits from tElementWithIDAndName.

4.2.2 Interlocking.

An XML schema for tabular interlocking specifications is described in [3]], and
this format is used here with the expectation that it will become part of the railML
standard schema in the future. We give some examples of how XML files with this
schema are translated into predicate form:

e Train route with given direction d, start point a, and end point b (a,b €
Atoms, d € Direction):

trainRoute(t) < element; is of type route
start(t,a) « (element;.start = a)
end(t,b) < (element;.end = b)

12



e Conditions on detection section free (a) and switch position (s, p):

detectionSection Condition(t,a) <(a € element;.sectionConditions),
switchPositionCondition(t, s, p) <((s,p) € element;.switchConditions).

4.3 Derived Concepts Representation

Derived concepts are properties of the railway model which can be defined inde-
pendently of the specific station. A library of these predicates is needed to allow
concise expression of the rules to be checked.

4.3.1 Object properties.

Properties related to specific object types which are not explicitly represented in
the layout description, such as whether a switch is facing in a given direction, i.e.
if the path will branch when you pass it:

e Switch facing or trailing (a € Atoms, d € Direction):

switchFacing(a, d) <— 3c, 0 : switch(a) A switchConnection(a, c)A
switchOrientation(c, 0) A orientationDirection(o, d).

switchTrailing(a, d) < —switchFacing(a, d)

4.3.2 Topological and geometric layout properties.

Predicates describing the topological configuration of signalling objects and the
train travel distance between them are described by predicates for track connec-
tion (predicate connected(a, b)), directed connection (predicate following(a, b, d)),
distance (predicate distance(a, b, d, 1)), etc. The track connection predicate is de-
fined as:

e There is a track connection between object ¢ and b (a, b € Atoms):
directlyConnected(a, b) <3t : track(t) A belongsTo(a,t) A belongsTo(b,t),

connected(a, b) < directlyConnected(a,b) V (3ci, ca = connection(cy, ca)\
directlyConnected(a, c1) A connected(cz,b)).

e There is a directed connection between object a and b (a,b € Atoms, d €
Direction, p,, pp € R):

directlyFollowing(a, b, d) < directlyConnected(a,b)A\
position(a, pg) N position(b, py)A
((d=up Apa <pp) V (d=down Aps > pp))
following(a, b, d) < directlyFollowing(a, b, d)V
Jey, e @ connection(cq, c2) A directlyFollowing(a, ¢1,d)
A following(c2, b, d)

13



e The distance (along track) in a given direction between object a and b (a, b €
Atoms, d € Direction, pg, pp,l € R):

directDistance(a, b, d,l) < directlyFollowing(a, b, d)A\
position(a, pg) A position(b, pp)
Nl = |pb - pa|

distance(a, b, d,l) < directDistance(a,b,d, 1)V
dey, o, 11, 1o« connection(cy, c2)
A directDistance(a, c1,d, 1)
A distance(ca, b, d, o) Nl =11 + 1o

e Object is located between a and b (a, x,b € Atoms, d € Direction):
between(a, x,b, d) « following(a,x,d) N following(z, b, d)
between(a, x,b) <— 3d : between(a,x,b,d)

e A path between a and b overlaps with a path between c and d (a, b, c,d €
Atoms):

overlap(a, b, ¢, d) <— Je : between(a, e,b) A between(c, e, d)

4.3.3 Interlocking properties.

Properties such as ezistsPath WithoutSignal(a, b) for finding elementary routes,
and existsPath WithDetector(a, b) for finding adjacent train detectors will be used
as building blocks for the interlocking rules.

e Signals a and b have a path between them without any other signals in be-
tween:

existsPath WithoutSignal(a, b, d) < following(a, b, d)A
(=(3z : signal(x) A between(a, x, b))V
(Fzx : between(a, x,b) A existsPath WithoutSignal(a, z, d)A
existsPathWithoutSignal(x, b, d)).

4.4 Rule Violations Representation

With the input documents represented as facts, and a library of derived concepts,
it remains to define the technical rules to be checked. Technical rules are based on
[17]. The goal of the consistency checking is to confirm that no inconsistencies ex-
ist, in which case no further information is required, or to find inconsistencies and
present them in a way that allows the user to understand the error and to adjust their
design accordingly. Rules are therefore expressed negatively, as rule violations, so
that a query corresponding to the rule is empty whenever the rule is consistent
with the design, or the query contains counterexamples to the rule when they exist.
Some examples of technical rules representing conditions of the railway station
layout are given below.
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Property 1 (Layout: Home signal [17]) A home main signal shall be placed at
least 200 m in front of the first controlled, facing switch in the entry train path.

See also Figure [ for an example. Property [[[may be represented in the following
way:

isFirstFacingSwitch(b, s) < stationBoundary(b) A facingSwitch(s)A
—(3x : facingSwitch(x) A between(b, z, s)),

rule Violationq(b, s) < isFirstFacingSwitch(b, s)A
(=(3z : signalFunction(xz, home) A between(b, x, s))V
(Jx,d, 1 : signalFunction(z, home)A
A distance(z, s, d,l) N1 < 200).

Checking for rule violations can be expressed as:
3b, s : rule Violationg(b, s),
which in Prolog/Datalog query format becomes ruleViolation](B, S) 2.

Property 2 (Layout: Minimum detection section length [17]]) No train detection
section shall be shorter than 21 m. Le., no train detectors should be separated with
less than 21 m driving distance.

This property is represented as follows:

rule Violationg(a, b) <—3d, 1 : trainDetector(a) A trainDetector(b)A
distance(a,b,d,l) N1 < 21.0.

Property 3 (Layout: Exit main signal [17]) An exit main signal shall be used to
signal movement exiting a station.

This property can be elaborated into the following rules:
e No path should have more than one exit signal:

rule Violationg(s) <—3d : signalType(s, exit) A following(s, so, d)A

—signal Type(so, exit).

200 m

Figure 4: A home main signal shall be placed at least 200 m in front of the first
controlled, facing switch in the entry train path. (Property
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Section 1 Section 2

—Q0 —00
Sig. A Sig. B
Tabular interlocking:
Route Start End Sections must be clear
AB A B 1,2

Figure 5: Track sections which overlap a route must have a corresponding condi-
tion in the interlocking. (Property [5)

e Station boundaries should be preceded by an exit signal:

exitSignalBefore(x, d) <—3s : signalType(s, exit) A following(s, z,d)
rule Violationg(b) <—3d : stationBoundary(b) N\ —ezitSignalBefore(b, d).

A basic property of tabular interlockings is that each consecutive pair of main
signals normally has an elementary train route associated with it, i.e.:

Property 4 (Interlocking: Elementary routes) A pair of consecutive main sig-
nals should be present as a route in the interlocking.

This can be represented as follows:

defaultRoute(a, b, d) < signal Type(a, main) A signal Type(b, main)A
direction(a,d) A direction(b, d)A
following(a, b,d) A existsPath WithoutSignal(a,b,d),

rule Violationg(a, b, d) < defaultRoute(a,b, d)A
—=(3r : trainRoute(r) A trainRouteStart(r,a) A trainRouteEnd(r,b)).

This type of rule is not absolutely required for a railway signalling design to be
valid and safe. Some rules are hard constraints, where violations may be considered
to be errors in the design, while other rules are soft constraints, where violations
may suggest that further investigation is recommended. This is relevant for the
counterexample presentation section below.

Property 5 (Interlocking: Track clear on route) Each pair of adjacent train de-
tectors defines a track detection section. For any track detection sections overlap-
ping the route path, there shall exist a corresponding condition on the activation
of the route.

See Figure [5|for an example. Property [5|can be represented as follows:

existsPathWithDetector(a,b) <—3d : following(a, b, d) A trainDetector(x)A
between(a, x,b).
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adjacentDetectors(a, b) <—trainDetector(a) A trainDetector(b)A
—existsPathWithDetector(a, b),

detectionSection OverlapsRoute(r, dg, dy) < trainRoute(r)A
start(r, sq) A end(r, sp)A\
adjacentDetectors(dq, dp) N overlap(sq, sp, dq, dp),

detectionSection Condition(r, dq, dp) < detectionSectionCondition(c)A\
belongsTo(c,r) A belongsTo(dg, c) A belongsTo(dp, c).

rule Violationg(r, dq, dp) <
detectionSectionOverlapsRoute(r, dg, dp) A
~detectionSectionCondition(r, dg, dp).

Property 6 (Interlocking: Flank protection [17]) A train route shall have flank
protection.

For each switch in the route path and its associated position, the paths starting in
the opposite switch position defines the flank. Each flank path is terminated by the
first flank protection object encountered along the path. The following objects can
give flank protection:

1. Main signals, by showing the stop aspect.
2. Shunting signals, by showing the sfop aspect.

3. Switches, by being controlled and locked in the position which does not lead
into the path to be protected.

4. Derailers, by being controlled and locked in the derailing state.

An example situation is shown in Figure 6] While the indicated route is active (A
to B), switch X needs flank protection for its left track. Flank protection is given
by setting switch Y in right position and setting signal C to stop. Property [| can be
elaborated into the following rules:

e All flank protection objects should be eligible flank protection objects, i.e.
they should be in the list of possible flank protection objects, and have
the correct orientation (the flankElement predicate contains the interlocking
facts):

flankProtectionObject(a, b, d) <((signal Type(a, main) A dir(a,d))V
(signal Type(a, shunting) A dir(a,d))V
switchFacing(a,d)V
derailer(a)) A following(a, b, d).

flankProtection Required(r, x,d) < trainRoute(r) A start(r, sq)A\
end(r, sp) A switchOrientation(x,0) A between(sq, T, sp) A
orientationDirection(o,04) N\ oppositeDirection(og, d).
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Figure 6: The dashed path starting in switch X must be terminated in all branches
by a valid flank protection object, in this case switch Y and signal C. (Property [6])

flankProtection(r, e) < flankProtectionRequired (r, x,d)A\
flankProtectionObject (e, x, d).

rule Violationg(r, ) < flankElement(r, e)\
—flankProtection(r, e).

e There should be no path from a model/station boundary to the given switch,
in the given direction, that does not pass a flank protection object for the
route:

existsPath WithFlankProtection(r,b, z,d) <

flankElement(r, e) A flankProtectionElement (e, x, d)A
between (b, e, x).

existsPath WithoutFlankProtection(r,b, z,d) +
—existsPath WithFlankProtection(r, b, z, d)V
(between(b,y, x) A —flankProtectionElement (e, y, d)A
existsPath WithoutFlankProtection(r, b, y, d)A
existsPath WithoutFlankProtection(r,y, z,d)).

rule Violationg(r, b, x) < stationBoundary(b)A
flankProtectionRequired(r,z,d) N following(b, z, d)A\
existsPath WithoutFlankProtection(r, b, x, d).

5 Tool Implementation

In this section we describe the main aspects of our tool implementation. The XSB
Prolog interpreter was used as a back-end for the implementation of a verification
procedure, as it offers tabled predicates which have the same characteristics as
Datalog programs [35]], while still allowing general Prolog expressions such as
arithmetic operations.
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rule: Home signal too close to first facing switch.

o o

|
| type: technical

o\°

| severity: error
homeSignalBeforeFacingSwitchError (S, SW) :-—
firstFacingSwitch (B, SW,DIR),
homeSignalBetween (S, B, SW),
distance (S, SW,DIR,L), L < 200.

Figure 7: Structured comments on rule violation expression

The translation from railML to Datalog facts assumes that the document is
valid railML, which may be checked with general XML schema validators, or a
specialized railML validator.

5.1 Counterexample Presentation

When rule violations are found, the railway engineer will benefit from information
about the following:

e Which rule was violated (textual message containing a reference to the source
of the rule or a justification in the case of expert knowledge rules).

e Where the rule was violated (identity of objects involved).

Also, classification of rules based on e.g. discipline and severity may be useful in
many cases. In the rule databases, this may be accomplished through the use of
structured comments, similar to the common practice of including structured doc-
umentation in computer programs, such as JavaDoc (see Figure 7| for an example).
A program parses the structured comments and forwards corresponding queries to
the logic programming solver. Any violations returned are associated with the in-
formation in the comments, so that the combination can be used to present a helpful
message to the user. A prototype CAD add-on program for Autodesk AutoCAD
was implemented, see Figure 8]

5.2 Case Study Results

The rules concerning signalling layout and interlocking from Jernbaneverket [[17]]
described above were checked in the railML representation of the Arna-Flgen
project which is an ongoing design project in Anacon AS (now merged with Nor-
consult). Each object was associated with one or more construction phases, which
we call phase A and phase B, which also corresponds with two operational phases.
The station CAD model that was used for the work with the Arna station (phase A
and B combined) included 25 switches, 55 connections, 74 train detectors, and 74
signals. The interlocking consisted of 23 and 42 elementary routes in operational
phase A and B respectively.
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Testing Arna Arna
station phase A  phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog facts 85 8283 9159
Running time (s) 0.1 4.4 94

Table 1: Case study size and running times on a standard laptop.

The Arna station design project and the corresponding CAD model has been in
progress since 2013, and the method of integrating railML fragments into the CAD
database, as described in Section [3] has been in use for about one year. Engineers
working on this model are now routinely adding the required railML properties to
the signalling components as part of their CAD modelling process. This allowed
a fully automatic transfer of the railML station description to the verification tool.
Several simplified models were made also for testing the correct functioning of the
concept predicates and rule violation predicates. The rule collection consisted of
37 derived concepts, 5 consistency predicates, and 8 technical predicates. Running
times for the verification procedure can be found in Table

6 Conclusions, Related and Further Work

We have demonstrated a logical formalism in which railway layout and interlock-
ing constraints and technical rules may be expressed, and which can be decided
by logic programming proof methods with polynomial time complexity. This al-
lows verification of railway signalling designs against infrastructure manager rules
and regulations. It also allows to build and maintain a formally expressed body of
expert knowledge, which may be exchanged between engineers and automatically
checked against designs.

(D—en 29 R190

Sw. 1

Update
1 Category Description
| i, |signal No interlocking defined.
ia' Signal Home signal too close to first facing switch.
in detectors must be 21.0 m apart.
Open reference

Figure 8: Counterexample presentation within an interactive CAD environment.
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Related work.

Railway control systems and signalling designs are a fertile ground for formal
methods. See [1} [11] for an overview over various approaches and pointers to
the literature, applying formal methods in various phases of railway design. For a
slightly more dated state-of-the-art survey, see [16]. In particular, safety of inter-
lockings has been intensively formalized and studied, using for instance VDM [[13]]
and the B-method, resp. Event-B [19]. Model checking has proved particularly
attractive for tackling the safety of interlocking, and various model checkers and
temporal logics have been used, cf. e.g. [5, 138, 19] [28} 23] 14} 9]]. Critically evalu-
ating practicability, [[12] investigate applicability of model checking for interlock-
ing tables using NuSMYV resp. Spin, two prominent representatives of BBD-based
symbolic model checking, resp. explicit state model checking. The research shows
that interlocking systems of realistic size are currently out of reach for both flavors
of general purpose model checkers. To mitigate the state-space explosion prob-
lem, [[15] uses bounded model checking [7] for railway designs and interlocking
systems.Instead of attempting an exaustive coverage of the state-space, symbol-
ically or explicitly, bounded model checking analysis (the behavior of) a given
system only up to a given bound (which is raised incrementally in case analyzing
a problem instance is inconclusive).This restriction allows use use SAT solving
techniques in the analysis. The paper uses a variant of linear temporal logic (LTL)
for property specification (concentrating on safety properties and including exis-
tential quantification for) and employs so-call k-induction. [39] investigates to
exploit domain-specific knowledge about interlocking verification to obtain good
variable orderings when encoding the systems to be verified in a BDD-based sym-
bolic model checker. An influential technology is the tool-based support for ver-
ified code generation for railway interlockings from Prover AB Sweden [30][2].
Prover is an automated theorem prover, using Stalmarck’s method [34] of tautol-
ogy checking.

Also logic (programming) languages, like Prolog or Datalog, have been used
for representing and checking various aspects of railway designs. For the verifica-
tion of signalling of an interlocking design [18]] uses a Prolog data base to represent
the topology and the layout, where for the the verification, the work uses a sepa-
rate SAT solver. As this work, [24][25] use logic programming for verification of
interlocking systems. In particular, the work uses a specific version of so-called
annotated logic, namely annotated logic programs with strong negation, ALPSN).
In general and beyond the railway system domain, recent times hav seen renewed
research interest in Datalog, see for instance the collection [8]. Datalog has in par-
ticular been used for formalizing and efficiently implementing program analyses
[33,137]. [32] present Doop, a context-sensitive points-to analysis framework for
Java.

The mentioned works generally include dynamic aspects of the railway in their
checking, like train positions and the interlocking state. This is in contrast to our
work, which focuses on checking against a formalization of the general design

21



rules issued by the regulatory bodies, thus concentrating on static aspects such
as the signalling layout. This makes the notorious state-space explosion problem
less urgent and makes an integration into the standard design workflow within the
existing CAD tool practical. A description of using semantic web technologies for
checking static railway layout properties can be found in [22].

Future work.

In the future work with RailComplete AS, we will focus on extending the rule base
to contain all relevant signalling and interlocking rules from [17] , evaluating the
performance of our verification on a larger scale. Design information and rules
about other railway control systems, such as geographical interlockings and Au-
tomatic Train Control (ATC) systems could also be included. The current work is
assuming Norwegian regulations, but the European Rail Traffic Management Sys-
tem (ERTMS) is expected to be used in the future, and the impact on verification
should be investigated.

Finally, we plan to extend from consistency checking to optimization of de-
signs. Optimization requires significantly larger computational effort, and the rela-
tion between Datalog and more expressive logical programming frameworks could
become relevant.
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7 Appendix: Example of Program Inputs

The appendix is for reviewing only and should not be regarded as part of the paper.
The contents of the appendix, as well as more details and examples will appear in
a technical report towards the end of January.

This section contains example input and output of the verification procedure
described above in the paper. First, we give an example of a railML document
describing a station.

<?xml version="1.0" encoding="utf-8"?>
<infrastructure xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns
:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns="http
://www.railml.org/schemas/2013">
<tracks>
<track id="t1">
<trackTopology>
<trackBegin id="tbl" pos="0"> <macroscopicNode /> </
trackBegin>
<trackEnd id="tel" pos="500"> <macroscopicNode /> </trackEnd
>
<connections>
<switch id="swl" pos="100"> <connection id="swlc" ref="t2bc
" course="left" orientation="outgoing" /> </switch>
<switch id="sw2" pos="400"> <connection id="sw2c" ref="t2ec
" course="right" orientation="incoming" /> </switch>
</connections>
</trackTopology>
<ocsElements>
<signals>
<signal id="sigl" pos="50" type="main" function="home" dir=
"up" />
<signal id="sig2" pos="350" type="main" function="exit" dir
="up" />
</signals>
<trainDetectionElements>
<trainDetector id="acl" name="Tp(x/1)" pos="48.9"
axleCounting="true" />
<trainDetector id="ac2" name="Tp(l/y)" pos="350.1"
axleCounting="true" />
</trainDetectionElements>
</ocsElements>
</track>
<track id="t2">
<trackTopology>
<trackBegin id="t2b" pos="0"> <connection id="t2bc" ref="
swlc" /> </trackBegin>
<trackEnd id="t2e" pos="300"> <connection id="t2ec" ref="
sw2c" /> </trackEnd>
</trackTopology>
<ocsElements>
<signals>
<signal id="sig3" pos="225" type="main" function="exit" dir
="up"/>
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</signals>
<trainDetectionElements>
<trainDetector id="ac3" name="Tp(l/z)" pos="225.1"
axleCounting="true" />
<trainDetector id="ac4" name="Tp(l/z)" pos="220.6"
axleCounting="true" />
</trainDetectionElements>
</ocsElements>
</track>
</tracks>
</infrastructure>

A simplified rulebase for static railway infrastructure verification is included
below.
railcons_ruleset:

[
|| title: Example ruleset for static railway infrastructure
verification

o
°
o
°

o\

| rule: X belongs to Y, typically a track.

| type: definition

belongsTo (X,Y) :- childElement (X,Y) .

belongsTo (X,Y) :- belongsTo(X,Z), belongsTo(Z,Y).

o°

%] rule: Element which is connected to a track.
%] type: definition
trackElement (X) :— track(T), childElement (X, T).

| rule: Station boundary
| type: definition
stationBoundary (B) :- macroscopicNode (B) .

o° oo

%] rule: Connection exists between objects (switch, track
continuation, crossing, etc.).
%] type: definition
connection(A,B) :- trackElement (A), trackElement (B), connection(Cl
), belongsTo(Cl,A),
belongsTo(C2,B), ref(Cl,C2).
connection (A,B) :- connection(B,A).

%] rule: Connection with direction (switch, track continuation,
crossing, etc.)
%] type: definition

connection(A,B,D) :- connection(A,B), trackBegin(B), D="up’.
connection(A,B,D) :- connection(A,B), trackEnd(B), D=’down’.
connection(A,B,D) :- connection(B,A,0), oppositeDirection(D,O0).

| rule: Switch position opposite (left/right)
| type: definition
oppositePosition(left, right) .
oppositePosition (right, left) .

o o°

rule: Direction opposite (up/down)
type: definition

o° oo
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oppositeDirection (up, down) .
oppositeDirection (down, up) .

%] rule: Inconsistent connection information.
%] type: consistency
twoWayConnectionMissingError (X) :— connection(X), ref(X,Y), not(

ref (Y,X)).

| rule: Objects belong to same track.
| type: definition
directlyConnected (A,B) :- track(T), belongsTo(A,T), belongsTo(B,T)

o o

rule: Objects are connected by tracks.
type: definition

o° oo

connected(A,B) :- directlyConnected(A,B).
connected (A,B) :— connection(A,B).
connected (A,B) :— connected(A,X), connected(X,B).

%] rule: Objects are following (in given direction) on the same

track.

%] type: definition

directlyFollowing (A,B,’up’) :— directlyConnected(A,B), A \= B, pos
(A,PA), pos(B,PB), PA < PB.

directlyFollowing (A,B,’down’) :- directlyConnected(A,B), A \= B,

pos (A,PA), pos(B,PB), PA > PB.

%] rule: Objects are following (in direction D).
%] type: definition

following (A,B,D) :- directlyFollowing(A,B,D).
following(A,B,D) :- connection(A,B,D).
following(A,B,D) :- following(A,X,D), following(X,B,D).

%] rule: Objects have a distance of L, on the same track.
%] type: definition

directDistance (A,B,D,L) :- directlyFollowing(A,B,D), pos(A,PA),
pos (B,PB), PB > PA, L is PB-PA.
directDistance(A,B,D,L) :- directlyFollowing(A,B,D), pos(A,PA),

pos(B,PB), PB < PA, L is PA-PB.

rule: Connection to same track.

o° oo

\

| type: consistency

connectionToSameTrack (A,B) :—- connection(A,B), directlyConnected (A
,B).

%] rule: Objects have a distance of L, along track.
%] type: definition

distance(A,B,D,L) :- directDistance(A,B,D,L).

distance(A,B,D,L) :—- connection(A,B,D), L is O.

distance(A,B,D,L) :- not(directlyConnected(A,B)), directDistance (A
+X,D,L1),

distance (X,B,D,L2), L is L1+L2.

%] rule: Object between two other objects (along tracks).
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%| type: definition
between (A,X,B) :- following(A,X,D), following(X,B,D).

rule: Missing switch orientation.

oo o

type: consistency
missingSwitchOrientation (X) :- switch(X), not (switchOrientation (X,

).

rule: Switch orientation derived from the connection relation.
type: definition

switchOrientation(Sw,0Q) :— switch(Sw), connection(Sw,X,D),
orientationDirection(O,D) .

o o

%| rule: Orientation/direction correspondence (up is outgoing, i.e
increasing mileage)

type: definition

orientationDirection ('’ outgoing’,’up’) .

orientationDirection (’ incoming’,’down’) .

S

°

rule: Facing switch definition

type: definition

switchFacing (SW,DIR) :- switchOrientation (SW,O0),
orientationDirection (O,DIR) .

% |
|

%] rule: First facing switch in station, coming from a macroscopic
node.
| type: definition
firstFacingSwitch (B, SW,DIR) :- stationBoundary (B),
switchFacing (SW,DIR), following (B, SW,DIR).

o
°

rule: Missing signal type.
type: consistency
missingSignalType (X) :- signal (X), not (type(X,_)).

o° o

rule: Main signal with specified directionality.

type: definition

mainSignalDirection(X,D) :- signal(X), dir(X,D), (type(X, ’'main’)
; type (X, combined’)) .

o° oo

| rule: Home signal exists between two elements.
| type: definition

homeSignalBetween (S,B, SW) :-

signal (S), function(S,’home’), between(B,S,SW).

o° o

rule: Missing home signal in station entry path.
type: technical

severity: error
missingHomeSignalBeforeFacingSwitch (B, SW) :—
firstFacingSwitch (B, SW,_),

(not (homeSignalBetween(_,B, SW))) .

o° o o°

rule: Home signal too close to first facing switch.
type: technical

o0 o° oe

severity: error
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homeSignalBeforeFacingSwitchError (S, SW) :-—
firstFacingSwitch (B, SW,DIR),
homeSignalBetween (S, B, SW),
distance (S,SW,DIR,L), L < 200.

| rule: Train detectors must be 21.0 m apart.
| type: technical
trainDetectorsTooClose (A,B) :-—
trainDetector (A), trainDetector (B),
distance(A,B,’up’,L), L < 21.0.

o o

Finally, the output (YAML format) of the verification tool.

issues:
- rule:
type: technical
severity: error
rule: Missing home signal in station entry path.
ids:
- tel
- sw2
- rule:
severity: error
rule: Home signal too close to first facing switch.
type: technical
ids:
- sigl
- swl
- rule:
rule: Train detectors must be 21.0 m apart.
type: technical
ids:
- ac4
- ac3
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