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Abstract

We give a brief survey of some fundamental concepts, methods and results in
the mathematics of finance. The survey covers the 3 topics

Chapter 1: Markets and arbitrages.
The one-period model. The multi-period model.
The continuous time model.

Chapter 2: Contingent claims and completeness.
Hedging. Complete markets.

Chapter 3: Pricing of contingent claims.
The Black and Scholes formula.

Introduction

The role of mathematics in economics has increased steadily during the last decades and
this trend has been extra strong in finance. In 1997 Myron Scholes and Robert Merton
were awarded the Nobel Prize in Economics, mainly for their work related to the celebrated
Black and Scholes option pricing formula. (Fischer Black died in 1995). This formula is a
spectacular example of how the advanced mathematical theory of stochastic analysis can
be useful in economics.

The purpose of this paper is to give a first introduction to the mathematical modelling
of finance. For more information we refer to [D], [K], [KS2], [LL] and [Ø2] and the
references therein.
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1 Markets and arbitrages

Although the main emphasis of this survey is on the continuous time models, we will first
discuss some simple discrete time models, because they provide good motivation for the
more advanced and technically complicated time-continuous case.

The one-period model

In this model there are just two instants of time t: t = 0 (initial time) and t = T > 0
(terminal time).

Definition 1.1 A market in the one-period model consists of two (n + 1)-dimensional
vectors

X(0) = (X0(0), X1(0), . . . , Xn(0)) and X(T ) = (X0(T ), X1(T ), . . . , Xn(T ))(1.1)

representing the prices X0(t), . . . , Xn(t) of n+1 securities/assets at times t = 0 and t = T ,
respectively. The first component X0(t) represents the price of a safe investment, say a
bank account, while the other components X1(t), . . . , Xn(t) represent the prices of n risky
investments, say of stocks, where n is a natural number. We assume that the value of
X(0) is deterministic and known, while the value of the price X(T ) at the future time T is
random and unknown. Thus we regard X(T ) as a random variable on a given probability
space (Ω,F , P ), where Ω is a set, F is a σ-algebra of subsets of Ω and P : F → [0, 1] is a
probability measure.

The price X0(t) of the safe investment is often called the numeraire. We assume from
now on that X0(t) > 0 for t ∈ {0, T}. Then if we take X0(t) as the unit (numeraire), the
price vector becomes

X(t) = (1, X−1
0 (t)X1(t), . . . , X−1

0 (t)Xn(t)), t = 0, T .(1.2)

This market {X(t)}t=0,T is called the normalization of the market {X(t)}t∈{0,T}. A market
{Y (t)}t∈{0,T} is called normalized if Y0(t) = 1 for t = 0 and t = T .

Definition 1.2 a) A portfolio in the one-period model is an (n+ 1)-dimensional deter-
ministic vector

θ = (θ0, θ1, . . . , θn)(1.3)

Here θi represents the number of units of security number i which are held at time t = 0;
i = 0, 1, . . . , n.

b) The value at time t of the portfolio θ is given by

V θ(t) = θ ·X(t) =
n∑
i=0

θiXi(t) ,(1.4)
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where · denotes the dot product in Rn+1.

c) The portfolio θ is called an arbitrage if

V θ(0) ≤ 0 ≤ V θ(T ) a.s. and P [V θ(T ) > 0] > 0(1.5)

where a.s. means ‘almost surely’ or ‘with probability 1’ (with respect to P ).

In other words, θ is an artibrage if it can generate a positive fortune with positive
probability starting with a non-positive fortune, without any risk of a loss. Intuitively,
this cannot be possible in a market in equilibrium. Therefore the absence of arbitrage is
often used as an equilibrium criterion of a market.

Remark. If the market {X(t)}t∈{0,T} is normalized then it has an arbitrage θ in the

sense of (1.5) if and only if there exists a portfolio θ̃ satisfying the weaker condition

V θ̃(T ) ≥ V θ̃(0) a.s. and P [V θ̃(T ) > V θ̃(0)] > 0(1.6)

To see this, assume θ̃ satisfies (1.6). Define

θ =

(
−

n∑
i=1

θ̃iXi(0), θ̃1, . . . , θ̃n

)

Then

V θ(0) = −
n∑
i=1

θ̃iXi(0) +
n∑
i=1

θ̃iXi(0) = 0

and

V θ(T ) = −
n∑
i=1

θ̃iXi(0) +
n∑
i=1

θ̃iXi(T )

Hence

V θ(T )− V θ(0) =
n∑
i=1

θ̃iXi(T )−
n∑
i=1

θ̃iXi(0)

=
n∑
i=1

θ̃iXi(T )−
n∑
i=1

θ̃iXi(0) = V θ̃(T )− V θ̃(0) ,

so θ satisfies (1.5) since θ̃ satisfies (1.6).

However, if {X(t)}t∈{0,T} is not normalized, then the existence of a portfolio θ sat-
isfying (1.6) need not imply the existence of a portfolio satisfying (1.5). For example,
let

X(0) = (1, 1) and X(T ) = (1 + Y, 3− 2Y ),
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where Y ≥ 0 is a random variable assuming arbitrary small and arbitrary large values

with positive probability. Then θ̃ = (2, 1) gives V θ̃ = 3 and V θ̃(T ) = 5, so (1.6) holds. On
the other hand, if we try to find θ = (a, b) such that (1.5) holds, we get V θ(0) = a+b ≤ 0,
and hence V θ(T ) = a(1 + Y ) + b(3 − 2Y ) ≤ 2b − bY , which cannot satisfy (1.5) for any
b ∈ R.

Example 1.3 Suppose Y (ω) is a random variable, a ∈ R a constant and suppose that

X(0) = (1, a) , X(T ) = (1, Y )(1.7)

Choose θ = (θ0, θ1). Then

V θ(0) = θ0 + θ1a and V θ(T ) = θ0 + θ1Y .

So (θ0, θ1) is an arbitrage if

θ0 + θ1a ≤ 0 ≤ θ0 + θ1Y a.s. P and P [θ0 + θ1Y > 0] > 0(1.8)

(i) Suppose
Y ≥ a a.s. P and P [Y > a] > 0.

Then (θ0, θ1) = (−a, 1) (i.e. borrow the amount a in the bank and use it to buy one stock)
is an arbitrage by (1.8).

(ii) Similarly, if
Y ≤ a a.s. P and P [Y < a] > 0

then (θ0, θ1) = (a,−1) is an arbitrage by (1.8). The remaining case is when

(iii) P [Y > a] > 0 and P [Y < a] > 0.

In this case no θ = (θ0, θ1) can be an arbitrage, because if θ1 > 0 then

P [θ0 + θ1Y < θ0 + θ1a] = P [Y < a] > 0

and if θ1 < 0 then
P [θ0 + θ1Y < θ0 + a1a] = P [Y > a] > 0 .

Moreover, if θ1 = 0 then θ = (θ0, θ1) is not an arbitrage either.
We conclude that the market (1.7) has no arbitrage if and only if (iii) holds.

This example actually gives a complete characterization for n = 2 of markets which
do not have arbitrages, because of the following result:
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Lemma 1.4 Let {X(t)}t∈{0,T} be a one-period market with n ≥ 2 arbitrary. The follow-
ing are equivalent:

(i) {X(t)}t∈{0,T} has no arbitrage

(ii) {X(t)}t∈{0,T} has no arbitrage.

The proof is simple and is left to the reader.

Combining Example 1.3 with Lemma 1.4 we get

Corollary 1.5 A on-period market {X(t)}t∈{0,T} with n = 2 securities has no arbitrage
if and only if

P [X1(T ) > X1(0)] > 0 and P [X1(T ) < X1(0)] > 0(1.9)

We now seek a similar criterion for non-existence of arbitrage for arbitrary n ≥ 2. In
this connection the following concept is fundamental:

Definition 1.6 a) A probability measure Q on F is called a martingale measure for the
normalized market {X(t)}t∈{0,T} if

EQ[X(T )] = X(0) ,(1.10)

where EQ denotes expectation with respect to Q.

b) If – in addition to (1.10) – the measure Q is equivalent to P , written Q ∼ P (in the
sense that P and Q hav the same null sets), then we say that Q is an equivalent martingale
measure.

One reason for the importance of this concept is the following:

Theorem 1.7 a) Suppose there exists an equivalent martingale measure Q for the nor-
malized market {X(t)}t∈{0,T}. Then the market {X(t)}t∈{0,T} has no arbitrage.

b) Conversely, suppose the market {X(t)}t∈{0,T} has no arbitrage. Then there exists an
equivalent martingale measure Q for {X(t)}t∈{0,T}.

Proof of a). Suppose an arbitrage θ(t) for {X(t)}t∈{0,T} exists. Let V
θ
(t) be the corre-

sponding value process for {X(t)}t∈{0,T}. Then, since V
θ
(T ) ≥ V

θ
(0) a.s. P we have

V
θ
(T ) ≥ V

θ
(0) a.s. Q,(1.11)
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since Q is equivalent to P . Similarly, since P [V
θ
(T ) > V

θ
(0)] > 0 we have

Q[V
θ
(T ) > V

θ
(0)] > 0 .(1.12)

On the other hand, since Q is a martingale measure for {X(t)}t∈{0,T} we have

EQ[V
θ
(T )] = EQ[θ ·X(T )] = θ · EQ[X(T )] = θ ·X(0) = V

θ
(0) .(1.13)

Clearly (1.13) contradicts (1.11) combined with (1.12). We conclude that {X(t)}t∈{0,T},
and hence {X(t)}t∈{0,T}, cannot have an arbitrage. We refer to [LL, Theorem 1.2.7] for a
proof of b). 2

Remark. The reader can easily verify that when n= 2 then (1.9) is equivalent to the
existence of an equivalent martingale measure for {X(t)}t∈{0,T}.

The multi-period (discrete time) model

We now introduce a more elaborate model, where trading and price changes can take
place in k instants of time t = tj, where t0 = 0 < t1 < t2 < · · · < tk−1. In addition we
have a terminal time T = tk > tk−1. Put T = {t0, t1, . . . , tk}.

The market is now represented by an (n+1)-dimensional stochastic process {X(t)}t∈T
on a probability space (Ω,F , P ), where Xi(t) is the price of security i at time t. As before
we assume that X(0) is deterministic and known, while X(t) may be random for t 6= 0.
Similarly, a portfolio is now an (n + 1)-dimensional stochastic process {θ(t)}t∈T (on the
same probability space), where θi(t) is the number of units of security number i held at
time t.

In this model it is necessary to emphasize that when an agent makes a decision
about her portfolio at time t, she only has knowledge about the price process up to
that time and not about future prices (except their probability distributions). To express
this mathematically we let Gt denote the σ-algebra generated by the random variables
{Xi(s); s ≤ t, i = 0, , . . . , n}. Heuristically Gt represents the history of the process
{X(s)} up to time t. Then we require that θ(t) should be measurable with respect to Gt,
for all t ∈ T . If this is the case, we say that θ(t) is adapted (to Gt). From now on we will
assume that all our portfolios are adapted.

If θ(t) is a portfolio we can as before define the corresponding value process V θ(t) by

V θ(t) = θ(t) ·X(t) ; t ∈ T .

We say that the portfolio θ(t) is self-financing if for each j = 0, . . . , k − 1 we have

V θ(tj+1) = V θ(tj) + θ(tj) · (X(tj+1)−X(tj))(1.14)
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or
∆V θ(tj) = θ(tj) ·∆X(tj) ,(1.15)

where ∆V θ(tj) = V θ(tj+1)− V θ(tj) and ∆X(tj) = X(tj+1)−X(tj).
In other words, when the agent decides about her portfolio θ(tj+1) at time tj+1, she

can use only the money V θ(tj) available at time tj plus the profit θ(tj) ·∆X(tj) coming
from the change in prices from tj to tj+1 and the portfolio choice she made at time tj.

We now proceed as in the one-period case:

Definition 1.8 A self-financing (and adapted) portfolio is an arbitrage if

V θ(0) ≤ 0 ≤ V θ(T ) a.s. P and P [V θ(T ) > 0] > 0 .(1.16)

If we assume that X0(t) 6= 0 for all t ∈ T we can define the normalized process X(t) by

X(t) = (1, X−1
0 (t)X1(t), . . . , X−1

0 (t)Xn(t)) ; t ∈ T

As before we have

Lemma 1.9 The following are equivalent:

(i) {X(t)}t∈T has no arbitrage
(ii) {X(t)}t∈T has no arbitrage

Definition 1.10 a) A probability measure Q on F is called a martingale measure for
the normalized market {X(t)}t∈T if

EQ[X(tj+1) | Gtj ] = X(tj) ; j = 0, 1, . . . , k .(1.17)

b) If – in addition to (1.14) – the measure Q is equaivalent to P , then we say that Q is
an equivalent martingale measure.

We can now state the multi-period version of Theorem 1.7:

Theorem 1.11 a) Suppose there exists an equivalent martingale measure Q for the
normalized market {X(t)}t∈T . Then the market {X(t)}t∈T has no arbitrage.

b) Conversely, if the market {X(t)}t∈T has no arbitrage, then there exists an equivalent
martingale measure Q for {X(t)}t∈T .

Proof of a). Suppose an arbitrage θ for {X(t)}t∈T exists. Let V
θ
(t) be the corresponding

value process for {X(t)}t∈T . Then since V
θ
(T ) ≥ 0 a.s. P we have

V
θ
(T ) ≥ 0 a.s. Q(1.18)
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because Q is equivalent to P .

Similarly, since P [V
θ
(T ) > 0] > 0, we have

Q[V
θ
(T ) > 0 .(1.19)

On the other hand, since Q is a martingale measure for {X(t)}t∈T it follows that

EQ[V
θ
(T )] = EQ[V

θ
(0) +

k−1∑
j=0

∆V
θ
(tj)]

∗
=V

θ
(0) +

k−1∑
j=0

EQ[θ(tj) ·∆Xθ(tj)]

= V
θ
(0) +

k−1∑
j=0

EQ[EQ[θ(tj) ·∆X(tj) | Gtj ]]

= V
θ
(0) +

k−1∑
j=0

EQ[θ(tj)EQ[∆X(tj) | Gtj ]]

= V
θ
(0) ,

where we at (∗) have used the self-financing property of θ. This is impossible in view of
(1.18) and (1.19). We conclude that {X(t)}t∈T , and hence {X(t)}t∈T , cannot have an
arbitrage. 2

We refer to [LL, Theorem 1.2.7] for a proof of b).

The continuous time model

We now assume that trading and price changes can take place at any time t ∈ [0, T ],
where T > 0 is fixed. Hence the market is now represented by a continuous time (n+ 1)-
dimensional stochastic process X(t) = (X0(t), X1(t), . . . , Xn(t)); t ∈ [0, T ] on a given
probability space (Ω,F , P ). More precisely, we will assume that X(t) is an Ito process of
the form

dX0(t) = ρ(t, ω)X0(t)dt ; X0(0) = 1(1.20)

dXi(t) = µi(t, ω)dt+ σi(t, ω)dB(t) ; Xi(0) = xi ; 1 ≤ i ≤ n(1.21)

where B(t) = (B1(t), . . . , Bm(t)) is m-dimensional Brownian motion with filtration

{Ft}t≥0 = {F (m)
t }t≥0, ρ(t, ω) ∈ R, µi(t, ω) ∈ R and σi(t, ω) is row number i of an n×m

matrix σ(t, ω) = [σij(t, ω)] 1≤i≤n
1≤j≤m

, so that σidB means
m∑
j=1

σijdBj. We assume that all these
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coefficients ρ, µi, σij are (t, ω)-measurable and {F (m)
t }-adapted, that ρ(t, ω) is bounded

and

P
[ T∫

0

{|µi(t, ω)|+
m∑
j=1

σ2
ij(t, ω)}dt <∞

]
= 1 for all i .(1.22)

Under these conditions (1.20)–(1.21) can be interpreted in the Ito integral sense

X0(t) = 1 +

t∫
0

ρ(s, ω)X0(s)ds(1.23)

Xi(t) = xi +

t∫
0

µi(s, ω)ds+

t∫
0

m∑
j=1

σij(s, ω)dBj(s) ; 1 ≤ i ≤ n(1.24)

Note that the solution of (1.20) is

X0(t) = exp
( t∫

0

ρ(s, ω)ds
)

(1.25)

and hence that

ξ(t): = X−1
0 (t) = exp

(
−

t∫
0

ρ(s, ω)ds
)
> 0(1.26)

Also note that
dξ(t) = −ρ(t, ω)ξ(t)dt ; ξ(0) = 1 .(1.27)

For more information about Ito integrals we refer to e.g. [KS1] and [Ø2].

A portfolio in this market is an (n+ 1)-dimensional Ft-adapted and (t, ω)-measurable
process θ(t) = (θ0(t), θ1(t), . . . , θn(t)). As before θi(t) gives the number of units of security
i held at time t. The value process V θ(t) of a portfolio is, as before,

V θ(t) = θ(t) ·X(t) ; t ∈ [0, T ]

We say that the portfolio θ(t) is self-financing if

dV θ(t) = θ(t) · dX(t)(1.28)

i.e., if

V θ(t) = V θ(0) +

t∫
0

θ(s) · dX(s) ; t ∈ [0, T ](1.29)

where the integral on the right is the Ito integral obtained by substituting (1.20), (1.21)
for X(t).

9



    

Remarks. 1) Note that the self-financing condition (1.28) is just the continuous time
analogue of (1.15).

2) The reader can easily verify that all constant portfolios θ = (θ0, . . . , θn) are self-
financing.

In the continuous time model it is necessary to add one more condition on the portfolios
allowed:

Definition 1.12 A self-financing portfolio θ is called admissible if there exists K =
K(θ) <∞ such that

V θ(t, ω) ≥ −K for a.a. (t, ω) ∈ [0, T ]× Ω(1.30)

(here, and in the following, “almost all t ∈ [0, T ]” means with respect to Lebesgue measure
on [0, T ].)

The condition (1.30) is natural from a modelling point of view: There must be a
bound on the size of the debt that an agent can have during her portfolio. The condition
is also mathematically convenient: It excludes the so-called doubling strategies. See [Ø2,
Chapter 12] for more details.

We now proceed as in the multi-period case:

Definition 1.13 An admissible portfolio θ(t) is called an arbitrage if

V θ(0) ≤ 0 ≤ V θ(T ) a.s. P and P [V θ(T ) > 0] > 0 .(1.31)

Example 1.14 Suppose n = 2 and

dX0(t) = 0 X0(0) = 1

dX1(t) = dt+ dB1(t) + dB2(t) ; X1(0) = 1

dX2(t) = 3dt− 2dB1(t)− 2dB2(t) ; X2(0) = 1

Then θ(t) = (−3, 2, 1) (constant) is an arbitrage, because

V θ(t) = −3 + 2(1 + t+B1(t) +B2(t)) + 1 · (1 + 3t− 2B1(t)− 2B2(t)) = 5t .

As in the discrete time case we can define the normalized price process X(t) by

X(t) = ξ(t)X(t) = (1, ξ(t)X1(t), . . . , ξ(t)Xn(t))(1.32)

where ξ(t) = X−1
0 (t) as in (1.26). Note that by Ito’s formula we have

dX(t) = ξ(t)dX(t) +X(t)dξ(t) = ξ(t)[dX(t)− ρX(t)dt] .(1.33)

We say that {X(t)}t∈[0,T ] is normalized if X(t) = X(t), i.e. if X0(t) = 1 for all t.
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Lemma 1.15 a) The following are equivalent:
(i) {X(t)}t∈[0,T ] has no arbitrage

(ii) {X(t)}t∈[0,T ] has no arbitrage

b) Suppose {X(t)}t∈[0,T ] is normalized. Then {X(t)}t∈[0,T ] has an arbitrage if and only
if there exists an admissible portfolio θ such that

V θ(0) ≤ V θ(T ) a.s. and P [V θ(T ) > V θ(0)] > 0 .(1.34)

Proof. a) Suppose θ is an arbitrage for {X(t)}t∈[0,T ]. Let

V
θ
(t) = θ(t) ·X(t) = ξ(t)V θ(t)(1.35)

be the corresponding value process for the normalized market. Then

dV
θ

= d(ξ(t)V θ(t)) = ξ(t)dV θ(t) + V θ(t)dξ(t)

= ξ(t)θ(t)dX(t)− ρ(t)ξ(t)V θ(t)dt

= ξ(t)θ(t)[dX(t)− ρ(t)X(t)dt] = θ(t)dX(t)

Hence

V
θ
(t) = V (0) +

t∫
0

θ(t)dX(t) .(1.36)

In particular, θ is admissible for {X(t)}t∈[0,T ]. Moreover, since

V θ(0) ≤ 0 ≤ V θ(T ) a.s. and P [V θ(T ) > 0] > 0

we have by (1.34)

V
θ
(0) ≤ 0 ≤ V

θ
(T ) a.s. and P [V

θ
(T ) > 0] > 0 .

Hence θ is an arbitrage for {X(t)}t∈[0,T ].
The argument goes both ways and hence a) is proved.

b) Suppose {X(t)}t∈[0,T ] is normalized and let θ be an admissible portfolio satisfying
(1.33).

Define θ̌(t) = (θ̌0(t), θ̌1(t), . . . , θ̌n(t)) by

θ̌i(t) = θi(t) for i = 1, 2, . . . , n

and put

θ̌0(0) = −
n∑
i=1

θi(0)Xi(0)
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and

θ̌0(t) =
n∑
i=1

( t∫
0

θi(s)dXi(s)− θi(t)Xi(t)
)

Then V θ̌(0) = 0 and because dX0(t) = 0 we have

V θ̌(t) = θ̌(t)X(t) = θ̌0(t) +
n∑
i=1

θi(t)Xi(t) =

t∫
0

θ̌(s)dX(s) .

So θ̌ is admissible and θ satisfies (1.31) since

V θ̌(t) = V θ(t)− V θ(0) .
2

Just as in the discrete time case there is a striking relation between markets with no
arbitrage and equivalent martingale measures. However, in this case the relation is more
complicated:

Definition 1.16 a) A probability measure Q on F (m)
T is called a martingale measure for

the normalized market {X(t)}t∈[0,T ] if

EQ[X(s) | F (m)
t ] = X(t) for all s > t(1.37)

b) If – in addition to (1.37) – the measure Q is equivalent to P , then we say that Q is
an equivalent martingale measure for {X(t)}t∈[0,T ].

We now state without proof the continuous time analogue of Theorem 1.11:

Theorem 1.17 [DS]

a) Suppose there exists an equivalent martingale measure for {X(t)}t∈[0,T ]. Then the
market {X(t)}t∈[0,T ] satisfies the “no free lunch with vanishing risk” (NFLVR)-
condition.

b) Conversely, if the market {X(t)}t∈[0,T ] satisfies the NFLVR-condition, then there is
an equivalent martingale measure for {X(t)}t∈[0,T ].

Remark. We will not define the NFLVR-condition here, but simply point out that it is
slightly stronger than the “no arbitrage”-condition. We refer to [DS] for details and for
the proof of Theorem 1.17. Hence we have

Corollary 1.18 Suppose there exists an equivalent martingale measure for {X(t)}t∈[0,T ].
Then the market {X(t)}t∈[0,T ] has no arbitrage.
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When do equivalent martingale measures exist? Consider the following situation

Example 1.19 Suppose X(t) = (1, Y (t)), where

Y (t) = t+B(t) ; t ∈ [0, T ] ,

B(t) being 1-dimensional Brownian motion. Does the market {X(t)}t∈[0,T ] have an arbi-
trage? Since Y (t) can assume both positive and negative values with positive probability
our intuition tells us that the answer is no. Let us try to verify this by constructing a
measure Q ∼ P such that X(t) is a Q-martingale.

To this end put

Mt(ω) = exp(−B(t, ω)− 1
2
t) ; t ∈ [0, T ]

and define the measure Q on FT by

dQ(ω) = MT (ω)dP (ω) .

Since MT (ω) > 0 we see that Q ∼ P . Moreover,

EQ[1]: =
∫
Ω

1 dQ(ω) =
∫
Ω

MT (ω)dP (ω) = M0 = 1 ,

since Mt is a P -martingale. (The reader can easily check this by using the Ito formula.)
Hence Q is a probability measure and it remains to show that Y (t) is a Q-martingale. To
do this we apply the following well-known result about conditional expectation (see e.g.
[Ø2, Lemma 8.6.2] for a proof).

Lemma 1.20 Suppose Q is a probability measure on F of the form

dQ(ω) = f(ω)dP (ω)

for some f(ω) ≥ 0. Let Y be an F -measurable random variable such that EQ[|Y |] < ∞
and let G ⊂ F be a σ-algebra. Then if EP [f | G] 6= 0 we have

EQ[Y | G] =
E[fY | G]

E[f | G]

where E[·] = EP [·] means expectation with respect to P .

Applied to our situation this gives, for s < t < T ,

EQ[Y (t) | Fs] =
E[MTY (t) | Fs]
E[MT | Fs]

=
E[E[MTY (t) | Ft] | Fs]

Ms

=
E[Y (t)E[MT | Fs]

Ms

=
E[Y (t)Mt | Fs]

Ms

.
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Now note that by the Ito formula

d(MtY (t)) = MtdY (t) + Y (t)dMt + dMtdY (t)

= Mt(dt+ dB(t)) + Y (t)(−MtdB(t)) + (−Mt)dt

= Mt(1− Y (t))dB(t) .

Hence MtY (t) is a P -martingale and therefore by the above we get

EQ[Y (t) | Fs] =
E[MtY (t) | Fs]

Ms

=
MsY (s)

Ms

= Y (s) ,

which proves that Y (t) is a Q-martingale.
We conclude that Q is an equivalent martingale measure for X(t). Hence the market

cannot have an arbitrage.

This example is a special case of the following important result, which gives a general
method of constructing equivalent martingale measures:

Theorem 1.21 (The Girsanov theorem)
Suppose Y (t) is an Ito process in Rn of the form

dY (t) = β(t, ω)dt+ σ(t, ω)dB(t)

where B(t) ∈ Rm, β(t, ω) ∈ Rn and σ(t, ω) ∈ Rn×m. Suppose there exist processes
u(t, ω) ∈ Rm, α(t, ω) ∈ Rn such that

σ(t, ω)u(t, ω) = β(t, ω)− α(t, ω)

and such that

E
[

exp
(

1
2

t∫
0

u2(s, ω)ds
)]

<∞

Put

Mt(ω) = exp
(
−

t∫
0

u(s, ω)dB(s)− 1
2

t∫
0

u2(s, ω)ds
)

; 0 ≤ t ≤ T(1.38)

and define the measure Q on FT by

dQ(ω) = MT (ω)dP (ω) .(1.39)

Then Q is a probability measure on FT , Q ∼ P and

B̃(t): =

t∫
0

u(s, ω)ds+B(t) ; 0 ≤ t ≤ T

14



     

is a Brownian motion with respect to Q. Moreover, in terms of B̃(t) the process Y (t) has
the stochastic integral representation

dY (t) = α(t, ω)dt+ σ(t, ω)dB̃(t) .

In particular, if α(t, ω) = 0 we obtain that Q is an equivalent martingale measure for
Y (t).

Remark. Note that the filtration F̃t generated by B̃(s); s ≤ T need not be the same
as the filtration Ft generated by B(s); s ≤ t. It is easy to see that in general we have

F̃t ⊆ Ft .

But there are cases where F̃t 6= Ft. See [RY, Remark 2◦), p. 306].
However, if u(s, ω) = u(s) is deterministic it is clear that

F̃t = Ft .

This applies, for example, to the generalized Black & Scholes model in Section 4.

In view of the explicit construction in the Girsanov theorem and Corollary 1.18, it is
natural to expect that one can give conditions for the non-existence of arbitrage directly
in terms of the coefficients ρ, µ and σ in the equations (1.20)–(1.21) defining the market
{X(t)}t∈[0,T ]. This is indeed the case. For example, one can prove the following result:

Theorem 1.22 a) Suppose there exists an F (m)
t -adapted process u(t, ω) ∈ Rm such that

σi(t, ω)u(t, ω) = µi(t, ω)− ρ(t, ω)Xi(t, ω) ; for 1 ≤ i ≤ n, for a.a. (t, ω)(1.40)

and

E
[

exp
(

1
2

T∫
0

u2(t, ω)dt
)]

<∞(1.41)

Then the market {X(t)}t∈[0,T ] has no arbitrage.

b) [K, Th. 0.2.4] Conversely, if the market {X(t)}t∈[0,T ] has no arbitrage, then there

exists an F (m)
t -adapted process u(t, ω) such that (1.40) holds.

We refer to [K, Th. 0.2.4] or [Ø2, Th. 12.1.8] for a proof.

We illustrate Theorem 1.21 by looking at some special cases:

Example 1.23
(i) Suppose n = m and that σ(t, ω) ∈ Rn×n is an invertible matrix for a.a. (t, ω). Then

clearly the system of equations (1.40) has the unique solution
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u(t, ω) = σ−1(t, ω)[µ(t, ω)− ρ(t, ω)X̂(t, ω)](1.42)

where X̂(t, ω) is (the transposed of) the vector (X1(t, ω), . . . , Xn(t, ω)), obtained by
removing the 0’th component X0(t) from X(t). So if this u(t, ω) given by (1.42)
satisfies (1.41) then we know that the market has no arbitrage.

(ii) Even when n = m and σ is not invertible there may be solutions u(t, ω) of (1.40).
Consider the market with n = m = 2 and

dX0(t) = 0
dX1(t) = 2dt+ dB1(t) + dB2(t)
dX2(t) = −2dt− dB1(t)− dB2(t)

(1.43)

Then (1.40) gets the form [
1 1
−1 −1

] [
u1

u2

]
=
[

2
−2

]
which has (for example) the solution u1 = 2, u2 = 0. Since this gives

E
[

exp
(

1
2

T∫
0

u2(t, ω)dt
)]

= E[exp(2B(T, ω))] = exp(2T ) <∞ ,

we conclude that the market (1.43) has no arbitrage.

(iii) If we modify the market above to
dX0(t) = 0
dX1(t) = 1dt+ dB1(t) + dB2(t)
dX2(t) = −2dt− dB1(t)− dB2(t)

(1.44)

then the corresponding system (1.40) gets the form[
1 1
−1 −1

] [
u1

u2

]
=
[

1
−2

]
which has no solutions. We conclude by Theorem 1.22 b) that this market has an
arbitrage. Indeed, if we choose

θ(t) = (0,−1,−1)

then θ is self-financing (since it is constant) and

V θ(t) = t for t ≥ 0,

so θ is an arbitrage for the market (1.44).
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2 Contingent claims and completeness

From now on we assume we are given a continuous time market {X(t)}t∈[0,T ] given by
(1.20) and (1.21). We start this section by recalling the definition of a European call
option:

Definition 2.1 A European call option is the right – but not the obligation – to buy
one stock of a specified type at a specified price K (the exercise price) and at a specified
future time T (the time of maturity).

If S(t, ω) denotes the market price of the stock at time t, then there are two possibilities
at the time T of maturity:

(i) If S(T, ω) > K then the owner of this option will buy the stock for the price K and
immediately sell it on the open market for the price S(T, ω), thereby obtaining the
payoff S(T, ω)−K.

(ii) If S(T, ω) ≤ K then the owner will not exercise the option and the payoff is 0.

Thus we can express the payoff F (ω) at time T of a European call option by

F (ω) = (S(T, ω)−K)+ =
{
S(T, ω)−K if S(T, ω) > K
0 if S(T, ω) ≤ K

(2.1)

More generally, we introduce the following concepts:

Definition 2.2 a) A European contingent T -claim (or just a T -claim) is a lower bounded

F (m)
T -measurable random variable F (ω).

b) We say that the T -claim F (ω) is attainable in the market {X(t)}t∈[0,T ] if there exists
an admissible portfolio θ(t) ≤ Rn+1 and a real number z such that

F (ω) = V θ
z (T ): = z +

T∫
0

θ(t) · dX(t) a.s.,(2.2)

i.e. such that the value process equals F a.s. at the terminal time T . If such a θ(t) exists,
we call it a replicating or hedging portfolio for F .

c) The market {X(t)}t∈[0,T ] is called complete if every bounded T -claim is attainable.

Some important questions are:

Which claims are attainable in a given market {X(t)}t∈[0,T ]?(2.3)

Which markets {X(t)}t∈[0,T ] are complete?(2.4)

If a T -claim F is attainable, how do we find the corresponding(2.5)

initial value z and the replicating portfolio θ(t)?

Are they unique?
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Let us illustrate the situation in a simple case:

Example 2.3 Suppose the market is given by

X(t) = (1, B(t)) ∈ R2 ; t ∈ [0, T ] .

Is the claim
F (ω) = B2(T, ω)

attainable? We seek an admissible portfolio θ(t) = (θ0(t), θ1(t)) and a real number z such
that

F (ω) = B2(T, ω) = z +

T∫
0

θ(t) · dX(t) = z +

T∫
0

θ1(t)dB(t)(2.6)

By the Ito formula we see that

B2(T, ω) = T +

T∫
0

2B(t)dB(t) .

We conclude that
z = T, θ1(t) = 2B(t)

do the job (2.6). Then we choose θ0(t) to make the portfolio θ(t) self-financing. For this
we need that

V θ
z (t) = z +

t∫
0

θ(s) · dX(s) = θ(t) ·X(t)

i.e.

T +

t∫
0

2B(s)dB(s) = θ0(t) + 2B2(t) .

So we choose θ0(t) = T+
t∫

0
2B(s)dB(s)−2B2(t) = T−t−B2(t). Then θ(t) = (θ0(t), θ1(t))

is an admissible portfolio which replicates F and hence F is attainable.

There is a striking characterization of completeness of a market {X(t)}t∈[0,T ] in terms
of equivalent martingale measures, due to Harrison and Pliska [HP] and Jacod [J]:

Theorem 2.4 A market {X(t)}t∈[0,T ] is complete if and only if there is one and only one
equivalent martingale measure Q for {X(t)}t∈[0,T ].

(Compare with the equivalent martingale measure condition for non-arbitrage in The-
orem 1.17!)
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Again one may ask if there is a more direct criterion for completeness in terms of the
coefficients ρ, µ and σ in the equations (1.20)–(1.21).

Here is a partial answer:

Theorem 2.5 Let {X(t)}t∈[0.T ] be the market given by (1.20)–(1.21) and let X̂(t) be

(the transposed of) the vector (X1(t), . . . , Xn(t)). Suppose there exists an F (m)
t -adapted

process u(t, ω) ∈ Rm such that

σ(t, ω)u(t, ω) = µ(t, ω)− ρ(t, ω)X̂(t, ω) for a.a. (t, ω)(2.7)

and

E
[

exp
(

1
2

T∫
0

u2(s, ω)ds
)]

<∞ .(2.8)

Then the market {X(t)}t∈[0,T ] is complete if and only if σ(t, ω) has a left inverse Λ(t, ω) ∈
Rm×n, i.e. if and only if

rank σ(t, ω) = m for a.a. (t, ω)(2.9)

For a proof we refer to [K, Th. 0.3.5] or [Ø2, Th. 12.2.5].

Remark. Note that when (2.7) and (2.8) hold, then the corresponding (unique) equiv-
alent martingale measure Q for {X(t)}t∈[0,T ] is given by (1.38) and (1.39) in the Girsanov
theorem (Theorem 1.21), with u(t, ω) as in (2.7).

Example 2.6 Consider the market defined by
dX0(t) = 0 ; X0(0) = 1
dX1(t) = dB1(t) + 3dB2(t) ; X1(0) = x1

dX2(t) = dt− dB1(t)− 2dB2(t) ; X2(0) = x2

(2.10)

Here equation (2.7) gets the form[
1 3
−1 −2

] [
u1

u2

]
=
[

0
1

]
which has the unique solution [

u1

u2

]
=
[−3

1

]
Clearly

E
[

exp
(

1
2

T∫
0

u2(s, u)ds
)]

= E
[

exp
(

1
2

T∫
0

10dt
)]

= exp(5T ) <∞ ,

so by Theorem 2.5 this market is complete.
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Example 2.7 Suppose the market is given by

X(t) =
[

1
Z(t)

]
∈ R2 ,(2.11)

where
dZ(t) = σ1dB1(t) + σ2dB2(t) ∈ R

with σ1 and σ2 constants.
Here equation (2.7) becomes

[σ1 σ2]
[
u1

u2

]
= 0

which has infinitely many solutions
[
u1

u2

]
∈ R2. We also see that

rank σ ≤ 1 < 2 = m

in this case, so (2.9) does not hold. We conclude from Theorem 2.5 that the market (2.11)
is not complete.

Hence there exist claims which are not attainable in this market. Here is one of them:
Define F (ω) = B2

1(T ). Then

F (ω) = T +

T∫
0

2B1(s)dB1(s) .(2.12)

On the other hand, if F is attainable, there exist Ft-adapted θ(t, ω) ∈ R and z ∈ R such
that

F (ω) = V θ
z (T )(2.13)

where

V θ
z (t) = z +

t∫
0

θ(s, ω)[σ1dB1(s) + σ2dB2(s)] .(2.14)

Moreover, V θ
z (t) is lower bounded. This implies that V θ

z (t) is a supermartingale and then
it follows by the Doob-Meyer decomposition [KS1] that θ(t, ω) and z must be unique.
Hence, by comparing (2.12) and (2.14) we get T = z and

2B1(s) = σ1θ(s) and 0 = σ2θ(s)(2.15)

This contradiction shows that F cannot be attainable.
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3 Pricing of contingent claims

We motivate this section by again referring to the European call option in Definition 2.1.
Now we ask the question: How much would a buyer be willing to pay at time t = 0 to
become the owner of such an option? And what amount would the seller of such an
option be willing to accept as a payment?

Again we generalize to a situation where a person – the buyer – is being offered a
guaranteed (stochastic) payment F (ω), a given T -claim, at time T by a seller. The buyer
can now argue as follows: If I – the buyer – pay the price y for this guarantee, then I start
out with an initial fortune −y in my investment strategy. With this initial fortune (debt)
it must be possible for me to hedge to time T a value V θ

−y(T ) which, when the guaranteed
payment is added, gives me a nonnegative result:

V θ
−y(T, ω) + F (ω) ≥ 0 a.s.

By this point of view the maximal price p = p(F ) that the buyer is willing to pay is given
by

(Buyer’s price of the contingent claim F )

p(F ) = sup{y ; There exists an admissible portfolio θ such that

V θ
−y(T ): = −y +

T∫
0

θ(s)dX(s) ≥ −F (ω) a.s.}(3.1)

On the other hand, the seller can adopt a similar non-risk attitude: If I – the seller –
accept a price z for this guarantee, then I can use this as an initial fortune in an investment
strategy. With this initial value it must be possible to hedge to time T a value V θ

z (T ),
which is no less than the amount F (ω) that I have promised to pay to the buyer:

V θ
z (T, ω) ≥ F (ω) a.s.

Thus the minimal price q = q(F ) that the seller is willing to accept is given by

(Seller’s price of the contingent claim F )

q(F ) = inf{z ; There exists an admissible portfolio θ such that

V θ
z (T ): = z +

T∫
0

θ(s)dX(s) ≥ F (ω) a.s.}(3.2)

Definition 3.1 If p(F ) = q(F ) we call this common value the price (at t = 0) of the
contingent claim F (ω).
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In general we have (see e.g. [K, Prop. 0.4.1] or [Ø2, Th. 12.3.2])

Theorem 3.2 a) Suppose (2.7) and (2.8) hold and let Q be as in (1.39). Let F (ω) be
a T -claim such that EQ[ξ(T )F ] <∞. Then

p(F ) ≤ EQ[ξ(T )F ] ≤ q(F ) ≤ ∞(3.3)

b) Suppose, in addition to the conditions in a), that the market is complete. Then the
price of the T -claim is given by

p(F ) = EQ[ξ(T )F ] = q(F ) .(3.4)

Therefore, for complete markets (satisfying (2.7) and (2.8)) there is a unique, canon-
ical price of a T -claim. For incomplete markets, however, we can only give an interval
[p(F ), q(F )] within which the price should be. Unfortunately, this interval may in many
cases be large and therefore (3.3) does not give a satisfactory answer in this case. We
refer to the paper by P. Leukert [L] in this volume for more information about pricing in
incomplete markets.

Example 3.3 Consider again the market {X(t)}t∈[0,T ] given by (2.10) in Example 2.6.
Suppose the claim has the form

F (ω) = X2
1 (T, ω)

Since this market is complete, we know that the price of this T -claim is given by (3.4),
i.e.

p(F ) = q(F ) = EQ[X2
1 (T, ω)] =

= E
[

exp
( T∫

0

u1dB1(t) +

T∫
0

u2dB2(t)− 1
2

T∫
0

(u2
1 + u2

2)dt
)
X2

1 (T, ω)
]

= E[exp(−3B1(T ) +B2(T )− 5T )(x1 +B1(T ) + 3B2(T ))2]

=
1

2πT

∫
R2

exp(−3y1 + y2 − 5T )(x1 + y1 + 3y2) exp
(
− y2

1 + y2
2

4T

)
dy1dy2 ,

by using the known distribution of the 2-dimensional Brownian motion (B1(T ), B2(T )).
(This expression can be simplified further.)

Remark. In this paper we only consider the pricing of European claims. For a survey
on the pricing of American options see the paper by K. Aase [A] in this volume.
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4 The generalized Black & Scholes model

We now discuss in detail the following special case of the general model (1.20)–(1.21):

Suppose the market X(t) = (X0(t), X1(t)) = (A(t), S(t)) is given by

dX0(t) = dA(t) = ρ(t)A(t)dt ; A(0) = 1(4.1)

and
dX1(t) = dS(t) = α(t)S(t)dt+ β(t)S(t)dB(t) .(4.2)

Here ρ(t), α(t) and β(t) are deterministic functions (i.e. they do not depend on ω)
satisfying the conditions

T∫
0

(|ρ(t)|+ |α(t)|+ |β2(t)|)dt <∞(4.3)

and
T∫

0

(α(t)− ρ(t))2

β2(t)
dt <∞ .(4.4)

This is a generalization of the classical Black & Scholes market, where ρ, α and β 6= 0 are
constants [BS]. So we will just refer to it as the generalized Black & Scholes market. This
market consists of only two assets: The bank account, with price dynamics given by (4.1)
and the stock, with price dynamics given by (4.2).

First of all, let us apply the general theory outlined above to check the properties of
this market:

Non-existence of arbitrage:

The equation (1.40) gets the form

β(t)S(t, ω)u(t, ω) = α(t)S(t, ω)− ρ(t)S(t, ω)

which has the solution

u(t, ω) = u(t) =
α(t)− ρ(t)

β(t)
.(4.5)

By (4.4) we see that (1.41) holds and we conclude by Theorem 1.22 that this market has
no arbitrage.
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Completeness: Again by (1.40) we see that the conditions (2.7) and (2.8) of Theo-
rem 2.5 hold. Moreover, since σ(t) 6= 0 for a.a. t, we have rank σ(t) = 1 = m for a.a. t.
So by Theorem 2.5 we conclude that this market is complete.

The (unique) equivalent martingale measure Q is given by (see the Remark following
Theorem 2.5)

dQ(ω) = exp
(
−

T∫
0

u(t)dB(t)− 1
2

T∫
0

u2(t)dt
)
dP (ω) on FT(4.6)

with u(t) given by (4.5).
So by Theorem 3.2 b) the price of the European call option (Definition 2.1)

F (ω) = (S(T, ω)−K)+

is given by, with ξ(T ) = exp

(
−

T∫
0
ρ(t)dt

)
,

p(F ) = q(F ) = EQ[ξ(T )(S(T, ω)−K)+]

= ξ(T )EQ

[(
x1 exp

{ T∫
0

β(t)dB(t) +

T∫
0

(α(t)− 1
2
β2(t))dt

}
−K

)+]

= ξ(T )EQ

[(
x1 exp

{ T∫
0

β(t)dB̃(t) +

T∫
0

(ρ(t)− 1
2
β2(t))dt

}
−K

)+]
(4.7)

where

B̃(t) =

t∫
0

u(s)ds+B(t) =

t∫
0

α(s)− ρ(s)

β(s)
ds+B(t)(4.8)

is a Brownian motion with respect to Q.
Using the known distribution of Brownian motion the expectation in (4.7) can be

written

p(F ) = q(F ) =

ξ(T )
∫
R

(
x1 exp

{
y +

T∫
0

(ρ(t)− 1
2
β2(t))dt

}
−K+

)
1√

2πΛ
exp

(
− y2

2Λ2

)
dy(4.9)

where

Λ = EQ

[( T∫
0

β(t)dB̃(t)
)2]

=

T∫
0

β2(t)dt .(4.10)

This is the (generalized) Black & Scholes pricing formula for European call options.
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Note that – surprisingly – the coefficient α(t) does not appear in this formula!
In the (classical) special case when ρ(t) = ρ, α(t) = α and β(t) = β > 0 are constants,

we get the classical Black & Scholes formula

p(F ) = q(F ) = x1Φ(z)− e−ρTKΦ(z − β
√
T ) ,(4.11)

where

z =
ln(x1

K
) + (ρ+ 1

2
β2)T

β
√
T

(4.12)

and

Φ(u) =
1√
2π

u∫
−∞

e
− y

2

2 dy

is the standard normal distribution function.

Finally, we turn to the question (2.5):
How do we find the initial value z and the replicating portfolio θ for a given T -claim

in the generalized Black & Scholes market?
To discuss this, let us investigate more closely by direct computation the relation

between an admissible portfolio θ(t) = (θ0(t), θ1(t)) = (ξ(t), η(t)) and the corresponding
value process

V θ(t) = θ(t) ·X(t) = ξ(t)A(t) + η(t)S(t)(4.13)

Since θ is self-financing we have

dV θ(t) = ξ(t)dA(t) + η(t)dS(t)(4.14)

From (4.13) we get

ξ(t) =
V θ(t)− η(t)S(t)

A(t)
(4.15)

which substituted in (4.14) gives, using (4.1),

dV θ(t) = (V θ(t)− η(t)S(t))ρ(t)dt+ η(t)dS(t)

Combining this with (4.2) we get

dV θ(t) = ρ(t)V θ(t)dt+ η(t)S(t)[(µ(t)− ρ(t))dt+ σ(t)dB(t)](4.16)

This can be written

dV θ(t)− ρ(t)V θ(t)dt = σ(t)η(t)S(t)dB̃(t) ,

where

B̃(t) =

t∫
0

µ(s)− ρ(s)

σ(s)
ds+B(t) ; 0 ≤ t ≤ T(4.17)
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Multiplying by the integrating factor e
−
∫ t

0
ρ(s)ds

we get

d
(
e
−
∫ t

0
ρ(s)ds

V θ(t)
)

= e
−
∫ t

0
ρ(s)ds

σ(t)η(t)S(t)dB̃(t)

or

e
−
∫ t

0
ρ(s)ds

V θ(t) = V θ(0) +

t∫
0

e
−
∫ s

0
ρ(r)dr

σ(s)η(s)S(s)dB̃(s)(4.18)

From this we see that if we want to replicate a given T -claim F (ω), this amounts to
finding η(s) such that

e
−
∫ T

0
ρ(s)ds

F (ω) = V θ(0) +

T∫
0

e
−
∫ s

0
ρ(r)dr

σ(s)η(s)S(s)dB̃(s) .(4.19)

If such an η is found, then we let ξ be given by (4.15) and this makes the portfolio
θ = (ξ, η) self-financing. To prove that this θ will also be admissible, we must verify that
{V θ(t)}t∈[0,T ] is lower bounded.

To this end, let as before Q be the measure on FT defined by (4.6), (4.5). Then by
taking the conditional expectation of (4.19) with respect to Q and Ft we get

EQ

[
e
−
∫ t

0
ρ(s)ds

F (ω) | Ft
]

= V θ(0) +

t∫
0

e
−
∫ s

0
ρ(r)dr

σ(s)η(s)S(s)dB̃(s) = V θ(t) ; 0 ≤ t ≤ T(4.20)

From this we conclude that V θ(t) is lower bounded since F is. Hence θ = (ξ, η) is
admissible.

Next, note that if we take the Q-expectation of (4.19) we get

V θ(0) = e
−
∫ t

0
ρ(r)dr

EQ[F ](4.21)

We proceed to show that there does indeed exist an η satisfying (4.19), if V θ(0) is given
by (4.21). To this end define

G(ω) = e
−
∫ T

0
ρ(r)dr

F (ω)

Assume for simplicity that
EQ[G2] <∞(4.22)

Then we will show that there exists a unique Ft-adapted w(s, ω) such that

G(ω) = EQ[G] +

T∫
0

w(s, ω)dB̃(s)(4.23)
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and

E
[ T∫

0

w2(s, ω)ds
]
<∞ and

{ t∫
0

w(s, ω)dB̃(s)
}
t∈[0,T ]

is lower bounded.(4.24)

We mention some of the methods which can be used to achieve this:

Method 1 The Ito representation theorem

Since the two filtrations F̃t and Ft of B̃ and B coincide in this case (see the Remark fol-
lowing Theorem 1.21), we can apply the Ito representation theorem to the F̃T -measurable
G(ω) ∈ L2(Q) and this gives the existence and uniqueness of a w(s, ω) satisfying (4.23)
and (4.24). The disadvantage with this method is that it says nothing about how to find
w explicitly.

Method 2 The PDE method

In the Markovian case, i.e. when the payoff has the form

G(ω) = f(S(T, ω))(4.25)

for some (deterministic) function f : R → R, then one tries to find a solution V θ(t, ω),
η(t, ω) of (4.16) of the form

V θ(t, ω) = Ψ(t, S(t, ω)) , η(t, ω) =
[
∂

∂x
ψ(t, x)

]
x=S(t,ω)

(4.26)

for some function Ψ(t, x): R2 → R.
This substitution leads, by the Ito formula, to a partial differential equation in Ψ(t, x)

with boundary values
Ψ(T, x) = f(x) .

This equation can be solved using the Feynman-Kac formula.
This method was originally used by Black & Scholes [BS] for the special case of the

European call option
F (ω) = f(S(T, ω))

with
f(x): = (x−K)+ (see (2.1)).(4.27)

It has the advantage of giving explicit formulas for both V θ(0) = EQ[G] and η(t, ω).
The disadvantage is that it does not apply to non-Markovian payoffs, like the so-called
knock-out option

F (ω) =


0 if max

0≤t≤T
S(t, ω) > K

1 otherwise
(4.28)
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Method 3 Backward stochastic differential equations

Put
Y (t) = σ(t)η(t)S(t)(4.29)

Then (4.16) can be written

dV θ(t) = ρ(t)V θ(t)dt+ u(t)Y (t)dt+ Y (t)dB(t) ; 0 ≤ t ≤ T(4.30)

In addition we have the terminal condition

V θ(T ) = F (ω) a.s.(4.31)

Equations (4.30)–(4.31) constitute what is called a backward stochastic differential equa-
tion (BSDE):

We seek two Ft-adapted stochastic process V θ(t), Y (t) satisfying (4.30) for 0 ≤ t ≤ T
and such that the terminal value of V θ is given by (4.31). The existence (and uniqueness)
of a solution V θ(t), Y (t) of (4.30)–(4.31) follows from the general theory of backward
stochstic differential equations (see e.g. [PP] and [P]). The theory of BSDE has many
applications. Unfortunately it is only in special cases that explicit solution formulas can
be found.

Method 4 The generalized Clark-Ocone formula

This formula states that if G ∈ D1,2 and satisfies some additional conditions then

G(ω) = EQ[G] +

T∫
0

EQ[DtG | Ft]dB̃(t) ,(4.32)

where B̃ and Q are as before (see (4.6) and (4.8)) and DtG is the Malliavin derivative of
G at t. See [KO].

The disadvantage here is that the space D1,2 (which we do not define here) does not
contain all of L2(Q). In particular, the formula does not apply to discontinuous payoffs
like (4.28). On the other hand, since D1,2 is dense in L2(Q) we can for a given G ∈ L2(Q)
choose Gn ∈ D1,2 such that Gn → G in L2(Q). Then by the Ito isometry we get that,
with w as in (4.23),

EQ[DtGn | Ft]→ w(t, ω) in L2[λ×Q],

where λ is Lebesgue measure on [0, T ]. So we may use E[DtGn | Ft] as an approximation
of the w we seek. In some cases this limiting procedure can be used to obtain an exact
expression for w. The calculation by this method is carried out in the European call option
case in [Ø1]. The result in the classical Black & Scholes market, with ρ(t) = ρ, α(t) = α
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and β(t) = β constants, is that the portfolio θ(t) = (ξ(t), η(t)) needed to replicate the
European call

F (ω) = (S(T, ω)−K)+

is given by
η(t) = eρ(t−T )S−1(t)E[Yy(T − t)X[K,∞)(Yy(T − t))]y=S(t) ,(4.33)

where
Yy(s) = y exp(βB(s) + (ρ− 1

2
β2)s) ; 0 ≤ s ≤ T ,(4.34)

and ξ(t) is determined by (4.14).
Note that since the distribution of B(T ) is known the expectation (4.33) can be ex-

pressed more explicitly as an integral with respect to the normal distribution.
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