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Abstract 

We discuss the cost allocation problem faced by a network operator, where the fixed 

(residual) cost of the network has to be allocated among its users. Usage-based 

methods, such as the postage stamp rate method and the MW-mile method, are easy to 

understand and compute, but may yield cost allocations for which some transactions 

are subsidizing others. Formally, this is equivalent to allocations outside of the core of 

the corresponding cooperative cost game. Our main contribution is to present a 

method, similar to a well-known method for computing the nucleolus, by which several 

usage-based methods may be combined in order to produce allocations that are in, or as 

close as possible to, the core. The method is illustrated using a model of an AC power 

network.  

Keywords: Power System Fixed Cost Allocation, Cooperative Game Theory, Core 

1. Introduction 

Since the mid 1980s, the electric power systems of many countries have been subject to deregulation. 

Prior to the deregulation, the systems were characterized by vertical integration and little competition. 
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Typically, a single company controlled the entire production, transmission, and distribution system for 

a fixed geographic area. After the deregulation competition has been introduced with respect to 

production, while transmission and distribution are still performed by regional monopolies.   

Competition with respect to production means that more than one producer must be allowed to use 

transmission/distribution networks in order to sell its power to consumers, hence allocation of network 

costs has become an important topic. A good cost allocation method has to satisfy a number of 

requirements, such as: 

• transparency 

• ease of computation 

• recovery of total costs 

• fairness (e.g., non-discrimination of different users) 

• no cross-subsidies (e.g., between short- and long-distance transactions) 

• sending correct economic signals to market participants (e.g., with respect to the location of 

new generator capacity) 

Most of the cost allocation methods that have been proposed base their allocations on some measure 

of network usage. Of course, the choice of usage measure is restricted by the availability of objective 

data, such as production/consumption quantities, or line flows (these data are available to the network 

operator). We describe some of these methods, such as the postage-stamp rate method and the MW-

mile method, in  Section 3. While these methods are relatively intuitive and does not involve heavy 

computations, a disadvantage is that they are often inconsistent with economic efficiency. For 

example, the postage-stamp rate method, which allocates the total network cost in proportion to the 

production/consumption quantities, does not take into account the distance that the power travels in 

the network. It therefore leads to cross-subsidization of long-distance transactions by short-distance 

transactions, which again results in an efficiency loss because some profitable short-distance 

transactions are not performed. Efficiency losses can also result if an allocation method sends 

incorrect signals to potential investors with respect to the installation of new production or network 

capacity. Economists generally advocate the use of marginal/incremental cost allocation methods, 

arguing that a new transaction should pay the extra cost that it causes. The problem with such methods 

is that they in most cases do not recover the entire network cost, most of which is fixed. Another 
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problem with them is that the cost allocation depends on the ordering of the transactions, and it is not 

obvious how transactions should be ordered.  

Another approach to the cost allocation problems has come from cooperative game theory, the subject 

of Section 2. The literature on application of cooperative game theory to fixed cost allocation in 

electricity networks has mainly focused on applying solution concepts such as the Shapley value and 

the nucleolus in order to produce good cost allocations. This literature includes Tsukamoto and Iyoda 

(1996), Contreras and Wu (1999), and Zolessi and Rudnick (2002)). The attractiveness of allocations 

based on methods from cooperative game theory mainly stems from the fact that they in many cases 

(this is always the case for the nucleolus) belong to the core, and hence avoids the problem of cross-

subsidization. However, the fact that such methods are relatively complicated and can be 

computationally demanding, makes their implementation more difficult. 

In this paper we analyse the relationship between usage-based methods and the core of a cooperative 

game. The main idea is that while usage-based methods may yield allocations that are not in the core, 

it may be possible to obtain core allocations by combining allocations from several methods.  The 

different allocations are combined using a set of nonnegative weights, and are obtained from an LP-

based procedure that is similar to the most common procedure for computing the nucleolus of a 

cooperative game. The idea is, as in the case of the nucleolus, to find a central point in the core, with 

the additional restriction that the allocation should be a convex combination of a set of given 

allocations, and we will refer to the resulting allocation as the restricted nucleolus.  We believe that 

our procedure could be a valuable tool in the process of designing a cost allocation system, where one 

of the tasks could be to decide the weighting of different usage-based allocation schemes. 

The organization of the paper is as follows: Section 2 describes the fixed cost allocation problem and 

the related cost game. Section 3 describes some usage-based allocation methods that we will analyse, 

and relates them, via an example, to the core of the cost game. In Section 4 we explain the procedure 

for computing the restricted nucleolus, and in Section 5 we investigate the properties of the weighting 

scheme using numerical examples. 
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2. The cost game 

We consider an AC power network consisting of a set of lines, and where the network users are 

identified as transactions. The total amount of  active power of transaction i is given by Pi, and the  

active power flow caused by transaction i over line l  is denoted by Pi.l . The power flow caused by a 

transaction is computed under the assumption that no other transactions are using the network. This is 

the most common way to define the stand-alone usage of the network. Similarly, let PS,l  denote the 

flow over line l  if a group S (coalition) of transactions uses the network. Although the definition given 

above is consistent with the economic definition of stand-alone usage, it may result in significant 

problems by the power flow calculations in large networks.  First of all, if an AC program is used, 

regardless of whether it is OPF or just a simple load flow program, it may be impossible to find a 

solution in large networks. This can happen in real interconnected networks where the AC will not 

converge if the player’s load is just a small part of the total network capacity. In the case of DC load 

flow this convergence problem will never occur, but, unfortunately, this algorithm provides only an 

approximation of the real network situation. Future work should focus on a definition of stand-alone 

usage which will be more compatible with the reality of electrical networks. We refer to (Bergen and 

Vittal, 1986) for a more detailed description of the network, as well as the computation of the line 

flows. 

The cost game is given by the pair (N,c), where N = {1,...,n} is the set of players (transactions), and c 

is a function that assigns a real number to each subgroup (coalition) of N. For some nonempty 

coalition S ⊆ N, the stand-alone cost is 

 ∑ ⋅=
l

ll CPSc S ,)( ,  (1) 

where Cl  is the cost to transfer 1 MW over line l . Hence PS,l ·Cl  is the cost that is caused by coalition 

S with respect to line l , and the total stand-alone cost is then obtained by summing over all the lines in 

the network.  

A solution to a cost game is a cost allocation, i.e., a vector nRx ∈ . The most prominent solution 

concept is the core, which consists of all the cost allocations that satisfies the following rationality 

requirements:  
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 Global rationality: ∑
∈

=
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i Ncx )(   (2) 

 Group/individual rationality: ∑
∈

≤
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i Scx )(  for all NS ⊆  (3) 

The core may consist of more than one point, but it may also be empty. According to the Shapley 

value, player i is allocated the following cost: 

 
( ) ( ) {}( )[ ]i\Sc)S(c

!N

!SN!1S
SV

NS
i −

−−
= ∑

⊂

  (4) 

The Shapley value does not, in general, belong to the core, except for the class of concave (cost) 

games. The nucleolus is defined using the coalition excesses, given by e(S,x) = c(S) - x(S). Let the 

vector 

 ( ) ( ) ( )( )xxxx? ,,,,,, 2221 −= nSeSeSe)( K   (5) 

consist of the excess values for all coalitions arranged in non-decreasing order, i.e., such that 

( ) ( )xx ,, ji SeSeji ≤⇒< . Then the (pre)nucleolus (NU) is defined as the unique allocation vector 

such that NUx =  implies that )(x?  is lexicographically maximal. An appealing property of the 

nucleolus is that if the core is nonempty, then we must have 0NU? ≥)( , i.e., the nucleolus always 

belongs to the core.  An introduction to cost games, including the three solution concepts described 

above, can be found in (Young, 1985). 

Game-theoretic solution concepts such as the Shapely value and the nucleolus possess some appealing 

properties, one of which is their relationship to the core, but their rather complicated structure makes it 

difficult to motivate market participants to accept the resulting allocations. It should also be noted that 

the implementation of these solution concepts requires that the value of c be computed for each of the 

2n-1 nonempty coalitions, and the computational costs may therefore become excessive. We will in 

the next section present some of the most common (usage-based) cost allocation methods. In contrast 

to the game-theoretic solution concepts, the usage-based methods have relatively simple and intuitive 

structures. Via an example we will demonstrate that these methods yield allocations that are not in the 
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core. Then, in Section 4, we will show how core allocations may be obtained by combining several of 

the usage-based allocation methods.  

 

3. Usage-based cost allocation methods and the core 

There are several usage-based methods that have been developed in order to deal with the task of 

allocating the fixed cost of a power system among the market participants (Pan et all, 2000; Marangon 

Lima, 1996). One of the traditional methods is the postage stamp rate method, also known as the 

rolled-in method. According to this method the network usage of a transaction is measured by the 

magnitude of the transaction iP , not taking into account how the transaction affects the power flows 

over various lines in the network, and the amount to be paid by transaction i is 

 
∑
∈

=

Nj
j

i
i P

P
KPS .                                                                  (6) 

Here, K is the total cost to be covered by the market participants. In our examples we will assume that 

K = c(N). Obviously, since the postage stamp rate method does not take distances into account, it may 

lead to cross-subsidization of long-distance transactions by short-distance transactions. In order to 

cope with this disadvantage, a category of methods based on power flow data has emerged. The MW-

mile method (Shirmohammadi, 1989) was the first such method to be introduced. In order to compute 

the allocation, the network operator runs a power flow program for each single transaction and 

calculates the power flow due to this transaction over each system line. The line flows are then 

weighted with a factor that reflects the cost characteristics of each line, e.g. line lengths and 

construction costs per unit length. The weight of line l  is denoted by lC . The usage of line l  by 

transaction i is 

 lll ,, ii PCf =   (7) 

The absolute value in (7) means that the power flow direction is disregarded. The total system usage 

by transaction i is given by summing over all lines: 
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 ∑=
l

l,ii ff   (8) 

By allocating the total system cost in proportion to usage, the contribution of transaction i will be 

 
∑
∈

=

Nj
j

i
i f

f
KMWM .  (9) 

As has already been mentioned the MW-mile method does not consider the direction of power flow 

which each transaction causes. However, it is often argued that power flows having opposite direction 

from the net flow, which is the power flow due to all transactions, contribute positively in the system 

situation by relieving congestion and increasing the available transfer capacity. In order to take this 

into account, we  replace (7) by  

 lll ,, ii PCf = .                                                                   (10) 

We then use (10) instead of (7) as a basis for (8) and (9). This allocation procedure is called the 

counter flow (CF) method. Since (10) may be positive as well as negative the denominator in (9) 

could be zero, although in a realistic network the probability that this would occur is very small.  

According to the counter flow method, the contribution of a transaction may be negative, i.e., the 

network operator has to pay agent i for carrying out his transaction. For various reasons this may not 

be acceptable to the network owner and/or the market participants. A compromise that avoids negative 

contributions is the zero counter flow  (ZCF) method. According to this method, the usage of a line by 

a particular transaction is set to zero if the power flow due to the transaction goes in the opposite 

direction of the net flow for the line. Thus, instead of (7) we use 
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The amount to be paid by transaction i is then found by using (11) as a basis for (8) and (9).  
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Figure 1: 10-bus network 

Line r(p.u.) x(p.u.) b(p.u.) 
1-2, 1-4, 2-3, 2-5, 3-6, 4-5, 5-7, 6-8 0.0017 0.0180 0.6348 
4-7, 5-6, 8-10 0.0014 0.0144 0.5078 
5-8, 7-8, 8-9 0.00085 0.0090 0.3174 
6-10, 9-10 0.0012 0.0126 0.4444 

Table 1: 10-bus network data (Sb = 100MVA, Vb = 380kV). 

In order to illustrate how the usage-based methods may be related to the core, we use the 10-bus 

power system illustrated in Figure 1. The data of the system lines are given in Table 1. There are three 

power transactions in the system. The first one injects 15 MW at node 1 and withdraws them at node 

2. The second transaction is a transfer of 275 MW from node 3 to node 7 while the third one injects 15 

MW at node 10 and takes them out at node 4. The area enclosed by the triangle in Figure 2 represents 

the set of allocations for which all three players are allocated nonnegative amounts, and the respective 

vertices of the triangle represents the allocations where one player pays the entire cost. The 

characteristic function values of all the one or two player coalitions are indicated by lines, and the core 

corresponds to the area confined by all these lines. As it can be seen only the allocation corresponding 

to the zero counter flow method is located inside the core. The allocation corresponding to the counter 

flow method is located outside of the triangle, since player 1 here is allocated a negative amount. 

In many cases, even though simple rules like the usage-based methods in this section do not yield core 

allocations, such allocations may be obtained by combining several allocation methods.  If we, for the 

example illustrated by Figure 2, e.g. decide to combine the postage stamp rate method and the counter 

flow method by taking a convex combination of the corresponding allocations, we may obtain all the 

allocations lying on the straight line between PS and CF in the figure.  

1 4 7 

2 

3 
6 

5 
8 

9 

10 

~ 
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Figure 2: Core of game with three players/transactions. 

 

4. A method to obtain core points from usage-based allocations 

In this section we will describe a formal approach that can be used to combine the usage-based 

methods. Let M be the set of candidate allocations, where j
ia  is the cost allocated to player Ni ∈  

given allocation method Mj ∈ . We require the cost allocation vector x to be a convex combination 

of the candidate allocations, i.e., 
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 ∑
∈

=
Mj

j
iji awx  for Ni ∈  (12) 

 ∑
∈

=
Mj

jw 1   (13) 

 0≥jw  for Mj ∈  (14) 

In order to find allocations that are as central in the core as possible, we also require that x should be 

chosen such that the excess vector )(x?  is lexicographically maximal. Since this definition is similar 

to the definition of the nucleolus, except that we have added the requirements (12)-(14). Note that (2), 

used in the definition of the nucleolus, is implied by (12) and (13). 

The computation of the restricted nucleolus may be implemented using the LP-problem given by 

 maximize r  (15) 

 subject to )()( ScrSx ≤+  for 0Σ∈S  (16) 

in addition to (12)-(14). The set 0Σ  consists of all the 2n-2 nonempty coalitions except the grand 

coalition. If the solution of (12)-(16) is unique, we stop, and this solution is our restricted nucleolus. If 

there are an infinite number of imputations that lead to the maximum r, one of which is the restricted 

nucleolus, we must perform additional calculations in order to eliminate some imputations. This is 

done by identifying the inequality constraints of (16) that are binding for all the optimal solutions.  

Denote the set of coalitions corresponding to these constraints by 1Σ , the remaining coalitions by 

1
01 \ ΣΣ=Σ , and the optimal value of (12)-(16) by r1. Then a new LP-problem is formed by replacing 

(16) by 

 )()( ScrSx ≤+  for 1Σ∈S  (17) 

 1)()( rScSx −=  for 1Σ∈S  (18) 

If the solution to the second LP-problem also consists of an infinite number of imputations, we 

continue the process by identifying  the set 2Σ  of binding constraints, and we form a new set of 



CORE ALLOCATIONS FOR FIXED COST GAMES 

 11 

equations similar to (18) by using 2Σ  and the optimal value r2 of the second problem. Also, we 

update (17) by defining 2
12 \ ΣΣ=Σ . This process is continued until the LP-problem has a unique 

solution. Our procedure is similar to a procedure, first used by (Kopelowitz, 1967), for computing the 

nucleolus. The procedures are also discussed in chapter 6/7 of (Bjørndal, 2002).The k-th problem 

consists of (12)-(15) and 

 )()( ScrSx ≤+  for 1−Σ∈ kS  (19) 

 jrScSx −= )()(  for 1,,1, −=Σ∈ kjS j K  (20) 

For the three-player example from Section 1, we compute the restricted nucleolus (RN) for the case 

where { }CFMWMPSM ,,= . The resulting allocation, illustrated in Figure 3, is a combination of the 

MWM allocation and the CF allocation, where 573.0=MWMw  and 427.0=CFw . 



CORE ALLOCATIONS FOR FIXED COST GAMES 

 12 

 

Figure 3: Core of the three-transactions case and the restricted nucleolus (RN). 

 

The procedure described above locates a core point (if possible) by maximizing, in a lexicographical 

sense, the vector of excesses. In other words, we maximize the dissatisfaction, as measured by the 

excess value, of the least satisfied coalition. In the LP-problem given by (12)-(14), (19), and (20), this 

excess value is given by the number 1r . We will in the following use this number in order to compare 

different core points, e.g., resulting from different choices with respect to the set M of candidate 

allocations. In order to compare different games, we normalize the excesses by computing r1/c(N). 
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The solution of (12)-(14) can only be unique if the vectors maa ,,1 K  are linearly independent. 

Moreover, we must have MN ≥ , i.e., there must be at least as many players as candidate allocation 

vectors. An example of a violation of the first of these requirements is found in the case of the usage-

based allocation methods of Section 3. Assuming, without loss of generality, that 1== lCK , the 

usage measures for the three flow-based methods can be rewritten as 

 ( )∑ −=
l

ll ,, ;max ii
MWM

i PPf , ∑=
l

l,i
CF

i Pf , and ( )∑=
l

l 0;max ,i
ZCF

i Pf .  (21) 

From these expressions we easily see that ( )CF
i

MWM
i

ZCF
i fff += 2

1 , hence  

 
∑

∑

∑

∑
⋅

+
⋅

=

j

ZCF
j

j

CF
j

i

j

ZCF
j

j

MWM
j

ii f

f
CF

f

f
MWMZCF

22
,  (22) 

i.e., the three allocation vectors are linearly dependent. Hence, our method will fail to produce a 

unique solution if we try to include all three allocation. Since the ZCF allocation is a convex 

combination of the MWM and the CF allocations, choosing the set M such that it includes both of the 

latter allocations will yield a value of r1 that is at least as low as if the ZCF allocation was substituted 

for either one of  MWM or CF.  

The method described above could be used as a tool in the process of designing a fixed cost allocation 

system, where one has to decide which set of usage-based cost allocation methods to use, and how to 

combine them. In practice load patterns change over time, whereas the cost allocation system must be 

designed in advance and held constant. As we will see in the numerical examples in the next section, 

the optimal weights are typically not stable as the load patterns of the transactions are changed, hence 

a weight system computed for one particular load profile is of little use when the load pattern changes. 

However, by combining weight systems that are optimal with respect to a number of different load 

profiles, e.g., by taking the arithmetic average of the weights, we get a more robust cost allocation 

system.  
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5. A numerical example 

We illustrate the method proposed in Section 4 with the 14-bus network shown in Figure 4, and where 

the line characteristics are given in Table 2. The seven transactions to be performed are listed in Table 

3. Eight different transaction profiles were considered, where the amounts of power transacted are 

shown in Table 4 below. As can be seen from the minimal excess values in Table 4, the CF allocation 

belonged to the core (non-negative excess values) for all transaction profiles, whereas none of the 

other three usage-based allocation methods produced core points for any of the transaction profiles. 

 

Figure 4: Network for the example. 

 

Line r(p.u.) x(p.u.) b(p.u.) 
1-6, 9-7, 6-14, 7-13 0.00425 0.0450 1.5870 
all other lines 0.0017 0.0180 0.6348 

Table 2: Data for the 14-bus network  (Sb=100MVA, Vb=380kV). 
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Transaction Injection bus Delivery bus 
T1 1 14 
T2 3 2 
T3 4 5 
T4 7 6 
T5 10 13 
T6 11 8 
T7 12 9 

Table 3: Transactions for the example. 

 

T1-T5 
(MW) 

T6 
(MW) 

T7 
(MW) PS MWM CF ZCF A1 RN1 A2 RN2 A3 RN3 

100 150 100 -0.0566 -0.0542 0.0020 -0.0188 0.0204 0.0320 -0.0178 -0.0159 0.0201 0.0320 
100 200 100 -0.0815 -0.0779 0.0152 -0.0330 0.0049 0.0293 -0.0335 -0.0330 0.0047 0.0293 
100 250 100 -0.0994 -0.0953 0.0032 -0.0192 0.0289 0.0325 -0.0200 -0.0192 0.0289 0.0325 
100 300 100 -0.1198 -0.1154 0.0054 -0.0353 0.0220 0.0240 -0.0362 -0.0353 0.0220 0.0240 
100 300 150 -0.1106 -0.1136 0.0009 -0.0291 0.0186 0.0217 -0.0299 -0.0291 0.0186 0.0217 
100 300 200 -0.0880 -0.0968 0.0007 -0.0182 0.0157 0.0188 -0.0190 -0.0182 0.0157 0.0188 
100 300 250 -0.0609 -0.0778 0.0021 -0.0251 0.0096 0.0102 -0.0255 -0.0251 0.0096 0.0102 
100 300 300 -0.0700 -0.0539 0.0031 -0.0100 0.0067 0.0115 -0.0096 -0.0079 0.0067 0.0115 

Table 4: Minimal excesses ( )(/)(min Ncxe ) for various allocations, where 

{ }{ }∅∉= ,:),(min)(min NSSee xx  for a given allocation vector nRx ∈ . 

 

Next, we computed the restricted nucleolus for different combinations of the usage-based allocation 

methods. Since the allocation vector ZCF is a convex combination of MWM and CF, by (22), 

including it in the set M will not increase the excess vector (in the lexicographical sense) if MWM and 

CF are already included. Hence, we tested the following three cases with respect to the choice of M, 

namely {PS, MWM, CF}, {PS, MWM, ZCF}, and {PS, CF, ZCF}. The minimal excess values for the 

corresponding restricted nucleoli (RN1-RN3) are shown in Table 4, and we see that RN1 and RN3 

have higher excess values than any of the four usage-based allocations. Since ZCF is a convex 

combination of CF and MWM, the allocation RN1 dominates both RN2 and RN3. 

The weights corresponding to RN1-RN3 are shown in Tables 5-7 below. As can be seen, the weights 

vary considerably when the transacted amounts are changed, and the relationship between the amounts 

of power and the weights is not monotonic. Since the design of a cost allocation system is a long-term 

decision, the network operator does not have the opportunity to change the weights as transaction 

profiles change. The long-term choice of weights could e.g. be based on taking the average over a 

number of transaction profiles, as shown below.  We then computed the allocations corresponding to 
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the average weights, and these are denoted A1-A3 in Table 4. We see that A1 and A3 belong to the 

core for all transaction profiles, and seems to be better (higher minimal excess values) than any of the 

pure usage-based allocations. 

 

T1-T5 
(MW) 

T6 
(MW) 

T7 
(MW) PS MWM CF 

100 150 100 0.2829 0.0023 0.7148 
100 200 100 0.2160 0.0500 0.7340 
100 250 100 0.4673 0 0.5327 
100 300 100 0.4316 0 0.5684 
100 300 150 0.3818 0.1108 0.5074 
100 300 200 0.3265 0.0967 0.5768 
100 300 250 0.3996 0.0743 0.5261 
100 300 300 0.4138 0.1727 0.4135 

Average (A1): 0.3649 0.0634 0.5717 

Table 5: Weights for { }CFMWMPSM ,,= . 

 

T1-T5 
(MW) 

T6 
(MW) 

T7 
(MW) PS MWM ZCF 

100 150 100 0.0299 0 0.9701 
100 200 100 0 0 1.0000 
100 250 100 0 0 1.0000 
100 300 100 0 0 1.0000 
100 300 150 0 0 1.0000 
100 300 200 0 0 1.0000 
100 300 250 0 0 1.0000 
100 300 300 0.0524 0 0.9476 

Average (A2): 0.0103 0 0.9897 

Table 6: Weights for { }ZCFMWMPSM ,,= . 

 

T1-T5 
(MW) 

T6 
(MW) 

T7 
(MW) PS ZCF CF 

100 150 100 0.2829 0.0032 0.7138 
100 200 100 0.2160 0.0720 0.7120 
100 250 100 0.4673 0 0.5327 
100 300 100 0.4316 0 0.5684 
100 300 150 0.3818 0.1629 0.4553 
100 300 200 0.3265 0.1422 0.5313 
100 300 250 0.3996 0.1097 0.4907 
100 300 300 0.4138 0.2571 0.3292 

Average (A3): 0.3649 0.0934 0.5417 

Table 7: Weights for { }CFZCFPSM ,,= . 
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6. Conclusions 

In Section 3 we demonstrated how some cost allocations resulting from some simple rules may fail to 

satisfy all the core constraints. By combining allocations from several methods we may be able to 

produce core allocations, and we presented an LP-based procedure in Section 4 that finds a good 

(core) allocation, where “good” means an allocation whose excess vector is as large 

(lexicographically) as possible. We believe, as is demonstrated using a numerical example in Section 

5, that our method can be of help in designing cost allocation systems in practice, where one of the 

issues is deciding the weights to attach to various measures of network usage. 
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