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Abstract

Two measures of an error-ridden explanatory variable make it possible to solve

the classical errors-in-variable problem by using one measure as an instrument for

the other. It is well known that a second IV estimate can be obtained by reversing

the roles of the two measures. We explore a simple estimator that is the linear

combination of these two estimates, that minimizes the asymptotic mean squared

error. In a Monte Carlo study we show that the gain in precision is significant

compared to using only one of the original IV estimates. The proposed estimator

also compares well with full information maximum likelihood under normality.
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1 Introduction

It is well known that ordinary least squares (OLS) is inconsistent and biased if one or more

explanatory variables are measured with error. It is also well known that instrumental

variables (IV) can be used to deal with the problem. Graduate text books in econometrics

typically present the classical errors-in-variables model where one explanatory variable

is measured with error and the measurement error is uncorrelated with all explanatory

variables in the model as well as with the unobserved disturbance. A second measurement

of the mismeasured variable is introduced, and it is assumed that the measurement error

in the second measure is uncorrelated with the measurement error in the first as well

as with all other variables including the disturbance. The second measure is then a

valid instrument for the first. Papers that have made important contributions using this

technique include Ashenfelter and Krueger (1994), Borjas (1995), Barron et al. (1997)

and Krueger and Lindahl (2001).1

The favourite text book example of instrumental variables used to solve a measurement

error problem in economics is the analysis of returns to education by Ashenfelter and

Krueger (1994). Ashenfelter and Krueger simultaneously account for ability bias and

measurement errors by using a sample of twins. Identical twins are similar with respect

to family background and genetic endowment, but measurement errors in education are

exacerbated when ability is differenced out. The ingenuity of the Ashenfelter and Krueger

study is that they obtain two measures of education by asking each twin both about his

or her own education and about the education of the sibling.

The classical errors-in-variables model with two indicators constitutes a three-equation

system and can be estimated with full information maximum likelihood using the latent

variable framework of Goldberger (1972) and Jöreskog (1978).2 In the applied economet-

rics literature, however, IV seems to be the preferred approach when two measures are

available. In fact, the only papers we have found in economics journals that present a full

information maximum likelihood estimate are Ashenfelter and Krueger (1994) and the

1We briefly review some papers that instrument one mismeasured variable with another in Appendix

1.
2This estimation approach is usually implemented by using the software packages LISREL, see e.g.

Jöreskog et al. (2001).
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follow up study by Rouse (1999).3

When two indicators are available and allow for an IV-solution, it is not obvious which

measure should be used as explanatory variable, and which measure should be used as

instrument. Whichever is chosen, a second estimate can be produced by reversing the role

of the variable and the instrument. Several studies present both estimates, but no discus-

sion of the choice between them appears to be available in the econometrics literature. In

a comprehensive chapter on measurement errors in the Handbook of Econometrics, Bound

et al. (2001) note that the availability of two estimates gives “some capacity to test the

underlying assumptions of the model”. Otherwise, the issue is left untouched.

The preference for IV among applied econometricians is probably explained by the

fact that this method is intuitive and computationally easy to implement. IV estimates

often have low precision, however. In the present paper we explore a simple improvement

of the classical IV solution. The proposed estimator is a linear combination of the two

IV estimates that is obtained by using a pair of indicators both ways. The improved esti-

mate is based solely on the two original estimates and by-products obtained when these

are calculated. It is optimal in the sense that it minimizes the variance among linear

combinations of the two IV estimators, and without co-variates it is a special case of the

Chamberlain (1982) Π-matrix approach.4 In a Monte Carlo study we show that the gain

in precision is significant compared to using only one of the two original IV estimates.

Both the asymptotic and the small sample efficiency are in the range of 70-85 percent.

Moreover, the proposed estimator compares very well with full information maximum

likelihood under normality. This holds even for small sample sizes, and, unlike maximum

likelihood, it does not require any numerical optimization nor any distributional assump-

tion. Somewhat counter-intuitively, our analysis reveals that those who present only a

single ordinary IV estimate should use the indicator suspected to be most contaminated

by measurement errors as variable and the other as instrument.

3Given that Ashenfelter and Krueger (1994) is the leading text book example of IV as a solution to

measurement errors bias, this is somewhat ironical. We have not found any graduate text book that

mentions the full information approach.
4See Chamberlain (1982, p.24). Ashenfelter and Krueger (1992) and Behrman and Rosenzweig (1999)

apply Chamberlain (1982) as an alternative to IV in a setting with classical measurement error and two

indicators. Ashenfelter and Krueger use the simple regression framework while Behrman and Rosenzweig

include control variables. Ashenfelter and Krueger (1992) is a preprint of their famous 1994-paper.
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Section 2 reviews the classical errors-in-variables model and Section 3 presents the

improved IV estimator. Section 4 contains the Monte Carlo study exploring the small

sample properties of the various estimators and Section 5 concludes.

2 The model

The problem at hand is a linear regression where one of the explanatory variables is

measured twice, both times with measurement errors. We consider the case of classical

errors-in-variables, i.e. we assume that the measurement errors are independent of each

other and of the underlying variable it is supposed to measure. Our main interest is to

estimate the parameter β in the model

yi = x∗iβ +w′iγ + εi (1)

w is a k-dimensional exogenous variable, i.e. all elements have the property Cov(wij, εi) =

0 for all i = 1, ..., n and j = 1, ..., k. Furthermore, Cov(εi, εj) = σ2 for i = j and zero

otherwise.

The explanatory variable x∗ is observed with measurement error through the variables

x1 and x2 given by

x1i = x∗i + δ1i (2)

and

x2i = x∗i + δ2i (3)

where δ1 and δ2 are independent measurement errors with variances τ 2
1 and τ 2

2 . Cov(δki, εi) =

0 for k = 1, 2.

Regressing y on e.g. x1 using OLS is problematic since x1 is correlated with the error

term. This can be seen by considering the regression equation

yi = x∗iβ +w′iγ + εi = x1iβ +w′iγ + ε1i (4)

where ε1i = εi − βδ1i. The correlation between ε and x1 is −βτ 2
1 created by the common

term δ1 in the equations (2) and (4). An analogous result is true when using x2 as the

regressor with the corresponding error term ε2i = εi − βδ2i.
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3 An improved IV estimator

There are two possible instrumental variable estimators. x2 is correlated with x1, but

uncorrelated with ε1. This means that x2 is a valid instrument when x1 is used as

regressor. 5 Likewise, x2 is uncorrelated with ε1 and is a valid instrument when x2 is

used as regressor. For the sake of exposition we first show how to form the estimator,

β̂1,IV , where x1 is used as an instrumental variable for x2. For this purpose we form the

n × (k + 1)-quantities X1 = [x2,W ] and Z1 = [x1,W ] where xi, i = 1, 2 are n × 1-

vectors containing the explanatory variables and the instrumental variable, respectively.

Furthermore, the n × 1-vector y containing the observations of the dependent variable,

the corresponding vector of error-terms e1 and π = [β,γ ′]′ enables us to rewrite (4) as

y = X1π + e1 (5)

The IV estimator of π can now be written:

π̂1,IV =

 x′2x1 x′2W

W ′x1 W ′W

−1  x′1y

W ′y

 (6)

The matrix inversion can be beneficially accommodated by use of the particular partition

of the matrix used in (6). This enables us to obtain a direct expression for the IV estimator

of β, β̂1,IV , which will be useful in what follows. The expression for β̂1,IV is

β̂1,IV = K1y (7)

where

K1 = (x′1x2 − x′1W (W ′−1W ′x2)
−1(x′1 − x′1W (W ′−1W ′) (8)

Similarly, when x2 is used as an instrumental variable for x1 we obtain

β̂2,IV = K2y (9)

where

5Note that both x1 and x2 are endogenous variables in our model, only the latent x∗i is truly exogenous.

Nevertheless, the orthogonality conditions for valid instruments are satisfied. Thus, as pointed out by

Biørn (2009) p. 348, endogenous variables can be useful as instruments in models with measurement

errors.
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K2 = (x′2x1 − x′2W (W ′−1W ′x1)
−1(x′2 − x′2W (W ′−1W ′) (10)

Our aim in this section is to find the linear combination of these two estimators which

has the smallest variance.6 Since the estimators are consistent and thereby asymptotically

unbiased, for large samples, this can also be seen as finding the linear combination which

minimizes the asymptotic mean square error.

The asymptotic variances of the IV estimators β̂k,IV , k = 1, 2 are

v1 = V ar(β̂1,IV ) = σ2
1K1K

′
1 (11)

and

v2 = V ar(β̂2,IV ) = σ2
2K2K

′
2 (12)

respectively.7 The variances σ2
1 and σ2

2 are the error term variances in each of the regres-

sions.

Finally, an the asymptotic covariance between β̂1,IV and β̂2,IV , is given by

c12 = Cov(β̂1,IV , β̂1,IV ) = σ12K1K
′
2 (13)

where σ12 is the covariance between the error terms in the two regressions. The quantities

σ2
1, σ2

2 and σ12 can be estimated by the corresponding sample moments of the residuals

from the two IV regressions through

σ̂2
1 =

1

n

∑
ε̂1

2, (14)

σ̂2
2 =

1

n

∑
ε̂2

2, (15)

and

σ̂12 =
1

n

∑
ε̂1ε̂2 (16)

6Note that our approach cannot be generalized to a situation where x1 is a proxy of the type x1 =

αx∗ + δ1. The second IV estimator is then needed to solve for α. See Lubotsky and Wittenberg (2006)

for a recent discussion and extension of this model. Our approach can, however, be generalized to a

case where one indicator is systematically smaller than the other if the difference can be modelled in the

form of an intercept in one of the measurement equations. Such an intercept can be transferred to the

y-equation and included in W .
7These variances are just sample versions of the asymptotic variance of IV estimators (e.g. Mardia

et al., 1994, p. 188).
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where ε̂1 and ε̂2 are the residuals from the two IV regressions. Our new estimator is

β̂λ,IV = λβ̂1,IV + (1− λ)β̂2,IV (17)

and has variance

V ar(β̂λ,IV ) = λ2v1 + (1− λ)2v2 + 2λ(1− λ)c12 (18)

Minimizing this with respect to λ gives us an estimator which is optimal in the sense

that it is the linear combination of the two IV estimators which has the smallest variance.

The optimal λ is given by

λopt =
v2 − c12

v1 + v2 − 2c12

. (19)

4 Small sample properties

We have performed various simulation studies in order to investigate the performance of

the estimator β̂λopt,IV . In section 4.1 we use a simple regression framework and vary the

ratio between the variances of the measurement errors of the two indicators. In section

4.2 we include a correctly measured covariate w and vary the correlation between this

covariate and the latent variable x∗.

4.1 Simple regression

We start out exploring the small sample properties of the proposed estimator using a

simple regression model without intercept. The simulated data generating process (DGP)

is 
y = 0.5x∗ + ε

x1 = x∗ + δ1

x2 = x∗ + δ2

(20)

where V ar(x∗) = 1, σ2 = V ar(ε) = 0.5, τ 2
1 = V ar(δ1) = 0.25 and τ 2

2 = V ar(δ2) is varied

in between 0.25 and 1. In addition, ε, δ1 and δ2 are assumed to be independent and

normally distributed. The results are given in table 1 and table 2 and show significant

improvement compared to using one single IV estimator. Furthermore, for all of the
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investigated sample sizes, the cases studied indicate that the MSE of the improved IV

estimator is very close to the full information maximum likelihood estimator.

n OLS IV1 IV2 ML SIMP non-conv

100 14.766 7.418 7.510 6.444 6.459 11

1000 10.455 0.735 0.710 0.631 0.631 21

5000 10.064 0.144 0.138 0.121 0.121 16

Table 1: MSE of estimators when the true value of β = 0.5, σ2 =

0.5, τ2
1 = 0.25 and τ2

2 = 0.25. 1000 simulation replicates. The last

column shows the number of replicates where the ML-estimator did not

converge. Those replicates were removed for all estimators. The number

of observations is given by n, and SIMP is our improved IV estimator.

n OLS IV1 IV2 ML SIMP non-conv

100 14.427 10.621 11.662 8.659 8.549 9

1000 10.389 0.923 1.133 0.788 0.785 0

5000 10.057 0.208 0.231 0.172 0.172 0

Table 2: MSE of estimators when the true value of β = 0.5. σ2 = 0.5,

τ2
1 = 0.25, τ2

2 = 1. 1000 simulation replicates. The last column shows the

number of replicates where the ML-estimator did not converge. Those

replicates were removed for all estimators. The number of observations

is given by n, and SIMP is our improved IV estimator.

It is also interesting to know which of the two original IV estimators that dominates

the other, and how this depends on the two measurement errors. This is investigated by

means of figure 1 where λopt is plotted against the ratio of the two measurement errors

for the parameter values in the simulation study. For the simple DGP studied above, λopt
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can be written as a function of this ratio

λopt = f(κ) =
β2 + (σ2 + β2τ 2

1 )κ

β2 + σ2 + (σ2 + β2 + 2β2τ 2
1 )κ

(21)

where we use the notation κ = τ 2
2 /τ

2
1 and have assumed that V ar(x∗) = 1. Furthermore,

in order to avoid dependence on data we have substituted the K-matrices, which contain

data, with population moments, e.g. we have used V ar(x1) = 1 + τ 2
1 . Figure 1 shows a

plot of this function for the parameter values used in the simulation study above.

0 2 4 6 8 10

0.0
0.2

0.4
0.6

0.8
1.0

κ

f(κ)

Figure 1: The optimal weight λopt for different choices of κ, the ratio

of the measurement errors of the two indicators.

At least two interesting observations can be made from this graph. First, if only a

standard IV estimator is used and the econometrician has an opinion regarding which

of the measurements is least prone to measurement errors, the measurement thought to

have the smallest errors should be used as the instrumental variable. This can be seen

by observing the fact that for values of κ larger than one, (relatively small measurement

error in x1) the optimal λopt is large, implying a large weight on the IV estimator where x1

is the instrumental variable. Secondly, even for cases where the measurement error in one

variable is huge relative to the other, a gain is to be made from weighting them together.

This is seen by the asymptote of the function. Even for κ = 100, i.e. when one x-variable

has a measurement error variance that is 100 times larger than the measurement error

variance of the other, a significant weight should be given to both estimators. However,

it should be noted that we do not consider other alternatives than the IV estimators. If
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the ratio is large simply because one of the variables is measured almost without error,

OLS would be better than any of the two IV estimators. If the ratio is large because one

of the indicators is extremely noisy, OLS may also be preferable. In this case, however, a

trade-off between bias and precision has to be made.8

We can also see that when κ = 1, then λopt = 1
2

which means that if the measurement

error is of the same magnitude for both measurements and one insists on using just

one instrumental variable estimator, then the choice of estimator is irrelevant. However,

an improved estimate can be obtained by weighting the two together, and the optimal

estimator is simply the average of the two original IV estimates in this case.

Figure 2 shows how the variance of the improved estimator relates to the variance of

that of the ordinary IV estimators with the smallest variance. The improvement increases

with the ratio of the measurement errors of the two indicators.

8An early and interesting contribution to the measurement error literature by Feldstein (1974) discusses

this trade-off and suggests and evaluates alternative procedures for “balancing the loss of efficiency in IV

estimation against the potential gain of reduced bias”. He proposes a so-called WAIV estimator which is

a weighted average of the OLS and IV estimates. Feldstein finds that the WAIV estimator is consistent

and has a “smaller MSE than the IV estimator in a wide class of conditions and otherwise has an equal

MSE”.
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Figure 2: The efficiency of the improved IV estimator relative to the

best single IV estimator for different choices of κ, the ratio of the mea-

surement errors of the two indicators.

4.2 Adding a covariate without measurement error

Our proposed estimator allows for an arbitrary number of correctly measured covariates

in addition to the mismeasured variable of main interest. Most relationships in applied

work contain such covariates. In this section we explore whether the main results from the

simulation study above are robust to including a covariate. The DGP that we simulate

from is


y = 0.5x∗ + 0.5w + ε

x1 = x∗ + δ1

x2 = x∗ + δ2

(22)

where V ar(x∗) = 1, V ar(w) = 1, σ2 = V ar(ε) = 0.5, τ 2
1 = V ar(δ1) = 0.25 and τ 2

2 =

V ar(δ2) = 0.25. The covariance between x∗ and the extra regressor w, σx∗w, is varied

between −0.5, 0 and 0.5. As before, ε, δ1 and δ2 are assumed to be independent and

normally distributed.

None of the tables 3, 4 or 5 reveal any fundamental difference from the results in the
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previous section. For the parameter values studied, the improved IV estimator performs

better than both the original IV estimators and it is not significantly outperformed by

the ML estimator.

n OLS IV1 IV2 ML SIMP nonconv

100 21.085 10.847 10.258 9.067 8.931 19

500 16.363 2.034 1.921 1.663 1.654 1

1000 16.191 1.003 1.086 0.877 0.881 1

Table 3: MSE of estimators when the true value of β = 0.5, γ = 0.5,

σx∗w = −0.5, σ2 = 0.5, τ2
1 = 0.25 and τ2

2 = 0.25. 1000 simulation

replicates. The last column shows the number of replicates where the

ML-estimator did not converge. Those replicates were removed for all

estimators. The number of observations is given by n, and SIMP is our

improved IV estimator.

n OLS IV1 IV2 ML SIMP nonconv

100 14.850 7.968 7.697 6.976 6.939 5

500 11.052 1.321 1.380 1.152 1.155 2

1000 10.382 0.699 0.739 0.627 0.624 3

Table 4: MSE of estimators when the true value of β = 0.5, γ = 0.5,

σx∗w = 0, σ2 = 0.5, τ2
1 = 0.25 and τ2

2 = 0.25. 1000 simulation replicates.

The last column shows the number of replicates where the ML-estimator

did not converge. Those replicates were removed for all estimators. The

number of observations is given by n, and SIMP is our improved IV

estimator.

12



n OLS IV1 IV2 ML SIMP nonconv

100 20.796 10.427 10.330 8.912 8.709 4

500 16.697 1.971 2.016 1.669 1.666 7

1000 16.166 1.023 1.068 0.892 0.891 18

Table 5: MSE of estimators when the true value of β = 0.5, γ = 0.5,

σx∗w = 0.5, σ2 = 0.5, τ2
1 = 0.25 and τ2

2 = 0.25. 1000 simulation

replicates. The last column shows the number of replicates where the

ML-estimator did not converge. Those replicates were removed for all

estimators. The number of observations is given by n, and SIMP is our

improved IV estimator.

5 Conclusion

An easy-to-implement improvement of the IV estimator of the classical error-in-variables

model has been proposed and investigated with a Monte Carlo study. In terms of MSE,

the estimator significantly outperforms the standard IV estimator, and, more surprisingly,

performs well compared to a full (Gaussian) maximum likelihood estimator even under

normally distributed errors.
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The appendixes below are not intended for journal publication.

Appendix 1: Examples of papers that have two indi-

cators and use IV to correct for measurement error

bias

While severe measurement error is often a problem in economic data, it is not often the

case that two measures of an error ridden variable is available to correct the bias. With

an increasing availability of micro data, this is likely to change, however. Researchers

who are able to find a second measure of an important, mismeasured variable, often make

important contributions. Below are some papers that succeeded Ashenfelter and Krueger

(1994) which we discussed in the introduction.

• Borjas (1995) in the American Economic Review shows that residential segregation

gives rise to ethnic externalities in the human capital accumulation of the young

generation. Parental skills are imprecisely measured, but a large number of siblings

in the data makes it possible to instrument each individual’s own report with the

average of the siblings’ report in the intergenerational transmission equation.

• Barron et al. (1997) in the Journal of Labor Economics use a survey where both

employers and their employees have provided an estimate of on-the-job training.

Their analysis suggests that previous estimates of the effect of training on wages

and productivity growth have been underestimated by a factor of nearly three.

• Ashenfelter and Rouse (1998) in the Quarterly Journal of Economics study the

correlation between ability and schooling and the extent to which the return to

schooling varies with ability level. They use data for identical twins and use one

twin’s report of both twin 1 and twin 2’s education as an instrument for the other

twin’s report of the same measures. They find that more able individuals attain

more schooling because they face lower marginal costs of schooling, not because of

higher marginal benefits.
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• Krueger and Lindahl (2001) in the Journal of Economic Literature establish that the

lack of a significant effect of changes in education on economic growth in the famous

paper by Benhabib and Spiegel (1994) is due to measurement error in education.

They use an additional data set with educational information to instrument for the

education variable used by Benhabib and Spiegel (1994).

• Bonjour et al. (2003) in the American Economic Review estimate the returns to ed-

ucation using data on UK twins and follow the approach of Ashenfelter and Krueger

(1994) by asking each twin to report both his or her own education and that of the

other twin.

• Bjerk (2007) in the Journal of Quantitative Criminology use a household’s per-

centiles in the income and wealth distributions as two indicators of economic re-

sources when studying the effect of a household’s economic resources on youth

criminal participation.

• Drago (2008) in a recent IZA Working Paper analyses the effect of self-esteem on

earnings and has measures of self-esteem from two surveys conducted seven years

apart.
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Appendix 2: Programming code to implement the im-

proved IV estimator in R

optimal.iv=function(y,x1,x2,W)

{

n=length(y)

y=matrix(y,n,1)

x1=matrix(x1,n,1)

x2=matrix(x2,n,1)

W=as.matrix(W)

X1=cbind(x2,W)

Z1=cbind(x1,W)

pi1=solve(t(Z1)%*%X1)%*%t(Z1)%*%y

pi2=solve(t(X1)%*%Z1)%*%t(X1)%*%y

e1=y-X1%*%pi1

e2=y-Z1%*%pi2

What=W%*%solve(t(W)%*%W)%*%t(W)

K1=solve(t(x1)%*%x2-t(x1)%*%What%*%x2)%*%(t(x1)-t(x1)%*%What)

K2=solve(t(x2)%*%x1-t(x2)%*%What%*%x1)%*%(t(x2)-t(x2)%*%What)

b1=K1%*%y

b2=K2%*%y

v1=var(e1)*K1%*%t(K1)

v2=var(e2)*K2%*%t(K2)

c12=cov(e1,e2)*K1%*%t(K2)

lambda=(v2-c12)/(v1+v2-2*c12)

bopt=lambda*b1+(1-lambda)*b2

sb=sqrt(lambda^2*v1+(1-lambda)^2*v2+2*lambda*(1-lambda)*c12)

cl=bopt-1.96*sb

cu=bopt+1.96*sb

return(list(b1=b1,b2=b2,bopt=bopt,pi1=pi1,pi2=pi2,lambda=lambda,cl95=cl,cu95=cu))

}
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