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1. Introduction

In this paper we focus on modeling aspects related to trip-distribution problems. We

consider the distribution of journeys-to-work between origins and destinations in the

geography. The most commonly used modeling framework for this purpose is the doubly

constrained gravity model. Let Tij denote the number of commuters from origin i to

destination j, while dij is the corresponding traveling distance (time), and β is a param-

eter reflecting the distance deterrence effect on commuting flows. The standard doubly

constrained gravity model is then represented by

(1.1) Tij = AiBj exp[−βdij]

Here, Ai and Bj are balancing factors, ensuring that commuting flows are consistent with

the given number of workers and jobs in the system. For a comprehensive discussion of

gravity models, see Sen and Smith (1995).

The classical journey-to-work problem corresponds to the case that Wilson (1967) referred

to in his derivation of the gravity model from entropy maximization. For a discussion of

entropy maximization and related approaches, see Erlander and Stewart (1990). It is also

well known that traditional gravity models can be derived from random utility theory, and

that such models are equivalent to a multinomial logit model formulation, see, e.g., Anas

(1983).

Applications of the gravity modeling framework have not been without controversies.

One kind of criticism focuses on the interpretation of the distance-decay parameter to

reflect how individuals respond to variations in distance. It is well known in the literature

that estimates of this parameter vary systematically across space and for different spatial

configurations of origins and destinations, see for instance Sheppard (1978, 1979), Fother-

ingham (1981, 1983, 1984) and Baxter (1983). There is a consensus in the literature that

this problem results from an inadequate representation of spatial structure characteristics.

This has motivated alternative approaches to spatial interaction modeling. Fotheringham
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(1983) introduced the so-called competing destinations model by incorporating a measure

of destination accessibility in a gravity modeling framework.

Another kind of problems in applications of gravity models is related to aggregation as-

pects. Analyses of spatial interaction phenomena are often based on aggregate rather than

individual data, and a discrete zonal specification of the geography. The subdivision of the

geography into zones introduces spatial aggregation problems. Such problems originate

from the fact that substantially different conclusions can be reached from the same data

set and the same model, but at another spatial aggregation level, see for instance Schwab

and Smith (1985) and Batty and Sikdar (1982a,b,c,d, 1984). In those studies estimates of the

distance deterrence parameter are found to be increasingly more arbitrary and statistically

suspect as the number of zones decreases and their size increases, while performance

in terms of fit is negatively related to the number of zones in a region. As pointed out

in Steel and Holt (1996a) and in Horner and Murray (2002) spatial aggregation problems

involve both a scale issue (to delimit an appropriate geography) and a zoning issue (to select

an appropriate arrangement of zones). Horner and Murray (2002) also point out that the

scaling and zoning of the geography affect estimates of excess, wasteful commuting, which

refers to the difference between actual and theoretical average minimum. The theoretical

average minimum commuting is defined by the standard transportation problem, where

transport costs are minimized subject to zonal constraints on the demand for labour

and the supply of workers. Reliable estimates of wasteful commuting require that the

subdivision of the geography into zones is as disaggregate as possible. In a specification

with few and large zones the diagonal elements are expected to dominate in the commuting

flow matrix.

The presence of excess commuting is in addition related to other sources of aggregation

problems in modeling journeys-to-work. First, workers are not homogeneous with respect

to qualifications and professions. As stated by O’Kelly and Lee (2005) the assumption of

job and worker homogeneity is unreasonable in real cities, and leads to misleading results

on the level of excess commuting. Excess commuting reflects a spatial mismatch between
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the local supply of a specific worker category and corresponding job opportunities. This

heterogeneity also means that workers cannot make unrestricted choices in the universal

choice set of labor market options. Conventional models for spatial interaction do not

distinguish between the universal and the true choice sets of decision makers. This is

often claimed to be one basic reason for the inconsistent experiences with such models,

see for example Thill (1992) and Pellegrini et al. (1997). The specification bias depends on

how the composition of separate categories and job opportunities vary across space, and

this is influenced by the spatial subdivision of the geography into zones. The measured

spatial mismatch between supply and demand for a specific worker category is in general

negatively related to the aggregation level (the number of zones). Hence, different kinds

of aggregation problems might call for conflicting adjustments in the specification of the

geography. This illustrates the complexity of empirical analyses of journeys-to-work, but

the relevant conflict is beyond the scope of this paper.

In this paper we consider yet another source of aggregation problems related to the fact

that decision makers are not homogeneous. Traditional models for journeys-to-work do

not account for the possibility that the response to variations in distance might differ

systematically across separate groups of workers. Distance deterrence might for instance

differ with respect to gender, age, and income, while estimates of the parameter β in the

gravity model reflect the aggregated response to variations in distance. Group-specific

heterogeneities might lead to the so called ecological fallacy, that occurs when results

based on spatially aggregated data are incorrectly assumed to apply to individual-level

relationships, see Steel and Holt (1996a,b). Individuals within an area tend to be more alike

than individuals in other areas, due to the effects of non-random selection mechanisms.

This influences the spatial interaction pattern, but is not captured in traditional aggregate

interaction models.

The main ambition in this paper is to derive a model formulation that accounts for hetero-

geneous preferences across groups of workers. An additional ambition is that the model

is based on sound behavioural principles, and that it is operative without a massive effort
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on data collection. In Norway election districts or postal delivery zones represent zonal

subdivisions of the geography appropriate for studies of commuting flows. At such a

spatial aggregation level information is readily available on worker characteristics like

gender and age. It requires considerably more effort to collect spatially disaggregated data

on job categories and worker qualifications, if at all practically possible. As pointed out in

O’Kelly and Lee (2005) most studies have not access to appropriately disaggregated spatial

data in terms of job and worker heterogeneity. Both O’Kelly and Lee (2005) and Horner

(2002) demonstrate, however, how the jobs-housing balance and excess commuting vary

considerably according to type of occupation. We focus on empirical adjustments related

to another scope of disaggregation, represented by gender and age. As far as we know

such aspects are not explicitly incorporated in the empirical literature on commuting.

Both the explanatory power and the predictability of a model can be expected to improve if

relevant group-specific variations in distance deterrence are explicitly accounted for. The

potential for improvements is positively related to how strong preference heterogeneities

that are present in the population. Results based on a disaggregated model formulation

provide authorities with better information of how the commuting flow pattern can be

influenced through jobs-housing policy. In addition such policies might influence the labor

supply. For some worker groups the alternative to accept job offers in the neighborhood

might be to leave the labor force, for instance due to practical problems of running a two-

worker household. This perspective goes beyond the scope of this paper, but it motivates

studies focusing on group-specific heterogeneities in spatial labor market behavior. In

principle our approach also applies for other worker characteristics than age and gender.

Due to data restrictions, however, we do not address the possible impact of other charac-

teristics than age and gender.

The paper is organized as follows: In Section 2 we present the framework and the main

theoretical findings. The highlight is Theorem 2.3 which defines our new trip-distribution

model. In Section 3 we suggest a new statistical test for heterogeneity based on this

model. The test is carried out on a real world data set in Section 4. It turns out, however,
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that the model produces a surpricingly good fit to our data. To examine this further, we

compare our new models with a traditional competing destination approach. It appears

that heterogeneity adds considerably more to the explanatory power than the competing

destinations effect in our particular data sets. Finally in Section 5 we offer some concluding

remarks.

2. The framework and the main theoretical findings

In this paragraph we will present a general theory based on cost efficiency, and apply this

theory to the particular case of heterogeneous subgroups. The general theory we present

rests heavily on the notion of cost efficiency from Erlander and Smith (1990). Although

we prefer a slightly modified presentation/framework, the central ideas underpinning this

theory are essentially the same as in the Erlander and Smith (1990) paper. Hence we cannot

claim much originality on that part. Modifications of this theory is a highly non-trivial issue,

however.

To facilitate reading of the paper, we have placed all the central proofs in the appendix.

Still, the framework is in itself technically demanding and the reader will probably find the

next few pages quite hard to read. If so, we suggest that these pages are skipped on a first

reading of the paper, and that the reader instead focuses from Theorem 2.3. To those that

are well acquainted with the standard gravity model, the statements in Theorem 2.3 will

appear quite familiar and the contents and applications of this theorem can be understood

without the hardship of the underlying theory presented below.

Throughout the paper we will assume that there are N nodes in the system, and that Tij

is the total number of workers residing in zone i and working in zone j. The workers can

be divided into S different groups, and we let Tijs denote the number of workers of type s

residing in zone i and working in zone j. To simplify the notation we define

(2.1) T = {Tij}Ni,j=1, Ts = {Tijs}Ni,j=1, i.e. T =
S∑

s=1

Ts
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We assume that we have full information about the numbers of workers Lis of type s that

reside in zone i, i.e., that all the numbers Lis, i = 1, . . . , N, s = 1, . . . , S are known. In many

cases, however, it is difficult and/or undesirable to break the number of working opportu-

nities into types. Hence we only assume partial information on the working opportunities,

i.e., that we only know the total number of working opportunities Ej, j = 1, . . . , N in the

different zones. That leads us to the (S + 1)N constraints

(2.2)
N∑

j=1

Tijs = Lis
N∑

i=1

S∑

s=1

Tijs = Ej i, j = 1, . . . , N, s = 1, . . . , S

Workers within the same groups are assumed to be identical, but within each group the

workers have a set of (dis)utilities Uijs of commuting from i to j. Hence we can define a

total benefit function B : RSN
2 → R by

(2.3) B[T1, . . . ,TS] =
S∑

s=1

N∑

i,j=1

TijsUijs

For any fixed i and s, let Pis = (Pi1s , . . . Pi2s , . . . , PiNs) denote an arbitrary probability

measure, i.e., we assume
∑N
j=1 Pijs = 1. The numbers Pijs are hence interpreted as the

probability that a worker of type s residing in zone i will choose to work in zone j.

We now consider any two sets of trip-distributions T(1)1 , . . . ,T(1)S and T(2)1 , . . . ,T(2)S , and call

P =
∏N,S
i,s=1 Pis cost efficient if for all such sets

(2.4) B[T(1)1 , . . . ,T(1)S ] ≤ B[T(2)1 , . . . ,T(2)S ]⇒
N,N,S∏

i,j,s=1

P
T(1)ijs
ijs ≤

N,N,S∏

i,j,s=1

P
T(2)ijs
ijs

which says that sets of trip-distributions with higher total benefit should be more probable.

To proceed further we will need to identify trips, probabilities and utilities with three
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vectors each of length SN2. This is done as follows:

(2.5)

"T = (T111, T121, . . . , T1N1,

T211, T221, . . . , T2N1,
...

TN11, TN21 . . . , TNN1,

T112, T122, . . . , T1N2,
...

TN1S , TN2S . . . , TNNS)

"P and "U are defined similarly. The next issue is to express the constrains in (2.2) through

a matrix expression. To this end define an (S + 1)N × SN2 matrix M by

(2.6) Mij =




1 if 1 ≤ i ≤ S N and N(i− 1)+ 1 ≤ j ≤ N i
1 if SN + 1 ≤ i ≤ (S + 1)N and j = (i− S N)+ kN, k = 0, . . . , SN − 1
0 otherwise

With this definition it turns out that (2.2) is equivalent to the single linear equation

(2.7) M"T⊥ = (L11, . . . , LN1, L12, . . . , LN2, . . . , L1S , . . . , LNS, E1, . . . , EN)⊥

If all the marginals Lis are reasonably large, then by the law of large numbers, we expect

to observe a trip-distribution T which satisfies Tijs = Pijs ·Lis . This is the trip-distribution

implied by P.

We are now ready to state our first main theorem:

THEOREM 2.1

Assume that "P is a probability measure implying a trip-distribution "T which in turn sat-

isfies the constraints in (2.2). Then "P is cost efficient if and only if there exist constants

u1, . . . u(S+1)N+1 ∈ R, u(S+1)N+1 ∈ R+ such that

(2.8) "P = exp[(u1, u2, . . . , u(S+1)N)M +u(S+1)N+1"U]

PROOF
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See the appendix.

!

Since our main interest is "T and not "P , it is convenient to use the following principle:

THEOREM 2.2

Assume that "P is a cost efficient probability measure implying a trip-distribution "T satisfying

(2.2). Then there exist exist constants u1, . . . u(S+1)N+1 ∈ R, u(S+1)N+1 ∈ R+ such that

(2.9) "T = exp[(u1, u2, . . . , u(S+1)N)M +u(S+1)N+1"U]

PROOF

See the appendix.

!

Note that the values on the constants in Theorem 2.1 and 2.2 are generally different. As a

consequence of Theorem 2.2, we can find "T directly, and need not compute any results for

"P. The main problem, however, is that (2.9) is expressed in an extremely condensed form.

Hence it is difficult to see the contents of the result. In standard gravity theory, however,

it is usual to assume that all workers has the same (dis)utility function Uij = −βdij where

β is a constant. It then turns out that a cost efficient system leads to a standard gravity

model, i.e., that

(2.10) Tij = AiBj exp[−βdij]

Hence it is natural to consider an extension where Uijs = −βs dij . Here dij is usually

interpreted as the generalized traveling distance from i to j (read: traveling time) and we

then consider the case where the different groups have possibly different values βs on the

unit cost of travel (read: cost of time). In that particular case it turns out that (2.9) can be

given a much more transparent form. More precisely we can prove the following theorem:
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THEOREM 2.3

Assume that the system is cost efficient and that agents of type s has a (dis)utility

Uijs = −βs dij

of commuting from zone i to zone j. Then we can find a constant c ≥ 0 and a set of balancing

factors

A(s)i , i = 1, . . . , N, s = 1, . . . , S Bj, j = 1, . . . , N

such that

(2.11) Tij =
S∑

s=1

Tijs Tijs = A(s)i Bje−c βsdij

and where the balancing factors can be found from the balancing constraints

(2.12)
N∑

j=1

Tijs = Lis
N∑

i=1

S∑

s=1

Tijs = Ej

PROOF

See the appendix.

!

Remarks

Note that c simply acts as a numeraire for utility. If units for utility are chosen carefully

to match the units for the generalized traveling cost (cost of time), we get c = 1. This can

always be done, and we can hence assume that c = 1 without loss of generality. From (2.11)

we see that the resulting model is a sum of standard gravity models, but with the particular

feature that the balancing factors B1, . . . , BN are common for all groups.

The special format suggested by (2.11) and (2.12) also implies that the system can be solved

numerically by a slightly modified Bregman algorithm, see Bregman (1967). More precisely

the algorithm can be expressed as follows:
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1. Initially we put all A(s)i = 1 and all Bj = 1. We also use c = 1 (by the remark above).

2. We update all the balancing factors A(s)i using the balancing constraints

(2.13) A(s)i = Lis∑N
j=1 Bje−βsdij

3. We update all the balancing factors Bj using the balancing constraints

(2.14) Bj =
Ej∑N

j=1
∑S
s=1A

(s)
i e−βsdij

4. We repeat steps 2. and 3. above until the system settles.

Like the standard Bregman algorithm this simple algorithm is very efficient and solves

large systems in a very short time.

3. A statistical test for heterogeneity

If all types of agents have the same cost of time, we get

(3.1) Tij =
S∑

s=1

A(s)i Bj exp[−βdij]

Hence we can put Ai =
∑S
s=1A

(s)
i to see that

(3.2) Tij = AiBj exp[−βdij]

i.e., that the system reduces to a standard gravity model in that case. That is hardly

surprising, but it leads us to a central issue: The model presented in Theorem 2.3 is a direct

extension of the standard gravity model. Hence we can use the loglikelihood ratio test to

determine whether or not our extension performs significantly better than the standard

gravity model.

The only feature separating the two models is worker heterogeneity.
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Hence if we first try to replicate an observed trip-distribution matrix by a standard gravity

model and obtain a significantly better replication using the extension in Theorem 2.3, there

is good reason to believe that there is heterogeneity in the system.

Even though a result of the type above is a strong indicator for heterogeneity, we must be

careful to interpret this in causal terms. It may well happen that there is heterogeneity

in the system, but that the heterogeneity goes along completely different lines than the

ones we believe to have used in the model. An obvious case would be a partition into men

and women. If the two groups are identical but can be split along a new dimension with

completely different views, the system will show signs of heterogeneity, but not because

there are differences between men and women! The problem is that the calibrations only

make use of the size of each group, and hence any subdivision of the system leading to

equally sized groups will lead to the same conclusion.

4. Testing for heterogeneity in a Norwegian labor market area

In this section we implement the statistical test for heterogeneity to a real world scenario.

Our estimation results are based on information of aggregated commuting flows between

58 zones in a Norwegian labor market area. Data are aggregated, in the sense that we have

no information on individual commuters. The region and the data will be presented in

Section 4.1.

We introduce the hypothesis that there are two groups of workers, and initially we assume

that the number of workers in the two groups is the same in each zone. Given this

restriction, the specific allocation of individual workers into each group is determined

to maximize the likelihood of the observed aggregated trip-distribution pattern. The two

groups are distinguished by their commuting decisions, and we estimate two separate

parameters representing their response to variations in traveling time.

We have no information of how the allocation of workers corresponds to individual char-

acteristics. As mentioned above, we should be careful to interpret the results in causal
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terms. It will be clear in Section 4.4, however, that we estimate a large difference between

the distance deterrence parameters of the two groups, and we find a significant increase

in explanatory power. This indicates heterogeneity of preferences in the population, and

suggests a very useful principle for modeling commuting flows even in a case where data is

missing on individual characteristics. This principle can, for instance, be extended to the

case where the two groups are not necessarily equally large. In Section 4.4 we experiment

by finding how the explanatory power and parameter values change if the relative size

of the two groups is determined to maximize the likelihood of the observed commuting

pattern.

4.1 The region and the data

Our real world example is based on data from a region in the southern parts of Western

Norway, see the map in Figure 1. The seven municipalities in the region have a total of

about 96000 inhabitants. Haugesund is the regional center, with a population of about

32000 inhabitants. The region comes close to what is defined as “an economic area” in

Barkley et al. (1995), with a relatively self-contained labor market. The high degree of

intra-dependency is due to physical, topographical, transportation barriers, which lengthen

travel distances, and thereby deter labor market interaction with other regions. This

natural delimitation of the region contributes to make it appropriate for our purpose. The

area is relatively sparsely populated, but the dominating part of the spatial labor market

mobility is intraregional, even for the zones at the outer edges of the region. In this region

only a very small portion of commuting is made by public transport.

Information on commuting flows and inter-zonal distances correspond to a subdivision

of the region into 58 postal delivery zones. This is the most detailed level of information

that is available on individual residential and work location. The information is provided

for us as preliminary data by Statistics Norway, it refers to the 3rd quarter of 2004, and is

based on the Employer-Employee register. The matrices of physical distances and traveling

times were prepared for us by the Norwegian Mapping Authorities. Information on speed

limits and road categories is converted into traveling times through instructions worked
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out by the Institute of Transport Economics, and the center of each (postal delivery) zone

is found through detailed information on residential densities and the road network. Both

the distances and traveling times are constructed from a shortest route algorithm.

The municipalities and zonal centers in our study area.

4.2 The competing destinations modeling approach

The standard gravity model is widely used in empirical spatial interaction analysis. This

basic modeling framework has been extended in several directions, for instance by ac-

counting for the number of intervening opportunities between an origin and the alternative

destinations. As a benchmark for evaluating the effects on model performance of splitting

the population into two heterogeneous groups, we report results based on the competing

destinations model, that was mentioned in the introduction. This approach represents an

established extension of the basic modeling framework, and incorporates a measure of
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destination accessibility, Sij , in the structural gravity equation:

(4.1) Tij = AiBjSρ
ij exp[−βdij]

where

(4.2) Sij =
n∑

k=1
k)=i,k )=j

Dk exp[−βdjk]

Accessibility is measured by Sij , which is defined as the accessibility of destination j

relative to all other destinations, as perceived from origin i. n is the number of destination

opportunities. The sign of the parameter ρ will be positive if agglomeration kind of forces

are dominant, while the parameter takes on a negative value if competition like forces are

dominant.

This definition of destination accessibility corresponds to a simple representation of the

competing destinations approach. Alternatively, a parameter can be attached to the total

inflow,Dk, and we could account for the possibility that the parameter attached to distance

in the accessibility measure differ from the distance-deterrence parameter in the structural

Equation (2). The ambition in this paper is not to discuss alternative parametric specifi-

cations of this modeling framework, however, and we choose to use the simple version

of the model as a benchmark for evaluating the approach with heterogeneous groups

of workers. For a discussion of alternative parametric specifications, see Thorsen and

Gitlesen (1998). Fotheringham (1983) originally introduced the competing destinations

term in a production-constrained model formulation for US air passenger interaction data.

According to results reported by Thorsen and Gitlesen (1998), however, this approach has

also proved relevant in a doubly-constrained framework aimed at explaining commuting

flows. The competing destinations approach can be interpreted in terms of random utility

theory and hierarchical destination choices, see for instance Gitlesen and Thorsen (2000)

for a discussion referring to journeys-to-work decisions.
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4.3 A list of model formulations to be considered

Combining the ideas of heterogeneous preferences and competing destinations potentially

introduce numerous parametric model formulations. We make no attempt, however, to test

an exhaustive list of alternatives. As mentioned above our primary ambition is to obtain a

satisfying benchmark for evaluating effects of splitting the population into separate groups

of workers. For this purpose we consider the following model formulations:

M1 : the standard gravity model

M2 : the basic competing destinations model

M3 : a gravity model where workers in each zone are split into two equally large groups

M4 : like M3, but the size of the two groups is determined by maximizing the likelihood

of the observed commuting pattern

M5 : a competing destinations model where workers in each zone are split into two

equally large groups

4.4 Results

The parameters are estimated simultaneously by the method of maximum likelihood. Max-

imum likelihood was found through an irregular simplex iteration sequence (see Nelder

and Mead (1965)). Standard errors were estimated by numerical derivation. In Table 1 we

report both parameter values and values of some goodness-of-fit indices. L is the maximum

log likelihood value. According to Knudsen and Fotheringham (1986) the Standardized

Root Mean Square Error (SRMSE) is the most accurate measure to analyze the performance

of two or more models in replicating the same data set, or for comparing a model in

different spatial systems. SRMSE is defined by SRMSE =

√
∑
ij (Tij−T̂ij)2

I·J∑
ij Tij
I·J

, where I denotes

the number of rows (origins) in the trip-distribution matrix, while J is the number of

columns (destinations). A measure with a more obvious interpretation, but inappropriate

for statistical testing, is the Relative Number of Wrong Predictions, RNWP =
∑
i,j(|T̂ij−Tij|)∑

ij Tij
.

The variable Frac. 1 in Table 1 represents the fraction of the workers belonging to group

1.
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Table 1: Results based on alternative model formulations

M1 M1(1989) M2 M3 M3(1989) M4 M5

β 0.0953 0.1293 0.0953 − − − −
(0.0006) (0.0009) (0.0006) (−) (−) (−) (−)

β1 − − − 0.0596 0.0764 0.0724 0.0609
(−) (−) (−) (0.0008) (0.0010) (0.0009) (0.0017)

β2 − − − 0.1667 0.2978 0.2464 0.2018
(−) (−) (−) (0.0021) (0.0044) (0.0070) (0.0050)

ρ − − 0.4438 − − − −
(−) (−) (0.1029) (−) (−) (−) (−)

ρ1 − − − − − − −2.7125
(−) (−) (−) (−) (−) (−) (0.2012)

ρ2 − − − − − − −0.1181
(−) (−) (−) (−) (−) (−) (0.1076)

Frac. 1 − − − 0.5 0.5 0.7305 0.5
(−) (−) (−) (−) (−) (0.0295) (−)

L −212407 −123425 −212398 −211907 −122395 −211864 −211851
SRMSE 0.7929 0.9579 0.7932 0.7439 0.6587 0.7065 0.7240
RNWP 0.2864 0.2423 0.2857 0.2708 0.1980 0.2662 0.2678

Note: Standard errors in parentheses. Except from M1(1989) and M3(1989) the results are

based on 2004 data.

Notice first from Table 1 that model performance improves considerably if the labor force

is split into two equally large categories; all three goodness-of-fit measures come out

with more satisfying values in M3 than in M1. Notice also that the introduction of the

destination accessibility measure adds significantly to the explanatory power. Comparing

M2 to M1 results in a value of the likelihood ratio test statistic of approximately 19.1, which

exceeds the critical value of a chi square distribution with one degree of freedom. Still, our

results indicate that it is a considerably better idea that an additional parameter is used

to represent heterogeneous preferences rather than the spatial structure characteristics

underlying the competing destinations model.

In the previous section gender was suggested as a natural characteristic for interpreting

the distribution of the population into two equally large groups. It is not obvious, however,
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that those two groups differ with respect to distance deterrence in commuting decisions.

An alternative hypothesis is that at least one of the spouses in households with young

children resist from long journeys to work. In such a case the two groups should not

be specified to be equally large. The subdivision of the population into separate groups

can also in general be interpreted in terms of for instance age and income/wealth. The

income/wealth dimension is, however, probably not very relevant in explaining commuting

flows in the prosperous and relatively egalitarian economy that we study.

According to the results reported in Table 1 (M4) the likelihood of the observed commuting

flow pattern is maximized in a case where about 27% of the population belongs to the group

that is most responsive to variations in distance.

In M5 the idea of heterogeneous preferences is incorporated into a competing destinations

modeling framework. This model formulation corresponds to the scenario with two equally

large groups of workers. It follows from Table 1 that group 2 is still, naturally, most

sensitive to variations in distance, but it also follows that destination accessibility does

not significantly affect the commuting flows of this group. According to our estimation

results competition like forces are significantly dominant in explaining the commuting flow

pattern of group 1.

By comparing the results based on M5 to those based on M3 it follows that destination

accessibility adds significantly to the explanatory power also in a setting where hetero-

geneous preferences are accounted for; the value of the likelihood ratio test statistic is

about 112.5, which by far exceeds the critical value of a chi square distribution with two

degrees of freedom. By also comparing to the results based on M2, however, it follows that

the major contribution to the increase in the goodness-of-fit values of M5 stems from the

the introduction of heterogeneous preferences rather than the introduction of destination

accessibility.

Thorsen and Gitlesen (1998) used 1989-data on commuting flows in the same region to

evaluate alternative formulations of competing destinations models. The estimation re-
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sults are not directly comparable with the results reported in Thorsen and Gitlesen (1998),

since we did not use quasi independence for cells with no observations. In addition, care

should be used in comparing results based on data from 2004 to those based on 1989-

data. The reason for this is that the subdivision of the region into postal delivery zones

has changed in this period. There are 58 zones in 2004, while the number of zones was 43

in 1989.

Such discrepancies in data and estimation do not affect our main conclusions, however.

Qualitatively, the results based on data from 1989 support the above conclusion that it is a

very good idea to account for heterogeneous preferences by splitting workers into separate

groups even in cases with no information on individual characteristics. Quantitatively, it

follows from the results presented in Table 1 that the partitioning of workers into two

groups in fact contributes even more to the explanatory power in the case with commuting

flow data from 1989.

In Gitlesen and Thorsen (1998) a refined version of the competing destinations framework

is extended by incorporating labor market characteristics, reflecting local supply and de-

mand conditions. Those characteristics are found to contribute significantly to explanatory

power, and all goodness-of-fit measures are considerable improved compared to the values

resulting from the standard gravity model. Still, this 7-parameter model formulation

does not outperform M4 above, where the size of the two groups is determined from the

optimization procedure. In fact, the latter 3-parameter model results in a higher value of

the likelihood function. Without entering into further details on the M4(1989) results we

find that the maximum likelihood of the observed commuting flow pattern corresponds to

a case where about 23% of the population belongs to the group that is most responsive to

variations in distance. Summarized, our results suggest that the population is subdivided

into fractions of about 0.75/0.25 according to commuting behavior. This is at least not

contradicting the hypothesis that women with young children tend to choose job locations

relatively close to their residence.
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5. Concluding remarks

The basic hypothesis underlying this paper is that an observed commuting flow pattern

reflects systematic variations in preferences across groups of workers. The challenge is

then that information on individual characteristics and criteria for grouping is in general

hard to obtain. Our contribution to the literature is that heterogeneity can now be tested

and adjusted for even without this information.

Few people would disagree that worker heterogeneity could be a matter of some impor-

tance in trip-distribution modeling. The interesting question is how to model this, and

to compare the effect of heterogeneity to other effects in the system. The authors have

studied problems related to worker heterogeneity in several previous papers. Ubøe (2004)

suggested that heterogeneity could represented by a convex combination of exponentials,

each with a separate parameter in the distance deterrence function. As reported by Gitlesen

et al (2006) empirical experiments with this line of approach have not been successful.

Those experiments were based on data from the same region that is considered in this

paper.

In this new paper we approach through a very simple and obvious idea that appears to

improve model performance considerably. Taking the simplicity of the model into account,

these new models perform surpricingly well. We find that even a parsimonious model

formulation based on the simplest possible specification of the basic idea leads to an

increase in explanatory power that is stronger than one could reasonably expect.

As was clear from the introduction the problem of heterogeneous preferences has of course

been addressed before in the literature, but we find it somewhat surprising that (to our

knowledge) the simple idea proposed in this paper has not been explicitly incorporated in

previous approaches to the problem. Independent testing on many different network is of

course neccessary before one can say for sure that our suggested line of approach is the

right way of incorporate the effect of worker heterogeneity. It is our firm belief, however,

that the present framework may in fact be a scientific breakthrough in this respect.
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6. Appendix

Remark: The proof of Theorem 2.1 below is essentially a vector version of the proof

presented in Jörnsten and Ubøe (2005). While the setting in the Jörnsten and Ubøe (2005)

paper is efficient statistical equilibria in commodity markets, the central method of proof

is basically the same.

Proof of Theorem 2.1

Using logarithms and vector notation in (2.4) we obtain the equivalent formulation

(6.1) B["T(1)] ≤ B["T(2)]⇒ ln["P] · "T(1) ≤ ln["P] · "T(2)

(When a function, like ln above, is applied to a vector, we assume that the function acts on

each component of the vector.)

We assume that P is benefit efficient under M in the sense that (4.1) holds for all all pairs

"T(1) and "T(2) that satisfy the feasibility constraint (2.7). Choose and fix any feasible vector

"T(2) > 0 and consider the LP-problem

(6.2)
max

"T
ln["P] · "T

M"T⊥ = M"T(2)⊥, B["T] ≤ B["T(2)] "T ≥ 0

Assume that this LP-problem has a solution T∗ )= T(2) and put T(1) = T∗. If T = T(2) is not

a solution to (4.2), we would have

(6.3) ln["P] · "T(1) > ln["P] · "T(2)

which is impossible since P is benefit efficient by assumption. Hence (4.2) has a strictly

positive solution, which in turn implies that all the slack variables in the dual problem are

zero. The dual problem can be formulated as follows: Note that B["T] = "T · "U, and define

an extended matrix
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(6.4) W =




M11 M21 · · · M(SN2)1 U1
...

... · · ·
...

...
M1(SN+N) M2(SN+N) · · · M(SN2)(SN+N) USN2




The dual problem of (4.2) can then be stated as follows:

(6.5)
min

u=(u1,...,uSN+N+1)
"T(2)Wu

Wu ≤ ln["P] u1, . . . , uSN+N ∈ R, uSN+N+1 ∈ R+

When all slack variables are zero, we get

(6.6) ln["P] = Wu = (u1, . . . , uSN+N)M +uSN+N+1U

which proves the first part of Theorem 2.1. To prove the converse, define P as in (4.6), and

let T(1) and T(2) be any feasible states. Then

(6.7)

ln["P] · "T(2) − ln["P] · "T(1) = ((u1, . . . , uSN+N)M +uSN+N+1U)("T(2) − "T(1))

= (u1, . . . , uSN+N)(M"T(2) − "T(1))

+uSN+N+1("T(2) · "U − "T(1) · "U)

= uSN+N+1(B["T(2)]− B["T(1)])

Hence if B["T(1)] ≤ B["T(2)], then ln["P] · "T(2) − ln["P] ≥ 0, proving the converse result.

!

Proof of Theorem 2.2

Assume that we have found a feasible trip distribution T on the form

(6.8) "T = exp[(u1, u2, . . . , u(S+1)N)M +u(S+1)N+1"U]

Then T is implied by P if and only if Pijs = Tijs
Lis . We must prove that P satisfies (2.8). Define
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(6.9) vi+(s−1)N = ui+(s−1)N − ln[Lis] i = 1, . . . , N s = 1, . . . , S

and put

(6.10) "P = exp[(v1, v2, . . . , v(S+1)N)M +u(S+1)N+1"U]

Then by easy but tedious verification, inspect, e.g., the case in (4.12) below, we see that

Pijs = Tijs
Lis . The converse is proved similarly.

!

Proof of Theorem 2.3

Since the system is cost efficient with (S + 1)N constraints, we know that we can find

constants u1, . . . , u(S+1)N ∈ R and u(S+1)N+1 ≥ 0 such that

(6.11) "T = exp[(u1, . . . , u(S+1)N)M +u(S+1)N+1"U]

To see how this works, we first consider the case S = 2, N = 3. In that case

(6.12) M =




1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1




We note that each column contains the number 1 twice, and then only zeros. We get

(6.13)

(u1, . . . , u9).M = (u1 +u7, u1 +u8, u1 +u9,

u2 +u7, u2 +u8, u2 +u9,

u3 +u7, u3 +u8, u3 +u9,

u4 +u7, u4 +u8, u4 +u9,

u5 +u7, u5 +u8, u5 +u9,

u6 +u7, u6 +u8, u6 +u9)

23



The same system appears in the general case. Hence by easy, but tedious, verification it

follows that

(6.14) Tijs = exp[ui+(s−1)N +uSN+j −u(S+1)N+1Uijs]

Now put

(6.15) A(s)i = eui+(s−1)N Bj = euSN+j c = u(S+1)N+1

which completes the proof of Theorem 2.3.

!
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