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Summary

The purpose of this dissertation is to present and discuss different models for
optimal development of a petroleum field. The objective of the optimization
models considered is to maximize the project’s expected net present value.
In this framework we analyze decisions concerning platform capacity, where
and when to drill wells and production strategy for each of the wells. When
making these decisions, there is considerable uncertainty about the reservoir
properties, future oil-price and technical restrictions, and in this work we
focus on how to model and solve problems of petroleum field optimization
under uncertainty.

The problems discussed in this dissertation lie on the borderline between
petroleum economics and reservoir engineering. When considering the prob-
lems within an interdisciplinary framework, it is impossible to use the level
of detail that can be employed in each discipline let alone. The analysis pre-
sented here is therefore on a more aggregated level, which is in accordance
with operations research as an interdisciplinary approach of solving complex
planning problems. We have chosen a level of detail where a crude reservoir
simulator is represented in the optimization model. This allows us to analyze
location problems and to model how different decision variables interact with
each other. However, it is important to note that such aggregated models do
not exclude the need for detailed analysis in the fields of both engineering
and economics.

The dissertation is divided into two parts. The first part give an overview of
petroleum field optimization from an operations researcher’s point of view.
Part II consists of four self-contained articles. Although different in scope,
these articles all discuss important problems related to optimal exploitation
of a petroleum reservoir.

Part I has the title “Overview of petroleum field optimization”, and in ad-
dition to giving this overview, it ties together the work presented in the
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vi Summary

second part of this dissertation. The two first chapters of Part I delimit the
topic under consideration and discuss existing literature in the field. In the
third chapter we focus on the reservoir, and reservoir equations for a simple
reservoir system are derived. We then discuss how these equations may be
discretized in order to solve the problems by finite difference methods. In
Chapter 4 these discretized reservoir equations are included in optimization
models. We first discuss linear programming models for optimizing produc-
tion decisions, and we also show how these models can be extended to mixed
integer programming models where decisions concerning platform, wells and
production strategy are optimized. Different versions of the proposed mixed
integer programming model are later used in the Papers A, C and D. The
Chapters 5 and 6 treat optimization under uncertainty and petroleum field
unitization. The first three papers of Part II deal with different issues of oil
field optimization under uncertainty while the last paper treats oil field uni-
tization. The Chapters 5 and 6 give a background for the following papers,
as well as they compare and discuss the findings in the four papers. Chapter
7 has concluding remarks and directions for future research are outlined.

The first paper in Part II has the title “Oil Field Optimization under Price
Uncertainty”, and it is the problem of making optimal development deci-
sions under uncertain oil price that is considered. The uncertain oil price
is estimated by a finite set of price scenarios with associated probabilities.
Our goal is to find the decision policy that optimizes the project’s expected
net present value, and this is a policy where future decisions are allowed to
depend on revealed price information. This is a stochastic mixed integer pro-
gramming problem and finding the optimal solution to such a problem is not
straightforward. Our approach is to use the scenario and policy aggregation
technique developed by Rockafellar and Wets for solving the problem. This
technique is developed for the case of continuous variables, and we discuss
methods for adapting this approach to the case of mixed integer problems.
This is done by utilizing the interaction between the continuous (produc-
tion) and integer (design) variables. Numerical experiments are reported in
the paper, and it is concluded that scenario aggregation may be a suitable
technique for solving also mixed integer programming problems.

In the next paper, Paper B, we also consider stochastic optimization prob-
lems, but we here focus on problems with decision dependent information
discovery. The paper has the title “A Class of Stochastic Programs with De-
cision Dependent Random Elements”, and it is co-authored with Roger J.-B.
Wets and David L. Woodruff. The motivation for this paper is our interest
in modeling and solving optimization problem under reservoir uncertainty, a
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problem which is addressed in Paper C. When considering the price uncer-
tainty in Paper A, the information about the price development is revealed
independently of the development decisions. In a problem with reservoir
uncertainty the situation is different, because future information acquisition
depends upon which decisions are made. This leads to more complex models
and optimization problems that are significantly more difficult to solve, and
the literature dealing with such issues is very sparse.

Paper B identifies a class of such problems that are “manageable”, and an im-
plicit enumeration algorithm for finding optimal decision policy is proposed.
The numerical experiments are done for a general two-stage production plan-
ning problem. A manufacturer faces uncertain production costs for a number
of components, and the only way to resolve this uncertainty is by producing
the component itself or a rather similar one. The uncertainty is represented
by discrete probability distributions, and also the variables controlling the
random elements are discrete.

The research in the field of decision dependent information discovery is con-
tinued in Paper C, which has the title “Optimal Selection and Sequencing of
Oil Wells under Reservoir Uncertainty”. We here consider problems where
reservoir properties are uncertain, but an initial probability distribution over
possible reservoir realizations is given. When production wells are drilled,
new information about the reservoir is acquired, and we propose a Bayesian
model for updating the probability distribution as test results become avail-
able. This decision problem can be modeled in terms of a decision tree,
and an implicit enumeration algorithm for solving this sequencing problem is
proposed. Numerical experiments are performed by use of the mixed integer
field optimization model. The results show that including future informa-
tion discovery in the models may have influence on optimal drilling deci-
sions. Compared to Paper B, the main difference is that Paper C considers a
problem where the information discovery is not complete. Each drilled well
provides new test results, but these test results do not completely reveal the
reservoir realization. In our view, the work reported in Paper B and C points
to interesting topics for further research in modeling and solving problems
with decision dependent information discovery. We believe that it is the lack
of tools rather than the lack of problems that is the reason for the sparse
reported research in this field.

In the last paper, “Nash-Equilibrium and Bargaining in an Oil Reservoir
Management Game”, we discuss the common pool problem arising when two
lease owners have access to the same underlying oil reservoir. Because of the
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migratory nature of oil, both lease owners have incentives to drain oil from
the competitor’s part of the reservoir. They also have incentives to produce
the present reserves before so is done by the competitor. Our approach is
to demonstrate how a mixed integer programming model can be used in or-
der to clarify unitization negotiations. Unitization is the practice of unifying
the ownership and control of the reservoir, such that the field is developed
and operated by a single operator. The discussion in Paper D is based on
a numerical example. When considered as a non-cooperative game we show
that there exists a unique Nash-equilibrium, illustrating the over-investment
induced by competitive extraction. Considered as a cooperative game the
Nash-equilibrium serves as a threat strategy, and we discuss possible bar-
gaining solutions for such problems.

In our view this dissertation points to several interesting topics for further
research. There is a continuous need for improved decision support tools
in the petroleum industry, and effort should be made in order to develop
models and solution methods for more complex reservoir descriptions. It can
also be worthwhile to study if and how available reservoir simulators can
be combined with the optimization models proposed here. The dissertation
also open for a structured treatment of uncertainty, both traditional decision
independent uncertainty but also problems where the random elements are
decision dependent. Further research should be undertaken both with such
optimization models in general and for application within the petroleum
industry. Improved reservoir simulators and optimization models will also
benefit further research in the area of petroleum field optimization.
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Chapter 1

Introduction

The purpose of the first part of this dissertation is to review previous research
in optimal management of petroleum reservoirs and discuss the relationship
with the contributions in the second part of this dissertation. The term
petroleum field optimization is a wide one, and it is not our aim to review all
previous literature in this area, but rather to present different approaches to
petroleum field optimization. By reviewing central literature we show which

- traditions our work is based on and also which aspects we have decided not
to include in our analysis.

The problem of optimal oil field development is a complex decision prob-
lem, and the starting point for such an analysis is the reservoir itself. It
is the value of the reservoir one seeks to maximize, and the decisions are
constrained by the reservoir properties and several other technical and eco-
nomical restrictions. Solving such problems in practice necessitates an inter-
disciplinary approach which among others involves geologists, engineers of
different specialties and petroleum economists. Our approach to this problem
follows the tradition of operations research in using quantitative techniques
for modeling and solving interdisciplinary decision problems. When solving
the problem, we do not necessarily aim at finding the optimal solution, but
rather to provide insight into the problem and increased knowledge about
how the decision variables interact.

When working with decision problems on the borderline between reservoir
engineering and petroleum economics, it may be difficult to find an appro-
priate level of detail in each of the disciplines. We can not possibly perform
as detailed analysis as can be done in each discipline alone, and the mod-
els need to be at an aggregated level. It must also be emphasized that the
models presented here do not exclude the need for more detailed engineering
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4 Introduction

and economic analysis. But our approach is to combine these disciplines,
and such models must necessarily represent a trade-off in level of detail. By
this is meant how the reservoir properties is represented, and which decision
variables and technical restrictions that are included in the model. Moreover,
when modeling complex decision problems the challenge is to focus on the
variables and constraints that play an important role in the problem under
consideration and leave the other variables and constraints for the more de-
tailed analysis.

So far we have been rather general about what is meant by petroleum field
optimization, but this term will be more thoroughly discussed in Chapter
2. However, it will become clear that in our research we focus on mod-
els which consider platform capacity, where and when to drill production
wells and production strategies for each of the wells. In these model equa-
tions, description of the fluid flow in the reservoir is included, and this model
formulation is implemented for a single phase oil reservoir. This reservoir
system may be approximated by linear finite difference equations, and the
resulting mixed integer models optimize both design and operating decisions.
The implemented models are valid for single phase oil, but our analysis uses
petroleum reservoirs in general as a starting point. In this dissertation the
terms petroleum and oil are to some extent used interchangeably.

In Chapter 2 we look closer at different aspects of petroleum field optimiza-
tion, and present a review of selected literature. In Chapter 3 we discuss
derivation of reservoir equations and how these equations may be discretized.
The focus is here on single phase oil reservoirs, and in Chapter 4 it is discussed
how a single phase oil reservoir description may be included in optimization
models. First we look at optimal production problems, before the model is
extended to include field development decisions. The specific optimization
model derived in Chapter 4 is used in three of the papers in Part II of this
dissertation.

Chapters 5 and 6 treat topics discussed more closely in the papers in Part II.
The papers A, B and C discuss problems related to oil-field optimization un-
der uncertainty, and Chapter 5 gives a general background for these papers,
as well as the results in the papers are compared and discussed. Chapter 6
discusses the problem of oil field development when there are several lease
owners with access to the same underlying reservoir. This problem is also
discussed in Paper D. Chapter 7 gives a summary of Part I, a summary of
the findings in Part II, and outlines directions for further research.



Chapter 2

Petroleum Field Optimization

The purpose of this chapter is to discuss the term petroleum field optimiza-
tion and give an overview of previous research in this area. We first look
at different applications of operations research in the oil industry, before we
look closer at decision problems in field optimization. In a field development
analysis it is the reservoir itself that is the basis for the discussion, and it
is the value of this resource one seeks to optimize. A petroleum reservoir is
a complex system, and in order to describe its performance it is necessary
with knowledge about the rock and fluid properties. Using this as input
data one can derive equations describing the relationship between fluid flow
and pressure in the reservoir. Derivation of reservoir equations is discussed
in the next chapter. But even when development decisions are made, the
information about the underlying reservoir is still limited, and the available
reservoir data are uncertain. Therefore, how to represent the reservoir in the
optimization model is not straightforward, and this question is a central issue
in this chapter. We will present models which have an explicit description of
reservoir performance as well as more simplified models. By explicit reservoir
description we mean models where fluid flow equations are included in some
way, thus giving rise to a spatial variation in reservoir pressure. We will also
look at problems considering a portfolio of potential petroleum fields, and
models for optimal sequencing of field development are presented. In this
connection we also look at development of transport networks and how such
problems may be modeled.

-
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6 Petroleum Field Optimization

2.1 Operations Research in the Petroleum In-
dustry

The invention and development of the simplex algorithm by Dantzig [22] in
1947 created the area of linear programming, and together with the invention
of digital computers, new possibilities were opened in the field of optimiza-
tion. Since the end of the 1940s, the petroleum industry has been a large scale
user of optimization techniques, and there exists a large amount of literature
dealing with application of mathematical programming techniques in the oil
industry. A large part of this literature describes optimization of processing
and blending in the refinery industry, but many other applications are also
present. It was linear programming that sparked the use of mathematical
programming in the petroleum industry, but also non-linear programming,
dynamic programming and integer programming have been frequently used.
In this selected review we focus on applications within the petroleum indus-
try and not on solution techniques. An overview of methods and techniques
within mathematical programming can be found in Luenberger [65] and Mi-
noux [72].

By following the framework of Garvin et.al. [36] and Foster [32], the petroleum
industry may be divided in four areas:

Exploration

Production

Refining

Distribution and marketing

In the above mentioned articles by Garvin et.al. [36] and Foster [32], pub-
lished in 1957 and 1964 respectively, reported applications of operations re-
search in the petroleum industry are surveyed. In those early years this liter-
ature was relatively sparse, and thorough surveys comprising all four problem
areas mentioned above could be written. To our knowledge, more recently
published surveys have a narrower scope, and do not cover the oil indus-
try as a whole. Application of optimization techniques for solving planning
problems in the refinery industry represents an area where a lot of research
has been done, and it is not uncommon that the petroleum industry and
refining industry is considered as being synonyms. An example of this is the
paper “A history of mathematical programming in the petroleum industry”
by Bodington and Baker [17] published in 1990. One could expect that such
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a paper would report research in all areas mentioned above, but this paper
focuses entirely on applications in the refinery industry.

In exploration problems decision making under uncertainty is the key issue.
Exploration may be defined as an information acquisition and processing ac-
tivity where the aim is to assess information about possible hydrocarbon
systems. This information will be used for determining the prospectivity of
a system and further provide information for deciding if and how a potential
petroleum field may be developed. Typical decisions are where to explore
for petroleum, what kind of petroleum to emphasize, and one needs to de-
cide what type approach of should be used: Seismic surveys or exploration
drilling. Further, all these decisions is dependent upon the available explo-
ration budget and what kind of risk the explorer is willing to accept.

Petroleum exploration is a gamble for high stakes. The risk of using con-
siderable amounts of money without making any profitable discoveries is
large, but if a profitable reservoir is found the revenue may be huge. Be-
cause of the large extent of uncertainty present when making exploration
decisions, simple exploration problems are often found in textbooks as a
way to introduce stochastic decision trees and decision making under uncer-
tainty [51, 52]. Optimization under uncertainty is discussed in general in
Chapter 5. An overview of problems and methods in petroleum exploration
can be found in Harbaugh, Doveton, and Davis [42] and Newendorp [75]. Dif-
ferent approaches for analyzing the problem of allocating limited resources
among several possible petroleum prospects are found in Bjgrstad, Hallefjord
and Hefting [15], Flam [30], Tjgstheim and Hefting [101] and Walls, Morahan
and Dyer [106].

The topic “Petroleum field optimization”, which is our main concern, lies
within the area of production. The point of departure here is that through
the exploration activities there are found petroleum reserves that are judged
to be profitable. This may either be a single reservoir or a portfolio of reser-
voirs. Problems included in the area of production optimization are field
design, drilling optimization, and strategies for production, injection and en-
hanced oil recovery. Modeling and solving problems related to optimizing
the field design and production strategies for a single reservoir are discussed
in Sections 2.2 to 2.4, while decision models for development of several fields
are found in Section 2.5. Optimization of the drilling process and strategies
for enhanced oil recovery will not be a topic in this dissertation. Examples
of literature dealing with optimal drilling are Lummus [66] and Reed [84],
while problems in enhanced oil recovery are addressed in Thomas [99] and
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Thompson and Blumer [100}.

As mentioned do problems in the area of refining represent the main part
of published literature within applications of operations research in the oil
industry. Because of the extensive use of planning tools based on mathemat-
ical programming techniques, solving refinery problems is seen as one of the
major successes of applied operations research. A survey of models for opti-
mizing refinery operations may be found in Haugland [47]. In this survey the
literature is divided in three parts: Models for single refineries, models for
clusters of refineries and models for single process units. Early work in the
area of optimizing operation of a single refinery is found in Charnes, Cooper
and Mellon [20] and Symonds [97], while the problem of optimizing the op-
eration of several refineries are addressed by Manne [68], Langston [59] and
Al-Zayer [2]. These models for optimizing the operation of refineries have a
rather crude representation of the refinery processes, which again creates a
demand for detailed models optimizing the processes. While linear program-
ming models often are sufficient for describing refinery operation, the process
models are generally non-linear. Examples of literature dealing with refinery
processes are Schrage [91] and Friedman and Pinder [34]. By studying the
literature dealing with refinery operations, Haugland reports that while opti-
mizing operation of a single refinery was the main concern in the early years,
over the years the interest shifted towards that of optimizing operation of
clusters of refineries and optimizing refinery processes.

Many problems in the area of distribution and marketing in the petroleum
industry, are not significantly different from distribution and marketing prob-
lems in general. But in Section 2.5 we will look closer at models for transport
of oil and natural gas from offshore petroleum fields to onshore refining and
distribution. As will be seen, transport decisions do play an important role
in field sequencing problems.

2.2 Decisions and Constraints in Field Opti-
mization

In the optimization models discussed in this section, the starting point is that
a petroleum reservoir is found to be profitable and it is decided to develop
the field. Once that is done, however, a lot of new decisions have to be made.
These are decisions with a large extent of interdependence. Our challenge
is to model this interdependence, and use this knowledge when developing
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the analyzed petroleum fields. Field development involves huge amounts of
money, and even if potential improvements may represent a small fraction of
the total investments, it is still a considerable amount of money.

In Haugland, Hallefjord and Asheim [48] there is presented a list of deci-
sions that may be included in a field optimization model, and that list is
given below.

Decisions concerning design:
Number of platforms
Number of wells (for production and injection)
Number of subsea units
Platform size (capacity)
Location of platforms
Location of wells (for production and injection)
Assignment of wells to platforms

Design and operation:
Scheduling of platform operations
Scheduling of well operations
Abandonment time

Operation:
Production rates over time
Injection rates over time
Enhanced oil recovery

This is not meant to be a complete list of decisions that can be included in
a field optimization model. Which variables to include and how they should
be represented in the model, depends on the purpose of the analysis and
availability of data. This leads us to the challenge in modeling, namely that
of including only variables and constraints that have significant influence on
the decision policy and leave the rest for more detailed analysis. The prob-
lem of optimizing the development of a petroleum reservoir involves a lot
of different decisions in a complex environment, but a larger model is not
necessarily a better model.

In an early phase when the development decisions are not yet made, there are
still a lot of uncertainty associated with the available data. As discussed, ex-
ploration decisions are made under a large extent of uncertainty. During the
“life cycle” of a reservoir, from discovery until the production is completed,
the amount of information about the reservoir is increasing, but even when a
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field has been produced and is abandoned, the knowledge about the reservoir
is not complete. It is usually of no value performing detailed studies when
the input data is uncertain, but that does not mean that no analysis should
be performed. Decision making under uncertainty plays a central part in this
dissertation, and a more thorough discussion of this is found in Chapter 5.
Papers A and C deal with oil field optimization under uncertainty regarding
future oil price and reservoir properties.

When optimizing field development we seek to optimize the decisions with re-
spect to some economic criterion, and this criterion is usually the net present
value. It must be emphasized that maximizing the net present value leads to
quite different decisions than if the objective is to maximize total production.
In the oil market there are usually not negotiated long term price contracts,
and it is the expected world market oil price that is used when calculating
the revenues from a potential field. We will not in this dissertation discuss
“techniques for estimating the future oil price, but we will in Paper A look at
how the development may be optimized given a set of future price scenarios.
For gas fields the situation is often different. There may be long term price
agreements, and it is also usual that the contracts specify a delivery schedule.
Instead of optimizing the net present value, gas field models may therefore
have minimization of deviation from a target delivery schedule as its objec-
tive. The nature of the gas market will be briefly discussed in Section 2.5.

In an analysis of optimal development decisions, it is the reservoir that is
the starting point. Our overall aim is to maximize the value of the reservoir,
and thus it is of large importance how the reservoir is represented in the
model. As discussed by Asheim and Hallefjord (4], the level of detail should
depend on the purpose of the analysis and available data, and not on avail-
‘able computing capability and software. In the next sections we will review
selected literature in the area of optimal field development, and as done by
Hallefjord, Asheim and Haugland [38] we have grouped the literature accord-
ing to how the reservoir is represented in the models: Models with an explicit
-description of reservoir performance and models with a simplified description
of reservoir performance. As will become clear later on, it is models in this
first group we will focus on in this dissertation. Models with simplified de-
scriptions will be surveyed in the next section. In addition to the equations
describing reservoir performance, the decisions in a field optimization model
may be restricted by technical, economical or logical constraints. Typical
technical constraints are platform capacity and well deliverability, while a
limited budget results in economical constraints.

-
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Literature dealing with optimal field development and production planning
are surveyed by Durrer and Slater [28]. This twenty years old survey also
discusses optimization models for drilling, reservoir modeling and enhanced
oil recovery. More resent surveys of literature on field optimization are found
in Hallefjord [37], Hallefjord, Asheim and Haugland [38] and Haugland [46).

2.3 Models with a Simplified Description of
Reservoir Performance

The first published application of linear programming to oil production seems
to be by Lee and Aronofsky [61] and Garvin, Crandall, John and Spell-
man [36]. Both these papers were published in 1957. Also Charnes and
Cooper [19] contributed to this field, followed by Aronofsky and Williams [3].
These early papers established principles for oil field optimization. From
assumptions on reservoir performance, restrictions on surface facilities and
maximization of profit as objective, a time discretized optimization model
was established. Aronofsky and Williams look at single well reservoirs where
one seeks to optimize the production decisions, and they also propose models
for optimizing drilling decisions in a single reservoir. The model introduced
by Lee and Aronsofsky was further refined by Attra, Wise and Black (8}, and
they introduced additional economical and technical constraints. Rowan and
Warren [89] formulated the optimal field development problem in an optimal
control framework, and they used the idea of least squares fitting when an-
alyzing the available data. Optimal operation of gas fields was studied by
O’Dell, Steubing and Gray [79] and Huppler [54].

Devine and Lesso [24] use mixed integer programming when they investi-
gate the “platform location problem”. That is the problem of allocating
wells to platforms so as to minimize the sum of platform and drilling costs.
The number of wells to be drilled is predetermined, and the general structure
of this problem is identical to the “warehouse location problem”. Frair and
Devine [33] extend the platform location problem by including scheduling of
activities and production decisions. Other approaches to solving the plat-
form location problem are found in Dogru {26, 27], and in Hansen, de Luna
Pedrosa Filho and Ribeiro [41]. Hansen et.al. propose a tabu search heuristic
for solving the problem. Devine and Lesso’s approach is also discussed by
Lilien [63]. His criticism is that as the wells are drilled sequentially, each
well drilled add geological information which can possibly alter the position
of future targets. Further he writes:

-
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“To be operationally meaningful to management, the problem
should be considered one of the sequential decision sort, with
the information added by each well drilled potentially modifying
(updating) the model. The development of such a sequential
decision procedure could be a topic for future research.”

Paper C in this dissertation follows the direction pointed out by Lilien, and
it is modeling of sequential information discovery that is the main topic of
that paper.

Models for drilling on multilayer petroleum fields are proposed by Devine [23]
and Babayev [10]. Beale [11] proposes a model for offshore gas field devel-
opment, and present numerical experiments performed for a North Sea gas
field. The model takes into account reservoir production, compressor and
pipeline capacity. Christiansen and Nygreen [21] propose a model for pro-
duction planning on offshore petroleum fields. Production on several fields
are considered, and here also transport capacities are considered. As men-
tioned, models including transport decisions are discussed further in Section
2.5.

It can be discussed if the many above mentioned models have a simplified
reservoir description. Several of the platform location problems are formu-
lated as integer programming models, and the production variables are not
part of the model. However, also such models are to some extent based on an
analysis of the underlying reservoir when the well locations are determined.
We will now look more closely at a couple of models, where the reservoir
and its production capacity are modeled more carefully. If one assumes the
reservoir to be homogeneous and the pressure to be the same throughout the
reservoir, a tank model may be used for describing the relationship between
reservoir pressure and the production rates. Such a model is presented by
Wallace, Helgesen and Nystad [105], and they show how this model may be
used to generate production profiles for an oil reservoir. The same model
is also used by Hallefjord, Haugland and Helgesen [39], and both the model
itself and the obtained production profiles are compared to an explicit reser-
voir description and associated production profiles.

We start out by analyzing a single phase oil reservoir where we have the

following equation expressing the relationship between the accumulated pro-
duction from the field and the reservoir pressure:

Q1) = Ry (B2 ”(t’) @.1)



2.3 Models with Simplified Reservoir Description 13

where the following notation is used:

Qy(t) accumulated production from the field

R; the field’s technically recoverable resources

p(t) volumetrically weighted average reservoir pressure
p° initial reservoir pressure

Puw minimum well pressure

Equation (2.1) may be rewritten more explicitly expressing how reservoir
pressure decreases linearly with the accumulated production:

p(t) =po - szit) (Po — Pw) (2.2)

Further we assume the following relationship between production from the
field and reservoir pressure:

as(t) = q;(t)(H) (2.3)

where _ ‘
gz (t) = Nu(t)q,
The additional notation introduced here is:

q4(t)  initial field production potential
gs(t) field production potential

qa initial well production potential
Ny(t) number of wells on the field at time ¢

Equation (2.3) describes how the production potential on the field decreases
linearly with pressure, and the initial field potential can be expressed as the
product of the number of wells at time ¢, N, (¢), and the initial well potential
¢',- It is important to note that the initial well potential is not equal to
the production capacity of the well. The production from each well may be
constrained by a capacity limit, yg},, where v is a constant, and 0 < v < 1.
In addition the production may be constrained by the processing capacity
on the platform, ¢f**. By combining equations (2.1) and (2.3) the pressure
variable p(t) may be eliminated, and we get:

ar(t) = (00 - ) (2.4

which give us a simple description of the potential production from the field.
An example of a typical production profile is illustrated in Figure 2.1, and
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b e _ -

Figure 2.1: Production profile

the rate of production from the field, ¢(t), may be expressed as:

q(t) = min{Nu(t)7g,, a7 as(t)} (2.5)

In the first time interval, [tp,?;), new wells are drilled, and each drilled well
produces at a rate of vq!,. This leads to a stepwise increase in the rate of
production as new wells start to produce. We have in Figure 2.1 chosen to
approximate this process by a straight line. In the interval [t;,?;) the pro-
duction is constrained by the platform capacity, g5, while the production
in the interval [t,, 23] is described by equation (2.4). At t3 further production
is found to be unprofitable, and the field is abandoned.

Wallace, Helgesen and Nystad [105] also propose an approach for generating
production profiles for oil reservoirs with water injection. Also here a tank
model is used, and initially one assumes the tank to be filled with oil. As the
oil is extracted from the reservoir, water is injected in order to maintain the
reservoir pressure. The height of the oil zone is denoted h, and the initial
oil zone is of height hy. The relationship between Q; and R; may now be

expressed as:
h(t) )

Qs(t)=R ( (2.6)
Furthermore, the production potential for the field is assumed to be:
i
o) = 05 2 27)
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In words, the production potential is reduced proportionally to the height of
the oil zone, h. When equations (2.6) and (2.7) are combined, eliminating
h, we see that equation (2.4) also holds for the case of water injection. At
a first glimpse, it seems like nothing is achieved by injecting water in the
reservoir. However, the technically recoverable resources, Ry, will be larger
in a situation with water injection.

Another approach for dealing with reservoir descriptions are found in Odell
and Rosing [80]. They develop a mathematical programming model for op-
timizing offshore oil field development, and the decisions they consider are
number and location of platforms, number and location of wells and assign-
ment of wells to platforms. Their main concern is to use this model to analyze
the conflicting view between oil companies and the government in respect of
optimal field development. However, the model may be used for analyzing
optimal field development in general.

While the tank model (0-dimensional) considers the pressure to be homoge-
neous throughout the reservoir, an opposite view is taken by Odell and Ros-
ing. The reservoir is divided in a number of hexagons, where each hexagon
represents a “tank”. The size of each hexagon is in accordance with the av-
erage spacing of the wells, and the center of each hexagon is considered as a
potential well site and platform site. Each platform has a maximum number
of wells that can be assigned to it, and the distance between platform and
well may not exceed an upper limit. The volume of recoverable oil in each
hexagon is found by use of the following formula:

a; = V, d ¢,‘ . (1 — Bo.'Sw,') . RF, (28)
where
a; is the volume of technically recoverable oil in hexagon ¢
Vi is the volume of oil saturated sands in hexagon i

£
oi is the porosity
RF; is the recovery factor
B,;Swi is a factor that represents the oil/water separation and
the expansion factor together

Compared to the tank model, we can say that each hexagon is viewed as
a separate reservoir, where the amount of recoverable oil in each hexagon
and the associated well productivity are independent of decisions for the
neighboring hexagons. Equation (2.8) specifies the amount of recoverable oil
in each hexagon, but the production rate over time is not specified by this
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model. Odell and Rosing have used what they denote “common” production
profiles for allocating the total production over the estimated lifetime of the
Ieservoir.

2.4 Models with an Explicit Description of
Reservoir Performance

By models with an explicit description of reservoir performance, we mean
models where equations describing the fluid flow in the reservoir are included
in some way. This does not necessarily mean that fluid flow equations are
employed directly in the model, but a reservoir simulator of some kind is a
part of the optimization model. In Chapters 3 and 4 we will show derivation
of reservoir equations and discuss how equations describing a single phase
oil reservoir may be formulated as part of an optimization model. By choos-
ing to include a reservoir simulator in the optimization model, we get rather
complex models which are computationally harder to solve, compared to the
models reviewed in the previous section. But simplified reservoir models
have a quite limited ability to describe the interaction among the decision
variables. If location decisions play an important role in the problem under
study, it is difficult to use simplified models for describing the reservoir.

The interaction among decision variables are analyzed by Wattenbarger [107],
and the problem under investigation is to maximize the total production from
a single phase gas reservoir when the demand is subject to seasonal varia-
tion. This maximization is constrained by the production potential in each
well and the demand for gas. The objective of Wattenbarger’s model is to
minimize the difference between demand and actual production. However,
it is the way the reservoir is represented in the model we will focus on here.
The gas reservoir analyzed by Wattenbarger is generally non-linear, but by
a priori estimating the average gas density in the reservoir the real gas flow
equation may be linearized. (But the average gas density in the reservoir is
of course dependent upon the withdrawal rates). For this linearized system
the concept of “well interference” is introduced. The idea is that the pressure
drop at well ¢ in time period ¢ is dependent upon the withdrawal rates in
the wells prior to t, and the pressure drop may be expressed through the
following constraint:

t N '
=Y Y af rqf > Ly, — ¥, forall i=1,...,N, t=1,...,T (29)

k=1 j=1
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where T is the number of time steps, N is the number of wells, ®* is the
real gas pressure at the average reservoir density in time step ¢, <I>fnim is the
minimum pressure at well ¢ in time step ¢, aj'~* is a coefficient which rep-
resents the pressure drop at well ¢ of a unit production k time steps ago in
well 7, and ¢f is the production rate in well i. Wattenbarger’s approach to
solve this problem is by superposition, which will be discussed in detail in
Chapter 4. Instead of introducing a complete reservoir description in the
model, production in each of the wells is simulated, and from the results a

well interference matrix is constructed.

This idea of using a transient influence matrix as done by Wattenbarger,
was proposed by Aronofsky and Williams [3]. But in their paper from 1962
they have not performed numerical experiments for such a reservoir. Also
Rosenwald and Green[87] use the principle of superposition, and in addition
to production decisions they consider the problem of optimal well location.
Their objective is to minimize the difference between demand and produc-
tion. A set of potential well sites is proposed and the number of wells to drill
is specified, and which wells to drill is optimized by the model. The inclusion
of drilling decisions necessitates a binary variable, which makes this a mixed
integer programming problem. This model is applied to two different reser-
voirs. The first is a reservoir system with a slightly compressible fluid, and
such a system may be described by a linear mathematical model. The second
application is a gas reservoir, which is the same kind of reservoir as studied by
Wattenbarger, and for this non-linear system the superposition technique is
only approximate. Murray and Edgar [74] use the same technique when opti-
mizing operation and design of a gas field. In order to circumvent an integer
programming formulation of the problem, it is reformulated as a continu-
ous nonlinear problem. This modeling approach is discussed by Hallefjord,
Asheim and Haugland [38]. They state that the minimization problem is still
strictly concave, and the computational complexity of this nonlinear problem
is comparable to that of the integer formulation.

Haugland, Hallefjord and Asheim [48] use the same approach as Watten-
barger and Rosenwald and Green. Production in single phase oil reservoir
is simulated, and from this simulation they get a response matrix that is
included in the optimization model. The authors discuss several models for
optimizing production and development decisions for an offshore oil field.
The objective is to maximize the oil field’s net present value, and decisions
as platform capacity, which wells to drill and production strategy for each
of the wells are considered. Such a model is discussed in detail in Section
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4.2. This same model is used by Haugland, Jornsten and Shayan [49] when
studying an oil field exploited by a movable platform, and the model is used
for deciding when and where to move the platform on the field.

Lasdon et.al. [60] propose a model for optimizing operating decisions for a
dry gas reservoir. Non-linearities in the problem results both from the pres-
sure dependency of the viscosity and density, and from well deliverability
constraints on the form:

g <o [0 - b)), i=1,...,N, t=1,...,T. (2.10)

where p;- is the pressure at well j, pb; is the associated back pressure, and c;
and n; are well specific constants. Given the well flow and the initial reservoir
condition, the reservoir pressure may be calculated and thus the optimization
problem may be viewed as a problem in production variables only. Lasdon
et.al. use the reduced gradient method for solving the non-linear problem.
A more detailed discussion of the reduced gradient method may be found
in Mantell and Lasdon [69]. Asheim also uses the reduced gradient method
when optimizing the production strategies for reservoirs containing slightly
compressible fluids [6] and for two-phase oil/water reservoirs [7].

See and Horne [92] use another approach for optimizing production deci-
sions. Their method is performed in two steps. First, a commercially avail-
able reservoir simulator is used to perform a series of experiments, and a
multiple variable regression analysis is used to fit the experimental data. Ex-
pressed by the notation used by See and Horne, a set of equations of the
type |

Yi=ajo+apX1+...+ajnXn, j=1,...,p (2.11)

are defined. Here Y; is the j-th performance variable while X; is the i-th
decision variable. There are p performance variables and n decision vari-
ables. The reservoir simulations result in a sequence of possible decisions
and associated performance variables. By use of least squares fit the coef-
ficients ajo,aj1,...,a, are estimated, and the equations (2.11) is used as
constraints in an optimization model. In the problem investigated by See
and Horne the development decisions are made, and the production opti-
mization is solved as a linear programming problem. For each timestep an
LP problem is solved, and this solution procedure is repeated for each consec-
utive timestep. As discussed by See and Horne [92] (and Hallefjord, Asheim
and Haugland [38]), there are particularly two difficulties that are connected
to this method. First, by assuming a linear relationship between decision
and performance variables a linearization error is introduced, and care must
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be taken to analyze this error. Second, by optimizing one timestep at the
time, a possibility for arriving at suboptimal solutions is introduced. Several
timesteps may be optimized simultaneously, but this will inevitably lead to
larger problems.

Another approach for using a reservoir simulator that is external to the op-
timization model is found in Asheim [5]. Asheim uses an algorithmic value
function which is an unconstrained, non-linear representation, with the de-
cision variables as arguments and the corresponding present worth as func-
tion value. The use of this algorithmic function avoids the computational
problems associated with mathematical programming as we have reviewed.
However, Asheim’s model may not be very successful in finding the optimal
solution to complex optimization problems. Also Nystad [78] uses a reservoir
simulator to generate ”data points” which are used as input to his optimiza-
tion model.

2.5 Models Including Sequencing and Trans-
port Decisions

~ We have so far mainly looked at models for optimizing the development of a
single petroleum field, but we will in this section focus on problems involving
several reservoirs. The starting point for such an analysis is a portfolio of
potential petroleum fields, and questions treated by such a model may be:

e Which of the potential fields should be put into production ?

e When should the selected fields start to produce ?

e Which means of transportation should be chosen for the new fields ?
e Should the means of transport for producing fields be changed ?

e In what order should the selected transport modules be developed ?
e How should the constructed transport system be utilized ?

Even if optimal development solutions and associated production profiles are
given for the individual fields, the number of decision variables in such a
model can get very large. We will in this section look closer at two different
attempts of solving problems with field sequencing and transport decisions.
In the first model, given by Jornsten [57], the emphasis is on the field sequenc-
ing decisions, and the transportation n'etwork is given in aggregate form. In
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the other model, proposed by Aboudi et.al. [1], the development of a trans-
port network plays a central role, and the model seeks to answer all of the
six above mentioned questions.

As mentioned, the model proposed by Jornsten seeks to decide which fields to
put into production and when they should start to produce. The problem is
formulated as a 0-1 integer programming problem, and the decision variables
for field development are defined as follows:

1 if field ¢ is chosen to start production in time period k,
u(k) = { 0 otherwise.

(2.12)

The objective of the model is to maximize the net present value of the set of

potential fields, and the objective function is written as

max}_ Y, Pi(k)ui(k) (2.13)

i keK;
where

i field index
K; is the set of possible starting years for field 4
P;(k) is the net present value if field 7 starts its production in year k

We further assume that the total production in each period needs to be
within a certain range. This can be necessary of various reasons, for example
long term agreements about delivery of petroleum products. Jornsten allows
for several petroleum products in his model (oil, natural gas). By defining

Li(t) lower bound on production of product g in period ¢

U?(t) upper bound on production of product g in period ¢

al(k,t) the amount of product ¢ produced by field 7 in period ¢ given
that the field starts production in period k.

the constraints on production may now be written:

Lt) < Z kz;c al(k,t)y;(k) < DU(t), for all t and ¢ (2.14)

A typical configuration of offshore petroleum fields is that a large petroleum
field has several smaller fields in its neighborhood. This large field, which
is denoted the mother field, is usually developed first. The smaller fields,
the satellites, may be developed later using the processing capacity at the
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mother field, and the production start at the satellites is constrained by the
limited processing capacity on the mother field:

> Y ai(k, t)yi(k) + D af(k, t)ym(k) < HE(¢) for all t,q and m
i€G(m) keK; keK;
(2.15)

In this constraint the following notation has been employed.

m denotes a particular mother field

G(m) is the set of satellite fields belonging to m

H2(t) is the total processing capacity for product g installed at
motherfield m in time period ¢. '

In this model the transportation network is only given on aggregated form,
and the associated capacity constraints are given as:

S > al(k,t)yi(k) <T,(t), foralltands (2.16)
icJ(s)i€K:

where s is the transport system, J(s) is the set of fields that use this trans-
port system, and T,(t) is the capacity associated with transport system s at
time ¢. Jornsten also show how constraints due to a limited budget or polit-
ical regulations may be imposed on the decision policy. In addition, such a
mode] needs some logical constraints in order to be complete. Examples of
such constraints are: A field can only be developed once and a satellite field
cannot be developed before its associated mother field.

For problems of realistic size, Jornsten reports that solving them to optimal-
ity is hard, and several heuristics for approaching the problem are proposed.
Further, uncertainty regarding the future demand is introduced, and solution
techniques for maximizing the expected net present value are suggested. Also
Haugen [44] presents a model for optimal sequencing of offshore petroleum
fields where the transportation decisions are at an aggregated level. Two
alternative objective functions are used. The first seeks to minimize the de-
viation from a given demand profile. The other objective function seeks to
maximize the net present value, but deviations from the demand profile are
penalized. Haugen introduces uncertainty regarding the amount of recov-
erable petroleum in the reservoirs, and he arrives at a dynamic stochastic
programming formulation for solving the problem.

In the model proposed by Aboudi et.al. [1], the development of a transport
system plays an important role. The problem is formulated as a network
flow problem where the offshore petroleum fields and onshore terminals are



22 Petroleum Field Optimization

modeled as nodes in the network, while the links (edges) in the network rep-
resent means for transporting the petroleum between the nodes. A link may
be a pipeline connecting two nodes, but it may also be a transport system
with loading buoys and ships. The set of nodes, N, in this network may be
divided into three disjoint subsets:

Ng the set of existing nodes
Np the set of potential nodes
Nr the set of terminal nodes

The nodes Ng and Np may be petroleum fields, sources in the network, or
just nodes connecting links in the transport network. The terminal nodes,
Nr, represent onshore terminals which serves as end nodes, sinks, in the
network. For the transport links, L, we develop the following notation:

Lg the set of existing links
Lp the set of potential links

We further denote

Li®  the set of links which end in node n
Leut  the set of links which start in node n

In addition to the decision variables for field development, y;(k), there are
decision variables for development of transport network and for network flow:

2.17)

(k) = 1 if link ! is chosen to start in time period k,
71 0 otherwise.

z;(k) = quantity of petroleum transported on link [/ in time period k&
(2.18)
As in the model proposed by Jornsten, also this model can handle several
petroleum products, each transported in its associated subnetwork. However,
for notational simplicity we will here present the model with just one product.

The objective of this model is to maximize the net present value of the
portfolio of petroleum fields, and the net present value is expressed as the
difference between the revenue from sale of petroleum, and the costs associ-
ated with developing and operating the fields and the transport links. The
revenues may be expressed as:

S5 ) 3 2lt) (2.19)

t=1neNy leLin
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where p,(t) is the discounted price of petroleum delivered at terminal node
n in period £. The investment costs are:

i i ( > da(k, t)y(n, k) + Y gk, t)z(1, k)) (2.20)
t=1k=1 \neNp leLp

where:

dn(k, 1) is the cost in period ¢ if node n starts production in period k
gi(k,t) is the cost in period ¢ if link [ starts in period k

The cost of operating the transport links is given as:
T
S alt)zi(t) (2.21)
t=1leL

where ¢;(t) is the cost of transporting one unit along the link ! in period ¢.
The constraints may be grouped into three main categories:

e Conservation of flow constraints
e Budget constraints
e Logical constraints

The budget constraints require that the investment and operating costs each
period are lower than a certain maximum amount. We will here look closer at
the flow conservation constraints, while a more detailed discussion of budget
and logical constraints may be found in Aboudi et al.

Each potential field is given with a fixed production profile:

a,(t) petroleum produced in an existing node = in time period ¢
an(k,t) petroleurn produced in the potential node n in time period ¢
if the node starts its production at time k

For nodes with no production, the coefficients a,(t) and a,(k,t) are equal to
zero. For potential nodes the production in period ¢ now may be written as:

kZi: an(k, t)yn(k) (2.22)

The equations for flow conservation in the nodes can then be written:

S zi= > z{+an(t), ne€Ng (2.23)
leLin leLgut

-
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and r
Szt=)zi+ ) an(k,tlynk neNp (2.24)
IEL IL k=1

We see that the equations simply state that the flow to a node must equal
the flow from the node. In addition, there are capacity constraints imposed
on the transport links:

z; < U, (2.25)
where U, is the transport capacity on link /, and limited capacity in a node:
> # < La (2.26)

leLin

where L,, is the node capacity.

Rather similar models to the one proposed by Aboudi et.al. are discussed
in Haugen [43] and Haugen, Bjgrkvoll and Minsaas [45]. Earlier literature
on optimal pipeline design includes Rothfarb et. al [88], Bohannon [18] and
Dogru [27].



Chapter 3

Reservoir Description and
Discretization

We will in this chapter give a mathematical description of reservoir properties
and use this work to study how the reservoir system may be represented in
an optimization model. It is single phase oil reservoirs that will be the
most central part of this discussion, but also other reservoir systems will be
discussed. A more general discussion of topics in this chapter can be found
in Aziz and Settari [9], Peaceman [82] and Thomas [99]. The list below gives
a description of central notation:

p fluid density (kg/m?)

v fluid flow velocity (m/s)

w source/sink terms (kg/m3/s)
¢ porosity fraction

t time (s)

k permeability (m?)

7 fluid viscosity (bar - s)

D pressure (bar)

c constant temperature compressibility (bar~1)

3.1 Single Phase Oil Reservoir

By a single phase oil reservoir is meant a reservoir system where only the oil
is mobile. The fluid is slightly compressible, and production is made possible
as the fluid expands when the reservoir pressure is reduced. The reservoir
description is found by combining an equation for mass conservation with
Darcy’s flow equation that give the relation between the pressure gradient

25
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and the fluid flow velocity. Combined with the equation for constant temper-
ature compressibility, these equations give a complete description of reservoir
behavior.

3.1.1 Mass Conservation

Let us first consider a cylindrical core of a porous medium with fluid flow in
the axial direction. The mass flux vector p¥ represents mass flow per unit
area per unit time. The area of a crossection of this cylinder is denoted A,
and in a time interval At, the mass that flow across a crossection at the
locations = and z + Az can be expressed as

(pv).AAL and (pv)z+azAAL

The difference between inflow and outflow of this control volume is either
due to mass accumulation when fluid is compressed or due to a mass sink in
the control volume. This control volume is denoted AV = AAz, and mass
accumulation due to compressibility can for the time interval At be expressed
as:

d(p9)
—5 AVt

A mass sink w in the volume AV in the time interval At can be expressed

the following way:
wAV At

The difference between mass inflow and outflow of the control volume V is
then either due mass accumulation or the mass sink:

((pv)z — (pV)z+az) AAL = —a—%tﬂAVAt + wAV At (3.1)
We now divide this equation by AV At:
(p)z — (PV)zraz _ O
Az = 8t(p¢) +w (3.2)
By taking the limit as Az — 0 we get the following equation:
dpv). _ 0
5 = 8t(p¢) +w (3.3)

We have now found the equation for mass conservation under one directional
mass flow. An equivalent analysis can be performed for three dimensional
mass flow, and this general description can be expressed as:
8
_V. (o) = % +u (3.4)

-
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3.1.2 Darcy’s Law

Darcy’s law gives the relationship between the flow velocity and the pressure
gradient. This relationship for single phase flow was discovered by Darcy [53]
in 1856, and it is an entirely experimental relationship. The differential form
of Darcy’s law is

-

L,k g
v M(Vp + pgc) (3.5)
where k is the permeability of the porous media, u is the fluid viscosity, g is
the gravitational acceleration vector and g, is a constant. The gravitational
term of this equation is in many cases negligible, and Darcy’s law can then
be written as: "

v qu (3.6)
In the optimization models we have implemented, we have considered two
dimensional fluid flow as sufficient for describing the reservoir dynamics, and
the fluid flow in the vertical direction is neglected.  This will be further
discussed in Section 3.4.1.

3.1.3 Constant Compressibility

Under isothermal conditions we assume the fluid to have constant compress-
ibility in the pressure interval under consideration, which gives the following
relationship:

1ldp
c=—— 3.7
o dp (3.7)
By integrating equation (3.7) we get:
p = p’ exple(p — p°)] (3.8)

In this equation p° is the fluid density at the reference pressure p°. Unless
the fluid contains a lot of dissolved gas, this is a reasonable approximation.
A first order approximation of this equation is

p=p"(1+c(p—p") | (3.9)

3.1.4 Equation for Reservoir Description

By combining Darcy’s law (3.6) and the equation for mass conservation (3.4)
we get: : '

V. (%Vp) = Q%@ +w (3.10)

-
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The equation for constant temperature compressibility (3.7) can be expressed

as
dp
pdp = z
which can be rewritten on a more general form:
1
pVp = EVP (3.11)

By combining the equations (3.11) and (3.10) we now get:

k 6(p9)
v. (“ch) =—5 TV (3.12)
We now assume that the porosity ¢ is pressure independent, and we use
the first order approximation of the equation for constant temperature com-
pressibility. When combining this with equation (3.12) we get the following
relationship:

dp

at
This is a complete description of reservoir pressure. Since we have assumed
constant temperature compressibility, the coefficients in equation (3.13) are

pressure independent. Discretization of this equation will be discussed in
Section 3.4.

k
V. (Vp) = g + % (3.13)

3.2 Other Reservoir Systems

The proposed models and computational experiments in this dissertation are
valid for a single phase oil reservoir, but it is a fact that for most of the
petroleum producing reservoirs this is a too simple description. As will be
shown, single phase gas reservoirs have non-linear reservoir equations. In oil
production it is usual to inject water in the reservoir in order to increase the
pressure. For proper modeling of such reservoirs, it is necessary to introduce
reservoir models with multiple phases. We will here briefly describe a single
phase gas reservoir and reservoir systems with several phases. This is done in
order to point out direction for future research, when developing optimization
models with more complex reservoir models.

3.2.1 Single Phase Gas Reservoirs

A single phase gas reservoir is a system where only the gas is mobile, and
this is a system which gives a good description of most gas reservoirs. One
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would maybe assume that such a reservoir could be described in the same
way as a single phase oil reservoir. However, neither the constant temper-
ature compressibility nor the viscosity of the gas are constant, and thus we
get a system of non-linear reservoir equations.

One way of describing this reservoir system, is by introducing the gas equa-
tion of state:

pM
p=mr (3.14)
where
M averaged gas mole weight (kg/kmol)
T absolute temperature (K)
R universal gas constant = 8314Nm/kmol /K
P gas deviation factor fraction '

Except for the z-factor, this is the equation describing the behavior of an
ideal gas. In other words, when z = 1, the equation describes ideal gas
behavior, while at real gas reservoir conditions the z-factor may be in the
order of 0.7-0.8. This parameter depends on pressure, temperature and gas
- molecular composition. When equation (3.14) is combined with equation
(3.10), we arrive at the following gas reservoir equation:

M kp M 08p

Unlike the coefficients in the single phase oil reservoir equation, the coeffi-
cients in (3.15) are pressure dependent. We will later study how the reservoir
descriptions may be incorporated in the optimization models, but it is ob-
vious that introduction of non-linearities leads to more difficult models to
solve. This topic will be briefly discussed in Section 4.1.5.

3.2.2 Reservoirs with Two and Three Phase Flow

In most of the oil production taking place today the oil is displaced by either
water or gas. There is no clear boundary between the phases, but rather
a simultaneous flow of several phases through the porous media. We will
not give a thorough discussion of such reservoirs, but rather point out the
main difference between single and multiple phase reservoirs. This is done in
order to identify the challenges when incorporating more complex reservoir
systems in optimization models.
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We consider two phases, oil and water, represented with subscripts o and
w. The saturation of a phase is defined as the fraction of the pore volume
that is filled by that phase. For a two phase oil-water system we then have
the following phase saturation relationship:

So+Sw=1

Because of surface tension the pressure in the oil phase will be higher than
the pressure in the water phase. The difference, p,, is denoted the capillary
pressure:

Dc = Do — Puw
The capillary pressure is a function of saturation, p.(S,). In the same way
as for the single phase reservoir, we can derive equations describing the mass
conservation of the oil phase

a(poso¢) +w

=V - (pot,) = e o (3.16)
and for the water phase
~V - (puly) = %5’"—@ + Wy- (3.17)

Before describing Darcy’s law for multiphase flow, we have to look closer at
the permeabilities when there are simultaneous flow of several fluids through
a porous medium. Because of this simultaneous flow, each fluid interferes
with the flow of the other, which means that the permeability for each of the
fluids is lower than the single fluid permeability, k. The permeability for each
of the fluid’s is denoted effective permeability, written k, for the oil phase
and k,, for the water phase. It is now possible to define relative permeability
as follows:
ko ky

kro = — and krwz_k'

The relative permeability is the ratio between the effective permeability and
the single phase permeability, and this ratio will always be less than or equal
to one. Darcy’s law may now be expressed for each of the phases, and when
neglecting the gravitational term we get:

60 = _kkro Vpo (3.18)
(]
and ik '
Uw - - v pr. (3.19)

Hw -
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By combining Darcy’s law and the equations for mass conservation, (3.16)
and (3.17), we arrive at the following equations:

— 6(Po o¢)

Pokkrog ) = + w, (3.20)

(7]

Pwkkrw Vo) = 0(pwSuwd)
L ot
These equations describe the performance of an oil-water system, but we see

that employing them in an optimization model is not straightforward.

V- (—

V- (—= + Wy (3.21)

In the case of a three phase system, an oil-water-gas reservoir, a set of rather
similar equations may be derived (cf. Peaceman [82]). But in such a reser-
voir system, one must also take the mass transfer between the phases into
account. For example, there will usually be gas dissolved in the oil, but when
the pressure is reduced this gas will vaporize and become a part of the gas
phase.

3.3 Discretization of Partial Differential Equa-
tions

We will in this section discuss discretization of partial differential equations
in a general setting, and our motivation is the need to discretize the reservoir
equations in order to solve them. Only for very simple reservoir systems can
an analytic solution to equation (3.13) be found, and this fact makes it nec-
essary to use numerical techniques in order to solve the partial differential
equation.

The idea is to replace the original problem with a problem that is easier
to solve and has a solution that is close to the solution of the original prob-
lem. This is achieved by using the finite difference method, where one seeks
to find approximate values of the solution at a finite number of locations in
the reservoir at a finite number of points in time. But in order to use such
a method, we need to know how close to the real solution the approximated
solution is, and what it implies for the discretization in space and time. We
will first look at spatial discretization before we discuss discretization in time.
We will then briefly discuss the convergence and stability properties of the
different methods.

Numerical techniques for solving partial differential equations is the topic
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in a lot of specialized textbooks and scientific papers, A further treatment
of this topic can be found in Aziz and Settari [9], Mitchell and Griffiths [73],
Peaceman [82] and Smith [93].

3.3.1 Spatial Discretization

Let us start by considering an ordinary differential equation on the form:

AU=-§%—w(m)=0 O0<z<lL (3.22)
where A represents the differential operator and U represents the function
we want to solve. In order to do this we need boundary conditions; e.g.
U(0) = U(L) = 0. Instead of trying to find a continuous function, U(z), that
satisfies equation (3.22), we rather want to find an approximate solution, u,
in a finite number of points zy, 2, Z3, ..., Zn inside the interval (0, L). The
differential equation is replaced by a set of algebraic equations that give
the approximated solution ug, uy,us, ..., un at zg, 1,2, ..., x . The original
problem is given as

AU =0

but instead we solve the simpler problem

Bu=20

where B is a finite difference operator that approximates the differential
operator A. If we define U; to be the true solution in the point z;, we have
the following relationship:

AU; = BU; + R; (3.23)
where R; represents the local discretization error.

We want to find solutions in the points z; inside the interval (0, L), and the
spacing between the points is Az = z;;; — z;. The Taylor series expansion
for the points z;_; and z;4, can be written:

A 2 Ag? Azt Ag?
g U " " " n ..
Uin =U; + U Az + U — + U o —+ U =1 — + U 120+ (3.24)
5
U',_-1 — U UIA + UllA UlllA UllllA UlllllA + . (325)

6 S 24 t 120
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Using the above equations we can derive difference approximations for U]
and U!. By solving equation (3.24) for U] we get the “forward difference
approximation”:

Ul = U'“Ax + R! (3.26)

where R/ is the local discretization error. This discretization error consists
of all higher order derivatives in equation (3.24):

Az Ax? Ax®
f— _grB% _gmBT_ ymBT
R; U; 3 U; 5 - U; YR

In the same manner we can find the “backward difference approximation”
from equation (3.25):

col (3.27)

U;— Ui
! 13 ] b .
U] = B v— + R; (3.28)
where R? is the local discretization error of this approximation:
A A Ax?
" III IIII e
R =U'"— - U] + U TS (3.29)

For finding an approximated solution to equation (3.22) we need an ex-

pression for the second derivative, U/, and by adding the equations (3.24)

and (3.25) we get:

Uicy = 2U; + Uia
Ax?

Ul = + R (3.30)

where R} is the error term:

Azx? Art
T el i .
Ry = UM — UM (3.31)

By replacing U}’ in equation (3.23) by the expression in equation (3.30) we
get:

Ui-1 = 2U; + Ui

Azx?

where w(z;) is written as w;. The discretization error is a result of the
Taylor series expansion. We have now found a finite difference operator that
approximates the differential operator A. As mentioned, we do not know the
exact solution U;, and instead we therefore solve the problem:

AU; = —w;+ R (3.32)

1 — 2u; + u
By = LTy, (3.33)

where u; is the finite difference approximation to U;. In this discussion of
spatial discretization we have only considered a one-dimensional example,
but the same principle applies also in higher dimensions.
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3.3.2 Discretization in Time

We now include time dependent term in equation (3.22) and get a parabolic
equation on the form:

U oU
5~ o TV (3.34)
where U and w are both space and time dependent. The reservoir description
derived in Section 3.1 is a parabolic equation, where U corresponds to the
reservoir pressure and w is the source/sink term. We have so far discussed
discretization of the left side of equation (3.34), and we will now look closer
at the right hand side. The time can be discretized in time steps of length At,
and we will seek to find numerical solutions of the equation at discrete points
in time: £y = 0,¢; = At, ..., t, = nAt,.... The simplest way of approximating
the time derivative term is by using a “forward difference approximation”:
dup  ult! — P

-~ (3.35)

The discretized equation can then be written:

uly —2ul +ud; upt! —
= S v (3.36)
i=1,2,..,N n=0,1,2,..

This is the explicit formulation where the equation at time step ¢, do only
contain one term at next point in time, ¢,,;. It leads to a solution method
where the equation system can be solved explicitly point by point; In each
equation there will only be one unknown variable.

Another way of approximating the time derivative is by use of “the back-
wards difference method”. The time derivative can then be expressed as:

du}""l u?+1 .

A (3.37)

and the discretized version of equation (3.34) on implicit form is then:
u:‘—-'-ll - 2U?+1 + u:‘-;"-ll p— u?+1 - u:‘ + w; (3 38)
Az? At ! '

i=1,2.. N n=012,..

At each time step there will here be N eqﬁations that must be solved simul-
taneously.
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3.3.3 Consistency, Convergence and Stability

We have so far looked at the explicit and implicit method for discretizing
partial differential equations, but we have not yet discussed how good ap-
proximations to the solutions of the original problem we get by using the
presented methods. Another important problem is how the discretization er-
rors depend upon chosen Az and At. For such a discussion we need to look
closer at three important notions: Consistency, convergence and stability.
We will here briefly discuss each of this notions and how they interact.

Consistency

Consistency is a property of the difference operator. A difference operator
is said to be a consistent approximation of the differential operator if the
discretization error tends to zero when the distance between the nodes, Az,
tends to zero.

By using the “forward difference operator” in equation (3.26) we found that
the local discretization error could be expressed:

Ax n sz nn Ax3
7 U U

f=_pr

We now want to study the asymptotic behavior of this error term; what
happens as Az tends to zero. For the error term of the ”forward difference
operator” we get:

im R = lim (-U!
AR = im0

Az
T) (3.39)

We see that the error term proportionally tends to zero at least as fast as
Az tends to zero. This may be expressed as

R =0(Ax) (3.40)

The “forward difference approximation” in equation (3.26) can now be writ-
ten as follows:

Uin - Ui
Az
By looking at the error term in the difference equation for the second deriva-

tive we find R" = O(Axz?), and equation (3.30) can then be expressed as

Ul = +O(Ax) (3.41)

Uich — 2U; + Uiy
Az? .

U!'= + O(Az?) (3.42)
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The error term can be made arbitrarily small by choosing a sufficiently small
value of Az. This makes the difference approximation consistent. With ref-
erence to equation (3.23), we can say the difference operator B is a consistent
approximation to the differential operator A in the point z; if the error term
R; satisfies

R; = AU, - BU; =0 when Az =0 (343)

As long as approximations of integer orders are used, B is a consistent ap-
proximation if R; = O(AzP) where p > 1.

Convergence

We let e; be the error term in the approximated solution at z;:
€ = U.' — U (344)
Convergence can now be defined as follows:

A difference operator B is convergent to the differential operator A ife — 0
when Az — 0.

The definitions of consistency and convergence are closely related, but a
consistent operator is not necessarily a convergent operator. It can be shown
that the explicit method in equation (3.35) is consistent but only condition-
ally convergent [9]. An analysis of convergence properties may be rather
complicated, but convergence can be proved via consistency and stability.

Stability
A general definition of stability can be found in Aziz and Settari [9]:

A numerical algorithm is considered stable if any errors introduced at some
stage of computation do not amplify during subsequent computations.

This is an important problem when solving time dependent partial differ-
ential equations. An error introduced at some level will affect the solutions
at all later time levels. The connection between stability and convergence is
given by Lax’s Equivalence Theorem [85]:

For a consistent approxrimation, stability is a necessary and sufficient condi-
tion for convergence.

-
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We will here use the “Fourier series method” (also called the “von Neumann’s
method”) for examining the stability properties of an approximation. An ini-
tial sequence of errors is written as finite Fourier series, and one analyses how
a function consisting of these terms at ¢ = 0 develop during the course of
time. The function is defined inside the interval (0, L). We use Fourier series
on complex form, and to avoid to use the same notation as for the index set
we denote the complex constant i. The initial errors at ¢ = 0 are written as
a Fourier series on complex form [73]:

N .
E; =Y Apelfrite i=0,1,..N (3.45)

n=0

where
nw

ﬂn = 'f
We now want to study how an error term introduced at some stage may
influence the solutions computed at later stages. The system under consid-
eration is linear with separable solutions, and therefore it is sufficient look
at an arbitrary term: e#¥4%  The coefficient A, is a constant which can be
neglected in the following analysis. By writing ¢ = rAt, the error term can

be expressed as:
Ei,r = eiﬁz eat = eiﬁ:'Az earAt = eiﬁiAz gr (346)

oAt where a is a

We have here introduced the amplification factor { = e .
18iAzx

complex constant. When ¢ = rAt = 0 we see that E;, is reduced to e
which is the initial error term. Aslongas | £ |< 1 we know that the error term
is not amplified during the subsequent computations, which implies that as
long as | £ |< 1 we have a stable approximation. As long as the approximation
is consistently formulated, the approximation will also be convergent. This
method of analyzing stability is valid for linear difference equations with
constant coefficients. We will now discuss the stability properties of the
implicit and the explicit method given by the equations (3.36) and (3.38).

3.3.4 Stability of the Implicit Method

From equation (3.38) we know that the implicit method in the one dimen-
sional case can be written:
L S A ik Y
Azx? At !
The error term is the difference between the solution of the original problem
and solution of the difference equations. The system under consideration is
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linear, and therefore also the error terms will satisfy the difference equation.
By substituting for the error terms we get the following relationship:

1 iﬂ(i—l)Az£r+1 _2eiﬂiAz£r+l +eiﬂ(i+1)Az£r+1] — i

> [e ~ [eiﬂiA=£r+1 _eiﬂiAzgr]

(3.47)
By writing § = At/Az? and dividing the equation by ezp(iBiAz) ", we get:
E—1 = fE(e7P8% — 2 4 £3F52)
= 0¢(2cosBAz - 2)
Y SmZ(BA“c
Which can be written: 1
| S = T g
We now see that when § > 0 we know that | £ |< 1. This means that

the implicit method always is a stable approximation, and because it is a
consistent approximation we know that it also is a convergent approximation.

(3.48)

3.3.5 Stability of the Explicit Method

By using equation (3.36) as a starting point, we can also in this case write
the equation for the error terms:
1 sa. . . 1. 4. ;.
lﬂ(t—l)Azgr _ 2elﬂ:Az£r + elﬂ(i+1)Az£r] = _A_Z[elﬂtAz£r+1 _ elﬂtAzgr]

Ax? le
(3.49)
As for the 1mphc1t method we write § = At/Az? and divide the equation by
lﬂzAz {r

£—1 = o(e—iﬂAz —924 eiﬂAz)
£ = 1—4esin2(%£)
In order to have a stable approximation, we have to have | £ |< 1, which
implies:
-1<1- 4osin2(£§—z) <1 (3.50)

The term in the middle will always be less than 1, so the right part of this
inequality is always valid. For the left part we get:
-2 < —46 sz(ﬁAa:

1
0 < ——=Fa~
2sin?(822)
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The term sinz(g%) is always less or equal to 1, and therefore the denominator
of this fraction will be of value 2 or less. This leads to the following sufficient
stability condition:
At _1
Az2 — 2
It is important to note that for the explicit method, discretization in time
and space can not be done independently.

(3.51)

3.3.6 Stability of Problems in Higher Dimensions

As discussed earlier, the finite difference approximations can of course be
used also for problems of higher dimensions than one. A two dimensional
difference approximation for the explicit method can then be written:

Uy m 2ty | W 2l ey - 3.52
A2 + Ay? = At +w;  (3.52)

i=12,..,.N j=12,..M n=012,..

For the one dimensional case, we described in equation (3.46) initial errors
by use of finite Fourier series, and the same can also be done in the two
dimensional case. An arbitrary error term can be written as:

Ep,q,r — elﬂz el'yy eat = elﬂiAz el'yjAy gr (353)

By using the same procedure as earlier by replacing the error terms in the
difference equation, we get the following inequality:

At
Azx?

A At A
~1<1-4 sinz(ﬂ2z) ~4xp sin2(72y) <1 (3.54)
The middle term is always less or equal to one, and the right part of this in-
- equality is always satisfied. With the same reasoning as in the one-dimensional
case, we get the following stability criterion:

1 1 1
At(—+-—)< = .
Hxzt Ay2) <3 (3.55)
When going from one to two dimensions, and by letting Az = Ay, we see
that the maximum At in the two dimensional case is only half of what it is
in the one dimensional case. It can be shown that the implicit method is

unconditionally stable also in higher dimensions.
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3.3.7 Positive Type Approximations

We have so far only discussed approximations for dimensionless differential
equations. The differential equations describing reservoir behavior are more
complicated. Implicit method approximations for reservoir equations will
always be stable, but it may be a bit more difficult to state if an explicit
approximation is stable or not. In Forsythe and Wasow [31] the term ”pos-
itive type approximations” is introduced, and it is shown that all positive
type approximations also are stable approximations. We will here use equa-
tion (3.36) as a starting point, but for simplicity the sink/source term w; is
omitted:

n n n n+1l n
ul g —2uf +ud,  ult —

Azx? At

As done earlier we write # = At/Az?. By isolating the unknown term on
the left-hand side of the equation we get:

uM! = Gul | + (1 - 20)u? + Ouiy, (3.56)

If all coeflicients of the level n variables are non-negative, this is denoted a
positive type approximation and the approximation is stable. In this one di-
mensional example it means that all coefficients on the right-hand side have
to be non-negative, which gives: § = At/Az? < 1. We see that this is the
same stability requirement as found earlier. The value calculated at n+1, is
a “weighted average” of the values at level n, and if there is no sink/source
term, u?*! gets a value on the interval between the lowest and the highest
value on the right-hand side of the equation. In other words, there are limits
for the growth of u™*!, which give an intuitive explanation of why the system

is stable when 6 < 1.

By writing A = At/Ay?, the two dimensional explicit formulation can be
expressed

u:'jl = Aug;y +0ul )+ (1—20 — 22\ )ul; + 0uly, ;4 0ul, (3.57)
This equation is a positive type approximation if: 6 + A = At(1/Az? +
1/Ay?) < }. This is the same requirement as stated in equation (3.55),
derived by use of the Fourier series method. We will in Section 3.4.3 see that
the notion of positive type approximations will be very useful when analyzing
the explicit method approximations for reservoir equations.
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3.4 Discretization of the Reservoir Descrip-
tion

We will now return to the description of the single phase oil reservoir de-
rived in Section 3.1 and use the general methods discussed in Section 3.3 for
discretization of the reservoir equations.

3.4.1 Discretization in Space

All reservoirs are of course three dimensional, but in many practical settings
it is possible to consider the pressure gradient in one of the directions as neg-
ligible compared to the other two directions. In reservoirs that are relatively
thin compared to their area extent, it is possible to assume the pressure gra-
dient in the vertical direction to be negligible. In the optimization model
that we propose, a two dimensional model is assumed to be sufficient. Small
differences in reservoir height may be adjusted for by letting the reservoir
height be a function of the z— and y—coordinates. Reservoir descriptions
with flow only in horizontal directions and with variable reservoir height will
not be mathematically correct, but as long as the variation in reservoir height
' is rather small they will be good approximations [9].

As discussed earlier, when a partial differential equation is discretized and
approximated by finite difference equations, the idea is to find approximated
solutions at a finite number of locations at a finite number of levels in time.
In this case we consider a reservoir which is divided into a finite number of
blocks. Each block has the area AzAy, and for simplicity we only discuss
the case where the block size is uniform over the reservoir. As illustrated in
Figure 3.1 the point z;, y; is located in the center of the block denoted (3, 5),
and in the literature this is denoted a block-centered grid. The coordinate
T 1 corresponds to the left boundary of the block, while z; 1 corresponds
to the right boundary. The law of mass conservation for the block (3, j) gives
the following equation:

Ay(Azpua);_s 5 — Ay(Azpvg)iys (3.58)
+ Am(Azpvy)iJ_% - Am(Azpvy),-,H%
= AzAyAz; ,j%"— + AzAyAz; jw; j
The left side of this equation describes the mass flow over the block bound-

aries, while on the right side we recognize the terms describing the fluid’s
compressibility and the sink/source term. Both (¢p);; and w; ; represents
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Figure 3.1: Block-centered grid

the block’s averaged values. In the same way as done in Section 3.1 we use
Darcy’s law for describing the relationship between the pressure gradient and
the flow velocity, and the flow velocity in z-direction can be written as

_ kop

By doing the same for the flow in the y-direction, and by substituting this
in the equation for mass conservation, we get:

Ay(Azp# az l+ ,] Ay(Azpl_‘ 8z )l—-,] (3'60)
= V?.jﬂ%h“‘ +Vigwig

We rewrite the equation for constant temperature compressibility and sub-

stitute for p;&; and p% :

Ay(Az#c a2)itl i Ay(Azﬂcam),__,J (3.61)
+ Ax(Azfc—%s)i’H% - Aa:(Az-“-c—

= Vi X5 + Vi gwi

Oy)"»j-i
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We further use the first order approximation for constant temperature com-
pressibility p = p°(1 + ¢(p — p°)), and as done in Section 3.1, we assume the
porosity to be pressure independent. We then get the following equation:

Ay(Az,,az)c+ 14 Ay(Az” az)z—-g (3.62)
+ Az(Az"QB)w+1 Az(Az%‘—gﬁ i1

= ¢i,jcVi; Bot + —slw.,,
The partial derivative of the pressure with respect to z may be written

Op Dit1,; — Dij
(az)i+2,,1 Al‘ (363)

By doing the same operation for the partial derivative with respect to y, and
by dividing equation 3.62 by AzAy we get

ﬂ(Az)’[(Azk)|+2,J(pl+1,J IJ.,,)+(Azk),__,1(p,_1'J pij)]  (3.64)
+  sapl(Azk); 1 (Piger = pig) + (Azky 5 3 (9ijr — pis)]

dp, Az;
= ¢;jcAz =5 + ——‘*’-w.,J

The permeability and the reservoir height will be approximated by using the
average values for the two adjoining blocks. For the indexes i + % 31 J we get:

k ,J + ki+l,] AZ,J + Az,+1 J
450 = 2 ' 2

At the outer boundaries of the reservoir we assume the permeability to be
zero, which means that there is no mass flow over these boundaries. This
discretized reservoir equation is derived in the same way as the continu-
ous equation in Section 3.1 was derived. As earlier, the left-hand side of
equation 3.64 represents the mass flow over the block boundary, while the
right-hand side describes mass accumulation due to compressibility and due
to source/sink terms. By comparing to the general discretized partial dif-
ferential equation in the previous section, we see that the difference is the
coefficients k, Az and p. What this implicates for the stability properties
will be discussed later.

(Azk), (3.65)

3.4.2 Discretization in Time

The starting point for this analysis is that we assume the reservoir pressure
at time £y to be known, and we want to find approximated solutions for the
reservoir pressure at the levels ¢; = to+At,...,t, = to+nAt,.... The reason
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for our interest in the reservoir pressure, is that the reservoir’s production
capacity depends on the pressure. One way to visualize the relationship
between pressure, p, and sink terms (production), w, is as follows:

p? X5 p! ¥ p? W p3 W pt

We calculate pressure variables at discrete levels while the production goes
on continuously. Above we have indicated the production in the first period,
w!, takes place in the period between ¢y and t;. From this definition it is not
straight forward to define the reservoir pressure in the first period, and that
question will be discussed in later sections.

Explicit Method

By using the “forward difference approximation” when discretizing the time
derivative in equation (3.64), we get the following equation:

TAIW[(Azk)i+§,j(P?+1,j - P:",j) + (Azk)i—%,j(p?—l,j - P?,j)] (3.66)
+ ;(Al_y)T[(AZk)s,j+1 (P?,j+1 - P?,j) + (Azk)i,j—-— i1 — P?g)]
= Butcliui (phl _ ph ) 4 Soig P i

which can be rewritten as

p(Ay)z (Azk)u-— Pii-1 (3.67)

(A )2(Azk)i——g p?—l,j

+[¢.,Jc 2y — __(_Al_)_z((Azk),. 3T (AzR),_1 )

"y )2(‘Az’“)'a+1 +(Bek)yyp)] ol

(A )2(Azk)i+l,j p?+1,j

(A )2 (Azk)w+1 p?,j+1
_$i4¢
At
AZ,'" n
o i
This equation tells us that from the pfessure in block (%,j) and the four
neighboring blocks at time level n and the production in the block (3, j) the

n+1
Azi,j D;;

=0
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following period, we can calculate the pressure in the block (3, j) at time level
n+ 1.

Implicit Method

When approximating the time derivative in equation (3.64) by the “back-
wards difference”, we get the following expression:

A {(Brk)py 5B — P + (Azk),_y (005 — P (3.68)

+ WAly—)f[(AZk)s,J+% ?,;-Il-l B < +1) + (AZk)‘I,J——(p::;-II ps,+1)]

¢i.jcAz; +1 Az 1
= B — ply) + Tptuiy

and by sorting the pressure dependent variables this equation can be rewrit-
ten as:
@i 5€
A hE P
n+1

(A )2(A2k)u—% Pij

(3.69)

(A )2 (AZk)‘l—%J p:H-ll,J

[¢K:A i —a((@ah

e )2<<Azk>.g+1 +(Bak)yy)] B

+ (Azk),__ J)

i+,]

(A )2(Azk)1+-1-,1 p?:ll,J

(Azk)1]+1 p:;-ll-l
Bz e

pO i,j
This equation gives the relation between the pressure in block (i, j) at time
- level n, the production in the block the following period, and the pressure
in block (%,7) and the neighboring blocks at time level n + 1. If we are

considering a reservoir discretized in M x N blocks, the implicit method will
give a system of M x N equations that need to be solved simultaneously.

(A )?
=0

3.4.3 Stability

In order to analyze the stability ;Sroperties of these equations, we will com-
pare the discretized reservoir equations with the general discretized equations
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for partial differential equations derived in the previous section. We know
that the implicit method is an unconditionally stable approximation.

When analyzing the stability properties of the explicit method, we will use
equation (3.66) as a starting point. Compared to the general equation (3.52)
we see that (3.66) have coefficients describing reservoir height, permeability
and porosity, and the fluid viscosity and compressibility. If we simplify by
assuming constant height, permeability and porosity we get the following
difference approximation:

sy (PR1s — 2075 + D1 y) + wragyr (PRiy — 208 + PRj4)  (8.70)

= &L - ply) + ol
Since the only difference between the equations are the constants in equation
(3.70), we can use the same stability requirement before. By including these

constants we get:
k 1 1

At
dcu (Az2 + Ay?
A more general result is found by using the definition of positive type ap-
proximations as found in Forsythe and Wasow [31]. The requirement derived
there is that all coefficients of pressure variables at level n must be posi-
tive numbers. This means that the coefficients associated with p'; must be

greater than or equal to zero, which leads to the following stability criteria
that for all 7, 5:

1
) < 2 (8.71)

i,j 1 '
%JtEAz""' 2 m((Azk)H%,j + (AZk)i-§,j) (3.72)

1
+W((AZk)i'j+% + (A'Zk)i»j'%)

3.5 Maximum Well Production

In the derived reservoir descriptions we have introduced the sink term w;
with units kg/m?/s. This term represents an “averaged sink” for the whole
block (7, 7), while the production takes place in a well located in the block.
The relation between the sink term and the rate of production, q;;, is as
follows:

1
4 = ;:AszAz,-,jw}"j | (3.73)

By multiplying the mass sink by the volﬁme of block 4, j, and dividing by
the fluid density at surface pressure p,, we get the surface rate of production
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n
4,;-

The maximum rate of production in each well depends on the reservoir pres-
sure in the vicinity of the well, and can be approximated by the following
relation [48]:

() < Jij(0ii(t) — Pw) (3.74)
The rate of production in well (i, j), gi;, is represented by units m3/s. The
pressure in block %, j at time ¢ is given as p; ;(t), while p,, is the minimum well
pressure. The well specific productivity index J; j, may either be estimated
from the properties of the fluid and the porous media, or it can be found
by testing existing wells. We will here use the same productivity index as
proposed in [39):
_ 21kAz 1
oo %ln AT‘r%'l
We see that both reservoir height and permeability, fluid viscosity and block
area are included in equation (3.75). A more thorough discussion of produc-
tivity indexes are given in Peaceman [83].

J

(3.75)

Equation (3.74) gives the relationship between maximum rate of production
and reservoir pressure, but in a time discretized model it may be difficult to
define a period’s reservoir pressure. The problem is how to define the reser-
voir pressure in the n-th period, the interval between p"~! and p". We will
here look at three different ways of defining this reservoir pressure: Initial-,
mid- and end-pressure. These methods are illustrated in the Figures 3.2 -
34.

The initial pressure method implies that the reservoir pressure at the start
of a period defines the reservoir pressure in the following period. With the
indexing of variables we have chosen, equation (3.74) becomes:

@ < Jii (075" — pw) (3.76)

This is the way the reservoir pressure is defined in Hallefjord, Haugland and
Helgesen [39] and Haugland, Hallefjord and Asheim [48].

The opposite way is to define the period pressure by the pressure at the
end of period n, p". Equation (3.74) can then be written as:

6 < Jii(Pl; — Pw) (3.77)

A third method proposed, is the mid-pressure method where one seeks to
estimate a value for the reservoir pressure in the middle of period n, so the
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equation for maximum well production may be expressed as:

_1

67 < Jij(piy * — pu) (3.78)

One way of computing this mid-pressure, p"‘%, is to consider it as an average

of p*~! and p". Implementations of these methods will be further discussed
in the next chapter.
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Chapter 4

Optimization Models and
Solution Methods

In this chapter we discuss how the reservoir equations derived in Chapter 3
may be included in models for optimizing oil field exploitation. The problem
we want to solve can verbally be formulated as follows: An offshore oil reser-
voir is found to be profitable, and it is decided to install one platform on the
oil-field, but production capacity for this platform is not yet chosen. A set of
potential well sites is proposed, but which wells to drill, sequence of drilling
operations, and production profile for each well remain to be optimized.

As discussed earlier, it is the reservoir that is the basis for this analysis,
and we have chosen a level of detail where fluid flow equations are included
in the optimization model. This allow us to study how the decision variables
interact, and the idea behind this approach is to simultaneously optimize
platform, well and production decisions.

We will first look at pure production optimization models where all the de-
sign decisions are already made. These problems have continuous variables,
and for a single phase oil reservoir the production optimization can be formu-
lated as a linear programming problem. We will in Section 4.1 discuss two
different ways of formulating the problem: Either by employing the reser-
voir equations directly in the optimization model, or by using superposition
for eliminating the pressure variables. In Section 4.2 also design decisions
are considered, which results in mixed integer programming models. Some
properties of the models are illustrated by use gf computational experiments.

50
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4.1 Optimal Production Decisions

The problem considered in this section is as follows: Assume a single phase
oil reservoir for which development decisions are already made. That is, the
platform capacity is fixed and a set of production wells are drilled. The
problem is to find the production decisions that maximizes the net present
value of future production from the reservoir:

T B
max »  c"At" > gf (4.1)
n=1 b=1

We have here introduced the following notation: T is the number of time
periods available for production, ¢” is the discounted deterministic oil price
in period n, At" is the length of the n-th time period, B is the number of
wells, and g} is the production rate in well b in the n-th period. If there are
variable production costs associated with the production, we assume that c"
is the net oil-price after the variable costs have been subtracted.

However, as described in Section 3.5, the possible production in each well
depends on the reservoir pressure and we will here discuss how the reservoir
description may be included in the model. We will first look at models where
the discretized reservoir equations are directly included in the constraint ma-
trix, before discussing how the pressure variables may be eliminated by use
of superposition.

4.1.1 Models Including a Reservoir Description

When the discretized reservoir equations are directly employed in the opti-
mization model, it means that both the production (g) and pressure (p) are
represented as decision variables in the model. However, the reservoir pres-
sure is uniquely determined by the production variables, and the objective
function coefficients associated with the pressure variables are zero. It is the
equations (3.67) or (3.69) that are used as building blocks in this model;
(3.67) if the problem is formulated by use of the explicit method and (3.69)
if the implicit method is employed. For each time-step and each block it is
necessary with one equation for calculating the reservoir pressure, so for a
reservoir discretized in M X N blocks it is necessary with M x N equations
each time-step. For an arbitrary time-step, n, a simplified version of the
system of difference equations on explicit form may be written as

APl + Biipiy i+ Cigpii+ Diipia i+ Eiplja + 0% '+Gij 'w:':}'-l =0
(4.2)

-
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i=1,2.,M j=1,.,N n=0,.,(T-1)

The constants A; ; to G; ; represents the coefficients given in equation (3.67).
For blocks on the reservoir boundary some of the coefficients A4;; to F;; may
be zero, and for blocks in which no well is drilled G;; is zero. If the time
derivative is approximated by the implicit method, the associated equation
has only one “time n variable”, while the other variables have time index
n + 1. The maximum well production is given by inequalities 3.76, 3.77 or
3.78, depending on how a period’s reservoir pressure is defined.

If we are optimizing production decisions over T periods using the initial
pressure method, we get a constraint matrix with at least (T —1) x M x N
equalities and (T x B) inequalities. If we rather use the mid- or end-pressure
method, the number of equalities is increased to T x M x N. By writing “at
least”, it is meant that in a production maximization problem the number
of constraints will normally be higher in order to keep the production below
specified capacity limits. If there is an absolute upper limit on well capacity,
this can be formulated as

g <S, b=1,...,B, n=1,...,T (4.3)

where S, is the maximum possible production rate in well . For assuring that
the total production each time-step is below the installed platform capacity
Q, we introduce the following constraint:

B
SY¢¢ <@, n=1,...,T. (4.4)
b=1

For a problem with limited well and platform capacity solved by the mid-
or end pressure method we get a problem with T x M x N equalities and
T x (2B + 1) inequalities.

Computational experiments where the reservoir equations are directly in-
cluded in the reservoir models are reported in Section 4.1.4.

4.1.2 The Principle of Superposition

We will here look at the system of discretized reservoir equations in a more
general setting. A system of discrete linear equations as described in (4.2),
may on general matrix form be expressed as [38], [64]:

A(t)x(t) = C(t — 1)x(t — 1) + D(t)u(t) i t=1,2,..,T (4.5)
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where x(0) is known. Here x(t) € RM*¥ is a vector of state variables while
u(t) € R is a vector of control variables. In the problem we are considering,
the state variables correspond to pressure variables, while the control vari-
ables correspond to the each period’s production. If this is a system where
the explicit method is used for approximating the time derivative, A(t) is
a diagonal matrix. However, by multiplying equation (4.5) by A_l(t), we
get the following equation system (it is here assumed that A™(t) is non-
singular):

x(t) = A(t — 1)x(¢t — 1) + D(t)u(t) t=1,2,.,T (4.6)

The matrix A is referred to as the system matrix, and D is denoted the
distribution matrix. In the problem of reservoir optimization the coefficient
matrices are independent of time, and also in this general discussion we will
restrict ourselves to time-invariant systems. Equation (4.6) may therefore in
the time-invariant case be written as

x(t) = Ax(t — 1) + Du(t) t=12,.,T (4.7)

An equivalent expression can be written for the time step ¢ — 1:
x(t—1) = Ax(t — 2) + Du(t — 1) t=2,3,...,T (4.8)
By substituting the expression for x(¢ — 1) in equation (4.7) by (4.8), we get:
x(t) = A%x(t — 2) + A Du(t — 1) + Du(?) t=2,3,.,T (4.9)

By recursively following this procedure, we get the following expression:

t
x(t) = A'x(0) + Y A*'Du(l) t=1,2,..,T (4.10)
=1

We see that a unique solution for the state variables x(¢) can be calculated if
we know the initial state x(0), the control variables u(l) forl = 1,...,¢, and
the matrixes A and D. The linearity of the system implies that the solution
can be computed by the principle of superposition. This principle states
that the total response due to several inputs is the sum of the individual
responses, plus an initial condition term. This is just a verbal interpretation
of equation (4.10), where we see that the state variables x(1),...,x(t — 1)
have been eliminated, and where the total solution to the system can be
regarded as a sum of free responses initiated at different times.



54 Optimization Models and Solution Methods

4.1.3 Reservoir Equations and Superposition

We will now focus on how superposition can be used for solving the reservoir
optimization problem. We will first look at a situation with no production,
that is u(t) = 0 for all £. In that case the state vector is:

x(t) = A*x(0) (4.11)

For the reservoir system, this is a situation without any production/injection,
and a reservoir that initially has a homogeneous distribution of pressure will
continue to be in equilibrium. So for an arbitrary block in the reservoir,
if there is no production or injection, the block continues to have initial
pressure, p°:

phy =p'

For making things simple, we will in the following assume that the reservoir
initially has a homogeneous pressure distribution. If the contrary is true,
the pressure distribution over time can be calculated by use of the reservoir
equations.

The term !, A*'Du(l) represents the responses due to the control vari-
ables. When dealing with pressure and production variables, we find it conve-
nient to use summation notation instead the matrix notation in the previous
section. Hallefjord, Asheim and Haugland [38] show that the pressure in an
arbitrary block may be written

P =9’ -
k=1

B
DIl (Y (4.12)
b=1

By comparing to equation (4.10) we see that the first term on the right side
is due to the initial pressure, which is p? throughout the whole reservoir.
The second term gives the pressure reduction due to the production from
the reservoir. The parameter af*'~*(i, j) has the following interpretation:
If well b produces one production unit in period k, this results in a pressure
reduction of ot *(i,5) pressure units in block (i,j) in time period n. If
we know all the a-parameters, it is possible to express p?; for an arbitrary
production strategy q. Finding all a’s can be done by solving the equation
system for a set of B linearly independent g-vectors. This operation will be
denoted a reservoir simulation.

A convenient choice of g-vectors is to simulate production of one unit in
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one of the wells and no production in the others. We perform reservoir sim-
ulations for all j =1,..., B where

k_ 1, lf b =]
B = { 0, otherwise (4.13)

After simulating unit production in well b, the pressure in block (i, j) can be
expressed:

n
pii=p"— Y of(i,5), n=12.,T (4.14)
k=1
This follows from combining equations (4.12) and (4.13). For n = 1 we get:
oy (i,5) = p° — p}; (4.15)

and by substitution we get the following general expression for finding the
oa-parameters:
ok(i,j) = ot - ok, k=1,2,..,T (4.16)

The pressure values used in the equations (4.14) to (4.16) are found by sim-
ulating unit production in well . By performing this procedure for all wells
we can calculate a complete response matrix for the reservoir system. We
will now discuss what the constraint matrix looks like when using the initial-,
mid- or end-pressure method.

Initial Pressure Method

When using the initial pressure method, the pressure at the start of a period
is defined to be the period’s pressure: pn'1 is the reservoir pressure in period
n. The inequality describing maximum well production may then be written
as:

gy < Jig(Ph5" = pu) (4.17)
and by substituting the expression for p2;1 found in equation (4.12) we get:

n-1 B

a5 < Jii(® = 32030370, 5)gf — pu) (4.18)

k=1 b=1

In Section 4.1.1 we studied models where the reservoir description was di-
rectly included in the model, and the resulting constraint matrix had at least
(T'—1) x (M x N) equalities and (T x B) inequalities. By solving the prob-
lem by superposition, the equalities have been eliminated, and the resulting
constraint matrix has (T x B) inequalities. If we consider a problem with 3
wells and 3 time periods, the constraint matrix has a structure as described
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Figure 4.1: Constraint matrix, initial pressure method, 3 wells and 3 time
periods
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Figure 4.2: Constraint matrix, initial pressure method, 5 time periods

in Figure 4.1. The right hand side variables are denoted p, where p = p® —p,,.
The constraint matrix is lower triangular and has a density less than 50 %
(if B > 1). Its exact density depends on B and T. The restriction matrix
for T = 5 may be written as in Figure 4.2, where % and « represent sub-
matrixes of size B x B, and q and p are vectors of length B. The matrix in
Figure 4.2 is of size T x T.

End Pressure Method

When using the end pressure method the pressure in period n is defined to
be p™, and the constraints on production may be written as follows:

qlf,- < Ji,j(P?,j - I:w) (4.19)

b= T~ P~ PR P~ P N~ PO TR - Y
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Figure 4.3: Constraint matrix, end pressure method, 5 time periods

By substituting equation (4.12) in this expression we get:

@ < Jij(@® — ZZa sk, 5) gk — pw) (4.20)

=1b=1

The constraint matrix for this system is shown in Figure 4.3. Compared to
Figure 4.2 we see that all the a parameters are shifted to the right, and this
matrix always has a density higher than 50 %.

Mid-pressure Method

_1
When using the mid pressure method we try to find an expression for P?,j 2,
the pressure in the middle of period n. The production constraint discussed
in the previous chapter was written as:

n—l

@t < Jij — Pu) (4:21)

This means that the reservoir simulation must be done in a slightly different
manner than described in the equations 4.13, 4.14 and 4.16. When simulat-
ing unit productlon 1n well b, we use the pressure variable after production

in half the period, p, ';, and we may then write:

od (i,5) = p° - pl;(1) (4.22)

In Section 4.1.4 we discuss how this reservoir simulation is implemented. The
complete constraint matrix may now be found by performing the calculations:

G, J)_p,k,za) pk+’(1), k=1,...,T (4.23)
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Figure 4.4: Constraint matrix, mid-pressure method, 5 time periods

The production constraint in equation (4.21) may be written:

n B 1
+i-k,. .
g ST =Y et (i,5)a — pw) (4.24)
k=1b=1
The resulting constraint matrix has a structure similar to the end pressure
matrix, and it is shown in Figure 4.4.

4.1.4 Numerical Experiments

Numerical experiments for these production optimization models are re-
ported by Jonsbriten [55]. The experiments are done for models where the
reservoir description is included, as in Section 4.1.1, and for models where
superposition is used for solving the problem. For the models where the
reservoir description is included, models with the explicit and the implicit
formulation were implemented. The experiments with the explicit formu-
lation showed that the stability requirements made it necessary to chose
between a crude spatial discretization or fine discretization in time. For ex-
ample, when using a spatial discretization with block size 100m x 100m and
a set of typical reservoir data, stability requirements made it necessary to use
time steps shorter than 6 days. As discussed earlier, the implicit method is
always stable, but solving equations which use the implicit method is harder
than solving a problem using the explicit method. This was also found when
the results for these methods were compared, but because of its stability
properties, the implicit method can be used for solving problems where the
explicit method showed not to be useful.

However, Jonsbraten found that the model formulations where the reservoir
equations are included, are outperformed by the formulations where super-
position is used. The main criteria for this statement is the CPU-time used
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for solving the production optimization problems. When using superposi-
tioning, the response of the reservoir system has to be simulated. This is
done by use of the explicit method, and when the production is given this is
a rather simple procedure. For a given reservoir, the system has to be sim-
ulated just once, and we are therefore not concerned about the CPU-time
used by the simulation. The results obtained when the reservoir equations
are part of the model are not directly comparable to the results obtained by
superpositioning. When the problem is solved by superpositioning the size
of the constraint matrix depends on the number of time periods and number
of wells, but is independent of the spatial discretization. This influences only
the reservoir simulation process. When the reservoir equations are directly
employed the size of the constraint matrix depends on spatial discretization,
in addition to the number of time periods and wells. But for all situations
investigated, it was found that the problem is solved fastest by use of super-
position.

In [55] also the initial-, mid- and end-pressure formulations are discussed,
and an illustration of the main findings are found in the Figures 4.5 and 4.6.
Both figures illustrate calculated production profiles from an oil reservoir,
-and the total production is not constrained by a certain platform capac-
ity. Further, there are two production wells which both start to produce in
the first period. Figure 4.5 shows the production profiles computed with a
rather crude discretization in time, 10 time periods of 300 days each. By
using the initial pressure method one over-estimates the reservoir pressure
in the first period, which again over-estimates the production potential. Be-
cause of this over-estimated production, the pressure in the second period is
under-estimated, thus giving rise to an oscillating production profile. Also
Haugland, Hallefjord and Asheim [48] use the initial pressure method and
report problems with oscillating production profiles.

Also Figure 4.6 shows production profiles calculated by use of the initial-
pressure method, but these results are calculated by use of 100 time periods
of 30 days each. For illustrating the difference these results are shown in
the same format as for the 10 time period discretization. We can clearly see
that by finer discretization in time, the obtained results are rather close to
what we found by use of the mid-pressure method when using the crude time
discretization. Another way of seeing it is that even if one uses crude time
dicretization, the mid-pressure method gives a more accurate representation
of the reservoir’s production potential.

‘Based on these results, the models implemented and used in the Papers
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Figure 4.5: Production profile, 10 periods of 300 days each

3500 _103 x bbl

3000-
2500 |

20004 |

1500 |
1000 |

500 |

EE

1 2 3 4 5 6 7T 8 9 10 Period
(1 Initial pressure B Mid-pressure E= End pressure

0-
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A, C and D are solved by use of superposition and the mid-pressure method.

4.1.5 Models with Non-linear Reservoir Equations

As pointed out earlier, the models derived in this dissertation is based on
a single phase oil reservoir which may be approximated by a set of linear
difference equations. In Chapter 3 we found that for describing single phase
gas reservoirs and reservoirs with multi-phase flow, it is necessary to use
non-linear equations. Several of the models reviewed in Chapter 2 studied
gas reservoirs, but in many situations there was made an attempt of lin-
earizing the reservoir description [87, 107]. Another approach of solving such
problems are found in Lasdon et al [60], using the reduced gradient technique.

Hallefjord, Asheim and Haugland [38] discuss a possible solution method
based on the simplicial decomposition technique. A general discussion of
this technique is found in von Hohenbalken [104] and Hearn, Lawphong-
panich and Ventura [50]. The idea may be seen as a way of using “superpo-
sitioning” also in the non-linear case. In the linear case the response matrix
was calculated by simulating unit production in each of the wells. However,
this constraint matrix could be calculated using other production vectors,
as long as the B + 1 production vectors are linearly independent. In the
technique outlined, B + 1 such production vectors are used for calculating
the reservoir response, and the reservoir description is linearized accordingly.
That is, every possible production strategy is seen as a convex combination
of these exactly evaluated production strategies. This procedure will be re-
peated iteratively, by finding updated sets of production vectors defining the
new linearized constraints. How successful such a solution technique will be
and its convergence properties are left as topics for future research.

4.2 Models for Development and Production
Decisions

We will in this section discuss how development decisions may be included
in the optimization model. Which development decisions to include and how
to do this will necessarily depend on the actual problem under consideration.
Once again we will emphasize the fact that the decision variables interact,
and because of this interaction our approach is to optimize the decisions
simultaneously.
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4.2.1 Design decisions

We will here show how decisions concerning drilling sequence, platform ca-
pacity and platform operation may be included in the model. Adding integer
variables to the model make the resulting problems considerably harder to
solve, but due to the nature of these decisions, they are in the proposed
model represented by integer variables.

Well Drilling

A set of B potential well sites is proposed, and we consider wells to be
drilled for the T first periods. We let C7® be the discounted cost of having
well b drilled so that production can start in period Tg. We further define
Ci,..., C,T”_l such that the increased cost if we rather choose to drill well
b in some period k prior to T is: 2. Cp. The well decision variable z}
may then be defined as:

n { 1 if well b is drilled in one of the periods 1,...,n (4.25)

o =) 0 otherwise

As seen from the definition, z} is non-decreasing for increasing n, and in
our model Tp is the latest possible drilling date. The requirement of z} be
non-increasing may be written

z?_l—:C?SO, b=1)"')B)n=2”"’TB (426)

The inequality (4.3) assuring that production is below a certain capacity
limit Sp, is here reformulated requiring that production can only take place
if the well is drilled:

@ < Sf, ,b=1,...,B, n=1,...,Tg—1 (4.27)

Q¢ < Sz, ,b=1,...,B, n=Tg,...,T (4.28)

In Hallefjord, Haugland and Asheim [38] also other formulations of well deci-
sions are presented, but the above representation of z} is the one they found
to be most effective.

Platform Capacity

While the well decisions are discrete, it is not obvious that capacity decisions
need to be represented by integer variables. This will of course depend on the
situation and the technical restrictions that are given. The platform capacity
may be given by discrete alternatives, or it may be specified by a continuous
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variable with an associated cost. When it comes to solving the problem, it is
of course most tractable with a continuous variable with constant cost coef-
ficients. Another possibility is to introduce a piecewise linear cost function.
Non-linear cost coefficients or integer variables are less tractable with respect
to solving the problem.

However, we here assume a situation where one has to chose between M
different platform alternatives with associated capacities and costs. We let
Q; denote the production capacity of the “smallest” platform, and the total
cost of installing this platform is G;. Further, Q,,...,Qu is defined such
that if platform g is chosen, the total capacity will be 37 _; Q.. The total
cost of this platform will be Y9 _, G,,. We see that G, is defined as the
increased cost of expanding the platform capacity with @,,. The platform
decision variable y, is defined to be non-increasing for increasing m:

_J 1 if a platform with capacity no smaller than Q,, is chosen
™71 0 otherwise

(4.29)
The requirement of y,, being non-increasing is written as

Y1 +Yn <0, m=2,...,M (4.30)

and the inequality requiring production to be below the capacity limit may
be formulated as

B M
Zq{,‘ﬁ Zmem, n=1,...,T (4.31)
b=1 m=1

Operating Decisions

The fixed operating costs of a platform are considerable, and we have there-
fore decided to include operating decisions in this model. The discounted
operating costs in period n are denoted by H,, and we define the integer
operating variable 2" as:

n _ J 1 if the platform is operating in period n

d —{ 0 otherwise (4.32)

We will not allow the platform to close down for a later restart, and therefore
2" must be non-increasing for increasing n:

-2"14+2°<0, n=2,...,T (4.33)
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To assure that production only can take place when the platform is operated,
we introduce the constraint:

B
S g <D, n=1,..,T (4.34)
b=1

where D" is a number greater or equal to the platform capacity.

4.2.2 A Deterministic Optimization Model

By combining all the variables, costs and constraints introduced in this sec-
tion, we get the following deterministic mixed integer model:
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T B B Ts M T
max »_ c"-Atd> gf =D Y CPzp — Y Gmiym — Y Hn2n (4.35)
n=1 b=1 b=1n=1 m=1 n=1
such that
0 n B ntl_k .
q,',‘SJb(p -2 (b —pw),
k=11=1
b=1,...,.B,n=1,...,T (4.36)
qp < Spxp b=1,...,B,n=1,...,Tg—1 (4.37)
q < Spzf b=1,...,B,n=Tg,...,T (4.38)
p 2P <0 b=1,...,B,n=1,...,T (4.39)
B M '
S <Y Quym n=1,...,T (4.40)
b=1 m=1
~Ym-1+Ym <0 m=2,...,.M (4.41)
> gF < D" n=1,...,T (4.42)
b=1
P14+ 27<0 n=2,...,T (4.43)
41','20, b=1’ ,B’ n=1’ )T (444)
zp € {0,1} b=1,...,B,n=1,...,Ts (4.45)
¥m € {0,1} m=1,...,M (4.46)
2" € {0,1} n=1,...,T (4.47)

The resulting problem has (B x Tg + M + T') integer variables and (T x B)
continuous variables. We see that the problem size depends on the number of
potential wells, drilling periods, number of platform alternatives and the dis-
cretization in time. Finer spatial discretization increases the computational
effort of the reservoir-simulator, but the size of the optimization problem
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does not depend upon spatial discretization.

The model presented above, is closely related to the model proposed by
Hallefjord, Haugland and Asheim [38], and this model is also used in the
Papers A, C and D in Part II of this dissertation.



Chapter 5

Optimization under
Uncertainty

We will in this chapter introduce uncertainty in our discussion of optimal
field development. First selected literature dealing with petroleum field op-
timization under uncertainty is reviewed. When uncertainty is introduced in
the model proposed in Section 4.2, we end up with a stochastic integer pro-
gramming problem, and different approaches for modeling and solving such
problems are discussed in Section 5.2. The chapter ends with a discussion of
the findings in the papers A, B and C.

5.1 Field Optimization under Uncertainty

A petroleum field development project represents a huge investment, and the
uncertainty regarding such a project is considerable. In the following section
we will look closer at uncertainty regarding:

e the future oil price
o the project costs (both development and operating costs)
e the reservoir

However, in a field development project there are also other factors that play
important roles. The timing of project activities, both development and
production, has significant impact on project value. Future development of
production technology may make it possible to produce petroleum that ear-
lier was considered non-recoverable and to increase the rate of recovery. It is
also possible that future technical development may lead to increasing well
rates and changed costs. Further do economic factors as currency exchange

67
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rates, rate of interest, inflation and governmental regulations have consider-
able impact on the value of a petroleum field. It is clear that it is very hard,
if not impossible, to manage a model with uncertainty in all these factors.
Thus the modeling challenge is as always: Focus on the most important un-
certainty and leave the rest for more detailed analysis.

Field optimization under oil price uncertainty is discussed in Paper A. The
uncertainty is there given as a set of future oil price scenarios, and the objec-
tive is to maximize the project’s expected net present value. Optimization
under price uncertainty is further discussed in this chapter and in Paper A,
but the topic of oil price forecasting and modeling is beyond the scope of
this dissertation. A review of that area is found in Lund [67], and oil price
modeling is also discussed by Stensland [94].

The project costs may be highly uncertain, especially if the project in-
volves rather new technical solutions. The costs will necessarily depend on
the physical conditions where the platform is located and also on the reser-
voir properties. In other words, if there is large uncertainty regarding the
reservoir properties it is also reasonable to assume that there is considerable
uncertainty regarding the development and operating costs. Techniques for
estimating costs of field development projects are discussed by Nilssen [76).
In the models used in this dissertation, deterministic costs are used, but the
models may be revised in order to treat stochastic project costs.

In Chapter 2 we briefly discussed uncertainty regarding the reservoir. We
discussed which level of detail that should be chosen when representing the
reservoir in a deterministic optimization model. We also looked at models
for decision support at a stage when available knowledge about the reservoir
is rather limited. As pointed out earlier, the available information about the
reservoir is increasing throughout its lifetime, from exploration to the field is
produced and abandoned. Even when the field is abandoned, the available
information about the reservoir system is not complete. By information we
here mean knowledge about the physical parameters in a mathematical de-
scription of the fluid flow in the reservoir.

How the uncertainty regarding reservoir properties is addressed depends on
how the reservoir is represented in the model. In our work we focus on un-
certainty regarding the amount of recoverable reserves and the production
properties of the reservoir. In the single phase oil reservoir, the amount of
oil in place varies proportional to the porosity, and introducing uncertainty
regarding the porosity is equivalent to introduce uncertainty regarding the
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amount of oil in place. The fluid flow in a single phase oil reservoir depends
on the reservoir’s permeability. As seen in Chapter 3, also the well production
rate in our model depends on the permeabilty. Thus, introducing uncertain
permeability is a way to introduce uncertainty regarding the reservoir’s pro-
duction capacity and the well rates.

Field development projects take considerable time to be completed, and all
decisions do not have to be made at the time the project is initiated. This
means that some decisions may be made later on when more information
is available. This leads to a sequential decision problem, and modeling the
information structure of such a problem becomes an important issue. The
idea is that a complete development plan is not made “here and now”, but
that future decisions may be adapted according to new information. The
fundamental issue is to model which information that is available when the
decisions have to be made. If we analyze the mechanisms by which the
uncertainty is resolved, the uncertainty may be divided in two groups:

e project exogenous uncertainty: uncertainty that will be revealed inde-
pendent of project decisions

e project endogenous uncertainty: the date of revelation of random vari-
ables depends on project decisions.

Ekern and Stensland [29] denote this project external and project internal un-
certainty. Dixit and Pindyck [25] discuss this topic when analyzing project
costs and denote it input cost uncertainty and technical uncertainty. The
important issue here is that the project endogenous uncertainty can only be
resolved by undertaking the project. At a first glimpse this might not seem
as a severe difference, but from a modelers point of view it is. When the
information structure of the problem depends on decisions, describing the
information structure gets more complicated, and this leads to an optimiza-
tion problem that is significantly harder to solve.

In petroleum field optimization problems both project exogenous and project
endogenous uncertainty are present. A typical example of project endoge-
nous uncertainty is the oil price uncertainty. It is reasonable to assume that
information about future oil price will be received independent of the project
decisions. When it comes to reservoir uncertainty, the situation is completely
different. For a potential project where there are uncertainty about reservoir
properties, we have the following situation. If no further action is taken, we
will not get any more information about the reservoir. Thus, we see that
which information that becomes ava.ila;ble depends on which decisions that
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are made, and reservoir uncertainty is an example of project endogenous un-
certainty.

We can also think of situations where reservoir information may be acquired
independent of decisions. For example, exploration or production activities
on neighboring fields or on similar geological structures may provide new in-
formation about the reservoir, but in general reservoir uncertainty is project
endogenous. Project costs may be both project endogenous and project ex-
ogenous. Uncertainty about how much time, effort and materials that are
necessary for undertaking a project will not be resolved unless the project is
undertaken. On the other hand, prices of labor and materials fluctuate inde-
pendently of project decisions and are exogenous to the project. A company
developing an oil field may hedge against this by letting a contractor deal
- with the cost uncertainty. However, allocation of this risk depends on the
contractual agreement and is not further discussed here.

One approach for dealing with decision making under uncertainty and for
calculating the value of such flexibility, is the real options approach. The pa-
pers by Black and Scholes [16] and Merton [71] provided a tool for valuation
of financial options. These papers also sparked further research in this area,
and the development of option pricing theory (contingent claims analysis) for
financial investments has also found applications within real investments. For
interpretation of the option theory in a real investment framework, the real
options theory has been developed. A thorough review of real options litera-
ture is found in Trigeorgis [102]. The real options theory provides a tool for
valuation of flexibility in a project. This may be options that occur naturally
in a project (e.g.defer, contract, shut down or abandon) or it can be options
that can can be planned or built in at some extra cost (e.g. expand capacity).

Bjerksund and Ekern [14] consider several problems under oil price uncer-
tainty, and the decision maker may choose between investing “here and now”,
defer the investment (“wait and see”), or to abandon the project. Olsen and
Stensland [81] discuss a problem with both oil price and resource uncertainty.
Two reservoirs may be extracted by one fixed production platform or by a
movable platform that extracts one reservoir at the time. The main goal of
the paper is to put a value on the flexibility inherent in the latter alterna-
tive. A real options approach for dealing with reservoir uncertainty is found
in Ekern and Stensland [29)].

Stensland and Tjgstheim [96] propose a dynamic programming model where
there is a gradual reduction of uncertainty over time. A set of production
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profiles with associated initial probabilities are assumed, and for each pe-
riod the probabilities are revised according to the information recieved. The
uncertainty resolution is interpreted as variance reduction in the probability
distribution over production profiles. This model has some similarities to
the model proposed in Paper C, where we consider an oil field development
project where uncertainty is resolved over time. Stensland and Tjgstheim [95]
analyze production data from several fields in order to investigate if stochas-
tic processes may be used when modeling the uncertain production profiles.
Tennfjord [98] proposes a decision tree approach for valuing test production
on an oil field. The model introduces reservoir uncertainty, and the informa-
tion provided by the test production may increase the value of the field.

The value of flexibility in an oil field development project is recently in-
vestigated in the PhD-dissertation by Lund [67]. He proposes a stochastic
dynamic programming model with uncertainty regarding future oil price,
amount of recoverable oil and well rates. The reservoir is represented by a
tank model, as discussed in Section 2.3, and data from a Norwegian offshore
oil field are used when calculating the value of flexibility. Based on these
numerical experiments, Lund finds that flexibility in initiation and capacity
decisions may add significant value to a field development project.

5.2 Stochastic Programming

For many situations a two stage model is seen as sufficient when modeling
decision making under uncertainty. Two stage models have shown to be use-
ful as planning models where the first stage decisions have to be made here
and now, while the second stage decisions may be made after the uncertainty
is resolved. The first stage decisions may represent the plan (e.g. capacity or
location decisions) while operational decisions which are allowed to depend
on observed random elements are made at the second stage. Such problems
are typically modeled as recourse problems. If we think of a planning model
the costs of the plan is incurred in the first period, while the second stage
costs, denoted recourse costs, are incurred due to the amount of violation in
the constraints.

A general formulation of two stage recourse problems are shown in Paper B.
In the area of stochastic programming, there has been great effort on solving
two stage stochastic recourse problems. The most cited method for deal-
ing with two stage recourse problems is the L-shaped decomposition method
proposed by Van Slyke and Wets [103]. This cutting plane method is a
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Figure 5.1: Examples of event trees

specialized version of Benders decomposition method [13] and works for pro-
grams with continuous variables. An overview of decomposition methods in
stochastic programming may be found in Ruszczyniski [90].

We will focus on stochastic programming problems with multiple stages.
When the random variables have finite discrete probability distributions, the
realization of these variables may be illustrated by an event tree. This is a
tree that branches of for each value £ taken by the random variable £t at
stage t. If decisions are made at times indexed by 0, ..., T, random variables
are realized at times 1,...,7 + 1. It is our modeling convention that the
random variable ¢! is realized in the t-th time period and is known when the
decision at stage t is made. A vector which describes the realizations of the
random variables in each time period is denoted a scenario:

5= (51,52, L ’€T+1)

We now assume a set of scenarios S which represent the realizations of the
random variables. An event tree, as illustrated in Figure 5.1, is also often
denoted a scenario tree. The number of leaf nodes on the tree equals the
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number of scenarios. In traditional scenario analysis it has been usual to
solve a deterministic optimization problem for each scenario and analyze the
individual solutions in order to see if general trends may be discovered. An
“average” solution may also be calculated by assigning probabilities (weights)
p® to each scenario. We let &* be the solution vector for scenario s, and an
averaged solution vector can be found as:

&=)Y p'z* (5.1)
8€S
Although the scenario analysis approach gives the decision maker insight into
the problem, this averaged solution is not necessarily the optimal one. The
stochastic problem we actually want to solve can be written as

max » p'f'(z’) (5.2)
8€S
such that x* € C* Vs
zeEN

The progressive hedging algorithm developed by Rockafellar and Wets [86]
is a solution procedure where the individual scenario solutions are aggre-
gated in an overall solution, and this algorithm converges to the solution
of the stochastic programming problem (5.2). A formal description of this
algorithm is found in Paper A. The algorithm is under certain requirements
proven to converge for continuous variables, and as discussed in Paper A, the
progressive hedging algorithm may not converge to the optimal solution for
integer problems.

Another technique for dealing with decision making under uncertainty is
the stochastic decision tree approach. As for scenario aggregation, this
is a method which needs finite discrete probability distributions. While the
event tree in Figure 4.2.2 branches off for each random variable, the stochas-
tic decision tree branches off for both decisions and random variables. This
means that the stochastic decision tree needs a finite number of possible de-
cisions. Stochastic decision trees are also used for solving problems where it
is possible to do additional testing before a final decision is made.

We will here use an oil exploration problem found in Hillier and Lieber-
man [51] to illustrate the use of stochastic decision trees. A company owns a
tract of land that may contain oil, and the basic question is whether the com-
pany should drill for oil or sell the land. If oil is found the expected profit is es-
timated to be $ 700 000, while a loss of $ 100 000 occurs if the reservoir is dry.
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Another company has offered to by the land for $ 90 000. The a priori proba-
bility of finding oil is estimated to be 0.25, and the expected value of drilling
for oil is then found to be 0.25 x $700 000 + 0.75 x (—$100 000) = $100 000.
Without the possibility for additional testing, the expected value is maxi-
mized by drilling. However, if there is a possibility of performing a seismic
survey before the decision is made, the situation is different. The cost of
this survey is $ 30 000, and the test has two possible outcomes: favorable or
unfavorable. Based on experience, it is known that if there is oil, the prob-
ability of a favorable survey result is 0.6, while there is a 0.4 probability for
an unfavorable result. If the reservoir is dry, the probability for a favorable
result is 0.2 and the probability for an unfavorable result is 0.8. By use of
Baye’s theorem, which is discussed in Paper C, the probabilities for “oil”
or “dry” given the outcome of the seismic survey may be calculated. These
numbers are shown in Figure 5.2. This figure shows the decision tree for this
oil exploration problem. The squares represent decision nodes and the circles
represent chance nodes. We recognize the decision sequence: First decide if
a seismical survey should be undertaken, and then choose between “drill” or
“sell”.

This figure also illustrates the backwards induction procedure used for solv-
ing these problems. At each leaf node an associated payoff is given, and by
using the calculated probabilities expected payoff may be calculated for each
parenting chance node. By folding back optimal decisions towards the root
node, an optimal decision strategy may be found. The example also illus-
trates how the optimal strategy may depend on the acquired information.
The optimal decision strategy is to perform a seismic survey. If the survey
result is favorable one should drill for oil and if the result is unfavorable, it
is optimal to sell the land. The expected value of this decision policy is $
123.000. In other words, the expected value of the information provided by
the survey is $ 53.000, which is $ 23.000 more than the cost of the test.

The main problem by using the stochastic decision tree is the “curse of di-
mensionality”. If we consider a sequence of decisions, we get a large number
of possible sequences and associated test results. In Paper C we consider a
stochastic decision tree problem where the decisions themselves provide in-
formation for updating probabilities. The approach for solving that problem
is discussed in the next session.

The last approach for optimizing stochastic dynamic systems that we will dis-
cuss is stochastic dynamic programming. As with the other approaches
we consider a system with finitely many stages, and the dynamic program-
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ming technique prefers the system at each stage to be in one out of finitely
many stages. Theory is also developed for a continuous state space, but for
that topic we refer to more specialized literature in the field. While the other
methods need a finite decision space and discrete probability distributions,
continuous decisions and distributions are acceptable in stochastic program-
ming. The fundamental idea for solving a dynamic programming problem is
stated by Bellmann’s principle of optimality [12):

An optimal policy has the property that whatever the initial state
and initial decisions are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first
decision”.
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The solution procedure is to start at the last stage and calculate the optimal
decision for each state. Then one moves one step towards the initial stage
and again calculate optimal policies for each possible state. Thus solving a
stochastic dynamic programming problem can be done through the following
recursive relationship:

" = n%,l.n (2% ") + Y Do nar(z") - e, v2tnel,... T

zﬂ+1
and
fT= min [r"(z",2")], V2".
where:
2" is the state at stage n,
(z") is the minimum expected value in state z at stage n,
z"” is the decision variable at stage n,

r™(z", z") is the immediate return by choosing z" in state 2",

Panni1r IS the probability of going from state z" to state z"*!
given decision z",

T is the final stage.

5.3 Findings in the Papers A, B and C

We will in this section look closer at the approaches and results in the papers
A, B and C. This will be done within the framework of stochastic integer pro-
gramming techniques outlined in the previous section, and we will to some
extent compare the papers.

In Paper A the problem is that of optimizing the development and oper-
ation of an offshore oil field under price uncertainty. The starting point for
this analysis is the mixed integer programming model described in Chapter
4. The integer (binary) variables in the model represent platform capacity,
well drilling decisions and platform operation. By introducing uncertainty
regarding the future oil price, the problem becomes a multistage mixed in-
teger stochastic programming problem, and as we have seen, solving such
a problem is not a straightforward task. The uncertain oil price is repre-
sented by a set of price scenarios, where each scenario is assigned a certain
probability. The scenarios may be represented by an event tree, and the
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solution procedure proposed in the paper is based on scenario aggregation.
However, as discussed in the previous section, the progressive hedging algo-
rithm is under certain conditions proved to converge to the optimal solution
for problems with continuous variables. The solution procedure applied in
Paper A uses progressive hedging on the continuous variables and lets the
binary variables adjust automatically. This is the same solution procedure
as proposed by Jornsten and Bjgrndal [56]. The reason for using this pro-
cedure is the close connection between the design (binary) and production
(continuous) variables. Production can only take place from a well that is
drilled and the total production may not exceed the installed capacity.

Numerical experiments are reported in the paper, and we conclude that the
proposed solution procedure may be a suitable approach for this class of
problems. However, it must be emphasized that the convergence properties
of this solution technique are not clear. In other words, we have not shown
that the algorithm will converge to an implementable solution, and even if
the algorithm converge we have not proven that the solution found is opti-
mal. On the other hand, the studied problem is computationally hard, and
our approach has been to search for a “good” implementable solution to the
.problem. How good the solution is, can to some extent be analyzed by look-
ing at what can be obtained under perfect information.

The price uncertainty discussed in Paper A, is a typical example of project
exogenous uncertainty. The future oil price will be revealed independently of
the project decisions, but if we are considering reservoir uncertainty the situ-
ation is different. The paper “A Class of Stochastic Programs with Decision
Dependent Random Elements” is a first attempt of modeling and solving
stochastic programming problems with both project exogenous and endoge-
nous uncertainty. We look at problems where the probability distribution
for the random variables are discrete. For problems with project exogenous
uncertainty an event tree representing the realization of random variables
may be created, but when the uncertainty is project exogenous this is no
longer true. As long as the realization of the random variables depends on
decisions, an event tree cannot be specified before the information generating
decisions are fixed. In the paper we acknowledge that a scenario is not only
characterized by a realization of random variables, but also by the timing of
this realization. This means that the scenario aggregation technique used in
Paper A is not suitable for solving this kind of problems.

In Paper B we investigate a three stage problem, where information gen-
erating decisions are first stage only. In our framework, this means that the
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decision dependent random variables are either revealed at stage 2 or stage
3. If an event tree is used for representing the random variables, a tree can
be constructed as soon as the information generating decisions are specified.
When these decisions are specified, the problem is reduced to an ordinary
stochastic programming problem with only project exogenous uncertainty.
In Figure 5.3 we show examples of different event trees, and which event
tree that is realized depends on the first stage decisions. Thus the problem
of optimizing programs with both project exogenous and endogenous uncer-
tainty may be seen as a problem of finding the optimal event tree (optimal
information generating decisions) and then optimizing the decision policy for
that event tree.

The problem of finding the optimal event tree may be solved by:

e Complete enumeration, i.e. solving a stochastic programming problem
for each possible event tree

e Implicit enumeration, i.e. finding the optimal solution without explic-
itly solving the problem for each possible event tree.

In Paper B we propose an implicit enumeration algorithm, which by suc-
cessively calculating lower and upper bounds on the optimal objective value
finds the optimal decision policy.

Also in Paper C we consider a problem with project endogenous uncertainty,
and we here return to the area of petroleum field optimization. The basis
for our analysis is the mixed integer optimization model described in Chap-
ter 4. We assume the platform capacity to be fixed, and we also assume
that it is only possible to drill one production well at the time. The prob-
lem is that of selecting where and in which sequence the production wells
should be drilled. There are uncertainty regarding the reservoir properties,
and information about the reservoir will be obtained as production wells are
drilled. There is uncertainty regarding porosity and permeability, and in our
numerical experiments we assume these properties to vary proportionally to
each other. The reservoir is non-homogeneous and the information received
is different for each of the potential wells. Initially the uncertainty is repre-
sented by an a priori discrete probability distribution over possible reservoir
realizations. When a well is drilled a test result is observed (good, medium or
bad). Conditional probabilities for test results given the reservoir realization
are estimated a priori, and observed test results are used for calculating an
updated probability distribution over possible reservoir realizations.
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Figure 5.3: Examples of event trees
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Compared to Paper B, the main difference is in the way the information
is revealed. In the production planning problem analyzed in Paper B, the
costs were uncertain, but as soon as a component was produced, the as-
sociated costs were known with certainty. For the reservoir problem the
situation is different. When a well is drilled and test results observed, we get
more information, but all the uncertainty is not resolved. This framework
is rather similar to what we find for stochastic decision trees where one has
the possibility of additional testing. In the reviewed example from Hillier
and Lieberman [51] the main decisions are “drill” or “sell the lease”, but it is
possible to perform a seismic survey before this decision must be made. The
way we see it, the main difference between these approaches is that in the well
sequencing problem drilling a well is both an investment in production capac-
ity and an investment in information acquisition. In Hillier and Lieberman’s
problem, it is first decided if information acquisition is profitable, before the
main decision is made.

In paper C we also propose a solution procedure that is different from the
backwards induction procedure which is the standard solution procedure for
stochastic decision trees. The solution algorithm proposed in Paper C works
the other way; instead of starting at the leaf nodes and by backwards in-
duction work its way to the root node, the proposed algorithm starts at
the root node and works its way toward the leaf nodes. The algorithm is
somewhat related to the algorithm proposed in Paper B, because also this
algorithm successively calculates upper and lower bounds on the optimal so-
lution. Decision sequences that can be proven to not belong to the set of
optimal solutions are bounded out, and the algorithm stops when the opti-
mal decision policy is found. This is a decision policy which is allowed to
depend on future information discovery. The complete description of the
algorithm is found in Paper C.



Chapter 6

Petroleum Field Unitization

When a reservoir is located on a block boundary, i.e. two lease owners have
access to the same reservoir, a common pool problem arises. Because of the
oil’s migratory nature, both lease owners have an incentive to extract the
oil in the reservoir before so is done by the other owner. We will in this
chapter discuss how an optimization model may be used for allocating costs
and revenues in a coordinated exploitation of the reservoir. This topic is also
analyzed in Paper D.

6.1 Introduction to Unitization

So far we have always considered the reservoir as a unit, and the main is-
sue has been to find the optimal development decisions for this reservoir.
However, the situation is not always that simple. The Norwegian continen-
tal shelf is divided into blocks, and when the government issues exploration
rights, these rights are given for each block. Usually several companies get
the exploration rights together, and each company’s share is decided by the
government. Even if the companies share the rights, one of them is appointed
to be the one operating the field. Also here we can think of situations where
the oil companies disagree about what the optimal development decisions
are, but their overall goal is to maximize the value of the petroleum reserves
located on the block. But often we find that a petroleum reservoir is lo-
cated on a block boundary, and thus there are at least two groups of owners
that have access to the same reservoir. According to the Norwegian laws the
groups of owners are obliged to reach an agreement in which the reservoir is
considered as a unit, and an optimal development plan which is independent
of the block boundaries has to be chosen [35].
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Unitization may be defined as the practice of unifying the ownership and
control of a geological unit [70]. A unit operator is given the task of opti-
mizing the value of the field, and shares in this unit have to be negotiated.
Norwegian law in this area is based on earlier experiences made when own-
ership has not been unified. In the United States the property rights to
petroleum reserves were regulated by “the rule of capture” - property rights
are assigned upon extraction. Because of the oil’s migratory nature, each
lease owner with access to an oil reservoir has an incentive to dense drilling
of production wells in order to drain oil from the neighbours and to take
advantage of low extraction costs when the initial reservoir pressure is high.
These mechanisms lead to excessive numbers of wells on the field, which
clearly reduces the total profitability. Further, the rapid extraction increases
extraction costs and the total recovery falls as oil becomes trapped in the
geological formations. In Libecap [62] it is reported about oil fields where
the economic losses have been large because of competitive exploitation.

The way to overcome these problems is in principle simple, namely by reach-
ing a unitization agreement. Because of the losses which occurs by a com-
petitive exploitation of the reservoir, all parties may receive a part of the
profit made by cooperating. However, it is not always that straightforward,
and negotiating a unitization agreement may be a very difficult task. The
problem under study belongs to the class of common pool problems, and a
typical common pool problem is the optimal management of fish resources.
When several parties have access to a common fish reserve, one often faces
situations where the rate of harvest is larger than the optimal one, and the
total catch becomes smaller than what it could have been by coordinated har-
vesting. In addition we also have the problem of over-investment in fishing
vessels. In some cases the fish stocks have been close to extinction because of
intensive harvesting. A survey of literature dealing with fishery management
in a game theoretic perspective is found in Kaitala [58].

In addition to petroleum reservoirs located on block boundaries, there are
also other situations in which the parties in the petroleum industry have
to cooperate in order to reach optimal development solutions. Examples
of such problems are allocation of costs when several fields use a common
transportation system or common processing equipment. In Section 2.5 we
looked at optimization models that include transport and processing capacity
that are shared among neighbouring fields, but we did not discuss problems
that may occur when several owners are involved. Hallefjord, Helming and
Jornsten [40] discuss problems of allocating costs for common processing
equipment and transport systems, and unitization of petroleum fields. The
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problem of cost allocation for common transport networks are also thoroughly
discussed by Nilssen[77]. In all these problems the key issue is to allocate
the joint costs and benefits, and it is natural to discuss this in the framework
of cooperative game theory. From the government’s point of view, it is im-
portant that development decisions that maximize the value of the portfolio
of petroleum reservoirs are chosen. The oil companies involved want a fair
allocation of costs and benefits associated with the project. Obviously they
will not accept less than what they can achieve on their own, and allocation
of the benefits from cooperation is subject to bargaining.

We will here return to the unitization problem. In a bargaining situation with
rather homogeneous parties, symmetric distributed information and limited
uncertainty about costs and revenues, reaching an agreement do not have to
be too difficult. But it is not without reason that it has been difficult to
achieve voluntarily unitization of petroleum fields. One obvious reason for
this is that the size of the involved leases might be rather different. When
development decisions for a petroleum field is made, there is still a lot of un-
certainty about the reservoir. Even if more information will become known
during the development and production phase, complete information about
the underlying reservoir will never become known. What complicates the
~ problem even more, is that which information that will become known de-
pends on the development decisions. This information about the reservoir
may also be asymmetrically distributed among the parties. These are all
factors that may make it difficult to reach an unitization agreement.

6.2 Findings in Paper D

The main purpose of Paper D has been to illustrate how an optimization
model may be used for clarifying unitization negotiations. It is done by use
of a numerical example. A reservoir is located on a block boundary, and the
model proposed in Chapter 4 is used for finding optimal development and
production decisions for this reservoir. When development of the reservoir
is modeled as a two player non-cooperative game we find a unique Nash-
equilibrium for the game on normal form. In other words, we find the payoff
for each of the players if a bargaining solution is not reached. In the paper we
find Nash’s bargaining solution in which the benefits achieved by cooperating
are divided in equal shares among the players. Further we propose possible
solutions where the project value is allocated proportionally to amount of
recoverable oil in place at each part of the reservoir. We also investigate the
project value for each part of the reservoir, in the case of an impermeable
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wall on the block boundary.

Our aim has not been to recommend a certain procedure for dealing with uni-
tization negotiations in general, but rather to point out how an optimization
model may be used for clarifying issues when bargaining for an agreement.



Chapter 7

Conclusions and Directions for
Further Research

The main purpose of the first part of this dissertation has been to give a
background to the papers in Part II, and to discuss and compare the findings
in the papers. These concluding remarks will therefore be based on both this
part and the papers in the second part of this dissertation.

7.1 Conclusions

In Chapter 4 we proposed a mixed-integer programming model for optimiz-
ing development and operation of an offshore oil field, and different versions
of this model are used in Papers A, C and D. The model is formulated as
a mixed integer programming problem in which a two-dimensional reservoir
simulator is included. In Section 4.1 we showed how the production opti-
mization problem can be formulated as a linear programming problem, while
by including field development decisions in Section 4.2 we got a mixed inte-
ger problem. Through the literature survey in Chapter 2 we have shown the
relationship between the proposed model and previous research. Our work is
in the tradition of operations research, where quantitative models are used
for solving complex interdisciplinary planning problems. Such an approach
combining reservoir engineering and petroleum economics must necessarily
be less detailed than for more specialized models. ‘As we have demonstrated,
the challenge is to develop models that are manageable and can be solved
in a reasonable amount of time and still give a relevant description of the
underlying problem. Our approach where fluid flow equations are included
in the optimization model can be criticized for leading to problems that are
hard to optimize. The model proposed in Chapter 4 is valid for a single
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phase oil reservoir, and other reservoir systems will inevitably lead to more
complex models because of non-linear reservoir equations. However, today’s
development of computational capability opens for harder problems and for
new areas of research.

How uncertainty may be included in optimization models was discussed in
Chapter 5, and this is also the topic in Papers A, B, and C. In our review of
selected literature treating petroleum field optimization under uncertainty,
we especially pointed out the difference between project exogenous and en-
dogenous uncertainty. The project exogenous uncertainty is resolved inde-
pendent of the project decisions, while project endogenous uncertainty means
that when the random variables depend on the project decisions. In a multi-
stage problem this difference is an important issue.

In Paper A we investigate the problem of optimal field development when
there are uncertainty regarding future oil price. This is a problem with
project exogenous uncertainty. The future oil price is represented by a set of
price scenarios with associated probabilities, and our approach is to use the
scenario aggregation technique for solving the problem. This technique is de-
veloped for continuous variables, while the problem under consideration has
both continuous and binary variables. Because of constraints closely relating
the binary with the continuous variables, we apply scenario aggregation for
the continuous variables and let the binary variables adjust automatically.
We conclude that for this class of mixed-integer problems scenario aggrega-
tion may be a suitable solution technique.

In Paper B we investigate a class of planning problems with both project
exogenous and project endogenous uncertainty. We look at three stage prob-
lems where the first stage decisions determine which random variables that
will be realized at stage two and will be known when the second stage pro-
duction decisions are made. In this manner, the selection of optimal first
stage decisions and the information refinement are considered as one pro-
cess. Thus, the first stage production decision is both a production decision
and an information acquisition decision as well. We look at problems with
discrete probability distributions, and an implicit enumeration algorithm is
proposed. The computational experiments are performed for a production
planning problem with cost uncertainty, and as such the paper is not an ap-
plication of petroleum field optimization. But the problem in general, that
of modeling and solving problems with project endogenous uncertainty, has
applications within petroleum field optimization.

-
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Optimal selection and sequencing of oil wells under reservoir uncertainty
is the problem analyzed in Paper C, and this is a problem with project
endogenous uncertainty. An a priori probability distribution over reservoir
realizations is assumed, and each time a production well is drilled, acquired
test results are used for updating the probability distribution. A Bayesian
model is proposed for this purpose. The problem has many similarities with
the problem analyzed in Paper B, but there are also some important differ-
ences. In Paper B, when the random variables are resolved the associated
cost is learned with certainty. In Paper C the test results are learned with
certainty, but the probability distribution over reservoir realizations is just
updated. The problem can be modeled by use of a decision tree, and we
propose an implicit enumeration algorithm for finding the optimal solution.
Even if solving the problem to optimality turns out be to time consuming,
just running a few iterations of the algorithm may give valuable information.

Our work in both Papers B and C show that problems with project en-
dogenous information fight “the curse of dimensionality”, and the instances
presented in the papers represent problems that have been rather hard to
solve to optimality. However, in our view this is an interesting class of prob-
lems where the reported research is scarce, and we believe this is a result of
lacking tools rather than lack of important problems.

In Paper D we show how a petroleum field optimization model may be a
tool for clarifying unitization negotiations. The model is used in a game the-
oretic perspective where we analyze both non-cooperative and cooperative
solutions. When the problem is modeled as a non-cooperative game, we find
a Nash-equilibrium to the problem and propose bargaining solutions when
the problem is considered as a cooperative game.

7.2 Directions for Further Research

Based on the conclusions of this work, we will here point to three areas of
further research: Decision support tools for petroleum reservoirs with a non-
linear description, modeling and solving problems with project endogenous
uncertainty, and further analysis of petroleum field unitization.

Decision Support Tools and Non-linear Reservoir Descriptions

We have pointed out the importé,nce of decision support tools for field de-
velopment decisions, and the need for tools based on an interdisciplinary
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approach. In the models we have proposed, both economical and technical
factors are represented on a rather aggregated level. However, the reservoir
is the basis for the analysis, and it seems reasonable in future research to
focus on how other reservoir models may be included in an optimization
model. Other reservoir models will lead to non-linear reservoir descriptions,
and how useful such models may be depends on the availability of solution
“techniques. ‘In Chapter 4 we discussed how simplicial decomposition may be
used for solving problems with non-linear system equations. This idea was
first proposed by Hallefjord, Asheim and Haugland [38].

It may also be fruitful to investigate if a reservoir simulator that is external
to the optimization model may be used. Especially in the uncertainty models
the use of commercially available reservoir simulators can be valuable.

Project Endogenous Uncertainty

The research presented in Papers B and C points to several topics for further
research. As we pointed out in Paper B, the reported research in this area
is very sparse. As a beginning it can be natural to identify different classes
of problems, and based on this work analysis of both modeling and solution
techniques for these problems can be worked on. In both Papers B and C we
propose implicit enumeration algorithms for solving the problems. It may
be possible propose generalized algorithms. In Paper B it is pointed to the
need for heuristics for generating bounds in the algorithms, and directions for
further work are given. Further research on project endogenous uncertainty
may be within petroleum related applications, but there are also possibilities
for generalization and applications in other areas.

Petroleum Field Unitization

Further research in the area of petroleum field unitization will to some extent
depend on the availability and quality of decision support models for field
development. The better models, the better reason for the players to agree on
the proposed solutions. It may be interesting to include uncertainty about the
reservoir properties and asymmetric information distribution in the models.
A further analysis of the equilibrium concepts in these dynamic games should
also be undertaken.
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Paper A

Oil Field Optimization under
Price Uncertainty !

Abstract

This paper presents a mixed integer programming model for op-
timal development of an oil field under uncertain future oil price.
Based on a two-dimensional reservoir description, the model sug-
gests decisions concerning both design and operation, and the
objective is to maximize the expected net present value of the
oil field. A finite set of oil price scenarios with associated prob-
abilities is given, and the scenario and policy aggregation tech-
nique developed by Rockafellar and Wets is used for solving the
problem. This technique is developed for the case of continu-
ous variables, and in this paper we discuss different methods for
adapting the scenario aggregation approach to the case of mixed
integer problems. This is done by utilizing the interaction be-
tween the continuous (production) and integer (design) variables.
We present numerical experiments, and conclude that scenario
aggregation may be a suitable technique also for mixed integer
problems.
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A.1 Introduction

The purpose of this paper is to develop a model for optimal design and op-
eration of an oil field. The model is meant to be a tool for decision making
in an early phase, when there is a lot of uncertainty involved. This is uncer-
tainty regarding future oil price, project costs, and reservoir properties. The
current work is based on the model presented in Haugland, Hallefjord and
Asheim [8]. Given the input data this model determines optimal platform
size, drilling programme and production strategy. The intention of the deter-
ministic model discussed by Haugland, Hallefjord and Asheim “is not to find
the optimal solution, but to use several versions of input data to generate
a number of solutions”. In this paper, we will deal with uncertainty in a
more structured way. Facing uncertain input data, the objective is to find
the decisions that maximize the reservoir’s expected net present value.

We restrict our discussion to uncertainty regarding future oil price. One way
to describe the uncertainty is by generating a finite set of price-scenarios,
where each scenario is given a probability reflecting its relative importance.
The problem of maximizing the expected net present value of the oil field
can then be formulated as a stochastic programming problem. Such prob-
lems easily grow out of hand and become very difficult to solve. In this
paper, we will use the progressive hedging algorithm developed by Rock-
afellar and Wets [20] for solving the stochastic programming problem. This
technique can be seen as a decomposition method for stochastic problems.
By iteratively solving perturbed versions of the optimization problem for each
scenario, we want to find implementable policies, that is policies that do not
depend on hindsight. This algorithm is under certain conditions proved to
converge to the optimal solution of the stochastic problem for the case of
continuous variables, and we discuss how the scenario aggregation approach
can be used also for solving mixed-integer problems. This is done by utilizing
the interaction between the continuous and the integer variables.

The paper is organized as follows. In the next section, a deterministic mixed-
integer optimization model based on a two-dimensional reservoir description
is proposed. Later uncertainty is introduced, and we discuss how the progres-
sive hedging algorithm can be applied to mixed integer problems. Results
from computational experiments with the resulting stochastic oil field opti-
mization model are presented and discussed, before we, in the final section,
give some concluding remarks and outline directions for further research.
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A.2 A Deterministic Model

The starting point of our analysis is a reservoir that has been judged to be
profitable, and from the size of the reservoir it is decided to develop the
field with one platform. We want to make good suggestions for the following
decisions:

platform capacity

number of wells to be drilled

well location

e when the wells should be drilled
e production profile for each well

Problems like this are often solved by keeping some of the variables fixed
while optimizing the resulting subproblem, but with such a sequential solu-
tion procedure, a decision may be fixed before the interaction between the
variables are known. The proposed model takes this interaction into account,
and it simultaneously optimizes platform size, drilling programme and pro-
duction strategy.

All these decisions will necessarily have the reservoir’s production capabil-
ity as a starting point. The reservoir is a non-renewable resource, and the
objective of the optimization problem is to maximize the value of this re-
source. Therefore, it is of great importance how the reservoir is represented.
We study a single phase oil reservoir, a system where only the oil is mobile.
The oil is slightly compressible, and production is possible because the oil
expands as the pressure is reduced. A reservoir description can be derived by
combining an equation for mass conservation, a slightly simplified version of
Darcy’s flow equation, and an equation for the fluid’s constant temperature
compressibility. We then arrive at the following reservoir equation where the
coefficients do not depend on the pressure:

k Op w
V. (;Vp) = ¢65t- + F (Al)
In this equation the following notation is used:
k permeability , (m?)
g fluid viscosity (bar - s)

P pressure (bar)
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@ porosity (fraction)
c constant temperature compressibility (bar™?)

t time (s)

w source/sink terms (kg/m3/s)
P° initial fluid density (kg/m?)

A more thorough derivation of the reservoir description can be found in
Aziz and Settari [1] and Peaceman [18]. The equation (A.1) is based on
the assumption that the variation of permeability and porosity with pres-
sure is insignificant, and that the fluid’s viscosity is independent of pressure.
Further we assume the fluid’s compressibility to be constant, and the fluid
density’s dependence on pressure can then be approximated by a linear term.
All these assumptions are common for a single phase oil reservoir over satu-
ration pressure.

A partial differential equation (PDE) like (A.1) is very hard to solve an-
alytically, and common practice is therefore to solve it by finite difference
approximations. Because the coefficients in (A.1) are pressure independent,
the equation can be approximated by a finite set of linear approximations.
In reservoirs that are relatively thin compared to their area extent, it is
possible to assume that the flow in the vertical direction (2-direction) is neg-
ligible compared to the flow in the other two directions. In our optimization
model, we consider a two-dimensional description. Variations in the reservoir
height can be adjusted for by letting the height be a function of the z- and
y-coordinates.

Another way to represent the reservoir could be by use of a zero-dimensional
model, also called tank-model. Hallefjord, Haugland and Helgesen [6] have
presented the mathematical formulation of such a model and also its compu-
tational results. Another example of zero-dimensional models is presented in
McFarland, Lasdon and Loose [17]. In a tank model, the reservoir is assumed
to be homogeneous and there is no spatial variation in the reservoir pressure.
Such a model gives a very limited description of the reservoir dynamics, and
it is not possible to use the model in location analysis. Optimal location
of wells is an important question in our analysis, and that is why we have
decided to not use this simplified approach.

Previous research on petroleum field optimization includes the above-mentioned
work by Haugland, Hallefjord and Asheim [8]. The same authors have also
considered this problem in a broader perspective and given a more thorough
description of different models and solution techniques for petroleum field
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optimization [5]. Haugland, J6érnsten and Shayan [9] use the mixed integer
model to study fields with movable platforms. They use the model to answer
when, if at all, the platform should be moved to another location on the
field. Lasdon, Coffman, MacDonald, McFarland and Seehrnoori [15] discuss
the problem of finding optimal production profiles for a gas reservoir, and
they solve the problem by use of non-linear solution techniques. Devine and
Lesso [3], Frair and Devine [4], and Hansen, Filho and Ribeiro [7] also discuss
models for optimal development of oil fields. In all these papers, a simplified
description of the reservoir performance is used, and the focus is on integer
variables and optimal assignment of wells to platforms.

Production Variables

The relation between pressure and production can be approximated in the
following way [8]:
a(t) < Jo[ps(t) — Pu) (A2)

where g;(t) is the production rate in well b, J, is a well-specific productivity
index, py(t) is the reservoir pressure near well b (the pressure in the block
where well b is located), and p,, is the minimum well pressure. The produc-
‘tivity index may be estimated from the rock and fluid properties, and it is
determined by the permeability, porosity, fluid viscosity, block-area, reservoir
height, and well radius [19].

When an explicit description of reservoir performance is used, this does not
necessarily mean that a discrete version of equation (A.1) is formulated as
a part of the optimization model. We use the same approach as in Watten-
barger [22] and Rosenwald and Green [21], namely the principle of superpo-
sition. Initially we assume the reservoir pressure to be p°, and according to
our notation p” is the pressure after n periods. The estimated pressure in
the middle of period n will then be denoted p =3, It can be shown for a
reservoir described by linear equations that the pressure near well b in the
middle of period n can be written [5, 10]:

Py =p— z:za”f"‘(b) o (A.3)

k=11=1

1-

The parameters ar+ k(b) have the following interpretation: If well [ pro-

duces one production unit in period k, this results in a pressure drop of
n+2

o (b) pressure units in period n near well b. Since we want to express p

for a general production g, we have to find all the coefficients .. This can be
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done by simulation of the system. By solving the discretized reservoir equa-
tion for a set of B linearly independent g-vectors, all the a’s can be found.
This simulation process is discussed in Haugland, Hallefjord and Asheim [8].

Well-drilling

We let CT? be the discounted cost of drilling well b in period T, and we
define C},...,CT#~! such that the increased cost if we rather choose to drill
well b in some period k prior to Tp is: Ef‘;;l Cy'. The well decision variable

zp may then be defined as:

n _ ) 1 if well b is drilled in one of the periods 1,...,n
6 =1 0 otherwise

(A.4)

As seen from the definition, =} is non-decreasing for increasing n, and in our
model Tp is the latest possible drilling date.

Platform Capacity

We also want to find optimal platform capacity, and it is possible to choose
among M different platform sizes with associated costs. We let @}; denote
the production capacity of the “smallest” platform, and the total cost of
installing this platform is G;. Further, Q,..., Q@ is defined such that if
platform g is chosen, the total capacity will be 37 _; Q... The total cost of
this platform will be 9 _; G,,. We see that G,, is defined as the increased
cost of expanding the platform capacity with @Q,,. The platform decision
variable y,, is defined to be non-increasing for increasing m:

- _}J 1 if a platform with capacity no smaller than Q,, is chosen
Ym =1 0 otherwise

(A.5)

Operating Costs

The fixed operating costs of the platform in period n are denoted by H,,, and
we define the integer operating variable z" as:

n_ { 1 if the platform is operating in period n (A.6)

0 otherwise

We will not allow the platform to close down for a later restart, and therefore
2" must be non-increasing for increasing n.

The complete deterministic mixed integer model can then be written as:

-
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T B B Ts M T
max Y " AtY gt =Y Y CPzp — Y Gmym — D Hu2n (A7)
n=1 b=1 b=1n=1 m=1 n=1
such that
n 0 n B ntiok .
U/ SJb(P —Zzaz 2 (b)q, "Pw),
k=1 l=1
b=1,...,B,n=1,...,T (A.8)
ap < Spxp b=1,...,B,n=1,...,Tg—1 (A.9)
a¢ < Spxp® b=1,...,B,n="Ts,...,T (A.10)
pt—2P <0 b=1,...,B,n=2,...,Ts (A.11)
B M
YHE <Y Quim n=1,...,T (A.12)
b=1 m=1
—Ym-1+Yn <0 m=2,....M (A.13)
B
Y g <D n=1,...,T (A.14)
b=1
—2" 1427 <0 n=2,...,T (A.15)
g 20, b=1,...,B,n=1,...,T (A.16)
zp € {0,1} b=1,...,B,n=1,...,Tp (A.17)
ym € {0,1} m=1,....M (A.18)
2" € {0,1} n=1,...,T (A.19)

The objective is to maximize the net present value, and ¢" is the discounted
oil price in period n and At is the length of each period. Constraint (A.8) is

the well production capacity, derived by replacing p,(t) in (A.2) by p:_% as
defined by (A.3). Constraints (A.9) - (A.11) are related to the well decisions.
Constraints (A.9) and (A.10) assure that production can take place only if
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the wells are drilled, while constraint (A.11) requires z} to be non-decreasing
for increasing n. The total production may not exceed the platform capacity
and this is assured by (A.12). Constraint (A.14) says that production can
take place only if the platform is operating, and D" is an upper bound on
the platform capacity. The constraints (A.13) and (A.15) require that y,,
and 2" are non-increasing in m and n respectively.

We have a problem with (B x Tg + M + T') integer variables and (T' x B)

continuous variables. The problem size depends on the number of potential

wells, drilling periods, number of platform alternatives and the discretization

in time. Finer spatial discretization increases the computational effort of the

reservoir-simulator, but the size of the optimization problem does not depend
upon spatial discretization.

A.3 Scenario Aggregation

As mentioned in the introduction, there is a lot of uncertainty involved in an
oil field development project. In this paper, we restrict the uncertainty to the
future oil price, and the objective of the stochastic optimization problem will
be to maximize the expected value. When solving deterministic multiperiod
problems, we want to find a plan for the whole period ahead of time. This is
not the case for stochastic optimization problems, because the decisions for
all but the first period will depend on what happens in the meantime.

When there is only limited information available about the distribution of
the random elements, it may be appropriate to model the uncertainty by
generating a finite set of scenarios S:

S ={s,s%...,s}

The scenarios can be illustrated by use of an event tree (scenario tree) as
illustrated in Figure A.1. The nodes in the event tree can be seen as decision
points while the arcs represent realizations of the random variables. A deci-
sion policy for the stochastic optimization problem must be admissible and
implementable [23]. Admissibility means that the decision policy for each
s € S must be feasible. If two scenarios are indistinguishable at time ¢, then
they must yield identical decisions up to and including time ¢. A decision
policy satisfying this at each node in the event tree is called an implementable
solution.
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n=1 n=2 n=3

Sc. 1

Sc.2

Sc.3

Figure A.1: Event tree

The stochastic problem we actually want to solve can be written as

max Y p'f'(=*) (A.20)
8cS
such that =* € C° Vs
zeN

Given the scenarios with associated probability, the objective is to find an
admissible and implementable solution, &, maximizing the expected value of
‘f. The vector of decision variables, , can be partitioned into one vector
for each scenario, so that @ = (a!,22,...,a%). The set C* contains all
solutions that are feasible, given the realizations of s. Hence x is admissible
if * € C* for all scenarios s. For each period n = 1,...,T, the scenario set
is partitioned into a finite number of disjoint subsets:

S(k")C S, Vk"e K" (A.21)

Here k" is a node in the event tree at stage n, and K™ is the set of all nodes
in the tree at that stage. The set S(k™) consists of scenarios involving the
event represented by k". The set of implementable solutions thus becomes:

N={z: 2" =c"" Vs s"cS(k"),k"€e K",n=1,...,T} (A.22)

Solving a problem like (A.20) will often exceed the present computational
capabilities. One important feature of (A.20) is that only the implementabil-
ity constraints, £ € N, connect the scenarios, and it is this fact that is taken
advantage of in the scenario aggregation technique.
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A.3.1 The Progressive Hedging Algorithm (PHA)

The main idea in the PHA is to decompose the stochastic programming prob-
lem into scenario subproblems. The algorithm was developéd by Rockafellar
and Wets[20], and a simpler version of this paper is found in Wets [23]. In Kall
and Wallace [14], the scenario aggregation technique is discussed in relation
to other solution techniques for stochastic dynamic programming problems.
The problem (A.20) can be rewritten as an augmented Lagrangian where
implementability constraints are dualized and removed from the constraint
set:

Jnax LEP f(2') - 3 p'w(z - &%) - —eEp [=* - S("")V]
s€S scS

(A.23)
Here w* represents multipliers associated with the dualized constraints, while
g is a penalty parameter associated with the penalty term of the augmented
Lagrangian. The averaged solution for a node in the event tree is written
as #5%») but because of this term the problem is still not separable in the
scenarios. However, in the PHA this term is substituted by the averaged
solution from the previous iteration, and thus the problem (A.23) becomes
separable. The algorithm can formally be expressed as follows:

Progressive hedging algorithm

Initialize the iteration counter v, v = 0.

Solve each individual scenario-problem: maxgesccs f*(*).
Construct an implementable policy by forming a convex combi-
nation of the solutions #™*(0) by use of the weights p*:

n n 8 8 0
&Stk )(0)=Ea§(k;(f::p'() VE' e K", n=12,..,T.
sES(kn

(A.24)
Initialize the price vectors w?®(0) and the penalty parameter o(0).
While the solution is not good enough do:

Increase the iteration counter » by one.
For each scenario solve:

ax, (") -2 0 (v-1)~ oy’ ~& " (1)
(A.25)

Calculate an implementable policy &(v) using the same

technique as in equation (A.24).

Update the multiplier vector:

w™(v) = w™(v - 1) + 6(v)[z™*(v) — 2™(v)] (A.26)

:B‘EC‘
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Adjust the parameters 6(v) and o(v).
End

The adjustments of 8(v) and g(v) are discussed in a later section. A
further discussion of the termination criterion is found in Rockafellar and
Wets [20] where it also is shown that this algorithm in the convex case, con-
verges to the global optimal solution of the original stochastic problem for
the case of continuous variables. The multipliers, w™*(v), can be seen as esti-
mates of the price system associated with the implementability constraints.

A.3.2 The PHA and Mixed Integer Programming

The PHA is constructed for solving optimization problems with continuous
variables; but the problem we are concerned with in this article is a mixed
integer one. The use of the scenario aggregation approach for solving integer
problems is discussed in J6nsson, Jornsten and Silver [11] and Jornsten [13].
There a Lagrangian relaxation approach is used for generating upper bounds
for the integer maximizing problem. This technique for generating bounds is
used together with a heuristic method for obtaining feasible solutions to the
integer problem.

Lgkketangen and Woodruff [16] use the PHA for solving stochastic multi-
stage mixed integer problems. Their approach is to use tabu search for solv-
ing the individual scenario problems and the PHA for blending the scenario
solutions. Jérnsten and Bjgrndal {12] use the PHA for solving a stochastic
multi-stage mixed integer problem, and they make use of the close connection
between the continuous and binary variables in their problem. They study
an uncapacitated dynamic location problem under uncertainty, and the PHA
is used on the continuous variables while the binary variables are allowed to
adjust automatically. This solution method can be justified because of the
close connection between the continuous and binary variables in the problem.

In our case, there is also a close connection between the binary and con-
tinuous variables, and our approach will therefore be the same as in Jornsten
and Bjgrndal {12]. As seen in the deterministic model (7), there are several
constraints that link the production and design decisions. Production can
only take place if the well is drilled:

q < Spzp
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The total production may not exceed the platform capacity:

B

M
qu < E QmYm

b=1 m=1

The platform must be operated if production is to be possible:

B
qu S Dnzn
b=1

All these relations show how the production decisions influence the design
decisions. These connections between production and design decisions moti-
vate the following solution method: Apply the PHA on the continuous (pro-
duction) variables and let the integer (design) variables adjust automatically.

Even if the PHA decomposes the stochastic problem into scenario subprob-
lems, it is not straight-forward to solve these nonlinear subprobléms. One way
to overcome this problem would be by using a piecewise linear approxima-
tion for the quadratic term in equation (A.25). However, this gives another
complex problem to solve. The augmented Lagrangian in problem (A.23)
can be viewed as a combination of a local duality method and a penalty
method. In the augmented Lagrangian the duality and the penalty meth-
ods work together to eliminate the slow convergence properties with either
method alone. As an approach of making the scenario subproblems fairly
easily solvable, we have in the numerical experiments presented here set the
penalty parameter, p(v), to be zero. In other words, the quadratic term of
(A.25) is neglected. When the optimal solution is found, both the duality
and the penalty term of equation (A.25) equal zero; but the influence of ne-
glecting the penalty term on the algorithm’s convergence properties, is not
immediately clear. However, we now have subproblems that are solvable, and
if the PHA converges to a feasible solution, we get lower bounds on expected
maximum profit. These solutions can be compared to what can be achieved
under perfect information, and that will give an indication of the quality of
the calculated solutions.

A.4 Numerical Experiments

The numerical experiments are performed for a rectangular reservoir with
the following rock and fluid properties:

Reservoir length (z-direction): 1000 m
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Figure A.2: The reservoir

Reservoir breadth (y-direction): 800 m
Reservoir height (z-direction): 50 m
Viscosity (u): 1-10""bar - s
Constant temp. compressibility (c): 0.001 bar—!

Fluid density at initial pressure (p°): 1150 kg/m?®
Fluid density at surface pressure (p*): 850 kg/m?

Reservoir porosity (¢): 0.2
Reservoir initial pressure (p°): 300 bar
Lowest pressure for production (p,,): 50 bar
Well radius (ry): 0.15 m

The lifetime of the field is estimated to be 3000 days, which is discretized
into 10 periods of 300 days. We divide the reservoir into 10 x 8 blocks, each
of dimension 100m x 100m, as illustrated in Figure A.2. The permeability of
the reservoir varies from 1.0-10713m2 in the lower-left corner to 0.5-10~13m?
in the upper-right corner. The most permeable blocks of the reservoir are
marked with a (x). The permeability is gradually reduced along the rect-
angle’s diagonal, and reaches its minimum at the blocks marked with a (o).
The 6 potential well sites are in Figure D.1 marked with letters A - F. The
drilling cost for each well is set to $6.25 mill, and it is only for the 3 first
periods that the wells may be drilled. The fixed operating costs are $4.0 mill.
each period (300 days). The different platform alternatives with associated
costs are given in Table A.1. The discount rate is 3% per period.

We will use 3 scenarios of future oil price (see Table A.2). All the scenarios
start with $17 per barrel in the first period, and scenario 1 has this price in
all the 10 periods. In scenario 2, the oil price increases with $1 every second
period, while in scenario 3, the oil price increases with $1 every period.
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Platform | Capacity [/sec | Cost (million $)
1 10 20.0
2 15 22.5
3 20 25.0
4 25 27.5
5 30 30.0

Table A.1: Platform capacities and costs

Scenario | Oil price development ($ / bbl) Prob. I | Prob. II
1 17 17 17 17 17 17 17 17 17 17 0.4 0.2
2 17 17 18 18 19 19 20 20 21 21 0.3 0.2
3 17 18 19 20 21 22 23 24 25 26 0.3 0.6

Table A.2: Oil price scenarios

A.4.1 Scenario Solutions

The scenario problems are solved by use of “CPLEX Mixed Integer Library”[2].
In Step 0 of the PHA, each individual scenario problem is solved to optimal-
ity, and the optimal drilling programme for each of the scenarios is shown in
the first lines of Table A.3. For all scenarios, it is optimal to drill the same 5
wells; but the timing of the drilling operations differ. The well decisions are,

Period 1 | Period 2 | Period 3 | Platform Operation
Scen. 1 [CDEF A 4 8 periods
Scen. 2 [ CDF E A 3 9 periods
Scen. 3 CE F AD 2 10 periods
Prob.I1 | ¢cDF E12 A E3 3 92, 103 periods
Prob. II AE F CD 2 10 periods

Table A.3: Development decisions ‘

of course, closely connected to the platform capacity, and the three scenarios
have all different platform sizes. At first, it may be surprising that scenario
1, the scenario with lowest oil price, has the largest investments in platform
capacity, and the “best” scenario leads to the smallest platform. But these
decisions have to be judged against the fixed operating costs and the aban-
donment time. Given scenario 1, it is optima.l. to produce for 8 periods. The
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wells’ production capabilities depend on the reservoir pressure, and after 8
periods the operating costs exceed the revenue. In scenario 3, the situation
is different. Because of increasing oil price, production is most profitable in
late periods, and that is why it is optimal to invest in a smaller platform and
use all the 3000 days for production.

A.4.2 Multipliers on the Production Variables

With the individual scenario solutions as a starting point, the PHA was
applied as discussed earlier, by associating multipliers with the production
variables. Implementable production policies §f*(v) are constructed, and the
multipliers are calculated as follows:

wp'(v) = wp'(v — 1) + 0(v)[gp* (v) - G5° (V)] (A.27)

Probabilities I of Table A.2 are used in this experiment. The PHA converged
to the decisions presented in line four of Table A.3. The solution obtained
is to choose platform 3 and to have 3 of the potential wells drilled for pro-
duction. For the second period, scenario 1 and 2 are still indistinguishable,
and they therefore must have identical decision policies. The subscript in
Table A.3 indicates that well E is drilled for the second period if scenario 1
or 2 is observed, and for the third period, if scenario 3 is observed.

An important issue regarding the PHA is the updating of the multiplier
vector. The updating is shown in equation (A.26), and the updating param-
eter, 6(v), has large influence on the convergence properties. Initially the
multiplier vector is chosen to be zero. In the experiments reported here, the
parameter has been updated in the following way:

O(v+1) = 0.85- () (A.28)

During the iterations, the multipliers are adjusted with decreasing steps. The
initial updating parameter, §(1), depends on how the problem is formulated.
In the experiment discussed here, the algorithm converged to implementable
design decisions (binary variables) after 30 iterations. After just one more
iteration, the algorithm also gave implementable decisions for all the produc-
tion decisions (continuous variables).

A.4.3 Multipliers on Total Production

By inspection of the optimal multipliers and the iterative process towards the
optimal multipliers, we found it possible to speed up the convergence rate.
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What the multipliers actually do, is to perturb the price vectors. In the re-
sults presented, the oil price in the first period was reduced for scenario 1 and
increased for scenario 3. But by using each well’s production, this iterative
process was rather slow, and we therefore modified the algorithm. While the
perturbed scenario solutions do not have the same platform decisions, the
multipliers are calculated from each period’s total production. When the
platform decision is implementable, we use the ordinary approach where the
multipliers are calculated from the production in each well.

By using this method for updating the vectors, the algorithm converged
to implementable solutions for both design and production decisions after 7
iterations. After only 3 iterations, the platform decision was implementable,
and these initial iterations can be seen as a fast way to get the multipliers to
their correct level. The last iterations will then only be minor adjustments.
The algorithm converged to the same design decisions as in the previous
example.

A.4.4 Multipliers on both Production and Platform
Variables

In the case of probability distribution II of Table A.3, we were unable to
find an implementable solution by using multipliers on the production vari-
ables only. The method so far has been to “adjust the oil price”; but in
this example, the optimal solution for scenario 1 was to produce nothing in
the first period, and the algorithm never gave an implementable platform
decision. In the case of divergence, we modified the algorithm by calculat-
ing multipliers also for the platform variables. Because of the discreteness
of these variables, it may seem meaningless to calculate solutions that are
an average of 0-1 solutions. However, the capacity decision is actually one,
not m, even if we have m platform alternatives, and as a heuristic approach
for obtaining lower bounds, we found it to work here. Platform capacity far
from the “average capacity”, Q(v), was more heavily punished than platform
capacity close to the “average”. The multiplier updating parameter, 8(v),
was calculated in the following way:

Om(v +1) = |Qu — Q(v)| - (0.85)" - 6s(0) (A.29)

Multipliers of the production variables were calculated as done in the first
example. Also these results are shown in Table A.3. The algorithm con-
verged to platform 2 after 6 iterations, and after 38 iterations it converged
to implementable well decisions. In these numerical experiments, we have
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used a rather low discount rate, 3% per period. When the discount rate
was increased to 4% per period, this last problem could be solved by using
multipliers only on the production variables.

A.4.5 The Value of the Model

When analyzing the optimal drilling programmes, we see that the same five
wells are drilled in all three scenarios. The differences are in the timing of
the drilling operations and in the platform capacity. We have also calculated
the expected value of perfect information (EVPI). For both examples dis-
cussed here, the EVPI is lower than 1 % of the calculated project value. The
EVPI'’s are $ 1.0 mill. and $ 1.4 mill., respectively. These numbers illustrate
the inspiring fact of optimizing oil field development, that even a small im-
provement of project value measured in percentage represents a considerable
amount of money.

A.5 Conclusions and Further Research

The main purpose of this paper has been to develop a model for optimal oil
field development under price uncertainty. The uncertain oil price is given
as scenarios with associated probabilities. This results in rather complex
mixed integer optimization problems, and our approach has been. to use the
PHA for obtaining lower bounds to these problems. The PHA was used on
the continuous variables, and the algorithm converged to an implementable
policy both for the integer and the continuous variables. In the numerical
experiments, we used both production in each well and the total production
in each period for calculating multipliers. The results obtained by using the
total production for calculating multipliers until convergence in platform ca-
pacity is reached, seem very promising. For some of the problems, it was
also necessary to use multipliers on platform variables to obtain convergence
to implementable solutions. Further research will be testing of the model
on a larger set of input data, and search for parameters that optimizes the
algorithm’s convergence rate.

When the uncertainty is in the objective function, as it is in the problem
studied here, we know that if a solution is feasible for one scenario, it will
be feasible for the other scenarios also. Connected to oil field development
projects, uncertainty about the reservoir properties may have large impact
on the design decisions. Uncertainty with respect to the reservoir leads to
uncertainty in the constraints of our programming problem, and then the
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problem is harder to solve. This information gathering process will also be
different from the case with uncertain oil price, because the information re-
vealed about the reservoir will be a result of the actions taken. How such
problems can be approached will be addressed in future work.
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Paper B

A Class of Stochastic Programs
with Decision Dependent
Random Elements

Abstract

In the ‘standard’ formulation of a stochastic program with re-
course, the distribution of the random parameters is independent
of the decisions. When this is not the case, the problem is sig-
nificantly more difficult to solve. This paper identifies a class
of problems that are ‘manageable’ and proposes an algorithmic
procedure for solving problems of this type. We give bounds and
algorithms for the case where the distributions and the variables
controlling information discovery are discrete. Computational ex-
perience is reported.
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B.1 Introduction

Models based on stochastic programming lend valuable solutions to many
types of problems. In the ‘standard’ formulation of a stochastic program
with recourse, the distribution of the random parameters is independent of
the decisions. When this is not the case, the problem is significantly more
difficult to solve. This paper deals with a class of such problems that are
‘manageable’ and proposes an algorithmic procedure for solving problems of
this type.

Before getting down to specifics, the issues can best be laid out in terms
of a ‘simple,’ but general, formulation of this class of stochastic optimization
problems where the information that will be provided to the decision maker
is decision dependent. In order to introduce our new class of problems in
the context of the current literature, we first develop the following ‘standard’
stochastic programming problem:

min E{f({;2)} = Ef(2) (B-1)
where f : E x R® - R = [~00, 00| is the ‘cost’ associated with a decision
T when the random variable £ takes on the value &; £ is a JR*-valued ran-
dom variable with possible values in £ C IR¥, which is the support of the
distribution, u, of the random variable; Ef : R® — IR, the function to be
minimized, is defined by

Ef(s) = [ 1(&x)uldg).

One can recast two stage stochastic programs with recourse so that they are
seen as special cases of the problem just formulated. Indeed, for the two
stage recourse problem with stage ¢ variable indexes in the set N*:

:Ic}icl} fi0o(z) + E{ minsaccr | fa0(§; 22) Ifzi(f;x, r?) < 0,i € N?]
such that fi(z) <0,i € N,

and the function f is defined as follows:
f({ :E) — {flo(.’l?) + Q(S, IB) ifz e Cl, fl.-(:c) <0 fori e Nl,
’ 00 otherwise

where

Q& z) = inf [fal; z?) Ifz,-({; z,2%) < 0,i € N?].
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Even multistage stochastic programs can be recast so as to fit the general
formulation. For example, in the case of a three stage problem, redefine the
function @ as follows:

Q&x) = jnf [f0(62") + E{Qa(¢, €5 2,27)I¢} | fai(& 2, 2%) < 0,1 € N?],

where ¢3 stands for the observations made after choosing z? (but before
selecting z3), E{Q.|¢} is the conditional expectation of @, given ¢ and

Q2(6,€% z,2") = inf [ fanl§, €% 2°) | fai€, 6% 2,2%,5°%) < 0,6 € N?].

The same pattern is followed if there are more than three stages, i.e., in the
objective defining Q3, f3o is replaced by fso + Q3, and so on. This ‘stan-
dard’ formulation of the problem implicitly assumes that the measure p is
not affected by the decision z. This assumption, satisfied for all practical
purposes by a very rich class of applications, makes possible the design of
rather efficient solution procedures for ‘real’ size problems.

However, there are important decision making problems that do not fit in
this mold, namely cases when the distribution of the random quantities will
be affected by the decision selected. This can happen in many ways, but it
seems the following formulation would cover all such cases:

min E* f(z) = /;f(f; z) p(d€) such that (p,z) e KC M x R"

where M is a subset of the probability measures on = and K are the con-
straints linking the decision z to the choice of u. In this formulation, the
‘decision’ z, affecting the level at which certain activities will be conducted,
is viewed as disjoint from the choice of x which will affect the information re-
ceived and the time (stage) at which certain realizations of the random quan-
tities will be observed. The constraints linking the choice, or inevitability,
of i to certain decisions = are modeled here through the linking constraints
(u,z) € K.

On particular in the literature devoted to discrete event dynamic systems
[10, 14, 16], the dependence of the probability measure on the decision(s)
has often received the following formulation:

min fgf(f,x)ux(dﬁ).

z€ER"

In such a situation, the set K is the graph of the mapping =z — ., i.e.,
K = {(s,z) |z € R",n = p,}; observe that our framework also allows for
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set-valued dependence between decisions and associated measures. In some
other problems the measures might depend on certain parameters that are
costly to evaluate and one can (should?) allocate some of the available re-
sources to the estimation of these parameters, see e.g. [1]. If we then include
among the decision variables those that will affect the estimation process, the
problem is of the same type as here above and thus fits the general framework.

One advantage of our formulation is that it allows for a better classification
of problems of this types based on the properties of the set K of the linking
constraints and this should be helpful both in the design of computationally
schemes and for purposes of analysis (as in Section B.6, for example). If there
are no linking constraints, the problem is relatively simple. Since the ‘cost’
function is linear in p, it is known that the solution will occur at a measure
u® that is an extreme point of the convex hull of the set M. And there are
results about generalized moment problems [3, 15}, and about optimization
techniques for finding optimal submeasures [8, 9] that are useful for dealing
with such cases.

But beyond this, i.e., when there are nontrivial constraints linking u to z, the
problem becomes significantly more difficult to analyze and solve, and, not
surprisingly, the literature dealing with this class of problems is very sparse.
In fact, we only know of one such paper dealing with a ‘Markovian’ case [14];
consult also [5]. The relationship between z and p can be quite complex,
and although one might be able to write down quite general optimality con-
ditions, at this stage we are going to limit our attention to a class of problems
that are ‘manageable.’ In our case the set M will be finite, and its elements
can be indexed by a boolean vector d = (d,,...,d,), i.e., each d; € {0,1},
which will indicate if certain options have or have not been selected. The
problem can then be reformulated as follows:

min B4f(z) = /_ £(&;z) pd(d€) suchthat (d,z) € K c {0,1}7 x R".

(B.2)
The class of problems covered by this formulation includes those when the
choice of d, and consequently of z, will affect the time at which the informa-
tion about the realizations of certain random elements will become available.
In the case of multistage problems, such as those described in the next sec-
tions, the choice of d affects the ‘timing’ of the observation, i.e., at which
stage certain random variables will be observed. In contrast with the z-part
of the problem which might involve ‘staged decisions’ that depend on past re-
alizations, the choice of d will be a first stage decision only. This is a definite
restriction, but it simplifies notation greatly while preserving the important
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new concepts. The resulting algorithms make inroads into this important
class of problems, but full generalization is left as future research.

The following simple example might be helpful in understanding the con-
nection. Suppose a production line must meet the demand for a certain
number of products: P, ..., P, but if demand for a given product can’t be
satisfied, it’s always possible to substitute a better one. Assuming that the
products are linearly ordered, with P, of the highest quality and P, of the
lowest, it is thus possible to substitute Py for P; if k > j. However, there is
quite a bit of uncertainty about the actual production costs of these different
products, and consequently about the potential profits. Moreover, the pro-
duction capacity available limits the choice to only a few of these items in the
first stage. In the first stage, the information available about the production
costs is ‘probabilistic’, i.e., all what is known about the random variable fj
is their joint distribution p. The information available in the second stage is
then the actual production costs of the items produced in the first stage, and
for the remaining ones it remains ‘probabilistic.” In this example, the deci-
sion vector z fixes the production levels for P, ..., F;. Each d; is a boolean
variable that indicates if P; will be produced or not in the first stage, which
in turn determines the information that will become available in the second
stage.

‘The overall approach will be one of ‘reduced minimization’: the overall goal
is to choose a ‘best’ stochastic optimization problem in a certain collection
of such problems:

{ min, B*f(2)|(d,z) €K}  de{o,1}0

the one that yields the lowest possible value. Equivalently one could cast the
problem as follows,

min { min, E¢f(z) I (d,z) € IC}. (B.3)

de{0,1}¢

In the remainder of the paper, we are going to be interested in a class of
problems where d identifies the time at which certain information is going
to become available. More specifically, the production costs of certain items
will be revealed either in stage two or stage three depending on d. The choice
of a particular d € {0,1}? determines

pdand K¢ = {z € R*| (u?,z) € K}
where this last set describes the cdrresponding set of feasible z-decisions.
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In Section B.2 specific notation is introduced for (stochastic) linear mod-
els that is convenient when dealing with algorithmic issues. Bounds given
in Section B.3 are employed in an implicit enumeration algorithm that is
described in Section B.4. Computational experience is reported in Section
B.5. Certain direction of descent are identified in Section B.6 by means of
variational analysis and the paper concludes with a summary and directions
for further research.

B.2 Linear Models

The abstract definitions given in the previous section are useful for indicating
the scope of our new models and for analysis. However, for algorithmic de-
velopment we need more specific notation. We begin by developing notation
for stochastic linear programs, then we extend it to the case where there is
decision-dependent information discovery. The bounds in Section B.3 and
the implicit enumeration algorithm that we develop in Section B.4 do not
rely explicitly on any assumptions of linearity, but linear problems provide a
concrete basis for discussion and solvers are available for subproblems.

B.2.1 Stochastic Linear Programs

In order to give concrete definition to the class of problems for which com-
putational results are obtained, we outline a ‘standard’ scenario-based, mul-
tistage, linear (perhaps integer or mixed integer) stochastic programming
version of the problem given in expression (B.1). This formulation begins
with the assumption that each random variable will be realized at a prede-
termined time and that scenarios are specified giving a full set of random
variable realizations. For each scenario s, we are given the probability of
occurrence of (or, more accurately, a realization “near”) scenario s as p(s).
Each scenario s might actually correspond to the aggregation of a certain
number of the possible realizations of the random parameters.

Decisions are made at times indexed by 1,...,7T and random variables in
a scenario are realized at times 1,...,7T + 1. Our modelling convention is
that information obtained up to time ¢ is available for decisions at time ¢.
Some information is available at time ¢ = 1 before the first decision is se-
lected, some information becomes available during the decision process, and
some information may not become available until time T + 1 after all deci-
sions have been made.
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We assume that scenarios are given in the form of a scenario tree denoted
usually by S. Together with the probabilities p, attached to its scenarios, a
scenario tree completely specifies the stochastic process associated with the
random quantities of the problem. The notion of a scenario tree is impor-
tant for many methods of solving stochastic programs and the notion that
new information becomes available only at certain times is central to the
construction of ‘implementable’ solutions. Each (terminal) leaf identifies a
particular scenario. The leaves are grouped for connection to nodes at time
T. Each leaf is connected to exactly one time T node and each of these
nodes represents a unique realization up to time T'. The time T nodes are
connected to time T'—1 nodes so that for each scenario connected to the same
node at time T — 1 has the same realization up to time T'— 1. This continues
back until information available “now” (at time index 1) constitutes the root
node of the scenario tree. Variables that are observed at time ¢ generate the
branches at time t — 1.

For each scenario s and each stage t we are given a vector c*(s) of length nt, a
m! x n' matrix A?(s) and a column vector b(s) of length m!. For notational
convenience let A(s) be (41(s), ..., AT(s)), let b(s) be (b*(s),...,bT(s)), and
let c(s) be (c'(s),...,cT(s)). The decision variables are a set of n-vectors
z*; one vector for each scenario; notice that we reserve superscripts for the
stage (or time) index. Notice also that the solution is allowed to depend on
the scenario. Let X(s) = (z'(s),...,zT(s)). If we could know beforehand
which scenario would actually occur, call it s, the problem would be solved
by minimizing

(5 X () = D _{c(s),2*(s))

t=1
subject to
A(s)X(s) = b(s), (B-4)
zi(s) € {0,1}, iel’', t=1,...,T (B.5)
zi(s) > 0, ie{l,...,n'}\I}t=1,...,T (B.6)

where AX > b includes the usual sorts of single period and period linking
constraints that one typically finds in multistage linear programming for-
mulations. We use I* to identify the integer variables in each time stage.
For most of the literature, this set is empty. However, approaches for some
classes of stochastic programming problems with integer variables in the first
stage have been discussed (see, e.g., [2]) or for classes of two stage problems
with integers [12, 17, 18, 20]. Recently, there has been some work on various
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forms of multistage integer stochastic problems [4, 6, 13, 19].

Since humans are not prescient, we must require solutions that do not require
foreknowledge and that will be feasible no matter which scenario is realized.
We refer to solution systems that satisfy constraints with probability one as
admissible. We refer to a system of solution vectors as implementable if for
scenario pairs s and s’ that are indistinguishable up to time ¢, it is true that
z"(s) = z"(s') for all 1 < r < ¢. For a given scenario tree S, the set of im-
plementable solutions will be denoted by Ns; one writes ES to indicate that
expectation is with respect to the measure associated with the scenario tree
S. This brings us to the following formulation for stochastic linear programs:

min Y [p(s)f(s; X (s))] = E°{f(-, X())}

s8€S
subject to
A(s)X(s) > b(s), s€S (B.7)
zi(s) € {0,1}, iel, t=1,...,T, s€S (B.8)
zi(s) > 0ie{l,...,n'}\I}t=1,....T, s€S (B.9)
X() € Ns. (B.10)

The expectation here can be expressed as a finite sum since we are dealing
with only a finite number of scenarios (in S).

B.2.2 Discoveries as a Result of Decisions

In Section B.1 the ‘standard’ stochastic programming model was extended to
allow for situations when the probability measure is decision dependent. The
problems that we are going to consider are stochastic linear programs that
fit into the class of problems identified by the formulation in (B.3). In such
models the decisions have been split into a (boolean) vector d specifying a
probability measure ¢, and the usual vector X that determines the activity
levels; the relationship between these decision being expressed through the
constraint (d, X) € K.

In our formulation of (multistage) stochastic linear programs, the proba-
bility measure of the random elements was identified with a scenario tree
S with probabilities p, attached to each individual scenario s € S. Since
each d corresponds to a different measure, this now translates into (different)
scenario trees S(d), indexed by d with p(d; s) as the probabilities attached to
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the scenarios s of S(d). Similarly, the constraints of the stochastic program
will depend on the choice of d. For d € {0, 1}, let

K@) ={X|(d,X) € K}.

To stay in the linear framework, we have to assume that for all d, the set X(d)
is itself determined by a finite number of linear equations and linear inequal-
ities, i.e., is a convex polyhedral set. Thus to each choice of d corresponds a
(standard) stochastic linear program of the form:

min Y [p(d; s)f(s; X(s))] = EH{f(-, X(-))}

s€S(d)
subject to
A(s)X(s) > b(s), seS(d) (B.11)
ti(s) € {0,1}, iel’} t=1,...,T, se€S(d) (B.12)
zi(s) > 0ie{l,...,n'}\I} t=1,...,T, sc S(d) (B.13)
X € K(d) (B.14)
X() € N(d) (B.15)

using here the shorthand notation N (d) to denote Ns(g). Since implementabil-
ity depends on the timing at which information will become available, the
constraint imposing implementability must also be formulated in terms of
the scenario tree S(d). As already indicated in Section B.1, in the class of
problems we have chosen to illustrate our approach, the vectors d —recall
that they are first stage decisions— specify at which time information about
the values taken by certain random variables becomes available.

B.2.3 Example

In the introduction we illustrated our notation with a small example that is
an extension of the model given by Jorjani et al. [11] for the optimal selec-
tion of subsets of sizes under demand uncertainty. We continue that example
with more detail here. A product is available in a finite number of sizes, and
demand for a smaller size can be met by substituting a larger size. However,
this substitution comes at a certain cost. The objective is to minimize the
expected cost of satisfying the demand for all different sizes. Binary variables
model the selection of sizes, while production and substitution quantities are
represented by continuous variables. Details for the formulation are summa-
rized in Appendix A.



130 A Class of Stochastic Programs

In addition to the demand uncertainty, we introduce uncertainty regard-
ing the production costs. When we choose to produce a size, we will learn
about its production costs. So ¢ matches the number of sizes to be produced
and vectors in {0, 1}? have an element for each size and correspond directly
to the decision variable that indicates production of the size. In this way a
production decision can also be viewed as an investment in information as
well as production. In Appendix A, we present the data for an instance with
two periods and three different sizes. Because the demand has to be met, we
know that the largest size always has to be produced, and in the problem
considered here the cost of producing the largest size is deterministic. If we
neglect the cost uncertainty and use the expected production costs for the
two smallest sizes, the optimal first-stage decision is to produce either size 1
or size 2 (size 3 is always produced). Both these decisions have a total cost
of 25140.

When uncertain production costs are introduced, we get different results.
The four feasible first-stage production decisions and associated total costs
are reported in Table B.1. The vector d gives the production decision for
the sizes 1 and 2 where “0” represents not produce while “1” is produce. We

Minimum
d  EYf(X()}
, 0 $25180
, 0 25130
1
1

25115
25220

)

- O = O

)

Table B.1: Production costs, Fixed first stage decisions

see that by producing size 2 (and 3), the expected cost has been reduced to
25115. Even though the reduction in total cost is not large, it is interesting
to see that the optimal production policy has been dramatically altered by
introducing the cost uncertainty in the problem.

B.3 Bounds

In this section we develop bounds to be used in an implicit enumeration al-
gorithm. There is no universal scenario tree attached to a stochastic (linear)
program when the distribution of (some of) the random parameters is deci-
sion dependent. However, once a timing of discovery for the values realized
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by the random variables has been specified (or assumed) a scenario tree can
be drawn. Armed with a scenario tree, we can search for solutions for the
associated optimization problem and use the result as a bound of some sort.

The bounds that we derive are based on the use of branching (or partial)
vectors, denoted d#, in {0,1, #}9. The components d} of such vectors take
on the values 0, 1 or #. The interpretation we attach to these values is as
follows:

d¥ = 1 means that information about the j-th (family of) random
variable(s) will come as early as possible (here in stage two);

d¥ = 0 means that information about the j-th (family of) random
variable(s) will come as late as possible (in our examples, this will be
stage three);

df = # means that there has been no decision yet about this particular
variable.

We refer to vector elements with a 0 or 1 as determined and those with #
as undetermined. To each branching vector d* is associated a collection, say
D(d*), of decision vectors d obtained by replacing all # entries in d* by
either 1 or 0; these correspond one-to-one with a set of ‘standard’ stochastic
optimization problems that we will call P(d*). Within the collection D(d*),
let’s denote by (d*)¢ the vector in {0, 1}? obtained by replacing every (unde-
termined) entry # in d* by 1, and by (d*)' the vector obtained by replacing
every (undetermined) entry # in d* by 0. The two vectors correspond re-
spectively to the cases when information associated with the variables d; for
which df = # is received as early as possible (the index e stands for early) or
late (the index ! stands for late). Because discovery at a later time imposes
more restrictions on implementable solutions, one has

N((@*)°) S N(d) S N((d*)') VdeD(d*);

recall that N (d) is shorthand for Ns@). In the calculation of bounds for the
collection P(d*) of stochastic programs associated with d € D(d*), we want
to impose the constraints on X from among those generated by the restriction
(d, X) € K only if they come from the already determined components of d*.
So, we let

K(a*) = UdeD(d#) K(d)-
We shall only deal with problems where this set is a nonempty convex poly-
hedral set. So, the linear program, .

min 37 [p°(s) £ (s; X (s))]

8€SE

-
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subject to
A(s)X(s) > b(s), ses° (B.16)
zi(s) € {0,1}, iel’ t=1,...,T, s€S° (B.17)
zi(s) > 0ie{l,...,n'}\I*t=1,...,T, seS® (B.18)
X € K(d*) (B.19)
X() € N° (B.20)

provides a lower bound for the values of all stochastic programs in P(d*).
Here S¢ is used as shorthand for S((d*)¢). Let us denote this lower bound
by L(d*). From this it follows that a lower bound to L(d*) also will be a
valid lower bound to all stochastic programs in P(d*). This is particularly
relevant for integer and mixed integer problems where lower bounds are often
readily available via relaxation even when exact minimization might be quite
difficult.

If the superscripts e in the linear program above is replaced with super-
scripts ! (late branching), we get a program that provides an upper bound,
U(d*#), for the values of all stochastic programs in P(d*) provided that cer-
tain restrictions hold on the structure of C(d). This fact is not exploited in
our algorithms because they use full vectors when calculating upper bounds.
An upper bound computed by a full decision vector, U(d), is globally valid,
at least as tight and requires no greater computational effort.

B.3.1 Example

To illustrate the notation, we continue with the example of Section B.2.3.
Upper and lower bounds for branching vectors are displayed in Table B.2.
The two vector elements shown correspond to fixing the decisions to produce
or not produce the two parts that have an uncertain, but discoverable, cost.
We can see that using the best upper bound given in the table we are able to
fathom the partial vector (#,0). The upper bounds U(d*) are valid because
K(-) is completely separable. When comparing to the results in Table B.1,
we see that the upper bound for the vector (#,1) is the same as the minimum
cost reported for the full vector (0,1), the optimal d-vector for this problem.

B.4 An Algorithm

The bounds introduced in the preceding discussion can be directly used to
create a branch and bound algorithm. In this section we introduce a more
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a*  U(@*) L(d%
0, # 25140 25080
1,# 25130 25056
40 25140 25130
# 1 25115 25095

Table B.2: Bounds for the example given in Section B.2.3

memory intensive implicit enumeration algorithm that relies on an ability to
store information about each full vector in {0,1}9. The algorithm is devel-
oped only for situations where there are two decision stages (three realiza-
tion times). This algorithm is clearly not appropriate for large g, but given
present (and projected near term) computer capabilities, exact solutions for
such problems will require further developments. The advantage of retain-
ing information in this fashion is that we are able to make good branching
decisions and we are able to quickly reduce the search space for good upper
bounds.

In order to compress the space required to present the algorithms, we make
use of the following notation:

+ means assignment. For example, j < j + 1 means that the value of
j is incremented.

df + ¢ means that branching vector d* is modified so that element j
takes the value 3.

(df = i) refers to a branching vector for which element j is equal to ¢
and all other elements are undetermined.

d* C d is true if the determined values in d¥ match the corresponding
vector elements in d. For example, (#,1,#) C (0,1,1), but (#,1,0) €
(0,1,1).

A conceptual version of the algorithm called 11 is shown in Figure B.2. This
is not written to convey the most efficient computer implementation, but to
display the concepts. Necessary initialization of variables are done in step 1.
The list of lower bounds, L£[d] has all elements set to zero, the branching
vector d* is assigned undetermined vector elements, the set D* is assigned
the set of all possible d-vectors, J and J' are index sets with q elements and
B is an index set for branching decisions. In step 2 the algorithm calculates
lower bounds for all possible branching vectors where only one decision is
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fixed and the others are undetermined. These calculated bounds are incor-
porated in the list £[d], that represents the highest lower bound for each full
vector, d € {0,1}9, which serves as the index set for the list. The list V is of
length ¢ and is used in step 5 for deciding branching order. In step 3 the full
vector with lowest lower bound, argmin L[d)], is used for computing a global
upper bound. Thus U represents the best feasible solution found so far to the
overall minimization problem. This upper bound is in step 4 used to prune
full vectors for which the best lower bound is higher than the upper bound.
The set D* thus represents all full vectors in {0,1}? that have not yet been
bounded out.

Step 5 essentially repeats these steps in a slightly more general way to con-
sider branching with a smaller number of undetermined components. While
the number of possible full vectors is greater than one or we have not branched
on all possible decisions (in the case with non-unique optimal solution), the
algorithm continues the branching. The remaining elements in D* are inves-
tigated, and decisions that are identical for all vectors in D* are fixed. The
determined elements of the branching vector d#, are the decisions proven to
be a part of the optimal full vector. The set B represents the variables for
which the algorithm branches, and indexes for fixed decisions are removed
from B. The index set J' represents all decisions not yet fixed. The order in
which the branching is performed (i.e., assignment of j' to B) is determined
heuristically, using V; to estimate the relative efficiency of variable changes.
The set B gives the list of indexes for which full factorial branching is to
be done. The mechanics of this branching is described by the function ¥ as
shown in Figure B.1. The function ¥ returns a set of 2! branching vectors,
and this set represents all possible branching vectors that are undetermined
for the elements (J' \ B), and determined for the fixed decisions and the
branching variables. A lower bound is calculated for the branching vectors
d* and the list £ is updated. An upper bound is calculated for the full vec-
tor with lowest lower bound, and all decision vectors, d, for which the lower
bound is higher than the global upper bound, is removed from the set D*.
Algorithm 11 terminates when the set D* has just one element, the optimal
full vector, or we have a non-unique optimal solution (i.e., the Vs are all
negative). Upon termination, D* must be the optimal set.
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v+
FOR}gACH i €{0,...,(2181 —1)} (7 have a binary representation)
d* « d*
J«1
ForEACH b € B
df « i; (i; is the j-th digit in 1)
J—Ji+1
v« vU{d*}
RETURN v

Figure B.1: Definition of the function ¥(d*, B)

B.5 Computational Experience

B.5.1 The Subcontracting Problem

The problem of selecting an optimal subset of sizes that we have used as an
example has limited usefulness for computational experiments because we
can solve only small instances to optimality. This is due to the fact that
the problem has both integer and continuous variables and has complicated
constraints. In this section we introduce a problem for which we develop a
continuous and a pure integer version.

In the subcontracting problem we consider a situation where a manufac-
turer must use a number of different components in the production of some
new items. The components may be produced “in house” or purchased from
a foreign subcontractor. The subcontractor offers these components at a
given price, but in the future it is possible that an import tax will be added
to the price. Hence, the subcontract cost is uncertain and the timing of real-
ization is not influenced by the values of the decision variables in this model.
Since the manufacturer has no cost history for these new components the
in-house production costs are uncertain; however, prior probabilities can be
given. The uncertainty for a given component can be resolved by producing
that component, or a similar one. Each of the components belongs to some
family of components, with family membership defined by the property that
the discovery of cost information is shared within a family, but not between
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L0, dteg D {01} JeJ{l..,q B0

. FOREACH j € J

ForEACH i € {0,1}
ForEAcH d € {0,1}7
IF [ ((d¥ = 1) C d) AND (L[d] < L(d} =1))]
L[d] + L(d¥ =)
Vj + abs(L(d¥ = 0) — L(d} =1))

. U « U(argmin L[d])
. FOREACH d € {0,1}7

IF U < L[d]
D* « D*\ {d}

. WHILE [ (|D*| > 1) AND ((maxV;) > 0) ]

FOREACH j € J'
ForEACH i € {0,1}
IF de:i)chdeD‘]
d;;'* —1
IF (j C B) B + B\ {j}
J' « J'\ {5}
{;'} = argmax V;
B « {j'}
Vi = -1
ForREACH d* € ¥(d*, B)
ForEACH d € D*
IF [ (d* Cd) AND (L[d] < L(d*) )]
L[d] « L(d*)
U « min(U, U(argmin L[d]))
ForEACH d € D*

IF U < L[d]
D* + D*\ {d}

-

Figure B.2: Definition of Algorithm 11.
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families. We present two models for this problem: one continuous and the
other discrete.

A Continuous Problem

To model a learning curve for costs in a very simple way, we assume that if
there is a decision to produce at least a certain threshold fraction, ay, the
in-house production costs for family f will be known. There are n different
components, and we define e to be a vector of length n whose elements are
all 1. Further ey is a vector of the same length whose elements are 1 for those
indexes that are members of family f and 0 for all other elements. The in-
house production is constrained by the availabilty of production capacity, and
there are m constrained resources (B.21). There is also a limit on maximum
increase in in-house production from one period to the next (B.22). We also
include constraints to enforce X € K(d) (B.24). The problem we want to
optimize can formally be written as:

min min * {Z [(e(s), 24(5)) + (h(s), (e - x‘(s»]} ,

de{0,1}e X

t=1
subject to:
Ae—1'(s)) < b, t=1,...,T, s€ S(d) (B.21)
(e,z*(s) —z**1(s)) < B t=1,...,T—1,5€S(d) (B.22)
0<4zi(s) <1, 3i=1,...,nt=1,...,T seS(d) (B.23)
£i(d) < (es,(e—='(s))) < uy(d), f=1,...,q, s€S(d) (B.24)
X € N(@) (B.25)
where we have introduced the following notation:
1,...,n the set of component indexes
1,...,q the set of family indexes
1,...,m the set of resource indexes
z}(s) quantity (a decision) of component j to subcontract in

time ¢ under scenario s
(1—z3(s)) quantity (a decision) of component j to produce in-house

ci(s) the uncertain cost of subcontracting component j

h;(s) the uncertain, discoverable cost of producing component j
aij capacity requirement for component j on resource i

A Q5 matrix

bi,...,bm available production capacities

B maximum increase in in-house production

[Ef(d),uf(d)) equals [0, ay) or [ay,00) if df = 0 or = 1, respectively
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f j ¢ ¢ i hi a1y aa; as;
1 1 5 625 48 55 18 20 20
2 6 75 58 65 18 17 20
3 7 875 68 75 20 15 15
2 4 8 10 7 95 10 13 17
5 9 625 48 55 12 11 1.1
3 6 8 10 6 10.5 1.0 2.0 1.5
7 9 1125 75 11 12 15 1.5
4 8 10 125 85 12 12 14 19
9 12 15 11 135 1.2 1.7 10

5 10 10 125 85 12 12 12 20
1 12 15 105 14 15 16 2.0
12 14 175 12 165 20 18 14

6 13 6 7.5 5 8 12 14 16

14 7 8.75 6 8 18 1.7 13
7 15 8 10 7 10 12 12 20
8
9

16 9 11.25 11 15 16 1.7
17 10 125 12 20 20 14

Table B.3: Input data, subcontracting, continuous problem

We consider a problem with two decision stages (T' = 2). Each element
of a vector d is a one if there will be enough in-house production (during
the first stage) in the family to learn the cost and zero otherwise. To cre-
ate the lower bounding problem associated with a branching vector d#, the
constraints (B.24) for X € K(d) are replaced by:

0 < (ef,(e—2'(s))) <ay, ifd¥=0, seSd) (B.26)
af < (ef,(e—2'(s)), ifdf=1 seSd). (B.27)

Note that there are no constraints associated with the elements of d* that
are ‘undetermined’, i.e., for those families f for which d# = # the interval
[££(d), us(d)) equals [0, 00).

A Problem with 5 Families and 12 Components

We consider a problem with 12 components that belong to 5 different fami-
lies, and oy = 0.5 for all f € 1,...,q. The uncertain costs can be found in
the first part of Table B.3. The fact that the scenario set depends on the
decision values, and furthermore the fact that it is the cross product of the
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c and h space, makes it difficult to index the scenarios. We have used prime
and double prime to distinguish the (equally likely, in this example) possibil-
ities in each space. The in-house capacity is 9 units of each resource and each
component’s resource requirements are listed in the a;-columns in Table B.3.

When ignoring the decision dependent information discovery and using the
expected costs for the in-house production, we find the minimum expected
total cost to be 226.53. In the first period components 1 and 3, and 2% of
component 2 are produced in-house. In other words, all components in the
families 2, 3, 4 and 5 are subcontracted.

When the uncertain production costs are included in the model, we find
it optimal to produce one member from all of the families in the first pe-
riod. The expected cost of this decision is 222.41. By taking the uncertain
production costs into consideration, the optimal first period decisions have
changed dramatically. When solving this problem by use of the 11 algorithm,
it was necessary to solve 12 subproblems before the provable optimal solu-
tion was found. Complete enumeration would have required solution of 32
subproblems.

A Problem with 7 Families and 17 Components

In this example we consider 17 components belonging to 7 different families.
The cost coefficients and capacity requirements are those listed in Table B.3,
and there are 9 units of capacity available of each resource. When solving
the deterministic problem with expected cost coeflicients, we find it optimal
to produce all of components 3 and 14, and 2 % of component 1 in-house.
This decision policy has an expected cost of 311.38. When the uncertain
production costs are included in the model, the optimal policy is to produce
a member of all but the first family in the first period. This gives an expected
cost of 305.81. By using the 11 algorithm, the optimal solution is found after
solving 26 subproblems. Complete enumeration would have required solution
of 128 subproblems.

B.5.2 An Integer Problem

In this example we let the production decisions be represented by integer
variables, and as soon as one of the family members is produced the pro-
duction costs for all of the family members are known. The formal model is
the same as for the continuous case except that the learning threshold value
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a; =1 for all f, and the constraint (B.23) is written as

zi(s,t) € {0,1}, je Jtel,...,T,s € S(X). (B.28)

A Problem with 5 Families and 12 Components

Also here we first look at a problem with 12 components that belong to 5
different families. The uncertain costs can be found in the first part of Ta-
ble B.3. There is one in-house resource and it has a capacity of 8 units;
utilizations (b;) are 2 for parts in families 1 and 5 and 1 for families 2,3, and
4. When using the expected costs for the in-house production, we find an
optimal solution with an expected cost of 226.32, and in the first period, all
members of the first family are produced in-house, but all others are subcon-
tracted.

When the uncertain production costs are included in the model, the opti-
mal policy is to produce one member from each of the families 2, 3, 4 and
5 in the first period in-house and subcontract all members of family 1. The
expected cost of this decision is 222.41. The optimal first period decisions
have been altered considerably. None of the components now produced would
have been produced if production uncertainty was not included in the model.
When solving this problem by use of the I1 algorithm, it was necessary to
solve 16 subproblems before the provable optimal solution was found (a 50%
savings over enumeration.)

A Problem with 7 Families and 17 Components

When considering 17 components belonging to 7 different families we use the
same cost coefficients as used in Section B.5.1. All components require 1
unit of capacity, and the total capacity is 8 units. Also in this example we
find it optimal to produce only the first family, if only the expected in-house
costs are used. This decision policy has an expected cost of 309.58. When
the uncertain production costs are included in the model, the optimal policy
is to produce a member from all but the first family. This gives an expected
cost of 303.58. By using the 11 algorithm, the optimal solution is found after
solving 30 subproblems, which is a large saving over enumeration.

Harder Capacity Constraints

The problem we are considering here is rather similar to the integer problem
above with 5 families and 12 components, but here there is a second capac-
ity constraint for a resource with 9 units of capacity. For this resource the
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utilizations are 1 for parts in families 1, 2 and 2 for parts in families 3,4, and
5. This instance is just beyond the envelope of solution using our implemen-
tation that solves subproblems using CPLEX version 3 [7] (the subproblems
also could not be solved using version 4). Most of the subproblems generated
could not be solved to optimality within a reasonable amount of time so the
lower bounds were generated using lower bounds given by the relaxations
solved by the branch and bound algorithm used to solve the integer subprob-
lems. At termination algorithm I1 was able to bound out all decisions except
in-house production of all five families or in-house production of all families
except family 1.

B.6 Variational Analysis

Thus far we have introduced a new modelling concept and outlined methods
for finding exact solutions to instances of small to moderate size. In order
to enhance our understanding of the model and to facilitate future work on
heuristics for it, we describe methods for estimating the effects of perturba-
tions of an optimal d vector, d*.

It is easier at this point to return to the ‘abstract’ formulation of the problem
featured in the Introduction. More precisely,

min, g E4f(z) = f_ F(&; z) p4(d€) such that (u%,z) € K C M x R",

where d = (dy,...,d;) € {0,1}7 is a boolean vector identifying certain op-
tions fixing in the process the probability measure u¢, and K determines
the constraints linking the decision = to the choice of u. For a given d, or
equivalently ¢, let

2% € argmin{ Ef(z) | z € K%}

where K¢ = {z|(u? z) € K}. Without going through a detailed analysis
of the structure of K it is not possible to obtain computationally useful op-
timality conditions for z¢ that would identify z¢ as the optimal solution of
the overall problem. Our goal here will be much more limited, viz. to state
necessary optimality conditions that can also be used to pass from z¢ to a
potentially better option/solution combination. Let’s begin with the follow-
ing observation.



142 A Class of Stochastic Programs

Lemma 1
Let M° be the space of (nonnegative) measures defined on Z, and suppose
that for all u € M°, the function

p Bhf = [ f(E0) u(de)

is well-defined; set E¥ f(z) = oo whenever the function £ — f(&;z) is not
bounded above by a u-summable function. Then p— E*f is linear.

This is an immediate consequence of the properties of the integral. We are
going to exploit this as follows: Let M as before denote the space of proba-
bility measure on Z. This set M is convex, i.e., given any pair of probability
measures u°, 4! and A € [0, 1], one has

pri= 1=+t e M

and R
E* f is well-defined.

This will allow us to compute a directional derivative of E#f at a point u¢ in
a direction p¢ — u® where uc is another probability measure. It is convenient
to introduce the following notation:

F(p,z) :== B*f(x)
and, with p* = (1 — A)u® + Apl,
dF (i, 2)(u' — p°) = liminf A~ F(u, 2)
as the ‘directional derivative’ of F at (u°, z) in direction u! — p®. This direc-
tional derivative reflects the incremental change in the optimal value of the

problem if rather than working with u® we are going to let u! dictate the
choice of an optimal z. This (sub) derivative is computed for a fixed z.

Usually it is not too difficult to compute this directional derivative. Indeed,
under the integrability conditions specified in Lemma. 1,

dF(,2) (' = 1) = [ T £(6 2N (1 = Nu(dg) + M (d)).

If u°, p! are absolutely continuous, i.e., one can associate with u°, u! density
functions A%, h! defined on =, then

dF(, o)W — 1) = [ F(&)(R(€) - K(E)) de.
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On the other hand, if u° u! are discretely distributed, say = = {¢,¢ =
1,...} and u°(¢%) = pf, u'(¢) = p}, then

dF (U0, z) (' — 1) = Zt:f(ﬁ‘;z)(p} - ).

Thus, if z¢ € argmin E4f on K¢ and
forallce {0,1}9: dF(u® z%)(u°— %) >0

it follows from the linearity of u — E*f that z9 is locally an optimal solution.
On the other hand, if

for some ¢ € {0,1}7: dF(u%, %) (u—p?) <0

there is a potential decrease that could result from going from option ‘d’ to
option ‘c’. Note however that this cost reduction might not be realizable
because the constraints (u,z) € K might actually exclude (u¢, z¢%) from the
feasible set. Nonetheless, the calculation of the directional derivative suggests
directions of descent, and thus can be exploited algorithmically.

B.7 Conclusions and Directions for Further
Research

In this paper we have extended the range of models considered by researchers
in stochastic programming by explicitly recognizing that a scenario specifies
not only the realized values of random variables, but also that the timing
of the realization and the timing of information discovery can be influenced
by decisions. We have proposed bounds and algorithms for the case where
the distributions and the variables controlling information discovery are all
zero-one and only affect first stage decisions. We then illustrated that these
algorithms can be used to solve instances of integer, mixed integer, and con-
tinuous problems of moderate size. The instances also demonstrated using
three different examples the intuitively obvious idea that inclusion of the in-
formation discovery effects of decisions can have a dramatic qualitative effect
on the optimal decision.

Development of good heuristics will improve the performance of exact al-
gorithms such as 11 by providing better upper bounds. Also, heuristics must
be used in order to attack larger instances. This is particularly true for in-
teger and mixed integer problems. For the problem introduced in Section
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B.2.3 we are not able to solve realistic sized instances to optimality, and for
the integer version of the subcontracting problem introduced in Section B.5,
only small to moderate sized instances can be solved. The development of
heuristics is left as future research, but we have provided assistance in the
form of variational analysis that can be used to guide the search.

In terms of applications, one can quickly imagine many possibilities in ad-
dition to the production planning examples that we have given here. The
abstract model, solution methods, and variational analysis open up these pos-
sibilities, which we leave as our primary contribution to modelling stochastic
programs.
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Appendix A — The Sizes Problem

Complete details of the problem and larger instances are provided by Jorjani
et al. [11]; here we give a summary and the data that we used. The notation
from that paper is retained to the extent possible.

Single Period Deterministic Model

Suppose a product is available in a finite number N of sizes where 1 is the
smallest size and N is the largest size. Further, suppose size i is substitutable
for size j if ¢ > 7, i.e., larger sizes may fulfill demand for a smaller size. Let
D;,i=1,...,N denote the demand for size .

We introduce a cost structure for the production of the product. Let p;,
it = 1,..., N be the unit production cost for size i. Generally p; > p; for
i > j. Let o be the set up cost for producing units of any size and p be the
unit penalty cost of meeting demand for size j with a larger size i. We need
the following decision variables:

Z

_J 1 if we produce size i
~ | 0 otherwise

¥; = number of units of size i produced
z;; = number of units of size ¢ cut to meet demand for size j, j < 1.
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Hence, in order to find the optimal subset of the N sizes to produce so as to
satisfy demand, we solve the following integer linear program.

N
min ) (02 + pigi) + p D i

i=1 i<t
subject to
v = Di=> zu+> za i=1,...,N, (B.29)
k>i 1<i
yi—Mz; < 0 i=1,...N, (B.30)
% € {0,1} i=1,...,N, (B.31)
z;,¥;i € {non-negative integers} i=1,...,N, (B.32)

Multiperiod, Stochastic Formulation

To produce a multiperiod formulation variables and data are subscripted
with a period index ¢ and we add an index for the scenario. To model the
idea that items produced in one period can be used as-is or reduced in sub-
sequent periods, we use z;;; to indicate that product ¢ is to be used without
reduction in period t if 7 = j and with reduction otherwise. The y vector
gives production quantities for each product in each period without regard
to the period in which they will be used (and perhaps reduced for use). The
formulation is essentially an extension of the single period formulation except
that a capacity constraint must be added in the multiple period formulation.

T N
min Y Pr(s) Y [ (02its + pitsits) + PO Tijte

8€S t=1 |i=1 j<i
subject to
S %ijts > Dis s€S8,i=1,...,N, t=1,...,7(B.33)
i
E Exijtla—yitla <0 se€s§,i=1,...,N,t=1,...,7 (B.34)
v<t |i<i .
Yies — M2y, < 0 seS§,i=1,...,N, t=1,...,7 (B35)
N
v < e s€S, t=1,...,7 (B.36)
i=1
Zits €

{0,1} s€S8,i=1,...,N, t=1,...,B.37)
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Data

For illustration purposed we made use of a small version of this problem,
where we consider two decision stages (and a third stage for realization of
undiscovered costs) and production of three different sizes. The setup cost
for producing each size is $ 453. The deterministic unit production costs for
size 3 , the largest size, is $ 0.54. For the smallest size the discrete probability
distribution has two values: $ 0.48 and $ 0.52, each with a 0.5 probability.
For size number two the uncertain costs are $ 0.50 and $ 0.54, also here each
has a 0.5 probability. The unit cutting cost, for substituting a smaller size
with a larger, is $ 0.008. The demand in the first period is 7500 for each of
the three sizes. The uncertain demand is modeled by use of two scenarios,
each with a probability of 0.5. The scenarios are 5000 of each size in the
low demand case, and 10000 of each size in the high demand case. The total
production capacity in each period is 30000 units.
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Paper C

Optimal Selection and
Sequencing of Oil Wells under
Reservoir Uncertainty !

Abstract

In this paper we concider the problem of finding the optimal se-
quence for drilling of production wells in an oil reservoir. When
these sequencing decisions are made, the information about the
reservoir is limited, but one gets more information as a result of
the drilling and the following production. A Bayesian model for
updating the a priori probability distribution over reservoir char-
acteristics is proposed. It is shown how this decision problem can
be modelled in terms of a decision tree, and an implicit enumer-
ation algorithm for solving this sequencing problem is proposed.
Numerical results are reported. The results are computed by use
of a mixed integer opimization model where a reservoir simulator
is included. The results show that including future information
discovery in the model may have influence on optimal drilling
decisions.

1Submitted for publication in European Journal of Operational Research
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C.1 Introduction

In this paper we discuss models for optimal selection and sequencing of
drilling operations for production wells in an oil field. Before a decision to
develop a field is made, seismic data from the field are collected and closely
analyzed. In addition, test wells are drilled to help estimate the amount of
recoverable oil and the production properties of the reservoir. However, when
one starts to drill the production wells the available reservoir information is
still limited, and new information will be acquired both through the devel-
opment and the production phase. The aim of our work is to take this future
information discovery into account, and investigate how it may influence the
optimal decision policy.

The problem we want to solve is as follows: It is decided to develop a field
and the platform capacity is chosen. A set of potential well sites is proposed,
but which wells to drill and in which sequence are not yet decided. The
objective of the optimization problem is to find the decisions that maximize
the project’s expected net present value. If we neglect the value of the in-
formation obtained from the drilling process, the drilling decisions can be
viewed as an investment in production capacity only. However, when taking
the information discovery into account, the drilling can be viewed also as an
investment in further information.

The problem can be viewed as a stochastic programming problem where
the random elements are decision dependent. This is in contrast with for
example oil field optimization under price uncertainty, where we know that
future oil price will be revealed independent of the decision to develop the
oil field [7]. (We assume the field is small and does not influence the future
oil price). For uncertainty regarding the reservoir’s properties the situation
is different. The reservoir is not subject to random influence, and as such we
can say that the amount of recoverable oil is deterministic. But our knowl-
edge about it is limited, and which information we get depends on which wells
are drilled and when they are drilled. The models presented in this paper are
related to the framework presented in Jonsbriten, Wets and Woodruff [8].
There modelling and solving of stochastic programs with decision dependent
random elements is discussed, and an algorithm for solving a certain class
of such problems is proposed. However, the information discovery there is
different from the problem considered in this paper. There all the associated
stochasticity is resolved when a certain decision is made, while this is not the
case in the problem we look at in this paper. When a well is drilled we get
some information, but there is still uncertainty with respect to the reservoir’s
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characteristics. To model this information discovery process we will propose
a Bayesian framework where information from drilling activities is used for
revising the probability distribution over possible reservoir realizations. This
Bayesian framework can be modeled in terms of a decision tree, and we pro-
pose an algorithm for finding the optimal decision sequence in this tree.

In the next section we present the deterministic mixed integer programming
model for optimizing reservoir development. In Section 3 uncertainty is in-
troduced and a Bayesian information process where information discovery
depend on the drilling decisions is proposed. This process can be modeled
in terms of a decision tree, and this approach is presented in Section 4. In
Section 5 we propose an implicit enumeration algorithm for finding the opti-
mal decision policy. Numerical experiments are reported in Section 6, while
concluding remarks and directions for further research are given in Section
7.

C.2 The Oil Field Optimization Model

. We will in this section present the deterministic model that is the starting
point for our discussion. This is a mixed integer optimization model where a
reservoir description is included, and the decisions to be optimized are which
wells to drill and production strategies for each well. The model includes
reservoir equations for a single phase oil reservoir, and such a description
may be approximated by linear equations. We have here considered a two-
dimensional reservoir description as being sufficient. The model was first
given in Haugland, Hallefjord and Asheim [2]. The model has been further
refined in Jonsbraten [6], and it has also been used when investigating oil
field optimization under price uncertainty [7]. In Hallefjord, Haugland and
Asheim [1] it is given a broader discussion of models for petroleum field
optimization. All these references have a more thorough discussion of the
optimization model than given in this paper.

The complete deterministic mixed integer model can be written as:



152 Oil Well Sequencing under Reservoir Uncertainty

T B B Tp T

max »_c"-At"> gt =YY Cpzp — Y Hpzm (C.1)
n=1 b=1 b=1n=1 n=1

0 n B ntd_k .
st. @ <9 (10 33 o0t - ),
k=1 il=1
b=1,...,B,n=1,...,T (C.2)

P <SG 2k b=1,...,B,n=1,...,Tg—1 (C.3)
@ < Sy Xi2, ok b=1,...,B,n=Ts,...,T  (C4)
ThEzp <1 b=1,...,B, (C.5)
an;lxgsl n=11 ",TB) (06)
B
> gy < D" n=1,..,T (C.7)
b=1
—2" 142" <0 n=2,...,T (C.8)
q >0, b=1,...,B,n=1,...,T (C.9)
zp € {0,1} b=1,...,.B,n=1,...,Tg (C.10)
2 € {0,1} n=1,...,T (C.11)

In the objective function (C.1), it is the project’s net present value that is
maximized. We consider production over T periods of lengths At,..., At",
and the deterministic oil price in period n is ¢®. The production flow from
well b in period n is given as gj, and there are B potential well sites. The
costs in the objective function are costs of drilling the wells and fixed costs
of operating the platform. The index Tg is the number of periods for which
we consider the drilling operations. We let CJ' be the discounted cost of
drilling well b in period n, and Tp is the latest possible drilling date. The
well decision variable z} can be defined as:

n 1 if well b is drilled for prbduction in period n

Ty = { 0 otherwise (C.12)

-
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The discounted fixed operating costs of the platform in period n are denoted
H,,, and we define the integer operating variable, 2":

(C.13)

n _ J 1 if the platform is operating in period n
~ ] 0 otherwise

The constraints (C.2) essentially describes the reservoir’s performance. In
this expression J, is a well specific productivity index determined by the
reservoir characteristics at that site, the fluid’s properties and the diameter
of the well. The initial pressure in the reservoir is given by p° while p,, is
the minimum well pressure that make production possible. The parameters

1_
ar+’ k(b) have the following interpretation: If well ! produces one produc-

tion unit in period k, this results in a pressure drop of a?+%—k(b) pressure
units in period n near well b. Since we want to express pj for a general
production g, we have to find all the coefficients a. This can be done by
simulation of the system. By solving the discretized reservoir equation for
a set of B linearly independent g-vectors, all the a’s can be found. When
introducing uncertainty regarding the reservoir’s properties, it is uncertainty
regarding the a’s that is introduced.

The inequalities (C.3) and (C.4) assure that production can only take place
when the well is drilled. The maximum production from each well is given
by the parameter S,. The constraints (C.5) make sure that a well can be
drilled only once. It is possible to drill one well every period, and this is
assured by constraint (C.6). The constraints (C.7) link the production and
platform operation decisions, and production can only take place if the plat-
form is operated. The total platform capacity is given by D. We will not
allow the platform to close down for a later restart, and that is taken care of
in constraints (C.8) that force 2" to be non-increasing for increasing n. The
production decisions are modeled as continuous variables while the drilling

and operating decisions are binary, and this is taken care of by the constraints
(C.9) - (C.11).

The formulation of the well decisions in the model (C.1 - C.11) is not the
same formulation as Haugland, Hallefjord and Asheim found to be most ef-
ficient. They ended up with a model where the binary well decision variable
is non-decreasing in time and equals 0 before the well is drilled and 1 after
drilling. However, we have chosen to define z}' as done in (C.12) because it
makes the notation simpler when introducing the Bayesian framework.
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C.3 The Information Process

We will in this section first present the information process, before we il-
lustrate the process by a numerical example. The proposed model is rather
general, but the discussion here will be related to the reservoir optimization
problem.

C.3.1 The Bayesian Model

We define a state space, ©, that represents the unknown reservoir. This space
consists of a finite set of reservoir realizations labeled by 8. With R different
states, the state space can be written:

6={01,...,03}

When considering well drilling decisions, we introduce a slightly different
notation than in the previous section. The potential decisions are given as
the set X, where each of the B elements in X represents a drilling decision:

X={:L‘1,...,$B}

When a well is drilled one will get more information about the reservoir. This
information is given as a test result, v, and when a well is drilled one of K
possible test results can be observed. One way to specify these test results
can be as good, medium or bad. This sample space can be written as:

V={'Ul,...,’UK}

From the information available prior to the drilling decisions, each state 6
is assigned a probability, P(6). Based on knowledge and experience there is
also estimated a conditional probability measure on the sample space V for
given z and 6:

P(v|z,0)

The idea behind this is as follows: When a well is drilled, the observed test
result gives some information about the well’s production capacity and the
properties of the reservoir. This test result, v, will depend on which test is
performed (which well that is drilled) and the true reservoir state, §. For a
given reservoir state the test result is not unique but is given as a conditional
probability distribution. The probability distribution for the test result v for
a given z can now be found as:

P(vlz) = P(v|z,6) - P(6) (C.14)

#co

-
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With these conditional probabilities, we have the necessary framework for as-
signing new probabilities to the possible reservoir states, posterior to knowing
the outcome v of the decision z. By use of Baye’s theorem the conditional
probability for state 6 for a given z and v can be written:

P(v|z,0) - P(6)
P(v|z)

P(flz,v) = (C.15)

Our aim is to develop a multiperiod formulation, where new information is
obtained every time a well is drilled. For simplifying the notation we will let
the vector x* represent the sequence of drilling decisions prior to time ¢. The
vector is of length ¢ and its elements are drilling decisions zj. We assume
a situation as described in the previous section, where only one well can be
drilled in a period. In other words, the vector x* consists of all non-zero
z-variables in the model (1.0 - 1.10) prior to time ¢. The non-bold z} repre-
sents the t-th element of the drilling sequence x*. For periods when there is
not drilled any well, the associated vector element is 0. The vector T is a
full sequence of drilling decisions. Similarly the vector v* represents the test
results associated with the decision vector «®. For a period when there is not
drilled a well, there will not be any test result, and the associated element in
the v* vector will be 0. The non-bold v} is the t-th element in the sequence
of test results v*.

The conditional probability measure on test results for given = and 6, P(v|z, 6),
can in the multiperiod formulation be written: P(vi|xt, v*~1,60). We have
included the sequence of test results ¥*~? in this formula, because the prob-
ability distribution over reservoir realizations prior to the decision z{ is de-
pendent upon the sequence of test results v'—!. Further, the probability
distribution for observing the test result v{ with given x*, observations v*1,
but unspecified # can be found as:

P(vi|zt, vt~1) = Y P(vf|at, vt71,0) - P(0)x*~2,01) (C.16)
)

The posterior probability for the state 6, after the drilling sequence x* and
getting the results v*, can then be expressed as:

P(vt|xt, v*1,0) - P(6|xt~2, vp !
P(vi|xt, vt~1)

P(f|zt, vt) = (C.17)
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‘B’ M Q7
6,010 035 0.55
6,020 045 0.35
65 | 035 0.45 0.20
6s | 055 0.35 0.10

Table C.1: Conditional Probabilities, Well 1

“B” “‘M” “Q”
6, 1025 045 0.30
9, 1 0.05 0.35 0.60
6; | 0.50 0.40 0.10
6,040 0.40 0.20

Table C.2: Conditional Probabilities, Well 2

C.3.2 A Numerical Illustration

We will here use a small example to show how the framework presented in
the previous section can be used. Let the initial probability distribution be:

P(61) = P(6:) = P(6s) = P(6;) = 0.25

In this example only two wells are considered. For each well there is an esti-
mated probability for each test result v, conditional upon well and reservoir.
We assume three possible test results: bad - “B”, medium - “M” and good -
“G”. The conditional probabilities are shown in Tables C.1 and C.2. Further
we assume that well I is drilled in the first period and well II is drilled in the
second period. We also assume that well I gives a test result that is good,
whereas well II shows a medium test result. After the first period we then
get the following posterior reservoir probabilities:

0.55-0.25

P(6y|z}, “G”) = —53 = 0458
P(6;|z}, “G") = 0'—?’50;30—‘23 = 0.292
P(63|z}, “G") = 9‘—2%9'2—5 = 0.167
P(b4|}, “G") = 0.10-9.25 _ 4,083

03 .
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The updated probabilities above represents knowledge about the state of
the reservoir after the first period. When drilling well II, we know that the
probability of test result “M” is:

P(“M”|z172, “G”) = (0.458 - 0.45) + (0.292 - 0.35)
+ (0.167 - 0.40) + (0.083 - 0.40) = 0.408

After the second period, finding that well II is medium, we get the following
posterior probabilities:

0.45 - 0.458

P(6)|s}a}, Q" “M?) = — o = 0.505
P(8)zta3, “G” “M”) = % = 0.250
st e = V00T
Pladelst o ) = 0008 _

We see that the good test from well I changes the probability distribution
over reservoir realizations considerably, while the medium test result in well
IT only leads to smaller adjustments in the probability distribution.

C.4 The Decision Tree

Our next goal is to use the described information process to generate a deci-
sion tree, and in order to do that we will define necessary notation:

D The complete decision tree consisting of all possible sequences of drilling
decisions and associated test results.

(xt, v*) Decision nodes; decisions prior to ¢ are fixed and the associated test
results are observed.

(z**1,v*) Chance nodes; decisions prior to ¢+1 are fixed and the test results
are observed for decisions prior to t.

(%, v°) The root node; no decisions are fixed.
(xT,vT) Terminal nodes; nodes where all uncertainty is resolved.

P(x*,v*) Node probability; the prdbability for node (x*, v*) if decision policy
xt is chosen. P(zt,vt) = [T'_, P(vi|x?, vi~1)
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Figure C.1: Decision tree
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Figure C.1 illustrates what the tree will look like in a situation with 4 pro-
posed well sites and 3 possible test results. Decisions are made at times
0,...,T — 1, and the associated test results, v, are realized in the following
time periods. For making the tree complete, test results v7~! will resolve all
uncertainty, so that the reservoir state is known with certainty in the termi-
nal nodes. The decision nodes are represented by squares, while the chance
nodes are shown as circles.

One thing that Figure C.1 illustrates clearly is the size of the tree. Even
with a moderate number of possible drilling decisions and a few test results,
the size of the decision tree grows rapidly. In the problem we are considering
here, it is decided to develop the field, and we do not consider the possibility
of not drilling any well in the first period. But in the following periods that
is a possibility, and as shown in the illustration, if we do not drill we do not
get any further information. In the example in Figure C.1 with 4 potential
well sites and 3 test results, the tree has 12 decision nodes at ¢t = 1. After
the second period the number of decision nodes is 12 * ((3 * 3) + 1) = 120,
and after the third there are 876 possible decision nodes. We will denote the
number of decision nodes at time t (1 <t < T') as I'* which can be formally
expressed as:

(C.18)

s 211 g

i=1 i=1

As introduced earlier, B is the number of potential wells and K is the number
of test results. The first part of this expression, B: K, represents the number
of decision nodes at t = 1. The summation index 7 essentially represents the
number of possible drilled wells. The binomial coefficient give the number
of possible sequences when ¢ ordered wells are going to be drilled in ¢t — 1
periods. The number of test results is given by K*, while H;zl(B —j)is
the number of of possible sequences when drilling ¢ of B possible wells. The
number of terminal nodes is not given by this expression. This is because
all uncertainty will here be resolved independent of the decision in the last
period. The total number of terminal nodes in the the tree, I'" can then be
written as:

T-1
PT==B-K-Z
i=1

T - ; T :
( iz)K"l-R-(B+1—z)H(B—]) (C.19)
Jj=1
What makes this decision tree model different from traditional decision tree
models, is that the decisions here are both production decisions and invest-
ments in information. One way to introduce decision tree analysis found in
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textbooks, e.g. Hillier and Lieberman [3], is the oil field problem where the
main decision to be made is “drill” or “do not drill”. There is uncertainty
about the amount of recoverable oil, and a seismic survey can be conducted
for helping estimating the amount of oil. The seismic survey has a certain
cost, and whether to conduct this survey or not, depends on to which ex-
tent it will improve the decisions. The sequence of decisions to be made are
“test” / “do not test” and then “drill”/“do not drill”. A rather similar, but a
bit more sophisticated example can be found in Holloway [5]. However, the
important thing to notice is that the decision to invest in further information
and the decision to drill are separate decisions, and not the same decision as
it is in the problem we are investigating.

C.5 The Implicit Enumeration Algorithm

We will in this section propose an implicit enumeration algorithm for finding
the optimal sequencing decisions for the tree described in the previous sec-
tion. For making things simple, we will introduce the algorithm for an integer
programming problem, before we later discuss how the algorithm can be used
for solving the mixed integer problem of optimal reservoir development.

C.5.1 Implicit Enumeration for Integer Problems

The integer optimization problem we want to solve may on an aggregated
form be written as:

maxafg [P(6)f(X)]
subject to
AgX < b (C.20)
X e N (C.21)
X e {01} (C.22)

As before we assume this to be a multiperiod sequencing problem where only
one non-zero variable is allowed for each period, and it is the expected value
that is maximized. Inequality (C.20) represents the constraint system, and
Ay is the constraint matrix for reservoir realization §. We let X represent
the entire solution system of z-vectors. The set of implementable solution
systems are represented by N where

N ={X : (21,0t = (21, 0t)"V(z*, o?) = (2, v")", t € {0,..., T-1})}
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In words, each decision node must have a unique decision. The optimal
solution to this maximization problem will be a solution system where the
decisions are allowed to depend upon observed test results. The implicit enu-
meration algorithm operates on the decision tree described in the previous
section. In traditional decision tree analysis the optimal solution is found
by use of a backward induction procedure, where one starts at the terminal
(leaf) nodes by calculating optimal policies, and then by backwards induc-
tion work towards the root node. Such a procedure will provide an optimal
solution also for this problem, but as pointed out in the previous section, the
decision tree will be very large.

In the algorithm proposed here the problem is approached in a different
manner. The algorithm starts its calculations in the root node and then in a
breadth first manner works its way towards the terminal nodes. The idea is
to successively calculate lower and upper bounds for the decision sequences,
and by successively computing tighter bounds we may be able at early stages
to bound out decision sequences that are proven to not be optimal. How suc-
cessful this algorithm will be, depends on the size of the problem, the problem
data and our ability to compute tight bounds. However, even if it shows that
the problem is of a size that makes it too computationally demanding to find
the optimal solution, one will get valuable information about the problem by
running just a few iterations of the proposed algorithm.

A lower bound must always be a feasible and implementable solution to
the optimization problem, and the problem of computing lower bounds is
that of finding a good feasible solution to the optimization problem without
too much computational effort. The upper bounds are calculated by allow-
ing for foresight, and the upper bound solutions are therefore not required to
be implementable. Obviously there are several ways of calculating bounds,
and we do not claim that the way we have done it is the most efficient one.
However, we will present the procedures used here, and it will be left as a
topic for future research how these procedures may be improved upon.

The proposed algorithm is given in Figure C.7, and the Figures C.2-C.6
show different procedures called by this algorithm. In addition to the nota-
tion introduced so far, the algorithm use the following symbols:

D represents the reduced decision tree. Initially all possible drilling se-
quences are considered as possible optimal solutions, but as soon as a
sequence is found to not belong to the optimal solution, it is bounded
out, i.e. removed from D. At any time the reduced decision tree repre-
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sents all drilling sequences that are possible optimal solutions. When
the algorithm terminates, the reduced decision tree consists of the op-
timal solution system.

L(z*,v*) Lower bound for the decision node (z*, v*)
U(xt+, vt) Upper bound for the chance node (z!*?, v?)

In the Figures C.2 - C.7 we use a notation where a left-arrow (+) means
assignment; i.e. the variable to the left is assigned the value on the right side
of the arrow. The reduced decision tree D and the lists £(-,-) and U(:,-) are
all defined as global variables. The procedure for computing lower bounds
is formally described in Figure C.2. When procedure Lower is called a de-
cision node (z7,v") is passed to it, and the procedure calculates a lower
bound for this decision node. This is done by using the ”averaged” reservoir
as a starting point; averaged according to the probability distribution over
reservoir realizations available at the specific node. However, we also want
to take future information discovery into account, and this leads to the re-
cursive structure of procedure Lower. As long as it is not a terminal node
that is passed to Lower, the development decisions for the averaged reservoir
realization are optimized, but with decisions prior to 7 fixed. The drilling
decision for 7 + 1 is then added to the sequence of drilling decisions, and
procedure Lower is now called for each of the associated test results, vi*?,
by passing the decision nodes (z™+!,v™*!). In this manner Lower works its
way towards the terminal nodes. In the terminal nodes all the uncertainty
is resolved, and when passed a terminal node Lower calculates the objective
function value for this deterministic problem. In this way the computed solu-
tion system is allowed to depend on future information discovery. The lower
bound represents the present best feasible solution found so far:

LBD(x%, v*) = max Y _ [f(X)|xt, Agz < b, X € N)]
9ce

The strategy for computing upper bounds is quite different. Upper bounds
are calculated by Upper, and the formal definition of this procedure is given
in Figure C.4. When Upper is called a chance node is (z™+1,v™) passed to
it. The upper bound is generated by optimizing the development decisions
for each reservoir realization, but with the decisions prior to 7 + 1 fixed.
In other words, the upper bounds are calculated under the assumption of
perfect information when making the decisions after 7+ 1, and the decisions
are as such not required to be implementable:

UBD(zt+,ot) = Y [max f(z[2"+", Agz < b)]
0ce -
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In the first iteration of the Implicit Enumeration Algorithm, { = 0, the
lower bound is calculated for the root node £(x®, x®). Upper calculates an
upper bound for each chance node (x!,v°), before the procedure Reduce
removes from the reduced decision tree, D, all drilling sequences where
L(z° v°% > U(x',v°). The procedure Reduce is defined in Figure C.6,
and its purpose is to remove from D all branches (decision sequences) where
the upper bound is lower than the computed lower bound.

These steps are all repeated in the following iterations, but after the ini-
tial iteration also the procedures Update_L and Update_U are included. The
procedure Lower calculates £(xt, v*) for all decision nodes at level ¢ in D.
The procedure Update_L, defined in Figure C.3, uses these most recently
calculated lower bounds to update the lower bounds at the decision nodes
at levels 7 < t. The procedure Reduce uses these updated lower bounds
to check if any more decision sequences can be bounded out. The proce-
dure Upper calculates upper bounds for the chance nodes (x**?, v*), and the
procedure Update_U, defined in Figure C.5, uses these bounds to update the
upper bounds at lower levels in the tree. In this function X (") represents
the set of possible level 742 drilling decisions given the drilling sequence &7+

The algorithm terminates after the lower bounds are calculated for the ter-
minal nodes. When the procedure Upper is called by the chance node
(xT,vT1), the problem max f(z|xT, Agx < b) is solved for each reser-
voir realization 6. In the terminal nodes the reservoir realization 6 is given
with certainty, and when procedure Lower is called with the terminal node
(xT,v7T), it is the problem max f(x|xT, Agx < b) that is solved also here.
At that point the gap between upper and lower bounds is eliminated, and a
unique optimal decision policy is found.

In future research the proposed algorithm should be further evaluated in
the context of integer programming techniques. The branch-and-cut algo-
rithm [4, 9] may be a starting point for such analysis.

C.5.2 Implicit Enumeration for the Well Sequencing
Problem

As pointed out in Section 2, optimal well sequencing is a mixed integer
problem, while we so far in this section, and in the Sections 3 and 4, have
treated the problem as an integer problem. The terminal nodes in the deci-
sion tree have been considered as nodes where all decisions are fixed and the



164 Oil Well Sequencing under Reservoir Uncertainty

L(zT,v")« 0

Ir (=T)
L(z™,v") + max f(x|xT, Agx < b)
ELSE
2™  argmax f(x|z”, Ax < b, A = T4co Ao - P(O|x™,v7))
FOREACH v[™! € V7!
Lower (x™11,v"™t1)
L(z™,v7) « L(x7,v") + L(z™T, v™H1) . P(x™H1 vT+1)

L(x™,v") + L(z",v")/P(z",v")

Figure C.2: Definition of procedure Lower(x™,v")

FOoREACH zj*' € X \ =7
1 +1
™t — 7 + 1]
L+o
ForEACH v™*l € V

o™ T 4 g™
L L+ [L(xm,v™) . Pz, v7H1))
L« L/P((x",v7)

IF [L > L(z",v"]

L(xT, v« L

Figure C.3: Definition of procedure Update L{x™,v")
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U™, v7) « 0
FoREACH 6 € ©

U(z™,v7™) « max f(z|z™H1, Agz < b) - P(O|z™ 11, v7)

Figure C.4: Definition of procedure Upper(z™*1,v™)

Uz™v™) « 0

FOREACH v[* e V
1 +1
vt —vT o]
U«0
FoREACH z*? € X (z™!)
w‘r+2 — w1'+l -+ z'r+2

IF [U(z™+2,v7+1) > U]

U« U(x™2,v7 1)
U™, v7) « U™, v7) + [U - P((x7+2,v711)]

U™ v7) « U(x™1,07)/P((z™H1,v7)

Figure C.5: Definition of procedure Update U(z™+1,v™)

xT « $T+1 - z";'+1
IF [L(z7,v7) > U(z™H1,v7))

2 — 2\ (w1'+1’ ,v‘r)

Figure C.6: Definition of procedure Reduce(z™1,v™)
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t—0 DD

WHILE (t < T)
FoREACH (z%,v*) € D
Lower(z*, v*)
ForEacH T € {t—1,...,0}
ForEACH (z™,v™) € D
Update L (z7,v")
FOREACH (z™t,v") e D
Reduce (z7*1,v7)
IF(t<T)
FOREACH (ztt1,v*) € D
Upper(zttl, vt)
ForEACH 7 € {t,...,0}
FOREACH (2™, v") € D
Irr<t

Update U (z™+1,v7)

Reduce (z7™+1,v7)

t—t+1

Figure C.7: Definition of the Implicit Enumeration Algorithm
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uncertainty is resolved. Also in the well sequencing problem we assume the
uncertainty to be resolved when reaching the terminal nodes, but there are
still more operating and production decisions to be made. As such, we can
say that each terminal node represents a deterministic mixed integer problem
that has to be solved. In the terminal nodes all decisions concerning the Tg
first periods are fixed, while decisions for the periods Tg + 1 to T are still to
be optimized.

In the general framework developed, the implementability constraints play an
important role, and it is necessary to look closer at what implementable so-
lutions mean in the oilfield case. Both the drilling and production decisions
need to be implementable. We are assured that the drilling decisions are
implementable, but so far we have not discussed the continuous production
decisions. In the numerical experiments performed here the total platform
capacity is larger than the sum of the maximum production capacity for
each of the potential wells; Y2, Sy < D. Because of this, we do not have
the problem of allocating production capacity among the producing wells.
The implementable production strategy will simply be to produce as much
as possible from each well.

- If the situation had been that 2,’,’;1 Sy > D, it would have been necessary to
use a predetermined rule for allocating production capacity among the wells
in order to avoid solutions depending on hindsight. In that case the lower
and upper bounds for the terminal nodes is not necessarily equal, and we are
not guaranteed to be able to bound out all non-optimal decision strategies.

C.6 Numerical Experiments

We will in this section present numerical experiments where the reservoir
optimization problem is solved by use of the implicit enumeration algorithm.
The example reservoir we consider is illustrated in Figure C.8. Its size is
900m x 800m, and 5 different well sites, numbered 1-5, are proposed. In this
model the reservoir is completely described by its porosity and permeability.
The porosity expresses the amount of oil present in the reservoir, while the
permeability gives information about the reservoir’s production properties.
However, there is uncertainty with respect to the reservoir’s properties.

The reservoir uncertainty is expressed by a discrete probability distribution
over reservoir realizations. We consider 4 different realizations, and the initial
distribution is uniform, i.e.: P(6,) = P(62) = P(f3) = P(6y) = 0.25. The
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Figure C.8: The example reservoir with potential well locations

reservoir realizations are illustrated in the Figures C.10 - C.13. In the exam-
ple we are considering, the porosity and permeability vary proportional to
each other. For each block in the reservoir there is a number that give the as-
sociated properties. To get the porosity the numbers in the Figures C.10-C.13
have to be multiplied by 0.02, while the permeability is found by multiplying
by 10~4m2. In this example the porosity varies in the order 0.08 — 0.18
while the permeability varies from 4-10714m? to 9-10~14m2. As in the intro-
ductory example there are estimated conditional probabilities for each of the
potential wells; the probability of observing a specific test result conditional
upon reservoir realization and which well that is drilled. These estimated
probabilities is listed in the Tables C.1 - C.5. We allow wells to be drilled
the Tg = 5 first periods, and these periods have a length of 100 days each.
The next (T — Tg) = 8 periods is of length 300 days, so the total lifetime
of the oilfield is a period of 2900 days. All the other relevant input data is
given in Appendix A.

As mentioned earlier, our main goal is to find the complete optimal solution
system, but much is also achieved by finding the optimal first stage solution.
When the first stage decision is made and the associated test results are ob-
served, a new analysis with updated probabilities may be performed.

In the first iteration of the implicit enumeration algorithm, ¢ = 0, the proce-
dure Lower found well 4 to be the optimal first stage solution for the averaged
reservoir. Suggested decision vectors are (z}, 22, 23), (z}, 22, 23), (z}, 22, 23),
and (zj,z?,z3,z%), depending on observed test results. It is interesting to
note that well 3 is the only well that is not included in any of these drilling

sequences. The computed lower bound for the root node in this first iteration
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is $ 26.59 mill.

When investigating the upper bounds for each of the chance nodes, we also
get the optimal decision policies for each of the reservoir realizations. For the
reservoir realizations 6, and 6 it is found to be optimal to drill well 1 first,
while for the realizations 6, and 6,4, well 2 is the optimal first stage decision.
If we at the first stage were in possession of perfect information, the project’s
expected net present value would be $ 29.00 mill. The procedure Upper gives
the following upper bounds on the possible first stage decisions:

U(z;) = $ 28.18 mill.
U(zz) =$ 27.48 mill.
U(z3) =$ 28.29 mill.
U(zy) = $ 28.01 mill.
U(zs) = $ 28.28 mill.

The resulting optimal solution found by use of the Implicit enumeration
algorithm is illustrated in Figure C.9. The solution has an expected net
present value of § 26.73 mill., and we found drilling of well 3 to be the
optimal first stage decision. At the next stage well 4 is drilled if test results
“bad” or “medium” are observed, while a “good” test result leads to the
decision of drilling well 1. As seen from the illustration the optimal drilling
sequences are: (23,22, 23), (23,2%,23) and (z3}, 2%, 23). Which sequence that
will be realized depends on the observed test results.

C.7 Conclusion and Future Work

The main goal of this work has been to develop a framework for optimizing
reservoir development under uncertainty, which is an optimization problem
with decision dependent information discovery. To accomplish this we have
proposed a Bayesian model that updates the probability distribution over
reservoir realizations when new information is acquired from drilling activ-
ities. This Bayesian approach can be modeled in terms of a decision tree,
and based on this decision tree we have proposed an implicit enumeration
algorithm for finding the optimal drilling sequence. More specificly, we find
an optimal solution system where the decisions are allowed to depend on the
acquired information. By doing this a drilling decision is not only a produc-
tion decision but also an investment in information acquisition.

Although this information process and the implicit enumeration algorithm
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Figure C.9: The optimal solution system
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have been developed for optimizing oilfield development, the ideas can hope-
fully be useful also in other applications. Reservoir uncertainty is an example
of an important class of problems where the information discovery is decision
dependent. We believe that there exist a lot of planning problems where the
information discovery is dependent upon the previous decisions, and we hope
that the framework presented here may be an inspiration to further research
in this field. The way we see it, this paper points out new topics for further
research, both in modelling and solving problems with decision dependent
information discovery.

Appendix A - Input data

The numerical experiments presented in this paper are done for a reservoir
with the following properties:

Reservoir length (z-direction): 900 m
Reservoir breadth (y-direction): 800 m
Reservoir height (z-direction): 50 m
Viscosity (u): 1-10""bar - s
Constant temp. compressibility (c): 0.001 bar™!

Fluid density at initial pressure (p°): 1150 kg/m?3
Fluid density at surface pressure (p°): 850 kg/m?

Reservoir porosity (¢): 0.2

Reservoir initial pressure (p°): 300 bar

Lowest pressure for production (py): 50 bar
Wellradius (ry): 0.15m

Oil price ct: $ 16 per barrel
Cost of drilling each well: $ 10 mill.
Maximum well capacity (py): 10 I/sec
Platform cost: $ 25 mill.
Maximum platform capacity (D): 50 I/sec

Fixed operating costs (H,): $ 10000 per day

In expected net present values reported in the paper, it is also included the
fixed platform cost of $ 25 mill. The Figures C.10 - C.13 represents reservoir
realizations, and the conditional probabilities, probability for a specific test
result given which well that is drilled and reservoir realization, are shown in
Tables C.1, C.2, C.3, C.4 and C.5.
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Figure C.10: Reservoir realization 6,
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Figure C.11: Reservoir realization 6,
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Figure C.12: Reservoir realization 63
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Figure C.13: Reservoir realization 6,

‘B MG
6, [0.05 0.25 0.70
6,010 0.55 0.35
65 | 035 0.55 0.10
64| 0.70 0.25 0.05

Table C.3: Conditional Probabilities, Well 3

‘B’ ‘M ‘G’
6,025 045 0.0
6, | 0.05 0.35 0.60
65 | 0.45 0.40 0.15
64| 045 0.40 0.15

Table C.4: Conditional Probabilities, Well 4

| “Br «M?  “G”
6, 1010 035 055
6,020 045 0.35
6, |0.35 045 0.20
6,055 035 0.10

Table C.5: Conditional Probabilities, Well 5



174 Oil Well Sequencing under Reservoir Uncertainty

References

[1] A. Hallefjord, H. Asheim, and D. Haugland. Petroleum field optimization
- comments on models and solution techniques. CMI-report 862331-1,
Chr. Michelsen Institute, Fantoft, Norway, 1986.

[2] D. Haugland, A. Hallefjord, and H. Asheim. Models for petroleum field
exploitation. European Journal of Operational Research, 37:58-72, 1988.

[3] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research,
Sizth Edition. McGraw-Hill, New York, 1995.

[4] K. Hoffman and M. Padberg. Solving airline crew scheduling problems
by branch-and-cut. Management Science, 39:657-682, 1993.

[5] C. A. Holloway. Decision Making under Uncertainty. Prentice-Hall, En-
glewood Cliffs, 1979.

[6] T. W. Jonsbraten. Optimeringsmodeller for utvinning av et oljereservoar.
HAS-thesis, Norwegian School of Economics and Business Administra-
tion, Bergen, 1994. "

[7] T. W. Jonsbraten. Oil field optimization under price uncertainty. To
appear in Journal of Operational Research Society, 1998.

[8] T. W. Jonsbraten, R. J.-B. Wets, and D. L. Woodruff. A class of sto-
chastic programs with decision dependent random elements. To appear
in Annals of Operations Research, 1998.

[9] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolu-
tion of large-scale symmetric travelig salesman problems. SIAM Retiew,
33:60-100, 1991.




Paper D

Nash Equilibrium and
Bargaining in an Oil Reservoir
Management Game !

Abstract

We discuss the common pool problem faced by two surface lease
owners with access to the same oil reservoir. Our approach is to
use a mixed integer optimization model for clarifying the uniti-
zation negotiations. The model includes a two-dimensional reser-
voir description, and both development and production decisions
are optimized. The discussion is based on a numerical exam-
ple. We show there exists a unique Nash equlibrium for this non-
cooperative game, illustrating the over-investment induced by the
competitive extraction. This non-cooperative solution may serve
as a starting point in the negotiations for a unitization agreement.
We discuss several ways of how the project value in a cooperative
game may be shared between the two owners: Nash bargaining so-
lution, recoverable oil and reservoir properties, and the economic
value of each of the leases in absence of oil migration.

1Paper presented at Fagkonferansen i Bedriftspkonomiske Emner, NHH, 1996
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D.1 Introduction

The problem discussed in this paper is optimal development and distribution
of costs and revenues for an oil field located on a block boundary. Optimal
development of the reservoir requires coordinated actions from the owners,
and the non-renewable resource, the reservoir, must be treated as a unit.
Unitization is the practice of unifying the ownership and control of an oil
reservoir, such that the field is developed and operated by a single operator,
representing all the owners. Shares in this unit is to be negotiated, and is
determined from surface ownership, recoverable oil and other reservoir char-
acteristics. However, it is not straightforward to reach an agreement, and
the idea in this paper is to use an optimization model for clarifying the ne-
gotiations.

The reason for this problem is of course the oil’s migratory nature. If the
extraction is not coordinated, each owner has incentive to extract as much oil
as possible, before it is extracted by the competitor. Compared to optimal
development of the reservoir, we get over-investment in wells and produc-
tion capacity. This competitive extraction may also reduce the reservoir’s
recovery, and compared to coordinated extraction the resulting amount of
recoverable oil can be considerable lower under competitive extraction [§].
This oil reservoir management problem has much in common with problems
connected to the fisheries [7]. In both cases two or more agents are exploit-
ing a common pool, but in the fisheries we are concerned with a renewable
natural resource, whereas the oil field is a non-renewable resource.

The starting point for this work is a mixed-integer optimization model where
a two-dimensional reservoir description is included. One of the ideas be-
hind this model is to take the interaction between the different variables
into account, and the model simultaneously determines platform capacity,
drilling program and production strategy. This model will give the optimal
development decisions when the reservoir is developed as a unit. Besides,
the model is used for investigation of threat strategies in a non-cooperative
game. These threat strategies will then serve as starting points in the negoti-
ations distributing the surplus from cooperative development of the reservoir.

The paper is organized as follows: In the next section the mixed-integer
optimization model is presented. In Section 3 we show how this model can
be used for finding optimal development decisions for an oil reservoir. Sec-
tion 4 is devoted to non-cooperative reservoir development, and our aim is to
find a stable Nash-equilibrium for this two-agent game. The Nash-solution
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represents threat strategies that may serve as a starting point in unitization
negotiations. Possible solutions to this bargaining problem is discussed in
Section 5. Section 6 contain a summary of the findings in this paper and
plans for further research.

D.2 The Optimization Model

The starting point for our analysis is an optimization model for development
of an oil reservoir, and this model is based on the work presented in Haugland,
Hallefjord and Asheim [5]. Input to the model is a set of platform capaci-
ties with associated costs, a set of potential well sites with associated costs,
operating costs, oil price, discount rate and a description of the reservoir.
Decisions supported by the model are:

Platform capacity

Number of wells to be drilled

Location of the wells

When the wells should be drilled

e Production profile for each well

The aim of the model is to find the decisions that maximize the reservoir
value, and in such an analysis the reservoir properties must play an important
role. The reservoir studied here is a single phase oil reservoir, which means
that only the oil is mobile. The oil is slightly compressible, and production
is possible because the oil expands as the reservoir pressure is reduced. A
reservoir description can be derived by combining a mass conservation equa-
tion, a simplified version of Darcy’s flow equation, and an equation for the
fluid’s constant temperature compressibility. We then arrive at the following
reservoir equation where the coefficients do not depend on the pressure:

k Op w
-(=Vp) =pc— + — D.1
V- ( . p)=ypeg + e (D.1)
In this equation the following notation is used:
p fluid density (kg/m®)
v flow velocity 4 (m/s)
w source/sink terms (kg/m3/s)
7 porosity (fraction)
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t time (s)

k permeability (m?)

I fluid viscosity (bar - s)
P pressure (bar)

c constant temperature compressibility (bar~1)

A more careful derivation of the reservoir description can be found in Aziz [1]
and Peaceman [9]. In reservoirs that are relatively thin compared to their
area extent, it is possible to assume that the flow in the vertical direction is
negligible compared to the flow in the horizontal directions. Equation (D.1)
is therefore approximated by a two-dimensional discrete model, where the
variations of the reservoir height is a function of the z- and y-variables.

Production Variables

The connection between the pressure and production can be approximated
the following way [5]:

a(t) < Jo[pp(t) — pu) (D.2)

where ¢y(t) is the production rate in well b at time ¢, J, is a well-specific
productivity index, py(t) is the reservoir pressure near well b (the pressure
in the block where well b is located), and p,, is the minimum well pressure.
The productivity index may be estimated from the rock and fluid properties,
and it is determined by the permeability, porosity, fluid viscosity, block-area,
reservoir height, and well radius [10).

Initially we assume the reservoir pressure to be p°, and according to our
notation p" is the pressure after n periods. The estimated pressure in the
middle of period n will then be denoted p 3. It can be shown for a reservoir
described by linear equations that the pressure near well b in the middle of
period n can be written [4],[6]:

n—l BB atiok
p i=p" -3 S p) ¢ (D.3)

k=11=1

The parameters ar+%_k(b) have the following interpretation: If well ! pro-
duce;s one production unit in period k, this results in a pressure drop of
a?+5-k (b) pressure units in period n near well b. Since we want to express pj
for a general production ¢, we have to find all the coefficients a. This can be
done by simulation of the system. By solving the discretized reservoir equa-
tion for a set of B linearly independent g-vectors, all the a’s can be found.

This simulation process is discussed in Haugland, Hallefjord and Asheim [5].
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Well-drilling

We let CI® be the discounted cost of drilling well b in period Ts. The
increased cost if we rather choose to drill well b in some period & prior to T

is: $T81 CP. The well decision variable z} may then be defined as:

n { 1 if well b is drilled in one of the periods 1,...,n

o =1 0 otherwise (D.4)

As we see from the definition is z} non-decreasing for increasing n. In our
model T is the latest possible drilling date, and for each of the Tp first
periods we will just allow one well to be drilled.

Platform Capacity

We also want to find optimal platform capacity, and it is possible to choose
among M different platform sizes with associated costs. We let @; denote
the production capacity of the “smallest” platform, and the total cost of
installing this platform is G;. Further, Q,,..., Qs is defined such that if
platform g is chosen, the total capacity will be 39 _, Q.. The total cost of
this platform will be Y7 _, G;n. We see that Gy, is defined as the increased
cost of expanding the platform capacity with @,,. The platform decision
variable y,, is defined to be non-increasing for increasing m:

_J 1 if a platform with capacity no smaller than Q,, is chosen
Ym =1 0 otherwise

(D.5)

Operating Costs

The fixed operating costs of the platform in period n are denoted H,,. We
will let z" be the integer operating variable and it is defined in the following
way:

(D.6)

e 1 if the platform is operating in period n
~ ] 0 otherwise

We will not allow that the platform is closed down for some periods and
started up later on, and we therefore require that 2" is non-increasing for
increasing n.

The complete deterministic mixed integer model can then be written:

i
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The objective is to maximize the net present value, and ¢” is the discounted
oil price and At" is the length of period n. Constraint (D.8) is the wells’

production capacity, achieved by replacing py(t) in equation (D.3) by p:_% as
defined by equation (D.2). Constraints (D.9) - (D.13) are related to the well
decisions. Constraints (D.9) and (D.10) say that production can only take
place in wells that are drilled, while (D.11) and (D.12) ensure that maximum
one well is drilled each of the T;, first periods. Constraint (D.13) demands z§
to be non-decreasing for increasing n. The total production may not exceed
the platform capacity and this is assured by (D.14). Constraint (D.16) says
that production can take place only if the platform is operating, and D"
is an upper bound on the platform capacity. The constraints (D.15) and
(D.17) assures that y, and 2" are non-increasing in m and n respectively.
We see that the model has (T' x B) continuous (production) variables and
(B x Tg + M +T) binary variables.

D.3 Optimal Reservoir Development

We will in this section use the model for finding optimal development de-
cisions for a specific reservoir. The same reservoir will in the next sections
be used in a discussion of non-cooperative and cooperative solutions to this
management game. Such numerical experiments are done for a rectangular
reservoir, with the following rock and fluid properties:

Reservoir length (z-direction): 800 m
Reservoir width (y-direction): 900 m
Reservoir height (2-direction): 50 m
Viscosity (u): 1-10""bar - s
Constant temperature compressibility (c): 0.001 bar~!
Fluid density at initial pressure (0°): 1150 kg/m?
Fluid density at surface pressure (p°): 850 kg/m?
Reservoir porosity (): 0.2
Reservoir initial pressure (p°): 300 bar
Lowest production pressure (p,,): 50 bar

Well radius (ry,): 0.15m

The lifetime of the reservoir is estimated to be 3000 days. This is discretized
into 6 periods of 100 days and 8 periods of 300 days. For each of the 6 first
periods, one new well may be drilled. The reservoir is divided into 8 x 9
blocks, each of dimension 100m X 100m, as illustrated in Figure D.1. The
reservoir has constant porosity and reservoir height, but the permeability
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((A” “B”
0.04 - 10~ 12m?
C F || I
B E || H 1 decreasing permeability
A D|| G
0.10 - 10122

Figure D.1: The example reservoir

Platform | Capacity l/sec | Cost (million §)
1 10 20.0
2 15 22.5
3 20 25.0
4 25 27.5
) 30 30.0

Table D.1: Platform capacities and costs

varies spatially. The permeability, k, is constant in the z-direction, but in
the y-direction it varies linearly from 1.0 - 10713m? in the “lowest” blocks in
Figure D.1, to 0.4 - 10~13m? in the “uppermost” blocks.

As indicated in Figure D.1, the reservoir has two owners: Firm “A” owns 75
% of the reservoir and firm “B” 25 %. Because the reservoir in this example is
homogeneous in the z-direction, “A” and “B”’s shares of the recoverable oil
is also 75 % and 25 %, respectively. The potential well sites in the reservoir
is in Figure D.1 marked with letters, and in this example we have 9 potential
sites. Owner “A” has 6 potential well sites, A - F, and “B” has 3 potential
well sites, G - I, on his part of the reservoir.

The drilling cost is set to $ 8.0 mill per well, and it is only for the 6 first
periods the wells will be drilled. The fixed operating costs is $1.0 mill. per
100 days. The different platform alternatives with connected costs are given
in Table D.1. The discount rate is 2 % per 100 days. An oil price of $ 16 per
barrel is used.

-
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Figure D.2: Optimal drilling program

Given these input data, we can now find the optimal development decisions
for the reservoir. The problem is solved by use of “CPLEX Mixed Integer
Library” (2]. The field can be developed with one platform, and we will
decide which wells to be drilled, independent of ownership. This optimal
development strategy is shown in Figure D.2. It is suggested to drill 4 wells,
use platform alternative 3 and 3000 days of production. The calculated NPV
is $ 116.7 mill. Obviously this is the decision that maximizes the reservoir’s
value, but even in this example, with a deterministic model and a rather
homogeneous reservoir, it is not straight forward how this value should be
allocated between the owners. This problem will be discussed in the following
sections.

D.4 Non-cooperative Reservoir Development

We will in this section study non-cooperative reservoir development, with an
emphasis on finding stable Nash-solutions to this game. This discussion is
based upon the example in the previous section. The motivation for inves-
tigating this problem is the following questions: If the parties are unable to
reach a bargaining solution, is there a unique disagreement solution that will
be played? How will this disagreement solution affect the bargaining process?

In this paper we discuss the normal form description of the game:

Definition 1 The normal form representation of an n-player game speci-
fies the players’ strategy spaces Si,...,S, and their payoff functions
U, ..., Un. We denote the game by G = {Si,...,Sn;u1,...,us}
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In contradiction to the extensive form of the game, the normal form represen-
tation suppresses all the informational aspects of the game, and the strategy
spaces and payoff functions characterize the game completely. The solution
concept we will focus on is the Nash-equilibrium:

Definition 2 In the normal-form game G = {S1,...,Sn;u1,...,Un}, the

strategies (s7,...,s}) are a Nash-equilibrium if, for each player ¢, s} is
player #’s best response to the strategies specified for the n — 1 other
players, (s},...,85 1,851, Sp)"
wi(ST, .. -5 Si_1s 85s Siy1r - Sn) = wi(SY, - -1 851,86, 8141, -+ > Sh)
(D.18)
for every feasible strategy s; in S;. That is, s} solves :
Erilg%u,-(sf, ey 85 1)8i, Siy1r -+ Sh) (D.19)

Using the normal-form representation of the game give an open-loop equilib-
rium, where the strategies are functions of time alone. As mentioned earlier,
it is the information structure of the game that makes the difference. An
alternative would be to search for closed-loop equilibrium, where the players
can condition their play at time ¢ on the history of the game until that date.
It is clear that the closed-loop strategy space is much larger than the open-
loop strategy space, and that is the main reason why we have chosen normal
form and open-loop equilibrium.

To be more specific, what we want to find is a stable Nash equilibrium:

Definition 3 A Nash equilibrium solution is stable if it can be obtained
through an iterative procedure (in strategy space) using the following
iteration scheme, regardless of which initial choice starts the iteration:

(s5,.--,8n) = lim 87, Vs{ €S;, i€ N (D.20)

_ v+1 v+1 v v
= argip&:;u;(sl yeeerSitis8iy 8 41r e s Sn) (D.21)
1] 1]

sv+1
This is the discussion framework of the reservoir management game. We will
now continue the example in the previous section, and assume the reservoir
has two owners, so the management game is a two player game. Although
we restrict the analysis to the normal form description of the game, we have

a very large number of strategies.

The game is modeled the following way: Both owners may develop their
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own part of the reservoir, i.e. the reservoir may be developed with two plat-
forms, and the platform alternatives and costs are the same as in the previous
section. Player “A” has the potential well sites A - F, and “B” has the well
sites G - 1. We will start the investigation by observing “A”’s best response
to different strategies of “B”. Player “B” has three potential well sites, and
must choose which wells to drill and the drilling sequence. The scope of the
game is to extract as much oil as possible before it is extracted by the op-
ponent, and we therefore assume that “B” will have his wells drilled as early
as possible and produce at maximum rate. A number of “B”’s strategies
are shown in Table D.2. Another question is how many periods of operation
we should specify in these strategies. With the oil price of $§ 16 and fixed
operating costs of $ 1.0 mill per 100 days, the platform production must be
1.15 I/sec to cover the fixed operating costs. For all strategies specified in
Table D.2, one more period of production would not have covered “B”’s fixed
operating costs. For all the specified strategies, 1500 days of production is
chosen, except for 1200 days when only well I is drilled. Because we don’t
know which platform will be chosen, we let player “B” have free platform
capacity.

By investigating “A”’s best responses, we find that “A” always chooses to
develop the field with platform 3, and either 4 or 5 wells. Except for the
first strategy, where “B” does nothing, well D is always the first well to be
drilled. The operating period for player “A” varies from 3000 to 2100 days.
Player “A”’s payoff shows how “B”’s strategies affects “A”’s extraction of
the reservoir. From these results we expect that “B” will choose to drill all
three wells, giving “A” a pay-off from $ 53.5 mill. to $ 57.3 mill.

The next step is to investigate “B”’s best response to each of “A”’s calculated
strategies. At this point it is also necessary to adjust for the platform capac-
ity. In all of the best responses in Table D.2, the whole platform capacity
was utilized in some periods. This is taken into consideration, and this slack
is adjusted for in well A. In Table D.3 the best response from “B” is shown
for each of “A”’s strategies. As we can see it is always optimal for “B” to
have all three wells drilled, and G H I is the optimal drilling sequence. Player
“B"’s part of the reservoir is developed with platform 2, and the capacity is
fully utilized only in the third period. We also see that “B”’s operating pe-
riod is 1800 days if “A” drills four wells and 1500 days if five wells are drilled.

Finally we calculate “A”’s best response to “B”’s strategies, now with “B”’s
capacity fixed at 15 I/sec. As expected we find “A”’s best answer always to
be strategy 11 in Tables D.2 and D.3. Hence we have found a unique Nash
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Player “B” Player “A”

Str. | Period: Days of | Period: _ Days of | Pay-off
no:|1 2 3 |operation|1 2 3 4 5 6 |operation | (mill. §)
1 0 A D F B 3000 116.4
2 |G 1500 D A E B 3000 834
3 |H 1500 D A E C 3000 85.8
4 1 1200 D A F B 3000 95.5
5 | H 1500 D A E B F 2400 64.5
6 |G 1 1500 D A E F B 2400 65.8
7 |H G 1500 D A E B F 2400 65.4
8 [H 1 1500 D E A F B 2400 71.5
9 [1 @ 1500 D A E F B 2400 69.1
10 (1 H 1500 D E B F A 2400 72.9
11 |6 H 1 1500 D A E B C 2100 53.5
12 | 1 H 1500 D E A C B 2100 54.3
13 |H G 1 1500 D A E F 2100 56.3
14 |H 1 @G 1500 D A E B C 2100 56.1
15 |1 ¢ H 1500 D A E B C 2100 56.5
16 |1 H @G 1500 D A E C B 2100 57.3

Table D.2: “A”’s best response to “B”’s strategies
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Player “A” Player “B”

Str. Period: Days of || Period: | Days of | Pay-off
no:|(1 2 3 4 5 6 |operation| 1 2 3| operation | (mill. $)
l1 |A DF B 3000 G H I 1800 22.9
2 [D A E B 3000 G H I 1800 21.2
3 {D A E C 3000 G H I 1800 21.7
4 ([ D A F B 3000 G H 1 1800 22.0
5 (D AEB F 2400 G H 1 1500 16.7
6 |[D AE F B 2400 G H I 1500 16.4
7 |[D A E B F 2400 G H 1 1500 16.7
8 |[DE A F B 2400 G H 1 1500 16.1
9 |D A E F B 2400 G H I 1500 16.4
10| D E B F A 2400 G H 1 1500 16.6
11 |p A E B C 2100 G H I 1500 18.4
12 /D E A C B 2100 G H I 1500 18.1
13 |D A E F 2100 G H I 1800 20.1
14 |D A E B C 2100 G H I 1500 18.4
15D A E B C 2100 G H I 1500 18.4
16 |D A E C B 2100 G H I 1500 18.5

Table D.3: “B”’s best response to “A”’s responses
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5 -1t3
4 32
2 11

Figure D.3: The reservoir

equilibrium for this reservoir management game, a solution from which none
of the players want to deviate. The drilling decisions in this non-cooperative
solution is illustrated in Figure D.3. In addition we have found that “A”
chooses platform alternative 3 and 2100 days of operation, while “B” devel-
ops his lease with platform 2 and 1500 days of operation.

The calculated NPV is $ 53,5 mill. for “A” and $ 18,4 mill. for “B”. Com-
pared to the cooperative solution, a surplus of § 44.8 mill. is lost by realizing
these threat strategies. The loss is a result of developing the field with two
platforms and eight wells. We will in the following sections discuss how this
surplus may be shared between the to owners. This non-cooperative solution
will be a lower bound on what the parties may expect in the negotiations. If
not forced to it by external institutions, none of them will accept a bargaining
solution giving less than they get from their threat strategies.

D.5 Bargaining Solutions

The aim of the bargaining is to reach a unitization agreement which specifies
each owner’s share when the field is developed as a unit. We will in this
section discuss different ways of reaching such an agreement. First we will
look at Nash’s bargaining solution, an axiomatic approach in which the threat
strategies play an important role. The usual way to deal with unitization
negotiations is to calculate unitization formulas from the reservoir properties.
We will also show how the optimization model can be used to calculate each
lease’s value in absence of oil migration between the two parts of the reservoir.
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D.5.1 Nash Bargaining Solution

One way to treat bargaining problems is to conclude that theories of bargain-
ing can do nothing more than just specify a range in which an agreement may
be found. With such a view it is natural to focus on the bargaining process
and the bargainers interaction. A contrary view is that by sufficient infor-
mation about the bargainers and the structure of the bargaining problem, it
is possible to predict a unique outcome. This view was advocated by John
Nash, and he developed what has come to be called an “axiomatic model of
bargaining”. The bargainers are described by von Neuman-Morgenstern util-
ity functions, and Nash proposed the following four axioms for “reasonable”
behavior [11]):

1. Independence of equivalent utility representations - the solution is not
affected by linear transformations of the bargainers utility function.

2. Symmetry - if the parties are indistinguishable, then so should be their
payoffs.

3. Independence of irrelevant alternatives - enlarging the set of feasible
payoffs should either cause one of the new payoffs to be selected or
leave the original outcome unaffected.

4. Pareto optimality - no other feasible outcome is preferred by all of the
players

Nash’s theorem says that there exists a unique solution to the bargaining
problem that obeys these four properties. This unique outcome happens to
maximize the geometric average of the gains which the players realize by
reaching an agreement instead of getting the disagreement outcome. Also in
Smith [12] is the Nash bargaining solution used for distributing project value
between the owners, but his model do not include a reservoir description.
The optimal development plan is given as a number of wells for each owner,
and the non-cooperative plan is assumed to be a constant multiple of the
optimal plan for both firms.

The disagreement outcome will in our case be the non-cooperative equi-
librium calculated in the previous section. This is a threat that will be
implemented if the negotiations fail. Each threat must be credible, i.e. it
must be individually rational for each of the players to carry out their threats
if an agreement is not reached. We will also assume that the bargainers have
equivalent utility representations, and the payoff will be measured in money.
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The bargaining problem is illustrated in Figure D.4. The disagreement out-
come, point D, gives the solution (d4,dp). The set of feasible payoffs to this
bargaining game is the triangle DF'G, and the Pareto optimal solutions is on
the line FG. The Nash bargaining solution, @, with payoffs (g4, ¢s) is the
unique outcome maximizing the product (g4 —d4)(gs —dg), and the solution
obviously gives (g4 —d4) = (gg —dp). The surplus generated by cooperating
is distributed in two equal parts, and in our example this gives player “A” $
(53.5 + 22.4) mill. = $ 75.9 mill. and player “B” $ (18.4 + 22.4) mill. = §
40.8 mill.

D.5.2 Recoverable Oil and Reservoir Properties

The usual way to deal with unitization negotiations is to reach agreement
on a unitization formula, distributing the shares of the project according to
amount of recoverable oil and other reservoir properties [3]. This is not to
complicated in a very homogeneous reservoir with complete information, like
the one in our example. But in real life the early phase information about
the reservoir is rather limited. In addition the bargaining may be further
complicated because of asymmetric information [13].

In this example the reservoir has uniform porosity, which means that the
recoverable oil is uniformly distributed in the reservoir. The permeability is
constant in the z-direction, and varies linearly in the y-direction. The well’s
productivity index varies proportionally to the permeability, and as such the
permeability is a measure of the production capacity. Because the perme-
ability is identical distributed in the two leases and the poroesity is constant
in the whole reservoir, it seems reasonable to distribute the project value
according to amount of recoverable oil (here identical to surface ownership).
This give owner “A” 75 % and “B” 25 % of the value, $ 87.5 mill. and $
29.2 mill. respectively. This solution is shown as point R in Figure D.4.
We see that this solution give higher payoff to “A”, compared to the Nash
bargaining solution @, but both parties are better off than the disagreement
solution D.

D.5.3 The Economic Value of the Leases

Another way to look at the problem is this: What is the value of each of the
- leases if they had been separated by an impermeable zone. Obviously we are
leaving the physical realities, and as such the result is more of theoretical
interest. But it might be an interesting starting point for the negotiations,
knowing the value of the leases “on their own”, when drainage of the neigh-



D.5 Bargaining Solutions

191

g, Jokeld

Player "A"

Figure D.4: Distribution of the project value
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Figure D.5: Optimal development with an impermeable zone

boring lease is impossible. The drilling program for each of the leases is
shown in Figure D.5. For “A”’s part of the reservoir the NPV is § 78.1 mill,
and it is optimal to drill 3 wells, use platform 2 and 3000 days of production.
The NPV of “B”’s part of the reservoir is only $ 3.8 mill, and it is optimal to
drill two wells, choose platform 1 and 1200 days of production. This solution
is illustrated by point E in Figure D .4.

As in the non-cooperative case we assume the oil field is developed with
two platforms, and the total value will therefore be considerable lower than
in the cooperative case. But it is interesting to see that without oil migration
between the leases, the total NPV of the reservoir is $§ 81.9 mill, i.e. $ 10.0
mill higher than the NPV of the two threat strategies. The main reason for
this is that only 5 wells are drilled, and both platforms have lower capac-
ity than in the non-cooperative game. When there no longer is competitive
extraction of the reservoir, the total investments in production capacity is
lower, and the time of operation is longer.

Compared to the non-cooperative solution, owner “A” has increased his pay-
off with $ 24.6 mill while “B”’s payoff has decreased with $ 14.6 mill. This
result illustrates that if the project value should be distributed according to
economic value, this would be of benefit for the owner with the larger lease.
If the economic value is the starting point for the negotiations, it natural to
think of two ways to distribute the surplus created by cooperating: distribute
the surplus in equal shares or according to recoverable oil. If the surplus ($
44.8 mill.) is distributed in equal shares “A” gets $ 95.5 mill and “B” gets $
21.2 mill. Compared to the disagreement solution D, both players are better
off, but player “B” only gets $ 2.8 mill. more by cooperating. If the surplus



D.6 Summary and Further Research 193

is shared according to recoverable oil, “B” gets only $ 12.5 mill. Because
this is less than he gets from the disagreement solution, this is not a feasible
payoff in the cooperative game.

D.5.4 Discussed Bargaining Solutions
We will here list the different bargaining solutions discussed in this section:

e Nash bargaining solution - Each owner get their threat plus 50 %
of the surplus:
“A”: $ (53.5 + 22.4) mill = $ 75.9 mill
“B”: $ (18.4 + 22.4) mill = § 40.8 mill

e Recoverable oil - Each owner’s share of the total NPV is determined
from the amount of recoverable oil:
“A”: $ 87.5 mill
“B”: $ 29.2 mill

e Economic value and equal shares - Each owner get the isolated
lease’ value and the surplus is divided in two equal shares:
“A”: $ (78.1 + 17.4) mill = $ 95.5 mill
“B”: $ (3.8 + 17.4) mill = § 21.2 mill

e Economic value and recoverable oil - Each owner get the isolated
lease’ value and the surplus is shared according to recoverable oil:
“A”: § (78.1 + 26.1) mill = $ 104.2 mill
“B”: § (3.8 + 8.7) mill = $ 12.5 mill.

D.6 Summary and Further Research

We have in this paper discussed the common pool problem arising when two
surface lease owners have access to the same oil reservoir. The discussion
is based on a numerical example. By use of a mixed-integer optimization
model we have found the optimal development decisions for the whole reser-
voir. Obviously this solution gives the highest total payoff, but disagreement
about how the total value should be allocated between the two parties, may
make it impossible to reach a cooperative solution. We have shown that there
exists a unique Nash-equilibrium for the non-cooperative normal form game.
This disagreement solution also illustrates the resulting over-investment by
the two parties. The non-cooperative solution is a starting point in our anal-
ysis of possible bargaining solutions and how the negotiations is affected by
the possibility of disagreement.
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The analysis in this paper is of course restricted to the specific numerical
example, and further research may be to examine a larger group of reservoirs
and different locations of the potential wells. These experiments have been
performed under the assumption of complete information about the reser-
voir and future oil price. In a real world situation the information about
the reservoir is limited, and it is reasonable to believe that this uncertainty
will affect the negotiations. In addition will often the information be asym-
metric distributed between the players. How uncertainty will affect both
the non-cooperative and cooperative solutions of this reservoir management
game seem like interesting topics for further research.
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