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CHAPTER 1

BARGAINING AND FAIR ALLOCATION

1.1 Introduction

This study is concerned with problems of collective choice, seen from the

point of view of bargaining or fair division, a tradition initiated by John

Nash's (1950) pioneering essay on cooperative bargaining. The present
chapter contains an informal overview of the main results of the study, as an

introduction to the more detailed exposition contained in chapters 2-4. In

addi tion to that, this chapter outlines the implications of some of the

results in subsequent chapters for a specific problem, namely the problem of
attaining consistency of plans for the allocation of costs and benefits in a

system of decentralized public decision making. We begin by discussing the
relevance of Nash's bargaining paradigm to such allocation problems. Section

1.2 outlines the roodel that will be used throughout, section 1.3 contains the

summary of results and section 1.4 some concluding remarks.

A typical allocation problem that would fit within Nash's framework is one in

which a number of firms plan to undertake a joint venture if they can agree
on how to share the profits from the project. The firms may settle for any

agreement they could think of, as long as it is unanimous. If there is no

agreement, there will be no project and no profits to share. Thus, we
consider a situation where no proper subset of agents can accomplish anything

on their own, i.e., there is no room for coalitions. The question then is:

what will be the outcome to such a problem?
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In Nash I s framework, one attempts to gain some insight into the problem by

means of the following type of model: First abstract from all physical

characteristics of the particular problem at hand by representing it as a

pair (S,d), where 5 is a set of feasible von Neumann-Morgenstern utility

vectors, one vector for each physical alternative or probability mixture of

alternatives, and where d is the utility vector that will be the outcome in

the case of no agreement between the agents (the status quo). Now one may

consider whole families of such abstract bargaining problems and look for a

set of general principles (axioms) that would describe the behavior of the

agents in any given bargaining situation. Then by requiring that the sol-

ution outcome to any bargaining problem (denoted F(S,d» should obey these

axioms, one can hope to narrow down the set of possible candidates for a

solution (the set of possible functions F) to a class with sufficient struc-

ture to yield some predictive power.

Clear ly, nothing prevents us from looking at these principles from a norma-

tive instead of a descriptive viewpoint, e.g. as principles of fair divison

(Harsanyi (1955», or the values of an arbiter (Raiffa (1953». Here we will

allow for both interpretations of the model and refer to the problems (S,d)

under consideration as collective choice problems, or simply choice problems.

To take an example in the normative spirit, consider the problem of dividing

the costs and benefits of a public utility among its clients. Is there a

division scheme which is in some sense fair? Again, one way to attack the

problem would be to identify a set ofaxioms that might reflect popular ideas

of what constitutes a fair division, and use them to limit the opportunities

for discretionary action by the management of the public utility. In some

cases, as the one studied by Nash, the axioms will eliminate discretion

altogether by singling out a unique division scheme.
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As a third example, we may look at a society where public decisions are made

in the following decentralized fashion: There are many publicly owned or

regulated firms, each servicing a subset of the members of society; some

municipal electricity companies, a number of public universities, a few air-
lines and some broadcasting companies. Clearly, the production and pricing

decisions of each unit will affect the welfare of those individuals who con-

sume and pay for its services. Suppose each unit is instructed to achieve a
fair allocation of costs and benefits among its clients. An interesting

question is then whether such decentralized public decision making will lead

to allocations that are fair for society as a whole. Put differently, if
such decentralized decision making is going to be consistent with some over-

all notion of fairness, then what are the implications as to the nature of

the decision rules that would have to be followed by the decentralized units,

and what restrictions, if any, would such a requirement impose on the notion

of fairness itself?

This question will be a main topic of the present chapter. Our analysis is

based on two ingredients, the first one is an axiom which was first used by

Harsanyi (1959) in connection with the Nash bargaining solution, and which

expresses the kind of consistency requirement mentioned in the previous para-
graph.

Harsanyi's axiom differs from those that are usually studied within the

tradition of bargaining and fair division in being a condition on the

relationship between choice problems involving different sets of agents,

while in the traditional model, the set of agents is fixed. Problems of

collective choice with a variable number of agents was first studied in a

systematic way by Thomson (1983a), and it is his model which is the second
main ingredient in our analysis.
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The results of this analysis are several new characterizations of familiar

solutions which shed new light on the nature of those solutions. We discuss

the relationship of Harsanyi's axiom to the problem of decentralized public
decision making mentioned above. This axiom can be seen as a necessary con-

dition for such decentralized decision making to be consistent with any over-

all notion of fair division, and we show that it has very precise impli-

cations as regards the nature of the decision rules that would have to be

followed by the decentralized units.
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1.2 The model

The classical axiomatic model of bargaining involves a fixed set P of agents,

each equipped with a von Neumann-Morgenstern utility function. P may be

taken to be a non-empty, finite subset of the natural. integers. Let IPI -be

the number of elements in P~ and let ~P be the IPI-dimensional euclidean

space, indexed by the members of P. 5tP denotes the non-negative orthant of
+

P~. A IP l-person bargaining problem is a pair (S,d), where 5 is a subset of

tRP, d an element of 5, and where 5 is compact and convex with at least one
vector that strictly dominates d.

5 is the set of utility allocations that can be achieved by the members of P

through unanimous agreement, and d is the outcome that will result if they

fail to agree. Thus, all subcoalitions of P can veto any outcome different

from d, while cooperation by all agents is required in order to achieve
another outcome. The existence of a point in 5 which strictly dominates d

guarantees that all agents are non-trivially involved in the bargaining

problem.' The compactness of 5 is a technical assumption, convexity follows

if the agents may jointly randomize between outcomes.

For simplicity, we will assume that the utility functions are normalized such

that the vector d is always the origin of ~p. We may then identify any
bargaining problem (S,d) by the set 5 only. We will also restrict the family

of bargaining problems under consideration to sets 5 such that 5 is a subset

Of@,: and such that 5 is comprehensive, meaning that if x is a utility vector

in 5, then so is any non-negative vector that is weakly dominated by x. Com-
prehensiveness amounts to assuming free disposal of utility.



- 6

PLet E be the class of bargaining problems 5 for the set P of agents, as de-
fined above. Such problems will be referred to as choice problems, and will

be denoted 5, 5', T etc. A typical choice problem 5 is illustrated in figure

1 •1 for P = {1,2} •

Figure 1.1

A typical choice problem

P PA solution is defined to be a function F: E ~ ~ , such that F(S) E 5 for all
+P P5 E E. Given 5 E E , the vector F(S) is called the solution outcome to 5,

interpreted as that compromise which is in some sense a best resolution of

the conflict among the agents in P.

We have now given a description of the basic model of the collective choice

problem. One can now proceed, as Nash (1950) did, to look for a set of

axioms that would guide the agents in their search of a fair compromise.

Nash suggested four such axioms, namely Pareto-optimality (PO), Symmetry

(SY), Scale Invariance (S.INV) and Independence of Irrelevant Alternatives
(IlA).
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PO requires that the solution outcome to any choice problem 5 should be a

Pareto-optimal point in 5, and SY states that symmetric choice problems

should have symmetric solution outcomes, Le. if the geometry of a choice

problem does not distinguish between the agents, then the solution should not

do so either. A slightly stronger version of the symmetry axiom is Anonymity

(AN) which states that the solution outcome should only depend on the ge-

ometry of the given choice problem, and not on the names of the agents.

s.INV requires that a rescaling of the utility representations of one or more

agents by a positive linear trans formation should rescale the solution out-

come in the same way. It reflects the fact that von Neumann-Morgenstern

utili ty functions are only unique up to positive affine transformations, the

constant terms of these transformations having already been used to translate

the disagreement point to the origin. Finally, IlA states that if one choice

problem is obtained from another by narrowing down the set of feasible alter-
natives while keeping the solution outcome of the original problem a feasible

alternative in the new problem, then the solution outcomes to the two
problems should be the same. The idea is that if an alternative is "best"

among a given set of alternatives, then it must also be "best" among any

subset of those alternatives.

Nash showed that there exists one and only one solution that satisfies PO,

SY, S.INV and IlA. It is the solution that for all S picks the unique out-

come that maximizes the product of the agents' utility levels on S. Strictly

speaking, Nash stated his result only for the two-person bargaining problem,

presumably because in a situation with more than two agents, there might be

room for coalitions, a feature which is not captured by the model.
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Nash's model has been elaborated by Harsanyi (1959), (1963) and (1977), who

showed how the problem of solving n-person bargaining problems could be

reduced to the more familiar one of solving two-person problems. He argued

that in any n-person bargaining problem, a particular payoff-vector " ••• will

represent the equilibrium outcome of bargaining among the n players only if

no pair of players i and j has any incentive to redistribute their payoffs

between them, as long as the other players' payoffs are kept constant".

(Harsanyi (1977) p. 196). This condition, which we will refer to as Bilat-

eral Stability, was shown to imply that if, among a group of n agents, all

two-person bargaining problems were sol ved by the two-person Nash solution,

then all n-person bargaining problems had to be solved by the n-person Nash

solution.

Before we gi ve an illustration of Harsanyi' s condition, which di ffers from

the ones already introduced by involving a varying number of agents, it will

be convenient to modi fy the basic model by following Thomson (1983a), who

deals with this case in a more explicit fashion.

Let there be a fixed set I of agents that may potentially become involved in

some collective choice problem, and let @ be the set of finite subsets of I.

I may be taken to be the set of natural integers. Elements of@ are denoted

P, P', Q etc. For all P E: (jJ, let EP be the set of all choice problems for

the set P of agents. w~ re-define a solution to be a function

Up uP P ()F: pE:(pE + P£Gl~+' such that for all P E: CP and all S E: E , F S is an element

of S. For all P E: <P, the restriction of F to EP is called the P-component

of F.
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An illustration of Harsanyi' s condition is given in figure 2.1, where T is a

choice problem for the group Q :: {1,2,3} of agents and where the solution

outcome for T is x. By keeping the utility of agent 3 constant at x3, one

obtains a choice problem S involving only agents 1 and 2, and the requirement

made by B.STABis that the solution outcome to this two-person problem should

be (x1, x2).

Figure 1 .2

x3 The axiom of Bilateral Stability (B.STAB)

Harsanyi motivates this condition by pointing out that a rational agent i

will not accept a tentative agreement x for the bargaining problem T if he

has reason to believe that he could successfully force some other agent j to

make a concession in his favor: Suppose that the agents are all familiar

with Nash' s solution to the two-person bargaining problem, and that it is

commonknowledge among the agents that two-p~rson problems are solved by that

solution. Consider then agent l, who is looking at the bargaining problem S
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involving only agent 2 and himself, obtained by keeping the utility level of

agent 3 fixed at x3•

If the Nash solution outcome to this two-person bargaining problem is

(yl' Y2) where y1 > x1, then agent 1 will not accept x1 but will demand y1'

arguing that agent 2 should lower his claim accordingly, by referring to
to their common knowledge of two-person bargaining theory. Whether agent 2

accepts or not does not really matter: If agent l rejects x, then x cannot

be the solution outcome to the three-person bargaining problem.

Seen positively, this means that a utility vector x can be the solution out-

come to the IQI-person choice problem T only if it agrees with the solution

outcomes to all two-person subproblems S obtained from T by keeping the

utility levels to all but two of the agents constant at the original out-

come.

Because there seems to be no a priori reason why a dissatisfied agent should

limit himself to challenging only one other agent at the time for con-

cessions, it seems natural to consider the following generalization of

B.STAB, that we call Multilateral Stability (M.STAB) and which states that

the solution should be stable, not only with respect to two-person sub-
problems, but also with respect to subproblems involving any subset of the

original group. As a principle of fair division, the axiom can be inter-

preted as a consistency requirement on the notion of fairness, saying that an

allocation should not be declared a fair compromise for a given set of agents

if it is unfair for some subset of those agents.
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1.3 The results

In this section, we give an outline of our results involving the Stability
axiom. In section 1.3.1 we present a new characterization of the Nash

solution, section 1.3.2 is concerned with the Leximin solution, and in

section 1.3.3 we discuss a family of collectively rational and "decentraliz-

able" solutions. Proofs will not be given here, but may be found in chapters

2, 3 and 4, respectively.

We begin by stating the following two theorems, due to Nash (1950) and

Harsanyi (1959):

Theorem l (Nash): A solution F satisfies PO, SY, S.INV and IlA if and only

if for all P E (P and all SEEP, F(S) = N(S) == argmax{ II x . I XES}.
iEP 1

Theorem 2 (Harsanyi): If a solution F satisfies CONT1) and B.STAB, and if F

coincides with the Nash solution N for two-person problems, then F = N.

Theorem 2 demonstrates how B .STAB can be applied to reduce the problem of

solving n-person problems to one of solving two-person problems. In particu-

lar, if it is known ex ante that two-person problems are solved by the Nash

solution, one is left with no degrees of freedom as regards the choice of a

suitable n-person solution.

l) CaNT is a continuity assumption, stating that similar choice problems
should have similar solution outcomes.
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What then if nothing is known at the outset about the nature of the two-

person solution? What kind of analytical power does the stability axiom have

in this more general situation? It turns out that it can be used to give the
following alternative characterization of the Nash solution:

Theorem 3: A solution F satisfies PO, AN, S.INV and M.STAB if and only if it
is the Nash solution.

If we compare this result to Nash's own characterization, we see that except
for a strengthening of SY to AN, the only differenee is that IlA has been

replaced by M.STAB. This is interesting, since the axiom of IlA has been

somewhat controversial within the bargaining tradition (cf. Luce and Raiffa
(1957)), and because of that, some authors (e.g. Kalai and Smorodinsky

(1975), Roth (1977), Thomson (1981a)) have replaced it with other axioms, and

have arrived at different solutions. Here, however, we replace IlA by a

version of Harsanyi's stability condition and still arrive at the Nash sol-

ution. Thus, it seems that the Nash solution does not rest so heavily on the

axiom of IlA as is often thought.

As regards the connection to Harsanyi's theorem, we observe that, except for

dropping the hypothesis that two-person problems are solved by the Nash sol-
ution, Theorem 3 uses the stronger version of the Stability axiom, while CaNT

is not needed. Alternatively, we could weaken M.STAB to B.STAB, impose CaNT

and obtain the following variant of Theorem 3:

Theorem 4: A solution F satisfies PO, AN, S.INV, CaNT and B.STAB if and only

if it is the Nash solution.



- 13

Going back to Theorem 3, it turns out that this is not the strongest result

that one can prove. Sped fically, the axiom of Pareto-optimality may be

considerably weakened and still permit a characterization of the Nash sol-

ution. Suppose we weaken PO to require only that all one-person choice

problems should be solved optimally:

Individual optimality (10):

F(S) = max{x I x e: S}.

For all P e: cP wi th IP I
P= l, for all S e: 1: ,

Because 10 and M.STABtogether imply PO, we obtain:

Theorem 5: A solution F satisfies 10, AN, S.INV and M.STABif and only if it

is the Nash solution.

Let us also compare this result to Theorem l. Nash' s axioms seem to fall

into two categories that are qualitatively quite di fferent. The first cate-

gory consists of SY and S.INV, which state that the solution outcome should

not depend on information which is not contained in the model (Nash (1953),

Roth (1979b». In particular, S.INV is a reflection of the fact that von

Neumann-Morgenstern utili ty functions are only unique up to positive affine

trans formation. In the second category are PO and IlA, which both demand

some form of collective rationality of the agents. Theorem 5 employs

slightly modified versions of Nash' s axioms in the first category, and re-

places those in the second category by 10 and M.STAB, both of which express a

kind of individual (rather than collective) rationality, when interpreted in

a bargaining context.
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The kind of collective rationality expressed by IlA can be seen more clearly

by rephrasing it to say that if some alternative was declared to be "best"

among a set of feasible alternatives, then it must also be "best" among any

subset of those alternatives. This means in particular (Roth (1979b)) that

if the set of feasible alternatives is expanded, then the solution either

selects one of the newalternatives available, or it selects the solution
outcome to the original problem. On the other hand, IlA does not say any-

thing as to how the solution outcome should change if it changes as a result

of an expansion in the set of feasible alternatives. For example, one might
feel that if the set of alternatives is expanded in a direction which is

particular ly favorable to some agent, then that agent should gain, or at

least should not be worse off, as a result of such a change in the problem.

Several authors have proposed and used axioms that express such a condition

of individual monotonicity (Kalai and Smorodinsky (1975), Kalai (1977a),
Roth (1979a) and Thomson and Myerson (1980)). In the next section we study

the consequences of imposing such an axiom in conjunction with M.STAB.

An illustration of the axiom of Individual Monotonicity (I.MON), is given in

figure 1.3, where the choice problem S' for the set P = {1,2} of agents is

obtained from S by expanding the set of feasible alternatives in agent 1 's
direction, while leaving the set of feasible utility levels for agent 2 un-

changed. The requirement made by I.MON is that agent 1 should not lose as a

result of this change, i.e. that the solution outcome to S' should lie in the
shaded area of figure 1.3.
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Figure 1.3
The axiom of Individual Monotonicity (I.MON)

Wh'lltdo we get if we add loMON to the list ofaxioms in Theorem 3? The
answer is nothing, because the Nash solution does not satisfy I.MON, as shown
in figure 1.4.

2

4/3

1

S'

4/5 l 8/5

Figure 1.4
The Nash solution does not satisfy I.MON
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Thus, if we want the solution to satisfy loMON, then some other axiom in

Theorem 3 must go. The question is which one. I f we look at figure 1.4

again, we see that the reason why the Nash solution does not satisfy I.MON is

that the level curves of the Nash product IT x. permit too much trade-off
ie:P l

between the utility levels of agents l and 2. As it turns out, (see section

1.3.3) the axiom of Nash which· is responsible for the particular shape of

those level curves is S.INV, so it is this axiom that will have to go.

The question then is whether there are any solutions that satisfy PO, AN,

I.MON and M.STAB. One possible candidate is the Egalitarian solution E,

which to each choice problem 5 picks the unique point of equal coordinates

in the upper boundary of S. (See Raiffa (1953), Myerson (1977), (1981) and

Thomson (1983b). This solution does not admit any trade-off between the

utilities of di fferent agents, and so it would not violate I.MON in the

example given in figure 1.4. However, it satisfies neither PO nor M.STABas

is clear from figure 1.5, where Q :: {1,2,3} , P {2 ,3} and
Q

T :: {x e ~+ I x ~ (1,2,3)}, and where the Egalitarian solution outcome for T

is E(T) = (1,1,1). By keeping the utility level for agent 1 constant at

PE1(T) = 1, one obtains the two-person problem 5 :: {x € ~+ I x ~ (2,2)}, whose

Egalitarian solution outcome E(S) is (2,2). Because (1,1,1) not a Pareto-

opt imal point in T, then E does not sat is fy PO, and because (2,2) :!: (1,1),

then E does not satisfy M.STAB.
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aPl!~~~t,---"Xl
~____;~ØJ

figure 1.5
The Egalitarian solution satisfies neither PO nor M.STAB,

but the Leximin solution does

The Egalitarian solution is closely related to the Rawlsian maximin criterion
(Rawls (1971)) by always selecting a feasible alternative which maximizes the
utility of the worst off individual. In general, there may be more than one
such alternative, as shown in figure 1.5, but Sen (1970) has suggested the
following lexicographic extension of the Rawlsian maximin criterion which
eliminates this indeterminacy. First maximize the utility of the worst-off
individual, then do the same for the next to worst-off individual, and so on,
until all possibilities for increasing the utility of any individual has been
exhausted. The solution obtained in this way is called the Leximin solution
and is denoted L. It is illustrated in figure 1.5, which also shows that L
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satisfies both PO and M.STAB in the given example. In fact, we have the

following theorem:

Theorem 6: A solution satisfies PO, AN, I.MON and M.STAB if and only if

F = L, the Leximin solution.

Observe that the list ofaxioms used in Theorem 6 differs from the one used

to characterize the Nash solution in Theorem 3 only in that S. INV has been

replaced by I.MON.l) Now, S.INV can be interpreted as a condition which

rules out interpersonal comparisons between agents whose preferences are

represented by (cardinal) von Neumann-Morgenstern utility functions.

Theorems 3 and 6 show that S.INV and I.MON are in a sense polar opposites

when used in conjunction with the other three axioms: The Leximin solution

exploits to a maximum degree the possibilities for interpersonal compar-

ability of relative utility levels that become available when S.INV is

dropped, by admitting no trade-off between the utility levels of different

agents.

One problem with the Leximin solution is that it is not continuous, as can be

seen by considering any sequence {TU} of choice problems converging to the

problem T depicted in figure 1.5, such that each TU is strictly convex (in

ffiP). Then L(Tu) = E(Tu) for all TU in the sequence, which means that {L(TU)}
+

converges to E(T). Because E(T) = (1,1,1) while L(T) = (1,2,3), this is a

violation of CONT.

l) Imai (1983) has given a characterization of the Leximin solution which
parallels Theorem l in a similar way.
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Thus, under the Leximin solution, it is not always the case that similar

choice problems have similar solution outcomes. This might cause someone who

was supposed to use it, say in a cost-benefit analysis, to worry about the
quality of his data. Although there may be other problems to worry about in

connection with implementing a collective decision rule, it will nevertheless

be of interest to investigate the consequences of imposing continuity as an
axiom in the model. This will be done in the next section.

1.3.3 Stability and Collective Rationality-------------------------------------------

Although the Nash solution and the Leximin solution are different in many
respects, they have one thing in common: Both are consistent with the

maximization of some orderingl) on the space of alternatives. In the

terminology of Richter (1971), such solutions are said to be [collectively]
rational.

Clearly, the Nash solution is collectively rational: For all P in~ and all
S in LP, the Nash solution outcome for S is obtained by maximizing the

ordering ~~ over S, where ~~ is defined on ~~ by x ~~ y if and only if

IT x. > IT y.. As regards the Leximin solution, Imai (1983) has shown that
ie:P l ie:P l

Lit is consistent with the maximization of the ordering ~P' where for each P,

~~ is the (symmetric) lexicographic extension of the ordering ~ Of~:
Edefined by x~y if and only if min x , ~ min y .•
I ie: P l ie: P l

l) An ordering is a binary relation which is transitive, reflexive and
complete.
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The property of being collectively rational is enjoyed by many other sol-

utions as well. To fix ideas, one may think of the orderings ~~ and.?:{; as

Bergson-Samuelson social welfare functions (swf) (Bergson (1938), Samuelson

(1947)). It is then clear that from any Bergson-Samuelson swf one obtains a

social choice function (a solution) provided the maxima for the swf always

exist and are unique on the relevant domain of choice problems.

A condition that is often imposed on the social ordering is Separability or

Independence of Unconcerned Individual as it is also sometimes called. This

condition (due to Fleming (1952)) says that if the utility levels for a sub-

set of the agents of society is the same for some pair of alternatives, then

the social ordering of those alternatives should not depend on the utility

levels of those agents. This means that if ~Q is a social ordering of the

Q
utility space tR+ for a group Q of agents, then for all subsets P of Q, the

ordering bp obtained from ~Q by restricting ~Q to any hyperplane parallel to

~p must be the same for all such hyperplanes. In particular, if the ordering

~ i s co n t in uo us, then i t has an _a_d_d_i_t_i_v_e_l_.y,--s_e_,_p_a_r_a_b_l_e_n_um_e_r_~_.c_a_l_r_e....p_r_e_s_e_n-

tation • In other words, there is a real-valued function fa on <R~

fQ(x) ~ fQ(y) if and only if x .caY' where fQ is of the form fQ(x) =

(Oebreu (1960)).

such that

L f.(x.). a .i. ~~£

The condition of Separability is indeed satisfied by many of the commonly

used Bergson-Samuelson swf' s, such as the Utilitarian swf (classical utili-

tarianism), the Leximin swf (Sen (1970), which is the lexicographic extension

of the Rawlsian maximin criterion, as well as the Nash swf (Nash (1950),

Kaneko and Nakamura (1979).
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Intuitively, the Stability axiom is a natural counterpart to Separability in

the sense that it imposes on a solution much the same requirement that

Separability imposes on a social ordering. What is more interesting, and
less obvious, is that it imposes on the solution a fair amount of collective

rationality as well, as the next theorem shows.

Let F be the family of all sequences {fo} o I of strictly increasing, extended
1 re

real-valued functions, where each f'. is defined on (R{ i}, such that for all
1 +

P e: <P, the function f == L fo is strictly quasi-concave. We now have
ie:pl

Theorem 7: A solution F satisfies PO, CONT and B.STAB if and only if there

exists a sequence of functions {fo} o I from F such that for all P e: ~ and all1 le:

S e: It, F(S) = argmax{ L r. I x e: s}.
ie: P 1

It is interesting to see this result in relation to the problem mentioned

earlier of attaining consistency in a system of decentralized public decision

making, where each decentralized unit is trying to achieve a fair allocation
among its own clients. When interpreted in this context, the Stability axiom

requires that if an allocation is to be considered globally fair, then each
decentralized unit should also regard the allocation as fair when considering
only its own clients. This is clearly a necessary condition for such decen-

tralized public decision making to be consistent with some global notion of

fairness: If it were not satisfied, then the globally fair allocation could
never be obtained, because there would always be some local unit that would

want to mave away from it.

Theorem 7 shows that such a condition, when imposed in conjunction with PO

and CONT, has very precise implications concerning the nature of the decision
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rules that will have to be followed by the decentralized units: Firstly, the

global (and local) notion of fairness must correspond to some Bergson-

Samuelson swf, and the decision rules must collectively rational. Secondly,
the global swf must be additively separable, which means that it can be

"split up" and distributed anong the decentralized units in such a way that

each unit can make its decisions based on information about its own clients
only. Clearly, there is in general no guarantee that this type of decentra-

lized decision making will actually lead the society towards the globally

fair allocation, but the point is that if the globally fair allocation exists
at all (which it does, according to Theorem 7), then the decision rules will

have to be of this form.

It can be shown that the axioms used in Theorem 7 are independent, in the

sense that removing anyone of them will permit solutions that are not

collectively rational. Conversely, because the theorem characterizes a whole
family of solutions, it is a useful framework for analyzing the implications

of adding more axioms to the list in Theorem 7.

Adding Symmetry (SY) to the list ofaxioms implies that all the functions f.
l.

must be identical. Next, we consider a weaker version of S.INV, namely Homo-

geneity (HOM), which says that if two choice problems are identical, except
for a scale change, then their solution outcomes should also be identical,

except for the same scale change.

Adding HOM to the list ofaxioms in Theorem 7 implies that the functions

L f. must be homothetic for all P e: a>. This means (Eichhorn (1978) Theorem
ie: P l.

2.2.1) that (except for arbitrary constant terms) there exists p > -l and a
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sequence {ex.}. I of positive real numbers such that f.(x.)1 1e . 1 1
: -(ex./p)x~p for

1 1

: O. Thus If.
. P 11e

all i e I Hp:l= O, and f.(x.) :ex.logx. for all i el ifp1 1 1 1

is a CES-function for all P e (? If SY is also imposed, then f., and hence
1

exi' must be the same for all i. As p .. O, we then obtain the Nash swf, as

p .. -l we obtain classical utilitarianism and as p .. (I) we get the Rawlsian

maximin criterion.l) Alternatively, dropping SY and strenghtening HOMto

S.INV would imply that p : O, yielding a whole family of non-symmetric Nash

solutions.2)

It should be noted that the Utilitarian and the Rawlsian maximin swf' s do

not yield well defined solutions, since their maximizers are not always

unique on the domain considered here. One may then consider single-valued

selections, at the cost of relaxing either PO or CONT.For example, keeping

PO and dropping CaNTwill admit the Leximin solution studied in the previous

section.

l) See Roberts (1980) for related results in the Arrow tradition of social
choice theory.

2) This family of solutions has been studied by Harsanyi and Selten (1972),
Kalai (1977b) and Roth (1979b).
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1.4 Conclusion

We have attempted in this chapter to view the problem of allocating costs and
benefits among a group of individuals as one of bargaining or fair division.

A generalization, due to Thomson (1983a), of Nash's (1950) model of the

bargaining problem has been used to explore the consequences of an axiom, due
to Harsanyi (1959), which can be seen as a requirement that the solution to

the allocation problem should be decentralizable in a certain sense.

Although this way of looking at the problem is fairly abstract, it does give

some insight that may be useful when trying to solve a concrete problem. Our

main result is that a certain amount of collective rationality in the de-
cision making process is a necessary prerequisite for an allocation procedure

to be decentralizable. Thus, when faced with a practical problem, the theory

tells us to look for a social welfare function in order to rank the given
physical alternatives. In order to take care of the decentralization aspect,

the social welfare function should be additively separable in individual
utility levels. For practical purposes, this means that the composite func-
tion f.(x.(·», where x. is agent i's unobservable utility function and f. is

~ ~ ~ ~

, the i'th component of the social welfare function, can be looked upon as a

standard of living index for agent i, depending on the physical benefits or
costs allocated to i.

This shows that the problem of solving allocation problems in a decentralized
setting is similar to one of establishing a procedure for project evaluation

in a public sector. In both cases, the basic problem consists in specifying

an appropriate set of standard of living indices for (groups of) individuals
to be used as a criterion for selecting among the physical alternatives
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available in any given choice situation. Moreover, in a given choice situ-

ation, a description of the problem consists in specifying the effect of each

physical alternative on the standard of living index for each individual or

group of individuals. Thus, our results suggest that if one is interested in

normative aspects of collective choice in a decentralized setting, then the

problem can be attacked by means of the familiar tools of cost-benefit anal-

ysis.
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CHAPTER 2

STABILITY AND THE NASH SOLUTION

2.1 Introduction

In his classic essay on the bargaining problem, Nash (1950) showed that under
four axioms describing the behavior of the agents, there exists a unique

solution to such a problem. Originally developed in the context of two-

person cooperative bargaining, Nash's model has been elaborated by Harsanyi

(1959), (1963) and (1977), who showed how the problem of solving n-person

bargaining problems could be reduced to the more familiar one of solving

two-person problems. He argued that in any n-person bargaining problem,
a particular payoff-vector "••will represent the equilibrium outcome of bar-

gaining among the n players only if no pair of players i and j has any incen-

tive to redistribute their payoffs between them, as long as the other
players' payoffs are kept constant." (Harsanyi (1977) p. 196). This con-

dition, which Harsanyi calls Bilateral Equilibrium, was shown to imply that
if, among a group of n agents, all two-person bargaining problems were solved
by the two-person Nash solution, then all n-person bargaining problems had to

be solved by the n-person Nash solution. Put differently , Harsanyi' s con-

dition states that in their search for a solution outcome to an n-person
bargaining problem, the participants should look to the principles that would

guide them in solving two-person problems, and his result shows that if these

principles happen to be those of Nash, then this will completely determine
the solution outcome to the n-person problem. In this way, the question of
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how to sol ve an n-person bargaining problem is reduced to the question of

whether or not Nash' s axioms are acceptable as principles for sol ving two-

person problems.

The one of Nash' s axioms which has been most controversial is his Indepen-

dence of Irrelevant Alternatives (IlA). Motivated by the objections that

have been raised, several authors have investigated the consequences of re-

placing lIA with other assumptions, and have arrived at other solutions.

(See e.g. Kalai and Smorodinsky (1975), Roth (1977) and Thomson (1981a).

In this chapter, we replace IlA with Harsanyi's condition and give a new

characterization of the Nash solution based on this condition and those of

Nash's axioms that are usually accepted.

In section 2.2, we present the model and the axioms. Section 2.3 contains

the main result, and in section 2.4 we discuss some variants of it. Section

2.5 contains some concluding remarks.
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2.2 The model

The classical axiomatic model of bargaining involves a fixed set P of agents,

each equipped with a von Neumann-Morgenstern utili ty function. P may be

taken to be a non-empty, finite subset of the natural integers. Let IPI be

the number of elements in P, and let ~P be the IPI-dimensional euclidean

space, indexed by the members of P. (It and eRP denotes the non-negative and
+ ++

the strictly positive orthant of~P, respectively. Given x,y € ~P, we write

x > y if x - y £ ~P, X > Y if x - y £ ~P and x > y if x > y and x * y.
+ ++-

A IPI-person bargaining problem is a pair (S,d) where 5 is a subset of ~P,
d an element of 5, and where 5 satisfies the following properties:

A1: 5 is compact and convex.
A2: There exists y £ 5 such that y > d.

5 is the set of utility allocations that can be achieved by the members of P
through unanimous agreement, and d is the outcome that will result if they

fail to agree. Thus, all subcoalitions of P can veto any outcome different

from d, while cooperation by all agents is required in order to achieve
another outcome. The existence of a point in 5 which strictly dominates d

guarantees that all agents are non-trivially involved in the bargaining

problem. The compactness of 5 is a technical assumption, convexity follows
if the agents may jointly randomize between outcomes.

Let (S,d) be a bargaining problem for the set P of agents. Since von

Neumann-Morgenstern utility functions are only unique up to positive affine

transformations, we may follow Nash (1950) and simplify the notation by using
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utility representations such that d. = O for all i £ P. We may then identify
1

any bargaining problem (S,d) by the set 5 only. We will also restrict the
family of bargaining problems under consideration to sets 5 with the follow-

ing additional properties:

A3: 5 is a subset of~P.
+
PIf x e 5 and y £!R such that y $ x then y e S.
+

A4:

A4 is usually referred to as comprehensiveness and amounts to assuming free

disposal of utility. Let ~P be the class of bargaining problems 5 for the

set P of agents, such that 5 satisfies A1-A4. In general, we will refer to

such problems as (collective) choice problems, because we shall consider

other interpretations of the mathematical model in addition to that of

bargaining.

A solution to the IPI-person choice problem is a function F: ~P +~P such

that for alIS in ~P, F(s) is an element of s.

Harsanyi's (1959) approach to the bargaining problem differs from the classi-

cal one in that he considers bargaining problems involving a varying number
of agents. In order to formalize his idea of relating the solution outcomes

for IPI-person bargaining problems to the solution outcomes for two-person

subproblems, it is convenient to use the following extended solution concept,
due to Thomson (1983a):

Let I be the set of natural integers, and let@ be the familiy of non-empty,
finite subsets of I. I may be thought as the set of potential agents. The

members of lP will be denoted P, pl, Q ••• etc. For each P £ <P, let l denote
the family of all choice problems 5 satisfying A1-A4, for the set P of

that F(s)

P PA solution is then redefined to be a function F: p~lP~ + p~+ such
P

€ 5 for all P € @ and all 5 € ~ •

agents.
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We next state four of Nash' s axioms, slightly madi fied to fit this solution

concept. A fifth assumption is implicit in Nash's original treatment of the

bargaining problem, namely Individual rationality, which says that the

disagreement point d is always weakly dominated by the solution outcome. In

our madel, this assumption is automatically satisfied as a result of assump-

tion A3.

Pareto-optimality (PO): For all P ~:<P, for all 5 E EP, for all x EI'R:, if

there exists y s 5 with Y ~ x then F(S) * x.

P P'For all P,P' s ~ with IPI = IP'I, let r' be the family of one-to-one

functions from P to P'. It will cause no confusion if we sometimes treat

y € rP ,P' as a function from (RP to IRP', defined by y == y(x) if yy (i) = xi for-

all i € P.

PSymmetry (SY): For all P s (Il, for all 5 € E , if y(x) E: 5 for all x E: 5 and

all y !-: rP ,P, then F. (5) = F .(5) for all i,j ~: P.
l J

A stronger version of the symmetry axiom, that we state for later use, is

Anonymity (AN): For all P,P' ,:;(p with IPI

alIS sEP, F(y(S» = y(F(S».

P P'= IP' I, for all y E: r' ,for

For all P e~, let f1P be the family of functions from ~P to ~P such that for

all A. lO: AP, there exists a E: (RP such that for all i E: P and all x E (p.P,
++

A.(x) = a.x .•
l l l
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Scale Invariance (S.INV):
P P

For all P € lP, for all S tO: ~ , for all \. tO: fl. ,

F(A(S» = A(F(S».

Independence of Irrelevent Alternatives (IlA): For all P 2. (P, for all

S,S I tO: /.:P, if SI C Sand F(S) t': S', then F(S I) = F(S) •

For later reference, we state the following result:

Theorem 2.1 (Nash (1950»: There is a unique solution satisfying PO, SY,

S.INV and IlA. It is the solution N defined by N(S) :: argmax{ .IIpX. I x e: S}
ae 1

Pfor all P E @ and all SEL: •

The four axioms that characterize the Nash solution seem to fall into two

categories that are qualitatively quite di fferent. The first category con-

sists of SY and S.INV, which state that the solution should not depend on

information which is not contained in the model. (Nash (1953), Roth (1979b).

In particular, S.INV is a reflection of the fact that von Neumann-

Morgenstern utility functions are only unique up to positive affine trans-

formation. (The reason why, in the statement of S.INV, the linear transform-

ations A contain no constant terms, is that we have already used up this

degree of freedom by fixing the disagreement outcome at the origin). In the

second category are PO and IlA, which both demand some form of collective

rationality of the agents. IlA says that if some feasible alternative was

declared to be "best" among a set 5 of feasible alternatives, then it must

also be "best" among any subset S I of those alternatives. While this seems

to be a reasonable assumption about behavior in choice situations involving

only one decision maker, or as a normative condition on collective choice, it

may not be a good description of the strategic considerations involved in a

bargaining situation, because it explicitly rules out the possibility that
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narrowing down the set of feasible alternatives may affect some agent's
bargaining position. The example reproduced in figure 2.1 below is often
used to illustrate this point. In the example,S' is obtained from 5 by
deleting all alternatives in 5 that give player 2 a higher payoff than the
payoff ascribed to him by the solution outcome to S. To require then that
the solution should satisfy IlA is to insist that the change from 5 to 5' has
not weakened player 2's bargaining position and that the solution outcome for
5' should give him the maximum payoff he could hope for.

Figure 2.1
An objection to the independence axiom

In this chapter, we develop an alternative characterization of the Nash sol-
ution that makes no use of the independence axiom. Instead, we use a version
of Harsanyi's condition of Bilateral Equilibrium, which is conceptually more
appealing than IlA because it is a statement about individual and not collec-
tive rationality. We also show that by using a strengthened version of
Harsanyi's condition, the axiom of Pareto-optimality may considerably
weakened and still permit a characterization of the Nash solution.
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In order to formalize Harsanyi's condition, that· we will .refer to as Bilat-
eral Stability, the following notation is needed.
and x E ~a let xp denote the projection of x on~P,

a x r aplane in <R defined by Hp :: 1y E (R I

Given p,a E <P with P c: Q

xwe denote by tp(A) the projection of
of

YQ'--.p = xQ'--.p}'

HXI"IA n IDPpl,1 o li' •

xand let Hp be the hyper-
Given Ac:~Q and x EA,

We may now state the axiom

Bilateral Stability (B.STAB): For all p,a E fP with P c: a and IPI = 2, for
all S E ~P and all T E ~a, if S = t;(T) where x = F(T), then F(S) = xp,

An illustration of the axiom is given in figure 2.2 where Q = {1,2,3} and
p = {1,2}. It differs from Harsanyi's condition of Bilateral Equilibrium
only in that we have explicitly taken account of the possibility that some
subproblem t~(T) may not be well defined, by including the provision that
x( ptp T) E ~. The subproblems inherit properties A1, A3 and A4 from T, but not

necessarily AZ, the requirement that t~(T) should contain a strictly positive
vector.

Figure 2.2
The axiom of Bilateral Stability
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Harsanyi rootivates this condition by pointing out that a rational player i

will not accept a tentative agreement x for the IQI-person problem T if he

has reason to believe that he may successfully threaten some other player j

to make a concession in his favor. If i does not simultaneously challenge
any of the other players for concessions, then i can base his beliefs con-

cerning j' s willingness to concede on what i and j know about salving two-

person bargaining problems. Since the situation is similar for all members

of Q, then x can be the solution outcome to T only if x agrees with the sol-

ution outcomes to all two-person subproblems t~(T) obtained from T by keeping

the payoffs to the other players constant at xQ~'

This axiom was used by Harsanyi to show how the problem of solving n-person

bargaining problems could be reduced to one of solving a set of two-person

problems, provided these two-person problems were known to be solved by the

Nash solution. Formally, we state

Theorem 2.2 (Harsanyi (1959)): If a [continuous] solution F satisfies B.STAB

and if F coincides with the Nash solution N for all two-person problems, then

F = N.

Continuity is an implicit assumption in Harsanyi's proof of the theorem. One

version of continuity that would serve the purpose of Theorem 2.2 is

Continuity (CONT): For all P E~, for all S E ~P, if {SU} is a sequence from

~P, converging in the Hausdorff-topology to S, then lim F(Su) = F(S).
u+oo

It has been suggested by Raiffa (1953), that a bargaining solution can be

thought of as a principle of fair division that an arbiter might use to solve
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conflicts among agents with partly opposing interests. Harsanyi's theorem is

a good illustration of the type of restriction that the stability axiom im-

poses on such a division, principle, stating that the principle can not be

allowed to vary with the number of agents involved in any given division

problem.

As an example to illustrate the nature of such a consistency requirement for

a principle of fair division, consider the following concrete situation in-

volving a bricklayer, a carpenter and a painter, who have the option to build

a house for a certain amount of money. In order to reach an agreement on how

to share the money they decide to accept the judgement of an arbiter, who

suggests a compromise agreeable to all of them. The contract is signed and

the work proceeds in the obvious sequence; the bricklayer does his part of

the work, collects his share of the money and leaves the scene. Nowsuppose

that the carpenter refuses to carry out his part of the deal unless there is

a redistribution of the remaining funds in his favor. It may then come as a

surprise to the painter if the arbiter has changed his mind to support the

new demands of the carpenter. Clear ly, such a situation can only arise if

the arbiter happens to violate the consistency requirement made by B.STAB, at

least if only problems involving no more than three agents are considered.

As a generalization of this requirement to choice problems involving any

number of agents, we consider the following version of the stability axiom

that we call

Multilateral Stability (M.STAB): For all P,O e: ~ with P c 0, for all

PO. xS e: E , for all T e: E , If S = tp(T) where x = F(T), then F(S) = xp•
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In other words, the solution should be stable, not only with respect to two-

person subproblems, but also with respect to subproblems involving any subset
of the original group of agents. Although formally, M.STAB is stronger than

B.STAB, it may be a more natural condition to impose. For example, bearing

in mind Harsanyi' s motivation for B.STAB, there seems to be no a priori
reason why a dissatisfied player should limit himself to challenging only one

other agent at the time for concessions, if he believes that he mayenter

into multilateral renegotiations. Interpreted as a notion of fairness, the
axiom of Multilateral Stability states that an allocation should not be

declared a fair compromise for a given set of agents if it is unfair for some

subset of those agents. As pointed out by Balinsky and Young (1982), this
seems to be a very natural consistency requirement for any notion of fair-

ness. Independently of Harsanyi' s work, they have used an axiom in that

spirit, called Uniformity, in their development of a theory of apportionment,

e ,g. for allocating seats in a parliament among political parties in agree-

ment with the proportion of votes obtained by each party.

We close this section by introducing some additional concepts and notation.

Given a solution F and given Q E~, T E ~Q and x E T, say that x is an
F-multilaterally stable point in T if for all P c Q with P * Q, either t~(T)

xis not a well defined choice problem or F(tp(T)) = xp• Letting MF(T) denote
the set of F-multilaterally stable points in T, we observe that M.STAB is

equivalent to requiring that F(T) should belong to MF(T). The set BF(T) of

F-bilaterally stable points in T is defined similarly, by adding the pro-

vision that IPI = 2. Clearly, B.STAB says that F(T) E BF(T).



- 37

For all P £ @ and all i £ P, we denote
QGiven P ,Q £ (JJ with P c Q, ep denotes the

bp th .I th .t vector 1· n lOP.ye. e 1 uru. U\
1

Q Qvector L e .• Thus, ep has all of
i£P 1

its coordinates in P equal to 1 and all of its coordinates in ~P equal to O.
Whenever it is clear that e~ £ ~P and e~ £ ~~ we drop the superscripts Q and

P and write ei and ep' respectively.

Given P £ (p and a subset A of <RP, co{ A} denotes the convex hull of A, and
+

cch{A} denotes the convex and comprehensive hull of A, defined by

cch] A} == {x £ eR: I 3 Y e cO{A}, x ~ y}. Given 5 e I;P, PO(S) denotes the set

of Pareto-optimal points in 5, Le. PO(S) - {x e: 5 I ~y e 5, y..? x}.
Similarly, WPO(S) - {x e 5 I ~y e 5, y > x} is the set of weakly Pareto-

optimal points in S.
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2.3 The main result

In this section, we show that the Nash solution satisfies PO, AN, S.INV and

M.STAB, and that it is the only one to do so. We begin with

Proposition 2.1: The Nash solution satisfies PO, AN, S.INV. and M.STAB.

Proof: We need only show that the Nash solution satisfies M.STAB, since it

is we 11 known that it satis fies the other three axioms. Let P,Q e ~ with

P c Q and T e EQ be given, and let z == N(T) and S == t~(T). Then z maximizes
zthe Nash product IT x. on T, which implies that z maximizes IT x. on HpnT =

Le Q l i£Q l

Sx{z~p} (Cartesian product). Since T contains a strictly positive vector,

then z > O and since xQ'P = zQ'P for all x £ Sx{zQ-....p}'it follows that zp
maximizes IT x. on S. Thus, zp = N(S), as required by M.STAB.

Ie P l QED.

For all P £ @, let E~ be the family of choice problems S whose Nash solution

outcome is Egalitarian, meaning that N(S) = E(5), where E(S) is the unique
maximal point in S with equal coordinates. Observe that for all P e ~ and

Pall S £ E , there exists a positive linear transformation ~ such that
P~(S) £ EE' thus if a solution F satisfies S.INV and if F(S) = N(S) whenever

N(S) is Egalitarian, then F = N.

In order to prove the converse of Proposition 2.1, we first show in Lemma 2.1

that if a solution F satisfies PO, AN and B.STAB, then F(S) = N(S) for most
two-person problems S such that N(S) is Egalitarian. In Lemma 2.2, we add

S. INV to those axioms and extend this result to all P e CP and all S £ EP.
The meaning of the term "most" will be made precise after having presented

the following outline of the main idea involved in the proof of Lemma 2.1.
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In figure 2.3(a) is depicted a choice problem 5 € E~, where P = {1,2}, whose
pNote that for 5 to be a member of EE'solution outcome is to be determined.

then 5 must be supported at E(5) by a hyperplane with normal ep• We have
chosen 5 = cch{aep,2ae1} because it is a limit case with respect to that
requirement. Figure 2.3(b) illustrates an attempt to show that F(5) = N(5)
by adding agent 3 and constructing a three-person choice problem T by taking

1 2 3the convex and comprehensive hull of ,the three slices 5 , 5 and 5 , where
51 = 5x{ae3} and where 52 and 53 are obtained from 51 by counterclockwise
permutations of coordinates.

X2
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\

,
30,

2
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, xl
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x3

Figure 2.3
The proof of Lemma 2.1
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Since all the members of Q = {1,2,3} play the same role in the construction
of T, and since z = aeQ is the only Pareto-optimal point of T with equal co-
ordinates, it follows by AN and PO that F(T) = z, Now, if it had been the
case that ~(T) were equal to 5, then by B.STAB, we would obtain the desired
conclusion that F(S) = zp,= aep = N(S). Unfortunately, however, by taking
the convex and comprehensive hull of the three slices 51,52 and 53, some-
thing has been added to 5, as illustrated in figure 2.3, the reason being

that 5 is a very asymmetric member of E~. In fact, it is the worst possible
case as regards the difference between t~(T) and S.

Note that the difference between ~(T) and 5 in terms of max{xZ I x € t~(T)}-
max{x2 I x € S} is a/2 = al(IQI-1). We show in Lemma 2.1 that by adding more
than one agent in the construction of T, this difference can be made arbi-
trarily small. Therefore, if PO(S) happened to coincide in a neighbourhood
of E(S) with the symmetric hyperplane supporting 5 at E(S), then for some
finite number of additional agents one would get a choice problem T such that

t~(T) = S.

Having outlined the idea of the proof of Lemma 2.1, we define for all P e: t?

P P Pthe set EEU c EE of choice problems such that for alIS € EEU' there exists a
neighbourhood U of E(S) such that po(s)n U = Hnu, where H is the hyperplane
with normal ep through E(5). (Observe that most choice problems in E~U are
contained in E~ in the sense that any 5 e: E~ can be approximated by a

, Psequence of problems from EEU') We may now state

Lemma 2.1: If a solution F satisfies PO, AN and B.STAB, then F(S) = N(S) for
Pall P e: ~ with IPI = 2 and alIS e: EEU.
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Proof: Let P e lP with IPI = 2 and 5 e I:~u be given and let aep ::N(s). By
AN, we can assume without loss of generality that P = {1 ,2}. By definition

Pof ~EU' there exists O > O such that the line segment [(a+5,a-o),(a-o,a+o)]

is a subset of PO(s). Let n be an integer such that n ~ a/o + 1 and let
Q:: {1,2, •.. ,n}. For each j e: Q, let yj be the permutation of Q such that

where .+ denotes sum modulo n. Let 51c (RQ be
+. . 1

For all j e: Q'{1}, let sJ ::yJ(s ) and let
for all i e: Q, yj(i) = i'+(j-1),
defined by 51 _ sx{aeQ,p}.
T ::cch{ O sj}. Similarly, we construct a stylized version of T, denoted T,

j=1
as follows: Let S :: {x e (RP I L x. = ze} and S1 ::Sx{aen...p}. For all

+ ie: P l \.Il .....

. . 1 l'j e: Q'{1}, let SJ ::yJ(S ) and T ::cch{S G SJ}. Note that TeT since
j=Z

5 c S. We claim that

(i) F(T) = z -

To see this, note first that since all members of Q play the same role in the
construction of T, it follows by AN that F(T) must have equal coordinates,
which by PO implies that F(T) = E(T). Next, observe that since 5 is suppor-

Pted at aep by the hyperplane {x E ffi I L Xi = Za}, then for
iEP

Q
{xe:<R I Lx.=na},

iEQ l.

all j E Q, sj is

supported at aeQ by the hyperplane and therefore T,

which is the convex and comprehensive hull of j~Qsj, is also supported at aeQ
by that hyperplane. This implies that E(T) = aeQ which proves (i). Next we
claim that

(ii) t;(T) = s.

Since 5 c t~(T)
show that t~ (T)

by construction of T, and since TeT, it is sufficient to
z - -

c 5, i.e. that xp e: 5 for all x e: HpnT. Since T is compre-
hensive, we may without loss of generality take x to be a Pareto-optimal
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Z - 1point in HpnT. Then x is a convex combination of points (y ,
1 -Z -nPO(S )xPO(S )x •••• xPO(S ), Le. x =

z
y , ••• , Yn) in

L a.yj for same a in the unit simplex of
jeQ J

Q 1 Z 1
~. Since y and x both belong to Hp, then YlJ'P = xQ......p= aeQ'P' For all

j -j j
j e Q'{1}, since y e PO(S ), then y = aeQ + b.(e."'1 - e.) for some b. in

J J+ J J
the interval [-a,aJ. The system x = L a.yj may then be written more

jeQ J

explicitly as follows:

(1)
1

- a) a1X1 = a + (Y1 + a bn n

(Z) 1
- a) a1Xz = a + (Yz - aZbZ

(3) O = aZbZ - a3b3

(n) O = a b - a bn-1 n-1 n n

=
n
L a. =
j=1 J

1 and -a; < b , < a for all j e a.......{ 1} ,= J =Note first that-since a> O and

n
then -o;(1-a1) __< L a.b. ~_a(l-a1). Moreover, since aZbZ = a b =••• = a b = ~

j=Z J J 3 3 n n
n

by equations (3)-(n), it follows that L a.b. = (n-1)~. Consequently,
j=Z J J

-a(l-a1)/(n-1) ~ ~ ~ a(1-a1)/(n-1), which since n > a/o + 1 implies that

-6(1-a1) ~ ~ ~ 0(1-a1). Using the fact that ~ = aZbZ = anbn, we may write
1

equations (1) and (Z) as (x1' xZ) = xp = a1 yp + (1-a1)a ep + rs , -~), where ~

belongs to the interval [-o (1-a1 ), o (l-a1)J, or equivalently, as xp =
1

a1yp + (1-a1)v, where v is a vector in the segment [(a+å,a-o), (a-6,a+6)].

By hypothesis, this segment is a subset of S. But then xp is a convex combi-

1nation of yp and v, which both belong to S, and by convexity of S, then

xp ESas well, which proves (ii). That F(S) = zp = aep now follows by (i),

(ii) and B.STAB. QED.
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Lemma 2.2: If a solution F satisfies PO, S.INV and M.STAB, and if F(S) =
N(S) for all P c ~ such that IPI = 2 and all S c ~~U' then F = N.

Proof: We must show that F coincides with N on ~P for all P c (P. If IPI = 1,

the proof is trivial. If IPI ~ 2, we distinguish between two cases, accord-

ing to whether IPI = 2 or IPI > 2. First we show that

(i) For all P c ~ with IPI = 2, for all S c ~P, F(S) = N(S).

Let P c ~ with IPI = 2 and S c EP be given, and suppose by way of contradic-
tion that F(S) ::I: N(S). By S.INV, we may without loss of generality assume

that N(S) = ep :!: F(S). Let k be an agent who is not a member of P, let

Q = PUlk} and construct a choice problem T c ~Q as follows: Let S1 = Sx{ek},
Qand let H be the hyperplane {x c (R I L Xi = n}. Let c > O be given, and

icQ
c 1let C be the cone with vertex (1+c)ek, spanned by S. By choosing c suffic-

iently close to O, the point ne. belongs to the interior of CC for all i E P.
l.

Define T = cEn cch] Hn{ x c lR~ I xk ~ 1}}. T is illustrated in figure 2.4 for

Q = {i,j,k}. Note that H supports S1 and T at eQ and that for all i c P, the

open line segment o. = (eQ, ne.) lies in the interior of HnPO(T), relative to
]. ].

H.

Let y = eQ•

Z = F(T) :j: eQ•

that z . > 1.
J

Since F(S) :j: YP and t~(T) = S, it follows by B.STAB that

Therefore, since max{xk I x c T} = 1, there exists j c P such
z - P PIf zJ. = n, then tp(T) = S = {x c CR+ I L x. ~ n} c ~EU' whichicP ].-

by Lemma 2.1 implies that F .(5) = N.(S) = n/2 ::I: n, in contradiction with
J J

B.STAB. Consequently, Zj < n. Let {i} = p<,{j} and let pI = {i,k}. Since

1 < Zj < n , there exists a point v in the open segment Oj = (eQ, nej) such
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Z
that v E: Hp, nT• This is the situation depicted in figure 2.4. Since this

segment is contained in the interior of HnpO(T), relative to H, and since vp'
Z P'

has equal coordinates, then 5' :: tp' (T) e L:EU and therefore, by Lemma2.1,

F(S') = N(S') = vp" which by B.STAB implies that zp' = vp" i.e. that
Z P

zi = zk· Letting Sil :: tp (T), it follows by a similar argument that Sil e L:EU

and that z. = z., thus z must have equal coordinates which by PO implies that
l J

z = eQ, a contradiction. Consequently, F(S) = ep' which proves (i).

To complete the proof of the lemma, we first repeat the argument in the first

paragraph of the proof of (i), except for dropping the assumption that

IPI = 2. Then we proceed as follows:

Observe first that by construction, T has the property that for all i e P and

all z eT, if x e (R~ such that xk = O, xi = zi+zk and xj =
j e Q"-{i, k}, then x eTas well.

z . for all
J

Letz::F{T). We claim that z > z for all i e P. This is clearly the case
i = k

if zk = O• Suppose zk > O, let i e P be given, let P' - {i, k} and
z5' - tp' (T) • By convexity of 5' and the previous paragraph, it follows that

all points in the segment (J :: [(z. ,zk)' (z.+zk)e.] belong to 5'. This im-
l l l

p'
plies that 5' e L: and therefore, by B.STAB and (i), then F(S') = zp' =

N(S'), which implies that z. zk > x.xk for all x e (J.
l = l

Thus,

that zi ~ zk' as claimed.

Since zi ~ zk for all i e P, it follows by PO that z eA:: co{eQ,(nei)ieP}'
ywhich is a subset of HnPO(T). Let y :: eQ• Since F(S) * ep and tp(T) = 5, it

follows by B.STAB that z * y. Therefore, since z e A, then zk < 1, which

together imply that z belongs to the interior of HnpO(T), relative to H.
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Since Z e BN(T) by B.STAB and (i), this implies that Z lO: BN(i), where
i = CCh{H~Q}. However, this is impossible, since y is the only member of

+
BNen and since z :1= y. Thus, the assumption that F(S) :1= N(S) has led to a
contradiction. QED.

x·J

n

,
I
I
I
I

I

x.
1

_-----

Figure 2.4
The proof of Lemma 2.2

From Lemma 2.1 and Lemma 2.2, we obtain the following converse of Proposition
2.1:

Proposition 2.2: If F satisfies PO, Af'IJ, S.INV and M.STAB, then F = N, the
Nash solution.
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Thus we have

Theorem 2.3: A solution satisfies PO, AN, S.INV and M.STAB if and only if it

is the Nash solution.

If we compare this result to Nash's own characterization, (Theorem 2.1), we
see that except for a strengthening of SY to AN, the only difference is that

IlA has been replaced by M.STAB. As regards the connection to Harsanyi' s
Theorem 2.2, we observe that, except for dropping the hypothesis that two-

person problems are solved by the Nash solution, Theorem 2.3 uses the

stronger version of the stability axiom, while no continuity assumption is

needed. The one result which allows us to dispense with the assumption that

all two-person problems are solved by the Nash solution is Lemma 2.1, which
together with S.INV and CaNT would imply that assumption. Note however, that
the proof of Lemma 2.1 relies heavily on the availability of an infinite

number of agents, while only a finite number of potential agents is needed

for Harsanyi' s result. In the next section, we establish some variants of
the main result, some of which involve only a finite number of potential

agents.
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2.4 Variants of the main result

In the proof of Lemma 2.1, as well as that of Lemma 2.2, essential use was
made of the assumption that the set I of potential agents be infinite. Could
Theorem 2.3 still be true if I were a finite set? The answer turns out to be
negative, as will be shown by constructing a solution which satisfies the
four axioms of Theorem 2.3, but which differs from the Nash solution.

Proposition 2.3: If the number of potential agents is finite, then the Nash
solution is not the only one to satisfy PO, AN, S.INV and M.STAB.

Proof: Note first that if III ~ 2, then M.STAB loses most of its power, so
that any solution satisfying PO, AN and S.INV will also satisfy M.STAB. An
example of such a solution is the Kalai-Smorodinsky solution (Kalai and
Smorodinsky (1975».

Next, suppose that I = {1,2, •••,n}, where n ~ 3. Let the solution F be
pdefined by F(S) = N(S) for all P £ ~ and all S £ ~ , except for

I~T is a family of choice problems to be defined next. Let T £

IS £ ~T' where
I~ be defined

be T = cch{eI, z}, where z = (3/2)eI'{n}' T is illustrated in figure 2.5 for
n = 3. It is straightforward to verify that all points in the segment
[el' z] are Nash-multilaterally stable points of T. Consequently, any point
in that segment could be the solution outcome to T without violating M.STAB.
For example, we may define F(T) = (el + z)/2.

Let now ~i be the subset of ~I, such that for all T' £ ~i, there exists a
linear transformation ~ E AI and a permutation y E rI,I such that
T' = y(~(T» and define F(T') = y(~(F(T»). Since N(T) = el :I: F(T), we now
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have a solution which satisfies PO, AN, S.INV and M.STAB, but which differs

from the Nash solution. QED.

Z = (3/2)e!'-Cn} .

Figure 2.5

The proof of Proposition 2.3

A condition that would eliminate solutions such as F above, is Continuity.

(Clearly, F is not continuous at T). What we do next is to show that by

adding CONTto the list ofaxioms in Proposition 2.2, the conclusion of

Proposition 2.2 still holds if I is finite, as long as III > 3, and in fact,

that it continues to hold if M.STABis weakened to B.STAB. We begin with

Lemma2.3, which says that if CaNT is added to the list ofaxioms in Lemma

2.1, then the solution must coincide with the Nash solution for all two-

person problems S such that N(S) is Egalitarian, and not only for most such

problems, as in the conclusion of Lemma2.1.
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Lemma 2.3: Suppose the number of potential agents is at least 3. If a sol-

ution F satisfies PO, AN, CONT and B.STAB, then for all P e CP with IPI = 2
Pand all S e:LE' F(S) = N(S).

Proof: See figure 2.6 for an illustration. Let P e:<P with IPI = 2 and

S e: L~ be given, and let H be the hyperplane with normal ep supporting S at
Paep - E(S). To show that F(S) = aep also, we first assume that S e:LEU' i.e.

that

(i) po(s)nu = HnU for some neighbourhood U of aep•

Let now S' == {x e (RP I L x. ~ 2a}, and observe that F(S') = aep by PO and
+ Is P l

AN. Let k be an agent who is not a member of P and let Q == PUlk}. Define

S1 == Sx{aek} and for all e: > O, let Ce: be the cone with vertex (a+e:)ek,
1 e e 1 1spanned by S. Define T - C n cch] S } and U == Ux{aek} and note that for all

e: > O, U1 n S1 c: { and Te:e L Q •

OLet z == F(T). We claim that z = aeQ• To see this, note that whatever z is,
it follows by construction of TO that t;(TO) = S', which by B.STAB implies

that Zp = aep• Since y == aeQ is the only Pareto-optimal point in TO with the

property that YP = aep' it follows by PO that z = aeQ•

Consider now zl:: == F(Te:) as I:: + O. O e: OSince z = z and T + T as e + O, it

follows by CONT that zl:: + z. Therefore, by PO, there exists E > O such that
zc. c. U1 for all e: in [O,e], which by B.STAB implies that z~ is constant and

equal to F(S) for all such e • I:: -But then z = z for all I:: in (0,1::)by the fact

that zl:: + z in U 1 as I:: + O, which implies that F(S) = zp = aep' the desired
conclusion.
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To complete the proof, it suffices to observe that if S does not satisfy
condition (i) above, then we may approximate it by a sequence of elements
from ~~u that does, and apply CONT once more to conclude that F(S) = aep in
this case also. QED.

x .
J

2a

x .,

Figure 2.6
The proof of Lemma 2.3

Lemma 2.4: Suppose the number of potential agents is at least 3. If a sol-
ution F satisfies PO, S.INV, CaNT and B.STAB, and if F(S) = N(S) for all

PP € ~ such that IPI = 2 and all S € ~E' then F = N.

Proof: We must show that F coincides with N on EP for al~ P € @. If IPI = 1,
the proof is trivial, if IPI = 2, it follows by S.INV and the hypothesis that
F coincides with N on ~~. Let Q €<P with IQI ~ 3 and T €'EQ be given. In
order to show that F(T) = NCT), we first assume that
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(i) POeT) = WPO(T) and

(ii) For all x e WPO(T)n~Q , there exists a unique hyperplane supporting
++

T at x,

Let z = F(T). We claim that z > O and prove it by contradiction. If z. = O
l.

for same i e Q, then by PO, there exists j e Q such that y. > O. Let
J

P = {i,j} and 5 = t~(T). Since zp:j:O, it follows by (i) that 5 contains a
strictly positive vector, which implies that 5 is a well defined choice

problem. Since IPI = 2, it follows by the first part of the proof that

F(S) = N(S) > O, and by B.STAB that zp > O, which is the announced contradic-

tion.

Since z > O, then by (ii), there exists a unique hyperplane supporting T at

z , Let G = {x e ~Q I II x. > II z.}, and let HN be the unique hyperplane
+ ieQ l. = ieQ l.

supporting G at z. We claim that HF = HN, and prove it by contradiction.

If HF :j:HN, then for same P c Q with IPI = 2, t~(HF) :j:t~(HN). Since z > O
then (ii) implies that t~(HF) is the unique tangent to 5' = t~(T) at zp.

Since IPI = 2, then F(S') = N(S'), which by B.STAB implies that Zp = N(S').
Thus, zzp maximizes ~pxi on 5', and therefore tp(HN) is tangent to 5' at zp.

z ztp(HN) :j:tp(HF), this is a contradiction which proves that HF = HN andSince

hence that z = N(T).

QThe proof of the lemma is completed by observing that any TEE can be
approximated by a sequence of elements of EQ that satisfy (i) and (ii), and

by applying CONT. QED.
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By Proposition 2.1, Lemma 2.3, Lemma 2.4 and the fact that the Nash solution
satisfies CONT, we now obtain

Theorem 2.4: Suppose the number of potential agents is at least 3. A sol-
ution satisfies PO, AN, S.INV, CONT and B.STAB if and only if it is the Nash
solution.

It should be mentioned that the only if-part of Theorem 2~3 can be strength-
ened by weakening AN to SY. This is possible since AN was only used once in
the proof of Theorem 2.4, namely in Lemma 2.3 in order to determine the sol-
ution outcome for a symmetric choice problem.

Going back to Theorem 2.3, it turns out that the only if-part of that result
can be strengthened as well, by replacing PO with the following condition,
that we call

Individual Optimality (ID): For all i e: I, for all S e: E{i}, F(S) =

max{x I x e: S}.

ID states that all choice problems involving only one agent are solved by
maximizing the utility of that agent. Because ID and M.STAB together imply
PO, we obtain

Theorem 2.5: A solution satisfies ID, AN, S.INV and M.STAB if and only if it
is the Nash solution.
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2.5 Concluding remarks

The Nash solution has often been criticized for its reliance on the axiom of

Independence of Irrelevant Alternatives. This axiom, as well as Pareto-

optimality, is an assumption of collective rationality in conflict situ-

ations. We have shown that the independence axiom can be dispensed with, by

providing a characterization of the Nash solution which makes no use of it.

Instead, we use a stability condition, due to Harsanyi (1959), which is con-

ceptually more appealing, since it is motivated by considerations of individ-

ual, and not collective, rationality. Moreover, a version of this axiom also

allows us to weaken Pareto-optimality to Individual Optimality and still get

a characterization of the Nash solution.
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CHAPTER3

STABILITYANDTHELEXIMINSOLUTION

3.1 Introduction

A characteristic feature of the Nash solution is that it does not assume

utility to be interpersonally comparable. This is so because the Nash sol-

ution satisfies S.INV, which states that the solution outcome should be

invariant with respect to changes in the unit of measurement for the utility

of any agent. Throughout this study, the agents' utility functions are

assumed to have cardinal significance, thus if two utility functions both

represent the preferences of a given agent, then they can at most differ by

a positive affine transformation. Since the constant terms of these posi-

tive affine transformation have been used up by selecting an origin of

utility space, one is left with one degree of freedom for each utility func-

tion, namely the choice of a unit of measurement.

The restrictions that S.INV imposes on the response of the Nash solution to

changes in the agents' utility functions automatically carryover to its

response to changes in the underlying set of physical alternatives, because

a solution depends on these physical alternatives only through their image

in utility space. There is then a potential conflict between the require-

ment that the solution should not involve interpersonal comparisons, and a

requirement that the response of the solution to changes in the set of

physical alternatives should agree with observed behavior in bargaining

situations (if the model is used descriptively) or with commonnotions of
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fairness (if used normatively). This conflict has been discussed exten-

sively by Roth (1979b), and also by Nydegger and Owen (1974) and Roth and

Malouf (1979), (1982), who perform experiments showing that the axiom of

Scale Invariance is systematically violated in bargaining situations when-

ever the players have complete information about the underlying sets of

physical alternatives.

As an example in the normative spirit, consider a situation in which the set

of physical alternatives is expanded, leading to a corresponding expansion

in the set of feasible utility allocations. Because the Nash solution

satisfies IlA, either the solution outcome does not change or one of the new

alternatives is selected as the solution outcome to the new problem. How-

ever, IlA does not say anything about how the solution outcome should

change, if it changes as a result of an expansion is the feasible set of

alternatives. For example, if the expansion consists in adding new alterna-

tives that are particularly favorable to some agent, it would be natural to

require that this agent should gain, or at least should not be worse off as

the result of such a change in the problem. Various axioms in that spirit

have been proposed and used in the litterature, e.g. by Kalai and

Smorodinsky (1975), Kalai (1977a), Roth (1979a) and Thomson and Myerson

(1980) • Befare we state Kalai IS (1977a) version of this axiom, we define

for all P, Q c IP with P c; Q and all Ae fR
Q, the set Ap to be the projection

P
of A on eR •

Individual Monotonicity (I.MON): For all P £~, for alIS, SI £ EP, for all

i £ P, if Se SI and Sp'-{i} = SIp-....{i}' then Fi(SI) > F/S).
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An illustration is given in figure 3.1, where P = {i, J}. The feasible set
of utili ty vectors in 5 for the agents in p.....{i} is Sp.....{i} and this set is
not affected by the expansion from 5 to SI. Moreover, for each such
vector, the maximum feasible utility for agent 1 increases, or at least does
not decrease. In fact, as is the case in figure 3.1, some of the new alter-
natives in SI may be unambiguously more favorable to agent i as compared to
any alternative in 5, while this will not be the case for the agents in

P'{i}, since Sp'{i} = SIp'{i}. It seems reasonable therefore to require
that agent 1 should not lose.

Figure 3.1
The axiom of Individual Monotonicity

In figure 3.2, an example is gi ven which shows that the Nash solution does
not satisfy I.MON. As is clear from the figure, the reason why I.MON is

violated here is that the level curves of the Nash product IT x. are too. P l.l.C:

responsive to changes in the trade-off between the utility levels of diffe-
rent agents along the Pareto-optimal boundary of the feasible set. The
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level curves of the Nash product are characterized by symmetry and a con-

stant elasticity of substitution of -1, and it is the axiom of Scale In-

variance which is responsible for these substitution possibilities.
x2

4/3

1

S

2

S'

4/5 1 8/5
Figure 3.2

The Nash solution does not satisfy I.MON

Thus, while S. INV has the desirable property of eliminating the need for

interpersonally comparable utility, it conflicts with certain reasonable

criteria of fairness as expressed by I.MONwhen it is used in conjunction

with PO, ANand M.STAB. Consequently, if one is willing to make interper-

sonal comparisons for the sake of fairness, while preserving as many as

possible of the remaining properties of the Nash solution, it is natural to

investigate the consequences of replacing S.INV by loMaN in the list of

axioms used to characterize the Nash solution in Theorem 2.1.

The first question that will have to be answered, is whether there are any

solutions that satisfy PO, AN, loMaN and M.STAB. One possible candidate

would be the Egalitarian solution1) E, which to each choice problem associ-

1) Cf. Raiffa (1953), Myerson (1977), (1981) and Thomson (1983b).
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ates the unique maximal point with equal coordinates. This solution does
not allow any substitution between the utility levels of different agents,
and therefore it would not violate LMON in the example given in figure 3.2.
However, it satisfies neither PO nor M.STAB, as is clear from the example in
figure 3.3, where Q = {1,2,3}, P = {2,3} and T = cCh{(1,2,Z)}.

Figure 3.3
The Egalitarian solutions satisfies neither PO nor M.STAB

xWe have E(T) = x = eQ and S = tp(T) = cch{(2,Z)}, so that E(S) = Zep• Since
eQ is not a Pareto-optimal point in T, then E does not satisfy PO, and since

Zep * zp = ep' it does not satisfy M.STAB either.

The Egalitarian solution is related to the Rawlsian maximin criterion (Rawls
(1971» by always selecting a feasible alternative which maximizes the util-
itY of the worst-off individual. In general, there may be more than one
such alternative, as is the case in the example of figure 3.3, where all

points on the right side of the rectangle T maximize the utility of agent 1,
who turns out to be the worst-off individual in T. However, Sen (1970) has
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suggested the following lexicographic extension of the Rawlsian maximin

criterion which overcomes this problem of non-uniqueness: First maximize

the utility of the worst-off individual, then do the same for the next to

worst-off individual and so on, until all possibilities for increasing the

utility of any individual have been exhausted. The solution obtained in

this way is called the Leximin solution and is denoted L. It is similar to

the Egalitarian solution in that it does not permit any substitution between

the utility of di fferent agents, but differs from it by being both Pareto-

optimal and multilaterally stable. In the example of figure 3.3,

L(T) ::.: z = (1,2,2), which is the only Pareto-optimal point in T, and

L(t~(T» = (2,2) = zp as required by M.STAB.

It will be shown in section 3.2 that the Leximin solution is the only one

that satisfies PO, AN, I.MON and M.STAB. Observe that this list ofaxioms

di ffers from the one used to characterize the Nash solution in Theorem 2.1

only in that S.INV has been replaced by I.MON. In that respect, our result

in this chapter is similar to that of lmai (1983), who gives a characteriz-

ation of the Leximin solution which parallels Nash' s theorem (Theorem 2.1)

in the same way. The Leximin solution is then a second example of a sol-

ution that can be characterized using either IlA or M.STAB, thus showing

that the two axioms share much of the same analytical power.

In the remainder of this section a more formal definition of the Leximin

solution will be given. In fact, we will give two equivalent definitions,

and the first one is a description of an algorithm that generates the

Leximin solution outcome.
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p
Given P E ~ and 5 E E , the algorithm is initialized at iteration ~ = O by

setting pO = P and xO = E(S). At any subsequent iteration ~, we set

P~ J ~-1 ...-1, ...- li~; PI3X~; 5, x ~ x ,xi> xi J and let the iterate x be given by
.-1

x· _ x.-1 and x'c _ E(tX (5». Thus at each iteration, the algorithmP'P. P'P° po p.
first identifies the maximal subset p'c of P such that for all i E; p'", it is

1:-1feasible to increase ils utility beyond x. without reducing the utility ofJ.
.~ 'c-1

any other agent. Then the new iterate x is obtained from x by increas-
'Ging the utility of each agent in P by the same amount until no such further

increase is feasible. This is equivalent to setting x'c'G equal to the EgaU-
p

,-1
tarian solution outcome for the subproblem tX _ (5), obtained from 5 by

pl,

. ,-1keep inq x ,constant. The algorithm terminates at the first iteration 'c
P---.P
- ~ -1 . ~ csuch that x'c = x , J..e. whenP = ø. Wethen set L(S) == x • Since P

'I: of p'c-1 whenever x. 'c-1is finite and P is a proper subset ;l: x ,the algor-

ithm terminates in a finite number of iterations.

The algorithm is illustrated in figure 3.4 for P = {1,2,3} and

r ( ) l O O ( ) p1 { } 15 = cch] 1,2,3 J. In this example, P = p, x = 1,1,1, = 2,3, x =
2 2 3 3(1 ,2,2), P = {3}, x = (1,2,3), P = ø, x = (1,2,3) and L(5) = (1,2,3).
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l

Figure 3.4
The algorithm generating the Leximin solution outcome

While this definition of the Leximin solution is useful as a visualization
of its behavior, the next one is more convenient for analytical purposes:

Given P e: a> and x e a(, let P:: {1,Z,••• ,IPI} and let the vector y(x) E:a(

be a relabelling of the coordinates of x such that Y1(x) ~ YZ(x) ~•••~
Y I p I (x). Let Cp be the ordering of ri( such that for all x, y g a(, x >-p Y
if and only if there exists k E P such that Yk(x) > Yk(y) and Yi(x) = Yi(y)
for all i E: P such that i < k, If and only if Y(x) = y(y), then x /'Vpy.

PFor alIS E: r , let A(S) ::{y E: 5 I y ~p x for all x E: S}. It follows by a
simple adaptation of Lemma 3 and Lemma 4 in Imai (1983) that A(S) consists
of the single point L(5) for all 5 E: l. Thus for all P E: lP, the Leximin

psolution outcome to any 5 E: Z can be found by either applying the algorithm
previously described, or b~ maximizing the Leximin ordering ~p over S.
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Let ~ be the family of orderings {Cp I p € ~}, where each Cp is defined on
~p. It is a well known fact that the family b satisfies the property that
+

Qfor all p, Q € @ with P c Q and all x, y € ffi+ such that x~p = y~P' x hQ Y
if and only if xp ~p yp (see e.g. d'Aspremont and Gevers (1977) and
Deschamps and Gevers (1978)). This property, which is known in the social

choice litterature as Separability, is due to Fleming (1952), and is closely

related to the axiom of Multilateral Stability. This relationship will be
discussed in greater detail in chapter 4.
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3.2 The main result

We show in this section that the Leximin solution satisfies Pareto-opti-

mality, Anonymity, Individual Monotonicity and Multilateral Stability, and
that it is the only one to do so. We begin with

Proposition 3.1: The Leximin solution satisfies PO, AN, I.MON and M.STAB.

Proof: It follows directly by the algorithm which generates the Leximin

solution outcome that the Leximin solution satisfies PO and AN. A proof
that L satisfies I.MON is given in Imai (1983). It remains to show that it

satisfies M.STAB.

Let Q, P EiP with P c Q and T E}';Q be given. Let Z:: L(T). Then z is a

maximal element for the ordering.eQ in T. Let S :: t~(T) and SZ ::Sx{ zQ"'} •
Since SZ is a subset of T containing z, it follows that Z is a maximal ele-

t f\.' SZmen or eQ In • Because xQ~ = zQ~ for all x E SZ, then by Separability

of the ordering bQ, it follows that zp is a maximal element for ~p in S.

Thus, zp E A(S) and since A(S) consists of only L(S), we conclude that

L(S) = zp' as required by M.STAB. QED.

We next show that the Leximin solution is the only one to satisfy the four

axioms. The proof is organized as follows: The point of departure is Lemma

2.1, restated here as Lemma 3.1, which says that if a solution F satisfies

PO, AN and B.STAB, then for all P E lP with IPI = 2, F coincides with the
PEgalitarian solution E on }';EU'the set of choice problems S whose Pareto-

optimal boundary coincides with the hyperplane through E(S) with normal ep in

a neighbourhood of E(S). We then use this result and I.MON in Lemma 3.2 to
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show that F must coincide with L for two-person problems that are more and
more asymmetric in the sense that the maximal utility available to one of the
agents is proportionally greater and greater than the maximal utility avail-
able to the other agent. Finally, we extend this result to choice problems
that involve more than two agents (Proposition 3.2).

Lemma 3.1 (Lemma 2.1 restated): If a solution F satisfies PO, AN and B.STAB,
Pthen F(S) = E(S) for all P e ~ with IPI = 2 and all S E EEU.

PFor all P e ~ and all SEE, let the vector a(S) be defined by
a. (5) ::max{x. I XES} for all i e P. Note that if P = {i,j}, then for all
1 1

S, S' e zP, we have ai(S) = ai(S') if and only if Sri} = Stri}' by comprehen-
siveness of Sand 5'. I.MON then simplifies to saying that F/S') ~ F/S)
whenever S eS' and a.(S) = a.(S'). As a measure of degree of asymmetry of

1 1

any two-person problem S, we will use the smallest integer u ::u(S) such that
a(S) < uE(S).
A.

Given P E ~ and a subset A of fIl, intA denotes the interior of
+

Lemma 3.2: If a solution F satisfies PO, AN, I.MON and M.STAB, then for all
positive integers u, for all P E lP with IPI = 2 and all Sel, if u(S) = u
then F(S) = L(S).

Proof: The proof is by induction on u. If u = 1 there is nothing to prove,
so assume first that u = 2. Let P e~ with IPI = 2 and 5 e l with u(S) = 2
be given, and suppose, by way of contradiction, that

(1) F(S):j:L(S).
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By AN, we can assume without loss of generality that P = {1,Z} and that
a1(S) ~ aZ(S). Let <lep:: E(S), define 51:: cch{a1(S)e1, <lep}' and note that

1 1E(S ) = E(S) = <lep and u(S ) = u(S) = 2. We claim that

The proof is illustrated in figure 3.5 (a). We first show that (Z) holds for
5 instead of 51. The proof is by contradiction. Suppose first that

ZF1(S) < <l. Let' 5
2

F1(S ) ~ F1(S) < <l.
implies that F(SZ) = <lep' a contradiction.

:: cch{aZ(S)e1, <lep' aZ(S)e2}. loMON implies that
However, SZ is a symmetric problem, which by PO and AN

Hence F1(S) ~ <l. If F1(S) = <l,
then F(S) f <lep by PO. Therefore, since L(S) is the only Pareto-optimal
point of S which dominates <lep' it follows by PO that F(S) = L(S), contra-
dicting (1). Consequently, F1(S) > <l and FZ(S) < <l. Since FZ(S1) ~ FZ(S) < <l

1by I.MON, then F1(S ) > <l by PO, which proves (Z).

a2 (S) 1:""1, =--~
ex ) S 2"di:!l! I' j E(S} = exep

F(S)

, 3
S

(a) Figure 3.5
The proof of Lemma 3.Z for u = Z

(b)
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Next, we use Lemma 3.1 to obtain a contradiction to (2) and hence to (1).
See figure 3.5 (b) for an illustration. Let H be the hyperplane through

F(S1) with normal ep and let S3 == s1ncch{HnlR~}. Since a(S1) < 2E(S1) =

2aep' it follows by (2) that aep lies strictly above H. This fact has two
consequences: First, it implies that E(S3) £ HnintS1 and therefore S3 £ ~~U'
which by Lemma 3.1 implies that F(S3) = E(S3). Secondly, it implies that

a(S3) = a(S1), which by I.MON applied twice implies that F(S1) > F(S3).

Since F1(S3) < a and F1(S1) > a, this is in contradiction with (2)•
•

Since (2) is not true, then (1) is not true either, which proves the lemma

for u = 2. Let now u ~ 2 be gi ven, and suppose the lemma holds for all

Ul ~ u. To prove it for u(S) = u+1, we first show that (1) implies (2) using

the same argument as for u(S) = 2. Then we proceed as follows:

Let Q == {1,2 ,3} and for

T == CCh{s1 x{ae3}, abe 2}.
P

that F(T) = aeQ•

Set b == (u+1)/u and

T is depicted in figure 3.6. We are going to show

Let the segment 0"2 be defined by 0"2 == [aeQ, abe 2J•
P

We

first show that

To see this, let x be any point in T and consider SX == tX2(T). We claim that
p

a(Sx) < uE(Sx) x x2 and thatfor all x e T. Note that S only depends on

[O,aJ. x x xx2 £ If x2 = a, then S = cch{ae 2} and aCS ) = ECS ), which since
p

a ( S x ) x SXu > 2 implies that < uECS ). If x2 = O , then =
cch {Ca1 rs 1) ,a,) , abe 2}' x 1 . x sincea(S ) = Ca1(S ), ab) and ECS ) = abe 2' which

P P
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1 1
a1 (5 ) < (u+1 )E1 (5 » = (u+1)a and b = (u+1 )/u and u > Z implies that

a(Sx) < uE(Sx).

Since a(Sx) and E(Sx) are linear functions of xz' this proves the claim that

a(Sx) < uE(Sx) for all X E: T. It then follows by the induction hypothesis

that F(Sx) = L(Sx) == zX for all X E: T. Note that for all X E: T, zX = E(Sx)

(XX)and therefore z1,xZ,z3 € O'Z.

proves (3).

M.STAB then implies that F(T) E O'Z' which

Let now the segment r51 be defined by 0'1 == [ae
Q
, a(b,c,1)], where

c ::: (a
1
(s1) - ab)/(a

1
(s1) - a). Since u(S1) = u+1 then a

1
(s1) > ab > a and

therefore O < c < 1. We claim that

(4) If F(T) ~ O'z then F(T) E: 0'1.

x x
To see this, let X be any point in <.1Z and consider 5 == t 1 (T). We claim

p

that a(Sx) < lIE(Sx) for all X E: (JZ. Note that SX only depends on x
1

and that

x1 ~~ [a,<xb]. If x1 = <X, then SX = cCh{<xeZ' Ixbe3}, a(Sx) = a(1,b) and

E(Sx) = « e l' which since b = (1)+1)/1) and u ~ 2 implies that a(Sx) < uE(Sx).
p

If x1 = ab, then SX = cch{a(c,1), abe
3
}, a(Sx) =a(c,b) andE(Sx) =a(c,c)

which since u ~ 2 implies that a(Sx) < vE(Sx). Since a(Sx) and E(Sx) are

linear functions of x1 for x1 F.: [x ,,,b], this proves the claim that

a(Sx) < lJE(Sx) for all x E: O'Z. It then follows by the induction hypothesis

x
Note that for all x 1-; o·Z' z3 = iX and

x
therefore (x1, z ) >~ (51. Thus if F(T) = x E: O"Z' then M.STAB implies that

F(T) E: 0'1' which proves (4).
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Since 0'1n 0'2 = {aeQ}, (3) and (4) imply that F(T) = aeQ :: z, Therefore,
since t~(T) = 51, it follows by M.STAB that F(S1) = aep' This is a contra-
diction to (2) and hence to (1), and we conclude that F(S) = L(S). QED.

: I

I a 1/
- - - - _I,._,

abe 2
p

Figure 3.6
The proof of Lemma 3.2 for v > 3

So far, we have demonstrated that if a solution satisfies PO, AN, I.MON and
M.STAB, then it coincides with the Leximin solution for all two-person
problems. In order to extend this result to choice problems involving an
arbitrary number of agents, we begin by establishing in Lemma 3.3 some useful

properties of the Leximin solution. Given a solution F, a group Q of agents
and a choice problem T E ~Q, recall from chapter 2 the definition of ~(T) as
the set of F-multilaterally stable points in T.
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Lemma 3.3: For all Q s~, for all T £ ~Q, the following properties hold:

(1) L(T) ~ E(T).

(2) If Z £ ML (T) and Z > E(T) , then Z = L(T).
(3) If Z £ ML (T) and Z :1: L(T), then there exists k e Q

such that zk < Ek( T) and z. > E.(T) for all i £ Q<,{ kl •
l l J

Proof: It follows by the algorithmic definition of the Leximin solution that

(1) holds. To prove
1Let Q :: {i £

(2), let Q £ lP, T £ t:
Q and Z E: ML (T) with Z ~ u ::E(T)

1
Q I 3 x e T, x fU, xi > u) and P ::Q-.....Q. Note thatbe given.

P :;:ø and, since Z > u, that zp = up. Therefore, by definition of
ZSince Z ~ E(T), then z > O, which implies that S :: t 1(T) is
Q

a well defined choice problem. Since z £ ML (T), then L(S) = z l' which by
Q

definition of L implies that L(T) = (up' z 1). Since up = zp' we conclude
Q

that L(T) = z, which proves (2).

Finally, to show that (3) holds, let z £ ~ (T) with z :1: L(T) be given. Then

z > u :: E (T) by (2). Consequently, there exists k £ Q with zk < uk.

Su ppose, by way of contradiction, that Zj ~ uj for some j £ Q-.....{ k} • Let
Zp:: Q........{j} and S :: tp(T). Since Z £ ML(T), then L(S) = zp. Since Zj ~ uj and

T is comprehensive, then up £ S, which implies that E(S) ; up. Therefore, by

(1), zp ~ up. Since k E P and Zk < uk' this is the announced contradiction.

Consequently, zi > ui for all i E Q........{k}. QED.

Proposition 3.2: IF a solution F satisfies PO, AN, loMON and M.STAB, then

F = L, the Leximin solution.
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Proof: We must show that F coincides with L on E
Q

for all Q e: (P. The proof

is by induction on IQI, the number of elements in Q. If IQI = 1, the proof

is trivial, if IQI = 2, it follows by Lemma3.2. Suppose that F coincides

with L for all Q e: (fl with IQI < n. Let Q e: (p with IQI = n ? 3 and T e: EQ be

given, and let z :: F(T). It follows by M.STABand the induction hypothesis

that z e: ML(T). Suppose, by way of contradiction, that z :f: L(T). Letting

u :: E(T), it follows by (3) of Lemma3.3 that there exists k e: Q such that

zk< uk and zi > ui for all i e: P:: Q'-{k}. Suppose without loss of gener-

ality that Q = {1, ••• ,n} and that k = 1.

1Let T :: cCh{exeQ, Tpx{Oe1} and let ø be a real number such that
1 i

TeT:: cCh{exeQ, øe2, ••• ,øen}. For all i e: P, define T recursively by
i i-1 1 1 i Q

T - c ch j T ,øeJ. Note that TeT and Tp = Tp; that T e: E and
i i-1 i i-1 i

E(T ) = exeQ for all i e: Q, and that TeT and TQ'-{i} = TQ'-{i} for all

i e: P. (See figure 3.7). For all i e: Q, let zi :: F(Ti). We claim that

i iz1 < ex and zp > ex for all i e: Q and prove it by induction on i.

1 1For i = 1, it follows by I. MON that z1 ~ z1. Since E(T ) = exeQ and

z~ ~ z1 < ex, then (1) of Lemma 3.3 implies that z1:f: L(T1). Since

z1 e: ML(T1) by M.STAB and the induction hypothesis for F, and since z~ < ex,

it follows by (3) of Lemma 3.3 that z~ > exep, which proves the claim for

i = 1. Next, suppose the claim holds for i = k e: {1, ••• ,n-1}. To prove it

for i = k+1, observe first that z~ > z~ and z~ > ex by I.MONand the induction
l. = l. l.

k ihypothesis for z , respectively. This implies that z1 < ex, for otherwise
i i i i

z = exeQ by PO and construction of T. Since E(T ) = exeQ and z1 < ex, then

(1) of Lemma (3.3) implies that zi:f: L(Ti). Since zi e: ML(Ti) by M.STABand
i

the induction hypothesis for F, and since z1 < ex, it follows by (3) of Lemma
i

3.3 that Zp > exep' which proves the claim.
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Sin c e T 1 c t , i t f.o11o w s b Y c ans tru c t i o naf Tnt h at r " =

T = cCh{exeQ, ~e2, •••,~en}. It is easy to verify that ML(Tn) consists of the
single point exeQ, which by M.STAB and the induction hypothesis implies that
n

z
nThus, since z1 < ex, the assumption that F(T * L(T) has led to a

contradiction. QED.

Figure 3.7
The proof of Proposition 3.2

Combining the results of Propositions 3.1 and 3.2, we obtain

Theorem 3.1: A solution satisfies PO, AN, I.MON and M.STAB if and only if it
is the Leximin solution.
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3.3 Concluding remarks

In this chapter, we have given a characterization of the Leximin solution

using a list of four axioms which differ from those used to characterize the
Nash solution in Theorem 2.1 only in that Scale Invariance has been replaced

by Individual Monotonicity. Theorems 2.1 and 3.1 show that S.INV and I.MON

are in a sense polar opposites when imposed in conjunction with the three
other axioms: The Leximin solution exploits to a maximum degree the possi-

bilities for interpersonal comparability of relative utility levels that

become available when S.INV is dropped, by admitting no substitution between
the utility levels of different agents.

The relationship between the Nash solution and the Leximin solution can be
seen more clearly by observing that both of them are limit cases of a one-

parameter family of solutions {rP I p > -1} defined as follows: Let p > -1

be gi ven, and for all P £ CP, let the function rP,P on (RP be de fined by
+

1
rP 'P (x) :: ( I x-:-p )

i£P l

The function rP,p

P for all x £(Jt if p:j: O and rP,p(x):: II x. if P = O.
+ . P l1£

is a symmetric CES function and -1/(1+p) is its constant
elasticity of substitution. Since p > -1, the function rP,P is strictly

quasi-concave for all P e @, and there exists a solution FP defined by

FP (5) ::argmax{ rP,P(x) I x e S} for all P £ CP and all 5 e l:p. As P ....O, then
fP,P converges1) to the Nash product n x. and FP converges to the Nash sol-. P llE:

then f'P (x) converges to min{ x, I i E: p}, but the
l

ution. As P ....00,
ordering of ~P induced by this function is different from the Leximin order-

+
ing cp. However, the ordering ~~ of tR~ induced by the function rP,P does

converge to the restriction of the Leximin ordering to ~~ in the sense that

1) Pointwise convergence.
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for all x,y e CR:+, if x ~P y, then there exists p ~ O such that x~~ y for
all p > p. Since FP (5) > O for all choice problems 5 whenever P ~ O, this
can be used to show that ~ converges to the Leximin solution as p ~ ~.

These convergence problems in the limit as P ~ <O arise because the Leximin
ordering is not continuous. As a result of that, the Leximin solution itself
is not continuous, as is clear from the example depicted in figure 3.8, where
p = {1,Z} and SV :: cch{(Z, 1-1/v), eZ} for each positive integer u, As
v ~ <o, then SV converges to 5 :: cch] (Z,1)} and L(Sv) converges to
E(S) = (1,1), while L(S) = (Z,1), thus L is not continuous at S.

l

~------------------._----~ xl
2

Figure 3.8
The Leximin solution is not continuous

Given that a solution F belongs to (the closure of) the family {FP! p > -1},
it is easy to see the roles played by the axioms of S.INV and I.MON in
singling out the Nash solution and the Leximin solution, respectively. If F
satisfies S.INV, then the elasticity of substitution of the functLons rP,P
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must be -1, and therefore F must be the Nash solution. Next, suppose that F
satisfies I.MON. As long as the (constant) elasticity of substition for the

functions rP ,P di ffers from zero, then the corresponding solution FP would

violate I.MON in the example given in figure 3.2. Hence F must be the sol-
ution obtained by letting the elasticity of substitution approach zero, and

therefore F must be the Leximin solution.

It should be noted that this is only a partial account of the roles played by

S.INV and I.MON in the characterizations of the Nash solution and the Leximin

solution respectively, because there remains the question of why the lists of
axioms in Theorems 2.1 and 4.1 both lead to solutions that are consistent

with the maximization of some ordering that is related to the family of eES

functions. In fact, why should the solutions derived from these axioms be
consistent with the maximization of any ordering or function, be it CES or

not? Is this maximization property a joint result of all the axioms in each

lists, or is it a consequence only of those axioms that are common to the
Nash solution, and the Leximin solution? An attempt at answering some of

these questions will be made in the next chapter, which is concerned with the

identification and characterization of a minimal family of solutions that
satisfies the abovementioned maximization property and that includes the Nash

solution and the Leximin solution as special or limit cases.
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CHAPTER4

STABILITYANDCOLLECTIVERATIONALITY

4.1 Introduction

A major part of the theory of social choice is based on the assumption of

collective rationality - that social decisions be made consistently with

the maximization of some ordering on the space of alternatives, where by

an ordering is meant a binary relation which is reflexive, transitive and

complete. For example, collective rationality is a defining property of

an Arrow (1951) social welfare function (Arrow swf), which produces social

orderings of a given set of physical alternatives from profiles of indivi-

dualorderings of those alternatives. Another well-known example is the

family of Bergson-Samuelson social welfare functions (Bergson (1938),

Samuelson (1947).

By a Bergson-Samuelson swf is usually meant a real-valued function defined

on utility space, representing a social ordering of all possible utility

allocations for the society under consideration. As pointed out by Sen

(1970) pp. 34-35, it is in general the social ordering itself that is of

primary interest for social decision making. Consequently, there is no need

to distinguish between social orderings according to whether or not they

have real-valued representations. Following Sen (1970), any ordering of

utility space will here be referred to as a Bergson-Samuelson swf, regard-

less of whether it has a real-valued representation.
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Observe that the domain of definition of a Bergson-Samuelson swf di ffers

from that of an Arrow swf: A Bergson-Samuelson swf is defined on a space of

utility allocations, while an Arrow swf is defined on a space of individual

orderings, e.g. a space of utility functions.

A condition that is often imposed on the Bergson-Samuelson swf is Separ-

ability or Independence of Unconcerned Individuals as it is also sometimes

called. This condition (due to Fleming (1952)) says that if the utility

levels for a subset of the agents of society is the same for some pair of

alternatives, then the social ordering of those alternatives should not

depend on the utility levels of those agents. This means that if ~ is a

Qsocial ordering of utility space <R+ for a group Q of agents, then if P c Q,

the ordering ~P obtained from:CQ by restricting ~Q to any hyperplane par-
p

allel to~ must be the same for all such hyperplanes. If, in addition, the

ordering ¢Q is continuous, then it has an additively separable numerical

representation, i.e. there exists a real-valued function f on ~Q such that
+

f(x) ~ fey) if and only if x::;Q y, where f is of the form f(x) = I f.(x.)
. Q 1 1lE:

(Debreu (1960)).

The condition of Separability is indeed satisfied by most of the commonly

used Bergson-Samuelson swf's, such as the Utilitarian swf (classical

utilitarianism), the Nash swf1) (Nash (1950)) as well as the Leximin swf

(Sen (1970)), which is the symmetric lexicographic extension of the

Rawlsian (maximin) swf (Rawls (1971)).

1) To be precise, the Nash swf, ~N, satisfies Separability only on the
strictly positive orthant of utility space: For each P E:(Jl, ~~ is defined
by x ~.~ Y if and only irn xi ~ .IT Yi' hence given P,Q E:CPwith P c Q and
p :I: Q, all points in (RJ1~fexeQ,ptE:~reindifferent for.c~ if ex = O, while
this is not the case if ci > O.
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Clearly, from any Bergson-Samuelson swf, one obtains a social choice func-

tion1), provided existence and uniqueness of the maxima for the swf on the

relevant domain of problems. For example, the Utilitarian solution U is

derived from the ordering 6Udefined by x ~U Y if and only if LX. ~ LY., and
. l - . l
l l

is well defined on the domain of strictly convex problems.

On the other hand, the existence of a social ordering is not a necessary

prerequisite for social decision making; it is only necessary that there

be a solution outcome to every choice problem. The concept of a solution

that we use here is based on this minimal requirement and thus makes no

presumption about collective rationality. Nevertheless, it turned out in

previous chapters that many sets ofaxioms do lead to solutions that are

collectively rational, thus ane could look at such characterization results

as being related to the integrability problem in demand theory, which con-

cerns the identification of necessary and sufficient conditions for a demand

function to come from utility maximization.

By analogy with the integrability problem, it would be of interest to estab-

lish conditions under which a solution is (1) collectively rational, Le.

consistent with the maximization of a Bergson-Samuelson swf, and (2) con-

sistent with the maximization of a Separable Bergson-Samuelson swf. An

answer to the first question has been given by Richter (1971), who showed

that a choice function is rational if and only if it satisfies a generalized

form of Houthakker's (1950) Strong Axiom of Revealed Preference (SARP). The

second question is the topic of the present chapter.

1) A choice function is a rule which for every set in a collection of feas-
ible sets selects a unique element from that set. A particular choice
function is obtained by (i) specifying the collection of feasible sets
(the domain, e.g. convex and comprehensive subsets of ~~) and (ii)
specifying the rule (e.g. select the point of equal coordinates in the
upper boundary of the feasible set). Thus, a solution is a particular
example of a choice function.
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Earlier, the axiom of Multilateral Stability (M.STAB) was used to charac-

terize the Nash solution (chapter 2) and the Leximin solution (chapter 3).

As already noted, to each of these solutions there corresponds a Bergson-
Samuelson swf which happens to be S~parable.

This parallelism between M.STAB and Separability is in fact much more
general: M.STAB implies that if two choice problems T and T' for a group Q

of agents yield the same subproblem S for some subgroup P when intersected
Pwith hyperplanes parallel to <R through their solution outcomes x and x',

then xp = xp• Thus M.STAB seems to be the natural counterpart to Separ-

ability in the sense that it imposes on a solution much the same requirement
that Separability imposes on a Bergson-Samuelson swf. In fact, any solution

obtained from a Separable Bergson-Samuelson swf can easily be shown to

satisfy M.STAB.

What is more interesting, and less obvious, is that M.STAB imposes on a

solution a fair amount of collective rationality as well. We show here that

M .STAB is a necessary and sufficient condition for a Pareto-optimal and

continuous solution to be consistent with the maximization of an additively

separable, strictly quasi-concave Bergson-Samuelson social welfare func-

tion1). This is the main result of this chapter. We also show that the
three axioms are independent in the sense that removing anyone of them will

permit solutions that are not collectively rational.

It may be worthwile at this point to outline the basic structure of the

proof of this characterization result to serve as a guide through some of

the technical details involved in the argument. In particular, the proof

1) The weaker version of the stability axiom (B.STAB) will be sufficient.
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is related to, and draws heavily upon concepts and ideas from demand theory,

in particular from integrability theory. The connection with demand theory

is established by considering the restriction F of a solution F to the
domain of linear budget problems known from demand theory. If the number of

agents is held constant, the model then becomes formally equivalent to the
standard model of demand theory which is made up of commodities, budgets

and demand functions instead of agents, choice problems and solutions.

These new terms will be used freely throughout in order to emphasize the

relationship with demand theory, a relationship that will be exploited in
the main part of the characterization proof which consists in establishing

sufficient conditions for a demand function r, defined for a variable number

of commodities, to be consistent with the maximization of an additively

separable utility function. Thus, as opposed to previous chapters where the

full domain was used throughout the analysis, the main part of the analysis

of the present chapter is conducted by considering only that subdomain which
is relevant for demand theory, thereby yielding a result on the integra-

bility of demand functions as a by-product of independent interest.

There are essentially two approaches to the integrability problem in demand

theory (Chipman et. al. (1971), pp. 3-6): The first one is set theoretic and
. f SARP d ddt·· t ti 1)uses some versIon o an some eman con InUI y assump Ion • The

second one is analytic and uses symmetry and negative semi-definitness of

the Slutsky-matrix (direct demand function) or of the Antonelli-matrix
(indirect demand function)2) •

1) Exceptions are (1) Uzawa (1971), who uses Samuelson's (1938) Weak Axiom
of Revealed Preference (WARP) and a regularity condition on the revealed
preference relation and (2) Hurwicz and Richter (1971), who do not assume
continuity of the demand function.

2) An exception is Hurwicz and Richter (1979), who use WARP and an axiom
of Ville (1951).
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The approach followed here is analytic, based on the indirect demand func-
tion, although we make no explicit use of the Antonelli-matrix, the reason

being that our axioms do not imply that the indirect demand function is
di fferentiable. In fact, the indirect demand function may even fail to be

single-valued and continaus. The reason why the indirect demand function is

used, despite its appearent irregularity, is that M.STAB imposes a lot of
structure on its local behaviour, but has little or nothing to say about the

local behaviour of the direct demand function. This is so because inte-
grating an indirect demand function yields a direct utility function, while

integrating a direct demand function yields an indirect utility function1).
M.STAB is related to additive separability of the direct utility function,

and it is in general not true that the indirect demand function is addi-
tively separable if the direct one has that property.

The point of departure for the characterization theorem is Lemma 4.1, which
is a slight modification of Lemma 2.3, the main step in the characterization

of the Nash solution that uses Continuity. The proof of Lemma 2.3 is essen-

tially a proof that PO, CONT and B.STAB together imply IlA for all two-
person components of F, a result that extends to any n-person component of F

by strengthening B.STAB to M.STAB.

This result is useful for two reasons: First, it can be used to show that

every strictly positive vector is the solution outcome to some budget

problem. This fact allows one to restrict attention to the domain of budget
problems, because most problems can then be solved by applying IlA to some

budget problem that contains it. Second, it turns out that the demand

function F satisfies WARP whenever the solution F satisfies IlA. Of course,

1) See Hurwicz (1971) for an excellent exposition and more details.
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WARP is not a sufficiently strong condition to obtain integrability results,

as the well-known counter-example by Gale (1960) has shown1). However, WARP

has two other useful consequences: First, it implies that the inverse
demand correspondence (from quantities to prices) is convex-valued, which

can be used to show that the normalized inverse demand correspondence (from

quantities to prices in the unit simplex) must be single-valued except on a
negligible set. Second, it implies that the real-valued representation for

t, if one exists, is quasi-concave.

To sum up, the main role played by the stability axiom so far has been to

show that WARP must hold for the demand function t, thereby establishing
properties that correspond to negative semidefinitness of the Antonelli-

matrix under conditions of differentiability. What we do next is to use

M .STAB to establish a property of the inverse demand correspondence that

would imply symmetry of the Antonelli-matrix under differentiability.2)

An outline of the main idea can be given by assuming, for convenience, that

the normalized inverse demand function is single-valued everywhere on the
strictly positive orthant. The situation is illustrated in figure 4.1,

which depicts a two-dimensional budget problem S solved at x > O. ~ is the

inverse demand correspondence and $ is the normalized inverse demand corre-
spondence. Thus, ~ (x) is the set of normals to all budget problems solved

at x and $(x) is the intersection between ~(x) and the unit simplex. Since

1) See also Kihlstrom, Mas-Colell and Sonnenschein (1976), whose results
yield an infinity of demand functions that satisfy WARP but not SARP.

2) Observe that symmetry of the Antonelli-matrix in the mathematical inte-
grability condition, Le. it is used to prove that level curves exist,
while negative semi-definitness serves to give these level curves the
right curvature, i.e. convexity. Again the reader is referred to Hurwicz
(1971) for more details.



- 82

x > O, then 4>(x) is a singleton, ~(x) is a ray and S is the only budget
problem solved at x. The quantity M(x) = 4>1(x)/~2(x) is the price of a unit
of the first commodity in terms of the second. Thus, it could be (the nega-
tive of) the slope of a level curve of some underlying utility function at

x, i.e. a marginal rate of substitution (MRS) at x. Note that M(x1,x2) =
1/M(x2,x1)·

= (TIl' TI2)

= (TIl' l-TIl)

s

Figure 4.1
Inverse demand correspondences and the MRS

Next, let Q E: <P with IQI ~ 3 be given. M.STAB implies that for all x E: (RQ,
+

if P c Q then ~p(x) c ~(xp)' where as usual, .1)p(x)denotes the projection of
p~(x) on ~. In fact, this inclusion property is exactly what M.STAB says

about the restricted solution r, thus it could serve as an alternative
definition of M.STAB for r. Note that if x > O, the reverse inclusion also



- 83

holds, since by assumption, ~ is ray valued on the strictly positive

orthant. Hence ~p (x) = ~ (xp) for all P c Q and all x E eR~ or equivalently ,

~p(x) is proportional to ~(xp). Because ~i(xp)/~j(xp) = M(xi,xj) for
p = {i,j}, this implies that

(1) ~.(x)/~.(x)
l J

Q= M(x. ,x.) for all Q E (P, all i,j E Q and all x E eR •
l J ~

(1) implies that the ratio of any two components i and j of the normalized

inverse demand function is independent of all but the i'th and j 'th argu-

ments. Setting Q = {i,j,k} and noting that

identically, it follows (see figure 4.2) that

(3) - {i,j,k} and all x E ~Q •~

Expression (3) reveals the structure imposed by M.STAB on the local behavior
of the indirect demand function, stating that the MRS between x. and x. can

l J
be written as a quotient, where the numerator does not depend on x. and the

J
Odenominator does not depend on xi. This allows us to fix xk = xk arbitrarily

and integrate the two terms on the RHS of (3) separately to obtain two
functions f. and f. such that the LHS of (3) is (the negative of) the slope

l J

of a level curve of the function f. + f. wherever the latter is differenti-
l J

iable. Continuity of the direct demand function F and single-valuedness of

the indirect demand function e , except on a negligible set, will guarantee

that the MRS-functions are sufficiently well-behaved to the integrable.
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Figure 4.2

Relationship between MRS-functions

This integrability result generalizes easily to higher dimensions by defin-
ing fi as indicated in the previous paragraph for all i * k. It then
follows by repeated use of (3) and (1) that for all Q e IP that do not con-
tain k and all x e: ~Q

++'
if the gradient of the function L f. exists at x,

. Q ~le:

then it is normal to the budget problem solved at x. It is shown in Lemma
4.12 that this result extends to all Q e: <P by a suitable choice of the
remaining function fk• Finally, as mentioned earlier, WARP will guarantee
that the level curves of the function L f . are strictly convex for all "Q.

ie:Q ~
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Having outlined the main ideas in the characterization proof, it is indi-
cated in figure 4.3 below how the result in this chapter, seen as a result
on the integrability of demand functions, fits in with other results in this
tradition. The left part of the figure concerns representable demand func-
tions and the right part concerns demand functions that have additively
separable representations.

Numerical
representation f~

Additive numerical

(1954)

representation Y:fi
l

Representation

(1960)
.Debreu Debreu

Richter Separable repre- This
Hurwicz,

(1971) sentation hapter

Demand function F
(1966)
Richter

Demand function F

Figure 4.3
Results on the integrability of demand functions

The next section introduces some new notation and some new properties
(axioms) that will be seen to follow from the main axioms.
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4.2 The axioms

We first introduce the family of collectively rational solutions. A
solution F belongs to this family if there exists a list of orderings

~:: {~p I p e: p}, where eachcp is defined ona(, such that for all P e:<P
and all S e:L:P, F(S) is the unique maximal element for Cp in S. The list b

will be referred to as a representation for F. If for each component bp of

C, there exists an extended real-valued function I defined on (Jt, with
+P Pthe property that f (x) ~ f (y) if and only if x ~p y, then the list

f:: {I I p e:<p} is said to be a numerical represention for F.

Our concern here will be with solutions that have additively separable
numerical representations: Let F be the family of all sequences {f.}. I of

l le:

strictly increasing and continous functions f.: lR{i} +lR{i}U{-<D}, such that
l + +

for all P e: <P, the function L f. is strictly quasi-concave1). A solution F
ie: P l

has an additively separable numerical representation if there exists a

sequence from F of functions {f.}. I
l .le:

F(S) = argmax{ I f. (x) I x e: s}.
ie:P l

admits of an additively separable numerical representation will be referred

Psuch that for all P e:CP and all S e:L: ,

A Eollectively Eational solution that

to as a CRS solution.

As mentioned earlier, the main part of the characterization proof consists

in showing that if a solution F satisfies certain axioms then its restric-

tion to the family of budget problems is of the CRS type. For each P e:<P,

1) An extended real-valued function h on lR~ is strictly quasi-concave if
for all y e:lR~, the upper contour set G~y) :: {xe:~~ I h(x) ~ h(y)} is
strictly convex in ~~, meaning that for all x,z e:G(y) with x * z and all
A e: (0,1), the point Ax+(1-A)Z is an interior point of G(y), relative to
(Rn. An extended real-valued function g on iR is strictly increasing if
g(x) > g(y) for all x,y such that x ~ y. +
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the family of budget problems for the set P of agents is denoted E: and
P Pconsists of those S e E such that S = {x e (R+ I rex ~ rew} for same

(re,w) e ~P x (RP'{a} •
++ +

It will be convenient to consider the set of such price-endowment pairs

(n,w) as the domain of definition for the restriction F of a solution F to
the family of budget problems: For all P

let b(re,w) - {x £ ~: I rex ~ rew}, define

e (fJ and all (re,w) e (p.Px <Rp<,{ O} ,
++ +

F(re,w) :: F(b(re,w» if w =I: a and

F(n,O) :: a. The convention that F(re,a) = ° is adopted for notational con-
venience, although strictly speaking, the set b(n,O) = {O} is not a well

defined problem as is does not contain a strictly positive vector. Thus, F

is a funct ion from Pu.J,l x (RP to pU-lRP, such that for all P £ (J> and all
£(1"--++ + £Y'+

(n,w) £ ~P x ~P, F(re,w) satisfies the budget constraint reF(re,w)< nw.
++ + =

Recall that for all P to: <P, !'lP_ P{re£ ~ I L re. = 1} is the unit simplex in
+ Ie P 1.

~p. Because F is homogeneous of degree ° in n, !'lPmay be used to normalize
+

the domain of definition for r with respect to prices re.

We next restate the axioms of PO, CONT, B.STAB and M.STAB for the restricted

solution r as follows:

P are to - o Pt im a l i t Y (p O) : F or a Il P £ dl, fa r a Il (re, w) £ eR:+x lR:,
reF(re,w) = rao,

Continuity (CaNT): For all P £ (fJ, if {(reu,wu)} is a sequence
P P - u u -~ x ~ , then lim F(re ,w ) = F(n,w).u'++ +

P Pfrom lR x <R
++ +

converging to (n,w) £
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Multilateral stabilit y (M •STAB) : For all P ,Q E CP with P c Q, for all

(n,w) € (RQ x fRQ and all w' € <RP, if F(n,w) = x and nnW' =
++ + + ~

then f(xp'w') = xp•

Recall that in the statement of M.ST AB for F in chapter 2, a provision was

required in order to deal with the possibility that some subproblem t~(T)
might not be well defined. What could go wrong was that t;(T) might not
contain a strictly positive vector. Such a provision is not needed in the

above statement of M.STAB for r because the only way that some subproblem
b(1{p'w') can fail to contain a strictly positive vector is by having w' = O,

in which case b(Tcp,w ') = {O}. This case has already been dealt with by

explicitly including all such trivial problems in the domain of F.

Bilateral stability (B.STAB): Same as M.STAB, except for adding the pro-

vision that IPI = 2.

Pursuing the interpretation of F as a demand function, PO states that the
whole budget is spent. CaNT needs no comment. M.STAB says that if it is

optimal to allocate npw' of the total budget nw to the commodities in a

subset P of the set Q of all commodities, then the income 1tpW' can be spent

optimallyon the commodities in P without having to worry about how to spend
the remaining income on the commodi ties in the set Q'P. Thus, a consumer

whose demand function satisfies M.STAB is ane for whom two-stage budgeting

is optimal for any partition of the set of commodities.

Observe that if F satisfies PO, then F(1t,w) = x implies F(n,x) = x.

Moreover, M.STAB simplifies to saying that if F(1t,w) = x for some
Q Q(1t,w) E <R++x <R+, then t(1tp'Xp) = xp for all P c Q.
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We next introduce two additional properties that will be used in connection

with the restricted solution t. The first one is the Weak Axiom of

Revealed Preference:

Let F be a restricted solution and let P e ~ be given. Given x,y e (RP with
+

x * y, say that x is revealed preferred to y (by F), written xR y, if
r

P Px = F(n ,w) and ny < 1tW for same (n ,w) e lR x IR •
++ +

Weak Axiom of Revealed Preference (WARP): PFor all P e <P, for all x,y e (R+,

if xR y then not yR x.
r r

The final property is the following boundary condition, which states that

if, in a sequence of budget problems, some price approaches zero, then
the corresponding sequence of demand vectors must be unbounded (with respect

to the euclidean norm).

Boundary Condition (BOUND): For all P e IP, for P and allall weIR se-
++

quences {nU} P if n~ + O for same i e P, then lim Il F( nU ,w) Ilfrom!::J., = CIO.
1 U+CD

This condition is identical to one that is often imposed on market excess

demand functions in general equilibrium theory in order to guarantee the

existence of a strictly positive equilibrium price vector1). Another
version of that boundary condition states that if the price of some com-

modi ty approaches zero, then the market excess demand for that commodity
approaches infinity. The weaker version only requires that the demand for

~ commodity must become unbounded. This is a strictly weaker requirement

l) See e.g. Varian (1981) for an exposition.
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in the case where more than one price approach zero at the same time. Here

we need only the weak version of this boundary condition, although the

strong version does hold for f if F satisfies PO, CaNT and M.STAB.
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4.3 The main result

In this section, we show that PO, CaNT and M.STABcharacterize the family of

CRS solutions. First it is demonstrated that a CRS solution is well defined

and satisfies the three axioms.

Proposi tion 4.1: For all {f.}. I EF, there exists a CRS solution F for
- .L ~E

which ffi} is an additively separable numerical representation, such that F

satisfies PO, CaNT and M.STAB.

Proof: The following intermediate result will be used:

(i) Let {f.}. I be a sequence of strictly increasing functions f.: <R{ i} +~u ~ +

IR { i} U{_co}. For all Q E IP and all T E ~Q, if z E argmax { L f. (x . )
uQ ~ ~

then for all P c Q, z., E argmax{ L f. (x.) I x E tpz(T)}.
I" IeP ~ ~

I x E T},

To prove (i), let {f.}. I' Q, T and Z satisfy its hypothesis. Let P c Q be
~u

given and define S = t~(T). Byassumption,

(1) L f.(z.) > L f.(x.) for all x in any subset of T,
'Qll 'QlllE lE

and in particular for all x E SX{ZQ'pJ. Since each f. is strictly in-
1

creasing and T contains a strictly positive vector, it follows by (1) that

L f. (z.) > _co.. Q 1 1lE:
Since T is bounded, then L f . (z .) < co. These two in-. Q 1 1lE

equalities imply that ....D> < fi (xi) < co for all i E Q. Since xQ'P = zQ---Pfor

all x E sx{zn..pJ, the finite quantity L f.(z.) may be subtracted from
"'...... Le Q\P 1 1

both sides of (1) to obtain that L f.(z.) > L f.(x.) for all XES. This
. P 1 1 = . P 1 1lE lE

completes the proof of (i).



- 92

Next we show that a CRS solution is well defined, i.e. that it associates

one and only one solution outcome to every choice problem. To see this, let

{ f. }. I e F be gi ven and let F be the CRS solution associated with {f.}. I.
l re l Ie:

Thus, for all P e CP and all S e ~P, F(S) - argmax{ L f. (x .) I x e s} •
. P l lle:

Let Q e: lP and T e ~Q be given. Since T is compact and L f. is continuous,
. Q lle:

it follows that F(T) * ø. To show that F(T) is a singleton, suppose by way

of contradiction that F(T) contains two distinct points xO and x2• Let

x1 _ A.XO+ e1-A.)x2 for some A. e: (0,1) and let P be the maximal subset of Q

u = O, 1 ,2, whi c h

(l') th t O 2a xp ,xp E

such that x~ > O. Since x
O * l and A. e: (0,1), then P * ø and x~-....p= O for

012
implies that t~ (T) = t~ (T) = t~ (T) = S. It follows by

argmax{ L f.(x.) I x e sl, which since L f. is strictly
ie: P l l Le P l

quasi-concave implies that x~ belongs to the interior of G(x~) = G(x~) =
{x e <RP I L f. ex.) > L f. ex~)}, relative to tRP• Because Xp

1 > O, this
+ .i.e P l l = ie: P l l +

implies that L f. (x~) > L f. (x~), in contradiction with the facts that. P l l . P l lle: le:
1 O

xp e Sand xp e argmax{ L f .(x.) I x e S}. This completes the proof that a
1::P l l

CRS solution is well defined.

Finally, we show that PO, CaNT and M.STAB are satisfied by any CRS solution.

Let F be a CRS solution. Then there exists a sequence from F of functions

{ f. }. I which represents F. F satis fies
l IE

increasing; moreover, F satisfies CaNT since

PO since each f. is strictly
l

L f. is strictly quasi-concave
Is P l

P
on~ for all P e: lP. It remains to show that F satisfies M.STAB.

+

Let P,Q E f' with P c Q and T e ~Q be given. Let z = F(T) and S = t~(T).

Assume without loss of generality that S is a well defined member of ~P (if

not, then M.STAB holds trivially) and let y = F(S). Since {f.}. I repre-
l Ie:
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sents F, then z = argmax{L f.(x.) I x E: T} and y = argmax{I f.(x.) X E: S},
IeQ .i ~ Le P ~ ~

which by (i) implies that y = zp, the desired conclusion. QED.

The proof of the converse of Proposition 4.1 is in several steps. The first

one consists of Lemma 4.1 through Lemma 4.3 where it is shown that if a

solution F satisfies PO, CaNT and M.STAB then its restriction r also satis-
fies WARP and BOUND.

Lemma 4.1: If a solution satisfies PO, CaNT and M.STAB, then it satisfies
IlA.

Proof: The proof, which is illustrated in figure 4.4, is a simple adaptation
of the proof of Lemma 2.3, the main step in the characterization of the Nash

solution that uses Continuity. Let F be a solution satisfying PO, CaNT and

M.STAB, and let P E: ~ be given. Let Sand S' be two members of ~P such that
S' c S and y :::F(S) E: S'. In the figure, P = {i,j}. We must show that

y = F(S') also. To do this, assume first that

(i) s'nu = snu for same neighbourhood U of y.

Let now k be an agent who is not a member of P and let Q :::PU{ k}. Define
S1 S'x{ek} and for all E: > E: be the with vertex (1 + e:)ek,- O, let C cone

spanned 1 Define TE: CE:ncch{S1} and U1 :::Ux{ek}, and note that forby S • -

all E: > ° U1nS1 c{ E: ~Q., and T E:

Let z::: F(TO). We claim that z = w::: (y,1). To see this, note that what-

ever z is, it follows by PO and construction of TO that t~(TO) = S, which by

M.STAB implies that zp = y. Since w is the only Pareto-optimal point of TO

with property that wp = y, we conclude by PO that z = w.
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Consider now ZE :: F(TE) as E ....O. Since zO = z and TE ....TO as E"" O, it
follows by CONT that E

Z .... z. Therefore, by PO, there exists € > O such that
ZE E U1 for all E in [O, €'], which by M.STAB implies that z~ is constant and
equal to F(S') for all such E. But then ZE = z for all E in (O,g) by the
fact that ZE ....z in U1 as E ....O, which implies that F(S') = zp= y, the
desired conclusion.

To complete the proof, it suffices to observe that if S' does not satisfy
condition (i) above, then it can be approximated by a sequence of elements
from EP that does. CONT may then be applied once more to conclude that
F(S') = F(S) in this case also. QED.

x.
J

Figure 4.4
The proof of Lemma 4.1



- 95

Lemma 4.2: If F satisfies IlA then r satisfies WARP.

Proof: Let F be a solution that satisfies IlA and suppose, by way of contra-
diction that r does not satisfy WARP. Since F agrees with r on the family of

Pbudget problems, then there exists P £~, and 5,5' £ E6 such that F(S) € 5',
PF(S') e 5 and F(S) :f: F(S'). Let Sil :: sns' and note that Sile E. By IlA

applied twice, F(S") = F(S) and F(S") = F(S'), a contradiction, since

F(S') :f: F(S). QED.

The relationship between IlA and WARP is closer than indicated by the one-

sided implication of Lemma 4.2. In fact, it is straightforward to show that

IlA is equivalent to WARP if the latter axiom is restated for F instead of F.
No use will be made of this more general result here, however.

Lemma 4.3: If F satisfies PO, CONT and IlA, then F satisfies BOUND.

Proof: (See figure 4.5 for an illustration). PLet P e (P and w e (R++ be given,
u P uand let {n } be a sequence from 6 and i a member of P such that n. + O. For~

each u, let zu:: F(nu,w), and suppose, by way of contradiction, that IIzu"

does not converge to infinity. Then there exists a subsequence of {zu} which

to a point z £ f(P and a point a ~P such that z < a and u < aconverges z
+ £ ++

for all u in that subsequence. Assume without loss of generality that thez

sequence {ZU} itself has that property.

Because {nU} is subset of the compact P it has a subsequence thata set 6 ,

to P Assume without loss of generality that {nU}converges some rt £ 6 •

itself has that property. For each v, let SU ben U ,w)n cch] a} • Then-

SVe b(nu,w) and since ZU < a, then ZV £ s", Therefore by IlA, ZV = F(Su)

for all v. Since nU + n, the sequence {SU} converges to S :: b(n,w)ncch{a}
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and since ZU ~ z, it follows by CONT that F(S) = z, On the other hand, PO
requires that F.(S) = a. because ~.= O. Since a. > z., this is the announ-

~ ~ ~ ~ ~

ced contradiction.
x·J

QED.

~----------------------------~a
ZV

W

IZ

~

c:::-
C
I""'",
/

"
S T (7TV ,u» T(7T,W)

r: ('
,/

/'"
,/,.» (' ... x.z. a. l

l l

Fi2ure 4.5
The proof of Lemma 4.3

So far we have demonstrated that if a solution F satisfies PO, CaNT and
M.STAB, then its restriction r satisfies the two additional properties of
WARP and BOUND. The remainder of the proof of the main theorem consists in
showing that r has an additively separable representation (Lemma'4.4 through
Lemma 4.14 and Proposition 4.2); the extension of that result to F (Prop-
osition 4.3) will then follow easily from the fact that F satisfies ILA.

In the statements of Lemma 4.4 through Lemma 4.14, it is assumed that the
restricted solution F satisfies PO, CaNT, M.STAB, WARP and BOUND.
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In what follows, extensive use will be made of the inverse choice corres-

pondence ~:PMPR: ~
P

P E: (J and x E: tR ,
+

P~~~' associated with the restricted solution t. Given

{
p -

~ex) is defined by ~ex):: n e <R I F(n,w) = x for same
++

W E: Thus, ~ is the inverse of F projected on the price space. Note

that for all x, either ~(x) is empty or it is a cone with the vertex O

removed, because F is homogeneous of degree O in n. Also note that for all

P,Q e lP, with P c Q, if x e lR~, then~p(x)c ~(xp) by M.STAB. As already

mentioned, this inclusion property is exactly what M.STAB says about the

restricted solution F. In Lemma 4.5, it will be shown that the reverse

inclusion also holds if PO, CaNT and BOUNDare imposed as well. First, we

show in Lemma 4.4 that ~ is convex-valued. This is a consequence of WARP

alone.

Lemma 4.4: The correspondence ~ is convex-valued.

~(x) and let n
3 1- an

e IRP be given.
++

+ e1-a h2 for same

1 2Let nand n be two members ofProof: Let P c lP and x

a e (0,1). We must show that

3
n e ~(x) and the proof

3lar, x:f: y _ ren ,x).

is by contradiction. If n3 I ~(x), then in particu-

WARP implies that nly > nIx and

2
ny>

2
n x.

Then yR x, which by
F

S· 3 . b i t i fId 2lnce n IS a convex com Ina Ion o n; an n , it follows that

n3y> n3x, which is impossible in view of the budget constraint n3y ~ n;3x•

QED.

Lemma 4.5: For all P,Q € IP with Pc Q, for all

nO e ~exp) if and only if there exists n e ~(x)

x e tR~+, ~p(x) = ~(xp)'
O

such that np = n

i.e.
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Proof: (See Figure 4.6). Let P, Q and x satisfy the hypothesis of the

lemma. If P = Q, then \l>P (x) = \l>(xp) identically. If Pc Q, it follows by

M.STAB that \l>p(x) c \l>(xp). In order to establish the reverse inclusion,

we consider first the case where IPI = IQI - 1.

O
Let re be a member of \l>(xp). We must show that there exists re E \l>(x) with

rep = rea. Let {kl :: Q'P, and let the function re: (0,1) + l:J.Qbe defined by

O O
rek(a) :: a and rep(a) :: «1-a)/ I reih. Note that rep(a) E \l>(xp) for all

iEP
O

a E (0,1) since rep(a) is proportional to 1]; and \l>(xp) is a cone. Therefore,

since \l>(x) is also a cone, it is sufficient to show that re(a) E: \l>(x) for

some a E (0,1).

To see this, let z(a):: F(re(a),x) for a E: (0,1). As a + 1, then rep(a) + O,

and BOUNDimplies that lIz(a)U + "". Because nk(a) = a and n(a)z(a) ~ n;(a)x,

this implies that zk (Cf.) < xk for a sufficiently close to 1. By a similar

argument, zk (r_() > xk for cc sufficiently close to O. Then, by the inter-

mediate value theorem, there exists a s (0,1) such that zk(a) = xk' and it

follows that

zp (:x) = r(nP (ti) , zp (a ) ) (by PO and M.STAB)

= F(np(~),xp» (because zk (~) = xk => rep(~)zp(~) = n;p(~)xp)

= xp (since i(p(a) 10: «»,».

Thus, F(n:Ci),x) = x, which proves that nea) E Ø(x). Hence ~(xp) c ~p(x)

if IPI = IQI - 1.

In order to show that ~ (xp) c <l?p(x) for all P c Q, we pick ,.0 E: <p(xp), set

p1 :: Pu {i
1

}, where i1 E: Q'-P, and conclude by the first part of the proof
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1 O 1that ~P = ~ for some ~ E ~(x 1). Repeating this argument by adding
P

iZ E ~1 to p1etc, we conclude that ~P = nO for some n € ~p(x). QED.

x.,
/ ,
/
/
/

\
\

\
I

/
/

\

et~l \ ,
\

•/
J

p = {i,j} I

/
I
I
/

--- -_ - --_
/
I

et ~ O

/
/

/

/
I

/

/
"

/
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x .
J

Figure 4.6
The proof of Lemma 4.5

Lemma 4.6: P - P PFor all P € @, ~ c F(~ ,~.), i.e., every positive vector is
++ ++ +

the solution outcome to some budget problem.

Proof: PLet P € tP, x lO: (R and i E: P be given. Because F(-it.,x.)= x. for
++ 1 1 1

ni > O by PO, ~(xi) * ø, which by Lemma 4.5 implies that ~(x) * ø, meaning
that ~(x) contains n such that F(n,w) = x Pfor same w E: ~ •

++
QED.
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For all P s cP, let nP be the set of points x c: (RP such that ~(x) is a ray,
++

-P P P P - -Plet D ::(R+'-D. Also, define D ::p~p> and D ::pM,P. The set D is ofand
particular interest, because if F has a numerical representation f, then
~(x) is the set of tangent normals to the level curve of f at x. Thus, if

Px sD, then the level curve through x has a unique tangent at x, and
therefore f is differentiable at x if f is additively separable.

In Lemma 4.7 through Lemma 4.9, we show that the set fiP is negligible in
the measure theoretic sense and that it has the following simple structure:
Letting ~ denote the n-dimensional Lebesgue-measure, there exists a se-

n

quence {Oi}isI of
~1(5i) = O for all

subsets of the non-negative real numbers,
-P - p.",_{ i}ie: I, and such thatD c: U (D.x(R ) for

. P l +le:

such that
all P E: (fl •

Observe that if F has an additive ly separable numerical representation,
thenfiP must necessarily be of this form.

Lemma 4.7: For all P e:(fl with IPI -P= 2, ~2 (D ) = O.

Proof: An illustration is given in Figure 4.7. Let P e (fl with IPI = 2 be
given. Since (RP can be covered by a countable collection of rectangles, it

++

is sufficient to show that ~2 (iln A) = O for all rectangles A c: eR:'. Let
such an A be given, let B:: {n c: ~P I I n. < 1} and let

++ IeP I =

(1) G ::: {( x, n) e AxB I x = r(n,w) for same w e: (Rp}.
+

For all x e: A and all nsB, let G :: {n'x (x,n') c: G} and G ::n

{x' I (x',n) e G}. Since AxB is bounded, then ~4(G) < CD and therefore
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The sets Gand G are illustrated in figure 4.7, where G is a truncatedx ~ x

ray of points proportional to ~, i.e. a set of ~2-measure zero, and where

Gx" is a truncated convex cone with a non-empty interior, i.e. a set of

positive measure. It will be shown next that the first case is the generic

one.

The set G is an income-consumption path for the continuous demand function
~

F, restricted to A. Therefore ~2(G~) = O for all ~ e: B, which by the

'second equality in (2) implies that ~4(G) = O. It then follows by the

first equality in (2) that ~2(Gx) = O for ~2-almost all x e: A.

Now, G = ~(x)nB for all x e: A.
x

. p
Since Ac eR , then ~(x) * li) for all x e: A

++

by Lemma 4.6. Therefore, since ~ is convex-valued by Lemma 4.4, then

~2(~(x)nB) > O whenever ~(x) is not a ray. Since ~2(Gx) = O for ~2-almost

all x e: A, it follows that ~2 (1)PnA) = O.

QED.
x.
J

x.,
Figure 4.7

The proof of Lemma4.7
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Given Q E @ and a collection {p1, •• ,pn} of subsets of Q, say that

{p1, •• ,pn} is a chain if punpu+l * ø for u : 1, •• ,n-1. If, in addition,

covers
n

Q (Le. if u~1Pu : Q), say that {p1 , •• ,pn} is a Q-chain.

: {1,2,3}, p1 : {1,2} and p2 : {2,3}, then {p1,p2} is aFor example, if Q

Q-chain.

Lemma 4.8: For all Q E (P, for all x£lRQ, for allQ-chains {p1, •• ,pn}, if
++

xED for all pU in the chain, then xp £ D for all P c Q.
pU

Proof: Let Q, x and {p1, •••• ,pn} satisfy the hypothesis of the lemma. It is

sufficient to show that x £ D, for then xED for all P c Q by Lemma 4.5. To
P

U
U U pU Ithis end, we define for each u : 1, •••• ,n, the set Q == and show byu':l

induction on U that x £ D for u : 1, ••• ,no
QU

For u 1 , 1 : P1 and x 1£ D by hypothesis. Suppose now that x £ D: then Q
Q QU

for u < n. We must show that x 1 £ D also. Because x E D and x
pu+1

£ D,
QU+ QU

then ~ (x )
QU

and ~(x 1) are both rays, which by Lemma 4.5 implies
pU+

1 2Consequently, for all n ,n

that

e (x 1) and ~ 1 (x 1) are rays.
QU QU+ pU+ QU+

there exist positive real numbers a and ~ such that n1
QU

£~(x l)'QU+
1

and n 1:pU+
2 u u u u+ 1 u u+ 1

~n 1. Since P c Q and P np * ø, then Q np * ø, which implies that
pU+

a :~. Therefore, since QUUpu+1 : QU+1, it follows that n1: an2, which proves

that ~(x 1) is a ray and hence that xED.
QU+ QU+1

Thus, xED for all u
QU

1 d sl·nce Qn: , •• , n, an : Q then xQ : xED.

QED.
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Lemma 4.9: For all i e I, there

-Pand such that for all P e cP, D c

exists a set Di c (Rii} such that 1-l1(Di) = O,

U (D.x (RP'{i}).
ie:P l +

Proof: Let {z.}. I be a sequence of positive real numbers such that for
l le;

all distinct i,j e I, (z.,z.) e D and (z.,x.) e; D for 1-l1-almost all x
J
. ~ O.

l J l J

Such a sequence exists by Lemma 4.7 because I is a countable set. For each

i e; I, define the sets D. and D. by
l l

and

(2) _ {i}-
D. = <R "-O .•
l ++ l

We first show that

To see this, let i e; I and x. e D. be given and let j be a member of I'-{i}
l l

such that (Xi'Zj) e;:O. If k is a member of I'-{i,j} such that (xi'zk) e D,

then since (zk,Zj) e D, it follows by Lemma4.8 that (Xi'Zj) e D, a contra-

diction. Hence, (3) holds.

Next, we claim that if x. e; D. for same i e I, then (x.,x.) e;.fi for all
l l l J

j e; I'-{i} and 1-l1-almost all xj > O. To prove the claim, observe that if

(xi ,xj) e; D and (x j ,zk) e; D for some k e; I'-{ i,j}, then (xi'zk) e D by Lemma

4.8. Because (xi,zk) e; D by (3) and (xj,zk) e;D for 1-l1-almost all xj > O,

this proves the claim.
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We can now show that 1-11(1\) = O for all i E L Because 1-12CO{i ,j}) = O for all

j E I\{i} by Lemma 4.7 and (xi,xj) E n{i,j} for 1-11-almost all xj > O, whenever

x. E: D., it follows that 1-11CD .) = o.
l. l. l.

To complete the proof, let P E lP and x E tR:+ be given. It is sufficient to

P
show that i f xi EDi for all i EP, then XED. I f xi EDi for all i EP,

then by (3), for all distinct i,j E: P, there exists k E I.{i,j} such that

(xi'Zk) E: D and (Zk'xj) e D, which by Lemma 4.8 implies that (xi,xj) ED.

Since this holds for all i, j EP, it follows by Lemma 4.8 that xED.

QED. ,

For all i E I, let D. and D. be defined as in (1)
l. l.

Lemma 4.9. For all P E (fl, let Dp:: U (O.x lR~{i}) and Dp. P l. +l.E

let <I>be a single-valued selection from ~, such that <I>(x) E ~(x)nt.P for all

and (2) in the proof of

P -:: IR++"-[)p. Next,

P g <P and all x e IRP , where t.P is the P-dimensional unit simplex. Note that
++

by Lemma4.9, all such single-valued selections coincide on the sets Dp•

For all P:: {i,j} e: CP and all (x.,x.) E D.xD., let M(x.,x.)-
l. J l. J l. J

<I>.(x.,x.)/<I>.(x.,x.) and similarly, M(x.,x.):: 1/M(x.,x.) =
l. l. J J l. J J l. l. J

<I>. ( x . , x . ) / <P . (x . , x . ) • Observe that if the P-component of F has a real-valued
J l. J l. l. J

representation f which is di fferentiable at (x.,x.), then M(x. ,x .) is equal
l. J l. J

to f~(x.,x.)/f'.(x.,x.) - the marginal rate of substitution (MRS) at (x.,x.)
l. l. J J l. J l. J

with respect to f.

In Lemma 4.10 through Lemma 4.12, we show that the MRS-functions, defined in

this way, can be integrated to obtain a sequence from F of functions {f.}. I'
l. ae

such that each f i is di fferentiable on Di and such that for all P lO: (fl and ap

x E Dp, the budget plane of the unique budget problem solved at x is tangent

to a level curve of the function I f'. at x , The first step is Lemma 4.10,
. P l.l.e:
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where it is shown that the function ~ is sufficiently well-behaved for the

MRS-function to be integrable.

Lemma 4.10: For all P E ~, the P-component of the function ~ is continuous on
p

Dp' and for all i EP, ~i is bounded away from zero on compact subsets of lR++.

Proof: Let P E fl be given. To show that <P is continuous on Dp' let {XU} be

Pa sequence from <R converging to x E Dp' and suppose, by way of contradic-
++

tion, that ~(xu) does not converge to ~(x). Then, because ~ takes its
o

values in !J.' , which is a compact set, {XU} has a subsequence, which without

loss of generali ty we can assume to be {XU} itsel f , such that ~ (xu) -+ 'It :j:

~(x).

- U ti U
Because F(~(x ),x ) = x for all U by PO and construction of $, it follows by

CaNT that F('It,x) = x, unless 'It. = O for some i E P. However, the latter
l

possibility is ruled out by BOUND,because 'l xu!! -+ IIxII < 00.
PSince 'It E!J. and

X E Dp and since F"('It,x) = X implies that Jr. E ~(x), it follows that 'It = ~(x).

This contradiction completes the proof that ~ is continuous on Dp•

PTo prove the second part of the lemma, let A be a compact subset of lR and
++

suppose, by way of contradiction, that $. is not bounded away from zero on A
l

for same i E: P. Then there exists a sequence {xu} from A such that

$i(xu) -+ O. Because F"($(xu),xu) = XU for all u, it follows by BOUNDthat

li XU II -+ (x), a contradiction, since {xu} c A which is a compact subset of iRP •
++

QED.

Lemma 4.11: For all Q E (Il with IQI ~ 3, for all x E D
Q
, for all

{i,j,k} c Q, M(x.,x.) = M(x.,xk)·M(xk,x.) = 4>.(x)/~.(x).
l J l J l J
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Pro o f: Let Q and x satisfy the hypothesis of the lemma. Since x E DQ, then

Q
xED by Lemma4.9, and thus ~(x) is a ray. By Lemma4.5, ~(xp) = ~p(x) for

all P c Q, thus ~(xp) is a ray for all P c Q. Therefore, by definition of

the function ~, ~(xp) is proportional to ~p(x) for all P c Q, and since

M(x.,x.):: ~.(x.,x.)/~.(x.,x.) for all P = {i,j}, it follows that M(x.,x.) =
l J llJ JlJ lJ

~.(x)/~ .(x) for all such P. Since ~.(x)/~ .(x) = (~.(x)/~k(x»·(~k(x)/~ .(x»,
l J l J l J

the conclusion follows. QED.

Lemma 4.12: There exists a sequence {f.}. I of functions f.: (R{i}+l lE l +
(R{ i} u{ _CD}, where each f. is continuous and strictly increasing on lR{i} and

l +
absolutely continuous on compact intervals in ~{i}, such that for all P E @,

++

all x E Dp and all {i,j}c P, f!(x.)/f'.(x.) = ~.(x)/~.(x) (where fk' denotesII JJ l J
the derivative of fk).

whose indefinite integral will be f.. For each i E I, let
l

g.: (R{i} + (R{i}
l ++ ++'
O
x. be a member of
l

Proof: We begin by constructing for each i E I a function

D.. Define
l

(1)

(2) g. (x .)
l l

For all i E I, let the function f.: (R{i} + (R{i}u{_CD} be defined by
l +

f. (x. )
l l

x.
l

- J
Ox.
l

g.(a)da for all x. > O, and f.(O)
.1 l .1

- lim f. (x . ) •
l lx.+O

l

To see that the functions f. are well defined, observe first that g. is
l l
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continuous on D. and bounded on any compact
1.

Oby (1), (Z) and Lemma 4.10 since M(x.,x.)
1. J

interval of ~ {i}. This follows
++

O O
== 4>. (x . , x . ) / 4>. ( x . , x .) for all

l l J J 1. J
i,j c: I and since x~ c: D. c lR{i} for all i c: L Therefore g. is Riemann-

1. 1. ++ 1.

integrable and fi is absolutely continuous. Because 4>(x) > O whenever

x > O, it fa Il o ws th a t f i is strictly increasing, which implies that

lim f.(x.) exists as a real number or -m.
x.~O 1. 1.
1.

To complete the proof, we must show that f! (x. )/f'.(x.) = 4>.(x)/<j> .(x) for all
1. 1. J J 1. J

P c cP, all x c: Dp and all {i, j} c P. Observe first that the derivative

f!(x.) exists and is equal to g.(x.) for all x. c: D. because g. is continuous
1.1. 1.1. 1. l 1.

at such points. Thus, because 4>.(x)/4> .(x) = M(x. ,x.) whenever x c: Dp by
1. J l J

Lemma 4.11, it is sufficient to show that g.(x.)/g.(x.) = M(x.,x.) for all
1. 1. J J 1. J

distinct i,j c: I and all (x. ,x.) c: D.xD .•
1. J 1. J

Let distinct i,j c: I and (x.,x.) c: D.xD. be given. Recall that xOkc: Dk for
l J 1. J

all k c: I. Suppose first that i * 1 ~ j. Then

(3.1 ) M(x.,x.) O O (by Lemma 4.11)= M(xi,x1)"M(x1,xj)1. J
(3.Z) O O

- M(xi,xl)/M(xj,xl)

(3.3 ) = g.(x.)/g.(x.) (by (Z»
1. l J J

Next suppose that i = 1 and j * Z. Then

(4.1 ) M(x1,xj)=
O O (by Lemma 4.11)M(x1,xZ)·M(xZ'Xj)

(4.Z)
O O O O

(by Lemma 4.11)= M(x1 ,xZ)· M(xZ ,x1)· M(x1 ,xj)

(4.3) O (by (1»= g1 (x 1 ). M( x1 ' xj )

(4.4) O= g1(x1)/M(xj,x1)

(4.5) = g1(x1)/gj(xj)
(by (Z»
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Finally, if i = 1 and j = 2, we let k be a member of I'{1,2}. Then

(5.1) M(x1,x2)
O O (by Lemma 4.11)= M(x1,xk)·M(xk,x2)

(5.2) O O (by (4.5) and (3.3»= (g1 (x1 )/gk(xk»· (gk(xk)/g2(x2»
(5.3) = g1 (x1 )/g2(x2)

Thus, g.(x.)/g.(x.) = M(x.,x.) for all distinct i,j e: I and all (x.,x.) e11 J J 1 J 1J
DiXDj. QED.

Having established that the single-valued selection.~ from the inverse

choice correspondence ~ can be integrated to yield the family of functions

{ fi} Le I' the next step is to show that the function If. has the right
Le P 1

curvature, Le. strict quasi-concavity, for all P E: (P. To this end, we

P .first demonstrate in Lemma 4.13 that the ordering of ~ 1nduced by the
+

function I f. agrees with the revealed preference relation R induced by F
ie: P 1 r

1 O 1 O
in the sense that I f. (x.) > I f. (x.) whenever x R x , with strict in-. P 1 1 = . P 1 1 rlE: le:

equality if I f. (x~) is finite.. P 1 1lE:
Quasi-concavity of the function I f. is

. P llE

then established in Lemma 4.14.

Lemma 4.13: For all Q e (P, for all O 1 Q 1 Ox ,x e CR if x R x and+' r
O ' 1 OIf. (x.) > ...al, then If. (x .) > L fl·(x1.)•Q1 l Q1 l Q

Proof: Let Q, xO and x1 satisfy the hypothesis of the lemma. We dis-

O 1tinguish between twa cases, according to whether x. * x. for all i e: Q or
1 1

not. See figure 4.8 for an illustration.
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(i) x~ * x~ for all i e Q. For all t e (0,1), let x(t) ::: tx1 + (1-t)xO.
1 1

Since x~ * x~ for all i e Q, then x(t) > ° for all such t which by Lemma
1 1

4.6 implies that $(x(t» * 0. Since F($(x(t»,x(t» = x(t) by PO, WARP

implies that $(x(t»'(x1-x(t» > 0, and since x1_x(t) = (1_t)(x1_xO), it

follows that

1 °(1) ~(x(t»·(x -x ) > ° for all t E: (0,1).

Since x~ * x1 for all i e Q, each function x . (.) is linear and not con-
I i 1

stant. Lemma 4.9 then implies that x(t) E: DQ for almost all t e (0,1). By

Lemma 4.12, the vector (f!(x.». Q is well defined and proportional to $(X)
1 1 1£

whenever x E: DQ, thus by (1),

(2) I f!(x.(t».(x~-x~) > ° for almost all t e (0,1).
i£Q 1 1 1 1

By Lemma 4.12, each f. is absolutely continuous on compact intervals of
1

lR { i}. There fore, since each x. (.) is linear and strictly positive on
++ 1

(0,1), the LHS of (2) integrable on [£,1-£] for small e > O. Thus, by

(2), for all such e , it follows that

1-e: 1 °
(3.1) ° < f I f!(x.(t»·(x.-x.)dt

. Q 1 1 1 1e: le:
1-e:

(3.2) = I f f!(x.(t».(x~-X~)dt
. Q 1 1 1 1le: £

(3.3) = If. (x . (1-£ » - If. (x . (e:) )
. Q 1 l . Q 1 1le: 1£

As e ... 0, x. (1-d ...x~ and x. (e ) ...
111 °X ••

l
Since each f. is continuous on ~{i}

l +
by Lemma 4.12 and since the RHS of (3.3) is a strictly increasing function
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of 1 Oby (2), it follows by (3) that I f.(x.) - I f.(x.) > O. This. Q l l . Q l lIE IE

completes the proof for case (i).

(ii) x~ = xl for some i E Q. Let P be the subset of Q such that x~ * xl"
for all i E P and O 1 for all i E Q"-P. Since 1 O then P * 0, more-x. = x. x R x ,

l l F'
since 1 O then M.STABimplies that 1 O Since each fi isover xQ'P = xQ'-P' xpR xp•r

strictly increasing, then fi (x~) < <D for all i E Q and since

Oby hypothesis, then f. (x.) is finite for all i E Q. Since
l l

follows that

.10
(4) I f.(x.) - I f.(x.)

'pll 'pllIE IE

1 O= If. (x.) - If. (x . ) •
'Qll 'QllIE IE

\" O 1 OSince L f , (x.) > ..J» and xpR xp'
Le P l l F

that I f.(x~) > I f.(x~).
'Qll 'QllIE IE

it follows by (4) and the proof of case (i)

QED.

x ,
J

(f~(x.(t))). Q, l lE:

Q = {;,j}

Figure 4.8

The proof of Lemma4.13
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Lemma 4.14: For all Q E ~, the function I f. is strictly quasi-concave.. Q llE

Proof: Let Q E IP and y E (RQ
+

that the set G(y) = {x E ~Q I
+

be gi ven, and let c = If. (y. ).. Q l llE
We must show

I f. (x.) ~ c} is strictly convex in /RQ• This
. Q l l +lE

Q O
is clearly the case if c = -=, for then G(y) = IR. Suppose c > -CD, let x

+

and x2 be two distinct points in G(y) and let x1= axO + (1-a)/ for some

a E (0,1). To show that I f.(x~) > c, we distinguish between twa cases,. Q l llE

according to whether x~ :j: x~ for all i E Q or not.
l l

(i) If x~ :j: x~ for all i E Q, then x1 > O, which by pa and Lemma 4.6 implies
l l

- 1 1that F(1t,x ) = x for same 1t > O. Because x1 is a convex combination of xO

and x2, either 1tX1

1 Othat 1tX > 1tX •

012~ 1tX or n x ~ 1tX • Assume without loss of generality

oX E G(y), it follows by Lemma 4.13 that

100Then x R x, and since I f.(x.) > c >-CD
F' Le Q l l =

1 O
I f.(x.) > I f.(x.) > c.
.Qll.Qll=lE lE

because

( l·l·) I f O 2 f . Q th f t th t > .xi = xi or some lE, one may use e ac a c -CD ln an argu-

ment similar to the one used to prove (ii) of Lemma 4.13 to obtain the same

conclusion as in (i). QED.

The main result concerning the restricted solution F' can now be established.

Proposition 4.2: If F satisfies PO, CaNT, M.STAB, WARPand BOUND, then it

has an additive ly separable numerical representation.

Proof: Let {f.}. I be the sequence of functions introduced in Lemma 4.12.l lE

By Lemma 4.12, each f. is continuous and strictly increasing, and by Lemma
l
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4.13, L r. is strictly quasi-concave for all P e:{P. It remains to show. P J.J.e:
that L firepresents the P-component of F for all P e:e,

ie:P

To see this, P Plet P e IP and (1t,w) e: lR x (fl be given, and let 5 == b(1t,w).
++ +

that z == argmax{ L f.(x.) I x e: s} = F(1t,w). Ifw = o, the. P J. J.J.e:
We must show

proof is trivial, so assume that w > O. Then 5 contains a strictly positive

vector y because 1t > O. There fore, since 5 is compact and convex then, by
the existence part of the proof of Proposition 4.1, z exists and is unique.

Moreover, L r. (z.) > L r. (y.) > -- because each r. is strictly increasing
LeP J. J. = ie:P J. J. J.

and y > O. It then follows that F(1t,w) = z , for otherwise F(1t,w)R z and
r

L f. (z .) > --, which is impossible in view of Lemma 4.13 since z maximizes
Le P J. J.
L r. on s.. P J.J.e:

QED.

Proposition 4.2 is an interesting by-product of the analysis, as it gives

sufficient conditions for a demand function to be consistent with the
maximization of an additively separable utility function. It may well be

that Proposition 4.2 is not the strongest result that can be proved in that

respect. A question that is left open for further investigation, is whether
WARP is implied by the other four axioms in Proposition 4.2. This is indeed

the case if the correspondence between budget problems and solution outcomes

is one-to-one, i.e. if the normalized inverse choice correspondence is

single-valued everywhere. Note however, that PO, CONT and M.STAB alone are

not sufficient conditions for utility maximization, as these conditions are

also consistent with the minimization of a strictly quasi-convex and
additively separable function on the budget plane.
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Our next task is to show that the result obtained in Proposition 4.2 extends

from budget problems to choice problems in general:

Proposition 4.3: If a solution satisfies PO, CaNT and M.STAB, then it has

an additively separable numerical representation.

Proof: Let F be a solution satisfying PO, CaNT and M.STAB. By Lemma 4.1,

F satisfies ILA and by Lemma 4.2 and Lemma 4.3, the restricted solution r
satisfies the additional properties of WARP and BOUND. By Proposition 4.2,

r has an additively separable numerical representation {f.}. I. We must
l. ae

show that {f.}. I represents F also.
l. l.E

Let P E lP and 5 E LP be given, and let z :: argmax{ L f.(x.) I XES}. Prop-
. P l. l.l.E

osition 4.1 implies that z exists and is unique. By convexity of 5 and

L f., there exists a hyperplane H in (RP with normal n
Ie P l.

{x E 5{P I L f.(x.) > L f.(z.)}. n is strictly posi-
+ . P l. l. . P l. l.re l.E

tive since L f. is strictly increasing and since 5 contains a strictly. P l.l.E:

quasi-concavity of

that separates 5 and

pos itive vector. This implies that 5 I :: cch] H n eR:} is a member of L~. By

Proposition 4.2, F(SI) ::F(n,z) = z, and since z E: 5 c 51, it follows by ILA
that F(S) = z.

QED.

The announced characterization of the family of CRS solutions is now

obtained by combining Propositions 4.1 and 4.3:

Theorem 4.1: A solution satisfies PO, CaNT and M.STAB if and only if it is

a CRS solution.
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4.4 Variants of the main result.

In this section, we first show that the three axioms PO, CONT and M.STAB are
independent, in the sense that removing anyone of them will yield solutions
that are not collectively rational. Then we investigate the consequences of
adding more axioms to this list. Finally, we remove the requirement that
the number of agents be infinite, relax M.STAB to B.STAB, and show that the
conclusion of Proposition 4.3 still holds.

In order to show that the three axioms in Theorem 4.1 are independent, we
begin with the following example of a solution which satisfies CONT and
M.STAB, but not PO, and which is not collectively rational: Let kEI and

and F. (S) :: iI.. max {x. I x
l l

all P ElP and all SEl, set F.(S):: O if i:!: k
l

E S} if i = k. Clear ly, F satis fies CONT and
il. E (0,1) be given. For

M.STAB but not rIA, and therefore F is not collectively rational.

Next, we give an example of a solution which satisfies PO and M.STAB but
not CONT, and which is not collectively rational. Let p:: {1,Z} and let ~ be
the usual lexicographic ordering of RI'~ Extend ~ to RI by defining x ~ y
iff x = y and x ~ y iff either of the following conditions holds:

(i) xI,p > yI,P
(ii) xI'P = YI'P and min(x1 ,xZ) > miney1'Yz)
(iii) xr'P = YI'P and min(x1,xZ) = min(Y1'YZ) and

max(x1 ,xz) > max(Y1'YZ)

(iv) xI,p = y~p and min(x1,xZ) = min(Y1'YZ) and
max(x1 ,xz) = max(Y1 ,yZ) and x1 > Y1·
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For all Q e @, let 27Q denote the restriction of z to RQ and define the
solution F by F(S) :: {x e PO(S) I i! y e PO(S), x >Q y} for all Q e CP and all
S e: EQ• Thus, F(S) is obtained by minimizing the ordering ~Q on PO(S).
This is illustrated in Figure 4.9, which depicts a problem S such that PO(S)
is a proper subset of WPO(S), and where the arrows indicate the direction of
increased preference of the ordering C. It is easy to check that the
minimizer exists, and since x 'V y iff x = y, it is unique. Moreover, F
satisfies PO by construction and M.STAB by an argument similar to that of
Proposition 4.1. However, F does not satisfy IlA, and therefore it is not
collectively rational.

/
s

/

Figure 4.9
A solution satisfying PO and M.STAB but not IlA
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These two examples show that PO, CONTand M.STABconstitute a minimal set

of conditions for a solution to be a member of the CRS-family. (Removing

M.STAB would admit a large set of solutions that are not collectively

rational).

The examples given above of solutions violating either PO or CaNTmay indi-

cate that the main role of these two axioms is to rule out some peculiari-

ties that M.STAB permits. However, a certain peculiarity turns out to

survive all three axioms, as shown next.

For all P € CP,
p

all SEL: and all real numbers a > O, let as denote the

{x E ~P I x/a E S}. Given SEl and a > 1, the symmetric
+

choice problem

expansion of the set of feasible alternatives from S to as could come about

as the result of what may be called a welfare neutral growth in the under-

lying set of physical alternatives. It turns out that the response of a

solution to welfare neutral growth may be quite pathological. Given a

solution F and an agent k, say that k is an eventual dictator for F if for

all P E rP with k E P and all SEEP, Fk(aS) + max{xk I x E aS} as a + co. In

other words, agent k is an eventual dictator for F if persistent welfare

neutral growth always causes the income distribution to approach his pre-

ferred alternative.

As an example of a CRS solution that creates an eventual dictator, let

x1
f1 :: e and f. :: (1/ j) logx. for all j :1: 1. Then each f. is continuous and

J J ~
strictly increasing, moreover, If. is strictly

. P ~
~E

Koopmans (1982),

quasi-concave for all P E @

by Theorem 11 in Debreu and even though f1 is strictly

convex. Thus, there exists a CRS solution F which is represented by the

sequence of functions {f.} .• The eventual dictator is agent 1, and it is
~ ~£ I
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the strict convexity of the function f1 which is responsible for this fact.

The response of the solution F to weIfare neutral growth is illustrated in

figure 4.10, where the solid curve shows the income expansion path for

p = {1 ,2} and c S = {x e (R: I Cx1/a)2 + (x2Ia)2 ~ 1}. For low levels of

aggregate income, measured by the parameter a, both agents gain from an

increase in income. However, at some point, agent 1's dictatorial tenden-

cies start to dominate, and in the limit he will end up with his preferred

alternative, leaving nothing to agent 2. In order to eliminate this type of

phenomenon, one might want to impose additional restrictions on the sol-

ution.

25

~--------~------------~---------------------------------_'Xl

Figure 4.10

Agent 1 is an eventual dictator

Two conditions that are satisfied by the solutions associated with the four

Bergson-Samuelson swf' s mentioned in the introduction of this chapter (the



- 118

Utilitarian, Rawlsian, Leximin and Nash swf' s) are Homogeneity (HOM) and

Symmetry (SY). HOM says that if two problems 5 and 5' have the property

that 5' = as for some a > O, then F(S') = aF(S). Any of these two axioms
will prevent a solution from creating an eventual dictator.

Adding HOM to the list ofaxioms in Theorem 4.1 implies that the functions

L f. must be homothetic for all P E~. This means (Eichhorn (1978) Theorem
. P llE

2.2.1) that (except for arbitrary constant terms) there exists p > -1 and a

sequence {a.}. I of positive real numbers such that f.(x.)l lE l l

all i E I if p:f: O, and f.(x.) = ex.logx. for all i E I if pl l l l

-p= -(a /p)x i for
= o. Thus L f.

. P llE

is a CE 5 function for all P E cP. If SY is also imposed, then f., and hence
l

ex., must be the same for all i.
l

The Nash swf is obtained when p + O, the
Utilitarian swf when p + -1 and the Rawlsian swf when p + co. See Roberts

(1980) for related results in the Arrow tradition of social choice theory.

Alternatively, dropping SY and strengthening HOM to S.INV would imply that

p = O, yielding a whole family of non-symmetric Nash solutions, cf.

Harsanyi and Selten (1972), Kalai (1977b) and Roth (1979b).

It should be noted that the Utilitarian and Rawlsian swf's do not themselves

yield well defined solutions, since their maximizers are not always unique
on the domain considered here. One may then consider single-valued selec-

tions, but this will be at the necessary cost of relaxing either PO or CONT.

For example, keeping PO and dropping CaNT will admit the lexicographic
extension of the Rawlsian swf as shown in Chapter 3.

In the proof of Theorem 4.1, the requirement that the set I of potential
agents be infinite was only used in the proof of Lemma 4.1, which says that
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Pll, CONT and M.STAB imply lIA. If I were finite, the rest of the proof of

the theorem would still go through, as long as III > 3.

In the remainder of this section, it is assumed that the number of potential

agents is at least 3.

We show in Lemma 4.19, which differs from Lemma 4.1 by using B.STAB instead
of M.STAB, that the conclusion of Lemma 4.1 still holds. As part of the

proof, we show that PO, CaNT and B.STAB imply that the restricted solution r
must satisfy M.STAB as well. Since the proof of Proposition 4.3 makes no

use of M.STAB, this result strengthens the only if-part of Theorem 4.1 in
two ways - first, by reducing the minimum number of potential agents from

infinite to finite, and second, by weakening M.STAB to B.STAB.

We begin by introducing some new notation and a dual version of the axiom of

ILA which will be useful for the proof of Lemma 4.19.

Given a solution F, Q £ ~ and given T £ EQ, recall from chapter 2 the defi-

nition of BF(T) as the set of F-bilaterally stable points of T. BF(T) is

the set of points x e T such that for all P,Q e cP with pc Q and IPI = 2 and
for all S P if S t; (T) then F (5) Given P e ~ and a subset A of£ E , = = xp•
@.p, cl(A) denotes the closure of A.

Given P £ ~, and S,SI £ r.P, say that Sand 51 coincide in a neighbourhood U

if snu = SInu. Given x £ ~P, if there exists a sequence {SU} from EP con-
+

U Usuch that for all u, S and SI coincide in a neighbourhood Uverging to S,
of x, say that 5 coincides with 51 at x.
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The following axiom, which is illustrated in Figure 4.11 below, is a gener-
alization at an axiom due to Thomson (1981):

Independence of Irrelevant Expansions (IrE): For all P E CP, for all

S,S' E ~P, if SiC Sand S coincides with S' at F(S') then F(S) = F(S').

In Thomson's original version of this axiom, the sets S and S' were assumed
to have a smooth weakly Pareto-optimal boundary, and the notion of S coin-
ciding with 5' at F(S') was formulated in terms of supporting hyperplanes to
5 and S' at F(S'). The formulation adopted here allows one to dispense with
the smoothness assumption.

= F{S')

S'

Figure 4.11

The axiom of IlE

As pointed out by Thomson (198Ib), IIE is essentially the dual of IIA: IrE
says that if, from a given choice problem S', the set of feasible alterna-
tives is expanded in such a way that the new problem S is locally identical
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to S' at F(S'), then the solution outcome should not change. It has been

showed by lnomson (1981) that ILE can replace ILA in Nash's characterization

of his solution, i.e. that the two axioms are equivalent when imposed in

conjunction with PO, SY and S. I NV. Here we show that they are equivalent

when imposed in conjunction with CONT.

Lemma 4.15: A continuous solution F satisfies IlA if and only if it satis-

fies IlE.

Proof: We first show that if F satisfies IlE and CaNT, then it satisfies

lIA. Let P e CP and S,S' e EP be given such that S' c Sand z:: F(S) eS'.

UFor all U > 1, let U be an apen ball with center z and radius 1/u, let

VU:: sncl(Uu), SU :: cCh{S'UVU}, and note that Sunuu= 91Uu and S' c sUe S.

We claim that F(Su) = z for all u. To see this, let U be given, and for

all a e [0,1) let Sea) :: aSu + (1-a)S and z(a) :: F(S(a)). Since SUc Sand

Sunuu = snu", then Sea) c Sand S(a)nUv = sou" for all a e [0,1). The proof

that z(1) = z is by contradiction. If z(1) :I: z , then z(a) E: UV-......{z}for some

a e (0,1) since z (O) = z e UU and since the function z(·) is continuous by

continuity of F. Because z(a) E: UVand Sea )nuu = sou", it follows by IlE

that F(S) = z(a), a contradiction, since z(a) * z = F(S).
uHence F(S ) = z.

u uBecause F(S ) = z for all u and S + S' as u + a>, it follows by CaNT that

F(S') = z = F(S). Thus, F satisfies ILA if it satisfies ILE and CONT.

Next, we show that if F satisfies CaNT and lIA then it satisfies IlE. Let

P e CP and S, S' e EP be gi ven such that S' c S and such that S coincides with

S' at z :: F(S')~ Then there exists a sequence {SV} from EP converging to S

and a sequence rUV} of neigbourhoods of z such that Svnuv= s'nuv for all v.



- 122

We claim that F(Su) = z for all u. To see this, let u be given, and for all

a: E: [0,1], let Sea:) _ a:Su + (1-a:)S' and z(a:) :: F(S(a:». Since Sunuu =

snu", then S(a:)nUu = S'J1Uu for all a: E: [0,1]. The proof that z(l) = z is

by contradiction. If zf L) :1= z , then z(a:) E: UU--{z} for same a: E: (0,1), since

z(O) = z E: UU and since the function z(·) is continuous. Let Sil :: S(a)f)S'.

Because Z E: s-nu", z(a:) E: S(a:)nUu and S(a:)nuu= snu", it follows that z and

z(a:) both belong to Sil. Then by IlA applied twice, F(S") = z(a:) and F(S") =
z , a contradiction, since z(a:) :1= z. Hence F(Su) = z ,

Because F(Su) = z for all U and SU + S as U + CD, it follows by CONTthat

F(S) = z = F(S'). Thus, F satisfies ILE if it satisfies ILA and CONT.

QED.

Lemma 4.16: If F satisfies PO, CONTand B.STAB, then

(l) for all Q c:; a:>, F satisfies M.STAB on l:~, and

Q(2) for all Q E: a:> with IQI ~ 2, for all T E: E~, BF(T) is a singleton.

Proof: For the purpose of the proof, the convention is adopted that

{O} E: l:~ and F( {O}) = O for all P E: a:>. If the lemma holds for this extension

of F, then by definition of M.STAB and BF(·), it holds for F as well.

We must show that (l) and (2) hold for each Q-component of F. The proof is

by induction on the number of elements in Q. Clearly, the desired conclusion

holds for IQI ~ 2. Suppose it holds for IQI = n > 3 and let Q E: IP with IQI =
n + l be given. We claim that
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(i) For all T e E~, for all x e: BF(T), for all P c Q with IPI < IQI,

x
F ( tp ( T) = xp,

To see this, let T, x and P satisfy the hypothesis of (i). If IPI = 1, then

F(t~(T» = xp by PO, so assume that IPI ~ 2. Since x e BF(T), then

xp e BF(t~(T), which is a singleton by induction hypothesis (2). B.STAB

then implies that F( t~ (T) = xp' thus (i) holds. This proves (1) as well,

for if F(T) = x then x e: BF(T) by B.STAB.

Next, we show that (2) holds for this Q.

and suppose that BF(T) contains a point y *

i e: Q, where Qi == Q<,{i}. Moreover, z,y e

The proof, which is by contra-

Let T e: E~ be given, let z == F(T)

z. Then y . e: BF( tY. (T) for all
Ql Ql

POeT) by PO. Let n be the normal

diction, is illustrated in Figure 4.12.

to POeT). For all o: > O, let z(o:) == F(o:T), and for all i e Q, let ~i(o:) ==

{x e: PO(o:T) I n .x . > n .y .} and Ri(o:) == {x e: PO(o:T) In .x . < n .y .}.
Q1 Q1 = Q1 Ql Ql Ql = Ql Ql

Q
Note that z(l) = z and that o:T = {x e lR+ I n x ~ o:ny} for all o: > O since

i -i z(o: ) y
y e POeT) • If z(o:) e ~ (o:) nK (0:), then t. (o:T) = t . (T) • Therefore, since

Ql Ql

Y . £ B(tY.(T», it follows by (1) that F(tZ~O:)(o:T» = y .• Thus, by M.STAB,
Ql Ql Ql Ql

it follows that

(H) For all IX > O, for all i £ Q, if z(o:) e: Ki(o:)nRi(o:) then z . (o:) =
Ql

Because IQI ~ 3, there exists Pc Q with IPI = 2 such that zp ~ yp or

zp ~ yp. Suppose first that zp ~ yp. We prove by contradiction that

z(o:) e n Ri(o:) for all o: ~ 1. Consider the path (J == z([1,oo» traced out by
iE:P

z(·) as o: increases from 1. PO implies that z(o:) e: PO(o:T) for all o: and CONT

implies that (J is a continuous curve. z(o:) starts in n Ri(1) for a: = 1
i€P
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exists å > 1 and j E P such that z(å) E

n Ki (a) for all a ~ l, then there
ieP
( n Ri (a» n Kj(tX). This is the
iEP

situation represented in figure 4.12. Let i be the other member of P. It

since zp > YP' and if it does not st~y in

follows by (ii) that z .(a) = y .• Because z(1) and y belong to POeT), this
QJ QJ

implies that a > 1, otherwise z(1) = y, contrary to assumption. Since

z .(a) = y . and a > 1, it follows that z.(a) > y .•
QJ QJ J J

But then n .z .(a) >
Q~ Ql.

n .y . since z(a) E PO(aT), and therefore z(a) t Kj(a), a contradiction.
Ql. Ql.

-i
Thus, z(cc) E: n K (c ) for all IX; > 1, as claimed.

ieP

This completes the proof for the case where zp ~ yp' because n KiC,x;) is
iEP

empty for sufficiently large « , If zp ~ yp' then we use the argument in the
i

previous paragraph to show that z(a) E n K (a) for all a E: (0,1], and obtain
h:P-

i
a similar contradiction by the fact that n K (a) is empty for a sufficiently

h:P-

close to O. QED.
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Xo---p

p = {;,j}

x .
J Figure 4.12

The proof of Lemma4.16

Lemma4.17: If F satisfies PO, CONTand B.STAB, then for all Q F.: @ and all

T1 ,T2 e EQ, if there exists T e E~ such that T, T1 and T2 coincide in a
1 2 1

neigbourhood U of F(T ), then F(T) = F(T ) = F(T ).

Proof: Note first that since F satisfies PO, CONTand B.STAB, it follows

by the same argument used to prove Lemma 4.1 that each two-person component

ofF must satis fy IIA. Next, let Q, T, T1, T2 and U satis fy the hypothesis

of the present lemma, and let z = F(T1). We first show that F(T) = z also.

Since T is a budget problem that coincides with T1 in U, it follows that

1 1TeT and z € T. Moreover, z € BF(T ) by B.STAB. Because each two-person
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component of F satisfies IlA, it satisfies IlE by Lemma 4.15. Consequently,

z ~ B(T). Since T is a budget problem, it follows by Lemma4.16 that BF(T)

is a singleton, hence by B.5TAB, F(T) = z.

2Nex t , we show that F(T ) = z , To this end, define for each a e [0,1] the

problem rca) :: aT2 + (1-a)T and set z(a) :: F(T(a». We prove by contra-

diction that z(1) = z. If z(1) :f: z , then z(a) e lJ'.{z} for some a e (0,1)

since z(O) = z € U and since the function z(·) is continuous. Because T and

T2 coincide in U, so do T and rca), and therefore F(T) = F(T(a» = z(a) by

the same argument used to prove that F(T) = F(T1). Since z(a) :f: z = F(T),

2this is the announced contradiction. Hence z = F(T ).

QED.

Lemma 4.18: IfF satisfies PO, CONTand B.STAB, then for all P € a> and all

5 t: l, there exists 51 ~: 1:: such that 5 c 51 and F(SI) e 5.

Proof: We use a fixed-point argument, and the mapping is illustrated in

F . 4 13 L t P /D d 5 P be vei L t b . t . /DP h~gure • • e e li an € E e qiven, e a e a po~n ~n \1' suc++
that x < a for all x € 5 and let A :: cch] a}. We construct a correspondence

G from the unit simplex tl to itself as follows:

For all n € ~P, let H(n) be the unique hyperplane with normal n supporting

5 at some point in WPO(S), and let S(TT.):: cch{H(n)nA}. Next, let gen) be

the poi nt o f intersection between WPO(5) and the line segment [O, F(SeTt) ) ]

and de fine GCf!) to be the set of points
PTtl € ~ such that ni is the normal

to a hyperplane HI supporting 5 at get). Clear ly, the function 5(·) is

continuous. Since 5 c S(1t) for all Oj, € l....P, it follows by PO and comprehen-

siveness of 5 that gen:) exists and is unique. Moreover, g is continuous
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since 5(·) and F are continuous. Therefore, since 5 is convex then G is

upper hemi-continuous and convex-valued. By Kakutani's fixed-point theorem,

there exists -it E ÅP such that -it E G(i).

Since i E Geit), the hyperplane H(i) supports 5 at g(;t). This in turn im-

plies that F(S(i» = z = g(i). It follows by PO that i > O, otherwise z

would belong to the boundary' of A, which is impossible since A = cch] a}

and a > x for all XES. Let 5' - cch{H(i) nal}. 5' is a well defined
+

budget problem since i > O; moreover, 5' and sei) coincide in a neigbourhood

of z since z < a. Lemma 4.17 then implies that F(S') = z E S.

QED.

H' "

r-------~-------------------------a
A

S( rr )
H (iT)

-,

Figure 4.13

The proof of Lemma4.18
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Lemma4.19: If a solution satisfies PO, CaNT and B.STAB, then it satisfies

IlA.

Proof: Let F be a solution satisfying PO, CaNT and B.STAB. Let P E: rP and

5',5 E rP be given such that 5' c 5 and F(S) E: 5'. We must show that

F(S') = F(S).

By Lemma4.18, there exists 5" € E~ with 5 c 5" and z _ F(S") s S. We claim

that F(S) = z also.

For all u ? 1, let u" be the closed ball in ol with center z and radius

1/u • Let VU == s-nu" and SU == cch] SUVu}. Because SU and 5" coincide in UU

for all u, it follows by Lemma 4.17 that F(Su) = z for all u, and by CaNT

that F(5) = z , since SU -+ 5 as u -+ CD This proves the claim.

Since 5' c 5 c S" and F(S") = F(S) E: 5', the argument in the previous para-

graph may be applied to 5' as well, and therefore F(S') = z = F(S).

QED.

The main result of this section can now be stated:

Theorem 4.2: Suppose the number of potential agents is at least 3. A

solution satisfies PO, CaNT and B.STAB if and only if it is a CRS solution.

Proof: Because M.STAB implies B.STAB, it follows by Proposition 4.1 that a

CRS solution satisfies PO, CaNT and B.STAB.
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To prove the converse, let F satisfy PO, CONT and B.STAB. Then F satisfies

IlA by Lemma 4.19. Moreover, the restricted solution r satisfies
M.STAB by Lemma 4.16, WARP by Lemma 4.2 and BOUND by Lemma 4.3. By Prop-

osition 4.2, r has an additively separable numerical representation which,

by the second paragraph in the proof of Proposition 4.3, represents F as
well.

QED.
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4.5 Concluding Remarks

Although conceptually, the axiom of Bilateral Stability does not seem to

have much to do with collective rationality, it turned out to have quite

strong implications in that respect. What then does a bilaterally stable

solution have in common with a collectively rational one, that can explain

this fact?

Intuitively, both types of solutions are based on some version of what may

be called "the principle of pairwise comparisons." Consider first a collec-

tively rational solution. The social ordering corresponding to such a sol-
ution provides a way of determining the solution outcome to all problems

involving any pair of alternatives, and a utility vector z is the solution
outcome to a particular choice problem S only if z agrees with the solution
outcome to any subproblem of S involving a pair of alternatives {z,x}. This

is a requirement of a similar type as the one expressed by B.STAB: The

generalized solution concept that is used here provides a way of solving all
choice problems involving any pair of agents, and B.STAB says that a utility

allocation z is the solution outcome to a particular problem S only if z

agrees with the solution outcome to any subproblem of S involving a pair of

agents {i,j}.

Our characterization result, in particular theorem 4.2, shows that the
second version of this principle is closely related to the first one,

although, as shown in section 4.4, there is no direct implication.
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