
1 
 

 

                                                                       

        

Thesis for the Master’s degree in 
chemistry 

Nebiyu Abshiru 
 
 
 

Oxidative footprinting and 

mass spectrometry based 

structural characterization of 

mAb 14F7-NeuGc GM3 

ganglioside complex. 
 
 

60 study points 
 

DEPARTMENT OF CHEMISTRY  

Faculty of mathematics and natural sciences 

UNIVERSITY OF OSLO 05/2010  



2 
 

                                                              

Acknowledgements 
 

I would like to express my deepest gratitude to my supervisor, Prof. Ute Krengel, for accepting 

me into this interesting project. Her guidance and supervision throughout the duration of my 

thesis enabled me to work enthusiastically. 

 

I am also heartily thankful to my co-supervisors Prof. Robert Woods and Dr.Wolfgang Egge- 

Jacobsen, who allowed me to work in their lab throughout the project. I am thankful to all the 

group members in Rob’s lab at the CCRC, University of Georgia, for all the help they provided 

me. They made my stay in Georgia pleasant experience. 

 

I also want to express my sincere thanks to lab members in Oslo, Gabriele, Andre, Vincent, Al 

and Anders (IMBV) for proving themselves helpful and enjoyable fellows. 

 

A big thank you goes to my friends and families for the encouragement and support during all of 

these years. 

 

Last but not least I would like to acknowledge the Norwegian quota scheme for accepting my 

application and for the financial support 

 

 

 

 

 

 

 

 



3 
 

Abstract 
 

The characterization of antibody-antigen interactions provides crucial information on the 

structural basis of the specificity of binding of antibodies to their target antigens. In this project, 

an attempt was made to characterize the binding interactions between a monoclonal antibody 

(mAb) designated as 14F7 and NeuGc-GM3 ganglioside antigen. The 14F7 strongly recognizes 

the ganglioside antigen on human melanoma and breast tumors. The crystal structure of the 14F7 

Fab fragment has been solved by X-ray crystallography and binding to the ganglioside predicted 

by docking and MD simulations. However, despite significant efforts, so far no experimental 

structural analysis of the 14F7-NeuGc-GM3 complex is available. Such information would be 

extremely valuable for developing new and improved antibodies for cancer immunotherapy.  

Therefore, in this thesis, an alternative approach was taken to get experimental data. The binding 

interactions within the complex were examined using a newly developed MS-based oxidative 

footprinting technique. Briefly, the antibody sample, with and without the ligand, was exposed to 

an excimer laser source in order to oxidize solvent accessible amino acid side chains. The 

oxidized samples were then digested with trypsin. Finally, the tryptic fragments were analyzed 

by MALDI-TOF MS and ESI-LTQ-FT MS. 

 
Sequencing of the MS/MS spectra and database searching identified two residues , Trp325 of the 

VL-CDR3 and Met112 of the VH-CDR3, that were oxidized in both the free and ligand-bound 

14F7. The percentages of oxidation of the peptides containing the residues were quantified based 

on the areas under the selected ion chromatograms of the oxidized and non-oxidized forms of the 

peptides. The data suggest that the extent of oxidation of both peptides is significantly lower in 

the ligand- bound 14F7. Moreover, an analysis of the spectral intensities and side chain solvent 

accessibilities confirmed that residues Met112 and Trp325 are protected from radical oxidation 

upon ligand binding to the antibody. A new docking model of the complex is presented that is 

consistent with all experimental data. The combined result, in contrast to the previous model, 

suggests that the ligand binds in close proximity to the light chain, in addition to binding to the 

heavy chain CDR3 of the antibody. This information can now be used for further development  

of anti-tumor antibody with improved potency and affinity for target tumor antigens.   
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Abbreviations 
 
 
AB Applied biosystems 

CCRC Complex carbohydrate research center 

CDR Complementarity determining region 

CID Collision induced dissociation 

CIM Center for molecular immunology (Havana, Cuba) 

Da Dalton 

DNA Deoxyribonucleic acid 

DTT Dithiothreitol 

ECD Electron capture dissociation 

EDTA Ethylenediamine-tetraacetate 

ELISA Enzyme-linked immunosorbent assay 

ESI Electrospray ionization 

ETD Electron transfer dissociation 

ExPASy Expert protein analysis system 

FTICR Fourier transform ion cyclotron resonance 

GM3 The ganglioside: Neu5Ac(Gc)α3Galβ4Glcβ1Cer 

IgG Immunoglobulin G 

LC Liquid chromatography 

LTQ Linear trap quadrupole 

mAb Monoclonal antibody 

MALDI Matrix assisted laser desorption/ionization 

MS Mass spectrometry 

MS/MS Tandem mass spectrometry 

m/z Mass to charge ratio 

NMR Nuclear magnetic resonance 

Neu5Ac N-acetylneuraminic acid 

Neu5Gc N-glycolylneuraminic acid 

N-14F7 Non-oxidized 14F7 mAb alone 

O-14F7 Oxidized 14F7 mAb alone 
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OL-14F7 Oxidized ligand-bound 14F7 mAb 

PMF Peptide mass fingerprinting 

pNPP para-nitrophenyl phosphate 

PTM Post-translational modification 

QIT Quadrupole ion trap 

SASA Solvent accessible surface area 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SIC Selected ion chromatogram 

TIC Total ion chromatogram 

TOF Time-of-flight 

TBS Tris buffered saline 

TBST Tris buffered saline – Tween 20 

UV Ultraviolet 

3-D 3-dimensional 

VH Variable heavy chain 

VL Variable light chain 

r.m.s.d. Root mean square deviation/distance 
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1. INTRODUCTION 

 

 1.1 Cancer  

 
Cancer is one of the major public health problems in our world. In the United States only, a total 

of 1.5 million cases and 0.5 million deaths from cancer were projected to occur in 2009 [1] . Of 

the 57% of the estimated new cancer cases in women in the year, breast cancer alone was 

expected to account for 27%. The disease is characterized by uncontrolled multiplication of cells 

to form lumps of tissue called tumors [2]. Under normal conditions, rapid cell divisions occur in 

our body when there is a need to replace damaged cells or during wound healing. For instance, 

the lymphoid tissue generates enormous amounts of white blood cells when there is a need to 

fight infections [3].  However, cancerous cells tend to grow and divide rapidly without a needful 

signal by other cells. The abnormal growth or division can occur in two ways [4]. In one way, 

the cells multiply aberrantly without spreading to adjacent tissues. This forms a solid tumor 

called benign tumor. The second and more dangerous one is known as malignant tumor. Unlike 

the benign tumor that normally remains in one spot, a malignant tumor spreads throughout the 

body to conquer as many tissues as possible.   

 
Some of the known causes of cancer are genetic abnormalities during DNA replication (or cell 

division), carcinogens and infectious diseases. Gene mutations that may occur during faulty 

DNA replication can cause abnormal cell divisions leading to cancer. Mutations that cause 

cancer can be inherited from our parents or sometimes they are due to environmental factors 

such as carcinogenic substances like asbestos, tobacco and toxic chemical compounds.  

 
Tumor cells usually display special molecules called antigens on their outer surface [5-6]. Our 

immune system may recognize the cells via these signal molecules. Generally, the tumor 

antigens are absent in normal cells (or they exist in a relatively lower concentration). However, 

in individuals bearing a tumor, the concentration of the antigens aberrantly increases in 

concentration [7]. The immune system fails to respond effectively despite this unexpected rise in 

the concentration of the antigen on the surface of the tumor.  Moreover, it fails to discriminate 

between the tumor and the normal cells. 
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Thus, boosting the potency of our immunity by generating substances outside our body, which 

specifically target the tumor-associated surface antigens, is currently a promising method of 

treatment. Other treatment methods such as chemotherapy and surgery are also practiced. In 

chemotherapy, pharmaceutically produced drugs are used to prevent tumor cells from damaging 

adjacent cells or from growing rapidly by dividing. 

 

1.2 Cancer immunotherapy based on monoclonal antibodies  

 

Cancer immunotherapy is a treatment method by which the potency of our immune system is 

enhanced against tumor surface antigens [8]. Generally, there are two classes of cancer 

immunotherapy: Active immunotherapy and passive immunotherapy. Active immunotherapy 

aims at the induction of patients’ immune responses by immunization with tumor associated 

antigens or anti-idiotypic antibodies. In passive immunotherapy, the biological functions of 

monoclonal antibodies against tumor antigens are utilized to enhance the immune response. In 

general, antibody-based cancer immunotherapy is a form of passive immunotherapy whereby 

antibodies generated outside the body are used to target tumor associated surface antigens [9]. 

 

1.2.1 Monoclonal antibodies 

 

Antibodies are proteins made by certain white blood cells (B cells) in response to antigens [10]. 

They tag the antigen for destruction by the immune system. Structurally, they are ‘Y’ shaped 

molecules composed of four polypeptides – two identical heavy chains each containing one 

variable (VH) and three constant (CH1, CH2 and CH3) domains and two light chains each 

containing one variable (VL) and one constant (CL) domain (see Figure 1.1) [11]. Proteolytic 

cleavage of antibodies by papain releases three fragments- one Fc (Fragment, crystallizable) and 

two Fab (Fragment, antigen binding) fragments. Within the variable domains there are 

hypervariable regions called complementarity-determining regions (CDR). These regions 

determine the antibody’s specificity and affinity for binding an antigen [12]. 
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Figure 1.1 Antibody structure (adapted from Ref. [13]). Picture made with ChemBioDraw Ultra 12 

[14].  
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Antibodies generated from the same cell line by fusion of an antibody forming cell (such as 

mouse spleen cell) and a cancerous cell (such as multiple myeloma cells) are known as 

monoclonal antibodies (mAb) [15]. A given spleen cell isolated from mice produces a unique 

antibody and grows only for few days in culture. However, fusion with a myeloma cell that can 

divide indefinitely produces a hybridoma (see Figure 1.2). The hybridoma cell is capable of 

generating multiple copies of a unique monoclonal antibody specific for the antigen of interest. 

The mAbs are generated from a single (mono) clone (the hybridoma cell) hence the name 

monoclonal antibody. Until now, several mAbs that can uniquely detect tumor associated 

ganglioside antigens have been generated [16-18].  

 

 

 

 

 
Figure 1.2: A schematic diagram showing the generation of monoclonal antibodies from a 

hybridoma cell line. (Picture made with ChemBioDraw Ultra 12) 
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1.3 Gangliosides as target tumor antigens 

 
Some biological macromolecules - proteins, carbohydrates and lipids can covalently combine to 

form hybrid macromolecules. The combination of a carbohydrate and a protein or lipid forms a 

glycoconjugate. There are three types of glycoconjugates: Proteoglycans (composed of 

heteropolysaccharide and polypeptide), glycoproteins (composed of protein and carbohydrate) 

and glycolipids (hybrid of lipid and carbohydrate). Gangliosides are a class of membrane-

associated sialic acid-containing glycolipids [19]. They contain a special type of lipid component 

called a sphingolipid and a sialic acid-containing carbohydrate component. Gangliosides play an 

important role in cell growth and immune recognition and serve as surface membrane receptors 

[20].  

 

The sialic acid moiety in membrane-associated gangliosides acts as the specific site for 

molecular recognition on cell surfaces. In the past, various types of sialic acids have been 

detected in different parts of our cells including in cancerous cells. The two most abundant sialic 

acids found in animals are N-acetyl (NeuAc) and N-glycolyl (NeuGc) neuraminic acids [21].  

The former one is found in human tissues, whereas Neu5Gc, which is structurally very similar to 

the N-acetylated form (see Figure 1.3), is generally absent in normal human tissues [22]. NeuGc-

GM3 and NeuAc-GM3 gangliosides are examples of glycosphingolipids containing these sialic 

acids. Irie et al. reported that the minimum amount of an immunostained N-glycolyl GM3 

ganglioside detected in melanoma tissue is 5 nanogram [22]. On the other hand at most 5 

picogram of the ganglioside is detected in a milligram of normal human tissue. Moreover, an 

increased amount of the ganglioside was observed in human breast cancer [23]. These findings 

led to the idea that the N-glycolyl variant of the GM3 ganglioside can be used as a target antigen 

in antibody-based breast and melanoma cancer immunotherapy. 
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 Figure 1.3: The structure of the N-glycolyl (NeuGc) and the N-acetyl (NeuAc) GM3 gangliosides 

(Repeated from Ref. [24]). The gangliosides differ only by a single oxygen atom in the R-group of 

the N-glycolyl form. 
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1.4 Antibody-antigen interactions 

 

Proteins accomplish their task by interacting with other molecules - ligands. A ligand can be 

another protein, a carbohydrate, a nucleic acid or it can be a simple molecule such as oxygen. 

The interaction between an antibody and an antigen is a typical example of a protein-ligand 

interaction. The antigen-specificity of antibodies is the basis for the immune system’s ability to 

recognize several disease-causing antigens. The variations in the amino acid sequences in the 

variable (VL and VH) domains of the Fab region provide the basis for the antigen-specificity of 

the antibodies [25]. Each of these domains consists of three CDRs (VL CDR1, CDR2, CDR3 and 

VH CDR1, CDR2, CDR3) at their tip, ready to bind a target antigen. Potential hydrogen bonding 

interactions between the residues within the CDRs and the antigen hold the antibody-antigen 

complex stable. In addition, complementarity of the surface of the molecules and several van der 

Waals interactions contribute for the stability of the complex. A review of antibody structures by 

Davies et al. [11] shows that aromatic residues such as phenylalanine, tyrosine and tryptophan 

indeed are often exposed to solvent and contribute large areas to the antigen-binding surface of 

the CDRs.                        

                   

The three-dimensional structures of a large number of antibody-antigen complexes have been 

determined [26-27]. These complex structures provide us with a general structural picture of the 

antigen-binding sites of antibodies. In general, the CDR loops in the VH and VL domains are 

clustered to form the binding sites. In addition, the amino acid side chains of the CDRs form 

continuous binding surface with protrusions and depressions. In most of the Fab-antigen 

complex structures, the binding interactions involve all six CDRs, whereby each CDR 

contributes at least one residue to the interaction with the antigen [28-29]. Furthermore, ligand 

binding to an antibody often does not cause a large conformational change to the structure of the 

complementarity determining sites [24].  

In this project, in particular, an attempt is made to characterize the binding interactions between 

a unique anti-tumor antibody, 14F7, and the N-glycolyl GM3 ganglioside. This will be discussed 

in detail in the following section.  
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1.5 Aim of the study 

 

The primary focus of this study is on a monoclonal anti-tumor antibody called 14F7. This 

antibody was obtained from hybridoma cells prepared by combining the spleen cell and 

myeloma cell lines of Balb/c mice, immunized with a vaccine containing N-glycolyl GM3 

ganglioside [30]. Reactivity tests of the 14F7 mAb against several gangliosides showed that the 

antibody did not react with NeuGc containing gangliosides (for instance NeuGc-GM1, NeuGc-

GM2), except NeuGc-GM3. In addition, 14F7 is able to discriminate between the N-glycolyl and 

N-acetyl forms of GM3 and specifically binds the N-glycolylated GM3 ganglioside. The fact that 

the structure of the N-glycolyl GM3 differs from the N-acetyl GM3 only by a single oxygen 

atom (as shown previously in Figure 1.3) makes the 14F7 specificity very unique. In vitro tissue 

specificity tests showed that the antibody recognizes NeuGc-GM3 ganglioside antigens 

expressed on breast and melanoma tumor sections. In vivo, the anti-tumor effect of the antibody 

was demonstrated in mice myeloma cells [31]. The antibody effectively inhibits myeloma tumor 

growth. Furthermore, clinical trials with the 14F7 mAb in human cancer patients are in progress, 

with promising results (E. Moreno, CIM, personal communication). 

 

The crystal structure of the 14F7 Fab has been solved at 2.5 Å resolution by the Krengel group 

[24]. The conformations of the six CDR regions of the Fab fragments are shown in Figure 1.4A. 

Because the antibody has so far resisted crystallization with its ligand, docking and molecular 

dynamics simulations were used to predict the interactions between the 14F7 Fab and the 

terminal disaccharide NeuGc(α2-3)Galβ of the N-glycolyl GM3 ganglioside. In the model, the 

saccharide is exclusively bound to the heavy chain CDR regions of the 14F7 Fab, through a large 

number of hydrogen bonding interactions (see Figure 1.4B). Six out of eleven potential hydrogen 

bonding interactions between the disaccharide and the Fab fragment are predicted to be with 

amino acids in the VH-CDR3 region [24]. A phage display and light-chain shuffling analysis 

indicated that the specificity of 14F7 resides entirely in its VH region, as the VL domain could 

be extensively mutated without compromises in antibody binding properties [32]. In contrast, 

two site-directed mutations of VH Asp52 to valine or isoleucine were shown to completely 

abolish binding to the ligand, pointing to a critical role of this residue for ligand binding.   
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The target of the present study was therefore to provide new detailed experimental data on the 

binding interactions within the 14F7-NeuGc-GM3 complex. The 14F7 mAb was analyzed by 

oxidative footprinting and mass spectrometry in the free and bound state. Characterization of any 

possible interactions that may exist between the CDRs of the 14F7 mAb and the NeuGc-GM3 

ganglioside was the focus of this project. The levels of oxidation of CDR peptides containing 

modified residues were examined in the free and ligand-bound 14F7. The regions participating in 

the interaction with the ligand, as compared to the free 14F7, were expected to have a reduced 

level of oxidation.  

The study, in addition to providing new experimental evidence on the binding interactions in the 

complex, contributes to the development of the footprinting and mass spectrometry techniques 

utilized in this project.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
  
 
 
 
 

 

 

 



 

 

      Figure 1.4: Fab 14F7. (A) Crystal structure

 

 

 

 

 

rystal structure, (B) 14F7-NeuGc-GM3 complex model 
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model [24]. 
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2. METHODS: A BRIEF BACKGROUND 
 

The structure of a protein-ligand complex is studied for various purposes. First, it provides us 

with a three-dimensional view of the binding interactions in the complex. Second, based on the 

structure of the complex it is possible to predict the molecular  recognition mechanism, catalysis 

and regulatory functions of the proteins [33]. Several methods are being used for determining the 

structure and dynamics of protein-ligand complexes. X-ray crystallography and NMR are by far 

the leading methods. X-ray crystallography is providing a high resolution and detailed structural 

solution for vast number of proteins (and peptides) that have pharmaceutical and biological 

importance [34]. NMR has been a method of choice for in-solution structural and dynamic 

studies of protein-ligand complexes, although sample analysis is mostly limited to lower 

molecular weight biomolecules [35]. In this project, a newly developed MS-based oxidative 

footprinting technique is used to study the interaction between the anti-tumor antibody 14F7 and 

the N-glycolyl GM3 ganglioside.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

2.1 Mass spectrometry (MS) 

 
A mass spectrometer is an analytical tool that measures the mass-to-charge ratio (m/z) of ionized 

(charged) analytes, based on the response of the ions to applied electric and/or magnetic fields. 

This analytical tool is mainly used to determine accurate molecular weight of gas-phase ions of 

organic and biomolecules [36]. The result from a mass spectrometric analysis of a sample is 

obtained in the form of mass spectra. Each mass spectrum is a plot indicating the m/z value of a 

molecular ion (or its fragments) versus the relative abundance. The three basic components of 

the mass spectrometry are the ion source, analyzer and detector as illustrated in Figure 2.1. Each 

component is discussed briefly in the following subsection. 

 

The fundamental requirement for a mass spectrometer to determine the m/z values of ions is that 

the analyte should be in the gas phase. As a result, in the past, only volatile molecules were 

amenable to analysis by MS. In the 1980s, the advent of the major soft ionization techniques 

such as electrospray ionization (ESI) [37] and matrix assisted laser desorption/ionization 

(MALDI) [38] enabled the analysis of nonvolatile and thermally labile molecules such as 

proteins and nucleic acids. Since then mass spectrometry has become a method of choice in 

many analytical experiments involving biomolecules. It has greatly revolutionized biological 

science in protein identification and quantitation and localization of post-translational 

modifications. The delicate selectivity, sensitivity and accuracy of MS together with the ability 

of 2-D based SDS-PAGE to separate complex protein mixtures make it a forefront analytical tool 

in the field of proteomics. Mass spectrometry core facilities are now established in many 

research institutes in most parts of the world.              

 

The other area where MS has achieved a significant development is the structural 

characterization of macromolecular complexes. Together with other methods such as oxidative 

footprinting and hydrogen-deuterium exchange, mass spectrometry has enabled the study of the 

structure and dynamics of protein-ligand complexes. This has a special significance for drug 

design in pharmaceutical industries. Mass spectrometry is being extensively used in the 

discovery and assay of biomarkers in biopharmaceuticals, in medicine and forensic sciences [39-

40].  



 

 

 

 

 

 

Figure 2.1: Basic components of a mass spectrometer

Prof. I. Jonathan Amster, University of Georgia, U.S.A.)

 
 
 
 
 
 
 
 
 

Basic components of a mass spectrometer (picture repeated from the MS lecture by 

, University of Georgia, U.S.A.) 
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2.1.1 Basic components of a mass spectrometer 

 

2.1.1.1 Ion source 
 

Ion source is the component of a mass spectrometer where ionization of analyte molecules takes 

place. There are two types of ionization methods: Soft ionization and hard ionization. The hard 

ionization method, in addition to forming ions of the molecules, results in breaking of bonds. It is 

suitable for ionization of thermally stable compounds. The soft ionization method allows 

formation of ions of analyte molecules without causing fragmentation. The two most commonly 

used soft ionization techniques for biomolecules are MALDI and ESI.  

 

Matrix assisted laser desorption/ionization (MALDI) is a soft ionization technique which 

enables the analysis of high-mass ions of biological macromolecules. The original research 

report for the development of MALDI was published in 1988 [41], for which K. Tanaka was 

awarded the Nobel Prize in chemistry in 2002 [42].  Previously, plasma desorption (PD-MS) [43] 

and fast atom bombardment (FAB) [44] techniques were used to effectively ionize analytes with 

relatively lower molecular mass. These days, analytes having a molecular mass greater than 300 

kDa can be ionized using MALDI [45]. Laser desorption of biomolecules such as nucleic acids, 

peptides and proteins most commonly generate singly protonated ions (see Figure 2.2a). In 

practice, sample molecules should be co-crystallized with a volatile matrix to minimize 

fragmentation during laser exposure. The quality of the MS spectra largely depends on the 

choice of matrix and the composition of the matrix/analyte mixture. Commonly used matrices 

include α-cyano-4-hydroxy cinnamic acid (α-CHCA) [46], 3,5-dimethoxy-4-hydroxy cinnamic 

acid (sinapinic acid) [47] and 2,5-dihydroxybenzoic acid (DHB) [48]. The α-CHCA is suitable 

for peptides with masses less than 10 kDa, whereas sinapinic acid is suitable for 

peptides/proteins with masses greater than 10 kDa.   
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Electrospray ionization (ESI) is a soft ionization technique that results in little to no 

fragmentation of analyte molecules.  The ionization of large molecular weight biomolecules was 

a major challenge until the 1980s. Then, for the first time J. B. Fern described the generation of 

ions using an electrospray method [37]. He won the Nobel Prize in 2002 for this outstanding 

achievement in the field of chemistry.    

  
ESI allows liquid droplets of analytes to be sprayed via a capillary tube into a mass spectrometer. 

In typical ESI, the analyte is dissolved in a mixture of polar (such as formic acid) and volatile 

(such as acetonitrile) organic solvents. Then, it is sprayed into an electric field generated between 

the tip of the spraying capillary tube and a counter electrode. The electric field helps to form 

highly charged liquid droplets and keeps them from freezing. The charged droplets are then 

evaporated into the atmosphere in the presence of a drying gas such as nitrogen. The gas passes 

across the tip of the spray needle, thereby evaporating the solvent molecules leaving a solvent-

free charged analyte with a diminished size. The decrease in droplet size in turn results in 

increased repulsive force between neighboring like charges in the droplet. When the repulsive 

force between the charges reaches the Rayleigh limit (the maximum repulsive force that can exist 

between like charges before they overcome cohesive forces), they disintegrate into smaller 

droplets due to the effect known as ‘coulombic explosion’. This process generates ions with 

different mass to charge ratio, which directly flow into a mass spectrometer (see Figure 2.3a). 

Moreover, the use of the ESI method produces ions with multiple charges, thereby enabling the 

determination of the molecular weight of analytes that have a larger mass than the upper mass 

limit of the mass spectrometer. So far, analysis of a protein molecule up to at least 130 kDa using 

ESI method was reported [49]. The different charge states in protein MS are formed due to 

multiple protonation of basic sites (e.g. the NH2 group) in the amino acid sequences.   
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2.1.1.2 Mass analyzer 
 

Mass analyzers are generally central to the technology and most mass spectrometers are named 

after their analyzers. The ions formed by MALDI or ESI are directed to the analyzer for filtering 

according to their m/z ratio. Generally, there are five types of mass analyzers based on the nature 

of m/z filtering [50]. These are magnetic-sector instruments (B, BE), time-of-flight (TOF), 

quadrupole ion trap (QIT), fourier transform ion cyclotron resonance (FTICR) and Orbitrap. 

Each analyzer has its own advantage over the other. The FTICR MS gives a high-resolution mass 

spectra and excellent mass accuracy measurements [51]. It also allows ions of all m/z to be 

detected simultaneously. The Orbitrap is the latest m/z analyzer with high resolving power and 

mass accuracy capabilities [52]. It has a comparable performance to FTICR without the need for 

cryogenic cooling. A TOF mass analyzer filters ions based on the difference in transit time of the 

ions through a field-free hollow tube under extremely high vacuum [53]. Lighter ions fly faster 

in the tube and thus hit the detector earlier than the heavy ones. A review of the methods used to 

improve the resolving power of TOF mass spectrometers is presented in ‘The new Time-of-

Flight mass spectrometry’ [54]. Quadruple ion trap (QIT) mass analyzers are composed of four 

parallel metal rods that have opposing time-varying AC voltages. For a given voltage, only ions 

of a certain m/z ratio are allowed to pass through the quadruple filter. The sensitivity of 

Quadrupole mass spectrometers have been improved in the 3D QIT - manufactured jointly by 

Bruker Daltonics and Agilent Technologies [55].  

 

2.1.1.3 Detector 

The most commonly used detectors in MS are photomultiplier, microchannel plate and electron 

multiplier. After separation of the ions in the mass analyzer, the beam of ions generate a signal, 

which is detected electronically on a detector and stored in a data system together with their 

relative abundance for presentation in the format of an m/z spectrum.  For instance, in Time-of-

Flight mass spectrometers, the time taken by an ion to travel a certain distance in the field-free 

tube and strike a detector is used to calculate the m/z ratio seen in the mass spectrum.  
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2.1.2 Tandem mass spectrometry (MS/MS) 

 

Multiple stage mass analysis of an analyte can be made in either more than one mass analyzer 

aligned in tandem (tandem-in-space MS) or in a single mass analyzer with each process 

separated in time (tandem-in-time MS) [56]. In typical tandem-in-space MS, the first analyzer is 

used to filter precursor ions accelerated from the ionization source. The second analyzer filters 

fragments of selected precursor ions according to their m/z ratio. Tandem-in-time MS analyzers 

have the capability to store ions and analyze them selectively at different times.  In FT-MS, one 

example of tandem-in-time MS, ions within a given m/z range are selected and excited by 

applying a radiofrequency. Due to a combined effect of magnetic and electric fields, the excited 

ions undergo a cyclotron motion (oscillatory motion in Orbitrap) for detection as they pass near 

the detecting electrodes. Once this process is completed, ions can be stored for a later use or can 

be ejected from the analyzer cell [51].  

The configuration of multiple mass analyzers in tandem can be performed in two ways. One way 

is to align the same types of mass analyzers one after the other as in Triple Quadrupole (QQQ) 

mass spectrometer. The other is to align different types of mass analyzers in tandem, thereby 

creating a hybrid mass spectrometer. Examples of commonly used mass analyzers and their 

MS/MS configurations are listed in Table 2.1. 

 

The other feature of tandem mass spectrometers is that they allow dissociation of a precursor ion 

in a specialized sector. This is particularly useful for protein analysis, as they have to be 

fragmented into smaller peptides for sequencing. The three basic ion dissociation methods are 

collision-induced dissociation (CID), electron capture dissociation (ECD) and electron transfer 

dissociation (ETD). Each method is discussed in detail in Ref. [50]. The ions that are subjected 

to fragmentation are referred to as the precursor (parent) ions. The ions that result from the 

fragmentation of each precursor ion are known as the product (daughter) ions. The type of 

product ions formed depends on the level of energy and the type of fragmentation technique 

used.  The CID is by far the leading technique used for peptide dissociation for sequence 

information [57]. Here, precursor peptide ions are filtered in the first analyzer and directed to a 

collision cell where they are dissociated by colliding with a neutral gas such as argon or helium.  
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Table 2.1 Types of mass analyzers and their MS/MS configurations. 

    

Mass analyzers for MS 

MS/MS configurations 

(most common ionization method) 

•  Time-of-Flight (TOF) 

•  FTICR 

•  Quadrupole Ion Trap (QIT) 

•  Ion Cyclotron Resonance (ICR) 

•  Orbitrap 

•  Triple Quadrupole - QQQ  (ESI) 

•  Quadrupole Ion Trap - ITMS  (ESI) 

•  Time-of-Flight/Time-of-Flight - TOF/TOF (MALDI) 

  

Hybrid MS/MS 

•  Quadrupole/Time-of-Flight - QTOF  (ESI) 

•  Linear Quadrupole Ion Trap/FTICR - 

  LTQ-FTMS (ESI) 

•  Linear Quadrupole Ion Trap/Orbitrap-LTQ-Orbitrap  

(ESI) 

 

 

2.1.3 Liquid chromatography/mass spectrometry (LC/MS) 

High performace liquid chromatography (HPLC) has been used for many years as the best 

separation technique for mixtures of compounds. The coupling of this powerful chromatography 

method to the high specificity and very low detection limit of mass spectrometers is ideally 

suited for the analysis of complex samples. An LC/MS system renders three major advantages. 

First, fractions of the complex sample separated in the LC part are directly introduced into the 

mass spectrometer and detected with a high degree of confidence [58]. Second, the volume of 

liquid solvents that is sprayed into the MS can be kept at a flow rate in the microliter and 

submicroliter per minute scale, thereby maintaining the ultrahigh vacuum system required for 

mass analysis [59]. Third, ESI-LC/MS allows the analysis of nonvolatile and thermally labile 

biomolecules (such as proteins and nucleic acids) in solution form, which would have otherwise 

been difficult to ionize by hard ionization methods. 

Separation of protein or peptide mixtures in a reversed phase LC/MS system takes place in a 

capillary column packed with porous silica gel particles [60]. Attached to the silica gel, there is a 
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non-polar liquid phase called the stationary phase. The stationary phase in Vydac MS columns 

(manufactured by Grace Davison Discovery Science) can have C4, C8 or C18 carbon 

hydrophobic units attached chemically to the silica packing material. The C18 columns often 

with i.d. (internal diameter) up to 200 µm are being widely used in LC/MS-based protein 

analyses. The ultra small diameter  of the columns helps to improve sensitivity by reducing 

excess dilution of the analyte by a mobile solvent. During the separation process the molecules 

of interest are partitioned between the stationary and the mobile phase based on their 

hydrophobic characteristics. Analyte molecules that have greater hydrophobic character make a 

strong interaction with the stationary phase and hence are slowly eluted, whereas molecules that 

have less hydrophobic character are eluted faster from the column and analyzed earlier in the 

MS.  

The data obtained from ESI-LC/MS/MS analysis have three dimensions. All data together 

generate the LC-MS total ion chromatogram (TIC) which is the plotted total ion current against 

time (or scan number). The second and the third dimension are the MS spectrum of all the 

collected precursor ions and the MS/MS spectrum of the fragments of a selected precursor ion, 

respectively (see Figure 2.4). 
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Figure 2.4: A representation of (a) TIC (b) MS spectrum of precursor ions (mass range 500 – 2000 

m/z) and (c) MS/MS spectrum of the fragments of the precursor ion at m/z 916.96.   



29 
 

2.2 Peptide identification and characterization using MS 

2.2.1 Peptide mass fingerprinting  

 
Peptide mass fingerprinting (PMF) is one of the most common approaches used to determine the 

identity of peptides in a sample solution [61-62]. A typical PMF experiment involves three steps: 

Proteolytic digestion, mass measurement on a high-accuracy mass spectrometer and mass 

matching by performing a database search.  

 
2.2.1.1 Proteolytic digestion  
 

Enzymes that cleave peptide bonds in proteins are called proteases [63]. The two most 

commonly used serine proteases in proteolytic digestion are chymotrypsin and trypsin. 

Chymotrypsin from bovine pancreas selectively cleaves polypeptides at the C-terminal side of 

leucine, tryptophan, and tyrosine residues. A secondary cleavage may occur at the C-terminal 

side of phenylalanine, isoleucine and alanine. Trypsin cleaves polypeptides at the C-terminal side 

of arginine and lysine residues except when followed by a proline. Trypsin has the advantage of 

high proteolytic specificity and relatively lower auto-proteolysis (self-cleavage). As a result, it is 

widely used in PMF experiments. There are two major approaches for protein digestion [63]. The 

first approach is known as the in-gel digestion. Here, protein samples are run on polyacrylamide 

gel, then a Coomassie stained gel band, which corresponds to the protein of interest, is excised 

and cut into small pieces for enzymatic cleavage [64]. The second approach is known as the in-

solution digestion. Here, the protease is directly added to the protein solution [65]. Disulfide 

bridges (S-S bonds) in globular proteins are usually resistant to proteolysis. As a result, this 

bonds are cleaved (for instance, by DTT) prior to adding the protease.  
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2.2.1.2 MALDI-TOF peptide mass mapping  
 

Several types of mass spectrometers can be used for peptide mass measurement. 

 MALDI-TOF/TOF mass spectrometers such as the 4700 proteomics analyzer (from Applied 

Biosystems) and the FLEX series (from Bruker Daltonics) are well suited for this purpose. Both 

instruments have high sensitivity and provide fast measurement.  

2.2.1.3 Database search 
 

Peptide identification in PMF is performed by matching the experimental peptide masses 

obtained from MS analysis to the corresponding masses of in silico
1 generated peptides [66]. 

Prior knowledge of the protein sequence greatly simplifies the identification process by 

eliminating the need to look for possible matches in a database containing a large number of 

protein sequences. In general, the success of protein identification by PMF depends on the 

quality of the MS data, the power of the search algorithm used by the software tools and database 

accuracy. Some of the common search tools used in PMF are:  

 
1. Findpet tool - ExPASy Proteomics Server (http://au.expasy.org/tools/findpept.html) [67]  

2. MS-Fit - ProteinProspector (http://prospector.ucsf.edu/prospector/mshome.htm) [68] and  

3. Mascot (http://www.matrixscience.com/search_form_select.html) [69] 

 
Typical peptide mass matching using these software tools starts by setting workable search 

parameters on the user interface. As an example, the MS-Fit user interface from 

ProteinProspector is shown in Figure 2.5. The search begins by selecting a database (for instance 

- SWISS-PROT, NCBInr or the protein sequence, if known) to be searched. Next, the enzyme 

used (e.g. trypsin, chymotrypsin etc.) is selected and the number of missed cleavages that may 

result from incomplete digestion are specified. 

The variable and constant (if any) modifications that need to be considered in the search can be 

selected. Then, a desirable mass tolerance (in ppm or Da) is entered to determine the limit of 

mass error. Finally, a list of experimental masses obtained from MS analysis are pasted in the 

                                                 
1
 in silico digestion- a computer-based digestion, whereby a software tool is used to generate a list of peptides by 

performing a realistic cleavage of a protein in a database. 
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‘Data paste area’ and are matched by clicking on the ‘start search’ button. The result contains a 

list of peptides that matched with the experimental masses for each scored protein hits.    

 

 

 

A 

B 
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                     Figure 2.5: The MS-Fit  (A) user interface, (B) representation of search results.  

2.2.2 Tandem MS of peptides and database searching 

 
2.2.2.1 Nomenclature of peptide fragment ions 

 
The dissociation of a peptide precursor ion in an MS/MS collision cell generates two categories 

of fragment ions. Those that retain the charge on the N-terminal side of the peptide are termed 

the  a-, b- and c- ions, whereas those that retain the charge on the C-terminal side are the x-, y- 

and z- ions.  

 

 

 

             Figure 2.6: The Roepstorff nomenclature for peptide fragment ions [70].  

 

Low energy CID of peptides generates primarily b- and y-ion fragments. Loss of the ‘C=O’ (≈ 

28 Da) group from the b-ions results in the a-ions. The mass difference bn – bn-1 or yn-yn-1 (where, 

n= 2, 3,4…) is equal to a residue mass. The molecular mass of the original peptide is the sum of 

all the residue masses in the peptide plus H2O (one –H at the N-terminus and one –OH at the C-

terminus). Post-translation modifications at any site in the amino acid sequence are observed as 

an increase or decrease in the total peptide mass.  
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2.2.2.2 MS/MS Database search  
 

Further analysis of the identity of peptides in a sample solution is carried out by sequencing the 

corresponding tandem mass spectra. This method of peptide identification has the advantage of 

characterizing post-translational modification sites at the residue level. However, assigning 

amino acid sequences to each MS/MS spectrum manually is an extremely slow and difficult 

process.  Thus, in the same way as PMF, MS/MS-based peptide identification involves the use of 

software tools to automatically assign MS/MS spectra [71]. There are three categories of 

software tools that are used to match peptide amino acid sequences to MS/MS spectra. These are 

database-dependent search programs, de novo sequencing tools and hybrid search tools. 

 

Database-dependent search programs: Mascot and Sequest are common examples of this 

category. For a given set of product ion spectra, these programs extract a list of scored candidate 

peptides from a sequence database. The search result is limited to user-entered parameters such 

as the protease used, allowed post-translational modifications, mass tolerance and missed 

cleavage. In general, the scores associated with candidate peptides entail how good the 

experimental and the calculated mass values are matched. Most frequently, the best scoring 

peptide matches are considered in the statistical validation of the result. A very good score, 

however, does not always mean that the identified peptide is a true match (although it is the best 

match). Thus, discriminating between the true and the false matches is one of the challenging 

tasks when protein identification is solely based on database search tools [72]. The challenge is 

even more pronounced when a test sample is multiply modified. Overall, the rate of false 

positive identification depends on the quality of the mass spectra, the discriminative power of the 

scoring algorithm and the size of the database.  

 

De novo sequencing: PEAKS is one example of software packages that are used for de novo 

sequencing of peptides. In cases where a protein is not contained in a database, sequencing can 

be performed using de novo methods. The product ion spectra obtained from MS/MS analysis 

are used for sequencing. Manual assignment of peptides to the MS/MS spectra is obviously a 

difficult and time consuming process. PEAKS makes sequencing much easier even without the 
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use of databases [73]. The program performs de novo sequencing in four basic steps: 

preprocessing, candidate computation, refined scoring and finally global and functional 

confidence scoring. This sequencing method, however, requires a high quality and complete 

fragment ion spectrum for successful identification.    

 

Hybrid search tools: ByOnic, for instance, is a new hybrid software tool that combines the de 

novo sequencing and database search methods for peptide identification by MS/MS [74]. The 

program performs three major tasks during the search: First, it recalibrates the m/z measurements 

and computes lookup peaks2. The lookup peaks are computed in pairs (m, m1); the mass 

difference (m1- m) between the individual peaks is equal to a residue mass. Second, using either 

the peak pairs or individual lookup peaks, ByOnic searches candidate b- or y-ion theoretical 

peptide ions generated from a sequence database. Third, successfully matched values are scored. 

The scorer gives “benefits’’ for every theoretical peak found and “penalties” for peaks not found. 

The user interface in ByOnic, in the same way as the other search tools, has user-manageable 

search parameters. One advantage of ByOnic is that all possible amino acid modifications listed 

in Table 2.3 can be automatically considered in the search just by selecting the ‘ON’ option for 

the oxidation mode on the user interface. Moreover, a user can define the number of allowed 

modifications per peptide.  

 

 

 

 

 

 

 

 

 

 

 

                                                 
2  Lookup peaks : A b- or y-ion peak identified by de novo method in the initial pass through the MS/MS spectra. 
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2.3 Characterization of protein-ligand interactions using 

oxidative footprinting and MS 

 
In addition to X-ray crystallography and NMR, MS-based methods are also used for studying 

molecular interactions in protein-ligand complexes. The following are a few examples of such 

methods. 

  
1. SUPREX (stability of unpurified proteins by rates of H/D exchange) – this MALDI-

MS based method calculates the dissociation constant (Kd value) of a protein-ligand 

complex using a measured change in the thermodynamic stability of a protein upon 

ligand binding [75].   

2. PLIMSTEX (Protein-ligand interactions in solution by MS, titration and H/D 

exchange) - this method examines the binding affinity (Ki) and stoichiometry, and 

protection against H/D exchange (∆Di) by plotting protein-ligand titration curves. Here, 

the MS is used to quantify changes that occur during H/D exchange [76].  

3. FPOP (fast photochemical oxidation of proteins) is a hydroxyl radical mediated 

oxidative footprinting method coupled to MS that has recently been developed to 

examine structural features in protein-ligand complexes [77].  

 
Several research groups have reported the use of the radical footprinting approach together with 

mass spectrometry in obtaining high-resolution information about binding interactions. Although 

it started initially for probing DNA-protein interfaces [78-80], over the years the method has 

been extended to the probing of other biomolecular complexes such as protein-protein and 

protein-carbohydrate [81-82].  

The first step in the protein footprinting approach is the oxidation of the amino acid side chains 

by hydroxyl radicals. The rate of oxidation of each amino acid in the sequence is highly 

dependent on its side chain reactivity and solvent accessibility [83]. Generally, aromatic, 

aliphatic, sulphur-containing and charged amino acid side chains are highly susceptible to 

modification. In the MS-based footprinting approach, structural information is inferred by 

comparison of the level of modification of tryptic peptides in the free and ligand-bound protein. 

Furthermore, specific modification sites are identified by analyzing MS/MS spectra manually 

and by using automated software tools such as Mascot and/or ByOnic.  
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Quantitation of the oxidative footprinting data can be performed by two approaches. The first 

approach is to determine the percentage of oxidation at each amino acid by calculating the ratio 

of the LC-MS signal intensities of the peptides containing the specific oxidized amino acid to the 

total of all intensities (oxidize and non-oxidized) associated with that amino acid [84].  

Mathematically,  

 

 ............ Equation 1 

 

Where, % AAoxid. is the percentage oxidation of each amino acid, ∑ .oxidI is the sum of the signal 

intensities of all the peptides containing the specific oxidized amino acid and ∑ − .oxidnonI is the 

sum of the signal intensities of all the non-oxidized peptides containing the amino acid of 
interest.  
 
The second approach is to calculate the level of oxidation based upon a measure of the area 

under the SIC for each oxidized peptide over the sum of areas for the total peptide (oxidized and 

non-oxidized) across all charge states [82].  

Mathematically,   

        
 ........... Equation 2 

 
 

Where, Aoxid. is the peak area under the SIC of the oxidized form of the peptide and Anon-oxid. is 

the peak area under the SIC of the non-oxidized form of the peptide. 

Thus, a reduced level of oxidation in a peptide after ligand binding may suggest shielding of 

residue side chains from oxidation by hydroxyl radicals. In some cases, the reduction in the level 

of oxidation at a particular site may also infer a conformational change induced due to ligand 

binding.  
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2.3.1 Hydroxyl radicals 

 

Hydroxyl radicals (.OH) are highly reactive oxidants, which during reaction with amino acids 

abstract a hydrogen from side chain carbon atoms [81]. Thus, the radical leaves the side chain 

carbon with an unpaired electron. In aerobic conditions, the carbon with unpaired electron is 

susceptible to oxidation. The shift in peptide mass due to the modified amino acid can then easily 

be detected by mass spectrometry [85-86]. The advantages of using hydroxyl radicals in 

oxidative footprinting are that they can be generated in many different ways, can be produced 

abundantly on a short time scale and they induce irreversible side chain modifications in 

biomolecules [87-90]. Moreover, hydroxyl radicals are sufficiently small for resolving structural 

changes at the residue level. 

 

2.3.2 Methods to generate hydroxyl radicals for protein footprinting  
 
                                            
Laser photolysis of hydrogen peroxides is one method of generating enough hydroxyl radicals 

for protein footprinting experiment. Exposure of the peroxide to a high-energy laser source in 

aqueous solution produces two radicals (see Figure 2.7) [91-93]. UV laser sources that can 

generate multiple laser shots at microsecond [87] and nanosecond [94] timescales were used for 

footprinting studies. A single shot from such sources can create enough hydroxyl radicals to map 

the surface of a protein before it undergoes large conformational change or unfolding [84]. 

 

                                                       
                Figure 2.7: A representation of laser dissociation of a H2O2 to two hydroxyl radicals. 

 

 

One of the challenges in oxidative footprinting experiments is that hydroxyl radicals might be 

produced in excess of what is required. This may lead to unwanted reactions in the protein 

solution.  At increased doses, in addition to oxidizing the amino acid side chains, the chance for 

protein backbone cleavage to occur is high. Methods have been developed to address this 
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problem. In one approach, the protein solution is flash frozen in liquid nitrogen immediately after 

laser exposure to quench further action of the hydroxyl radicals [94]. Then the sample is freeze-

dried to remove excess hydrogen peroxides and water molecules in the solution. In another 

approach, in addition to the flash freezing, chemical scavengers such as catalase and glutamine 

are used to mask the effect of excess hydroxyl radicals in the protein solution [77]. A recent 

footprinting report indicated that there is a high probability for ‘cold chemical oxidation of 

proteins’ to occur when freeze-drying oxidized protein solutions [95]. The report pointed out the 

importance of using chemical scavengers in reducing the effect of uncontrolled oxidation 

subsequent to laser exposure.   

Fenton Chemistry is another method used to generate hydroxyl radicals from hydrogen 

peroxides. Here, the radicals are generated through the oxidation of Fe(II) to Fe(III) by hydrogen 

peroxides [96] (see Figure 2.8a). The method uses a chemical method of oxidation of amino 

acids using commonly available and affordable reagents. Inhibition of uncontrolled oxidation of 

amino acids side chains can be achieved by chelating of the iron (II) with EDTA. In the absence 

of EDTA, quenching or inhibition can be achieved by having excess unchelated Fe(II) in the 

sample solution (Figure 2.8b).            

     

                 

                   

                             

Figure 2.8: A representation of hydroxyl radical (a) generation (b) quenching in a sample 

solution [96]. 
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2.3.3 Amino acid oxidation by hydroxyl radicals 

 
Based on their side chain, amino acids can be classified into aliphatic, aromatic, basic, acidic, 

sulfur containing and proline.  

All amino acids side chains have different sensitivity for hydroxyl radicals. Those with highly 

reactive side chains undergo a quick reaction with the radical and their modification is easily 

detected by mass spectrometry. On the contrary, amino acid residues with less reactive side 

chains take longer time to react with the radicals and hence are not good footprinting probes. The 

pseudo-first-order reactivity rate constant for each amino acid side chain is shown in Table 2.2.  
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Table 2.2- A Pseudo-first-order rate constant for the reaction of amino acid side chains 

with hydroxyl radicals [97-99]. 

Side chain Rate (M-1 s-1) pH 

Cys 3.4 × 1010 7.0 

Trp  1.3 × 1010 6.5−8.5 

Tyr  1.3 × 1010 7.0 

Met  8.3 × 109 6−7 

Phe  6.9 × 109 7−8 

His  4.8 × 109 7.5 

Arg  3.5 × 109 6.5−7.5 

cystine  2.1 × 109 6.5 

Ile  1.8 × 109 6.6 

Leu  1.7 × 109 6 

Val  8.5 × 108 6.9 

Pro  6.5 × 108 6.8 

Gln  5.4 × 108 6.0 

Thr  5.1 × 108 6.6 

Lys  3.5 × 108 6.6 

Ser  3.2 × 108 6 

Glu  2.3 × 108 6.5 

Ala  7.7 × 107 5.8 

Asp  7.5 × 107 6.9 

Asn  4.9 × 107 6.6 

Gly  1.7 × 107 5.9 

 

 

 

 

 



 

2.3.3.1 Oxidation of aliphatic amino 

 

This group includes nonpolar amino acids such as 

isoleucine. In aerobic condition

hydrocarbon side chain of these residues

keto group with detectable mass change

oxidation product (OH addition)

rarely oxidized by hydroxyl radical

amino acid side chains by hydroxyl

 

 

                            Figure 2.9: Oxidation of aliphatic amino acids by hydroxyl radical

 

2.3.3.2 Oxidation of aromatic amino acids
 
The aromatic amino acids phenylal

side chain structure. The reaction of

of a hydroxyl group to the phenyl

major product of this group of amino acids

phenylalanine oxidation is shown in F

phatic amino acids 

includes nonpolar amino acids such as glycine, alanine, valine,

aerobic conditions, hydrogen abstraction by hydroxyl radicals 

these residues results in addition of a hydroxyl group or formation of a 

mass changes of +16 or +14 Da, respectively. Usually

(OH addition) is more abundant than the +14 Da keto-product. 

rarely oxidized by hydroxyl radicals. A reaction mechanism showing oxidation 

by hydroxyl radicals is shown in Figure 2.9. 

xidation of aliphatic amino acids by hydroxyl radical

of aromatic amino acids 

henylalanine, tyrosine, and tryptophan contain a phenyl

The reaction of a hydroxyl radical with the side chain involves the addition 

phenyl ring. One or multiple +16 Da mass shifts are

major product of this group of amino acids. A representative reaction 

shown in Figure 2.10 [100]. 
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                    Figure 2.10: Oxidation of 

 
 

2.3.3.3 Oxidation of basic amino acids
 

Arginine and lysine have strongly basic side chains and h

[101]. At neutral pH, arginine and l

reacts readily with hydroxyl radical

oxidation, resulting in a mass loss of 43 

similar to aliphatic side chains. 

Attack by hydroxyl radicals of the side chain 

peptide containing modified histidine 

10 Da mass shifts.  

 

 

 

 

 

 

Oxidation of phenylalanine by hydroxyl radicals.  

Oxidation of basic amino acids 

strongly basic side chains and histidine is a weakly basic amino acid 

arginine and lysine are fully ionized. The arginine side chain 

with hydroxyl radicals (good footprinting probe) and loses a guanidino

loss of 43 Da (see Figure 2.11a). Lysine undergoes a reaction 

similar to aliphatic side chains. Histidine is unique in that it gives complex oxidation products.

of the side chain may cause ring opening. In mass spec

istidine may give a mixture of products with +16, 
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                Figure 2.11: Oxidation of 

 
 

2.3.3.4 Oxidation of acidic amino acids
 
Aspartate and glutamate belong to this 

acidic amino acids in footprinting experiment

residues is accompanied by decarboxylation 

carbon atom. A characteristic mass loss of 30 Da 

xidation of (a) arginine, (b) histidine by hydroxyl radicals 

Oxidation of acidic amino acids 

belong to this group. Oxidative decarboxylation is a typical reaction 

in footprinting experiments. Thus, reaction of hydroxyl radical

decarboxylation and formation of an aldehyde group at the adjacent 

mass loss of 30 Da is a common observation for these
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a typical reaction of 

reaction of hydroxyl radicals with acidic 

aldehyde group at the adjacent 

these amino acids.  



 

Figure 2.12: Oxidative decarboxylation 

 

 

2.3.3.5 Oxidation of sulfur c
 

Sulfur containing amino acids are methionine and c

may produce multiple oxidation products.

sulfoxides and +32 Da sulfones 

methionine sulfoxide may result in a mass loss 

products with +32 Da and/or +48 Da

 
 
 
 
 
  

 

: Oxidative decarboxylation of acidic amino acid side chains by hydroxyl radicals

Oxidation of sulfur containing amino acids 

are methionine and cysteine. Their reaction with hydroxyl radical

uce multiple oxidation products. Methionine side chain oxidation generates

 as major and minor products, respectively. Further oxidation of 

ulfoxide may result in a mass loss of 32 Da. Cysteine side chain oxidation may give 

48 Da mass shifts.   
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by hydroxyl radicals[97]. 

reaction with hydroxyl radicals 

generates +16 Da 

Further oxidation of 

ide chain oxidation may give 



 

                      Figure 2.13 : Methio

 

 

2.3.3.6 Oxidation of Proline, Serine

 

Among this group, proline is relatively easily oxidized by hydroxyl radical

Da, +14 Da, +32 Da [97] and -32 Da

towards hydroxyl radicals and thus their oxidation products are less char

+16 Da and -2 Da mass shifts are

also less reactive towards hydroxyl r

mass shift by +16 Da is reported

detected for glutamine [84, 97]. 

In summary, amino acids with side chains 

probe sites for structural studies

protein, all solvent accessible amino acid 

: Methionine oxidation by hydroxyl radicals [97]. 

Serine, Threonine, Asparagine and Glutamine 

roline is relatively easily oxidized by hydroxyl radicals. Mass 

32 Da [84] are observed. Serine and threonine have low reactivity 

hydroxyl radicals and thus their oxidation products are less characterized. Meanwhile, 

are observed for these amino acids. Asparagine and 

hydroxyl radicals. A low level of oxidation product of a

reported [84]. Moreover, +16 Da and +14 Da oxidation products are

 

In summary, amino acids with side chains that can readily react with hydroxyl radicals are good 

ies using the footprinting approach. For a given

amino acid side chains can easily be probed. Thus, a
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. Mass shifts of +16 

have low reactivity 

acterized. Meanwhile, 

Asparagine and glutamine are 

level of oxidation product of asparagine with 

and +14 Da oxidation products are 

readily react with hydroxyl radicals are good 

a given un-liganded 

Thus, any shielding 
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effect (due to ligand binding) of the reactive and solvent accessible sites of the protein can easily 

be analyzed by mass spectrometry. Several oxidative footprinting results have confirmed the 

relative reactivity order of amino acids with hydroxyl radicals as Cys > Met > Trp > Tyr > Phe > 

His > Leu ~ Ile > Arg ~ Lys ~ Val > Ser ~ Thr ~ Pro > Gln ~ Glu > Asp ~ Asn > Ala > Gly. 14 

of the 20 amino acids are good footprinting probes covering about 65% of the sequence of a 

typical protein [102-104]. Table 2.3 summarizes the possible mass shift due to radical oxidation 

for 19 amino acid residues. Glycine is too uncreative to be used as a probe in footprinting 

experiments.  
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Table 2.3 - Observed mass shifts due to side chain oxidation of residues by hydroxyl 

radicals [102-103, 105].  

 

 

Residue 
 

 

        Side chain modification and mass change 

    Cys sulfonic acid (+48), sulfuric acid (+32), hydroxy (−16) 

Met sulfoxide (+16), sulfide (+32), aldehyde (−32) 

Trp hydroxy- (+16, +32, +48, etc), pyrrol ring-open (+32) 

Tyr hydroxy- (+16, +32) 

Phe hydroxy- (+16, +32) 

His oxo-(+16), ring-open (−22, −10, +5) 

Leu Leu hydroxy- (+16), carbonyl (+14) 

Ile hydroxy- (+16), carbonyl (+14) 

Val hydroxy- (+16), carbonyl (+14) 

Pro hydroxy- (+16), carbonyl (+14) 

Arg deguanidination (−43), hydroxy- (+16), carbonyl (+14) 

Lys hydroxy- (+16), carbonyl (+14) 

Glu decarboxylation (−30), hydroxy- (+16), carbonyl (+14) 

Gln hydroxy- (+16), carbonyl (+14) 

Asp decarboxylation (−30), hydroxy- (+16) 

Asn hydroxy- (+16) 

Ser hydroxy- (+16), carbonyl (−2, or +16−H2O) 

Thr hydroxy- (+16), carbonyl (−2, or +16−H2O) 

Ala hydroxy- (+16) 
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3. EXPERIMENTAL 
 
 
 

3.1 Materials and Reagents  
 
 

Acetonitrile, 100 %, from J.T. Baker (U.S.A.). 

Ammonium bicarbonate, 99 %, from Sigma-Aldrich (U.S.A.). 

Blotting grade blocker non-fat dry milk from Bio-Rad Labs (U.S.A.). 

Catalase from Sigma-Aldrich (U.S.A.). 

Coomassie brilliant blue R-250 staining solution from Bio-Rad Labs (U.S.A.). 

α-Cyano-4-hydroxy cinnamic acid from Fluka (U.S.A.). 

DTT (Dithiothreitol), Cleland’s reagent, from Bio-Rad Labs (U.S.A.). 

ELISA 96-well plates from Costar (U.S.A.). 

Formic acid, 88 %, from J.T. Baker (U.S.A.).  

Goat anti-mouse IgG, alkaline phosphatase conjugated, from Sigma-Aldrich(U.S.A.). 

H-Met-NH2 – HCL from Bachem Americas Inc. (U.S.A.). 

Hydrogen peroxide solution, 30 %, from Sigma-Aldrich (U.S.A.). 

Laemmli sample buffer from Bio-Rad Labs (U.S.A.). 

L-Glutamine, 99.5 %, from Fluka Biochemica (U.S.A.). 

Methanol, 99.9 %, from Fisher Scientific (U.S.A.). 

14F7 mAb from collaboration partners at CIM. 

N-glycol GM3 ganglioside from collaboration partners at CIM. 

Nitrocellulose membrane from GE Heathcare (U.S.A.). 

pHydrion paper from Micro Essential Laboratory (New York, U.S.A.). 

pNPP (p-Nitrophenyl Phosphate) tablets – source unknown 

Precision Plus Protein standards from Bio-Rad Labs (U.S.A.). 

Purified water (18.2 MΩ) from an in-house NANOpure DIamond system, Barnstead    

International (U.S.A.). 

Sequencing grade modified trypsin from Promega (U.S.A.). 

Sequencing grade chymotrypsin from Promega (USA). 
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Tween 20 – source unknown. 

Tris base from EMD chemicals. 

10xTris/Glycine/SDS buffer from Bio-Rad Labs (U.S.A.). 

ZipTip C18 pipette tips from Millipore (U.S.A.).  

 

3.2. Equipments 
 
 
Agilent 1100 capillary liquid chromatography system from Palo Alto (U.S.A.). 

ELISA microplate reader from BioTek. 

ThermoFinnigan LTQ-FT MS, ESI source, from Thermo Electron Cor. (U.S.A.). 

Model Compex 110 KrF excimer laser source, 248 nm UV wavelength, from Coherent Inc., 

(Santa Clara, U.S.A.). 

4700 Proteomics analyzer, MALDI-TOF/TOF, from Applied Biosystems (U.S.A.). 

192-well MALDI sample plate from Applied Biosystems (U.S.A.). 

Voyager DE-Pro, MALDI-TOF, from Applied Biosystems (U.S.A.). 

Vydac MS C18 300A HPLC column, 150 x 0.150-mm, from Grace Davison Discovery Sciences 

(U.S.A). 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



50 
 

3.3 Methods 

3.3.1 Sample preparation 

 
3.3.1.1 SDS-PAGE 
 
Gel electrophoresis was used to check sample purity for enzymatic digestion. 10 µl of a 2.2 

mg/ml antibody solution was mixed with 15 µl of Laemmli sample buffer in a 1.5 ml Eppendorf 

tube (final conc. 0.88 µg/µl). The mixture was then heated in a boiling water bath for 15 minutes. 

After loading the sample on a Bio-Rad ready gel, SDS-PAGE was run for 70 minutes at 

electrophoretic current and voltage of 150 mA and 100 V, respectively. The gel was stained 

using Coomassie brilliant blue for 1 hour. Then the staining solution was discarded and the gel 

was destained by washing with water in a container left on a shaker overnight.  

3.3.1.2 ELISA 
 
Briefly, each well of a polysorb 96-well assay plate was coated with NeuGc-GM3 ganglioside by 

adding 50 µl of a 10 µg/ml ganglioside solution in methanol. The plate was put in an incubator at 

37oC for 2 h. After successive washes by rinsing with TBST to remove unbound gangliosides, 

the plate was blocked overnight (at room temperature) with 0.5 % non-fat dry milk blocking 

solution. On the next day, the blocking solution was discarded and 50 µl of a dilution series of 

the antibody solution (in 0.05 M Tris-HCl buffer) ranging from 0 to 12 µg/ml was added to the 

wells and incubated for 90 minutes at 37oC. Unbound antibodies were removed by washing each 

well with 100 µl of TBST. Then, 100 µl of alkaline phosphatase conjugated goat anti-mouse IgG 

diluted in 0.05 M Tris-HCl buffer (IgG: buffer ratio of 1:5000) was added to each well and 

incubated for 1 hr at 37oC. After the incubation, the plate was washed 6 times with TBST. For 

color development and detection, a substrate solution was prepared by dissolving two pNPP 

tablets in a 15 ml solution of 0.05 M Tris base and 0.15 M NaCl, pH 8.5. 200 µl of the substrate 

solution was added to each well and incubated for 30 minutes. Then, 50 µl of 1N NaOH was 

added to each well to stop the reaction. Finally, the absorbance value of the antibody-antigen 

complex solution and a blank solution was measured at 405 nm on an ELISA microplate reader.   
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3.3.2 Laser photolysis 

 
Laser photolysis was conducted on the free and ligand-bound 14F7 mAb. Practically, 

immediately before laser exposure, 0.8 µl of hydrogen peroxide (5 % w/w, dilution of 30 % 

stock solution) and 1.25 µl of 200 mM DTT were added to 10 µl of a 2.2 mg/ml mAb solution in 

an Eppendorf tube. The final volume was brought to 30 µl by adding purified water (final conc. 

of the protein 0.73 µg/µl). The mixture was then passed at a flow rate of 4.4 µl/min through a 

thin capillary tube exposed to a KrF excimer laser pulse at a wavelength of 248 nm. The oxidized 

sample was collected in new Eppendorf tube containing a mixture of catalase and H-Met-NH2 – 

HCL in a 1:1 ratio to quench and mask the excess hydrogen peroxide and hydroxyl radicals left 

un-reacted in the solution. In addition, the oxidized sample was flash frozen in liquid nitrogen 

immediately after photolysis to prevent any un-controlled oxidation. Finally, the sample was 

lyophilized for 2 h to remove any remaining H2O2 and water. The same experimental procedure 

was followed in laser photolysis of the antibody-ganglioside complex except that the antibody 

was incubated with the ganglioside on ice for 2 h before irradiation.  

 

3.3.3 Proteolytic digestion 
 
In-solution tryptic digestion of the antibody was performed. To prepare the sample for tryptic 

digestion, the lyophilized sample was resuspended in 15 µl of 50 mM ammonium bicarbonate 

digest buffer (for non-oxidized samples, in addition to the digest buffer, DTT was added to a 

final DTT concentration of 10 mM). The mixture was heated for 90 minutes in a water bath at 

67oC. Then, 2.2 µl of a sequencing grade modified trypsin was added. This amount of trypsin 

gives a protease to protein ratio of 1:50. The pH of the mixture was adjusted to be between 6 and 

8 using a pHydrion paper. Finally, the sample was incubated for 24 h at 37oC.  
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3.3.4 Peptide mass fingerprinting  
 
Peptide mass fingerprinting was performed on a 4700 MALDI-TOF/TOF proteomics analyzer 

(See Figure 3.1). The CID was turned off for this purpose. First, the matrix α-cyano-4-hydroxy 

cinnamic acid (10 mg/ml) was prepared by dissolving 10 mg of α-cyano powder in a mixture of 

0.5 ml acetonitrile and 0.5 ml ethanol. On a MALDI plate, 0.6 µl of the tryptic peptide solution 

obtained from the proteolytic digestion and 0.8 µl of the matrix were spotted and allowed to dry 

at room temperature before mass mapping. Then the plate was inserted into the 4700 MS. Per 

sample spot, 100 laser shots with fixed laser intensity of 5000 Hz were taken for MS acquisition 

in positive mode. Mass spectra were acquired for peptides with m/z values between 500 and 

3000. 

 

 

 

                                  

    Figure 3.1:  AB 4700 MALDI-TOF/TOF proteomics analyzer (A) and AB 192-well MALDI plate 

(B). 
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3.3.5 LC-MS/MS analysis 
 

Reverse phase (C18) liquid chromatographic MS/MS analyses of proteolytic peptides were 

performed using a HPLC system consisting of an Agilent 1100 HPLC binary pump with 

corresponding autosampler. This LC system was coupled via a nanoelectrospray ion source to a 

LTQ-FTICR mass spectrometer (Thermo Fisher Scientific). For the analyses, 1-2 µl of peptide 

solution was injected onto the 150 x 0.150-mm C18, 5 µm resin, column. The mobile phase 

consisted of acetonitrile and MS grade water, both containing 0.1 % formic acid. 

Chromatographic separation was achieved using a binary gradient from 5 to 95 % of acetonitrile 

in 120 min (details in Table 3.1). The flow rate was 0.8 µl/min. Mass spectra were acquired in 

the positive ion mode applying a data-dependent automatic switch between survey scan and 

tandem mass spectra (MS/MS) acquisition. Peptide samples were analyzed by collision induced 

dissociation (CID) in the LTQ ion trap (low resolution) by acquiring one FTICR survey scan in 

the mass range of m/z 500 – 2000. The raw data were acquired in centroid format on Thermo 

scientific XCalibur 2.0 software. MS/MS spectra were manually inspected by Qual Browser 

version 2.0.7.  

 

   Table 3.1: Elution gradient 

Time (min) Flow Rate (µl/min) Composition (in %) 

0.00 2.00 A = 95.0, B = 5.0 

2.00 2.00 A = 95.0, B = 5.0 

3.00 0.80 A = 95.0, B = 5.0 

40.00 0.80 A = 40.0, B = 60.0 

55.00 0.80 A = 20.0, B = 80.0 

60.00 0.80 A = 95.0, B = 5.0 

130.00 0.80 A = 95.0, B = 5.0 

 

 
 



54 
 

 
 
                         

 
 
 

Figure 3.2: LTQ-FT MS interfaced with Agilent 1100 capillary liquid chromatography (Ron 

Orlando’s Lab., CCRC, University of Georgia).  
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3.3.6 Database searching and spectral assignment 
 
The experimental masses obtained from the MALDI-MS analysis of the oxidized (O-14F7) and 

non-oxidized (N-14F7) samples were searched against a database containing the 14F7 Fab amino 

acid sequences. ExPASy proteomics server has software tools that can be used to identify 

matching peptide sequences and potential post-translational modifications (PTM) for a given set 

of experimental masses. For the N-14F7 sample, the software tool called ‘Findpept’ was used for 

identification of matching peptide sequences. Methionine oxidation was selected as a variable 

modification. The mass tolerance was set to +0.5 Da and maximum two missed cleavages were 

allowed. For the oxidized 14F7 sample, the software tool called ‘FindMod’ was used for the 

identification of matching peptide sequences and modification sites. The mass tolerance was set 

to + 0.5 Da, maximum two missed cleavages and three modifications per peptide were allowed.    

 

The identification of peptide matches for the MS/MS spectra was performed via a database 

searching on ByOnic. Before performing the search the raw file tandem mass spectra was 

converted into an mzXML file (a compressed file format) to quicken the identification.  Based on 

the selection made from a list of MS analyzers (ion trap in this case), the program automatically 

assigned a parent ion mass tolerance of 0.4 Da and fragment ion mass tolerance of 2.3 mmu. The 

program also automatically identified the precursor ion charges. The search was performed 

against a database containing the 14F7 Fab sequence (forward and reverse). High specificity for 

tryptic peptides and medium filtering for semi-tryptic peptides were allowed. For the O-14F7 

sample, all possible amino acid PTMs listed in Table 2.3 were considered in the search. The 

minimum score set for a good peptide match in this identification was 400.   
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3.3.7 Docking simulations of the 14F7 - NeuGc-GM3 complex 
 
 
The program AutoDock 3.05 [106-108] was used for predicting the complex structure of the 

14F7 Fab with the trisaccharide moiety of the N-glycolyl GM3, NeuGc(α2-3)Gal(β1-4)Glc. The 

structure of the trisaccharide was built on the GLYCAM website, http://www.glycam.com/. The 

docking program predicts how a ligand binds to a known 3D structure by employing different 

search methods, one of which applies a Lamarckian genetic algorithm. Using this algorithm, 100 

docking runs were performed using a grid map of 81 Å3 x 81 Å3 x 101 Å3 (points in the X, Y and 

Z directions). The grid map was centered on the complementarity determining regions of the 

14F7 crystal structure. The phi (Φ) torsion angle (C2-O3-C3) was -600. The glycosidic bond 

around C2-O3 was freely rotatable.  The ceramide group of the N-glycolyl GM3 ganglioside was 

replaced by a methyl (-CH3) group.  
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 Figure 3.3: A schematic diagram showing a summary of the peptide mass fingerprinting 

experiment performed on the 14F7 mAb.  Picture made with ChemBioDraw Ultra 12.0. 
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Figure 3.4: A schematic diagram showing a summary of the oxidative footprinting experiment 

performed on the free and ligand-bound 14F7 samples.  Picture made with ChemBioDraw Ultra 

12.0.  
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4. RESULTS AND DISCUSSION 

 

4.1 Sample preparation 

4.1.1 SDS-PAGE 
 

The purity of the 14F7 mAb solution was confirmed with SDS-PAGE (see Figure 4.1). The 

single band in well-2 represents the intact mAb solution with an approximate molecular mass of 

150 kDa. Well-3 is a representative of the 14F7 Fab solution. In addition to the Fab fragment (≈ 

50 kDa), other unknown fragments (for instance, light bands at 75 kDa and 100 kDa) were 

observed. Therefore, only the intact mAb solution was used in all experimental set-ups in this 

project.  

                      

 

Figure 4.1: An SDS-PAGE of 14F7. Well-1- molecular weight marker, well-2 – 14F7 mAb, Well-3 – 

14F7 Fab. In well 2, the band at ≈ 150 kDa represents the 14F7 mAb. In well 3, in 

addition to the 14F7 Fab at ≈ 50 kDa, two light bands at 75 and 100 kDa were observed, 

suggesting the impurity of the Fab solution. 
 

 
 

75 kDa

Precision plus protein 

standards, Bio-Rad lab, Inc.

100 kDa

50 kDa

1 2 3
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4.1.2 ELISA 
 

The background absorbance of the plate was substracted from the absorbance of the antibody-

antigen complex in each well to get the corrected sample reading. The corrected absorbance 

value is proportional to the amount of antibody-antigen complex present in each well [109]. The 

relationship between the absorbance and the concentration of the 14F7 mAb is presented in 

Figure 4.2. The line graph deviates slightly (R² = 0.9614) from the expected straight line. This 

could be due to excessive washing and/or trace amounts of unbound antibodies left unreacted in 

the wells. The graph shows that the absorbance at 405 nm of the complex solution increases with 

increasing concentration of the antibody. This result agrees with the ELISA binding assay 

performed on the same antibody-antigen complex by Carr et al. [30]. The conclusion is that the 

14F7 mAb is active and recognizes the NeuGc-GM3 ganglioside. 

 

          

 

Figure 4.2: Binding assay of 14F7 mAb against NeuGc-GM3 ganglioside by ELISA. The 

absorbance value increased proportionally with increasing concentration of the antibody solution, 

suggesting that the ganglioside binds to the antibody.  
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4.2 MALDI-MS analysis of N-14F7 and O-14F7 mAb digests  
 
 

4.2.1 Peptide mass matching using the ExPASY database search 
 

The identity of the experimental masses obtained from the MALDI analyses was determined by 

performing a database search against the 14F7 Fab amino acid sequences. Table 4.1 shows a list 

of identified peptide matches for the N-14F7 mAb digest.  

For the O-14F7, as compared to the non-oxidized form, the number of identified peptide matches 

is fewer (see Table 4.2). Moreover, the database search found six oxidized tryptophan (TPO) 

residues – three TPOs at position 33 (VH-CDR1) and one TPO at positions 266 (VL-CDR1), 379 

and 394, the latter not being part of the CDRs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



 

Table 4.1: A list of peptide matches 

peptides are highlighted by red boxes. The arrows indicate the three VH

identified by the database searching. 

 

 
 

 

peptide matches identified by ExPASY for the N-14F7 digest. The CDR 

red boxes. The arrows indicate the three VH-CDR3 peptides 

identified by the database searching.  
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digest. The CDR 

CDR3 peptides 

 



 

Table 4.2: A lists of peptide matches 

identified CDR peptides are highlighted 

residue (TPO) by hydroxyl radicals

 

 
 
               
 
 
 
 
 
 
 
 

peptide matches identified by ExPASY for the O-14F7 digest. The 

ed CDR peptides are highlighted by red boxes. Notice the oxidation of tryptophan 

by hydroxyl radicals. 
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14F7 digest. The 

red boxes. Notice the oxidation of tryptophan 

 



 

4.2.2 Percentage sequence coverage

 

The percentage sequence coverage is calculated by dividing t

by the 14F7 Fab amino acid length

4.3. The fragments cover about 44.5

% of the expected coverage (64.5

ExPASY ‘Peptidemass’ tool within

error. Four residues within both the VH

of the fragments (highlighted in yellow in Figure 4.3

chymotrypsin and V8 were tested in order to

any improvement (see Appendix 3, Figure A1 for MALDI spectrum of the chymotryptic dige

 

 

 

Figure 4.3: Peptides identified by ExPASY 

observed residues are highlighted in green. The residues labeled in red are potential tryptic 

cleavage sites.  

 

sequence coverage of 14F7 digest 

equence coverage is calculated by dividing the number of amino

amino acid length. The observed amino acids are highlighted in green in F

about 44.5 % of the Fab amino acid sequences. This is equivalent to 70

5 %) that can be achieved by a theoretical tryptic digest

emass’ tool within an m/z range of 500 to 3000 Da and with a 

in both the VH-CDR3 and VL-CDR3 regions were not covered by 

hlighted in yellow in Figure 4.3). Several other proteases such as 

were tested in order to optimize the sequence coverage, however, without 

any improvement (see Appendix 3, Figure A1 for MALDI spectrum of the chymotryptic dige

Peptides identified by ExPASY in the VH and VL regions of the 14F7 mAb digest

s are highlighted in green. The residues labeled in red are potential tryptic 
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he number of amino acids observed 

highlighted in green in Figure 

This is equivalent to 70 

theoretical tryptic digest using the 

range of 500 to 3000 Da and with a +0.5 Da mass 

CDR3 regions were not covered by any 

proteases such as 

, however, without 

any improvement (see Appendix 3, Figure A1 for MALDI spectrum of the chymotryptic digest).   

 

mAb digest. The 

s are highlighted in green. The residues labeled in red are potential tryptic 



65 
 

4.2.3 MALDI-TOF spectra - why are some peptides less abundant? 
 
  
Figure 4.4 displays a representative of the high-resolution MALDI spectrum for the N-14F7 

mAb digest. All the peaks corresponding to the CDR peptides are assigned. The abundance of 

the light chain CDR peptides is higher than that of the heavy chain CDR. There could be several 

reasons for the lower abundance of the latter peptides. First, it could be that the enzymatic 

cleavage in this region of the 14F7 mAb was too specific and did not generate many fragments. 

Meanwhile, an attempt made to digest the 14F7 mAb using relatively less specific proteases such 

as chymotrypsin and V8 did not improve the abundance of the heavy chain CDRs (see appendix 

3, Figure A1 for the mass spectrum of the chymotryptic digest).  

 

A second possible explanation could be that the intact antibody may not have unfolded 

completely before adding the enzyme. To improve this, several parameters of the digestion 

protocol including the concentrations of the reducing agent and digest buffer and the 

denaturation temperature were varied. The third and the most likely reason could be the stability 

of the peptides within this region. Docking and molecular dynamics simulations performed by 

Krengel et al. [24] suggest that the VH-CDR3 is quite stable. It was proposed that the three 

consecutive tyrosine residues within the VH-CDR3 amino acid sequence might interact with 

neighboring aromatic residues, thereby stabilizing the region. A fourth possible explanation for 

the low abundance of the heavy chain CDR peptides is that gas-phase basicity of the peptides 

might be very low, thereby affecting their ionization efficiency in MALDI MS. Obviously basic 

peptides are more likely to absorb a proton and ionize. Therefore, attaching a quaternary amine 

to the peptides may enhance ionization by providing a permanent positive charge[110]. 

 

To check for any differences in the relative abundance of the VH-CDR peptides when using the 

Fab and intact 14F7 mAb, separate digests were performed for analysis on the 4700 MALDI MS. 

A representative of the mass spectrum for the Fab digest is shown in Appendix 3, Figure A2. The  

Fab MALDI spectrum is similar to that of the intact mAb. This suggests that, as expected, the 

abundance of the VH CDR peptides is independent from if we use the Fab or mAb.  

 

 



 

 

 

 

Figure 4.4: A representative MALDI spectru

are assigned as shown at the apex of 

 

 

 

 

 

 

 

 

MALDI spectrum of N-14F7 mAb digest.  The observed

assigned as shown at the apex of the corresponding peaks.  

66 

 

observed CDR peptides 



 

Figure 4.5 displays a representative

oxidation, the intensity of the non

significantly reduced. A new peak appeared

the peptide ion at m/z 1265.4. The same 

where oxidation of a protein called galectin

non-oxidized tryptic peptides. Meanwhile, t

abundance in the mass spectrum of the non

oxidation of the antibody. This has

investigation of the heavy chain 14F7 

ligand binding. In general, the oxidation 

section 2.3.3.1) results in removal of hydrogen

influence on the gas-phase basicity

 

 

Figure 4.5: A representative MALDI

oxidized peptides further descreased

1281 (VL-CDR2 + 1Oxygen atom). 

 

5 displays a representative MALDI spectrum of the O-14F7 digest. As a result of the 

non-oxidized peptides (for instance, m/z 1265.4 and 

A new peak appeared at m/z 1281.4, which represent the oxidized form of 

The same observation was reported in Charvatova 

where oxidation of a protein called galectin-1 resulted in a reduction in the abundance of 

Meanwhile, the heavy chain CDRs (which already have a low 

in the mass spectrum of the non-oxidized form) have completely disappeared after 

This has added a significant challenge to the oxidative footprinting 

investigation of the heavy chain 14F7 CDR fragments, which are the most important regarding 

he oxidation of amino acids (for instance, aliphatic amino acids, 

.3.3.1) results in removal of hydrogen from their side chain. This might have a negative 

se basicity of peptides containing the modified amino acids

MALDI spectrum of O-14F7 mAb digest. The intensities of the

further descreased, while the oxidized form of the VL-CDR2 is observed at 

CDR2 + 1Oxygen atom). The peaks for the heavy chain CDRs were not observed

67 

As a result of the 

1265.4 and m/z 1832.6) is 

1281.4, which represent the oxidized form of 

was reported in Charvatova et al. [84], 

in the abundance of the 

eady have a low 

oxidized form) have completely disappeared after 

oxidative footprinting 

which are the most important regarding 

of amino acids (for instance, aliphatic amino acids, 

might have a negative 

amino acids. 

 

The intensities of the non-

CDR2 is observed at m/z 

were not observed.  
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Table 4.3 shows the comparison of the intensities of the six CDR peptides before and after 

oxidation of the 14F7 mAb. In almost all of the mass fingerprinting experiments performed, the 

relative abundance of the non-oxidized heavy chain CDR peptides remained less than 15%. 

Figure 4.6 shows a bar graph representation of the intensity values for the oxidized and non-

oxidized forms. 

 
Table 4.3: Comparison of the relative intensities of CDR peptides before and after 

oxidation of 14F7 mAb. 
 

 
 
[M+H]+ 

 
 

Position 

 
 
Sequence (CDR residues shown 
in bold) 

     
      Relative abundance 
Before 

oxidation 
*
 

After  

Oxidation 
*
 

 
1846 

 
24-38 (VH-CDR1) 

 
ASGYSFTSYWIHWLK  

 
5.26 + 0.4 

 
0.34+ 0.5 

 
2881 

 
39-63 (VH-CDR2) 

 
QRPDQGLEWIGYIDPATAYTESN

QK 

 
7.50 + 0.5 

 
0 

 
2461 

 
106-127 (VH-CDR3) 

 
GIYYYAMDYWGQGTTVTVSSAK 

 
0.62 + 0.9 

 
0 

 
1832 

 
256-270 (VL-CDR1) 

 
ASQSISNNLHWYQQR 

 
100.0 + 0.0 

 
21.54 + 0.6 

 
1266 

 
281-292 (VL-CDR2) 

 
YASQSISGIPSR 

 
32.95 + 8.6 

 
19.72 + 1.8 

 
1078 

 
325-334 (VL-CDR3) 

 
WPLTFGAGTK 

 
13.10 + 5.8 

 
3.94 + 0.0 

 

* -  Values represent the average value obtained from two experiments. Errors are measured to     
one decimal place. 
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Figure 4.6: A bar graph representation of the relative intensities of the six CDR peptides before and 

after oxidation of the 14F7. The intensities of the heavy chain CDR peptides are clearly lower than 

that of the light chain.  
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4.3 ESI-LC/MS/MS analysis of O-14F7 and OL-14F7 digests 
  
 
 

4.3.1 LC-MS total ion chromatograms 

 

Figure 4.7 displays the total ion chromatograms (TIC) for a full-scan analysis between 500 and 

2000 m/z of the N-14F7 mAb (top), O-14F7 mAb ( middle) and the OL-14F7 complex (bottom).  
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Figure 4.7: A representative of LC/MS TIC of (a) N-14F7 mAb (b) O-14F7 mAb and (c) the OL-

14F7 complex.  
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4.3.2 Peptides and modification sites identified using ByOnic  
 
 
Table 4.4 summarizes the O-14F7 tryptic peptides and oxidation sites identified by database 

searching against 14F7 Fab sequence on ByOnic. All the light chain CDR-related tryptic 

peptides (the last three in the Table) had undergone a significant oxidation at the indicated sites. 

The observed amino acid mass changes are in agreement with the mass changes characterized in 

the previous footprinting studies [84, 97], except for the 1 mass unit shift of the residue 

258Q[+1] in the peptide 256-270. The heavy chain tryptic peptide segments 24-38 (at m/z 

923.45) and 39-63 (at m/z 1440.69) contain the amino acid sequences of the VH-CDR1 and VH-

CDR2, respectively. However, none of the amino acid residues within these peptide segments 

were found to be oxidized. Previous study shows that Asp52 within the peptide segment 39-63 

has critical imporatance for ligand binding to the antibody [24]. However, only one peptide 

segment containing oxidized Asp52 was identified (score less 300) by ByOnic. The same 

peptides and oxidation sites were identified by ByOnic for the ligand-bound 14F7 tryptic digest, 

except Tyr114 of the peptide segment 106-127.   

 
Table 4.4: A list of tryptic peptides (score > 400) and oxidation sites identified for O-14F7 

by ByOnic database searching. Highlighted in bold are amino acid residues that belong to 

CDRs. Modified amino acids are underlined.  

 
Residues 

 
Sequence 

 
[M+H]+ 

 
m/z 

Identified 
oxidation sites  

24-38 ASGYSFTSYWIHWLK 1845.90  923.45  - 

39-63 QRPDQGLEWIGYIDPATAYTESNQK  2880.37  1440.69 - 

 
106-127 

 
GIYYYAMDYWGQGTTVTVSSAK  

 
2459.12  

 
1230.06  

112M[+16] 
114Y[+16] 
120T[-2] 

 
256-270 

 
ASQSISNNLHWYQQR  

 
1831.88  

 
916.44  

257S[-2] 
258Q[+1] 

 
281-292 

 
YASQSISGIPSR  

 
1265.65  

 
633.32  

281Y[+16] 
283S[+16] 

286I[+14]/[16] 

325-334 WPLTFGAGTK  1077.56  539.28  325W[16]/[+32]     
326P[+16] 
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4.3.2.1 Oxidation of the tryptic peptide segments 106-127 and 325-334 
 

The peptide segment 106-127 (Table 4.4) contains nine amino acids that belong to the VH-

CDR3. A list of peptide matches within this segment for the O-14F7 and OL-14F7 are shown in 

Appendix 4, Table A3 and A4. In the case of the O-14F7, the search identified 32 potential 

peptide matches, 11 of which have oxidized methionine residue (Met112[+16]). The ion score 

and the probability value associated with the oxidized peptides suggest that the oxidation at 

Met112 has most likely occurred. In addition to the oxidized Met112, the search also identified 

three potential peptide matches with oxidized tyrosine residues  (Tyr114[+16]) at position 114. 

Overall, the number of oxidatively modified peptides within residues 106-127 is 14 (11 

oxidations at Met112 and 3 at Tyr114). 

 

The equivalent analysis was undertaken for the OL-14F7 sample. Here, the database search 

identified 17 potential peptide matches. The total number of significant matches, as compared to 

that of O-14F7, was reduced by more than half. Furthermore, only six oxidized peptide matches 

were identified. The oxidations occurred solely at Met112 and not at Y114 (see Appendix 4, 

Table A4). Thus, the oxidative footprinting results obtained for the two states of the 14F7 mAb 

(with and without the ligand) suggest that there is a significant change in the overall oxidation 

pattern for peptide segment 106-127 after ligand binding.   

 

Figure 4.8 shows an ESI mass spectra of the peptide segment 106-127 in the oxidized and non-

oxidized forms. In the upper spectrum of the N-14F7 sample, the monoisotopic peaks at m/z 

1230.61 and at m/z 1238.62 represent the doubly charged ([M+2H]+2) non-oxidized and oxidized 

forms of the peptide segment 106-127, respectively. In the middle spectrum of the O-14F7 

sample, the [M+2H]+2 non-oxidized and oxidized forms of the peptide are located at m/z 1230.61 

and at m/z 1238.61, respectively. In the lower spectrum of the OL-14F7 sample, the [M+2H]+2 

non-oxidized and oxidized forms of the peptide are located at m/z 1230.61 and at m/z 1230.60, 

respectively. The mass spectra differ mainly by the abundance (or intensity) of the oxidized form 

of the peptide ion. The peak that correspond to the oxidized peptide (at m/z 1238.62) is located in 

the noise region for the N-14F7 sample, whereas in the O-14F7 and OL-14F7 samples the 

abundance of this peptide is higher by more than two fold.  
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Figure 4.8: ESI-MS spectra of the VH peptide comprising  residues  

106-127 (GIYYYAMDYWGQGTTVTVSSAK) of (a) N-14F7, (b) O-14F7 and (c) the OL-14F7 

complex. The spectra were averaged over the time range of 0.01-130 min. 
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Figure 4.9 shows the comparion of the absolute intensities of the oxidized and the non-oxidized 

forms of the peptide segment 106-127 in the O-14F7 and OL-14F7 (intensity values are obtained 

from the mass spectra in Figure 4.8). The intensities of both the oxidized and non-oxidized forms 

of the peptide is lower by half in the OL-14F7 complex, as compared to that of the O-14F7. The 

low abundance of the peptide with a m/z 1238.60 in the OL-14F7 could be due to the fact that the 

residue side chain responsible for the radical-induced oxidation is protected upon ligand binding. 

The most likely reason for the decrease in intensity of the peptide with a m/z 1230.61 in the OL-

14F7 could be due to the inaccessibility of the tryptic sites around this particular amino acid 

sequence after the antibody has made binding interactions with the ligand.          

                             

 

 

 

Figure 4.9: A bar graph representation of the intensities of peptide segment 106-127 (oxidized and 

non-oxidized forms) for the O-14F7 and OL-14F7 samples. The intensity of both the non-oxidized 

and the oxidized forms of the peptide ion is lowered by half in the ligand-bound 14F7 digest.   
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The equivalent analysis was undertaken for the tryptic peptide segment 325-334. Here, the 

peptide contains four amino acids that correspond to the VL-CDR3 (see Table 4.4). A list of 

peptide matches within this segment identified for the O-14F7 and OL-14F7 are shown in 

Appendix 4, Table A5 and A6. The search identified  81 potential peptide matches in the O-14F7 

sample, of which 18 are modified. Multiply oxidized peptides at Trp325 (W[+14]/[+16]/[+32]) 

and Pro326 (P[+16]) were observed.  

In the case of OL-14F7 sample, ByOnic identified 96 potential peptide matches, of which only 6 

are modified by hydroxyl radicals. The oxidations occured at Trp325 ([+14]/[+16]) and Pro326 

([+16]). The low number of oxidized peptides in this particular sample (as compared to that of 

O-14F7) suggests that there is a change in the oxidation pattern within the peptide after ligand 

binding to the antibody.    

 
 

4.3.3 MS/MS spectra – sequence and oxidation site confirmations  
 
 
The amino acid sequences and oxidation sites within the tryptic peptide fragments 106-127 and 

325-334 were manually confirmed from the ESI-MS/MS product ion spectra. The same amino 

acid sequences and oxidation sites were determined for both the O-14F7 and OL-14F7 samples. 

Therefore, here, only the analysis for the O-14F7 MS/MS spectra is discussed.  

For the tryptic fragment 106-127, the MS/MS spectra of the doubly charged oxidized and non-

oxidized forms of the peptide are shown in Figure 4.10. This peptide would have a theoretical yn 

(n= 1-21) and bn (1-21) fragment ion series shown at the top of Figure 4.10. De novo peptide 

sequencing via manual interpretation of MS/MS spectra was performed by comparing the m/z 

values of each peak in the spectra with the m/z values of the theoretical fragment ion series. The 

yn ions (n= 4-17) were identified and assigned in the upper and lower spectra. The m/z values of 

these ions gave mass differences that correspond to the monoisotopic masses of residues 111-123 

(AMDYWGQGTTVTV). Moreover, the m/z values for the yn ions (n = 4-5 and 8-15) that 

contain the last 15 amino acids from the C-terminal side are identical in both the upper and lower 

spectra. However, the m/z values of two of the yn ions- y16 and y17, were observed to increase by 

16 mass units in the MS/MS spectrum of the oxidized form (Figure 4.10b, lower spectrum). This 

led to the conclusion that oxidation in this peptide occured at Met112. The presence of oxidized 
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bn ions (n = 7-17) that contain the first 17 residues from the N-terminus confirms this 

assignment.  

In both spectra, the m/z values of the yn ions (n = 8-16) and b17 were shifted by -2 unit from the 

predicted m/z values. This indicates that a second oxidation occured within residues 

TTVTVSSAK towards the C-terminus. Meanwhile, the presence of the unmodified y7 ion in the 

upper mass spectrum indicates the most probable oxidation site to be at the second threonine 

(Thr120) from the N-terminus. The side chain of the Thr120 is first oxidized to a carbonyl group 

(+16) followed by loss of one water molecule [97].  

A product ion spectrum with oxidized Tyr114 was not identified in both the O-14F7 and OL-

14F7 MS/MS scans, although ByOnic found three oxidized peptides at this residue.    
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a)  

 

b)  

 
 

Figure 4.10: ESI-MS/MS spectra of the peptide segment 106-127 (GIYYYAMDYWGQGTTVTVSSAK) 

for the (a) non-oxidized form (b) oxidized form. Sequencing of the spectra showed that Met112 (b7 

ion from the N-terminus) is oxidized. The same oxidation site was observed in the OL-14F7 MS/MS 

spectra.   
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58.0 171.1 334.1 497.2

y18y19y20y21

b4b3b2b1

y17

b21

400 600 800 1000 1200 1400 1600 1800 2000

m/z

0

10

20

30

40

50

60

70

80

90

100
1133.68

1326.51

1319.73

948.60

1140.43

1511.54

1212.39 1597.831482.73604.47
1855.811076.63 1968.90

1308.54491.40 790.56 1383.57 1837.781728.87977.36392.34 891.59
1951.64703.51

492.49469.31

y4
y5 y8-2

y9-2

y10-2

y11-2

y12-2

y13-2

y14-2 y15-2

y16-2

a4 b5

a6

y7 b7

b8

b9

b10

b11

b12

b13 b14

b17-2
[M-H2O+2H]

2+

Y17-2

R
e

al
ti

ve
in

te
n

si
ty

 (%
)

[M+H]+ 2459.12

m/z 1230.06

400 600 800 1000 1200 1400 1600 1800 2000

m/z

0

10

20

30

40

50

60

70

80

90

100
1133.60

1342.46

1319.70
948.56

1220.49

1527.54
604.43

1343.51
1984.841815.871071.69 1482.75

1528.61491.40 790.52 1744.81993.27392.29 1597.831399.50 1872.78
891.57703.46

497.24452.15

y4
y5 y8-2

y9-2

y10-2

y11-2

y12-2

y13-2

y14-2

y15-2

M
y16-2+1O

y17-2+1O

b4 b5

a6
b7+1O, M

b8+1O

b9+1O

[M-H2O+2H]
2+

b10+1O

b11+1O

b12+1O

b14+1O

b17-2+1O

[M+H]+  2475.12

m/z  1238.06

R
e

la
ti

v
e

 in
te

n
si

ty
 (
%

)



78 
 

 

A similar procedure was followed for sequencing the tandem mass spectra of the oxidized and 

non-oxidized forms of the peptide segment 325-334. Each peak in the mass spectra was 

manually assigned by matching its m/z value with the predicted y- and b-series m/z values shown 

at the top of Figure 4.11. All the identified yn ions (n = 3-9) have identical m/z values in both 

spectra. Meanwhile, a shift of +16 mass units occurred at the bn ions (n = 2-3 and 6) in the mass 

spectrum of the oxidized form (Figure 4.11b).  However, the y9 ion (at m/z 891.45), which also 

contains the proline residue as the b2 ion, is not modified. Therefore, the oxidation must have 

occurred at Trp325 on the N-terminal side of the proline. This is confirmed by the increase in 

mass of the tryptophan fragment by 16 mass units (from m/z 169.97 to m/z 186.06).  

Detailed MS/MS analysis of multiply oxidized peptides at Trp325 and Pro326 were not possible 

due to few numbers of MS/MS scans and high level of noise within their product ion spectra.  
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a)  

 

b) 

 
*m/z 169.97- Tryptophan fragment mass [111]. 

 

Figure 4.11: ESI-MS/MS spectra of the peptide segment 325-334 (WPLTFGAGTK) for the (a) non-

oxidized (b) oxidized forms. Sequencing of the spectra showed that Trp325 (b1 ion from the N-

terminus) is oxidized. The same oxidation site was identified in the OL-14F7 MS/MS spectra.     
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4.3.4 Percentage oxidation and level of protection of modified 

peptides 
 
 

To determine the percentage of oxidation, selected ion chromatograms (SIC) were generated for 

oxidized and non-oxidized forms of tryptic peptides from the LC-MS signals of both the O-14F7 

and OL-14F7. The level of oxidation of each peptide was then calculated based upon the areas 

under the selected chromatograms (see section 2.3, equation2, page 35). Figure 4.12-15 shows 

the integrated chromatogram peak areas for the oxidized and non-oxidized forms of the peptide 

segments 106-127 and 325-334. Furthermore, the level of protection (after ligand binding) of the 

amino acid side chains within each peptide was determined as in a previous study [82] (also see 

appendix 5 for an example of how to calculate the percentage oxidation and levels of protection). 

Table 4.5 summarizes the calculated percentages of oxidation and levels of protection for the 

peptide segments 106-127 and 325-334 derived from a replicate experiment. The errors recorded 

for most of the experiments peformed were quite high. This is due to malfunctioning of the 

liquid chromatography system in the duration of sample analysis for this project.  

 

As shown previously in Figure 4.9, page 74, the spectral intensity of the oxidized form of the 

peptide segment 106-127 was lowered by half in the OL-14F7 sample. In Table 4.5, the 

percentage of oxidation of the residue side chains within the same peptide is shown to be lower 

(as compared to the O-14F7) by a factor of approximately two upon ligand binding to the 14F7. 

This is equivalent to a 45 % protection. This finding matches the database search result already 

discussed under section 4.3.2.1, page 72, concerning the lower number of oxidized Met112 

observed in the OL-14F7.    

 

In addition, a significant degree of protection (over 85 %) is observed for the side chains of the 

light chain peptide residues 325-334. One reason for such a large percentage of protection could 

be that one or several amino acid side chains within this region interact directly with the ligand. 

Meanwhile, in this study the percentage oxidation of the peptide containing only oxidized 

Trp325 was found to decrease after ligand binding. This, however, is contrary to the phage 

display and 14F7 light-chain shuffling study, which showed the light chain region to have no 

ligand binding significance [32]. An alternative explanation could be that the overall 3D 
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sturcture of the light chain CDRs might have undergone a sizable conformational change during 

complex formation. However, in the present and previous docking simulations of the complex 

such a large conformational change has not been observed.    

 

Table 4.5: Percentage oxidation of the tryptic peptide segments 106-127 and 325-334 of 

14F7 mAb in the presence and absence of the ligand.  

 
*values represent average values from two experiments. 
 

 

 

 

 

 

 

 

 

 

Residues Peptide sequence
m/z

[M+2H]2+

m/z
[M+O+2H]2+

Percentage of 
oxidation before 

ligand binding*

Percentage of 
oxidation after 

ligand binding*

Level of protection 
of the amino acid
side chains within
the segment after
ligand binding (%)

106-127 GIYYYAMDYWGQGTTVTVSSAK 1230.60 1238.60 28.9 + 6.6 15.8 + 4.1 45

325-334 WPLTFGAGTK 539.29 547.29 5.51 + 3.1 0.75 + 0.3 86
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Figure 4.12: A representative SIC with integrated peak area for the oxidized (at m/z 1238.61) and 

non-oxidized (at m/z 1230.61) forms of the peptide segment 106-127              

(GIYYYAMDYWGQGTTVTVSSAK) drived from the O-14F7 MS scans.   

 

 

 
 

Figure 4:13: A representative SIC with integrated peak area for the oxidized (at m/z 1238.60) and 

non-oxidized (at m/z 1230.59) forms of the peptide segment  

106-127 (GIYYYAMDYWGQGTTVTVSSAK) drived from the OL-14F7 MS scans.   
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Figure 4:14: A representative SIC with integrated peak area for the oxidized (at m/z 547.29) and 

non-oxidized (at m/z 539.29) forms of the peptide segment 325-334 (WPLTFGAGTK) extracted from 

the O-14F7 MS scans.   
 

 
 

Figure 4:15: A representative SIC with integrated peak area for the oxidized (at m/z 547.29) and 

non-oxidized (at m/z 539.29) forms of the peptide segment 325-334 (WPLTFGAGTK) extracted from 

the OL-14F7 MS scans.   
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4.4 A new structural model of 14F7-NeuGc-GM3 complex  

 

Several years ago, the structural model of the 14F7 Fab fragment in complex with the terminal 

disaccaride of N-glycolyl GM3, NeuGcα3Galβ, was proposed as describe in Ref. [24]. Docking 

and molecular dynamics simulations were used to predict the complex model and characterize 

the binding interactions.   

 

In the present docking simulations, each run resulted in one conformation of the ligand complex. 

Table 4.6 shows 14 distinct conformational clusters obtained using an r.m.s.d. tolerance of 2.0 Å. 

Run 30, ranked 6th, has the highest number of clusters (ca. 66). The lowest and mean docked 

energy for this run are -6.47 and -6.03 kcal/mol, respectively. The ligand conformation for this 

particular run was visualized with PyMOL. Figure 4.16 (a) and (b) shows the conformation of 

the antibody-antigen complex obtained from run 30. The complete list of the potential hydrogen 

bonding interactions within the complex are presented in Table 4.7. The new ligand 

conformation is quite different from the previous model, in two main aspects. First, in the former 

model, the ligand is hydrogen bonded to the 14F7 Fab mainly through the polar head (NeuGc) 

group, whereas in the new ligand complex the binding interactions are distributed over all three 

sugar residues. Second, in the former model, the binding interactions are limited to the CDRs of 

the VH region. In the new model, a tryptophan residue (Trp325) in the VL region engages in a 

hydrogen bond (through its indole ring) with the NeuGc carboxylate. This agrees well with the 

footprinting result. As derived in section 4.3.4 (Table 4.5), the peptide containing the Trp325 

exhibits a reduced level of oxidation after ligand binding, which could be due to protection by 

the ligand.  

Moreover, the strong hydrogen bonding interaction of the aspartate residue (VH Asp52) in this 

docking model agrees well with previous site-directed mutagenesis results, that shows mutation 

at this residue heavily affects ligand binding. With this new model, we can also explain why the 

mutation of Asp52 to similarly sized hydrophobic residues (valine and isoleucine) completely 

abolished binding, instead of inducing a specificity switch to NeuAc-GM3, as could be expected 

from the previous model (unpublished data). An attempt has been made to validate the new 

complex model by molecular dynamics simulations. However, a completed result could not be 

achieved within the time limit of this thesis work.   



 

 

Table 4.6: Docking conformational clusters ranked according to energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Docking conformational clusters ranked according to energy.  
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a) 

 
 

 

b) 

 
 
 

Figure 14.16: A docking model of Fab 14F7-NeuGc-GM3 trisaccharide complex with (a) Selected 

hydrogen bonding interactions, (b) an electrostatic surface representation.  
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Table 4.7: Potential hydrogen bonding interactions between the 14F7 Fab and the 

NeuGc(α2-3)Gal(β1-4)Glc ganglioside, as predicted by docking simulations.  

 

Amino acid  sugar  Distance (Å)  

Tyr H50 OH  Galβ4 O4 (glycosidic bond)  2.8 

Try H109  OH  Galβ4 O6 (C2-O-C6)  or 
Galβ4 H2O  

2.9 
2.7 

 Tyr H57  OH  Galβ4  H6O  2.6 

Glu H58 CO (carbo. Acid)  Galβ4 H4O  3.3 

Asp H52  1O  Glcβ1 H2O or 
Glcβ1 O1 (O-ceramide)  

2.5 
3.2 

Thr H55 OH  Glcβ1 H2O   3.3 

Gly H100B C=O  NeuGcα3 H7O  2.9 

Try H108  C=O  NeuGcα3 O5N  3.1 

W L94  NH  NeuGcα3 O1A (carb. Acid)  2.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



88 
 

4.5  Correlation of the footprinting result with SASA of 

residue side chains 
 
 

The extent of solvent accessibility of amino acid side chains is a critical factors in the hydroxyl-

radical based fooprinting analysis of macromolecular complexes [112]. The change in the 

percentage of oxidation before and after complex formation can easily be traced when the 

potential probe sites are fully accessible and highly reactive. The solvent accessibilities of amino 

acid side chains of 14F7 Fab were calculated using the NACCESS program [113]. Although the 

VH-CDR1 and VH-CDR2 are highly solvent accessible (see Appendix 6), none of the residues 

within this region are found oxidized, both in the O-14F7 and OL-14F7 samples. Even without 

oxidation, these residues were hardly seen in the MALDI-TOF MS spectra of the 14F7 mAb and 

Fab digests. One reason for this could be a high stability of the heavy chain CDR structure, 

thereby resisting tryptic digestion. Therefore, the footprinting analysis was not successful in 

characterizing the effect of ligand binding on the residues within the VH-CDR1 and VH-CDR2.  

 

Meanwhile, the levels of oxidation of a segment of the VH-CDR3 peptide (residues 106-127)  in 

the free and ligand bound forms of the 14F7 were amenable to detailed analysis. Peptides 

containing oxidized  Met112 were found abundantly in the O-14F7. This oxidation site has been 

located in the MS/MS spectrum of the fragment ion mass with good certainty. On the contrary, 

the solvent accessible surface area of the Met112 residue side chain (as calculated from the 

crystallography data) is surprisingly less than 1 Å2 (see Figure 4.17a). From this piont of view, 

one would expect that only a very small amount of Met112 would be oxidized. Moreover, in the 

crystal structure the residue is burried inside a cavity which the ligand can hardly reach. 

Therefore, the question is how did it get oxidized so abundantly in the unliganded 14F7?  A 

similar observation was reported in previous studies by Hambly et al. and J.S. Sharp et al.  [87, 

114]. Both groups found out that a methionine residue with essentially no solvent accessible 

surface area was oxidized by hydroxyl radicals. Kiselar et al. [115] suggested a different 

mechanism by which solvent inaccessible methionines could substantially be oxidized. The 

process takes place by an intermolecular radical transfer mechanism, in which a hydrogen is first 

abstracted from a solvent accessible reactive residue. Then a donor group proximate to the initial 

radical site transfer an electron to the radical. The solvent accessible residue would then pick up 
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a proton and transfers the radical to the electron donor. A molecular oxygen would then oxidize 

the radical without it being solvent accessible. Trp and Tyr residues were shown to participate 

strongly in this radical transfer mechanism.  

In 14F7, there are four tyrosine (Tyr108, Tyr109, Tyr110 and Tyr114) side chains close to the 

Met112 residue within peptide 106-127, which could speed up the radical transfer, thereby 

causing a substantial oxidation of the residue. The 45 % decrease in the percentage of oxidation 

of residues 106-127 (Table 4.5) after ligand binding could  then be attributed to the protection of 

the intermolecular transfer of the radicals that are responsible for oxidizing Met112. This 

suggests that there is in fact a protection conferred by the trisaccharide ligand in the vicinity of 

the VH-CDR3 region of the antibody. An alternative explanation could be that 14F7 in the 

crystals adopts a different structure than in solution, and indeed the VH-CDR3 is modeled in 

substantial crystal contacts. On the other hand, docking simulation suggest that the conformation 

of this loop is rather stable, also in solution. 

 

The absolute solvent accessible surface area of the Trp325 side chain is more than 80 percent in 

the free 14F7 Fab crystal structure (Figure 4.17b) as calculated by NACCESS. The 86 percent 

protection (Table 4.5) of the peptide containing Trp325 after ligand binding could either be due 

to a large conformation change or shielding conferred by the ligand. Meanwhile, the solvent 

accessible surface area calculation of the docked complex model suggest that Trp325 is less 

accessible in the ligand bound 14F7 complex (data not shown).     
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a) 

 

 

b) 

 

 

Figure 4.17: Side chain surface area of (a) VH-CDR3 residues (b) VL-CDR3 residues, as calculated 

by NACCESS using the crystal structure of the 14F7 Fab.  
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5. CONCLUSION AND FURTHER WORKS 

 

Conclusion 

This work represents the first experimental investigation of the binding interactions between the 

14F7 mAb and N-glycolyl GM3 ganglioside using oxidative footprinting and mass spectrometry 

methods.  

The amino acids important to the interaction are characterized based on experimental and 

computational analysis. The side chains of Met112 (of VH-CDR3) and Trp325 (of VL-CDR3) 

were protected from radical-induced oxidation upon ligand binding to the antibody. This result 

agrees well with a new model of the ligand complex, generated by docking simulations. In the 

new model, the ganglioside is bound mainly to the heavy chain CDRs with high surface 

complementarity and strong hydrogen bonding interactions. However, in contrast to the previous 

findings, the results obtained from both the footprinting analysis and molecular docking strongly 

suggest that the ligand also binds to the light chain residue Trp325.  

 

Further work 

 

While the oxidative footprinting coupled to MS is a promising approach, a more detailed 

characterization of the binding interactions requires optimization of some of the experimental 

conditions. 

One of the challenges during this thesis was the low abundance of the heavy chain CDRs in the 

MS spectra. Several proteases have been tested to improve coverage, although with little success. 

The search for suitable enzymes should be extended and it might be helpful to perform the 

digestions using a combination of proteases or separately by targeting one or two CDRs at a 

time. In this regard, the V8 protease was successful in cleaving a full peptide sequence 

containing the VH-CDR3 residues and chymotrypsin was found to give a good coverage of the 

VH-CDR2. Also chemical cleavage may be considered. 

Building a more precise model of the antibody-antigen complex strucuture is also crucial. This 

model should be based on all the experimental data and further refiened my molecular dynamics 
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simlations. Most importantly, however, the new model – refined or not – can now be taken as a 

basis for further experimental validation, for example by site directed mutagenesis of selected 

14F7 residues.  
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APPENDIX 
 

Appendix 1 
 

Buffers 

 

A. SDS-PAGE 

 

1. 1XTris/Glycine/SDS running buffer (1 L) 

100 ml of 10X Tris/Glycine/SDS from Bio-Rad   
900 ml Nanopure water 
 

 
B. ELISA 

 

1. TBST ( Tris buffered saline with Tween 20)   

50 µL Tween 20  

100 mL 1X TBS, pH 7.4 

 

2. 0.05M Tris-HCl buffer (1 L) 

6.057 g of Tris base  

800 mL of Nanopure water 

pH adjusted to 7.8 by HCl 

Final volume brought to 1 L with Nanopure water 

 

3. 0.5 % Blocking solution (100 mL) 

0.5 g of non-fat dry milk 

95 mL of 0.5 M Tris-HCl buffer, pH 7.4 

 



 

Appendix 2 

            Table 1A: The 20 naturally existing amino acid residuesable 1A: The 20 naturally existing amino acid residues. 
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Appendix 3 

 

Mass spectra 

 

Figure A1. MALDI spectr

 
 
 
 
 
 
 
 
 
 
 

 
spectrum of 14F7 mAb chymotryptic digests. 
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            Figure A2. MALDI 

 
 
 
 
 
 
 
 
 
 
 

. MALDI spectrum of 14F7 Fab tryptic digests. 
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Appendix 4 

 
Table A2: VH peptides (residues 106-127) identified by database searching on ByOnic for 

the N-14F7 MS/MS spectra (oxidized peptides at Met112 are highlighted in red). 

Peptide 
 

 
Mass 
(M+H) 

 
m/z 

 
Cleavage 
 

Score 
 

Delta 
 

LogProb 
 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 447.6 19.7 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 495.9 0 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 581.1 7.7 -5.49 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 528 0 -4.71 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 521.6 7.2 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 406.6 7.8 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 454.2 11.4 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 483.1 0 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 499.8 0 -4.28 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 460.6 17.9 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 437 9.8 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 522.8 13.3 -0.01 
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Table A3: VH peptides (residues 106-127) identified by database searching on ByOnic for 

the O-14F7 MS/MS spectra. (oxidized peptides at Met112 and Y114 are highlighted in red 

and purple, respectively). 

Peptide 
 

 
Mass 
(M+H) 

 
m/z 

 
Cleavage 
 

Score 
 

Delta 
 

LogProb 
 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 608.8 7.2 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 529.1 0 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 617 617.3 -9.95 

R.GIYYYAMDY[+16]WGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 631.3 12.9 -6.49 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 564.8 7.1 -0.01 

R.GIYYYAM[+16]DYWGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 641.5 13.4 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 539.3 0 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 437.8 0 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 619.8 0 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 572.1 0 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 543.8 2.5 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 634.2 0 -6.45 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 481 4.8 -0.01 

R.GIYYYAM[+16]DYWGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 660.5 4.7 -7.05 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 606.9 21.4 -0.01 

R.GIYYYAM[+16]DYWGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 615.7 12.7 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 429.8 430.1 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 446.2 0 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 470.1 6.5 -0.01 

R.GIYYYAM[+16]DYWGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 607 6.2 -0.01 

R.GIYYYAMDY[+16]WGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 417.9 8.3 -0.01 

R.GIYYYAMDY[+16]WGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 446.8 7 -3.49 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 536 536.3 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 501.3 501.6 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 497.2 0 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 513.6 0 -0.01 

R.GIYYYAM[+16]DYWGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 404.8 1.7 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 526.4 21.5 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 582.4 9.1 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 561.3 561.6 -8.85 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 525.5 0 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 515.1 20.1 -0.01 
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Table A4: VH peptides (residues 106-127) identified by ByOnic database searching for the 

OL-14F7 complex MS/MS spectra (oxidized peptides at Met112 are highlighted in red). 

 

Peptide 
 

 
Mass 
(M+H) 
 

m/z 

 
Cleavage 
 

Score 
 

Delta 
 

LogProb 
 

R.GIYYYAM[+16]DYWGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 633.9 16.1 -6.53 

R.GIYYYAM[+16]DYWGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 558.3 29.4 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 604.1 0 -5.86 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 636.8 0 -6.65 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 453.5 4.1 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 537.8 16.8 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 537.5 0 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 482.6 9.3 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 488.1 9.8 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 414 5.3 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 420.4 0 -0.01 

R.GIYYYAM[+16]DYWGQGTT[-2]VTVSSAK.T 2475.12 1238.064 Tryptic 414.7 4.7 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 562 18.9 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 441.8 0 -0.01 

R.GIYYYAMDYWGQGTT[-2]VTVSSAK.T 2459.12 1230.064 Tryptic 423.3 5.4 -0.01 

R.GIYYYAM[+16]DYWGQGTTVT[-2]VSSAK.T 2475.12 1238.064 Tryptic 423.2 47.1 -0.01 

R.GIYYYAMDYWGQGTTVT[-2]VSSAK.T 2459.12 1230.064 Tryptic 559.9 11.8 -5.19 
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Table A5: VL peptides (residues 325-334) identified by database searching on ByOnic for 

the O-14F7 MS/MS spectra. (oxidized peptides are highlighted in red) 

Peptide 
 

 
 (M+H)

+ 

  
m/z 

 
Cleavage 
 

Score 
 

Delta 
 

LogProb 
 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 568.5 467.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 610 610.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 616.4 616.7 -0.01 

R.W[+32]P[+16]LTFGAGTK.L 1125.56 563.284 Tryptic 415.6 23.2 -3.2 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 588.4 588.7 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 590.5 590.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 469.7 282.7 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 449.2 255.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 650.2 650.5 11.55 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 488.1 488.4 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 479.7 12.7 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 520.8 17.1 -4.65 

R.W[+14]P[+16]LTFGAGTK.L 1107.55 554.279 Tryptic 419.2 48.9 -3.5 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 459.4 297.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 609.5 609.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 426.5 260.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 638.3 638.6 -0.01 

R.W[+32]PLTFGAGTK.L 1109.56 555.284 Tryptic 444.4 20.1 -3.45 

R.W[+32]P[+16]LTFGAGTK.L 1125.56 563.284 Tryptic 412.2 15.1 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 406.6 259.3 -0.01 

R.W[+16]PLTFGAGTK.L 1093.57 547.289 Tryptic 411.1 5.3 -2.81 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 554.2 554.5 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 400.7 12.7 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 415.2 228.5 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 429.6 226.8 -0.01 

R.W[+32]PLTFGAGTK.L 1109.56 555.284 Tryptic 411.8 5.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 592 592.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 587 587.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 600.2 600.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 617.7 618 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 464.7 252 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 469.4 12.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 559.5 559.8 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 482.2 13.4 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 544.7 545 -0.01 

R.W[+16]P[+16]LTFGAGTK.L 1109.56 555.284 Tryptic 451.9 0.3 -3.44 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 436.2 11.6 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 444.9 11.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 613.9 614.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 604.4 604.7 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 412.2 211.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 443.6 279.2 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 429 5.9 -0.01 
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R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 495.8 12.3 -0.01 

R.W[+16]P[+16]LTFGAGTK.L 1109.56 555.284 Tryptic 435.7 0.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 566 566.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 553.5 553.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 590.1 590.4 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 565.8 566.1 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 595.9 596.2 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 432.9 273.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 481.6 305.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 578.1 578.4 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 474.6 255.4 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 526.5 526.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 481.4 481.7 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 543.3 543.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 549.6 549.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 492.1 492.4 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 588.9 589.2 -0.01 

R.W[+32]PLTFGAGTK.L 1109.56 555.284 Tryptic 416.9 4.1 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 494.7 335 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 407.9 224.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 612 447.7 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 530.7 410 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 456.2 298.2 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 469.3 240.9 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 431.2 274.7 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 436.1 268.1 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 429.5 231.6 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 502.9 310.2 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 427.6 213.2 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 444 264.5 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 450.6 281.6 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 517.4 322.6 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 506.9 350.6 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 425 225.1 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 452.4 264.1 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 437.6 437.9 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 402.7 258.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 454.1 454.4 -0.01 
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Table A6: VL peptides (residues 325-334) identified by database searching on ByOnic for 

the OL-14F7 complex MS/MS spectra. (oxidized peptides are highlighted in red) 

 

Peptide 
 

(M+H)
+
  

 
m/z 

 
Cleavage 
 

Score 
 

Delta 
 

 
logProb 

 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 420.5 420.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 450.8 253.1 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 424.2 281.4 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 409.5 213.3 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 444.9 299.4 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 441.4 289 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 470.7 296.4 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 455.8 314.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 515.5 515.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 621.2 621.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 562.2 562.5 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 401.2 198.9 -0.01 

R.W[+14]PLTFGAGTK.L 1091.55 546.279 Tryptic 448.2 1.4 -3.44 

R.W[+16]P[+16]LTFGAGTK.L 1109.56 555.284 Tryptic 421.2 0.3 -3 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 520 342.1 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 474.5 20.1 -3.96 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 549.9 550.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 565 565.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 593 593.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 579.1 579.4 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 483.3 483.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 520 520.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 505.4 505.7 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 603.8 604.1 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 612.6 612.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 592.6 592.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 555.3 555.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 553 553.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 634.1 634.4 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 529.3 529.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 649.9 650.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 593.2 593.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 627.2 627.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 602.2 602.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 658.4 658.7 -11.75 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 538.8 539.1 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 507.4 507.7 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 467 15.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 597 597.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 592.9 593.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 539.9 540.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 602.2 602.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 579.1 579.4 -0.01 
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R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 515.9 384.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 412.4 233.1 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 620.3 496 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 598.6 598.9 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 580.5 580.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 472.7 473 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 590 590.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 634.3 634.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 598.7 599 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 570.5 413.2 -0.01 

R.W[+16]PLTFGAGTK.L 1093.57 547.289 Tryptic 408.9 5.3 -2.81 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 446.3 243.2 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 481.1 295.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 560.9 561.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 540.4 540.7 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 584.1 584.4 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 578.2 468.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 515.2 515.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 543.6 452.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 536.1 536.4 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 464.6 335.7 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 445.9 272.7 -0.01 

R.WP[+16]LTFGAGTK.L 1093.57 547.289 Tryptic 400.9 6.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 434.6 278.3 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 421.3 232.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 455.5 455.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 521.2 521.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 574.5 574.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 552.9 553.2 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 480.5 313.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 422.3 260.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 559.9 560.2 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 535 535.3 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 444.7 245.4 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 454.4 454.7 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 418.1 203.9 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 473.6 234.8 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 434.1 294.1 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 496 330.3 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 449.3 449.6 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 466.5 466.8 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 556.4 556.7 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 581.2 581.5 -0.01 

R.WPLTFGAGTK.L 1077.57 1077.57 Tryptic 540 540.3 -0.01 

R.WPLTFGAGTK.L 1077.57 539.289 Tryptic 422.7 288.8 -0.01 
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Appendix 5 

 
Calculation of percentage of oxidation  

 

Example: calculation of percentage oxidation of the tryptic peptide segment 106-127 of 14F7 

mAb.  

 
Table A7: SIC peak areas for the peptide segment 106-127 in O-14F7 and OL-14F7.   

 
    
 
       Peptide modified 

 
                   O-14F7 

 
                   OL-14F7 

Non-oxidized 
peptide SIC 
peak area 
(Anon-oxid.) 

Oxidized 
peptide SIC 
peak area 
(Aoxid.) 

Non-oxidized 
peptide SIC 
peak area 

Oxidized 
peptide SIC 
peak area 

 
GIYYYAMDYWGQGTTVTV
SSAK  

 
266,349,423.8 

 
228,737,244.6 

 
13,188,189.34 

 
5663469.78 

 
 Percentage oxidation of the peptide in O-14F7,                                                                                                                                      

                                                      % 100.
..

.
×

+

=

−oxidnonoxid

oxid

AA

A
peptideoxid  

 

                                                              %100
6.2287372448.266349423

6.228737244
×

+

=  

                                                                                %20.46=  

Thus, the percentage of oxidation of the peptide before ligand binding is 46.20 %. Similarly, the 

percentage of oxidation of the peptide after ligand binding was found to be 30.04 %. The level of 

protection of amino acid side chains within the peptide upon ligand binding was calculated as 

follows.         

                    

                  % protection = %100
20.46

04.3020.46
×

−
  

   %35=  

Thus, up on ligand binding, 35 % of the amino acid side chains within the peptide are protected 

from oxidation by hydroxyl radicals.   

% protection = % oxid. peptide in O-14F7 - % oxid. peptide in OL-14F7

% oxid. petide in O-14F7
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Appendix 6 

 
     
 
Figure A3: Side chain surface area of VH-CDR residues. 
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