Bilexical Dependencies
as an Intermedium for Data-Driven and
HPSG-Based Parsing

Doctoral Dissertation by

Angelina Ivanova

Department of Informatics
Faculty of Mathematics and Natural Sciences
University of Oslo

Submitted for the degree of Philosophiae Doctor

November, 2015

© Angelina Ivanova, 2015

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1690

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: John Grieg AS, Bergen.

Produced in co-operation with Akademika Publishing.

The thesis is produced by Akademika Publishing merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Abstract

Bilexical dependencies capturing asymmetrical lexical relations between heads and depen-
dents are viewed as a practical representation of syntax that is well-suited for computation and
intelligible for human readers. In the present work we use dependency representations as a
bridge between data-driven and grammar-based parsing, both for cross-framework parser com-
parison and for parser integration.

We observe that the state of the art in dependency parsing for English is characterized by
broad diversity of dependency representations and seek to systematize properties of various de-
pendency formats pointing out their similarities and differences by carrying out qualitative and
quantitative structural analysis and furthermore exploring learnability of four of these represen-
tations in automatic syntactic analysis. In addition to comparing syntactic dependencies along
several evaluation measures for parsing, we also evaluate the representations in application to
the negation resolution task.

Using a dependency representation extracted from HPSG structures we contrast three dif-
ferent approaches to parsing—data-driven dependency, phrase structure and a hybrid grammar-
based—observe what trade-offs apply along accuracy, efficiency, coverage, and resilience to
domain variation and show that explicit, hand-engineered grammatical knowledge helps in both
accuracy and cross-domain parsing performance. We complement intrinsic parser evaluation
with extrinsic comparison on the negation resolution and semantic dependency parsing tasks
discovering that accuracy gains sometimes but not always translate into improved end-to-end
performance.

A combination of complementary approaches is often a good strategy for achieving im-
provement. We explore parser integration as a method for advancing the efficiency of a grammar-
based parser. Bilexical dependencies serve as an interface for enforcing constraints drawn
from the output of the statistical, data-driven systems on the unification-based processing of
the grammar-based parser. We experiment with confidence thresholding, filtering and parser
ensembles for tackling the problem of selecting high-quality dependencies and propose a tech-
nique of static analysis as preliminary evaluation in navigating a large space of various combi-
nation setups. We choose configurations optimizing for speed, coverage and balancing the two
metrics and carefully evaluate the trade-offs along efficiency, coverage, accuracy and domain-
resilience.

iii

Acknowledgements

I would like to express my deep gratitude to my advisors, Lilja @vrelid and Stephan Oepen,
for their encouragement, advice and patience. It is a great pleasure to work with them, I appre-
ciate their warm and caring attitude and admire their insight into the field, professionalism and
knowledge. Thank you for numerous discussions, lots of proofreading, continuous guidance
and making time for meetings and answering my emails even during the busiest times. I would
like to express my gratitude to the members of my reading committee, Joakim Nivre, Jennifer
Foster and Martin Giese, for careful reading of the present thesis.

A very special thank to Rebecca Dridan for being always helpful with all sorts of questions,
for guidance in the universe of DELPH-IN tools, positive attitude, encouragement and proof-
reading. Thanks for bringing up cheerfulness and humor in the daily office life, and reminding
the group about opportunities of having a coffee or lunch in the sunshine whenever the sun was
out.

I would like to warmly thank the former and present members of the Language Technology
Group at the Department of Informatics at the University of Oslo, Jan Tore Lgnning, Pierre Li-
son, Elisabeth Lien, Gordana Ili¢ Holen, Emanuele Lapponi, Arne Skjarholt, Milen Kouylekov,
Gisle Ytrestgl, Erik Velldal, Jonathon Read, Murhaf Fares, Herman Ruge Jervell, Asbjgrn
Brandeland, Aleksander @hrn, for a unique friendly and motivating environment. Thank you,
Pierre, Arne, Eman, Milen, Gisle, for discussions on parsing and statistics and your help with
all sorts of questions. Thank you, Elisabeth and Gordana, for your care and support.

I would like to acknowledge the support of the Norwegian Research Council. I am grateful
to the Scientific Computing staff at the University of Oslo and the Norwegian Metacenter for
Computational Science. Experimentation was made possible through access to the TITAN and
ABEL high-performance computing facilities and the NorStore storage facilities at the Univer-
sity of Oslo.

I am very grateful to Gertjan van Noord for his guidance of my exchange project, invaluable
feedback and critical comments. I would like to thank former and present members of Alfa-
informatica at the University of Groningen, John Nerbonne, Gosse Bouma, Johan Bos, Simon
Suster, Valerio Basile, Kilian Evang, Noortje Venhuizen, Harm Brouwer, Daniél de Kok, Malv-
ina Nissim, Cagri Coltekin, Leonie Bosveld, Gideon Kotz¢, for making my stay in Groningen
so memorable.

I owe a lot of thanks to Joakim Nivre for organizing my visit to his group at the Department
of Linguistics and Philology at the Uppsala University on a very short notice. Special thanks to
Jorg Tiedemann, Christian Hardmeier and Sara Stymne.

I also want to give a special thanks to Marco Kuhlmann, Bernd Bohnet, André Martins,
Ryan McDonald, Richard Eckart de Castilho and Pedro Santos for helpful suggestions, and

Vi

advice related to parsing software.

I would like to thank participants of DELPH-IN community for motivation and inspiring
discussions. I would particularly like to thank Dan Flickinger, Emily Bender, Yi Zhang, Rui
Wang, Francis Bond and Ann Copestake for raising challenging questions and giving use-
ful suggestions that helped to shape this thesis. Thanks to Petya Osenova, Antske Fokkens,
Michael Goodman, Tim Baldwin, Tania Avgustinova, Montserrat Marimon, Anténio Branco,
Kiril Simov, Sanghoun Song, Lars Hellan, Zina Pozen, Jodo Silva, Guy Emerson, Li Ling Tan
and Ned Letcher for interaction and talks at DELPH-IN meetings and other conferences.

I would like to thank Tatiana, Maria, Thu, Le, Joachim, Jelke, Tina, Nathan, Amir, Bushra,
Evgeny for their friendship and support. Thank you, Dima, for inspirational discussions about
Python programming, statistics, natural language processing and sports. Thank you, Ke, for
helping me to work out the details of a smoothing algorithm. I owe a lot of thanks to all my
friends.

A very special thanks are dedicated to my parents for their love, help and eternal patience. I
am very grateful to my in-law family for their kindness and the good times. And finally I would
like to thank my dear husband for endless love, patience and positive outlook. You make me

happy!

Contents

Abstract
Acknowledgements
List of Figures
List of Tables
1 Introduction
1.1 Researchquestions
1.2 Contributions
1.3 Thesisoutline
1.4 Publications
2 Background
2.1 Syntactictheories
2.1.1 Phrase-structure grammar
2.1.2 Dependency grammar
2.1.3 Head-Driven Phrase Structure Grammar
2.2 Syntactic parsing uu e e e e e
2.2.1 Data-driven parsing
2.2.2 Deep grammar parsingo e e e e
2.3 Parsercombination
2.4 Parser evaluation measures e e
2.5 LinguistiC TeSOUICES . . . « « . v v v v v v e it e e e e e e
2.6 SUMMArY e e e e e
3 Syntactico-semantic dependencies

3.1
32
33
34

Relatedwork L
Conversion procedure e e e

3.4.1
342
343
3.4.4

Syntax: derivations to dependencies
Semantics: logical form to dependencies
Tokenization styles Lo
Output format

vii

iii

xi

xiii

0 O\ B W

O O &

14

23
24
30
39
43
47
49

Vviii

3.5

3.6

Contrasting analysis Lo
3.5.1 Variation in dependency representations
3.5.2 Qualitative analysis
3.5.3 Quantitative analysis
Summary

Contrasting parsing experiments

4.1
4.2
43
44
4.5
4.6

Relatedwork
Experimental setup
Results.
Erroranalysis
Extrinsic evaluation o
Summary

Cross-framework parser evaluation

5.1
52
53
54
5.5
5.6
5.7
5.8
5.9

Motivation o
Relatedwork
Experimental setup
In-domain parsing results oL
Cross-domain parsing results
Erroranalysis
Sanity experiments
Extrinsic evaluation on negation resolution task
Extrinsic evaluation on semantic dependency parsing
5.10 Reflections on the SDP 2014 results
5.11 Summary

Parser combination

6.1
6.2

6.3
6.4
6.5

6.6
6.7
6.8

Introduction L
Relatedwork
6.2.1 Efficiency
6.22 COVerage
6.2.3 ACCUTACY v v it i e

6.2.4 Parser combination for improved efficiency and accuracy

Hypothesistesting
Experimental setup
Tuning
6.5.1 Filtering parameters
6.5.2 Confidence thresholding
6.53 Ensemblesofparsers
In-domain parser integration experiments
Cross-domain parser integration experiments
Summary

Contents

Contents

7 Conclusion

7.1 Mainconclusions e

7.2 Research questions revisited Lo

7.3 Future research

Bibliography

iX

181
181
184
185

189

List of Figures

2.1
22
23
24
25
2.6
2.7

2.8
29
2.10
2.11

2.12
2.13

2.14
2.15

3.1

32
33

34
3.5
3.6
3.7

5.1
52

53

Two syntactic analyses for the sentence “He saw a star with a telescope”
Constituency and dependency analysis of the sentence “Mike plays football”
Levels of sentence representation and modules of the MTT (Kahane, 2003)
Projective dependency tree example from Nivre (2008)
Non-projective dependency tree
The type hierarchy from Sagetal. (2003)
Syntactic analysis of the sentence “Salmon is a nutritious food” with the arc-
eager algorithm
Lexical entry “ahead of” in the ERG lexicon
Derivation tree for the sentence “Every child probably has a funny toy”.

MRS for the sentence “Every child probably has a funny toy”
MRS for the sentence “Every child probably has a funny toy” in feature struc-
ture representation . . . oL oL ... Lo
EDS for the sentence “Every child probably has a funny toy”
Example of flat and extended analyses of the noun phrase “Air Force contract”
from Vadas and Curran (2007)
Packed forest with sub-node decompositions
Crossing brackets

Simplified lexical entry from Alpino grammar for a finite transitive verb taking

a direct object (Malouf and van Noord, 2004)
Dependency representations in DELPH-IN formats
ERG syntactic derivation tree for the sentence “A similar technique is almost

impossible to apply to other crops, such as cotton, soybeans and rice.”
ERG Elementary Dependency Structure
Excerpt from the ERG configurationfile
A WSJ sentence annotation using PTB-tokenizationstyle
Dependency representations in CoNLL, Stanford, Enju, Prague, and DELPH-

INformats

Ambiguous token lattice
Character ranges for the phrase “in the 70" which is tokenized differently in
parser output with respect to the gold standard
Domain: WSJ. Distribution of dependency labels; precision of attachment of
the most frequent dependency typeso

X1

15
16
17
17
19

Xii

54

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16
5.17

6.1
6.2

List of Figures

Domain: CB. Distribution of dependency labels; precision of attachment of the

most frequent dependency typeso oo 124
Domain: SC. Distribution and precision of dependency; attachment of the most
frequent dependency labels oo oL 124
Domain: VM. Distribution of dependency labels; precision of attachment of the
most frequent dependency typeso oo 125
Domain: WS. Distribution of dependency labels; precision of attachment of the
most frequent dependency typeso oo oo 125
Domain: WSJ. Dependency label precision relative to predicted dependency
length; label recall relative to gold dependency length 126
Domain: CB. Dependency label precision relative to predicted dependency
length; label recall relative to gold dependency length 126
Domain: SC. Dependency label precision relative to predicted dependency
length; label recall relative to gold dependency length 127
Domain: VM. Dependency label precision relative to predicted dependency
length; label recall relative to gold dependency length 127
Domain: WS. Dependency label precision relative to predicted dependency
length; label recall relative to gold dependency length 127
Domain: WSJ. Distribution of PoS tags; accuracy of parsers for different PoS
(AgS 129

Domain: CB. Distribution of PoS tags; accuracy of parsers for different PoS tags 129
Domain: SC. Distribution of PoS tags; accuracy of parsers for different PoS tags 129
Domain: VM. Distribution of PoS tags; accuracy of parsers for different PoS tags 130
Domain: WS. Distribution of PoS tags; accuracy of parsers for different PoS tags 130

Precision versus annotation rate for B&N on the developmentset 165
Tuning standard deviation and K of the KD-Fix algorithm on the development set166

List of Tables

2.1

3.1
32

34
39

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

4.17
4.18

4.19

4.20

4.21
4.22

5.1

Types of variablesin MRS oL

ERG configuration file that describes how many child nodes each grammar con-

struction has and which daughteristhehead
Tokenization pipeline during parsing with PET (Dridan, 2013b)
Summary of dependency formats L.
Statistics of the DM, EP and PT dependency graphs

Evaluation of automatic libertagging on the test set before conversion to PTB

tokenization
Performance of the English Stanford Tagger and TnT taggers on the develop-

MENtSEt
Results of the automatic PTB PoS tagging and supertagging on the test set . . .
Parsing results of Malt on SB, CD, DT and PA w/o scoring punctuation

Parsing results of MST on SB, CD, DT and PA w/o scoring punctuation
Parsing results of B&N on SB, CD, DT and PA w/o scoring punctuation
Parsing results of Malt on SB, CD, DT and PA including punctuation in the

SCOTINEZ . . v v v o v e e e e e e e e e e e e e e
Parsing results of MST on SB, CD, DT and PA including punctuation in the

SCOTINEZ + . v v v e e e e e e e e e e e e e e e e
Parsing results of B&N on SB, CD, DT and PA including punctuation in the

SCOTINEZ . . v v v e e e e e e e e e e e e e e e
Performance of Malt on the data annotated with PET-predicted supertags
Distribution of accuracy over PTB PoS tags when parsing with the Malt parser

on the four dependency formats L
Precision and recall of the labeling and attachment of the outgoing arcs for the

coordinating conjunction for the Malt parser on different dependency formats

with PTBPoStags
Recall and precision of dependency relation and attachment for root when pars-

ing with the Malt parser on the four dependency formats with PTB PoS tags . .
Conan Doyle corpus statistics (Morante and Blanco, 2012)
Performance of the negation resolution system UiO,y (Lapponi et al., 2012b)

using dependency features from the analyses of B&N with CD, SB and DT

dependencies in contrast with previouswork L.

Sentence, token, and type counts for the DeepBank and Redwoods data sets . .

Xiii

117

X1V

52
53
54

5.5
5.6
59

5.10
5.11

5.12

5.13

5.14
5.15

5.16

5.17
5.18
5.19
5.20
521

6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9
6.10
6.11

List of Tables

Parsing accuracy of B&N with three dependency schemes. 117
Tuning of B&N on section 20 of DeepBank 120
Tagging accuracy, PARSEVAL Fj, and dependency accuracy for the Berkeley

parser on the developmentdata 121
In-domain parsing experiments 121
Cross-domain parsing experiment 123

Number of total and correctly analyzed with ERG,, Berkeley and B&N prepo-
sitional complements for various lexical types of the head—adjunct, noun and

verb—onthe WSJdomain 132
Number of total and correct analyses of prepositional complement structures . . 132
Coverage and dependency accuracies with PTB tokenization and either detailed
or coarse lexical categorieso 133
Dependency accuracies computed with the eval.pl software for PTB tokeniza-
tion and coarse lexical categories 134
Parse failures and token mismatches (‘gaps’), and tagging and dependency ac-
curacy on the sub-set of the Conan Doyle developmentdata 135
PET coverage on Conan Doyle training, development and test sets 135

Performance of the negation resolution system UiO, on the development set
using dependency features from the analyses of ERG,, ERG, and B&N with
DT dependencies in contrast with the analyses of the Malt parser with SB de-
pendencies from Lapponi etal. (2012b), 136
Performance of the negation resolution system UiO, on the test set using de-
pendency features from the analyses of ERG,, ERG, and B&N with DT depen-
dencies in contrast with the analyses of the Malt parser with SB dependencies

from Lapponietal. (2012b) 136
SemEval 2014 open track results of the Priberam systemon DM 138
SemEval 2014 open track results of the Priberam systemon PAS 138
SemEval 2014 open track results of the Priberam system on PCEDT 139
Labeled Dependencies Including TOP Nodes 140
Unlabeled Dependencies Including TOP Nodes 141
Sentence and token counts and average sentence length for data sets of Deep-

Bank 1.1 and Redwoods prepared with ERG 1214 152
Tokenization pipeline during parsing with PET (Dridan, 2013b) 154
Baseline and upper bound for parser combination on the development set . . . 155
Evaluation of individual parsers on the developmentset 156
Results of parser combination without filtering on the development set 157
Tuning filtering parameter length of dependency 158
Filtering parameter part-of-speech tag of dependent 159
Filtering dependencies that have frequency less than 300 and precision less than

T0% . . . 160
Selecting only dependency types for which precision is minimum 80% 161
Selecting only dependencies of 11 types 161

Selecting only dependencies of 10types 161

List of Tables XV

6.12
6.13
6.14
6.15

6.16
6.17

6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28

Selecting only dependencies of 8 types 162
Selecting only dependencies of 7types 162
Parser integration: Turboand PET 163
Correlation of per-dependency confidence scores of the B&N parser with cor-

rectness of attachment and labeling 164
Confidence thresholding with B&N 165
Correlation of MST per-dependency confidence scores with correctness of at-

tachment and labeling 166
Confidence thresholding with MST 167
Ensemble BMT, tuning 168
Ensemble MMMT, tuning 169
Ensemble BMMMT, tuning 170
Evaluation of individual parsers on the testset 171
In-domain parser combination experiments 172
Evaluation of individual parsers on CB, VM, SCand WS 174
Out-of-domain parser combination experimentson CB 175
Out-of-domain parser combination experimentson VM 176
Out-of-domain parser combination experimentson SC 177

Out-of-domain parser combination experimentson WS 178

Chapter 1

Introduction

Isn’t the language that ordinary people speak a wonderful thing
that deserves to be studied in its own right?

— Martin Kay. A Life in Language

In the present work we focus on automatic syntactic analysis of natural language, called
parsing, which assigns grammatical structures to an utterance. The main hypothesis motivat-
ing the parsing task is that grammatical structure contributes to meaning. There is a historic
distinction between data-driven and grammar-based parsing approaches where the data-driven
methods learn from labeled data relying on statistical algorithms and the grammar-based meth-
ods make parsing decisions with respect to an explicit, often hand-engineered system of syn-
tactic knowledge usually with the aid of statistical means. The main hypothesis of data-driven
parsing concerns the possibility for generalization about language using empirical data as a
source of knowledge, and the most commonly exploited techniques employ machine learning
algorithms that induce language models or grammars from annotated corpora. Grammar-based
systems usually incorporate a hand-crafted grammar grounded in a linguistic theory and exploit
statistical methods in a disambiguation module that selects the first-ranked analysis.

In the early days there was a strong tradition of grammar formalization in the field of compu-
tational linguistics that flourished after the publication of the monographs of Noam Chomsky in
the tradition of Transformational Grammar (Chomsky, 1957, 1965, 1995, inter alios). Present-
day Combinatory Categorical Grammar (CCG) (Steedman, 2000), Tree Adjoining Grammar
(TAG) (Joshi et al., 1975), Lexical-Functional Grammar (LFG) (Kaplan and Bresnan, 1982)
and Head-driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994) represent broadly
used, theoretically well-motivated grammar formalisms originating from research initiatives
from the period of 1950-1990s. A paradigm shift within the field of syntactic parsing began
with automatic grammar induction as advances in technology and algorithms made it possi-
ble to acquire grammatical rules from manually annotated data that could still be extracted
and comprehended by an interested user. Thus the Charniak-Johnson (Charniak and John-
son, 2005), Collins (Collins, 1999) and Berkeley (Petrov et al., 2006) parsers still make use
of actual grammar rules, albeit often counting in the tens of thousands, based on principles of
context-free grammar and training examples from a treebank. The next transition in the field
has been to what we may call grammar-less parsing where explicit linguistic rules are not recon-
structed during the training phase, with such prominent examples of purely data-driven parsers

1

as Malt (Nivre et al., 2007b) and MST (McDonald et al., 2005b). Following the predominance
of research on statistical algorithms, the traditional grammar-oriented systems were modernized
and augmented with various mechanisms for improved performance which currently makes the
distinction between data-driven and grammar-based approaches less clear-cut today. At the
moment there is an increasing interest in semantic processing which might require a shift of
paradigm, possibly reviving the interest in a more theoretical study of language.

The common performance challenges attributed to parsing with hand-crafted grammars con-
cern achieving a balance across efficiency (computational complexity and processing speed),
robustness (ability of the parser to produce analysis for any given input) and accuracy (ade-
quacy and correctness of analyses assigned by a parser). The issue of efficiency is related to
building a complete parse forest for a sentence during parsing and the implementation of such
an ambitious process would be computationally demanding and slow with any type of parsing.
However thanks to numerous developments of the last decades parsing with broad-coverage
hand-crafted grammars is currently operational and competitive. The issues with coverage are
related to difficulties of parsing ungrammatical inputs due to strict restrictions in a hand-crafted
lexicon and system of rules, and research of effective methods to reduce and close this gap
has produced many fruitful results. In terms of accuracy, grammar-based parsing is capable of
producing linguistically precise and sound analyses. A systematic comparison of the perfor-
mance of state-of-the-art grammar-based and data-driven parsers is complicated by theoretical
and structural differences in corresponding analyses, however is necessary for a better under-
standing of how these frameworks currently relate to each other.

This thesis investigates various aspects of grammar-based and data-driven parsing paradigms
using bilexical dependencies as the basis for comparison. The notion of bilexical dependency
is central in dependency-based theories of syntax and has lately been widely adopted as a pars-
ing representation in the field. The choice of bilexical dependencies as a basis for comparison
in the current work is motivated by their expressivity to directly represent predicate-argument
relations (such as subject and object), the existence of transformational rules from phrase struc-
ture trees into dependency representations, the central position of the notion of the head in
Head-driven Phrase Structure Grammar and practical usage of bilexical dependencies in vari-
ous applications such as machine translation, sentiment analysis, text summarization, question
answering and others. Historically there was no unique standard in dependency representation
even for the English language and different research groups manufactured their own formats,
such as Prague Dependency (Haji¢, 1998) with a long tradition rooted in Functional Generative
Description (Sgall et al., 1986) and Stanford Dependencies (de Marneffe et al., 2006) inspired
by Lexical-Functional Grammar (Kaplan and Bresnan, 1982). One question that remains open
is to what degree the differences in various representations are contentful and significant in
parsing, as well as for downstream applications.

Our working environment is the LinGO English Resource Grammar (ERG) (Flickinger,
2000) and the HPSG-based parser PET (Callmeier, 2000) which carries out the construction of
a meaning representation in the form of Minimal Recursion Semantics (Copestake et al., 2005)
in parallel with the derivation of a syntactic analysis according to the grammar. Experiments
are carried out on resources annotated with the English Resource Grammar taken from a va-
riety of different domains and genres, including the newspaper text of the Wall Street Journal
(Flickinger et al., 2012), Wikipedia fragments (Ytrestgl et al., 2009), transcripts of spontaneous

Chapter 1. Introduction 3

speech (Oepen et al., 2004) and others. All these open source tools and resources are part of
the international Deep Linguistic Processing with HPSG Initiative (DELPH-IN). Within the
DELPH-IN partnership, the modeling of natural language in its complexity is grammar-centric,
highly-lexicalized and aiming at high precision and broad coverage.

In the present work we seek to compare the performance of the grammar-based approach to
purely statistical state-of-the-art frameworks and furthermore to improve the efficiency of the
grammar-based parser by combining it with syntactic dependency parsers.

1.1 Research questions
In the present section we introduce several research questions addressed in this thesis.

o Which abstract commonalities and differences can be identified among various depen-
dency representations?

Bilexical dependency representations have developed into a prevailing annotation format along-
side the phrase structure representations that are more traditional in the study of English syntax.
There are a number of studies aiming to contrast phrase structure and dependency representa-
tions (Rambow and Joshi, 1994; Xia and Palmer, 2001; Klein and Manning, 2004; Gerdes and
Kahane, 2011), however, to the best of our knowledge, there has been little work on differ-
ences and commonalities of various dependency formats at the time when this PhD project was
launched. We are therefore interested in examining a variety of dependency formats and deter-
mining which differences in dependency representations are linguistically contentful or rather
of a more technical or superficial nature.

* How and to what degree can the syntactic and semantic layers of HPSG be expressed in
the form of bilexical dependencies?

The motivation for expressing HPSG analyses in dependency-style representations is to increase
accessibility of the DELPH-IN resources and facilitate cross-framework parse evaluation. La-
beled bilexical dependencies are useful for applications such as information extraction, machine
translation, sentiment analysis and others. In addition, bilexical dependencies offer ease of
readability for consumers of the representation which is an important property of user-centered
design. The distinction between syntax and semantics is fundamental to the study of language,
and in ERG syntactic information is encoded in a form of a derivation tree and semantics is
expressed in the Minimal Recursion Semantics formalism (Copestake et al., 2005). Immediate
applications of dependencies representing the syntactic and semantic levels of the ERG anal-
ysis are statistical syntactic dependency parsing and statistical semantic dependency parsing,
correspondingly.

* How does the choice of syntactic dependency annotation format affect the performance
of dependency parsers and downstream applications?

The choice of dependency representation touches upon issues that are relevant for dependency
parsing and downstream applications. Intrinsic evaluation characterizes parsing performance

4 1.2. Contributions

mainly with respect to a pre-defined gold standard while extrinsic evaluation assesses the con-
tribution of a syntactic analysis to a certain application. It can be helpful to understand how easy
it is to automatically produce different dependency representations, which linguistic phenom-
ena are particularly hard for automatic processing, whether differences in syntactic dependency
representations have significant effects on parsing performance and practical tasks, and whether
the results of intrinsic and extrinsic evaluation of dependency formats correlate.

* How does the performance of the HPSG parser relate to data-driven syntactic analyzers?

With a goal to contribute to our understanding of different approaches to parsing, we are in-
terested in comparing representatives of three different parsing frameworks: phrase structure,
dependency and HPSG parsers. The three considered approaches to parsing make different as-
sumptions and produce different output structures which complicates the comparison between
them.

* How can the performance of the HPSG parser be improved by reducing its search space
with a native dependency parser?

The main challenge of parsing with broad-coverage precision grammars is achieving a good
balance between efficiency, coverage and accuracy. When optimizing a grammar-based parser
for one of these conflicting criteria it is important to account for negative effects in terms of
the other two criteria, and for this reason such a study should convey a three-way trade-off
evaluation. To address this research question one has to explore a large space of parser inte-
gration setups and tackle the problem of choosing high-quality dependencies, and there is little
pre-existing knowledge on relevant trade-offs for this particular parser combination problem.

1.2 Contributions

This project can be seen as an attempt to identify and combine the strengths of two paradigms
of automatic syntactic analysis: parsing with a hand-crafted grammar grounded in linguistic
theory developed over decades by professional linguists, and data-driven statistical parsing im-
plementing modern machine learning algorithms for probabilistic modeling of language from
annotated resources. To achieve this goal we extract a dependency backbone from HPSG struc-
tures, train statistical dependency parsers on the resultant structures and restrict the search space
of the grammar-based parser with the output of the dependency parsers. There are several in-
dependent steps involved in this process and below we highlight the main contributions of the
present work.

Dependency representations from the ERG analysis layers We develop a fully automated
deterministic reduction procedure for transforming internal ERG structures to bilexical de-
pendencies, introducing two novel DELPH-IN dependency schemes. Syntactic dependencies,
which we abbreviate DT, are derived directly from the ERG derivation tree, while for semantic
dependencies, which we abbreviate DM, a two-step process is implemented for transformation
from the native Minimal Recursion Semantics structures into bilexical dependency graphs.

Chapter 1. Introduction 5

We chose to avoid conversion to existing dependency formats as that involves heuristics
and/or rules that modify native properties of the grammar. The use of these conversion heuristics
would have introduced confusion in our comparison of the PET parser to data-driven analyzers
by making it unclear whether the results of evaluation describe properties of the parser or the
converter, and in this light the DT format can be seen as a tool for cross-framework comparison.
Another reason why we restrained from conversion to an existing format is that at the start of
this PhD project there was no consensus in the field about a syntactic dependency representation
standard, something which later motivated the emergence of Universal Stanford Dependencies
(de Marneffe et al., 2014) and Universal Dependencies (Nivre, 2015), an attempt to generalize
the Stanford dependency format across languages and stimulate the establishment of a unified,
cross-linguistic de facto standard.

With an opportunity to derive dependencies from the rich structures of the English Resource
Grammar, semi-automatically annotated resources, such as Redwoods (Oepen et al., 2004) and
WeScience (Ytrestgl et al., 2009), created within the DELPH-IN partnership become available
for direct usage by a broader community in the field. In fact, our semantic dependency format
DM has already found an application beyond the present project and was exploited in the Se-
mEval shared tasks of 2014 and 2015 on broad-coverage semantic dependency parsing (Oepen
et al., 2014, 2015).

Analysis of dependency representations We performed an in-depth analysis of structural
differences and commonalities of a collection of different syntactic and semantic dependency
representations, including our two novel DELPH-IN schemes deduced from the ERG. In a qual-
itative analysis we examine the variations in choices of head and dependents, graph structure
and connectivity and discover surprising disagreement among formats for some of the basic
syntactic constructions. Quantitative analysis, on the other hand, is interesting for exploring
overlap between formats by measuring similarity scores between various formats which pro-
vides information about the possibility of interconversion. The syntactic dependency formats
are compared on the tasks of dependency parsing and negation resolution. Important findings
are that the choice between Stanford Basic (de Marneffe et al., 2006), CoNLL (Johansson and
Nugues, 2007) and DT dependencies does not significantly influence parsing performance for
state-of-the-art data-driven systems, and that the three schemes are comparable in terms of their
utility to the downstream application of negation resolution.

Cross-framework parser comparison Since the structural differences between the three
aforementioned representations do not strongly affect syntactic parsing, DT offers a legitimate
candidate format for cross-framework parser comparison. In a set of experiments, we find that
the grammar-based parser PET shows higher accuracy and better cross-domain resilience than
the data-driven direct dependency B&N parser (Bohnet and Nivre, 2012) and PCFG Berkeley
parser (Petrov et al., 2006). We carry out several control experiments to ensure that this result
is not due to the choice of specific tokenization or part-of-speech tagging convention. The ef-
ficiency of PET is similar to the efficiency of B&N which has state-of-the-art accuracy but is
slower than most of the other dependency parsers. Unlike dependency parsers, both PET and
Berkeley have incomplete coverage although PET to a larger degree. The HPSG and depen-
dency parsers are extrinsically compared on two tasks that use syntactic dependency features:

6 1.3. Thesis outline

negation resolution and semantic dependency parsing. We find that negation resolution is not
sensitive to the differences in parsing results, while the results of the second task are more
accurate when employing the grammar-based parser.

Parser combination We investigate a range of parser combination setups for improved effi-
ciency of HPSG-based parsing via a new interface incorporated in the English Resource Gram-
mar version 1212. We explore several methods for selecting high-quality bilexical dependencies
from the output of statistical dependency parsers: a) filtering by part-of-speech of dependent,
dependency type and length of dependency span; b) thresholding per-dependency confidence
values; ¢) training an ensemble of parsers with a voting approach. We propose “static” analysis
as a method to evaluate the quality of selected dependencies before actual integration with the
PET parser relying on precision and annotation rate metrics. On the test sets we discover that a
domain-resilient balance across evaluation metrics is achieved when the PET parser is restricted
with dependencies selected from the filtered output of parser ensembles with strict voting.

1.3 Thesis outline

This section provides a chapter-by-chapter guide of the dissertation. The thesis structure
follows a coherent line of experimental research of the present PhD project.

Chapter 2: Background In this chapter we discuss three syntactic theories that play an im-
portant role in contemporary parsing technology. Then we turn to specific parsing algorithms
and software examples of constituency, dependency (transition-based and graph-based) and
deep grammar parsers. Further we introduce some components of the DELPH-IN computa-
tional framework such as the English Resource Grammar (Flickinger, 2000), Minimal Recur-
sion Semantics (Copestake et al., 2005) and Elementary Dependency Structures (Oepen and
Lgnning, 2006). We review a number of approaches for parser combination and parser evalu-
ation proposed in previous work and describe several linguistic resources that are used in the
present work.

Chapter 3: Syntactico-semantic dependencies In this chapter we briefly discuss a usage
of bilexical dependencies in such applications as machine translation, semantic search and on-
tology learning and then motivate the decision to extract dependency representations from the
English Resource Grammar. To begin with, we describe our own procedure of reducing the
rich HPSG structures to syntactic and semantic dependency graphs, dubbed DT and DM corre-
spondingly. We then carry out a contrasting analysis of nine syntactico-semantic dependency
formats examining common linguistic phenomena and measuring the relatedness of the formats
using Jaccard similarity and unlabeled F1 score.

Chapter 4: Contrasting parsing experiments Following the structural analysis of depen-
dency representations, we investigate how the properties of syntactic dependencies influence
parser results as previous work shows that dependency annotation format may have a signif-
icant impact on the parser accuracy. We are contrasting parsing Stanford Basic (de Marneffe

Chapter 1. Introduction 7

et al., 2006), CoNLL (Johansson and Nugues, 2007), DT and Prague dependencies from the
analytical layer of representation (Haji¢, 1998). The results are broken down by parser, de-
pendency format, tag set, and in addition we evaluate the effects of including punctuation into
scoring and the availability of more training data. In an error analysis we focus on accuracy
of the most frequently occurring part-of-speech tags and we exemplify common problems in
parsing coordination conjunctions and verbs. In an extrinsic evaluation of the dependency for-
mats on a negation resolution task we get a range of performance differences across different
evaluation metrics. An important conclusion of the chapter for the current project is that DT is
a good candidate representation for parsing and applications relying on syntactic dependency
parsing and that DT compares favorably to the Stanford Basic and CoNLL formats.

Chapter 5: Cross-framework parser evaluation Using DT as a representation for cross-
framework parser comparison, we contrast data-driven dependency, statistical phrase struc-
ture and HPSG-based parsing architectures—B&N (Bohnet and Nivre, 2012), Berkeley (Petrov
et al., 2006) and PET (Callmeier, 2000)—evaluating trade-offs in terms of accuracy, coverage
and efficiency on in- and out-of-domain data. The grammar-based parser is available in two con-
figurations: a standard setup optimized for accuracy and a setup optimized for efficiency from
Dridan (2013a), with the latter one giving a speed-up of almost a factor of six and achieving
parsing speed similar to the dependency parser of Bohnet and Nivre (2012). In our experiments,
the grammar-based parser shows significantly higher accuracy and better resilience to domain
variation than the two purely statistical systems, but it fails to achieve complete coverage. The
error analysis investigates the accuracy of individual dependency types, dependency accuracy
relative to dependency length, and distribution of labeled accuracy scores over different lexical
categories.

The dependency and HPSG parsers are further compared in two applications that exploit
rich syntactic features: negation resolution and semantic dependency parsing. According to
the results of our experiments, the first task appears to be insensitive to the choice between
HPSG-based and dependency parsers, at least in our setup. The results of the second task
indicate that (a) the correlation of syntactic and semantic dependency schemes are important
in semantic parsing (e.g. the results are best if syntactic and semantic annotation formats are
derived from the same treebank) and (b) grammar-based parsers are very competitive with the
purely statistical systems on the semantic annotation formats DM and Enju predicate-argument
structures (Miyao and Tsujii, 2005).

Chapter 6: Parser combination The objective of this chapter is to investigate whether the
efficiency of the grammar-based parser can be improved without significant loss of accuracy
and coverage by its combination with dependency parsers. In the beginning of the chapter we
review methods for improving efficiency, coverage and accuracy of HPSG parsing proposed in
literature. Subsequently, we move on to discuss experiments on HPSG parsing with dependency
constraints. In general, syntactic rules incompatible with enforced dependency relations fail in
unification which leads to the reduced search space of the HPSG parser.

One of the main challenges is to select only high-quality dependency relations for integra-
tion, and we use several filtering techniques, probability scores of individual parsers and voting
in parser ensembles to tackle this problem. We present a series of experiments on the develop-

8 1.4. Publications

ment set aiming to choose the best potential configurations and further test the chosen combined
setups on in- and out-of-domain sets. Combining parsing ensembles with an HPSG parser we
obtain improved efficiency and good coverage without loss of accuracy.

Chapter 7: Concluding remarks The final chapter summarizes the main results of the
project, describes some possible refinements and extensions of the presented approaches and
outlines directions for the future work experimentation.

1.4 Publications

Parts of this dissertation are based on the following publications. Footnotes at the beginning
of the chapters point out which publications are relevant for the respective chapter.

Angelina Ivanova, Stephan Oepen, Lilja @vrelid, and Dan Flickinger. Who Did What to Whom?
A Contrastive Study of Syntacto-Semantic Dependencies. In Proceedings of the ACL 2012 Sixth
Linguistic Annotation Workshop. Jeju, South Korea, 2012.

Angelina Ivanova, Stephan Oepen and Lilja @vrelid. Survey on parsing three dependency rep-
resentations for English. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics Proceedings of the Student Research Workshop. Sofia, Bulgaria,
2013.

Angelina Ivanova, Stephan Oepen, Rebecca Dridan, Dan Flickinger and Lilja @vrelid. On Dif-
ferent Approaches to Syntactic Analysis Into Bi-Lexical Dependencies An Empirical Compari-
son of Direct, PCFG-Based, and HPSG-Based Parsers. In Proceedings of the 13th International
Conference on Parsing Technologies (IWPT). Nara, Japan, 2013.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajic,
Angelina Ivanova and Yi Zhang. SemEval 2014 Task 8: Broad-Coverage Semantic Dependency
Parsing. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014). Dublin, Ireland, 2014.

Angelina Ivanova, Stephan Oepen, Rebecca Dridan, Dan Flickinger, Lilja @vrelid and Emanuele
Lapponi. On Different Approaches to Syntactic Analysis Into Bi-Lexical Dependencies An Em-
pirical Comparison of Direct, PCFG-Based, and HPSG-Based Parsers. Journal of Language
Modelling. In press.

Chapter 2

Background

The goal of this chapter is to introduce the relevant theoretical background, to equip the
reader with the necessary terminology and give an overview of the origins of the challenges that
are addressed in the present work.

First we will briefly review three linguistic theories that constitute a foundation for the data
representations and software tools exploited in our experiments, as well as explain important
linguistic notions which we will use in subsequent chapters. Thereupon we will launch the
discussion of the core topic of this thesis—automatic syntactic analysis, e.g. parsing. We pro-
vide a high-level description of both data-driven and grammar-based approaches to parsing and
give examples of parsers representing the different frameworks. Further on we will describe
various approaches to parser combination, summarize a range of evaluation metrics used in
parser comparisons and introduce several important linguistic resources that will be central in
the remaining chapters of the thesis.

2.1 Syntactic theories

The word syntax derives from ancient Greek cvvTais (“arrangement”) and refers to the
arrangement of words in sentences, e.g. the structure and formation of sentences and the rela-
tionship of their component parts. The first grammar developments originated in ancient India
and ancient Greece. One of the oldest prominent grammar studies is Panini’s theoretical anal-
ysis of Sanskrit known as Astadhyayi (ca. 350 BC). This grammar formulates morphological,
syntactic and phonological rules though this subcategorisation is not clear-cut in the original
work. Since then, a range of different theories have been proposed to account for the syntactic
properties of natural languages.

This section addresses three influential modern theories of syntax: Phrase-Structure Gram-
mar, Dependency Grammar and Head-Driven Phrase Structure Grammar.

2.1.1 Phrase-structure grammar

The concept of phrase structure (constituency) suggests that groups of words may behave
as a single unit or constituent, e.g. “a star” is a noun phrase that acts as one entity in an English
sentence. Constituency tests, such as topicalization and coordination, allow us to determine
whether a sequence of words forms a constituent. Topicalization is a syntactic movement that

9

10 2.1. Syntactic theories

places the emphasis on the topic by positioning it in the beginning of the sentence (compare “He
saw a star with a telescope” and “A star he saw with a telescope”). A string of words can be
topicalized in a sentence if, and only if, it is a constituent. As a general rule, only constituents
(of the same type) can be coordinated in a sentence using coordinating conjunctions (e.g. “He
saw a star and the moon with a telescope”), with an exception of so-called coordination of
unlikes (e.g. “He is wealthy and a Republican”). Constituent categories are also motivated by
distributional equivalence, e.g. constituents can be identified with substitution tests: if a group
of words can be substituted with a pro-form, it is a constituent (e.g. since the substitution “He
saw a star with a telescope”—“He saw if with a telescope” is valid, “a star” is a constituent).

Phrase-structure rules formalize generalizations about the phrase and sentence structure.
Some concepts of phrase structure grammar can be traced back to the analysis of logical propo-
sitions by ancient Stoics and centuries later passed through formal logic to linguists such as
Leonard Bloomfield, Rulon Wells, Zellig Harris, and Noam Chomsky (Covington, 2001).

In 1957, Noam Chomsky published his book on Syntactic Structures (Chomsky, 1957),
where he formalized the idea of basing a grammar on constituent structure using context-free
grammar (CFG) (see below). Since then Chomskyan theories have become a very influential
school of thought in linguistics. The theories were developed in the framework of generative
grammar based on the view that humans have an innate capacity for language and attempting
to describe principles and rules sufficient to generate all and only the well-formed sentences of
a language.

The common ancestor for phrase structure theories of syntax is Transformational Grammar
(Chomsky, 1957, 1965) which augments a lexicon and phrase structure rules expressing “deep
structure” of the sentence with transformations that map sentence configurations to the “surface
structure” of the sentence. For example, passive voice is a surface structure that can be recovered
via a series of transformations of the active form of the sentence representing its deep structure.

Natural language processing implementations of phrase structure grammars departed from
direct realizations of later linguistic theories in the Chomskyan tradition, such as Government
and Binding (Chomsky, 1981) and the Minimalist Program (Chomsky, 1995), comprising only
some aspects of these theoretical views like, for example, the formal model of CFG (Chomsky,
1957) and some of the notions of X’ theory (Chomsky, 1970). Below we will introduce the
notions from these theories that have had an important influence in computational linguistics.

Context-Free Grammar (CFG)

Context-Free Grammar (CFG) (Chomsky, 1957) is a formalism for modeling constituent
structure in natural languages which is defined as a quadruple G = (N, X, R, S) (Jurafsky and
Martin, 2009, p.425):

o ('is a set of non-terminal symbols (syntactic categories);
* X is a set of terminal symbols (lexical categories);
* R is aset of productions, or rules;

» S € C'is adesignated symbol called the initial symbol.

Chapter 2. Background 11

The productions formally explain generalizations about the phrase and sentence structure and
are denoted as A — [where A is a non-terminal and /3 is a string of non-terminals and/or
terminals. A production of the form A — ¢ is called an epsilon rule, or null rule.

A string A derives a string [if A can be rewritten as 5 by a sequence of rule applications
(Hopcroft and Ullman, 1979):

e if A—» g€ Randa,vy € (XUC)* then vAy = afy (aAvy derives af7y);

e ifaj,ae,...,a, € (BUC) and a; = aa, a0 = @3, ..., Q1 = Qp, then oy = ay, (o
derives).

A context-free grammar G' defines a formal language £(G) = {w € X*|S = w}, ie.
if a string of words can be derived from the initial symbol by sequential applications of the
grammar rules, it is licensed by the grammar as a valid sentence of the language £(G). Strings
that cannot be derived are considered ungrammatical. Grammars that define a language by the
set of possible sentences “generated” by the grammar are called generative.

A toy example of a CFG is shown in Example (1); productions on the right are called lexical
rules as they do not contain non-terminal symbols on the right-hand side.

S — NP VP
NP — PRP 552;;?6
NP — DTN DT - a

(1) NP — DT N PP N — star
VP = VNP N — telescope
VP — V NP PP P - with
PP — P NP

Our grammar may generate multiple analyses for a given sentence due to the lexical or
structural ambiguity of a sentence. Typically, syntactic ambiguity, e.g. the availability of multi-
ple distinct derivations, is considered an indicator of semantic ambiguity, i.e. different possible
interpretations, as demonstrated in Figure 2.1 with an example of two context-free grammar
analyses for the ambiguous sentence “He saw a star with a telescope”. The first syntactic struc-
ture suggests that the (movie?) star was holding the telescope, while the second interpretation
indicates that the telescope was used to see the star.

Probabilistic Context-Free Grammar (PCFG)

Probabilistic Context-Free Grammar (PCFG) first proposed by Booth (1969), is a proba-
bilistic version of a CFG. The formal definition of a PCFG differs from the definition of a CFG
presented above only by the fact that all productions are assigned some probability p:

A= alp)

p is the conditional probability of the right-hand-side string « given the left-hand-side non-
terminal A. Probabilities of all productions of a non-terminal must sum up to one:

Zp(A—>a):1

12

2.1. Syntactic theories

a. S
/\
NP VP
| T~
PRP V NP
He saw DT N PP
a star P NP
‘ /\
with DT N
| |
a telescope
b. S
/\
NP VP
T T
PRP V NP PP
I N N
He saw DT N P NP
I N

a star with DT N

a telescope

Figure 2.1: Two syntactic analyses for the sentence ‘“He saw a star with a telescope”

Chapter 2. Background 13

The assumption of the grammar is that the rules are independent of the context, therefore the
joint probability of a tree 7" and a sentence S is the product of the probabilities of the rules used
to build the tree:
(T, 5) =[] p(r)
reT
The probability of the sentence w equals to the sum of probabilities of all possible parse trees
that could generate this sentence:

p(w) = Z p(T,S), where s(7") is the terminal yield of T’
T:s(T)=w

A PCFG is consistent if and only if the sum of the probabilites of all sentences in the language
is one (Wetherell, 1980):
> pw)=1

weL(G)

In practice the probabilities of productions are empirically approximated from a corpus.

X’ theory

X’ theory (Chomsky, 1970) introduces abstract patterns characterizing internal phrasal and
sentential structures in a language. The main syntactic properties of the phrase are centered
in the head and the phrase is said to be a projection of the head. Most commonly two levels
of projection are employed. One of the versions of the X’-scheme for English is shown in
Example (2):

2) X

specifier X’

T

modifier X’

N

X complement

where X is the head, X’ is a semi-phrasal intermediate projection of X and X is the maximal
projection of the head. V-VP-S and N-N’-NP are common instances of this schematic version.

The modifier is an optional word or phrase that limits or changes the sense of its head
(another word or phrase). A modifier appearing before its head, e.g. “What a beautiful day!”, is
called a premodifier, and a modifier in position after the head, e.g. “a girl in the blue dress”, is
called a postmodifier. Modifiers cause recursive X’ nodes to appear.

The complement is a word or phrase that completes the sense of its predicate, e.g. “He has
accepted my apology”.

The specifier is defined as a non-recursive left daughter of the phrasal node. Determiners
are NP specifiers, e.g. “the boy”. A specifier at a sentence level is subject. A head can have
several modifiers and complements, but only one specifier.

14 2.1. Syntactic theories

The theory abstracts from the linear order of the constituents at each level and constrains
only the hierarchical structure. X’ theory was integrated in Government and Binding system
of theories and concerned with the representation of sentences as hierarchical structures in the
form of tree diagrams.

Generalized Phrase-Structure Grammar (GPSG)

Generalized Phrase Structure Grammar (GPSG) (Gazdar et al., 1985) is a theory that de-
scribes the syntax of natural languages in the framework of context-free grammars. The mathe-
matical properties of this theory were the focus of the research and the grammar was thoroughly
formalized whereby there emerged parsing systems built on this formalism (Ramsay, 1985; De-
vos and Gilloux, 1990). GPSG had a direct influence on the development of the HPSG theory
(Pollard and Sag, 1994) that we are going to introduce in this chapter and that will be central in
this thesis.

Whereas Transformational Grammar and Government and Binding assume that sentences
have two levels of syntactic representation, deep and surface structures, GPSG posits only one
level which is closer to surface structure, therefore GPSG, and for the same reason HPSG,
are called “monostratal” theories. The effects of transformations are achieved by capturing
long-distance dependencies in complex features and using metarules for generalization instead
of using the movement rules (Hordcek et al., 2011a). The feature-based analysis of filler-gap
constructions (such as topicalization, wh-questions, and relative clauses) is retained in the HPSG
approach. Context-free grammar rules are divided into rules of immediate dominance (“ID
rules”) and rules of linear precedence (“LP rules”) which are also employed in HPSG (Sag
et al., 2003)[p. 536].

The theory introduces the operation of feature unification, which is similar to the set union
operation but undefined for the case when features contradict each other (Horacek et al., 2011a).
Phrases are considered to have a head, which is a category-defining element, and a foot, which
is a complement, and the grammar imposes the head and foot principles. The head principle
declares that the head features of a child node in a tree must be identical to the head features
of the parent node (Hordcek et al., 2011a). The foot principle states that the foot features
instantiated on a parent category in a tree must be identical to the unification of the foot features
in all its child nodes (Horacek et al., 2011a).

2.1.2 Dependency grammar

In contrast to a phrase structure grammar that employs constituents as its main building
blocks, a dependency grammar highlights lexical items. While in a phrase structure grammar
sentences are built up from constituents, in a dependency grammar sentence structure is based
on dependency relations between lexical items.

A dependency relation holds between a head (governor) and its dependent(s) (modifier(s)).
The intuition that the notion “head” conveys is that one element characterizes or dominates the
whole unit in a syntactic structure (Zwicky, 1985). Some common criteria for identifying heads
and dependents are the following (Zwicky, 1985; Hudson, 1990; Nivre, 2005):

* the head can replace the syntactic construction that it governs;

Chapter 2. Background 15

S plays
A Py
NP VP Mike football
| RN
Mike \% NP
| |
plays N
|
football

Figure 2.2: Constituency and dependency analysis of the sentence “Mike plays football”

* the head bears the semantic category and is specified by the dependents;
¢ the head is mandatory and it determines whether dependents are obligatory or optional;

» grammatical categories of dependents are defined by the head via agreement or govern-
ment;

* the head specifies the linear order of its dependents.

Dependency relations are binary asymmetric relations between lexical items (Kiibler et al.,
2009)[p. 2]. Every dependency relation bears a syntactic function which can be explicitly
expressed via a dependency label. Dependency relations often express grammatical relations
that refer to syntactic functions of the constituents in a clause, e.g. subject, direct object, indirect
object, attribute, complement, specifier, determiner, modifier and others.

In 1959, the book “Elements of Structural Syntax” of the French linguist Lucien Tesniére
was published posthumously introducing his theory of syntax that later became known as de-
pendency grammar. Tesniere (1959) emphasizes that components of the sentence are words
that are connected by syntactic relations. For example, the phrase “John slept” consists of the
words “John”, “slept” and the syntactic relation that joins the two elements and expresses the
fact that it was John who slept.

Tesniere argued for the autonomy of syntax from morphology and semantics, based in part
on the observations that:

* syntax investigates the inner form of the sentence, conceptually different from the outer
form of the sentence studied by morphology and both obey their own rules;

* there are semantically absurd sentences that are structurally correct.

Tesniere proposed that dependency grammars are verb-centered (e.g. a finite verb often func-
tions as head in binary relations and often appears at the root of a clause) unlike constituency
grammars that suggest a subject-predicate division of the clause S — NP VP (see Figure 2.2).
In the mid-1960s Mel’¢uk and Zolkowskij developed the Meaning-Text Theory (MTT)
(Zolkowskij and Mel’¢uk, 1965, 1967). The authors postulate dependencies to account for

16 2.1. Syntactic theories

the syntactic analysis within their framework. MTT is a multi-stratal linguistic model that es-
tablishes correspondence between meanings and sounds. In MTT, the meaning is “the only
invariant property of all possible paraphrases of an utterance” (Mel’€uk, 2012)[p.22], the text is
“any linguistically valid segment of speech” (Mel’¢uk, 2012)[p.91], the surface form of mean-
ing, and the sentence is “a maximal utterance that consists of clauses and is a complete unit of
communication” (Mel’¢uk, 2012)[p.31]. The model consists of seven levels of sentence rep-
resentation with six modules that establish correspondence between the adjacent levels (see
Figure 2.3 from Kahane (2003)).

Semantic representation (the meaning)

)

Deep-syntactic representation

0

Surface-syntactic representation

)

Deep-morphological representation

} semantics
}
}
iy } deep morphology
}
}

deep syntax

surface syntax

Surface-morphological representation

7

Deep-phonological representation

0

Surface-phonological representation (the text)

surface morphology

phonology

Figure 2.3: Levels of sentence representation and modules of the MTT (Kahane, 2003)

Surface phonology, or phonetics, which establishes the correspondence between the surface-
phonological representation (phonetics) and actual sounds is outside of the MTT scope. MTT
postulates that a natural language is a logical device that provides many-to-many correspon-
dences between meanings and texts. Synonymy is the phenomenon of one meaning corre-
sponding to many texts and homonymy/polysemy is the phenomenon of one text corresponding
to many meanings. The model describes how to synthesise a sentence from a semantic repre-
sentation and how to do the inverse (analysis), with more emphasis on the synthesis direction
under the assumption that the real language knowledge requires the ability of speaking it.

The surface-syntactic structure of a sentence is a tree with all lexemes of the sentence (in-
cluding all auxiliary words) as nodes and language-specific surface-syntactic relations as arc
labels (syntactic dependencies).

The deep syntactic structure of a sentence is a tree with the lexemes of the sentences as nodes
and universal deep-syntactic relations as arc labels (syntactic dependencies). Some lexical units
of the sentence (auxiliaries, substitute pronouns, governed prepositions and conjunctions) are
not represented in this tree while there are additional empty (fictitious) lexemes exemplifying
syntactic constructions that are not realized in the surface form of the original sentence. An
example of such fictitious lexeme is “approximately” in noun+numeral constructions in the
Russian language, cf. “5 dnej” (“5 days”) and “dnej 5” (“approximately 5 days”).

The semantic structure of a sentence is a network with nodes representing meanings and
arcs expressing predicate—argument relations (semantic dependencies).

Chapter 2. Background 17

The MTT theory was successfully implemented in a number of engineering systems, in-
cluding French-to-Russian and English-to-Russian machine translation systems (Apresjan et al.,
1984-85, 1989), and in text generation systems to produce multilingual weather forecasts (Kit-
tredge and Polguere, 1991; Coch, 1998).

Dependency-based theories of syntax did not receive as much attention as phrase structure
theories until recently in part due to the publication of Gaifman (1965) where it was shown that
i) dependency and context-free grammars describe the same class of languages — context-free
languages; ii) for every dependency grammar there exists a corresponding CFG but not vice
versa (Nivre, 2005). The conversion from dependency to constituency grammar is thus one-
way, as the inverse operation is possible only for a subclass of CFG. However these claims hold
only for the restricted variant of dependency grammars formally described in Hays (1964) and
Gaifman (1965), whereas in general, dependency grammar is not a subclass of CFG (Neuhaus
and Broker, 1997). One of the restrictions that the Hays and Gaifman grammar had was a
projectivity property that does not allow dependency arcs to cross (compare Figures 2.4 and 2.5
from Nivre (2008)).

ROOT

/\ AN

hearing on the issue is scheduled today

Figure 2.4: Projective dependency tree example from Nivre (2008)

ROOT

A hearing is scheduled on the issue today

Figure 2.5: Non-projective dependency tree example from Nivre (2008). Dependencies in bold
are non-projective.

Dependency grammar is more expressive than CFG because non-projective dependencies
cannot be directly conveyed in CFG. Non-projectivity is more common in languages with a
more flexible word order than English, such as Russian and German.

For practical purposes dependency representations may be formalized as dependency graphs
(Nivre et al., 2007b):

A dependency graph for a sentence is a labeled directed graph G = (V, F, L) with the indexed
nodes corresponding to the tokens of the sentence © = (wy, . .., w,) where

* V = (vo,v1,...,u,) is the set of indexed nodes with the indexes from 0 to n;

* E C V x V is the set of arcs connecting pairs of nodes (v;, v;) with the ith node being
the head and the jth node its dependent;

18 2.1. Syntactic theories

* [E — Ris alabeling function that assigns types (arc labels) from the set R to the arcs
from the set £.

For example, the indexed nodes of the graph in Figure 2.4 correspond to the ordered set of in-
dexed sentence tokens V' ={ROOT, A, hearing,, ong, the,, issues, isg, scheduledy;, todays };
the set of arcs is £/ ={(ROOT), isg,), (hearing,, A;), (hearings, ons), (ons, issues), (issues,
the,), (is¢, hearings), (isg, scheduledy), (scheduledr, todays)} and the set of arc labels is R ={ ATT,
SBJ, PC, VC, TMP, ROOT}.

Dependency graphs can be ordered or unordered. For example, the Prague Theory (Sgall
et al., 1986) uses unordered dependency trees at the deeper level of representation and ordered
dependency trees at the surface level. However, most formalizations only support ordered tree
representations.

The dependency graph G is well-formed if the following conditions are satisfied (Nivre
et al., 2007b):

¢ the node with the index 0 is a root;

* (is weakly connected,;

* every node in G can have at most one head, e.g. if v; — v; then A{k|k # i and vy — v;};
* G is acyclic, i.e. if v; — v; then v; 2 v;

Both dependency trees in Figure 2.4 and Figure 2.5 are well-formed.
As it has been mentioned above, some variants of dependency grammar have a projectivity
constraint:

if v; = v; then ¢ s k, for every node k such thati < k < jorj < k < i.

The tree in Figure 2.4 satisfies the projectivity constraint, while the tree in Figure 2.5 does not.

2.1.3 Head-Driven Phrase Structure Grammar

Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994) is a lexicalized
formal theory of language that encodes syntactic and semantic information in feature structures.
HPSG was initially developed as an extension of Generalized Phrase Structure Grammar (see
Section 2.1.1). The following introduction will be loosely based on a simplified presentation of
HPSG by Sag et al. (2003).

HPSG incorporates linguistic information in typed feature structures and embodies gen-
eralizations over classes of related objects in a type hierarchy. The main components of the
grammar are the lexicon, principles and rules and the main operation to check and aggregate in-
formation is unification. HPSG shares the central position of syntactic heads with dependency-
based theories of syntax and the use of phrase-structure rules from constituent-based theories.

Feature structures

A feature structure (Kay, 1985; Shieber, 1986; Carpenter, 1992) is a set of feature-value
pairs representing grammatical information. It is common to depict them in an attribute-value

Chapter 2. Background 19

feature structure

sign pos I-rule
— T ———— N
lexeme expression adj prep agr-pos ~. irule d-rule pi-rule
T T
‘ word phrase det nominal verb
hd—cm. noun comp

Figure 2.6: The type hierarchy from Sag et al. (2003)

matrix representation as shown in (3), where POS and NUM are features and noun and sg are
their corresponding values.

POS noun
NUM sg

3)

Feature structures can be nested because some features take other feature structures as their
values. In HPSG, each feature structure is associated with a type that imposes appropriate
constraints on the occurrences of features and on the values that they take. More formally, a
typed feature structure is a rooted, directed, labeled graph.

Type hierarchy

Linguistic entities are attributed to certain classes, called grammatical types, that are asso-
ciated with features. The types are organized in a multiple-inheritance hierarchy like the one
partially presented in Figure 2.6 (Sag et al., 2003) [p. 492].

HPSG is related to the sign-based conception of Ferdinand de Saussure: words and phrases
of the language are represented as signs. Saussure suggested that a sign establishes an associa-
tion of a mental representation of a sound with a mental representation of a meaning. In HPSG
a sign is the most general type of feature structure that includes phonological, syntactic and
semantic information (Sag et al., 2003) [p. 475]. Lexeme is an abstract class of all forms of a
word, e.g. {go, goes, going, went, gone} for the lexeme “go”. Words and phrases are subtypes
of the class expression which expresses the intuition of their common properties, such as the
feature HEAD with part-of-speech value, verb inflection etc. Examples (4) and (5) illustrate a
feature structure representation of the lexical entry for a noun and of the category NP.

word)]
HEAD noun

phrase

) HEAD noun

Part-of-speech types, or lexical categories, form a hierarchy with respect to the features that
they share: for example, nouns, verbs and determiners take the feature AGR (“‘agreement”).

20 2.1. Syntactic theories

Agreement marks that e.g. subject and verb agree in person and number. Figure 2.6 shows that
the feature AGR is introduced by a subtype of part-of-speech (agr-pos), which provides the
common supertype for the parts of speech determiner (det), nominal and verb.

Lexical rules (I-rules) establish relations between input and output values. The lexical rules
are expressed in the form of feature structures and constrain their input and output to have the
same semantic values. Inflectional rules (i-rules) are a special case of lexical rules that establish
the conversion of lexemes into words (“realizations” of lexemes), preserving the same semantic
(SEM), syntactic (SYN) and argument-structure (ARG-STR) (the subject, the complements
etc.) values. Argument-structure is an ordered list of arguments required by the sign.

The feature structure in Example (6) from Sag et al. (2003) [p. 253] shows a singular noun
inflectional rule that transforms a given lexeme to a singular noun word. Values in boxes are
used as variables to indicate identity of values. Inflectional rules can also attach affixes, e.g.
nominal plural and verbal past tense. In fact, a singular noun can be viewed as using an empty
suffix. In addition, there are derivational rules with empty suffixes such as verbification.

(6) |inflectional rule
common-noun-lexeme
SYN
INPUT s
SEM
ARG-STR
[word i
PER 3rd
SYN HEAD | AGR
OUTPUT , NUM sg
SEM
| ARG-STR |

Another type of lexical rules are derivational rules that attach prefixes or suffixes to the input
lexemes or tackle the problem of valence alternations, such as dative alternation in Example (7)
from Levin (1993)[p.46]:

(7) Bill sold a car to Tom.
Bill sold Tom a car.

Derivational rules output lexemes that can be further processed by inflectional rules. Exam-
ple (8) from Sag et al. (2003) [p. 260] illustrates an agent nominalization lexical rule (for
transformations like “teach” - “teacher”):

Chapter 2. Background 21

(8) _derivational rule

strict-transitive-verb-lexeme

INPUT < SEM [INDEX s} >
ARG-STR <X;,NP;>
_count—noun—lexeme 1
OUTPUT < ro@. SEM {INDEX i} >
PP
ARG-STR <Y’ < [FO]RM of] >>

The function F',, adds a suffix “er” to the lexeme of the strictly transitive verbs (ambitran-
sitive verbs such as “leave” are filtered out by this restriction) and outputs the lexeme of the
countable noun type. The new lexeme’s index (i) matches the index of the subject of the orig-
inal lexeme (X;); the output agent nominal takes a determiner (Y) and a PP complement that
matches the object of the input verb (5): “to teach mathematics” - “teacher of mathematics”.

Lexicon

The lexicon plays a central role in HPSG. The grammar is lexicalized meaning that the
most linguistic knowledge is encoded in lexicon entries. Without means of generalization there
would be a great deal of redundant syntactic and morphological information in individual lexical
entries. Mechanisms expressing lexical regularities in HPSG, initially elaborated in Flickinger
(1987), are categorization of lexical items in a hierarchy with class inheritance of syntactic
properties and introduction of lexical rules for morphological feature manipulations.

HPSG principles

The two core principles of HPSG are the head feature principle and the valence principle.

The Head Feature Principle: the HEAD value of the phrase is equal to the HEAD value of
its head daughter.

The Valence Principle: valence requirements of a phrase (specifier and complement con-
straints) are identified by the head daughter.

The term valence, borrowed from chemistry, describes the capacity of a head to take a
certain number of arguments of a specific type. These principles also underline the essential
role of the syntactic head in HPSG.

HPSG constructions

The main grammar constructions of HPSG are based on three major grammatical functions:
modifier, complement and specifier introduced above in the framework of X’ theory. Sag et al.
(2003)[p.64] introduce complement and specifier as generalizations of the notions of object
and determiner respectively. Among the principal grammar constructions that the lexical items
satisfy in valid sentences of a language are the head-modifier, the head-complement and the

22 2.1. Syntactic theories

head-specifier rules. SPR and COMPS lists of HPSG signs are used to allow a head to require
specific types of specifiers and complements respectively. A MOD list is used to enable modifier
to select the head it can attach to. These lists are shortened once the appropriate arguments have
been found.

The Head-Modifier Construction (see Example (9)): A phrase can consist of a lexical or
phrasal head followed by a compatible modifier phrase (Sag et al., 2003)[p.502].

COMPS ()|[COMPS ()

(9) [phrase] — H{J
MOD (@)
Examples of head-modifier and modifier-head constructions (the head in bold, the modifier in
italics): the house on the hill, a new house.

The Head-Complement Construction (see Example (10)): A phrase can consist of a lexical
head followed by all its complements (Sag et al., 2003)[p.502].

phrase word

S H
VAL [COMPS ()] VAL [COMPS <,...,>}

(10)

Example of the head-complement construction (the head in bold, the complement in italics):
Paul watched a movie, in the hills.

The Head-Specifier Construction (see Example (11)): A phrase can consist of a lexical or
phrasal head preceded by its specifier (Sag et al., 2003)[p.501].

hrase SPR
an |? L OH yaL (m)
SPR () COMPS ()

Examples of specifier-head constructions (the head in bold, the specifier in italics): this bag,
the match, a boy.

The Head-Subject Construction (see Example (12)): combines a head such as a verb phrase
with its subject (Tojo and Saito, 2005).

phrase [1H word

(12) -
SUBI () SUBJ ()

Examples of subject-head constructions (the head in bold, the subject in italics): Jane arrived,
Bob sneezed.

Unification

Valid expressions of the language defined by the grammar principles (such as the head fea-
ture and valence principles described above) and grammar constructions are verified via unifi-
cation. Unification is an operation equivalent to conjunction in logic, which simply combines

Chapter 2. Background 23

constraints of two feature structures. Unification holds only if the information in two signs is
consistent, therefore grammaticality of a sentence can be checked via unification of particular
signs of a sentence with feature structures of the HPSG constructions. We will depict unifica-
tion with the symbol |_|. Example (13) (Horacek et al., 2011b) shows that the property “singular
number” can be unified with the property “3rd person” but not with “plural”.

NUM sg

(13) [NUM sg]] [PER 3rd} -

PER 3rd

[NUM sg]] [NUM pl} —fail

Subsumption

A feature structure L subsumes a feature structure M when the latter contains more con-
straints than the former, e.g. a more abstract feature structure is said to subsume a more specific
one (see Example (14) (Wintner, 2005), where subsumption is denoted with a symbol C). Not
all feature structures can be compared under subsumption though (e.g. M and N in Exam-
ple (14) are incompatible).

M: PERS 3

NUM pl

PERS 3
NUM sg
LCM,LCN MZN,NZM

(14) L: [PERS 3}, N

In conclusion, it is worth mentioning that HPSG is not the only full-fledged linguistically
sound grammar formalism to date. Other long-established research lines include such well-
defined frameworks as Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982) and
Combinatory Categorial Grammar (CCG) (Steedman, 2000). These are however not in the
focus of the present work.

2.2 Syntactic parsing

Automatic syntactic analysis, or parsing of natural language, is the process of automatically
producing syntactic structure for an input text. When parsing a sentence, we often seek its
underlying logical content, or another formal and abstract representation of sentence meaning,
and determining the grammatical structure is a means towards this goal.

In the parsing universe there are two principal approaches that increasingly incline toward
each other: data-driven and grammar-based parsing. Data-driven parsing methods rely on
machine-learning algorithms in order to learn linguistic information implicitly encoded in texts,
that are often annotated with “correct” target grammatical structures. Grammar-based parsing
exploits explicit hand-crafted formal grammars. The two approaches are not polarly distinct
but rather more and more interrelated. Data-driven methods require treebanks annotated with
linguistic information and with sophisticated statistical algorithms they can learn expressive
grammars, so-called treebank grammars (Charniak, 1996). As we have discussed, there are also
grammar-less data-driven methods (such as the MaltParser (Nivre et al., 2007b)). Some data-
driven are built upon linguistically rich features and representations (Klein and Manning, 2003;

24 2.2. Syntactic parsing

Bod, 1998; @vrelid and Nivre, 2007). In turn, grammar-based systems rely on statistical tech-
niques for disambiguation and often also for increased robustness and the acquisition of lexical
resources. In grammar-based parsing the analysis is constrained by the rules and assumptions
adopted by the grammar. Data-driven parsing is heavily influenced by the frequencies of lin-
guistic phenomena in texts selected for training.

Bunt et al. (2010) highlight among the main trends related to parsing: 1) a shift of focus
from traditional context-free grammars to dependency grammars; 2) developing models with
latent variables. The first trend has led to a variety of dependency formalisms, parsers and
representations being designed. Examples of the second trend embodiment are the PCFG model
with latent annotations of Matsuzaki et al. (2005) and the Berkeley parser of (Petrov et al.,
2006) which relies on latent variables in order to derive a grammar from the data by assigning
latent variables to each nonterminal node of PCFG and estimating their parameters with the EM
algorithm.

2.2.1 Data-driven parsing

Data-driven parsers rely on syntactically annotated corpora, or treebanks, in order to con-
struct tree-structure analyses of texts. A majority of such parsers do not utilize hand-crafted
grammars at all but derive linguistic knowledge from the empirical data. In the following sec-
tions we will introduce constituent parsing with the Berkeley parser as an illustrative example,
transition-based dependency parsing with the Malt parser as an illustration, graph-based depen-
dency parsing with the MST parser as the software that represents the approach and the hybrid
system of Bohnet and Nivre (2012) that combines the advantages of transition- and graph-based
parsing.

Constituent parsing

Constituent parsing can be described as the search for the right parse tree describing a deriva-
tion of the sentence in a (typically context-free) Phrase Structure Grammar among all possible
parse trees. A sentence of a language is considered to be recursively composed from smaller
segments called constituents or phrases that carry the meaning and the structure on their own.
In a bottom-up approach, the parser begins with the input tokens and builds up trees, applying
CFG rules until the root node is reached. In a top-down approach a sentence is broken up into
constituents (phrases), which are then broken into smaller constituents until the terminal nodes
are reached.

Berkeley parser The Berkeley parser (Petrov et al., 2006) learns probabilistic context-free
grammars (PCFG) which assign a sequence of words the most likely parse tree. The algorithm
starts from a naive PCFG-grammar which consists of empirical rules and probabilities from
the treebank and then repeatedly applies a split-and-merge approach for automatic grammar
refinement. Splitting assures a fit to the training data, while merging facilitates generalization
and controls grammar size. The splits are guided by the EM algorithm which is based on the
likelihood of the training trees. Complex and frequent categories such as NP and VP have the

Chapter 2. Background 25

most diverse set of subcategories while rare or simple ones like functional categories generally
show fewer splits. Merging is used to prevent oversplitting the grammar.

Transition-based vs. graph-based dependency parsing The two dominating approaches to
data-driven dependency parsing are the transition-based (Yamada and Matsumoto, 2003; Nivre
etal., 2004) and graph-based (McDonald et al., 2005a) approaches. Transition-based algorithms
make parsing decisions by scoring individual transitions from one state of the parser to another
while graph-based algorithms operate on the set of all possible complete parse trees of the
sentence in the search for the highest scoring one. Therefore the crucial difference between
the two frameworks is whether the parsing model assigns scores to the transitions or to the
dependency graphs.

McDonald and Nivre (2007) carried out an error analysis that showed that transition-based
and graph-based systems produced different types of errors, which can be attributed to their the-
oretical properties, and built a combined system (Nivre and McDonald, 2008a). Below, we will
discuss the Malt (Nivre et al., 2007b) and MST (McDonald et al., 2005b) parsers representing
transition- and grammar-based approaches correspondingly and the Bohnet and Nivre (2012)
parser, as an example of a combined model, which was the state-of-the art dependency parser
in 2012-2013.

Malt MaltParser (Nivre et al., 2007b), dubbed Malt in the following, is a transition-based
dependency parser with local learning and greedy search. This parser exploits discriminative
machine learning with history-based feature models and supports several deterministic parsing
algorithms.

A transition is a partial function that maps non-terminal configurations to new configura-
tions. The configuration of the transition system is a triple consisting of a stack of partially
processed nodes, a buffer of remaining input nodes, and a set of labeled arcs.

Malt is trained to approximate a globally optimal solution by making a series of locally
optimal decisions. The system scores transitions between parser configurations based on the
parse history and then greedily searches for the highest-scoring transition sequence that derives
a complete dependency graph (Hall, 2008).

In order to approximate an oracle, a classifier that chooses a single transition from the space
of all possible transitions at each parsing step, the Malt parser implements discriminative learn-
ing methods such as support vector machines. The learning is local since the parameters are
optimized on individual transitions, not series of transitions.

Malt uses complex history-based feature models that combine static and dynamic attributes
of tokens in the parser history (Black et al., 1992; Magerman, 1995). Static properties of at-
tributes, such as word form and part-of-speech tag assigned at the preprocessing step, receive
a value before the parsing begins and remain unchanged during parsing of the sentence, while
dynamic properties, such as dependency type, are instantiated during parsing. Reference to the
attributes of arbitrary tokens from the parser history is realized via address functions such as
the ith token from the top of the stack, the ith token in the buffer, the head or sibling of token
¢ in the partially built dependency graph, the leftmost or the rightmost child of token ¢ in the
partially built dependency graph.

26 2.2. Syntactic parsing

Operation Stack Buffer Partial dependency tree

Initialization [ROOT} [Salmon is a nutritious food] ROOT Salmon is a nutritious food

Shift [ROOT Salmon} [is a nutritious food} ROOT Salmon is a nutritious food
sbj

Left-Arc,; [ROOT} [is a nutritious food} ROOT Salmon is a nutritious food
sbj

Shift [ROOTis} [anutritious food} ROOT Salmon is a nutritious food
shj

Shift [ROOT is a} [nutritious food} ROOT Salmon is a nutritious food
sbj

Shift [ROOT is anutritious] [food} ROOT Salmon is a nutritious food
sbj

Left-Arcamod [ROOTis a | [food | ROOT Salmon is a nutritious food

Left-Arc e [ROOT is} [food} ROOT Salmon is a nutritious food

Right-Arc,;; [ROOT is food | [ROOT Salmon is a nutritious food

Termination [ROOT is | [] ROOT Salmon is a nutritious food

Figure 2.7: Syntactic analysis of the sentence “Salmon is a nutritious food” with the arc-eager
algorithm

Most parsing systems prior to the Malt parser (Collins, 1997, 1999; Charniak, 2000) relied
on non-deterministic algorithms with underlying generative models. The n-best list of output
analyses of such systems can be re-ranked with discriminative-based algorithms that use the fea-
ture sets transcending the ones exploited by the original parsing models (Charniak and Johnson,
2005). In contrast, the Malt parser implements a deterministic parsing algorithm that makes
locally optimal decisions guided by the classification model.

The MaltParser 1.7.2 package provides three families of parsing algorithms: Nivre (Nivre,
2003), Covington (Covington, 2001) and Stack (Nivre, 2009). Nivre’s algorithm runs in linear
time and is limited to projective dependency structures. Covington is a quadratic-time algorithm
that can be run in a mode that restricts the output to projective dependencies and in a mode that
can produce non-projective dependencies. The Stack algorithm is similar to Nivre’s algorithm,
but it has modes that allow the parser to produce non-projective trees. The algorithms for
projective parsing can be combined with pseudo-projective pre- and post-processing (Nivre and
Nilsson, 2005) in order to yield non-projective trees.

We will illustrate the parsing process on an example sentence using the arc-eager algorithm
(Nivre et al., 2007b) which is a variant of the shift-reduce algorithm. An abstract machinery
is composed of two data structures: a stack and a buffer. There are four types of transitions in

Chapter 2. Background 27

the system: Left-Arc, Right-Arc, Reduce and Shift. The transition Left-Arc adds an arc with
dependency label from the top node in the buffer to the last node in the stack and pops the
stack. The transition Right-Arc makes the top token in the buffer right-dependent of the last
element of the stack and pushes the top token of the buffer to the stack. The transition Reduce
pops the stack. The transition Shift pushes the top token in the buffer to the stack. The parser
is initialized with an empty stack and a buffer containing all the words of a sentence. In the
terminal configuration the buffer is empty.

Figure 2.7 shows the parsing process of the sentence “Salmon is a nutritious food” with the
arc-eager algorithm.

Some advantages of the parsing techniques implemented in Malt are parsing time, which is
linear in the size of the input on average (and quadratic in the worst case), the sufficiency of
small amounts of training data and cross-language portability (Nivre et al., 2007b). In addition
the algorithms are not restricted in the number of graph arcs in the feature representation. One
of the main drawbacks of the deterministic parsing approach is error propagation.

Malt has better performance on shorter sentences which allow it to exploit rich feature sets
with a reduced chance of error propagation (McDonald and Nivre, 2007). The Malt parser is
more accurate for shorter dependency arcs and dependency arcs located further away from the
root since these types of dependencies are constructed at early stages of the parsing process
which leads to lower likelihood of error propagation. Malt is prone to over-predicting root
modifiers because at the end of the parsing procedure all unattached tokens are linked to the
root (McDonald and Nivre, 2007). Malt has a tendency to select earlier appearing verbs as
heads of later appearing verbs (Goldberg and Elhadad, 2010).

MST MST (McDonald et al., 2005b) is a graph-based dependency parser with global
near-exhaustive search.

MST tackles the problem of constructing a dependency tree as the search for a maximum
spanning tree in a directed graph. A maximum spanning tree (MST) of a graph with weighted
edges is a tree built on a subset of the edges from the graph that maximizes the sum of the edge
scores such that every vertex in the graph appears in the tree. The maximum projective spanning
tree of a graph is constructed similarly except that it can only contain projective edges relative
to some total order on the vertices of the graph.

MST implements the online learning structural algorithm for large-margin multi-class clas-
sification problems called Margin Infused Relaxed Algorithm (MIRA) (McDonald et al., 2005a).
Online learning iterates over training instances (pairs of a sentence and its correct dependency
tree) updating the parameter vector by application of an update rule to the instance in question.
Dependency parsing can be seen as a large-margin multi-class classification problem with the
k highest scoring incorrect dependency trees as classes for a given sentence. The update rule
optimizes the parameters of the model to maximize the difference between the scores of correct
and incorrect dependency trees for sentences in a training corpus.

Owing to tractability constraints, the learning algorithm restricts the number of graph arcs in
the feature representation. MST exploits three classes of features: (i) features over the parent-
child node pairs, (ii) features that consider words occurring between a child node and its parent,
(iii) features that look at words before and after the parent-child node pairs.

MST realizes projective dependency parsing with Eisner’s dynamic programming algorithm

28 2.2. Syntactic parsing

(Eisner, 1996) and non-projective dependency parsing with Chu-Liu-Edmonds maximum span-
ning tree algorithm (Chu and Liu, 1965; Edmonds, 1967). Unlike the pseudo-projective parsing
algorithms of the Malt parser described in (Nivre and Nilsson, 2005), the Chu-Liu-Edmonds
algorithm implements actual non-projective dependency parsing. The complexity of the Chu-
Liu-Edmonds algorithm for non-projective dependency parsing is quadratic in the size of the
input sentence. The Eisner algorithm has cubic complexity in the size of the input since it has
to additionally enforce the non-crossing constraint of projective trees.

Below we describe the application of the Chu-Liu-Edmonds algorithm to an example sen-
tence following (McDonald et al., 2005b). Initially the example sentence “Mike plays football”
is represented as a directed weighted graph with all tokens attached to the root and intercon-
nected between each other, see Example (15).

5)

For each token of the sentence the algorithm identifies the incoming edge with the maximum
weight, see Example (16).

15 17
football
17

If the resulting structure is a tree, it would be the maximum spanning tree. In our running
example the result is not a tree. The cycle should be contracted into a single node w,,,, and the
weights are recalculated as shown in Example (17). The edge from root to w,,, is assigned a
new weight of the best spanning tree including only the root node and the vertices from w,,,:
the score 24 is a sum of the original weight 7 of the edge from root to plays and the weight
17 of the edge from plays to Mike. The edge from football to wy,, is also assigned a weight
of the best spanning tree rooted at the node football and including the vertices from w,,,: the
score 23 is a sum of the original weight 8 of the edge from football to Mike and the weight 15
of the edge from Mike to plays.

(16)

Chapter 2. Background 29

a7

The key property of the Chu-Liu-Edmonds algorithm is that an MST in the contracted graph
can be transformed into an MST in the original graph. The algorithm recursively performs a
greedy search of the best incoming edge to all tokens, as illustrated in Example (18).

a8 o

Since the resulting structure in our example is a tree, it is the MST which allows us to
reconstruct the MST of the original graph, as demonstrated in Example (19).

According to the comparative analysis carried out in McDonald and Nivre (2007), MST is
more precise than Malt for longer dependency arcs, for arcs closer to the root, for arcs with
more siblings and for arcs with a higher degree of non-projectivity, and the errors of MST are
distributed over the graph more evenly than the errors of Malt. The decreased accuracy of Malt
is due to error propagation and the attachment of the disconnected nodes of the graph to the
root node at the end of the parsing. The two parsers furthermore show different accuracies over
parts of speech: Malt is more accurate for nouns and pronouns whereas MST performs better
for all other categories, especially conjunctions. McDonald and Nivre (2007) explain these
observations by the fact that nouns and pronouns are typically attached further away from the
root while verbs, adverbs and conjunctions are usually attached closer to the root. MST fails
to analyze correctly coordination of NPs containing PPs which might be due to the feature PoS
tags of tokens between head and dependent tokens used in MST (Goldberg and Elhadad, 2010).

19)

Bohnet and Nivre (2012) parser The Bohnet and Nivre (2012) parser, dubbed B&N in
the following, is a system for joint part-of-speech tagging and non-projective labeled depen-
dency parsing. 1t is based on the transitional model with beam search and global structural
learning employing rich non-local feature representations.

The B&N parser combines the best properties of transition-based and graph-based depen-
dency parsing. In the spirit of the former strategy it implements a deterministic, highly efficient

30 2.2. Syntactic parsing

transition-based model which exploits rich feature representations and in the spirit of the latter
approach it relies on global learning and non-greedy search.

Unlike the best parsers based on PCFG models, most dependency parsers prior to B&N
did not offer an option to perform part-of-speech tagging before or during parsing but required
the input to be pre-processed with lexical categories. The experimental results in Bohnet and
Nivre (2012) show superior tagging and parsing accuracy for morphologically rich languages
like Czech and German and more configurational languages like Chinese and English by joint
tagging compared to the pipeline systems that are more prone to error propagation.

We discussed the transition system and its components in Section 2.2.1. B&N adopts and
extends the transition system of Nivre (2009) exploiting the following set of transitions: Left-
Arc, Right-Arc, Shift and Swap that allow parsing of arbitrary non-projective trees. Like in
the arc-eager algorithm in the Malt parser, transitions operate on two data structures: stack and
buffer, and the Left-Arc and Right-Arc create a labeled dependency arc between the two nodes
on top of the stack and replace the nodes with the head of the arc (rightmost and leftmost node
correspondingly). The Swap transition moves the second topmost node from the stack back to
the buffer. The Shift transition pushes the first node in the buffer onto the stack and labels it
with the part-of-speech tag. Every word has to be pushed onto the stack in a Shift transition
before termination of the parsing procedure to ensure that every word of the output dependency
tree is assigned a lexical category.

Unlike Malt that relies on greedy best-first inference, the B&N parser is based on the beam-
search algorithm. A beam is a list that stores weighted hypotheses and gets updated at every
iteration of the search algorithm. The parameters of the inference algorithm determine the
number of hypotheses allowed in the beam and define the constraints on transitions limiting the
search space.

The learning algorithm implemented in B&N is a variant of the structured perceptron (Collins,
2002) in combination with beam search. This is a global learning method that tries to maxi-
mize the accuracy over the full sentence and not on individual local transitions. Zhang and
Nivre (2012) showed that the combination of global learning and beam-search reduces error
propagation and enables more powerful parsing models without overfitting.

The parser exploits rich non-local feature representations that refer to different aspects of
parser configurations: baseline parser features, specialized tagging features, graph-based com-
pletion features and cluster features. The first group of features, baseline parser features adapted
from Zhang and Nivre (2011), includes n-gram combinations of elements of the stack, buffer,
arc set and candidate part-of-speech tags with corresponding scores. The group of specialized
tagging features involves the ith best tag assigned to the first word of the buffer in combination
with neighboring words, word prefixes, word suffixes, score differences and tag rank. Graph
features are defined over the factors of a graph-based dependency parser as described in Bohnet
and Kuhn (2012). Cluster features first used in Koo et al. (2008) are defined over word clusters
generated with the Brown clustering algorithm (Brown et al., 1992).

2.2.2 Deep grammar parsing

Grammar-based parsers perform syntactic analysis of text relying on linguistically moti-
vated grammars. In the following sections we will describe the ERG which is a hand-crafted

Chapter 2. Background 31

(1) ahead_of := (2) p_np_i_le &

ORTH (3) < "ahead", "of" >

LKEYS.KEYREL.PRED (4) _ahead+of_p_rel

SYNSEM| b ON.ONSET (5) voc

Figure 2.8: Lexical entry “ahead of” in the ERG lexicon

HPSG implementation, MRS, a framework for computational semantics used with the ERG,
EDS, an MRS reduction into a variable-free dependency graph, and the PET parser that is often
used for parsing with the ERG.

LinGO English Resource Grammar

The LinGO English Resource Grammar (ERG) (Flickinger, 2000) is a broad-coverage HPSG-
based grammar of English, which has been developed by the DELPH-IN community effort since
the early 1990s. DELPH-IN is an international partnership that combines linguistic knowledge
and statistical algorithms in order to automatically analyze text meaning.

The ERG is designed in the grammar and lexicon development environment LKB for use
with unification-based linguistic formalisms. The grammar is bidirectional, e.g. suitable for
both parsing and generation. There are currently roughly 1000 lexical types and some 300 rules
in the grammar. The early development and first application of the ERG was in the Verbmobil
spoken language machine translation project (Wahlster, 2000). The grammar was originally
engineered based on corpus data in informal genres such as conversations about scheduling and
email regarding e-commerce. The ERG was later used for generation from semantic repre-
sentations into English sentences in the Norwegian—English machine translation project called
LOGON (Lgnning et al., 2004) and in the course of the project, the grammar lexicon was en-
riched with vocabulary from the collection of English translations of Norwegian hiking texts
from the LOGON corpus (Oepen et al., 2004). The ERG was employed for parsing the English
Wikipedia (Read et al., 2012) as part of the WeSearch project, and the newspaper text of the
Wall Street Journal within the framework of the DeepBank project (Flickinger et al., 2012).
The grammar has a practical application in educational software for teaching writing in the on-
line course of the Education Program for Gifted Youth (EPGY) at Stanford University (Suppes
et al., 2012). The grammar has also been employed in intelligent auto-response software for
commercial use.

Rules and lexical entries of the ERG are introduced in the TDL (Krieger and Schifer, 1994)
declarative language for typed feature structures specification. The ERG incorporates most of
its linguistic knowledge in the lexicon entries. The core ERG lexicon was manually built, but it
can also be enriched by automatically derived entries from various sources. Figure 2.8 shows a
lexical entry “ahead of” from the ERG lexicon which consists of: (1) a lexical identifier, (2) a
lexical type, (3) a stem, (4) a semantic predicate and (5) phonetic information.

32 2.2. Syntactic parsing

The lexical identifier acts as the key for the lexical database entry. The lexical types of ERG,
“word classes”, have the following structure: P_V_A_le, where

* “P” stands for a broad part-of-speech class (verb, noun, adjective, adverb, preposition,
prepositional phrase, determiner, conjunction, complementizer, punctuation, miscella-
neous);

* “V” is a valency field that contains the ordered sequence of complements for the given
type;

* “A” means annotations, a fine-grained distinction among types with the same part-of-
speech and complement. Annotations encompass category-internal subdivisions, e.g.
mass vs. count vs. proper nouns, intersective vs. scopal adverbs, referential vs. expletive
pronouns;

“le” which stands for “lexical entity” is an invariant suffix used to facilitate regular-
expression searches within the grammar source files.

In our example from Figure 2.8 p_np_i_le is an intersective (i) preposition (p) that takes
a noun phrase (np) as a complement. Lexical types are arranged in a hierarchy which uses
inheritance to avoid redundancy.

The grammar rules with the two main classes of lexical and construction rules are arranged
into a hierarchy to support sharing of specifications. Lexical rules are divided into classes of
inflectional and derivational rules that handle morphological phenomena and punctuation rules
that assign punctuation as word affixes. The construction rules reflect HPSG constructions
some of which have been introduced in Section 2.1.3, e.g. Head-Modifier, Head-Complement,
Head-Specifier.

The syntactic level of analysis may be expressed in the form of a derivation tree that records
how an analysis for an input sentence is derived (see Figure 3.3). This output format represents
the typed feature structure of the sentence in a compact format. The derivation tree is a context-
free phrase structure tree composed of leaf nodes corresponding to lexical entries (“child”),
and intermediate nodes corresponding to grammar rules (n_Sg_ilr—singular noun inflectional
rule). Such a tree summarizes the results of a parse which is useful for grammar checking
and ensuring that revisions to the parser do not have serious flaws (Copestake and Flickinger,
2000). The full HPSG analysis (typed feature structure) of a sentence can be reconstructed
deterministically, given the grammar and the derivation tree with the unique identifiers of the
lexical entries. As the full derivation depicts the feature structure, the sub-trees do so as well,
and each such structure contains hundreds of feature-value pairs.

The derivation tree in Figure 3.3 represents HPSG concepts that were introduced in Sec-
tion 2.1.3: HPSG constructions such as subject-head (sb-hd_mc_c), specifier-head (sp-hd_n_c),
head-complement (hd-comp_u_c), and HPSG lexical rules such as orthography-invariant in-
flectional rule (n-sg_ilr) and orthography-changing inflectional rule (v_3s-fin_olr).

MRS

The ERG uses Minimal Recursion Semantics (MRS) (Copestake et al., 2005) as the mean-
ing representation layer. MRS is a framework for computational semantics that uses “flat”

Chapter 2. Background 33

sb-hd_mc_c
sp-hd_n_c aj-hd_scp-xp_c
/\ .
every n_sg_ilr
Eery Chﬂ(‘i 1 probably_advl hd-cmp_u_c
. probably
child v_3s-fin_olr sp-hd_n_c
|
have-poss)
‘ a_det aj-hdn_norm_c

has ‘ /\

a funny_isect n_sg_ilr

| |
funny toy_nl

toy

Figure 2.9: Derivation tree for the sentence “Every child probably has a funny toy”.

(non-embedded) structures. MRS can be used with a large-scale grammar for parsing, gener-
ation and semantic transfer and it can be implemented within a typed feature structure logic.
The four main criteria that the MRS meta-language seeks to achieve are expressive adequacy,
grammatical compatibility, computational tractability and underspecifiability. The principle of
expressive adequacy requires the framework to allow linguistic meanings to be expressed cor-
rectly. Grammatical compatibility guarantees that semantic representations are linked “cleanly”
to other kinds of grammatical information such as syntax (Copestake et al., 2005). Computa-
tional tractability means that it is possible to process meanings and to check semantic equiv-
alence efficiently. Underspecification is the deliberate omission of information from linguistic
descriptions which allows to encapsulate several alternative realizations of some linguistic phe-
nomenon in a single representation. The motivation to use underspecified semantic representa-
tions is to avoid resolving all the ambiguities in a sentence since such resolution may require
contextual and world knowledge, and may be computationally intractable.

The primitive structures of MRS are elementary predications (EP), similar to predicates
in first-order logic, each expressing a single relation often corresponding to a single lexeme.
The framework is called minimally recursive because EPs cannot be embedded into each other.
Example (20) demonstrates an EP.

(20) hy:_every_q(0:5)(ARGO x{PERS 3,NUM sg, IND +}, RSTR h;, BODY h;)

An EP is a tuple of four components:

 a handle which is the label of the EP (h4);

34 2.2. Syntactic parsing

a handle or a label

an instance variable, introduced by a noun or an adjective

an event(uality) variable, introduced by a verb or an adverb

(for individual) an underspecification for x or e

(for unspecific or maybe unbound) an underspecification for x, e or h

(= CE A=

Table 2.1: Types of variables in MRS

* aname of the relation (_every_g_rel);

* a list of zero or more ordinary variable arguments of the relation (nominal variable in-
troduced by a noun/adjective (z6), third person (PERS 3), singular (NUM SG), count
(IND +));

* a list of zero or more handles corresponding to scopal arguments of the relation (A7 and
hb).

Handles identify EPs being used for labelling purposes and as arguments inside elementary
predications. An EP conjunction is a bag of EPs that have the same label.

Names of relations that describe lexical words (_every_q_rel) start with an underscore fol-
lowed by the lemma (every), part-of-speech (¢ for quantifier) and a type descriptor (rel for
relation) separated by underscores. Optionally the relation names may include a sense iden-
tifier to disambiguate different meanings of words with the same lemma and part-of-speech
(e.g. “view” as a visual percept of an area or as a personal belief). Names of abstract predi-
cates introduced by constructions have similar structure but without a leading underscore (e.g.
“compound_rel”).

Various types of variables that act as arguments of relations in the context of MRS are shown
in Table 2.1. Arguments can be characterized by properties such as person, number and gender
for nominal variables and tense and mood for event variables. Example in Figure 2.10 shows
the three kinds of EP: non-scopal: _child_n_1(x6), _have_v_1(e3, x6, x12), _funny_a_I(el7,
x12), _toy_n_1(x12); quantifier EPs: _every_q(x6,h7,h5), _a_q(x12,h15, h14); and fixed scopal
EP _probable_a_1(e9, h10); hl, h4, h8, h2, h11, h13, h16 are labels and h7, h5, h10, h15, h14
are holes and x6, x12 are nominal variables and €3, €9, el7 are event variables.

Scopal relations are defined by the RSTR (“restriction””) and BODY values of the quantifier.
The handle value of RSTR establishes the link between the quantifier and its noun relation
forming a noun phrase (“every child”, “a toy”). The value of BODY is a handle variable that
defines a scope of the quantifier and is not connected to any EP in an underspecified MRS.
Thus, the MRS shown in Figure 2.10 for the sentence “Every child probably has a funny toy”
underspecifies whether the funny toy is the same or different for every child.

MRS representations have the following structure:

< top handle, EP bag , bag of handle constraints >

Chapter 2. Background 35

(hy,

h4:_eVery_q<Ol5> (ARGO X¢ , RSTR h7, BODY h5)

hg:_child_n_1(6:11)(ARGO Xg),

hy:_probable_a_1(12:20)(ARGO ey , ARG1 hy),

21 hll:_haVe_V_1 2124> (ARGO €5 , ARG1 X4, ARG2 X2)7
his:_a_q(25:26)(ARGO X2, RSTR hys5, BODY hyy),
hie:_funny_a_1(27:32)(ARGO €17 , ARG1 X12),
hie:_toy_n_1(33:36)(ARGO X12)

{h15 —q h16’ hl() —q hll’ h? —q h87 hl —q h2 }>

Figure 2.10: MRS for the sentence “Every child probably has a funny toy”

Each scope-resolved MRS represents a possible linguistic reading of a sentence described
by an MRS. Scopally resolved MRS representations are essentially trees with EP conjunctions
as nodes and dominance is determined by the ordering of EPs according to their scopes. The fop
handle of the MRS corresponds to a handle of the highest EP conjunction in the scope-resolved
MRS and allows, for example, embedding of a clause in a longer sentence.

The bag of handle constraints on scope relations is introduced using geq relations (equal
modulo quantifiers) which show connections between holes (gaps in the semantic structure)
and labels. Scope-resolved MRSs are derived by equating the holes with EP labels and unlike
MRS itself which does not allow embedded structures, scope-resolved MRSs correspond to
logic formulae with embedded predicates.

In the ERG analyses, MRSs are derived as feature structures of type mrs with features (i)
HOOK that includes LTOP (top handle) and INDEX, (ii) RELS that represents a bag of EPs and
(iii) HCONS that stands for handle constraints. Co-indexation in a feature structure is used to
express variable identity. An example of the full MRS for the sentence “Every child probably
has a funny toy” is shown in Figure 2.11. HOOK is used to make some of the information of
the MRS externally available for semantic composition, e.g. combining the given MRS with
other MRSs. The value of the INDEX is usually the ARGO event variable of the main verb (in
our example INDEX would refer to the event variable e3 which is the ARGO of the relation
_have_v_1).

Elementary Dependency Structures

Oepen and Lgnning (2006) proposed Elementary Dependency Structures (EDS) which is a
reduction from a full logical-form MRS into a variable-free semantic dependency graph. Each
relation is prefixed with its distinguished identifier! which can be equated with ARGO in ERG.
The semantics of a verb introduces an eventuality therefore a distinguished identifier for a verbal
predicate is an event identifier, whereas the semantics associated with a noun introduces an
instance which is expressed with a referential index in a nominal elementary predicate:

(22) dogs bark: dog(x), bark(e, x)

1Distinguished identifier is alternatively known as inherent, or main, or characteristic identifier.

36 2.2. Syntactic parsing

[mrs 1
hook
HOOK |LTOP
INDEX
__every_q_rel_ [have v_1]
_probable_a_1
LBL _child_n_1 LBL
LBL
RELS < ARGO LBL ARGO
ARGO
RSTR ARGO [g] ARGl [g]
ARGI1
| BODY | | ARG2]
o _
-4 _funny_a_1
LBL _toy_n_1
LBL
ARGO LBL
ARGO
RSTR ARGO
ARGI1
| BODY [14]]
qeq qeq qeq qeq
HCONS ([HARG HARG HARG HARG
LARG LARG 8] ||LARG LARG

Figure 2.11: MRS for the sentence “Every child probably has a funny toy” in feature structure
representation

Chapter 2. Background 37

€9 :
_1: _every_qg<0:5>[BV x4
Tg: _childn_1<6:11>]
eg: _probable_a_1 < 12:20 > [ARG1 e3]
e3: _have_v_1 < 21:24 > [ARG1 x5, ARG2 115
2: _a_q<25:26>[BV 9]
err: _funny_a_1<27:32 > [ARG1 x19]
x12 0 _toy_n_1<33:36>]

Figure 2.12: EDS for the sentence “Every child probably has a funny toy”

Originally this representation was developed to simplify downstream processing of MRS in
tasks like information extraction. Oepen and Lgnning (2006) applied the representation to MRS
banking, e.g. the process of manually selecting gold-standard semantic analyses from multiple
analyses generated by the parser. EDS provides an interface that allows a human user to quickly
compare semantic properties of multiple analyses of the same sentence. Fujita et al. (2007) used
EDS to extract semantic features for parse selection and Dridan and Oepen (2011) introduced a
parser evaluation metric, called Elementary Dependency Match (EDM), based on EDS.

The EDS representation of the MRS from Figure 2.10 is shown in Figure 2.12. EDS is a
directed graph with semantic predicates (_every_q, _child_n_1) labeling its nodes, semantic
argument roles (ARG1, ARG?2) labeling its arcs and the first node as the root (eg). Each node
has its unique identifier (_1, xg, e9), characterization span (< 0 : 5 >) and a list of arguments
([ARG1 x4, ARG?2 x15]). In our example the node _probable_a_1 is connected to the node
_have_v_1 with the arc ARG1. Nodes can also take one or more constant arguments (e.g.
z13 : named < 15 : 27 > (“Los_Angeles")[]).

We will return to EDS in Chapter 3 discussing the reduction from the semantic layer of the
English Resource Grammar to bilexical dependencies.

PET parser

PET (Callmeier, 2000) is an open-source agenda-driven bottom-up chart parser. It is avail-
able as stand-alone software as well as an integrated module of the [incr tsdb()] profiling en-
vironment. Initially PET was developed for testing unification algorithms. Later on it was
enhanced with subsumption-based packing (Oepen and Carroll, 2000), selective unpacking and
statistical parse ranking (Carroll and Oepen, 2005; Zhang et al., 2007b) and iibertagging (Dri-
dan, 2013a) for increased efficiency.

PET builds the HPSG analyses in a bottom-up tashion from the input tokens up using an
agenda to define the order in which chart entries are processed. The chart parsing algorithm
(Kay, 1986) runs on a lattice of input tokens that are retrieved from raw text using the built-
in preprocessor. Initially the raw text is tokenized following the PTB conventions with the
framework REPP (Regular Expression-Based Pre-Processing), a set of ordered finite-state string
rewriting rules (Dridan and Oepen, 2012). Part-of-speech tags are assigned with an efficient
statistical tagger TnT (Trigrams‘n‘Tags) (Brants, 2000) and the tokenization style is adapted

38 2.2. Syntactic parsing

NP
P NML NN
NNP NNP NN N |

‘ ‘ ‘ NNP NNP contract
Air Force contract \ \
Air Force

Figure 2.13: Example of flat (on the left) and extended (on the right) analyses of the noun phrase
“Air Force contract” from Vadas and Curran (2007)

212[a2[s]i3[]3]
al<sa]l7]s[o]o>
s -4 ofaoll & [l a0 x5 s uol 8 -

(a) A forest of 18 trees with ovals (b) Non-leaf node decompositions
indicating packing of edges under
subsumption

Figure 2.14: Packed forest with sub-node decompositions (similar to an example in Carroll and
Oepen (2005))

to the expectations of the grammar with the chart-mapping rewrite formalism (Adolphs et al.,
2008). In order to generate candidate lemmas, morphological rules are applied to each input
token. Each suggested lemma is looked up in the lexicon with a subsequent check to see whether
the applied morphological rule is applicable to the lexical item from the lexicon. Only valid
lexical items are added to the chart and unified with other lexical items according to the grammar
rules.

The number of possible analyses grows exponentially with the sentence length which results
in exponential worst-time complexity if the parser attempts to build all the parse trees explicitly.
Ambiguity packing relies on the observation that a given structure from one tree may be shared
by many other trees in the parse forest, even though none of them are globally identical. An
example of an ambiguity is the PP-attachment problem that we saw in Section 2.1.1 in the
sentence “A man saw a star with a telescope” where prepositional phrase “with a telescope”
can modify either “saw” or “a star”. Since all the lexical items and the prepositional phrase are
the same in the possible analyses, it is important to avoid duplication of information in order
to optimize memory usage. Such ambiguities are tackled by representing repeating elements of
the analysis as single chart edges.

Another example of an ambiguity is an analysis of the internal structure of the noun phrase
“Air Force contract” shown in Figure 2.13. Such ambiguities lead to an exponential number of
parallel derivations therefore they are packed into a single object to avoid creating a separate
construct for each alternative. Figure 2.14a (similar to an example in Carroll and Oepen (2005))
illustrates a packed forest comprising 18 trees with the nodes 2 and 3] that could correspond

Chapter 2. Background 39

to the analyses from Figure 2.13 for example. The local packing is based on the subsumption
relation (discussed in Section 2.1.3) instead of equivalence which is common for packing in
CFG parsing, because there is a very small probability of two feature structures being exactly
equivalent.

The selective unpacking algorithm developed by Carroll and Oepen (2005) and further ex-
tended by Zhang et al. (2007b), applies a conditional Maximum Entropy model to find the n-best
analyses from the packed forest. Carroll and Oepen (2005) introduce two concepts that are im-
portant for the forest unpacking: i) decomposing edges locally (see Figure 2.14b) and ii) nested
contexts of “horizontal” search for ranked hypotheses (i.e., uninstantiated edges) about candi-
date sub-trees. The basic algorithm is a graph search through the forest that tries to postpone
the most expensive unification operations and perform them only on the best hypotheses.

Another statistical method implemented in the PET parser, called iibertagging (Dridan,
2013a), exploits lexical information for improved parsing. Ubertagging is an extended variant of
supertagging (Bangalore and Joshi, 1999), a technique that attempts to localize the computation
of linguistic information by linking lexical items with rich descriptions (supertags) that enforce
constraints in a local context. Dridan (2009) investigated optimal granularity of tag forms and
found that applying supertagging to parsing with the ERG is challenged by two factors:

* a supertag by definition is an atomic structure containing all the information about a
lexical item while in the ERG this information is not centralized in the lexicon, but comes
from different sources (e.g. lexical rules denote inflectional information);

* multiword expressions like “all of a sudden” introduce segmentation ambiguity between
managing them as single units or processing component tokens individually.

Ubertagging determines segmentation and supertags simultaneously and thus avoids heuristics
for approximation of the ambiguous tokenization.

2.3 Parser combination

Parser combination is a general term for various methods of combining parsers in order to
achieve improved parsing performance. The aim of parser combination is producing results that
are superior to those of each of the individual parsers. One of the prerequisites for advantages of
ensemble systems is complementarity of the errors that different parsers make. For example, the
error analysis of McDonald and Nivre (2007) showed that transition- and graph-based systems
are good candidates for combination due to this reason. Combination of “deep” and “shallow
analyzers is usually motivated by the potential to achieve a good balance between accuracy,
robustness and efficiency. In the following subsections we will introduce various approaches to
parser combination for data-driven and grammar-based parsing.

Enabling a data-driven parser to learn from other parsers

Parse hybridization combines the substructures of several parses. Henderson and Brill
(1999) proposed two variants of a constituent parse hybridization, that ensure no crossing brack-
ets in the output tree: constituent voting which includes a constituent in the parse tree if enough

40 2.3. Parser combination

parsers agree that it belongs in the parse, and training a classifier to determine which con-
stituents to add to the parse tree. Empirical evaluation showed that both methods helped to
improve robustness and reduce precision and recall error rates.

Zeman and Zabokrtsky (2005) applied the ideas of Henderson and Brill (1999) to depen-
dency parsing. The problem with the above two strategies of the parse hybridization method is
that they do not guarantee that the output will be a well-formed dependency tree.

Sagae and Lavie (2006) suggested parser hybridization via reparsing. Each sentence is
analyzed with £ different parsers and then a weighted parse chart is constructed from the con-
stituents of the decomposed parses. The resulting parse tree can be built by determining the
back-pointers indicating what smaller constituents the elements of the chart contain and this
can be solved with a bottom-up chart parsing algorithm.

In application to dependency parsing, instead of a chart, a weighted graph is built with words
of the sentence as nodes and dependencies obtained from the parses as directed edges. The
optimal dependency structure is the maximum spanning tree for the graph and it can be found by
reparsing the sentence using a dependency parsing algorithm. Sagae and Tsujii (2007) showed
the utility of the reparsing approach also for the case when the variants of a single algorithm are
combined.

Nilsson (2009) discussed transition level parser hybridization for transition-based depen-
dency parsing predicting the next transition with a group of classifiers and choosing a single
transition from the available options based on voting or machine learning.

Parser switching chooses which parser should be trusted for a particular sentence. Hen-
derson and Brill (1999) described two alternatives for parser switching: similarity switching
which selects the parse most similar to the other parses and training a classifier to determine
the most probable solution. Zhang et al. (2008) implemented the latter method to combine
transition-based and graph-based parsers in their syntactic and semantic dependency parsing
system achieving high accuracy.

Zeman and Zabokrtsky (2005) proposed a blended approach of parser hybridization and
parser switching for dependency analysis that guarantees an acyclic output structure. At each
step, all dependencies that introduce a cycle are dropped and if there are no valid dependencies
for a word, the whole partial structure is discarded and the best analysis built by one of the
component parsers is adopted instead.

In parser stacking the output of one parser supplies features for the other parser. Zhang
and Clark (2008) were the first to implement a parser that integrated transition-based and graph-
based models in one system by using global linear learning based on averaged perceptrons, the
union of feature templates and the beam-search decoder from the transition-based parser. The
combined parser showed superior accuracy levels on the English and Chinese Penn Treebank
corpora over the systems representing each of the approaches.

Nivre and McDonald (2008b) carried out feature-based integration of the Malt and MST
parsers extending the feature vector of MST with a certain number of features generated by
Malt and training a classifier to determine in which situations to rely on the additional features.

Similar to Nivre and McDonald (2008b), Zhang and Wang (2009) investigated the method
of building feature-based models for statistical dependency parsers using a dependency back-
bone extracted from the ERG parser output. The native feature model of the MST parser was
extended with features describing the uni-gram, bi-gram, PoS of words in between and PoS of

Chapter 2. Background 41

words surrounding a token in the dependency tree derived from parses from HPSG syntactic an-
alyzer. For Malt additional features extracted from the HPSG dependency backbone concerned
the top token in the stack and the head token of the buffer. The enhanced feature model led to
accuracy drops on in-domain data but it helped to improve performance in terms of labeled and
unlabeled attachment scores on out-of-domain test sets.

Analogously, @vrelid et al. (2009) implemented a parser stacking approach to the com-
bination of the LFG grammar-based parser and Malt. The procedure included conversion of
LFG f-structures to dependency graphs, extension of the treebank with information from these
graphs and modification of the Malt parser’s feature model to refer to the additional features.
This method proved to have positive impact on the accuracy of the dependency parser.

Reranking. Many parsing systems apply a two-stage approach to sentence processing: at
the first stage, the parser has to produce an n-best list of analyses and at the second stage the
task is to rescore the set of n-best parses in order to select the best parse, e.g. to rerank this set.
In parser combination via reranking the outputs of multiple parsers can be jointly reranked or
one parser can assist the reranking of the other.

Zhang et al. (2009a) introduced an approach for parser combination that utilizes tree prob-
ability from each individual parser and relies on n-best outputs of each parser instead of just
1-best results. First, n-best outputs of each of the k different parsers are combined and m unique
analyses from n * k trees are re-evaluated with the & models which are used by the % parsers.
In addition, some feature scores for each tree are computed. The overall score for each tree is
estimated by a linear function that balances the model and the feature weights. Finally, the m
trees are reranked and the one with the highest score is selected as an output.

Farkas et al. (2011) exploited features extracted from analyses of the Bohnet (2010) depen-
dency parser for reranking of the PCFG parser for German called BitPar (Schmid, 2004). By
incorporating information from one formalism for reranking another authors achieved improved
accuracy.

Ren et al. (2013) combined constituent and dependency parsers via a factored model so that
a dependency parser reranked the k-best outputs from a constituent parser. The two parsers
complement each other: the constituency parser reduces the ambiguities generated by the de-
pendency parser while the latter resolves long distance dependencies between lexical items.

Restricting the search space of a grammar-based parser by a data-driven parser

In contrast to the approaches discussed above, parser combination methods for grammar-
driven parsing usually aim to improve efficiency and robustness rather than accuracy. Large-
scale grammars often introduce a high degree of ambiguity that leads to efficiency issues of
deep natural language processing. For example, for comprehensive linguistic formalisms, such
as HPSG, the issue of inefficiency caused by complicated data structures is a serious obstacle
to their application to practical large-scale systems for natural language processing. A data-
driven parser can pre-structure the search space of the deep parser within a hybrid system and
improve the processing time. In the case that a deep parser fails to return a full analysis of
the sentence, a data-driven parser can guide the selection of partial analyses from the chart and
improve robustness.

CFG filtering techniques (Harbusch, 1990; Becker and Poller, 1998; Kiefer and Krieger,
2000; Torisawa et al., 2000) were first applied to Tree-Adjoining Grammars (Joshi et al., 1975)

42 2.3. Parser combination

and later ported to the HPSG framework. These techniques were proposed as an instrument
to prune the hypothesis space of grammar-based parsers. Such methods eliminate partial parse
trees that do not contribute to the final output using a CFG extracted from a given grammar prior
to parsing. The main idea is to parse a sentence with a CFG first and then to run a grammar-
based parser deterministically employing the derivations licensed by the CFG. The CFG parsing
tends to be much faster than the grammar-based parsing because the combination of symbols
that appear in a context-free rule is restricted, therefore an approach of guiding a HPSG parser
with a CFG-forest leads to a speed-up. Matsuzaki et al. (2007) fully integrated CFG filtering
with the supertagging-based HPSG parser for English using Kiefer and Krieger’s algorithm
(Kiefer and Krieger, 2000) and obtained substantial improvements in efficiency.

PCFG filtering. Kiefer et al. (2002) proposed to use a PCFG for HPSG approximation
in order to establish the ranking of CFG trees so that the grammar-based parser processed the
most probable CFG trees first. Cahill et al. (2002) developed a methodology to automatically
extract robust PCFG-based Lexical-Functional Grammar (LFG) (Kaplan and Bresnan, 1982)
approximations that allow parsing into trees and f-structure representations. Cahill et al. (2004)
augmented the shallow grammars of Cahill et al. (2002) with long-distance dependency resolu-
tion in f-structures turning them into “deep” grammars. In a similar spirit, Zhang and Krieger
(2011) experimented with a corpus-driven PCFG approximation of the English Resource Gram-
mar showing potentials for improved robustness and efficiency though the method was not
eventually integrated with the released versions of systems for parsing with the complete ERG.

Reranking. Similarly to Farkas et al. (2011), Kim et al. (2012) used the analyses of a
dependency parser to generate features for reranking n-best outputs of the Combinatory Cat-
egorial Grammar (Steedman, 2000) parser called C&C (Clark and Curran, 2007b). Features
were created by comparing Stanford-style dependencies derived from the C&C parser with de-
pendencies generated by a dependency parser. The authors experimented with Malt and MST
independently, training them on several dependency schemes: CoNLL 2007 shared task-style
dependencies produced by the Penn2Malt utility, Stanford Basic dependencies from the Stan-
ford parser, CONLL dependencies from the software of Johansson and Nugues (2007) and de-
pendencies obtained with the converter of Tratz and Hovy (2011).

Guiding a grammar-based parser with a dependency parser. Sagae et al. (2007) sug-
gested a pipeline in which a dependency parser is applied before an HPSG parsing model.
Surface dependencies constrain the application of wide-coverage HPSG rules which results in a
significant improvement of accuracy. Firstly, a HPSG treebank is converted to CFG-style trees
that are further transformed to dependency trees with the head-selection rules of Collins (1999);
secondly, a statistical dependency parser is trained on the HPSG treebank in dependency repre-
sentation; and, finally, the parsing algorithm is extended in such a way that the log-likelihood
of partial parse trees created by HPSG schema applications is penalized in case the constraints
of the dependency graph produced by the dependency parser are violated. During the HPSG
parsing process information about the heads is available since it is encoded in the grammar,
and therefore it is possible to verify whether the HPSG construction contradicts the restrictions
posed by the dependency parser.

Chapter 2. Background 43

P)
P)
G ()

w_1 w_2 w_3 w_4

Figure 2.15: Crossing brackets. Bracket P is consistent with P’ and G, while bracket P’ crosses
bracket G

2.4 Parser evaluation measures

General criteria for parser evaluation are efficiency, robustness and accuracy. Efficiency can
be measured as the average total time and (peak) memory usage per utterance. Robustness
is often expressed in terms of coverage: the percentage of sentences from a corpus that are
assigned an analysis by a parser. Accuracy in the technical sense can be quantified in terms
of whole-sentence precision: the proportion of correctly parsed sentences. N-best accuracy
estimates for how many sentences the parse matching the gold standard is among the N best
parses.

Accuracy in our definition measures so-called “exact match” which by many is considered
problematic because it does not distinguish between poor quality and nearly correct analyses.
For parser development it is important to have a deep understanding of which linguistic phenom-
ena cause a system to fail, therefore metrics that allow one to break the analysis into component
parts can be of great use. We provide a brief overview of some of these more granular parser
evaluation methods in the following paragraphs.

PARSEVAL metrics

The PARSEVAL metrics (bracketed and labeled precision, bracketed and labeled recall,
bracketed and labeled F-score, crossing brackets) were proposed by the Grammar Evaluation
Interest Group (Harrison et al., 1991), extended by Grishman et al. (1992) and constitute the
standard measures for evaluation of constituency parsers. The most commonly used software
for evaluation with these metrics is the evalb toolkit developed by Satoshi Sekine and Michael
Collins in 1997. Precision is defined as the percentage of correct constituents in the parser
output. Recall is defined as the number of constituents from the gold standard that are present
in the parser output divided by the total number of constituents in the gold standard. F-score is a
weighted harmonic mean between precision and recall with S parameter which defines whether
precision or recall have more importance for the system (with 5 = 1 recall and precision have

equal significance):
(8% + 1) x precision * recall

[B?precision + recall

Fg =

Labeled measures check not only structural correctness, but also the correspondence of syntactic
labels to a gold standard. Bracketed precision, recall and F-score are computed over just the
bracket structure of the constituency tree, while labelled precision, recall and F-score evaluate

44 2.4. Parser evaluation measures

both brackets and labels. Crossing brackets is an average of the number of constituents from
the parser output that cross over constituent boundaries of the gold standard where neither is
properly contained in the other (see Figure 2.15).

PARSEVAL metrics have been criticized for their inability to reflect parser quality properly
(Carroll et al., 1998; Briscoe et al., 2002). The weakness of the PARSEVAL metrics concerns
overpenalization of some errors and incapability to detect others. Rehbein and Genabith (2007)
showed that for German, the metrics favour annotation schemes with a high ratio of nodes
per word and do not correlate well with other evaluation methods. Since PARSEVAL metrics
are based on similarity estimation between phrase structure trees, they cannot be applied to
grammars which produce analyses of other styles. Carroll et al. (1998) provide a detailed survey
of other extant evaluation schemes.

Dependency-based evaluation metrics

The first dependency-based evaluation measures adopted by the computational linguistics
community were precision and recall over WORD POS HEAD triples, as proposed by Lin
(1998). Precision is the percentage of dependency relationships in the parser output that are
also found in the gold triples. Recall is the percentage of dependency relations in the gold
triples that are also found in the parser output triples.

GR-based evaluation (Carroll et al., 1998) is an approach to parser assessment which has
the advantage of being language- and application-independent. Grammatical relations (GRs)
describe the syntactic dependency which holds between a head and a dependent. The approach
presupposes that a parser or a grammar is able to identify heads. For constituency parsers,
heads can be identified with head-finding rules (Collins, 1999) while for dependency parsers and
parsers based on linguistic theories such as LFG and HPSG heads are explicit in the analysis.

There are certain differences between dependency relations and grammatical relations:

* GRs are organized into a hierarchy and allow underspecification for parsers with incom-
plete knowledge of syntax;

* lexical items can have two heads in the GR analysis (for example for control relations as
in “Paul intends to leave IBM” where “Paul” is headed by both “intends” and “leave”);

* GRs can express arguments that are not lexically realized.

Recall is the ratio of the number of GRs returned by the parser that match the GRs from
the gold-standard annotation of the sentence, divided by the total number of GRs in the gold
standard. Precision is the ratio of the number of GRs returned by the parser that match GRs from
the gold-standard, divided by the total number of GRs returned by the parser for the sentence.
In order to evaluate a syntactic analyser with GR recall and precision, GRs have to be read-off
from sentences of a treebank and parser’s output.

Collins (1999) used a different dependency-based approach to evaluation calculating pre-
cision and recall over triples <MODIFIER, HEAD, RELATION >, where MODIFIER is the
index of the dependent token, HEAD is the index of its lexical head and RELATION is a four-
tuple of nonterminals <Parent, Head, Modifier, Direction> (e.g. <S, VP, NP-C, L> indicates
what for English corresponds to a subject-verb dependency directed to the left).

Chapter 2. Background 45

The standard measures for dependency parsing evaluation currently are unlabeled attach-
ment score (UAS) and labeled attachment score (LAS). The metrics are implemented in the
standard evaluation software eval released for the CoNLL-X shared task 2006 (Buchholz and
Marsi, 2006). The attachment score, or the unlabeled attachment score (UAS), is computed as
the proportion of tokens in a sentence (usually excluding punctuation) that are assigned the cor-
rect head (or no head if the token is a root). The overall attachment score is then calculated as
the mean attachment score over all sentences in the sample. The labeled attachment score (LAS)
is an attachment score where both the head and the label (dependency type) must be correct, but
which is otherwise computed in the same way as the ordinary (unlabeled) attachment score. The
label accuracy score (LACC) is the percentage of tokens with correct relation label, irrespec-
tive of the head. Additional measures useful for error analysis of particular graph properties
discussed in McDonald and Nivre (2007) are the precision and recall relative to dependency
length, dependency arc distance to the root, local neighborhood and degree of non-projectivity.

The CoNLL-X shared task evaluation script eval.pl evaluates the output of a parser with
respect to a gold standard using UAS and LAS metrics and provides detailed information for
each POS tag and for each dependency relation in terms of precision and recall.

Evaluation of grammar-based parsers

For grammar-based parsing, coverage, the percentage of utterances that a parser assigns an
analysis, is an important metric during the grammar engineering process. For such grammars,
like the ERG, coverage is still not always 100% when the accurate parsing mode with certain
limits on memory and time is in use (Ivanova et al., 2013a). An overgeneration metric, the
percentage of ungrammatical utterances that receive an analysis, can be useful when grammat-
icality judgements of the parser are analyzed.

Accuracy of computational grammars being developed within the DELPH-IN community
is commonly measured as oracle and Top-1 precision. Oracle precision is the proportion of
sentences for which a correct parse is among the analyses produced by the parser. This metric
abstracts from the ranking model of the parser and evaluates only the grammar. Top-1 precision
shows the proportion of sentences for which the correct parse is ranked the highest. It can be
thus viewed as a method to evaluate the grammar and the parse ranking model as one system.
Mean reciprocal rank is a metric that focuses solely on the quality of the parse ranker. Recipro-
cal rank is the reciprocal of the rank of the correct analysis, or zero if there is no parse matching
the gold standard in the top-/N analyses.

Dridan (2009) proposed Elementary Dependency Match (EDM) as a method for granular
evaluation of the English Resource Grammar based on Elementary Dependency Structures (see
Section 2.2.2 above) and their decomposition into basic semantic dependency triples. The met-
ric is a computed over elementary dependencies (ED) of the ERG in the form:

(a) relation;;
(b) relation; role; relationy;

(c) relation; property; value;.

46 2.4. Parser evaluation measures

Relations represent predicate names of elementary predicates (EPs); roles such as ARGO,
ARGT1 refer to handles within EP; properties are attributes of MRS variables (e.g. PERS, NUM,
TENSE); and values are instantiations for these properties (e.g. 3, sg, past). The character span
is used instead of a relation name to avoid propagation of an error in the predicate name to each
discriminant bearing that relation.

The method is similar to the evaluation approaches for CCG (Clark and Curran, 2007b) and
(Miyao and Tsujii, 2008) for ENJU HPSG grammar-based parsers.

Cross-framework parser evaluation

One of the challenging questions for the parsing community is how to compare parsers
based on different formalisms and producing different output, e.g. constituency parsers that
generate phrase stucture trees, dependency parsers that output dependency trees and grammar-
based parsers that produce formalism-specific representations.

One of the approaches is to carry out training and testing of parsers on datasets from the
same resource. The Penn Treebank originally designed in the framework of constituency gram-
mar but also available in dependency and various grammar-based representations (Hockenmaier
and Steedman, 2007; Flickinger et al., 2012), allows this form of cross-formalism comparison.
However, the method has serious disadvantages: 1) parsers cannot be compared on other re-
sources and 2) training and testing on the same data leads to overfitting (Clark and Curran,
2007a).

Another approach could be to convert the output of the parsers to some common represen-
tation for evaluation, such as grammatical relations or dependency relations. The complexity of
conversion procedures for each parser plays a significant role because it establishes the upper
bound on parser performance in the target representation (Clark and Curran, 2007a).

Rimell et al. (2009) propose construction-based parser evaluation using dependency rep-
resentations. The approach implies the selection of fairly frequent linguistic phenomena, con-
struction of gold standard analyses for them and evaluating whether parsers succeed in recov-
ering the dependency structure correctly. Rimell et al. (2009) and Nivre et al. (2010) focus on
long distance dependencies often called unbounded dependencies.

Bender et al. (2011) used the methodology for careful cross-framework comparison of seven
parsers on 10 construction types, including both local and distant dependencies. This approach
helps to overcome limitations of the over-optimistic PARSEVAL method due to the fact that
PARSEVAL metrics do not take into account that some dependencies are “easier” (e.g. article-
noun) and others are “harder” (e.g. preposition phrase attachment, coordination).

Extrinsic evaluation

The approaches to evaluation discussed above are called intrinsic and evaluate parsers as
stand-alone systems. Such methodologies measure the performance of a parser in the frame-
work it is developed by comparison of parser results to a gold standard. Intrinsic evaluation
allows one to facilitate potential improvements in the development of a parser by identifying its
weaknesses and also comparing different parsers to each other. In contrast, extrinsic evaluation
estimates the impact of integrating a parser in some language technology application. This type

Chapter 2. Background 47

of evaluation measures the performance of the whole application. Extrinsic evaluation validates
the benefits of embedding a parser in a natural language processing system.

Task-based parser evaluation has previously been performed, for example, in the work of
Molla and Hutchinson (2003) using the answer extraction system that operates over UNIX man-
ual pages and in the work of Miyao et al. (2008) using the information extraction system that
performs protein-protein interaction identification in biomedical papers. In the former pub-
lication a dependency parser output is used to construct logical forms whereas in the latter
publication dependency paths extracted from a parser output are used as features for training a
statistical classifier.

2.5 Linguistic resources

Natural language modelling requires annotated corpora and research efforts in different sub-
tasks of the field have produced a variety of formats for corpus annotation. The annotated re-
sources developed for natural language processing enable a wide range of research efforts in
automatic syntactic analysis as well as in other fields. Researchers need access to large data
collections in order to build realistic models of human languages. In the following, we will
describe several resources that are used in our experiments.

Penn Treebank

The Penn Treebank (PTB) (Marcus et al., 1993) has become a central resource for statis-
tical parsing of English. This treebank consists of a collection of hand-corrected annotations
of American news text of the Wall Street Journal (WSJ) magazine and a portion of the Brown
corpus (Kucera and Francis, 1967). The context-free grammar style bracketing annotation in-
cludes phrases, part-of-speech tags, null elements (such as those introduced by wh-movement
and topicalization), function labels and other linguistic phenomena loosely based on the princi-
ples of the Government and Binding theory (Chomsky, 1981). The Penn Treebank is comprised
of the phrase structure trees of the sentences represented in labelled bracketing format with the
linguistic decisions documented in the annotation guidelines.

For the purpose of experimentation in the domain of bilexical dependencies, a number of
convertors have been implemented that perform a transformation from constituency to depen-
dency trees, e.g. (Collins, 1999), (Yamada and Matsumoto, 2003), Penn2Malt (Nivre, 2006).
One of the most prominent methods of such conversion from the Penn Treebank annotations
to bilexical dependencies is introduced in Johansson and Nugues (2007). The resulting depen-
dency scheme allows the expression of long-distance dependencies, non-projectivity, internal
structure of some noun phrases and other linguistic phenomena encoded in the Penn Treebank.
This scheme is more semantically oriented than its predecessors. Results in EIming et al. (2013)
confirm that the Johansson and Nugues (2007) scheme is well-suited for down-stream applica-
tions such as negation resolution, semantic role labeling, statistical machine translation, sen-
tence comprehension and perspective classification. The format was exploited in the CoNLL
shared tasks on Dependency Parsing in 2007 (Nivre et al., 2007a) , on Joint Parsing of Syntac-
tic and Semantic Dependencies in 2008 (Surdeanu et al., 2008) and on Syntactic and Semantic

48 2.5. Linguistic resources

Dependencies in Multiple Languages in 2009 (Haji¢ et al., 2009). We will dub this scheme as
“CoNLL” from here on.

Continuing the dependency tradition, de Marneffe and Manning (2008a) proposed the user-
centered Stanford Dependency scheme in 2008 aiming to provide a simple application-oriented
description of grammatical relations. The design of the Stanford representation was inspired by
Lexical-Functional Grammar (Bresnan, 2001) which operates with a separate layer for gram-
matical functions (f-structure). The Stanford Dependency scheme departs from its theoretical
roots in the goal to be a simple and practical model for relation extraction tasks (de Marneffe
and Manning, 2008a). The main focus is on usability and intelligibility. There are two different
realizations of Stanford dependencies that will be discussed in detail in Chapter 3: 1) “basic”
in which each word of the sentence acts as a node of the dependency graph; 2) “standard” in
which some words are collapsed into the labels of the dependency arcs. The latter representation
is claimed to be closer to the semantics of the sentence (de Marneffe and Manning, 2008b).

The Stanford dependency format was applied to different tasks in the natural language pro-
cessing domain, e.g. in PASCAL Recognizing Textual Entailment (RTE) challenges (Dagan
et al., 2006), in bioinformatics, e.g. for extraction of relations between genes and proteins (Fun-
del et al., 2007), in biomedical domain, e.g. for evaluation of parsers (Pyysalo et al., 2007), in
opinion mining and sentiment analysis, e.g. for movie review mining (Zhuang et al., 2006). The
Stanford dependency format has recently been extended to the Universal Stanford Dependen-
cies scheme (de Marneffe et al., 2014) and Universal Dependencies (Nivre, 2015), a revised set
of grammatical relations consistent across languages of different linguistic typologies.

DeepBank

DeepBank (Flickinger et al., 2012) is a corpus of HPSG analyses from the LinGO English
Resource Grammar on top of the raw text of the Wall Street Journal part of the Penn Treebank
built within the Deep Linguistic Processing with HPSG Initiative (DELPH-IN) infrastructure.
DeepBank is created semi-automatically by parsing the data with the ERG parser and manual
disambiguation using the discriminant-based approach. Version 1.0 covers sections 0-21 and
lacks analyses for some 15% of the WSJ sentences, for which either the parser failed to build a
forest of candidate analyses within the specified restrictions on time and memory usage, or the
annotators found none of the available parses acceptable.

Redwoods

LinGO Redwoods (Oepen et al., 2004) is another treebank developed in the DELPH-IN
environment in a fashion similar to the DeepBank treebank. The Redwoods treebank com-
prises ERG annotations of the data from a variety of genres and domains such as Verbmobil,
e-commerce corpora, LOGON Norwegian-English MT corpus, English Wikipedia from We-
Science treebank (Ytrestgl et al., 2009), Brown corpus (SemCor) and other sources with a total
size of some 400,000 annotated tokens. Both DeepBank and Redwoods are implemented as
dynamic treebanks with mechanisms to automatically update the resources with an enhanced
version of the grammar. One of the main motivations of the Redwoods treebank development
is to enable cross-domain parsing experiments since parsers trained on PTB exhibit large per-

Chapter 2. Background 49

formance drop on other domains (Gildea, 2001). Moreover, the language of PTB and the anno-
tation decisions date back to the late 1980s.

2.6 Summary

In this chapter we first had a brief bird’s-eye view of several syntactic theories underly-
ing modern parsing technology, and then turned to a discussion of applied research topics: the
somewhat diffuse borderline between data-driven and grammar-based paradigms, several state-
of-the-art syntactic analyzers each representing a certain framework, a high-level overview of
previous work on parser combination, present-day parser evaluation methods and their limita-
tions, and the importance of annotated linguistic resources in the field with relevant examples.

Ongoing tendencies show a gradual shift of attention from representation of sentence anal-
ysis in the shape of phrase structure parse trees to bilexical dependencies. These trends are
manifested by the development of direct dependency parsing software, diverse constituency-
to-dependency conversion procedures, dependency treebanks, dependency representations and
dependency-based evaluation measures. In the current thesis we explore such aspects of depen-
dency parsing as differences and commonalities of contemporary dependency schemes, reduc-
tion of HPSG-based grammar formats to bilexical dependencies and the evaluation of parser
performance with respect to different data formats and with respect to other kinds of software.

Community interest in domains other than the canonical text of Penn Treebank from the
financial news realm, is continuously growing, and more and more effort is invested in explo-
ration and annotation of user-generated content available on the Web. However, Penn Treebank
still remains an important resource for parser comparison therefore we will present results both
on the standard excerpt from PTB and on cross-domain sets of less formal data.

High-precision grammar-based parsers gained significant improvements in efficiency and
coverage over the past decades via extensive research on development and integration of statis-
tical processing techniques. Software based on hand-crafted grammars is mature and exhibits
different strengths compared to the purely statistical parsing approaches. In this thesis we will
carry out a parser comparison analysis that shows multiple dimensions of performance for rep-
resentatives from constituency, dependency and HPSG frameworks.

In Chapter 3 we will work out a reduction from syntactic and semantic levels of the English
Resource Grammar to bilexical dependencies and examine the relationship between the newly
developed, HPSG-derived scheme to more standard ones, such as CoONLL Syntactic Dependen-
cies and Stanford basic discussed above. Chapter 4 is dedicated to an empirical comparison
of several dependency representations from Chapter 3 in parsing showing the difficulty for a
statistical parser to process each of them. Chapter 5 presents experiments on head-to-head
cross-framework parser comparison. Chapter 6 is on parser combination of the HPSG-based
deep parser and statistical data-driven parsers.

Chapter 3

Syntactico-semantic dependencies

As we recall from the previous chapter, the PET parser, a software for parsing with DELPH-
IN precision grammars including the English Resource Grammar, produces several forms of
syntactic and semantic analyses of a sentence. However, these representations exhibit great
structural complexity, i.e. utterances in ERG are modeled as large recursively nested feature
structures and custom-designed underspecified logical forms.

Bilexical dependencies, i.e. binary head-argument relations holding between lexical units,
is an attractive format since they on the one hand can reflect one of the most central decisions
made explicitly or implicitly in most linguistic theories, e.g. the choice of a head, and on the
other hand are formally and structurally relatively simple.

In this chapter we introduce a fully automated procedure for reduction of syntactic and
semantic levels of native HPSG analyses into bilexical dependencies. Further we present a
detailed qualitative and quantitative analysis of differences and commonalities of a range of
different dependency formats.!

3.1 Why bilexical dependencies?

Dependency representations have proven useful in diverse tasks of natural language pro-
cessing and in a range of different downstream applications because bilexical dependencies can
directly express predicate-argument relations, e.g. Who did What to Whom Where and When?
The mainstream approach is incorporating bilexical dependencies as features for training statis-
tical classifiers.

Some early adaptation of bilexical dependencies into system architectures include work of
Gildea and Hockenmaier (2003) on semantic role labeling, Ding and Palmer (2005) on machine
translation, Snow et al. (2006) on ontology learning, Wang et al. (2007) on question answering,
Poon and Domingos (2009) on semantic search, Matsumoto et al. (2005) on opinion mining.
More recent applications that exploit dependency relations are, among others, negation detec-
tion and resolution (Lapponi et al., 2012a; Mehrabi et al., 2015), speculation detection (Velldal
et al., 2012), semantic role labeling (Foland and Martin, 2015), disfluency detection (Wu et al.,
2015), sentiment recognition (Townsend et al., 2015) and opinion mining (Vilares et al., 2015).

"Parts of this chapter are published in Ivanova et al. (2012) and Oepen et al. (2014).

51

52 3.2. Motivation

3.2 Motivation

Bilexical dependencies find application in many tasks of computational linguistics as we
showed in the beginning of the chapter. This practical utility motivates us to automatically
derive linguistically grounded representations from the manually crafted grammar ERG. For
some applications syntactic features derived from dependency trees are especially effective,
while for others semantic information may be more favorable. ERG covers both syntactic and
semantic levels therefore we derive two representations: syntactic and semantic dependency
schemes, both grounded in the linguistic theory of HPSG.

We argue that it is worth preserving the particular properties of ERG in the dependency
scheme rather than reducing the grammar structures to some existing dependency format (such
as Stanford or CoNLL). One of the reasons to experiment with “native” dependencies is that
downstream applications exploiting them differ in goals and integration method, which we
demonstrated with the earlier examples. Variation in format gives a choice for the applica-
tion developer to try several schemes and opt for the most appropriate one. Elming et al. (2013)
showed that the choice of the conversion procedure has significant impact on the system per-
formance in such NLP tasks as negation resolution, semantic role labeling, statistical machine
translation, sentence compression and perspective classification. Even if the grammar struc-
tures are reduced to already known formats, the conversion itself will affect the performance
of the application. Furthermore, in some cases there is no one-to-one correspondence between
the structures of the grammar and the relations of the known dependency scheme, therefore the
conversion would have to rely on heuristics which in turn introduce noise and result in error
propagation. The creation of dependency resources involving as little conversion as possible
was also a desideratum underlying the CoNLL 2007 shared task (Nivre et al., 2007a).

Dependencies are commonly used for cross-framework parser evaluation and comparison.
To the best of our knowledge, prior to this work, there was no direct comparison of the HPSG
PET parser with statistical parsers and the conversion to dependencies developed in the current
chapter enables our work on cross-platform parser comparison in Chapter 5.

The Deep Linguistic Processing with HPSG Initiative (DELPH-IN) has produced a number
of open-source manually and automatically annotated linguistic resources in the HPSG frame-
work. Some of them were introduced in Chapter 2: DeepBank, Redwoods, WeScience. The
resources present a range of domains and styles: Wikipedia texts, transcribed speech, topics
about hiking and others. An automated parameterizable conversion to bilexical dependencies
facilitates the availability of these resources to a broader natural language processing commu-
nity.

To sum-up, the conversion of the ERG structures to binary word-to-word relations is moti-
vated by the widespread integration of dependencies in various tasks of computational linguis-
tics, the existence of dependency-based framework-independent parser evaluation methods and
availability of the large linguistic resources annotated with gold-standard ERG that could be ex-
ploited by a larger community of researchers. We derive a new dependency format from ERG
in order to preserve interesting properties of the grammar and avoid heuristics; moreover, there
is no single standard in the field and variation might be beneficial. Introducing a new depen-
dency format, we position it in the field by a structural comparison to several existing schemes
both qualitatively and quantitatively. Such analysis makes explicit the information contained

Chapter 3. Syntactico-semantic dependencies 53

in the treebank representations and shows a large variation across formats. In the following
sections of the chapter we discuss related work, describe the conversion procedure and present
a contrastive study of the various dependency representations.

3.3 Related work

In this section we give an overview of previous work dealing with the conversion from
several other linguistic frameworks into dependency representations.

In the family of DELPH-IN HPSG grammars, experiments with conversion to dependencies
were previously performed for the ERG and Spanish Resource Grammar (SRG) (Marimon,
2010). Zhang and Wang (2009) extracted bilexical dependencies from the derivation tree of
ERG and in a similar spirit there was also developed a conversion procedure of the derivation
tree of SRG?.

For Enju HPSG for English (Miyao et al., 2004) dependency relations in the form of predicate-
argument structures (PAS) are the native output of the Enju parser (Miyao and Tsujii, 2005).
Miyao et al. (2008) proposed a pipeline to convert Enju dependency analyses into three other
dependency formats. The parser output is first converted to Penn Treebank-style trees by tree
structure matching and then further transformed by reduction procedures into Stanford Stan-
dard with the Stanford parser, into CoNLL with the Johansson and Nugues (2007) converter
and into Head Dependencies with the Bikel (2004) software implementing the head detection
algorithm of Collins (1997). This chain of reductions is imperfect and inherently introduces
errors because in some cases PAS are inherently incompatible with PTB trees.

For Alpino HPSG for Dutch (Bouma et al., 2001) dependency relations are encoded in the
grammar and offered as a standard output for the Alpino parser (Malouf and van Noord, 2004).
There were several reasons for this design decision: firstly, dependency-based parser evalu-
ation methods (Carroll et al., 1998) had already gained popularity, secondly, Collins (1999)
parse selection models used dependency statistics, and thirdly, there was an ongoing project of
dependency annotation of the Spoken Dutch Corpus (Oostdijk, 2000; van der Wouden et al.,
2002). The dependency relations of Alpino are based on the guidelines of the Spoken Dutch
Corpus and use co-indexing to express control relations. The dependency representation is inte-
grated into the lexicon of the grammar as an additional layer of representation: a DT argument
with the head and its dependents features are mapped to the elements of the subcategorization
frame (see Figure 3.1).

Bilexical dependencies for LFG (Kaplan and Bresnan, 1982) can be obtained by reduction
of one of the levels of representation in the grammar to dependency trees. LFG introduces two
strata of syntactic analysis: c(onstituency)-structures and f(unctional)-structures. The former
encode the word order and the hierarchical composition of words into phrases in a context-free
phrase structure tree, while the latter provide grammatical functions like subject, object, etc.
with morphological and semantic information in the shape of directed acyclic graphs. For each
node in the c-structure tree there is a f-structure associated with it. Cetinoglu et al. (2010)
describe the transformation of f-structures to bilexical dependencies. Applied modifications in-
clude: i) representation of each lexical item of a sentence in the f-structure since punctuation,

Zhttp://www.iula.upf.edu/recurs01_mpars_uk.htm Accessed: 14 August 2015.

54 3.3. Related work

[verb
phon

np np
subcat < case nom |, | case acc >
dt dt

pos verb
word

su
obj

Figure 3.1: Simplified lexical entry from Alpino grammar for a finite transitive verb taking a
direct object (Malouf and van Noord, 2004). The value of dt¢ of the nominative np on subcat
is identical to the value of the su dependent; the value of dt¢ of the accusative np on subcat is
identical to the value of the 0jb dependent

auxiliaries, particles and other tokens are not explicitly expressed in a form of a predicate; ii)
elimination of the multi-headed constructions; iii) insertion of dummy dependencies for tokens
without heads to avoid multiple roots or dropping the sentences for which this method is not
applicable. In our conversion procedure for the ERG described below we encounter similar
structural characteristics on the semantic layer of the grammar, however we avoid analogous
changes assuming that graph parsing algorithms will be able to deal with DAGs. When devel-
opment of such parsers matures enough, it will be possible to parse f-structures of LFG directly
skipping the error-prone alterations of the f-structures.

For CCG (Steedman, 2000), a lexicalised grammar formalism based on combinatory logic,
predicate-argument relations are explicitly defined in the lexicon and the root of the sentence
is determined by the derivation (Bisk and Hockenmaier, 2013). The native output of the CCG
parser (Clark et al., 2002) includes dependency tuples, e.g.

< to,PP/NP,1,report,(NP\NP)/(Sgen/NP) >

that include the head word (10), its category (PP/NP), the argument slot (1), argument word
(report), and the mediating category for long-range dependencies ((NP\NP)/(S(gey/NP))
(Kim et al., 2012). Clark and Curran (2007a) proposed a transformation method of the native
CCG dependencies to GR (see Section 2.4 for background about GR): the offline step is to
map CCG predicate-argument relations to GR; at the processing time the parser output has to
be modified to adjust the remaining differences between representations. During the mapping,
several differences between the formats had to be accommodated. Firstly, the correspondence
between the representations is many-to-many, therefore constraints were introduced to attain
a one-to-one match. Secondly, all CCG relations are binary which is not always the case for
GRs. For this reason there was added a special variable with corresponding constraints into the
GR template that allows for the merging of several CCG dependencies into one GR relation

Chapter 3. Syntactico-semantic dependencies 55

during transformation. Thirdly, decisions about heads mismatched for some linguistic phenom-
ena (e.g. complex verbs and relative pronouns) which required changes of head annotations in
the CCG lexicon. Finally, some types of relations recognized by the CCG parser had to be
ignored because they are absent from the GR-annotated corpus DepBank. The postprocessing
rules concerned inter alia the treatment of coordination, ampersands, distinguishing arguments
and adjuncts. Rimell and Clark (2009) developed a conversion of CCG relations to Stanford
dependencies adopting the two-stage approach of Clark and Curran (2007a) of mapping CCG
output to GR. For the first step of mapping between formats many of the solutions developed
by Clark and Curran (2007a) were revised, and for the second step of postprocessing the new
general rules were written to bring the transformed CCG dependencies closer to the Stanford
scheme.

The review above suggests that there are several ways to derive bilexical dependency rep-
resentation from a deep grammar. For the Enju grammar, dependency output is native and
transformation to three other dependency representations is achieved via a chain of format con-
versions. For the Alpino grammar, a design decision was taken at a certain stage of grammar
engineering to incorporate dependency relations natively in the lexicon in order to obtain de-
pendency output for the Alpino parser. In the case of CCG dependencies are innate for the
formalism and can be either extracted directly or transformed to more standard schemes via
conversion. For LFG the native graph structures also express dependency relations but conver-
sions are required to arrive at a more conventional dependency tree format.

In our work we derive bilexical dependencies from the ERG data representations. For con-
version of ERG to syntactic dependencies we adopted an approach introduced by Zhang and
Wang (2009) who performed dependency backbone extraction from the derivation tree of the
ERG. The authors used the ERG version from July 2008 which differs from the more recent
version 1212 employed in our experiments by having a smaller inventory of grammar rules and
limitation on their arity (all the grammar rules were either unary or binary). A conversion to
semantic dependencies is performed from Elementary Dependency Structures (EDS) (Oepen
and Lgnning, 2006), an MRS reduction to a variable-free dependency graph.

3.4 Conversion procedure

In this section we discuss the details of the dependency conversion from the syntactic and
semantic levels of ERG into DELPH-IN Syntactic Derivation Tree (DT) and DELPH-IN MRS-
derived (DM) dependencies respectively. Figure 3.3 exemplifies the syntactic layer of the ERG
and Figure 3.4 illustrates the semantic representation that we reduce to dependencies for the
Penn Treebank sentence:

(23) A similar technique is almost impossible to apply to other crops, such as cotton, soy-
beans and rice.

The result of the conversions is presented in Figure 3.2 with syntactic dependencies above the
sentence and semantic dependencies below the sentence.

56 3.4. Conversion procedure

{ADCVR
——(sPHD)— —(HD-CWP}—) Ry

(ml m AJ HD ‘ {HD CMP} [HD CMP]HD CMP] [AJ HDN¢ ~(HDN-AT} | 1

v M vl A

|
v T
A %1m11ar technique 1% almost 1mp0991ble to apply to other crops, cotton %oybeane and rice.
|

c
| Laxop [m‘%—w m}% MWW
‘+ N

Figure 3.2: Dependency representations in DELPH-IN formats

3.4.1 Syntax: derivations to dependencies

As we recall from Chapter 2, the syntactic level of representation in ERG is embodied in
a phrase-structure tree with HPSG constructions labeling internal nodes (e.g. hd_optcmp_c,
ordinarily a phrase has to find all its complements before combining with a specifier,—a de-
terminer, for nominal projections,—but this unary rule discharges an optional complement of
the head), lexical types tagging preterminals (e.g. d_-_sg-nmd_le, determiner singular not
modified) and lexical tokens marking the leaves (see Figure 3.3). We transform this tree to
the projective bilexical dependency representation called DELPH-IN Syntactic Derivation Tree
(DT).

During the conversion the tree is traversed and (a) the unary branches are eliminated, (b) the
head daughter is looked up in the grammar configuration files for branching constructions. The
“head” property is propagated down the tree to the lexical items. Example (24) explains step-
by-step the process of identifying the root of the sentence and determining the first dependency.

(24) root-informal root-informal root-informal
\ \ \
sb-hd_mc_c sb-hd_mc_c sb-hd_mc_c
sp-hd_n_c hd-cmp_u_c sp-hd_n_c hd-cmp_u_c sp-hd_n_c hd-cmp_u_c
v_prd_is_le aj-hd_scp-xp_c v_prd_is_le aj-hd_scp-xp_c v_prd_is_le aj-hd_scp-xp_c
\ | i
is is s
sp-hd_n_c sp-hd_n_c sp-hd_n_c
d_-_sg-nmd_le aj-hdn_norm_c d_-_sg-nmd_le aj-hdn_norm_c d_-_sg-nmd_le aj-hdn_norm_c
hd_optcmp_c n_ms-cnt_ilr hd_optcmp_c n_ms-cnt_ilr hd_optcmp_c n_ms-cnt_ilr
\ \ \
n_-_mc-ns_le n_-_mc-ns_le n_-_mc-ns_le
\ \ [
technique technique technique
SB-HD
A similar technique is

n_-_mc-ns_le v_prd_is_le

Chapter 3. Syntactico-semantic dependencies 57

root-informal

sb-hd_mc_c
sp-hd_n_c hd-cmp_u_c
d_-_sg-nmd_le aj-hdn_norm_c v_prd_is_le aj-hd_scp-xp_c
| Py |
A) is /\
- - - av_-_s-vp-pr_le -cmp_u_c
hd opt‘cmp c n_ms ‘cnt ilr popr | hd-cmp
. . o) g ‘
aj_pp_i c‘mp dif_le n_ _m‘c ns_le almost
similar technique hd_optemp_c hd-cmp_u_c

aj_pp-vp_i-tgh_le
4P p‘, . cm_vp_to_le hd-cmp_u_c

impossible ‘ /\

to hd_xcmp_c

v_n3s-bse_ilr
\
v_np-pp_e_le
\
apply

Figure 3.3: ERG syntactic derivation tree for the sentence “A similar technique is almost im-
possible to apply to other crops, such as cotton, soybeans and rice.”

First, we skip the unary rule root-informal that suggests that the sentence is not perfectly
edited (the sentence in Example 23 lacks the so-called Oxford comma in the tripartite coordina-
tion structure). For the branching subject-head construction in the main clause sb-hd_mc_c the
conversion algorithm has to consult the head table in the configuration files. For this particular
construction, it is also obvious from the first field of the rule name—sb-hd—that the daughter
on the right (which is hd-cmp_u_c in our case) is the head, however not all the branching
rules have an indication of the head position in their names. A fragment of the file with the head
daughter specification for each rule is shown in Table 3.1 which describes how many child nodes
each construction has (the grammar supports arbitrary arity of rules) and reports which daugh-
ter is the head counting left-to-right starting from 0. For hd-cmp_u_c (the head-complement
construction in the unmarked clause) the left child node is the head, therefore, skipping the lex-
ical type v_prd_is_le (a verb that takes predicative phrase as a complement) we derive that the
lexical item “is” is the root of the sentence. The left daughter (sp-hd_n_c, head-specifier con-
struction with the non-head,—the specifier,—as the semantic head) of the first branching rule
(sb-hd_mc_c) is dependent on the root. The construction sp-hd_n_c has its head daughter
on the left which is aj-hdn_norm_c (a nominal head construction with preceding normal, i.e.
unmarked, adjunct). Finally, for aj-hdn_norm_c the child node on the right is the head, conse-
quently skipping the unary n_ms-cnt_ilr (orthography-invariant, i.e. not changing orthography,
inflectional rule for mass or count noun) and the lexical type n_-_mc-ns_le (intransitive, i.e.

58 3.4. Conversion procedure

Rule ‘ # of daughters ‘ head daughter
sb-hd_mc_c 2 1
hd-cmp_u_c 2 0
sp-hd_n_c 2 1
aj-hdn_norm_c 2 1

Table 3.1: ERG configuration file that describes how many child nodes each grammar construc-
tion has and which daughter is the head

not requiring complements, mass or count, no grammatically interesting, i.e. neither temporal
nor animate, sort noun; this is a fairly typical type of noun), the procedure extracts the lexical
item “technique”.

The label of the dependency link from “is” to “technique” is the generalization sb-hd of
the first branching rule sb-hd_mc_c, and the lexical types of the word tokens become the part-
of-speech tags. However it is our choice, which we will justify in Chapter 4, to generalize the
ERG construction names and to preserve the whole name of the lexical type: the conversion
procedure can produce different labels of differing granularity. The rest of the tree is built in a
similar fashion (see Figure 3.2).

3.4.2 Semantics: logical form to dependencies

The semantic layer of ERG is expressed in the MRS formalism (Copestake et al., 2005)
which was introduced in Chapter 2. However we perform the conversion to bilexical depen-
dencies from Elementary Dependency Structures (EDS) (Oepen and Lgnning, 2006): an MRS
reduction that discards scope-related information. EDS already brings us close to a dependency
format, however it does not necessarily represent a tree because it has the following properties:

 some lexical tokens are not expressed in the nodes of the graph (for example, semantically
vacuous “t0”);

* anode may have more than one incoming arc;
* several EDS nodes may correspond to a single token (e.g. for personal names);
* some nodes may not directly correspond to any surface token(s).

The complete EDS for the sentence in Example (23) is shown in Figure 3.4. Each graph node
is shown on a separate line and each has an identifier (e.g. _1, eg) separated by a colon. Graph
nodes are further labeled with semantic predicates (e.g. _a_gq, _stmilar_a_to). Outgoing de-
pendency arcs are listed in brackets, and each is labeled with a semantic argument role (e.g.
ARG1, ARG2, ARGS3) followed by an argument. For example, the third line depicts the node
identified as ey and labeled with a predicate _similar_a_to. This node has one outgoing arc
labeled ARG1 pointing to the node .

Chapter 3. Syntactico-semantic dependencies 59

{ €12:
_1:_a_q(BV Xg)
€9:_similar_a_to(ARG1 xg)
Xg:_technique_n_1
e1»:_almost_a_1(ARG1 e3)
e;:_impossible_a_for(ARG1 e;g)
e1s:_apply_v_to(ARG2 Xg, ARG3 X19)
,Q:UdeLq(BV Xlg)
e95:_other_a_1(ARG1 X19)
X19:_crop_n_1
€96:_such+as_p(ARG1 X19, ARG2 Xa7)
_s:udef_q(BV x27)
_4:udef_q(BV Xx33)
X33._cotton_n_1
_5:udef_q(BV iss)]
Xo7:implicit_conj(L-INDEX X33, R-INDEX i3g)
,@Udef_q(BV X43)
X43:_SOybeans/nns_u_unknown
i3s:_and_C(L-INDEX X43, R-INDEX X47)
_7:udef_q(BV Xx47)
Xy7:_rice_n_1

Figure 3.4: ERG Elementary Dependency Structure

In the following we describe the conversion from EDS to the bilexical dependency scheme
called DELPH-IN MRS-derived dependency format (DM) and explain the details of how the
conversion procedure treats the EDS reflexes of various grammatical constructions. We in-
troduce four types of ERG structures: lexical, redundant, transparent and relational. A lexical
construction encompasses a predicate that corresponds to a surface token of a sentence; a redun-
dant construction establishes several identical dependency relations; a transparent construction
links two conceptually equal EDS nodes; a relational construction consists of a predicate that
does not correspond to a lexical item but establishes dependency relations between its argu-
ments. A predicate can be associated with multiple types of ERG structures, and in such a case
the processing is sequential in the following order: redundant, transparent, relational, lexical.
We will use our running example and sentences from the English MRS Test Suite? to illustrate
these four cases.

Lexical type Lexical predicates correspond to the surface tokens of the sentence. The basic
conversion mechanism is straightforward: a unique identifier of a semantic predicate is con-
sidered the head, its arguments become dependents and argument roles are used as arc labels.
This strategy applies to “regular” lexical relations, e.g. the ones that correspond to the actual
word tokens. For example, _other_a_1(ARG1 x19) in Figure 3.4 contributes an ARG1 de-
pendency between other and crops, because identifier x19 denotes the EDS node _crop_n_1
(see Figure 3.7e dependencies below the text). The vast majority of the lexical relations have a
name that starts with an underscore sign and the others are listed in the configuration file (see
Figure 3.5a) which defines parameters for the conversion.

3http://moin.delph-in.net/MatrixMrsTestSuiteEn Accessed: 14 August 2015

60 3.4. Conversion procedure

[lexical] [redundant]
card /.*/ L-HNDL L-INDEX
part_of /.*/ R-HNDL R-INDEX
person

(a) (b)
[transparent] [relational]
comp_equal ARGI1 /_c$/ L-HNDL R-HNDL
eventuality ARG1 /_c$/ L-INDEX R-INDEX
nominalization ARGl part_of ARGO ARG1

(c) d

Figure 3.5: Excerpt from the ERG configuration file

Predicates that do not start with an underscore and are not included in the configuration file
are ignored; furthermore, reflexive dependency relations (relations in which the head and the
dependent correspond to the same lexical item) are purged from the dependency graph. Exam-
ple (25) demonstrates that for the relation part_of a dependency link is established between the
unique identifier ¢, of the predicate and the node x5 corresponding to the words three and dogs
respectively. The predicate udef_q is not analyzed because it does not start with an underscore
and is not present in the configuration file. The predicate card_q should be analyzed as lexical
according to the configuration file, but it introduces a reflexive dependency arc for the lexical
item three which is excluded from the graph: the dependency relation is established between
the nodes eg and 7, that both denote the word Three because they have identical character span
<0:5>.

If the relation part_of did not belong to any other class of relations, the arc label would be
ARG, however predicates can belong to several classes, and part_of is also in the relational
class, described below.

part_of
’i4 Iy
= ~ =
Three of the dogs bark.

{e
(25) fapart_of(0:5)(ARG1 x;)
X5:_dog_n_1(13:17)()
_1:udef_qg(0:5)(BV iy4)
eg:card(0:5)("3") (ARG i4)

.

Redundant type Some EDS predicates introduce several equally directed dependency arcs
with different labels between the two lexical items if the basic conversion algorithm used for
lexical type is applied. The rules for the redundant relations in the configuration file permit us to

Chapter 3. Syntactico-semantic dependencies 61

choose only one dependency arc for a word pair deterministically. MRS coordinate structures
often encompass pairs of the right and/or left index and the handle that serve to differentiate
between non-scopal and scopal arguments correspondingly (see Section 2.2.2 for the details
about index and handle). This distinction is not conflated at the EDS level, however. In order
to avoid redundancy of information, the index is purged wherenever a complementary handle
is present in the elementary predicate. Figure 3.5b shows how the rule is presented in the
configuration file: the regular expression /.*/ does not impose any restrictions on the name of
the relation and if L-HNDL is present, L-INDEX should be deleted, if R-HNDL is given, R-
INDEX should be removed.

Example (26) illustrates the procedure discussed above: the EDS analysis of coordination
arrived and barked includes left and right indexes and handles for designated nodes eg and €1,
denoting lexical items arrived and barked, therefore the indexes can be ignored.

€9 €2 €11
—~NAN
The dog arrived and barked.
{e
ey:_arrive_v_1(8:1
€,:_and_c(16:19) (LINDEX-€eg, R-INDEX-err,L-HNDL €9, R-HNDL €1)
e1:_bark_v_1(20:27)(ARG1 Xx5)

.

26) 5)(ARG1 X5)

Transparent type The class of transparent relations includes semantic relations where in the
underlying logic a referential instance variable is explicitly derived from an event, e.g. different
types of nominalization. In terms of bilexical dependencies we want to conceptually equate
the two EDS nodes involved. Identifiers of the predicates of this type are equated with one of
their arguments. Figure 3.5¢ shows that the relations comp_equal, eventuality and nominal-
ization are unified with their ARG1. In Example (27) the node g is equated to the node ey
corresponding to the lexical item “chasing”, which allows the converter to use the node e;5 in
place of x1q in the relation _bother_v_1. Note that if we assigned nominalization to the lexi-
cal class of predicates instead of transparent, the conversion would have led us to the reflexive
dependency arc in this sentence because the predicates nominalization and _chase_v_1 have
the identical character span.

ARGl
€15 €2
, N ——
Browne ’s chasing of cats bothered Abrams.

{e
(27) e5:_chase_v_1(9:16)(ARG2 Xxy)
X1p:nominalization(9: 16) (ARG1 e;5)
e,:_bother_v_1(25:33)(ARG1 X719, ARG2 Xa3)

.

In Example (28) the node x5 is equated with the node ey and as a result we obtain a dependency
link between old and chasing. Note that in this case the nominalization predicate corresponds
to a phrase Chasing the cat is old (in other words, what was nominalized in the grammar is the

62 3.4. Conversion procedure

complete verb phrase), therefore handling it as a lexical relation would have not led us to the
word-to-word bilexical dependencies.

€15 €2
—— . N
Chasing the cat is old.

{e
Xs:nominalization{0: 15)(ARG1 ey)
€9:_chase_v_1(0:7)(ARG2 Xx19)
e old_a_1(19:23)(ARGT x3)

.

Relational type A bilexical dependency representation by definition does not contain nodes
that do not correspond to a lexical item in the sentence. Some nodes of the EDS graph that
do not correspond to surface tokens introduce relations that can be modified into bilexical de-
pendencies by assigning the head role to one of the arguments, the dependent role to the other
argument and using the predicate name as dependency label. The excerpt from our configura-
tion file concerning these types of relations is shown in Figure 3.5d. For the predicate part_of
its name is used as the dependency label, its ARGO becomes the head and its ARG1 is con-
sidered as the dependent. In Example (29) ARGO corresponds to the node x5 which in turn
idetifies the lexical item A/l and ARG refers to the node xg representing the lexical item dogs.

(28)

part_of
x5 Ty
~~ = = .
All of the dogs arrived.

(29) {ee
:part_of(0:) ARG1 Xg
x9 _dog_n_1 (11:15)()

.

All predicates of the relational type are at the same time associated with the transparent
class of relations by default. The regular expression /_c$/ from Figure 3.5d denotes any pred-
icate with the name that ends with _C, e.g. any coordination structure. We opt for the analysis
of Mel’Cuk for coordination by making interchangeable conjunction nodes with their left argu-
ments. The advantage of this analysis is that the incoming dependencies to coordinate structures
receive the same category (e.g. verb) as they would have received without coordination. Fur-
thermore, Schwartz et al. (2012) has shown that analyses that select the first conjunct as the head
are easier to parse with statistical parsers than analyses that select the coordinating conjunction
as the head of the coordination structure. One of the limitations of this approach is that it does
not disambiguate a shared modifier and a private modifier of the first conjunct.

Example (26) illustrating redundant relations will be further processed as shown in Exam-
ple (30) by equating L-HNDL with the conjuction, e.g. the node eg is further used in place of
ey and the resulting dependency arc will be assigned from the word arrived to barked. Since
the node labelled ey is the root of the EDS graph, the lexical item arrived corresponding to the
node eg will become the root in the dependency representation.

Chapter 3. Syntactico-semantic dependencies 63

fg 52\ €11
The dog arrived and barked.
(30) e,
ey:_arrive_v_1(8:15)(ARG1 X5)
2: and c(19 > HNBE&e;; R-INDEX-er1,L-HNDL €9, R-HNDL €1;)
:_bark_v_1(20:27)(ARG1 x5)

}
3.4.3 Tokenization styles

For each sentence the conversion procedure can produce ERG- and PTB-style tokenization
for the raw input, e.g. compare Figures 3.7e and 3.6 for our running example.

ERG tokenization conventions differ from the PTB in four aspects: (a) hyphens (and slashes)
introduce token boundaries; (b) whitespaces in multiword lexical items do not always introduce
token boundaries; (c) punctuation marks are attached as “pseudo-affixes” to adjacent words;
(d) contracted negations are not broken up from the verb forms. Adolphs et al. (2008) provide
some linguistic motivation for the approach chosen in ERG, for example, arguing that the PTB
analysis of contracted negation is misleading from a linguistic point of view, since breaking up
these constructions (e.g. “won’t” into (wo, n’t)) imposes pseudo-lexemes and leads to deriving
nonexistent inflectional forms of verbs. Ma et al. (2014) provide some criticism of the PTB-
inspired punctuation analysis arguing that the lexical heads of punctuation marks are vaguely
defined and inconsistently annotated in the existing treebanks, and moreover that downstream
applications, such as machine translation, usually utilize predicate-argument relations between
words, rather than between words and punctuation symbols.

During the process of parsing with PET each token is assigned a character range consisting
of the initial and final character positions in the source text, including spaces and punctuation.
Such an approach can support several competing hypotheses about the number of tokens in a
sentence (Flickinger, 2008). For example, the word “state-owned” is analyzed as a single token
in PTB-style tokenization while in the ERG internal analysis it is split into two components.
The character ranges are general enough to allow localization of the positions of the tokens in
the text using both PTB- and ERG-style tokenization as shown in Example 31.

(31) Finmeccanica is an Italian state-owned holding company with interests in the mechan-
ical engineering industry.
PTB-style tokenization: <27:38> state-owned
ERG-style tokenization: <27:38> state-
<27:38> owned

The character range <27:38> in Example 31 is used in PTB- and ERG-style tokenization to
refer to the position of the item “state-owned” in the original sentence.

The PET parser builds an ERG analysis on top of the raw text. During the parsing pro-
cess tokenization undergoes several modifications illustrated by Dridan (2013b) with the ex-
ample shown in Table 3.2. Initially the raw text is treated with the Regular Expression-Based

64 3.4. Conversion procedure

p |
0 [e
(D) [\
(), (55-] (mm—wcw [—}—meamw‘ [—Mowwm MWE) (VRECTFORCT
|] T i

[
v T R
A similar technique is almosl 1mpoqq1ble to apply to other crops , such as cotton s soybeans and nce .

HD CMP

| Lawar | Lmwon I L gwan—]|) (arad)| Ly
(S + Lm_)

(ARG2}
e

Figure 3.6: A WSIJ sentence annotation using PTB-tokenization style

Raw ‘Sun-filled’, well-kept Mountain View.
REPP
initial tokens [] [Sun-filled],[’], [,], [well-kept], [Mountain], [View], [.]
chart-mapping
internal tokens [‘Sun-], [filled’,], [well-], [kept], [Mountain], [View.]
lexicon lookup
[“sun-], [filled’,], [well- kept], [Mountain View.], [well-], [kept],

lexical tokens [Mountain], [View.]

Table 3.2: Tokenization pipeline during parsing with PET (Dridan, 2013b)

Pre-Processing (REPP) toolkit integrated in the PET parser (see Section 2.2.2) to produce the
tokenization that follows PTB convention. Subsequently, the chart-mapping mechanism is ap-
plied to the output of REPP described by token feature structures to adapt the tokenization to
assumptions of the grammar. Thereupon prepared tokens are looked up in the lexicon and the
candidate lexical items are added to the chart. As a result of parsing the output includes initial
tokens that obey PTB-style tokenization, internal tokens that conform to ERG-style tokeniza-
tion and ERG derivation tree leaves that correspond to the lexicon entries and comply with
ERG-style tokenization.

Directly before the lexicon lookup the tokens are downcased and recorded in this form which
causes a capitalization mismatch between the original raw text and the leaves of the derivation
tree. The solution that allows us to restore the original case of the token in the vast majority
of cases is to consult the CASE field of a derivation tree and if it is absent or does not provide
enough information to refer to the internal tokenization by the character-based identifier. We
will apply this technique for the data preparation in Chapter 5.

3.4.4 Output format

As an output format we have chosen the generic data format from the CoNLL 2008 shared
task which is commonly used in the NLP community. It allows us to represent both syntactic
and semantic dependencies for each sentence. The sentences in a file are separated by a blank
line; each token is represented on a separate line and there are at least 11 fields separated by
tabulation describing each token (see Table 3.3); comments are introduced with # symbol.

Strafiak and St&panek (2010) note some weak points of the standard:

¢ there is no convention about how to add meta-information;

Chapter 3. Syntactico-semantic dependencies 65

Field Field Description

1 Token counter, starting at 1 for each new sentence.

2 Word form or punctuation symbol (e.g. company)

3 Lexical entry from the derivation tree (e.g. company_nl) that represents lemma

4 Lexical rule from the derivation tree (e.g. n_pp_mc-of _le) that represents gold PoS

5 For ERG-style tokenization the same lexical rule as in field 4 (e.g. n_pp_mc-of_le),
while for PTB-style tokenization a PTB PoS tag (e.g. NN)

6 _
7 Head index
8 Dependency relation

11 Semantic predicate derived from EDS
12- Columns with semantic argument roles for each semantic predicate following tex-
tual order

Table 3.3: Fields in the output format for the ERG-derived syntactic and semantic bilexical
dependencies

* the number of columns for a sentence corresponds to the number of predicates in the
sentence and as a result the number of columns is high but the table is very sparse;

* representation of multi-layer annotations is not straightforward, especially when the sur-
face tokens differ across the layers.

Despite the limitations of the format, it is widely used in the community and allows us to
compactly represent information about syntactic and semantic dependencies in one file. We
therefore choose to represent DT and DM in this form.

3.5 Contrasting analysis

In this section we will contrast the newly obtained dependency representations with several
existing ones. We pursue the goal to shed some light on the differences and commonalities
of various schemes and explore how the ERG-derived formats relate to other representations.
Figure 3.7 displays the syntactico-semantic dependencies in the nine formats (syntactic on top
and semantic below) introduced in Section 3.5.1 which we will compare qualitatively in Sec-
tion 3.5.2 and quantitatively in Section 3.5.3.

3.5.1 Variation in dependency representations

Dependencies are binary asymmetrical relations expressing direct predicate-argument re-
lations between lexical units. Practical benefits of dependency syntax are found in its rather
intuitive structure showing links between words, and existence of linear-time algorithms for

66 3.5. Contrasting analysis

roo (P}
oJ
(¥¥ioD) (m
= AMOD o | (oD}) (i) | (won) (@) (o) |poD) @) | oompcon) |
v v
A

srmllar techmque 1s almost 1mposs1b]e to apply to other crops , such as cotton , soybeans and nce

(a) CoNLL 2008 syntactic dependencies (CD; top) and propositional semantics (CP; bottom).

&

& —
punct
),
\

det ‘ ‘ (—% P'CP
=R) | @
v v ‘

¥ “ ¥
A similar technique is almost impossible lo apply to other crops R such as cotton , soybeans and rice

i

prep_such_as

prep_such_as
(b) Stanford Dependencies, in the so-called basic (SB; top) and collapsed & propagated (SD; bottom) vari-
ants.

A similar technique is almost impossible to apply to other crops , such as cotton , soybeans and rice

(c) Enju predicate-argument structures (EP).

AuxG
4 S) E— W N

(
A |

AuxX
*, [| D) E G ED = |
| | v o v |]

A similar technique is almost 1mposs1ble to apply to other crops s such as cotton , soybeans

v
and rice .

A A

CONJ.member’

PAT CONJJ

ACT
S~ (APPS.member
PAT ADDR

(d) Prague analytical tree (PA; top) and a reduction of tectogrammatical tree to bilexical dependencies from the
Broad-Coverage Semantic Dependency Parsing shared tasks (Oepen et al., 2014, 2015) (PT; bottom).

(SPHD) ij \
(AJ-HDN]} m AI-HD r{1—1[) LMPh (HD- (_MPIHD LMP]‘ [AJ HDN) r—[HDN AJ)ﬁ ‘ | NP NP m

dpply lo other crups cotton, soybeans dnd rlce

A slmlldr techmque 1s dlmost 1mposslble to

]me

ARG2
—

(e) DELPH-IN syntactic derivation tree (DT; top) and Minimal Recursion Semantics (DM, bottom).

Figure 3.7: Dependency representations in (a) CoNLL, (b) Stanford (c) Enju, (d) Prague, and
(e) DELPH-IN formats

analysis. A variety of different dependency formats has emerged in the past years and in this
section we will present those that we have chosen for our study and start contrasting them by

Chapter 3. Syntactico-semantic dependencies 67

some of their graph properties. As we recall from Chapter 2, it is commonly assumed that the
dependency structure of a sentence is a tree, e.g. a directed graph, conforming to the following
conditions (Nivre et al., 2007b):

* every token in the sentence constitutes a node in the graph;

* there is one designated root node, conventionally numbered as 0;
e the graph is (weakly) connected;

* every node in the graph has at most one head;

* the graph is acyclic.

Dependency types are usually expressed in the graph as arc labels.

A broad range of schemes usually accommodate these constraints but differ in choices of
head for various phenomena and sets of dependency labels, while more linguistically-motivated
representations often do not adhere to the above-mentioned requirements. We may distinguish
between formats that take a largely functional view on head status—e.g. functional elements
like auxiliaries, subjunctions, and infinitival markers are heads—and more lexical or content-
centered approaches where the lexical verbs or arguments of the copula are heads. The di-
chotomy between lexical and functional categories is theoretically motivated and has played an
important role in generative theories of syntax such as Principles and Parameters, Government
and Binding, Minimalism, though the distinction is not always rigid and the borderline cases
are described as semi-lexical categories (Corver and van Riemsdijk, 2001). Table 3.4 provides
a summary of the head type for the formats we are focusing on in this chapter and Figure 3.7
shows a sentence annotated with these nine formats and illustrates drastic differences between
them*.

In the following, we will discuss several formats which appear in the literature reasonably
frequently and have been exploited in parsing and other tasks: syntactic and semantic CoNLL
dependencies, basic and standard versions of Stanford dependencies, Enju predicate-argument
structures and analytical and tectogrammatical layers of Prague linguistic annotations. One of
the motivations for our choice is also the availability of the annotations in all of these represen-
tations of the same large linguistic resource, e.g. the Wall Street Journal (WSJ) portion of the
Penn Treebank.

CoNLL Syntactic Dependencies (CD) This dependency representation was already intro-
duced in Section 2.5. The scheme was utilized in several CoNLL shared tasks dedicated to
parsing into word-to-word dependencies and was obtained via conversion of PTB with the LTH
constituent-to-dependency conversion tool for Penn-style treebanks (Johansson and Nugues,
2007). This conversion relies on head finding rules (Collins, 1999) and the grammatical func-
tion labels, empty categories and named entities present in the PTB annotation. The format
supports long-distance phenomena such as wh-movement and topicalization often expressing
them with non-projective dependency links. The tool also takes advantage of the annotation

“The annotation of coordination in Enju PAS in Figure 3.7 differs from the analysis shown in Ivanova et al.
(2012) because the gold standard annotation for this sentence was corrected by Prof. Yusuke Miyao.

68 3.5. Contrasting analysis

of the internal structure of base noun phrases in PTB added by Vadas and Curran (2007) (see
Figure 2.13 in Section 2.2.2) . The dependency structures in this format obey the general condi-
tions mentioned at the beginning of this section and the syntactic heads are largely functional,
e.g. infinitival markers and auxilliary words are chosen as heads.

CoNLL PropBank Semantics (CP) This dependency representation was created in conjunc-
tion with the CoNLL 2008 shared task on joint parsing of syntactic and semantic dependencies
(Surdeanu et al., 2008). The format was produced by conversion of PropBank (Palmer et al.,
2005) and NomBank (Meyers et al., 2004) annotations that provide argument structure for verbs
and common nouns in PTB, into a dependency analysis. The conversion does not exploit PTB
syntactic constituents but relies on CoNLL Syntactic Dependencies for compatibility. Depen-
dency structures are generated by a heuristic process that assigns the head of a semantic argu-
ment to the token inside the argument boundaries whose head is a token outside the argument
boundaries (Surdeanu et al., 2008). The heuristics work accurately for a vast majority of argu-
ments with some exceptions that receive further treatment. For example, a semantic argument
is split into a sequence of discontinuous arguments if the heuristics mistakenly assign several
syntactic heads to it. The representation does not adhere to the formal constraints posed above:
it lacks a dummy root node, the graph is not connected, and the graph is not acyclic. The choices
with respect to head status are largely lexical.

Stanford Basic (SB) The Stanford schemes (de Marneffe et al., 2006), briefly presented in
Section 2.5, are designed to extract dependency relations from phrase structure parses. Orig-
inally the representation was provided as an additional output format for the Stanford parser
(Klein and Manning, 2003). The grammatical relations are organized into a hierarchy with
the more general relations on top and more specific ones further down. The conversion is a
two-step process: dependency extraction and dependency typing. Initially a phrase structure
analysis is built for a sentence with some parser trained on Penn Treebank and then the head-
finding rules similar to Collins (1999) rules are applied to identify the head for each constituent.
Lexical heads are favored in this format, therefore most of the relations are established between
content words. The second step involves pattern-based labeling of the extracted dependencies
with grammatical relations. The search algorithm compares patterns against the parse tree and
chooses the most specific grammatical relation from the detected matching patterns. Each word
token corresponds to a node in the resulting dependency tree which is a single-rooted directed
acyclic graph.

Stanford Collapsed Dependencies (SD) Stanford Dependencies also come in a so-called
collapsed version where some pairs of dependencies are merged into a single node purging
the word in between from the graph. The collapsed words which are primarily prepositions,
conjunctions and possessive clitics are used in the label names as shown in Example (32).

(32) crops such as cotton , soybeans and rice . ..
prep_such_as(crops, cotton)
conj_and(cotton, soybeans)
conj_and(cotton, rice)

Chapter 3. Syntactico-semantic dependencies 69

Department ’s index
poss(index, Department)

The collapsed representation does not meet the formal graph criteria mentioned above: it
is not connected, since not all tokens in the sentence are represented in the graph, a node may
have more than one head, and there may also be cycles in the graph.

Enju Predicate-Argument Structures (EP) The Enju system is a robust, statistical parser
obtained by learning from a conversion of the PTB into HPSG (Miyao and Tsujii, 2005). Enju
outputs predicate-argument structures (PAS) that describe semantic relations of words, phrases
and clauses in a sentence. The representation of the dependency types in Enju is the same as that
of PropBank (Kawahara et al., 2013) (ARG1, ARG?2 etc.) and the graph structure does not obey
the constraints mentioned above. Enju PAS primarily aims to capture semantic relations and it
encodes most types of syntactic modifiers as predicates. EP chooses auxiliary verbs, copula and
subjunctions as heads, i.e. it tends to have functional heads.

Prague Analytical Tree (PA) The Prague Czech-English Dependency Treebank (PCEDT)
(Cmejrek et al., 2004) provides Prague Dependency Treebank-style annotations (Hajic, 1998)
grounded in Functional Generative Description (Sgall et al., 1986) for the WSJ corpus. The
analytical layer of the markup describes the surface syntax of a sentence. Dependency repre-
sentations of the English part of PCEDT are produced automatically from PTB by a conversion
procedure similar to the one discussed in Xia (2001). First, terminal nodes of the phrase struc-
ture tree are transformed to nodes of the dependency graph and then dependencies between
the nodes are established recursively starting from the root using Jason Eisner’s head assign-
ing scripts (Eisner, 2001). The nodes for traces are removed from the graph and their child
nodes are attached to the trace parent nodes. In the analytical level of representation, construc-
tions that require structural transformation different from the algorithm described above are
coordination and apposition. Each node of the analytical tree is assigned a surface syntactic
attribute called analytical function that describes its relation to the head. The rule-based pro-
cess of labeling nodes with analytical functions relies on the information about function and
PoS tags of the original PTB tree and the local context of the dependency tree, e.g. the rule
mPOS=MD|pPOS=VB|mAF=AuxV labels a modal verb headed by a verb with the analytical
function AuxV. The markup of coordinations, appositions and prepositional phrases is tackled
separately. The analytical tree is consistent with the general dependency graph constraints that
we described above.

Prague Tectogrammatical Tree (PT) The tectogrammatical layer of sentence representation
in the theoretical framework of the Functional Generative Description is a level of linguistic (lit-
eral) meaning. The tectogrammatical annotation is manually built on top of the analytical layer
trees. Unlike the analytical layer, functional words (prepositions, punctuation marks, determin-
ers, subordinating conjunctions, certain particles, auxiliary and modal verbs) do not constitute
graph nodes of the tectogrammatical trees but become attributes of their heads. In the tec-
togrammatical level, all valency frames must be realized, therefore the tree includes additional
nodes restored using traces that do not correspond to the tokens of the sentence. Each node of

70 3.5. Contrasting analysis

the tectogrammatical tree is assigned a functor and a set of grammatemes. Tectogrammatical
functors are semantic-syntactic labels that describe dependency relations (e.g. Actor, Patient,
Effect); grammatemes are semantically-oriented morphological categories such as tense, num-
ber, degree of comparison, and some of them describe derivation information (Razimova and
Zabokrtsky, 2005). The rules that assign functors use PTB PoS tags, function tags and lemma.
The markup of morphological grammatemes exploits PTB PoS tags. The tectogrammatical
tree does not agree with the constraints mentioned in the beginning of the subsection because
some tokens are excluded from the graph and additional nodes without surface realization are
added. PT bilexical dependencies shown in Figure 3.7d and used further in our analysis are
extracted from tectogrammatical trees using a conversion procedure described in Miyao et al.
(2014). These dependencies were employed in the Broad-Coverage Semantic Dependency Pars-
ing (SDP) shared tasks (Oepen et al., 2014, 2015). PT graphs encode only a subset of the
original tectogrammatical annotation, excluding among other things nodes representing elided
elements, coreference links and grammatemes.

3.5.2 Qualitative analysis

As a basis for a qualitative comparison we use WSJ sentences annotated in the 9 target de-
pendency schemes. We have chosen most of the CD, CP, SD, EP annotations from the collection
dubbed PEST (Parser Evaluation shared task)’ developed for the shared task on comparing rep-
resentations for grammatical analysis (Bos et al., 2008) at a workshop on Cross-Framework and
Cross-Domain Parser Evaluation of the 2008 Conference on Computational Linguistics (COL-
ING). In addition we used the Stanford parser to convert gold-standard annotations of the same
WSJ sentences to SB format. Applying the conversion procedure described in the previous sec-
tion to the DeepBank we obtained DT and DM annotations. Further we extracted PA markup
from PCEDT and collected modified Prague tectogrammatical layer representation (PT) from
the data employed in the Broad-Coverage Semantic Dependency Parsing (SDP) shared tasks.
We have chosen SDP data instead of the original tectogrammatical annotations from PCEDT
in order to have the set of graph nodes equivalent to the set of surface tokens across all the
formats in question. As we have already mentioned above, SDP uses only a subset of the tec-
togrammatical annotation, e.g. elided elements, coreference and grammatemes are excluded
while functional and punctuational tokens hidden in PCEDT tectogrammatical layer are on the
contrary included in the graph. As a result we have 24 sentences from PEST and some ad-
ditional WSJ sentences represented in 9 aligned formats,—CD, CP, SB, SD, EP, PT, PA, DT,
DM.

Figure 3.7 visualizes a range of structural variations across representations. Using our run-
ning Example (23) we will examine several linguistic phenomena where the formats differ. One
of the points of disagreement between the schemes is the nature of the head: some formats can
be classified as more functional and others as more substantive as we have already mentioned
in Section 3.5.1. Table 3.4 summarizes some of our observations from Section 3.5.1 about the
head status, graph structure and connectivity of the formats. In the following we will examine

SThe WSJ section of the PEST collection contains 25 sentences, however one sentence lacks annotations in the
EP format. The full PEST collection includes another three dozen sentences from other corpora, apart from WSJ,
but the annotations are not available for all the formats and in some cases they are not manually validated.

Chapter 3. Syntactico-semantic dependencies 71

Description Head Tree Connected
CD CoNLL Syntactic Dependencies F + +
CP CoNLL PropBank Semantics S - -
SB Stanford Basic Dependencies S + +
SD Stanford Collapsed Dependencies S - -
EP Enju Predicate—Argument Structures F - +
PA Prague Analytical Tree F + +
PT Prague Tectogrammatical Tree S + -
DT DELPH-IN Syntactic Derivation Tree F + +
DM DELPH-IN Minimal Recursion Semantics S - -

Table 3.4: Summary of dependency formats, where the columns labeled Head indicate the head
status—functional (F) vs. substantive (S), Tree whether or not structures are acyclic trees, and
Connected whether or not all tokens are weakly connected

several linguistic structures and contrast the formats with respect to these. Some formats do not
provide annotation for some linguistic constructions, in such cases we do not show them in the
examples below.

Root/copula Example (33) displays the three possible choices for the root for our example
sentence. Most of the schemes choose the auxiliary verb is (see Example (33a)), while the
more substantive Stanford formats have the predicative adjective impossible as the root (see
Example (33b)) and, finally, the more semantic DM scheme chooses the scopal operator almost
as the root (see Example (33c)). The scopal operator defines a scope which encompasses the
copula is and the predicative argument impossible and affects the truth condition of the sentence.

is almost impossible; is almost impossible;
33 (a) CD, EP, PA, PT, DT (b) SB, SD
(33)
is almost impossible
(c) DM

Coordination Dependency relations are asymmetrical in essence (if A is the head of B, then
A does not depend on B) therefore the analysis of symmetric constructions like coordination is
unavoidably challenging. In Example (34) we can see striking disagreement of the formats with
respect to the analysis of conjunction. CP has no analysis for coordination structures, since
it only analyzes main arguments in the sentence. The CD analysis shown in Example (34a)
and the DM analysis depicted in Example (34b) exhibit Mel’Cuk-style analysis with a chain
of dependencies headed at the first conjunct, but the latter scheme excludes the coordinating
conjunction from the dependency tree since this element is functional. In both Stanford schemes
the first conjunct is the head and the other conjuncts depend on it as shown in Examples (34c,d),

72 3.5. Contrasting analysis

though the SD scheme excludes functional elements similarly to DM. In the PT, DT and PA
the coordinating conjunction is the head for all conjuncts as shown in Examples (34f,g). In
EP the last coordinating conjunction is the head of the whole structure and each coordinating
conjunction (which can be represented with a punctuation mark) takes left and right conjuncts
as its arguments as illustrated with Example (34e).

cotton s soybeans and rice cotton, soybeans and rice

(a) CD (b) DM
= | \

cotton) soybeans and rice cotton s soybeans and rice

() SB (@ Sb
(34)

cotton s soybeans and rice cotton, soybeans and rice

(e) EP (f) PT, DT
[—
cotton s soybeans and rice
() PA

An interesting property of coordination is found in the attachment of a shared modifier. In
our running sentence we do not have such a modifier, therefore we will illustrate this structure
with another PTB sentence:

(35) It’s one more for the baseball-loving lawyers, accountants and real estate developers
who ponied up about $1 million each for the chance to be an owner, to step into the
shoes of a Gene Autry or have a beer with Rollie Fingers.

The conjuncts of the coordination construction lawyers, accountants and real estate developers
share a modifier baseball-loving in this example. Most schemes (CD, SB. SD and DT) attach
the shared modifier to the first conjunct as shown in Example (36a) and one (DM) (see Exam-
ple (36b)) attaches the first conjunct to the shared modifier. In such cases it is not disambiguated
in Mel’cuk style whether the modifier is shared or depends only on the first conjunct. EP, PT
and PA, on the other hand, show explicitly whether a modifier is shared or private as illustrated
with Examples (36c,d): in PT all conjuncts are heads of the modifier since multiple heads are
allowed in this format, in PA and EP there is a dependency between the shared modifier and the
coordinating conjunction.

Chapter 3. Syntactico-semantic dependencies 73

baseball-loving lawyers s accountants and real estate developers

(a) CD, SB, SD, DT

baseball-loving lawyers s accountants and real estate developers

(b) DM
baseball-loving lawyers s accountants and real estate developers

(36) (c) PA
baseball-loving lawyers s accountants and real estate developers

(d) EP

|

baseball-loving lawyers s accountants and real estate developers
(d) PT

Popel et al. (2013) give a systematic survey about coordination topology in treebanks that
adopt Prague Dependency Treebank-, Mel’¢uk- and Stanford-style analyses for different lan-
guages. In addition to the differences that we observe for English, e.g. variation in attachment
of shared modifiers, coordinating conjunction and punctuation and diversity of label variants,
on a cross-language scale there is no general standard whether the leftmost or rightmost con-
junction/punctuation/conjunct should be the head of the coordination structure, e.g. the Persian
Dependency Treebank (Rasooli et al., 2011) uses the rightmost head for coordination of verbs
and leftmost heads for other types of coordination.

Infinitival constructions The infinitive fo apply receives different interpretations in the for-
mats as illustrated with Example (37). The infinitival marker depends on the main verb only
in the Stanford formats, whereas CD, PA and DT regard it as a head. In EP infinitival mark-
ers and other auxiliaries that we analyze below (auxiliary verbs, adverbial portions of phrasal
verbs, negators, prepositions) function as predicates, though they do not always serve as local
top nodes (e.g. the semantic heads of the corresponding sub-graphs): the infinitival marker in
Example (37b) takes the verb “apply” as its argument, but the predicate “impossible” links di-
rectly to the verb. CP, PT, DM exclude infinitival “to” from the graph since it does not bear
semantic meaning on its own.

74 3.5. Contrasting analysis

impossible to apply impossible to apply
(2) CD, PA, DT (b) EP

(37)

/ A

impossible to apply

(c) SB, SD

Complex verbs Auxilliary verbs in complex verb phrases are treated by the formats anal-
ogously to infinitival markers in infinitive constructions, with the only exception of PA that
selects the infinitival marker as a head of the lexical verb but the auxiliary verb as dependent of
the main verb (cf. Examples (38a) and (38b).

(38) has taken has taken
(a) CD, EP, DT (b) SB, SD, PA

It is interesting to note that for the verb groups that are composed of a verb and a modal
verb the picture is different as the more semantic formats, except PT, do not ignore the modal.
The general trend is shown in Example (39).

allow would allow

(39) would
(a) CD, EP, DT, DM, PA (b) CP, SB, SD

For a more complex case of the modal verb “have to”, there is more variation in annotation,
as illustrated with Example (40).

have to play
(a) CD, DT, PA
(40) have to play have to play
(b) DM (c) EP
have to play have to play
(@ Cp (e) SB, SD

Verb-particle constructions Verb-particle constructions are analyzed as semantically vacu-
ous in DM, PT and CP and in all other formats except EP (see Example (42b)) they depend on
the main verb as shown in Example (42a).

(41) After discovering that the hacker had taken over the dormant account of a legitimate

user named Joe Sventek , he rigged up an alarm system , including a portable beeper ,
to alert him when Sventek came on the line.

(42) rigged up rigged up

(a) CD, SB, SD, DT, PA (b) EP

Chapter 3. Syntactico-semantic dependencies 75

Negators In CD, DT, PA and PT negators are dependent on the verb (see Example (44a)) and
in Stanford formats on the nominal predicate (see Example (44b)), while in EP and DM negators
function as heads (see Example (44c)). From a syntactic point of view negation marker can be
seen as a modifier of a predicate, while semantically negator can be selected as a governor since
it affects the truth value of a statement.

(43) It is a considerably delayed reaction and it’s not a severe one at all, " she added

N [/ —
’s not ’s not
(44) ’s not a severe one
(a) CD, DT, PA, PT (c) EP, DM

(b) SB, SD

Example (46) shows complex dependency relations in a sentence with a negation in more
detail and it also illustrates that in CP negators are arguments of the verb predicates.

(45) The company did n’t specify reasons for the strong earnings gain .

s - ~
s - 1\ | s P A
v \ v 4 v v v ’\l
The company did n’'t specify .. The company did n’'t specify
(a) CD, DT (b) SB, SD, PA
N
Th did 't if . M 4 \
© company ! " spectly The company did n’t specify
Cp
© (d) PT
(N (N\
|) [|
v \v/ / I+ v ¥ \v/ v
The company did n’'t specify . The company did n’t specify
(e) EP (f) DM

Prepositional phrases In CD, SB, PA and DT prepositions are dependents as illustrated by
(such) as in Examples (47a,b); in EP, PT and DM, prepositional modifiers are heads (see Ex-
amples (47c,d)); and SD “collapses” prepositions to yield direct relations between the nominal
head of the preposition (crops) and its internal argument (see Example (47¢)).

¥ \X‘ / v crops, E .

crops) such as
b) DT
(a) CD, SB, PA ®)

LMY o B

crops R such as . Crops, e
A7)
(c) EP (d) PT, DM
f prep_such_as X
crops s such as cotton

(e) SD

76 3.5. Contrasting analysis

Noun phrases In noun phrases such as a similar technique one can treat the determiner and
attributive adjective as dependents of the noun, which is what we find in the CD, SB, SD, PA
and DT schemes (see Examples (48a) and (49a)). Alternatively, one may consider the noun
to be a dependent of both the determiner and the adjective, as is the case in the schemes EP
and DM deriving from predicate logic (see Examples (48b) and (49b)). In PT articles are not
represented as nodes in the dependency graph, while for adjective modifiers the noun functions
as the head.

(48) a technique a technique
(a) CD, SB, SD, PA, DT (b) EP, DM

(49) similar technique similar technique
(a) CD, SB, SD, PA, PT, DT (b) EP, DM

Complex nouns The analysis of complex nouns can differ greatly across formats because
some annotations reflect the inner structure of the compounds while others provide a simpli-
fied analysis. As we discussed in Chapter 2, CD is derived from the PTB patched with the
NP bracketing by David Vadas recovering NP structure. The HPSG formalism also provides
non-trivial analysis of complex nouns, and the Enju Treebank from which EP is derived, ante-
ceded the bracketing of Vadas and Curran (2007). Example (50) illustrates different versions
of dependency analysis of a company name. Most of the formats, i.e. SB, SD, PA, PT, EP,
DT, DM provide very generic dependency labels, i.e. “nn”, “nn”, “Atr”, “NE”, “noun_ARG1”,
“NP-HDN” and “compound-name” correspondingly. In CD posthonorifics such as “Inc.” are
annotated using label “POSTHON".

[T

Rolls-Royce Motor Cars Inc.

(a) EP (b) DM

v ; §\ / ; \

Rolls-Royce ~ Motor ~ Cars Inc. Rolls-Roys ~ Motor Cars Inc.

Rolls-Royce Motor Cars Inc.

(50)
(c) PA, SB, SD (d) CD, DT

Rolls-Royce Motor Cars Inc.

(e) PT

Interestingly, another company name can be analyzed differently within the same depen-
dency framework, e.g. for CD, DT, PT and DM analyses in Example (51) differ from analyses
in Example (50). One of the main differences for CD, PT, DT and DM is due to the fact that

“Pond” modifies “Branch” and not “Company” in Example (51). For SB, SD, EP and PA anal-
yses in Examples (50) and (51) are identical.

Chapter 3. Syntactico-semantic dependencies 77

s A
| [P X \/ \ / v \
| | / / \ Pond Branch Telephone Company Inc.
Pond Branch Telephone Company Inc.
(b) DM
(a) EP
e N
| [\ f \
(5 1) *“ v * 4 \ Po;d Br\aiqch Telel;hone Co;:lﬁény Ir;c
Pond Branch Telephone = Company Inc. '
d)CD
(c) PA, SB, SD @
—
/ \ ¥ \ ¢/ \ v / \/ N B
Pond Branch Telephone Company Inc. Pond Branch Telephone Company Tne.
(e) DT (H PT

For less complex personal names consisting only of the first name and last name of a person,
there is a clear division between the formats, see Example (52).

. .. ’ .
(52) Heinz Holliger Heinz Holliger
(a) DM, EP (b) CD, SB, SD, PA, PT, DT

For the complex noun groups that do not represent named entities as shown in Example (53)
we again observe diversities not only between different formats but also differences within
one framework compared to analysis of named entities. For example, CP does not provide
analyses of the complex named entities shown in Examples (50), (51) and (52) above, but it
gives a detailed analysis of the non-named entity noun phrase in Example (53). Only CP and
PT use specific labels for complex noun phrases while other formats opt for generic ones. In
PT representation “employee” is an ACTOR of “plans”, “stock” is a PATIENT of “investment”
and the dependency from “plans” to “investment” is labeled with REG (“with regard”), which
makes the semantics of the phrase rather clear: employee is the initiator of the plans with regard
to investment in stock. In CP “employee” is ARGO of “stock” and “investment” and ARG2 of
“plans”; “stock” is ARG?2 of “investment”; “investment” is SU (segment unit) of “stock” and
ARGT1 of “plans”. ARGO is usually used to classify agents, ARGI - patients and themes, ARG2
- indirect objects (Meyers et al., 2004). This means that analysis of the phrase in CP, PA and
PT expresses the semantics that there are plans of investment in stock initiated by the employee.
From the DM analysis one can potentially interpret that the phrase is about investment plans
in a stock for employees (in contrast to “common stock’) because of the dependency relation
between “employee” and “stock”. However, such fine distinctions are very hard to make without
context and expert knowledge.

o mARGD)
[———{noun ARG {),), ¥),
| (\
| employee stock investment plans
employee stock investment plans
(b) DM
(a) EP
— (WODAWACH
f \ (NP-HDN) (NP-HDN) NP-HDN
| - (NMOD/AWPAT)- (NMOD/AWREG)-| ; (NPHDN)- /_-_\
53) v , employee stock investment plans
(employee stock investment plans
d) DT
(c) CD, PA, PT @
A2
r & \ f -
| / \ \ :
' J 1
: loyee stock investment lans
employee stock investment lans employ p
b ’

(e) SB, SD (f) CP

78 3.5. Contrasting analysis

Subjunction We will illustrate the attachment of subjunctions on the PTB with Example (54)
where the subjunction that connects the main (Management and labor worry) and subordinate
(the gap makes U.S. companies less competitive) clauses in one sentence.

(54) Management and labor worry that the gap makes U.S. companies less competitive

We find that only the Stanford formats choose the word that governs the subordinate clause as
the head of the subjunction (see Example (55b)) while the more functional CD, EP, PA and DT
formats have the opposite direction of this dependency arc (see Example (55a)). In the CP, PT
and DM graphs subjunctions do not correspond to a separate node.

Y —
<main clause> that <subordinate clause>
(a) CD, EP, PA, DT
(55)

<main clause> that <subordinate clause>

(b) SB, SD

Tough adjective Our running example invokes the so-called tough construction, where a re-
stricted class of adjectives (impossible in our case) select for infinitival VPs containing an ob-
ject gap and, thus, create a long-distance dependency (Rosenbaum, 1967; Nanni, 1980). In
the dependency analyses in Figure 3.7 we observe three possible heads for the noun technique,
viz. is (CD, EP, PA and DT), impossible (SB and SD), and apply (CP, EP, PT and DM). The
long-distance dependency between fechnique and apply is marked only in the more semantic
schemes: EP, CP, PT and DM, see Examples (56a,b).

— |

A similar technique is almost impossible to apply

(a) EP

(56)

A similar technique is almost impossible to apply

(b) CP, PT, DM

3.5.3 Quantitative analysis

Quantitative analysis helps to further contrast the dependency schemes and explicate whether
interconversion between some subsets of formats may be possible in general. An objective sim-
ilarity metric shows the degree of overlap between the different representations.

For the quantitative analysis we use the Jaccard similarity measure, which is a statistic for
comparison of two sample sets, and the unlabeled F1 score, commonly applied in parsing to
measure the similarity of the parsing results to the gold standard. Our choice is motivated
by the properties of these metrics: symmetry (e.g. CD should be as similar to SB, as SB to
CD) and appropriateness for binary classification (pairwise comparison). Jaccard similarity is a
monotonically increasing function of F1 (Lipton et al., 2014) therefore we expect them to show
similar trends. We use two metrics to verify the results of one another.

Chapter 3. Syntactico-semantic dependencies 79

We computed the similarities on the 29,867 sentences from the WSJ corpus, annotated in
9 different formats. The data represented in CD format is obtained by the conversion of the
gold PTB trees using the software of Johansson and Nugues (2007); the CP representation is
taken from the gold-standard data used in CoNLL 2008 shared task; EP comes from the data
collection of SemEval-2014 shared task on Semantic Dependency Parsing (SDP); PA is pro-
duced by the automatic conversion of PCEDT with the Treex package; PT comes from the SDP
corpus; DT and DM are derived by an automatic conversion from the gold HPSG analyses of
the DeepBank (DM is also included in SDP). All 9 formats are aligned in PTB tokenization, and
for this purpose we collapsed multiword expressions in one token in CP representation, filtered
out sentences that miss punctuation in the middle of the sentence in the EP format which are
typically complex sentences with citations as shown in Example (57), and filtered out sentences
for which PTB tokenization in the gold DeepBank analyses differs from the tokenization in the
PTB corpus which is commonly caused by apostrophes, lists, three dots and acronyms as shown
in Example (58).

(57) PTB tokenization:
“ What sector is stepping forward to pick up the slack ? ” He asked .
EP tokenization:
“ What sector is stepping forward to pick up the slack ” He asked

PTB tokenization DeepBank tokenization
The *82 Salonis $ 115. The > 82 Salonis $ 115 .
(58) 1. Buy anew Chevrolet . 1. Buy a new Chevrolet .
They are already industrialized They are already industrialized... .
(Lavery vs. U.S..) (Lavery vs. U.S .)

The Jaccard similarity measure, known also as Jaccard index and Jaccard coefficient, fo-
cuses on the relative size of the intersection between the two sets with reference to their union.
We consider a set of dependency arcs across the sentences in each annotation scheme as a sam-
ple set. We perform pairwise comparisons of the formats macro-averaging over all sentences in
the dataset, e.g. computing total counts for the union and intersection for each pair of formats
<A,B>, using the formula:

ANB M
J_’ ‘ 1

AUB| My + My + My

M represents the total number of dependency arcs present in two annotation schemes A and
B;

My, represents the total number of dependency arcs present in the annotation scheme B but
absent from the annotation scheme A;

M represents the total number of dependency arcs present in the annotation scheme A but
absent from the annotation scheme B;

Moo represents the total number of possible dependency arcs absent from both annotation
schemes.

n = My + Moy, + Mg + My is the total number of possible dependency arcs for the set of
sentences.

80 3.5. Contrasting analysis

The results on the 24 sentences from the PEST dataset are shown in Table 3.5 and on the
29,867 sentences of the WSJ sections 2-21 are presented in Table 3.6. We observe that the statis-
tics on the small collection of WSJ sentences used as representative for complex phenomena
(and even on the 10 sentences in Ivanova et al. (2012)) is showing the same trends as the num-
bers on the large corpus. This suggests that linguistic analysis of the exemplary constructions
defines properties of the format on a large scale.

CD | CP | SB | SD | EP | PA | PT DT | DM
CD 24 | 488 | 283 | .189 | .534 | 241 | 527 | .132
Cp | .24 2 | 184 | 121 | 187 | .199 | .167 | .148
SB | 488 | 2 S71 | 145 | 514 | 298 | 355 | .157
SD | 283 | .184 | .571 116 | 334 | 49 | 251 | .143
EP | .189 | .121 | .145 | .116 181 | 164 | 185 | .446
PA | 534 | .187 | 514 | 334 | .181 315 | 471 | 124
PT | 241 | .199 | 298 | 49 | .164 | .315 242 | 132
DT | .527 | .167 | .355 | .251 | .185 | 471 | .242 13
DM | .132 | .148 | .157 | .143 | 446 | .124 | 132 | .13

Table 3.5: Pairwise Jaccard similarity on 24 sentences from PEST. The highest similarity score
for each dependency format is marked in bold font

CD | CP SB | SD | EP | PA | PT DT | DM
CD 23 | 578 | 384 | .195 | .625 | 298 | .584 | .137
Cp | 23 241 | 188 | .18 | 226 | .222 | 2 13
SB | 578 | 241 J72 | 155 | .538 | .319 | .389 | .163
SD | 384 | .188 | .72 19 | .38 | 466 | .267 | .136
EP | .195 | .18 | .155| .19 21 | .173 | 219 | 459
PA | .625 | 226 | 538 | .38 | .21 334 | 521 | .141
PT | 298 | .222 | 319 | 466 | .173 | .334 273 | 154
DT | .584 | 2 | .389|.267 | .219 | .521 | .273 144
DM | .137 | .13 | .163 | .136 | .459 | .141 | .154 | .144

Table 3.6: Jaccard similarity indexes averaged on 29,867 sentences from WSJ for all formats
pairs. The highest similarity score for each dependency format is marked in bold font

F1 score is a weighted harmonic mean of the precision and recall:

precision x recall
F1 =2x%

precision + recall

Table 3.7 largely confirms the inferences that we can make from Jaccard values.

The similarities of the formats are comparatively low: Jaccard index does not exceed 72%
for any pair and F1 score is bounded by 83%. The measures (unsurprisingly) show that the Stan-
ford formats, SB and SD, are the most similar formats among all nine. This result is predictable,
because SD can be obtained by an automatic conversion of SB. For the CoNLL representations
the intercorrelation between the syntactic and semantic levels is low compared to Stanford for-
mats. CD is most related to PA; and CP is very partial and hence is an outlier, it appears to

Chapter 3. Syntactico-semantic dependencies 81

CD | CP | SB | SD | EP | PA | PT | DT | DM
CD 374 | 732 | 555 | .326 | .769 | .459 | 737 | .242
CP | 374 389 | 316 | .195 | .368 | .363 | .333 | .228
SB | .732 | .389 825 .269 | .7 | 484 | 56 | 28
SD | .555 | .316 | .825 196 | 551 | .636 | 422 | 241
EP | .326 | .195 | .269 | .196 348 | 295 | 359 | .643
PA | .769 | 368 | .7 | .551 | .348 S1] .685 | .243
PT | 459 | 363 | 484 | .636 | .295 | .51 429 | 259
DT | .737 | .333 | .56 | .422 | 359 | .685 | .429 248
DM | 242 | 228 | 28 | .241 | .643 | 243 | 259 | .248

Table 3.7: F1 score as similarity indexes computed on 29867 sentences of WSIJ for all formats
pairs. The highest F1 score for each dependency format is marked in bold font

CD | CP | SB | SD | EP | PA | PT | DT | DM
CD 20 1 12 5 7 16 6 16 3
CP 1 2 1 0 1 1 1 1 1
SB 12 1 20 11 4 9 3 10 4
SD 5 0 11 15 2 4 4 4 3
EP 7 1 4 2 21 7 6 7 8
PA 16 1 9 4 7 20 9 18 1
PT 6 1 3 4 6 9 16 9 3
DT 16 1 10 4 7 18 9 20 1
DM 3 1 4 3 8 1 3 1 13

Table 3.8: Pairwise unlabelled dependency overlap.

be most similar to SB. The DELPH-IN dependency representations demonstrate comparatively
strong interoperability with other schemes, since DT corresponds well with CD syntactically,
while DM correlates with EP among the more semantic formats. The DELPH-IN representa-
tions correlate with the Prague and Stanford schemes on the syntactic level, but do not exhibit
similarity to any of these two on the semantic level. Interagreement between DT and DM is
very low. The Prague syntactic level, PA, correlates well with CD, while the Prague semantic
level, PT, is closer to SD; the interagreement between the Prague formats is fairly strong. EP,
as we already observed, corresponds to DM and appears to be quantitatively remote from the
other semantic schemes, such as CP, SD, PT.

Table 3.8 shows how many unlabeled dependency arcs each pair of formats have in common
for our running example A similar technique is almost impossible to apply to other crops, such
as cotton, soybeans and rice.. The values in the diagonal of the table show the total number of
dependencies in a given representation.® DT has the largest dependency arc overlap with PA
and CD, and DM with EP.

Oepen et al. (2014) investigate in more detail commonalities and differences between the
semantic dependencies of DM, EP and PT, and present some high-level statistics for these an-

%These numbers differ slightly from the ones reported in Ivanova et al. (2012) because we did further align-
ment of the formats, e.g. standardizing conversion of the DELPH-IN formats to the PTB-style tokenization and
considering root nodes for all the formats in comparison.

82 3.6. Summary

DM EP PT

(1) #labels 51 42 68

(2) % singletons 22.62 449 35.79
(3) #edge density 0.96 1.02 0.99
4) %, trees 2.35 1.30 56.58
(5) %4 projective 3.05 1.71 53.29

(6) %4 fragmented 6.71 0.23 0.56
(7) %, re-entrancies | 27.35 29.40 9.27
(8) %4 topless 0.28 0.02 0.00
(9) #top nodes 0.9972 0.9998 1.1237
(10) %, non-top roots | 44.71 55.92 4.36

Table 3.9: Statistics of the DM, EP and PT dependency graphs. %,, denotes non-singleton node
percentages and %, percentages over all graphs

notation schemes (see Table 3.9). EP has the most compact set of dependency labels (1), whilst
PT is the most fine-grained. Singletons (2) are graphs consisting of a single isolated node with
no edges, and correspond to tokens analyzed as semantically vacuous such as most punctuation
marks in DM and PT and determiners in PT. In contrast to DM and PT, EP on average has
more edges per non-singleton nodes (3) which likely reflects that there are nodes in the graph
corresponding to functional words. PT appears to be more “tree-oriented” format than the other
two, judging from the percentage of actual trees (4), the proportions of projective graphs (5),
and the proportions of reentrant nodes (7). Small percentages of graphs without at least one top
node (8) and of graphs with at least two non-singleton components that are not interconnected
(6) can be viewed as indirect indicators of well-formedness. According to these criteria, DM
exhibits more “warning flags” which may indicate imperfections in the DeepBank annotations
or the conversion procedure from full MRS to bilexical dependencies, but possibly also excep-
tions to our intuitions about semantic dependency graphs. Oepen et al. (2014) also note that
directionality of semantic dependencies is a major source of diversion between DM and EP on
the one hand, and PT on the other hand.

3.6 Summary

In this section we presented an automatic conversion procedure of ERG annotations to bilex-
ical dependencies. The work is motivated by the fact that the bilexical dependencies are useful
in NLP applications, can be an attractive representation of the rich collection of the HPSG-
annotated resources for a broader community and serve as a basis for the cross-framework
parser comparison which we will discuss in the present thesis in Chapter 5. The conversion
does not reduce HPSG to existing dependency schemes but derives new formats that embed
core aspects of the syntactic analysis (DT) and basic predicate argument structure (DM) into
the form of bilexical dependency graphs. This decision was made in order to protect the fea-
tures of the original ERG annotations whereas the conversion to an existing scheme would
require significant changes in the analysis of the linguistic phenomena and introduce noise for

Chapter 3. Syntactico-semantic dependencies 83

the cases where there is no one-to-one correspondence. Finally, there is no unique standard in
the field.

In order to analyze similarity of the newly developed syntactic and semantic dependency
formats to the other existing schemes, we perform qualitative and quantitative analysis of a
range of syntactico-semantic dependency formats. The comparison shows a large variation
across formats and Jaccard similarity index is below 58% for any of the examined representation
pairs. In the next section we will empirically compare the effects of the choice between three
syntactic dependency annotation schemes on the accuracy of statistical parsers.

Chapter 4

Contrasting parsing experiments

In this chapter, we will inspect the correlation of the syntactic dependencies derived from
ERG with existing schemes by analyzing the effects of the choice of syntactic dependency for-
mat on the performance of syntactic analyzers. For these goals, we carry out an experimental
comparison of i) four syntactic dependency schemes—CoNLL Syntactic Dependencies (CD),
Stanford Basic (SB), DELPH-IN Syntactic Derivation Tree (DT) and Prague dependencies of
the analytical layer of representation (PA); ii) three “native” data-driven dependency parsers—
Malt, MST and B&N; and iii) the influence of two different approaches to lexical category
disambiguation (aka tagging) prior to parsing—PTB PoS tags and ERG lexical types. Com-
paring parsing accuracies in various setups, we study the interactions of these three aspects
and analyze which configurations are easier to learn for a dependency parser. In addition, we
contrast our syntactic dependency formats on the downstream task of negation resolution.'

4.1 Related work

Dependency parsing is arguably one of the most active research areas in natural language
processing in the past decade. As we recall from Chapter 3, dependency representations are
useful for a number of NLP applications, for example, machine translation (Ding and Palmer,
2005), information extraction (Yakushiji et al., 2006), analysis of typologically diverse lan-
guages (Bunt et al., 2010) and parser stacking (@vrelid et al., 2009). The CoNLL shared tasks
2006-2009 on dependency syntactic and semantic parsing (Buchholz and Marsi, 2006; Nivre
et al., 2007a; Surdeanu et al., 2008; Haji¢ et al., 2009) caused an increased interest in parsing
with dependency grammars and its applications. The important contribution of these competi-
tions was a large-scale analysis of the state of the art in dependency parsing and extensive parser
comparison, both intrinsic and in application to semantic role labeling (Surdeanu et al., 2008).
As we saw in Chapter 2, the dominant approaches to parsing represented at the challenges were
transition-based and graph-based frameworks. In terms of resources, important outcomes of
the shared tasks were multilingual dependency corpora, the CoNLL data representation format,
standardization of evaluation metrics and evaluation software, as well as the development of the
CD and CP dependency schemes for English.

!Some preliminary parsing results of this chapter are published in Tvanova et al. (2013b), and extrinsic evalua-
tion results are published in Ivanova et al. (2015).

85

86 4.1. Related work

Dataset # of sentences average sent. length agreement
WSJ 1796 (75%) 22.25 71.33
BROWN 375 (88%) 15.74 80.04
PCHEMTB 147 (75%) 23.99 69.27
CHILDES 595 (89%) 7.49 7391

Table 4.1: Agreement between HPSG dependency backbone and CD in unlabeled attachment
score (Zhang and Wang, 2009)

The Malt and MST parsers were the best performing parsers in the CoONLL-X 2006 shared
task with notably close scores and the systems based on these parsers were also among the best
ones in the CoNLL 2008 and 2009 shared tasks. In the open challenge at the CoNLL 2008
shared task, the system that performed best on syntactic dependencies was a hybrid architecture
based on both Malt and MST parsers (Zhang et al., 2008), while in the closed challenge the
second-best system incorporated MST (Che et al., 2008) and the third-best system relied on
Malt (Ciaramita et al., 2008). In the open challenge of the multilingual CoNLL 2009 shared task
the best system for English exploited MST for syntactic dependency parsing (Zhao et al., 2009)
and in the closed challenge the best system for English, ranked second in the average evaluation
for all the languages in the competition, is an extended version of MST-based architecture of
Che et al. (2008) described in Che et al. (2009). One of the participating semantic role labeling
systems in the CoNLL 2009 shared task exploited an HPSG dependency backbone derived from
the ERG derivation tree (Zhang et al., 2009b) though only for extracting features for the MST
parser.

Our DT format is obtained in a similar manner as the HPSG dependency backbone in the
work of Zhang et al. (2009b) and Zhang and Wang (2009). Table 4.1 presents agreement in
unlabeled attachment score between the HPSG dependency backbone and CD from Zhang and
Wang (2009). We show their results for a similar parser setup that we use in the present thesis:
only the sentences for which PET produced a complete analysis in a a full parsing mode without
fallback strategy are considered. With a perfect disambiguation model (manual parse selection
from the parse forest produced by PET) results are improved by 8% compared to the 71.33%
for WSJ with an automatic disambiguation.

Johansson and Nugues (2007) evaluate intrinsically and extrinsically the two dependency
schemes obtained automatically from PTB using their LTH Constituent-to-Dependency Con-
version Tool for Penn-style Treebanks and the Penn2Malt converter (Nivre, 2006). Compared
to the former format, the latter scheme is non-projective and it has the richer set of arc labels.
Intrinsic analysis of parsing the two dependency formats with Malt and MST shows that the
structurally more complex format produced with the converter of Johansson and Nugues (2007)
is more difficult for the parsers. In the extrinsic evaluation the authors study the impact of the
annotation schemes on the task of semantic role classification. The accuracy of the semantic
role classifier is 23% higher on the richer format derived from PTB with the converter of Jo-
hansson and Nugues (2007). A more granular set of arc labels that for example distinguishes
between direct and indirect objects helps to improve the performance of the classifier.

Schwartz et al. (2012) present an empirical study of annotation scheme properties and how

Chapter 4. Contrasting parsing experiments 87

these influence parser results. Six constructions, for which different formalisms often disagree,
were selected for the analysis. For such syntactic structures the head criteria, mentioned in Sec-
tion 2.1.2 of the present work, are either inapplicable (e.g. in a complex noun phrase “Heinz
Holliger” neither of the components determines the syntactic or semantic category of the whole
phrase and neither (or arguably both) restricts the form of the other) or in conflict (e.g. in a
verb chain “would allow” the main verb bears the semantic category, but the modal verb defines
that the main verb must be in the infinitive form). The authors investigate which dependency
representations of several syntactic structures are easier to parse with several parsers, including
Malt and MST. The results imply that all parsers consistently perform better when 1) coordina-
tion has one of the conjuncts as the head rather than the coordinating conjunction; 2) the noun
phrase is headed by the noun rather than by the determiner; 3) the preposition/subordinating
conjunction rather than the NP/clause serve as the head. Applying these predictions to the qual-
itative structural analysis carried out in Section 3.5.2, we can expect 1) Malt and MST to have
fewer errors on coordination structures parsing SB and CD than parsing DT because SB and
CD choose the first conjunct as the head and DT chooses the coordinating conjunction as the
head; 2,3) no significant differences for the errors on the noun and prepositional phrases be-
cause all three schemes have the noun as the head of the noun phrase and the preposition as
the head of the prepositional phrase. In addition, Schwartz et al. (2012) note a trend towards
one of the annotations in complex verb groups and complex nouns structures: in most setups,
the dependency format is easier to learn with the MST parser if the leftmost noun in complex
noun sequences and the modal verb in verb groups are chosen as heads. From the analysis in
Section 3.5.2, we would expect MST to make more mistakes in complex verb groups for SB
than CD and DT, because the former suggests that the main verb is the head, while the latter
two select the auxiliary or modal verb. With respect to the noun sequences, these three formats
do not generally select the leftmost noun as the head.

Schwartz et al. (2012) view parsing purely as an engineering problem and suggest that an
annotation scheme should have properties that are easier to process. Although it is is very
useful to know what is easier to work with empirically, eventually we are unlikely to modify a
linguistic theory in order to improve performance of some software but would rather prefer to
develop tools that can model the theory. Schwartz et al. (2012) present only intrinsic evaluation
and leave the question open whether the proposed properties of an annotation scheme would be
beneficial for downstream applications.

Miwa et al. (2010) present intrinsic and extrinsic evaluation of several constituency and
grammar-based parsers on the CD format and several versions of Stanford dependencies. The
target representations are obtained via standard conversions from PTB-style trees as described in
Section 2. The authors make the interesting observation that a higher dependency performance
does not always lead to better performance of a downstream application that relies on the parser.
For example, it could be more beneficial to use the Stanford dependencies rather than CD in
the event extraction system although in the intrinsic evaluation most parsers predicted the types
and relations of the CD scheme more accurately than those of the Stanford representation. With
respect to the results of this work, CD appears to be a slightly easier representation to learn than
Stanford though we have to keep in mind that in our work we use different types of parsers and
a different dataset.

Cer et al. (2010) contrast a number of parsers in terms of accuracy and speed on the task

88 4.1. Related work

Attachment Fy, % Time, min:sec
Unlabeled Labeled | Parsing Total

Malt (Covington) 80.0 76.6 0:09 0:16
Malt (Nivre Eager) 80.1 76.2 0:08 0:16
Malt (Nivre) 80.2 76.3 0:08 0:15
Malt (Nivre Eager with feature interactions) 84.8 81.1 3:15 3:23
MST (Eisner) 82.6 78.8 5:54 6:01

Table 4.2: Unlabeled and labeled attachment F; score and time to generate Stanford Standard
dependencies with the Malt and MST parsers (Cer et al., 2010)

of producing Stanford dependencies on the section 22 of PTB. Even though the comparison
is performed on the standard (collapsed and propagated) version of the Stanford scheme, the
dependency parsers are trained on SB like in the experiments in the present thesis and their
outputs are transformed to the SD representation. The aspect of the work of Cer et al. (2010)
related to our experiments concern the comparison of Malt and MST, see Table 4.2. The former
parser is the fastest in the comparison, e.g. the total time for PoS-tagging, parsing, dependency
extraction and conversion to SD does not exceed 16 seconds for the Covington, Nivre Eager and
Nivre algorithms included in the Malt package, while the corresponding time for the MST parser
with the Eisner algorithm is 6 minutes. However, MST produces more accurate results than Malt
with the three above mentioned fast algorithms. The error analysis suggests that, unsurprisingly,
parsers make mistakes on structures that are known to be hard to attach: subordinate clauses,
prepositional and adverbial phrases. The Malt parser with the Covington, Nivre Eager and Nivre
algorithms tends to produce more local attachments than the MST parser, though erroneous
local attachments are also among the mistakes that the MST parser makes due to its feature set
which favors short distance dependencies. One of the conclusions of the article is that the Malt
package is an optimal choice for parsing large corpora to SD when speed is the most important.

Bender et al. (2011) perform construction-based evaluation of several parsers on the lin-
guistic phenomena shown in Table 4.3. We are primarily interested in their results for the
MST parser trained on PTB in the CD annotation format. The evaluation was performed on
the English Wikipedia data against manual annotations. Table 4.4 summarizes individual re-
calls of MST for different linguistic phenomena in the experiments. The parser performed
better on comparatively well-studied constuctions such as control and verbal gerunds and for a
long-distant dependency in tough adjectives but had lower recall for the other phenomena even
though most of them involve local dependencies.

The EVALITA Dependency Parsing Tasks of 2007, 2009 and 2011 (Bosco and Mazzei,
2011) aimed to compare parsing paradigms and annotation formats for the Italian language.
As in the CoNLL shared tasks, the data for EVALITA tasks is represented in CoNLL format
and the main evaluation metrics are LAS and UAS. The parsers that were competing in the
tasks represent three frameworks: transition-based, graph-based and rule-based parsing. The
reference resource for the tasks is the Turin University Treebank (TUT) annotated in the the-
oretical framework of Word Grammar (Hudson, 1990) which is reflected in the choice of lex-
ical heads in noun and prepositional phrases and complex verbs structures, and the annotation
format adheres to the projectivity constraint. The dependency format for the task is derived

Chapter 4. Contrasting parsing experiments 89

Phenomena Example

Control Alfred “retired” in 1957 at age 60 but continued to paint full time

Verbal gerunds Accessing the website without the “www” subdomain returned a copy of the main site for “EP.net”.
Tough adjectives Original copies are very hard to find.

Interleaved arg/adj The story shows, through flashbacks, the different histories of the characters.

Right node raising Ildvatar, as his names imply, exists before and independently of all else.

Verb + particle He once threw out two baserunners at home in the same inning.

Bare relatives This is the second time in a row Australia had lost their home tri-nations’ series.
Absolutives The format consisted of 12 games, each feam facing the other teams twice.

Adj/Noun2 + Nounl-ed Light colored glazes also have softening effects when painted over dark or bright images.
Expletive it Crew negligence is blamed, and it is suggested that the flight crew were drunk.

Table 4.3: Example sentences for various linguistic phenomena from Bender et al. (2011)

Phenomena MST recall ~ Preferred head Preferred dependent
Control 92% “upstairs” verb “downstairs” verb
Verbal gerunds 85% selecting head gerund

Tough adjectives 85% tough adjective to-VP complement
Interleaved arg/adj 81% selecting verb interleaved adjunct
Right node raising 78% verb/prep2 shared noun

Verb + particle 76% particle complement

Bare relatives 71% gapped predicate in relative ~ modified noun
Absolutives 70% absolutive predicate subject of absolutive
Adj/Noun2 + Nounl-ed 66% head noun Nounl-ed
Expletive it 30% i-subject taking verb it

Table 4.4: Recall of MST on 10 linguistic phenonema and the preferred choices of head and
dependent (Bender et al., 2011)

automatically from the corpus annotation. Relation labels of the native TUT annotation can
include three components, i.e. morpho-syntactic, functional-syntactic and syntactic-semantic
(e.g. VERB-INDCOMPL-LOC) while the dependency format used to train parsers exploits
only the functional syntactic component (e.g. INDCOMPL). Similarly, in our experiments we
reduce the rich set of ERG constructions to a smaller set of more general dependency labels
(e.g. sb-hd_mc_c is reduced to sb-hd), see below. In EVALITA 2009 TUT dependencies are
contrasted to the annotation scheme produced semi-automatically from the ISST corpus (Mon-
temagni et al., 2003) by combining information from different annotation levels of the corpus.
The head selection is motivated by both syntactic and semantic criteria, e.g. in the determiner-
noun construction the head is the noun (semantic choice) while in the preposition-noun case the
head is the preposition (syntactic choice). The annotation scheme permits non-projective de-
pendencies. Bosco et al. (2010) compare the influence of the two dependency formats derived
from TUT and ISST on dependency parsing. The structures that are hard to parse with Malt and
other parsers in the comparison require semantic interpretation, e.g. appositions, unrestrictive
modifiers and indirect object for the first dependency scheme and locative, temporal and indi-
rect complements for the second dependency format. Coordination and punctuation are also
challenging for automatic processing. Among the dependencies for which parsers performed
best are local relations. Bosco et al. (2010) conclude that some distinctions encoded in a depen-
dency representation are difficult to generalize for statistical parsers. However, we should note

90 4.2. Experimental setup

that, unlike in our experiments, the datasets in this work differ not only in the annotation styles
but these are two different collections of texts representing different genres which also had a
certain impact on the parsing performance.

Candito et al. (2010) compare parsers, including Malt and MST, in terms of labeled and
unlabeled accuracy and parsing times for French. Similarly to the PTB for English used in
our work, the native format of the French Treebank is constituency-based and dependencies
are obtained via conversion using head propagation rules. Candito et al. (2010) observe that the
differences in performance between the parsing architectures are small. The best overall labeled
accuracy was achieved with the MST parser supplied with predicted PoS, lemmas, morpholog-
ical features and clusters of word forms.

The Bohnet and Nivre (2012) parser (dubbed B&N), described in detail in Section 2.2.1,
combines the transition-based approach with global modeling. Unlike most dependency parsers
that presuppose morphological pre-processing of the input words of the sentence, this parser
performs tagging jointly with parsing. The software has been compared to the state-of-the-
art statistical dependency analyzers on WSJ data and it has given a very competitive result of
93.38% UAS outperforming Malt and MST (Bohnet and Nivre, 2012).

In this overview of related work we have seen the important role of transition-based and
graph-based approaches to dependency parsing in the last few years which motivated our choice
of parsers. Previous work on parser comparison indicates that the Malt and MST parsers have
strong positions in the dependency parsing universe and the previous analyses of parser outputs
give indications about which particular linguistic phenomena are easier and which are especially
difficult to process with those two parsers. It has also been shown that design choices in the
dependency annotation format may have a significant impact on parser performance and it is
therefore interesting to further investigate the effects of the choice of dependency formalism on
parsing accuracy.

4.2 Experimental setup

In the following we will describe the experimental setup for the experiments performed in
this chapter. We will briefly report on dependency formats, tokenization approaches, PoS tags
and dependency labels, data sets, parsers and PoS taggers.

Dependency schemes

In this work we extract DeepBank data in the form of bilexical syntactic dependencies,
the DELPH-IN Syntactic Derivation Tree (DT) format, described in Section 3.4.1. We ob-
tain the exact same sentences in Stanford Basic (SB) format from the PTB with the Stanford
converter, in the CoNLL Syntactic Dependencies (CD) representation from the PTB with the
LTH Constituent-to-Dependency Conversion Tool for Penn-style Treebanks and in Prague de-
pendency format of the analytical layer (PA) from the English subpart of the Prague Czech-
English Dependency Treebank (PCEDT) (Cmejrek et al., 2004) with the Treex system (Popel
and Zabokrtsk}’/, 2010) as detailed in Section 3.5.1.

SB, CD and PA represent direct conversions of PTB analyses to bilexical dependencies; in
contrast, DT is grounded in the linguistic theory of HPSG and captures decisions taken in the

Chapter 4. Contrasting parsing experiments 91

F— —~ \——

A R B and C A R B and C
SB CD

A, B and C A R B and C
DT PA

Figure 4.1: Annotation of coordination structure in SB, CD, DT and PA dependency formats

grammar such as directionality of the dependencies (for modifier-head vs. head-modifier con-
structions), the dependency names and the supertags. Figure 4.1 demonstrates the differences
between the formats on the coordination structure. According to Schwartz et al. (2012), the
chosen analysis of coordination in SB and CD should be easier for a statistical parser to learn;
however, as we will see in Section 4.4, the DT analysis has more expressive power distinguish-
ing structural ambiguities illustrated by the classic example of local vs. shared modification in
coordinate structures old men and women.

Tokenization alignment for DT

Both the SB and CD dependency schemes are automatically derived from PTB and therefore
support PTB-style tokenization, which means for comparative parsing experiments we have to
align DT so that the tokens are exactly the same in all three schemes. As we already men-
tioned in Section 3.4.3, PTB-style tokenization is produced at the early stages of analysis with
ERG, but the full HPSG derivation tree is available only with the ERG-style tokenization, and
therefore needs some accommodations during the transformation to bilexical dependencies. Be-
low we describe which modifications are necessary to obtain DT dependencies with PTB-style
tokenization.

Punctuation Punctuation is attached to words in the ERG derivation tree and has to be split
for the alignment with PTB, as illustrated in Example (59). The new dependency link has the
name “PUNCT”.

— f—\ﬂ
(59)
other N other crops ,

Multiword lexical items Multiword lexical items (North America, according to) are repre-
sented as one token in the ERG derivation tree. The right-most non-punctuation token is con-
sidered the head and all the remaining tokens become dependents on this head with the label
“MWE”, see Example (60).

92 4.2. Experimental setup

60 /\
©0 in [North Americal . [

in North America

Negation The contracted negative form of a verb acts as one leaf node in the derivation tree,
and when splitting it into component parts we establish a dependency from the verb to the
negation part with a dependency label “NEG”, as shown in Example (61).

(61) [_\ /_\ [_\

he doesn’t have - he does n’t have

Hyphenated words The component parts of hyphenated words are individual tokens in a
derivation tree, therefore they simply have to be merged into one token for alignment with the
data tokenized in the PTB-style, as demonstrated in Example (62).

(62) . .
English- speaking member - English-speaking - member

PoS tags and dependency labels for DT

In the DT scheme, HPSG constructions are used as dependency labels and ERG lexical types
are used as PoS tags. Our first experiment concerns the choice of the level of detail conveyed by
the PoS tags and dependency labels. We use MaltParser 1.6.1 and the WeScience resource with
sections 1-11 as a training set and section 13 as a test set (see Table 4.5). As we can see from
Table 4.6, the size of the inventory of PoS tags varies dramatically depending on our choice of
generalization.

WS01 | WS02 | WS03 | WS04 | WS05 | WS06 | WS07 | WSO8 | WS09 | WS10 | WS11 | WS12 | WS13
615 816 744 776 664 710 655 721 809 725 599 628 810
7834

9272

Table 4.5: Number of sentences in the WeScience corpus

PoS type # possible tags # tags seen on training set
cuton Ist“_” (e.g. n) 11 11

cut on 2nd “_” (e.g. n_pp) 101 82

cut on 3nd “_” (e.g. n_pp_c-of) 971 663

complete (e.g. n_pp_c-of_le) 971 664

Table 4.6: The number of different PoS tags and the number of different PoS tags seen on the
training data

Table 4.7 shows some observations from our experiments that investigate different granu-
larities of PoS tags and dependency labels. Our conclusions are the following:

Chapter 4. Contrasting parsing experiments 93

ERG-style tok. PTB-style tok.
PoS type Dep. labl. cuton Ist “_” | Dep. labl. complete Dep. labl. cut on 1Ist “_"
LAS UAS LACC | LAS UAS LACC| LAS UAS LACC
cuton Ist“_” | 79.75 83.25 83.64 | 77.02 83.59 80.34 || 81.90 85.82 85.27
cuton2nd “_” | 82.13 84.64 85.83 | 79.58 84.62 82.64 || 84.56 87.12 87.76
cuton3rd “_” | 84.11 8556 88.00 | 81.91 85.37 85.12 || 85.32 86.79 88.78
complete 84.15 85.55 88.00 |81.99 8542 8521 || 85.62 87.11 88.96

Table 4.7: Evaluation script: eval.pl. MaltParser results on WeScience corpus with derivation
tree representation converted to bilexical dependencies with dependency label cut on the first
“_” symbol and preserving ERG tokenization with variations in the choice of PoS tags

* The accuracy is the best when we cut the dependency label on the first “_"

» The accuracy is the best when we use the full ERG PoS tag rather than simplified ones
(some results were better for the ERG PoS tag cut before the third “_", but the statistical
significance test showed that the difference is not statistically significant)

* When trained on short PoS tags, PTB-style tokenization is significantly better. When
trained on long PoS tags, there is no significant difference between the two tokenization
styles.

Treebanks

For the experiments in this chapter we use the Penn Treebank (Marcus et al., 1993) and
the DeepBank (Flickinger et al., 2012) resources. As we recall from Section 2.5, DeepBank
1.0 is comprised of roughly 85% of the sentences of the first 22 sections of the Penn Treebank
annotated with full HPSG analyses from the English Resource Grammar (ERG). The DeepBank
annotations are created on top of the raw text of PTB. Due to tokenization errors in the PTB
(which DeepBank corrects) as well as imperfections of the automatic tokenization in the ERG
parser (which introduce new tokenization errors), there are some token mismatches between
DeepBank and PTB. We had to filter out such sentences to have a consistent number of tokens in
the DT, SB and CD formats. For our experiments we use sections 0-19 of DeepBank comprising
33,334 sentences as a training set, section 20 consisting of 1700 sentences as a development set
and section 21 comprising 1389 sentences as a test set.

Parsers

We use parsers that adopt different approaches and implement various algorithms. These
were described in detail in Chapter 2, but we briefly repeat some of their defining properties
below and provide relevant experimental settings for each parser.

Malt: transition-based dependency parser with local learning and greedy search. We ex-
ploited version 1.7.2 and performed automatic tuning with MaltOptimizer-1.0.2. For half of the
configurations MaltOptimizer chose the Nivre Standard algorithm as optimal, and Projective

94 4.2. Experimental setup

Stack for the other half. Both algorithms use essentially the same transitions and are limited to
projective dependency trees.

MST: graph-based dependency parser with global near-exhaustive search. We used the MST
parser version 0.5.0 with the projective Eisner algorithm with second order features (i.e. features
over pairs of adjacent edges in the tree), including punctuation in the hamming loss calculation,
creating the training forest and using the 1-best parse set size constraint during training.

B&N: transition-based dependency parser with joint tagger that implements global learning
and beam search. We set the beam parameter to 80 and otherwise employed the default setup
of version 3.3 of the parser.

As we have already seen, the Malt and MST parsers represent two prominent paradigms
for learning and inference: transition-based and graph-based parsing and B&N combines these
approaches. Both Malt and MST require pre-tagged inputs.

Part-of-speech tags

We experiment with two tag sets: the PTB tags and the lexical types of the ERG, the so-
called supertags. PTB tags determine part-of-speech and morphological features such as num-
ber for nouns, degree of comparison for adjectives and adverbs, tense and agreement with per-
son and number of subject for verbs etc. Some of the PTB tags assign a syntactic function, for
example in the case of uninflected verbs there is a distinction between infinitive or imperative
(VB) and non-third person singular present tense (VBP).

As we recall from Section 2.2.2, supertags are composed of part-of-speech, valency in the
form of an ordered sequence of complements, and annotations that encompass category-internal
subdivisions, e.g. mass vs. count vs. proper nouns, intersective vs. scopal adverbs, referential
vs. expletive pronouns. Example of a supertag: v_np_is_le (verb “is” that takes noun phrase as
a complement).

The two tag sets are of very different size initially: there are 48 tags in the PTB tag set
and 1091 supertags in the set of lexical types of the ERG. The state-of-the-art accuracy of PoS-
tagging on in-domain test data using gold-standard tokenization is roughly 97% for the PTB tag
set and approximately 95% for the ERG supertags (Ytrestgl, 2011).

Predicted PoS tags

Since parsing with the gold standard PoS tags is an idealized scenario, we prepare the au-
tomatically tagged inputs. We generate supertags using the iibertagger of Dridan (2013a). The
ibertagger starts from raw strings and provides an output in the ERG-style tokenization repro-
ducing the gold tokenization with an accuracy of about 93%. Therefore the output needs con-
version to PTB-style tokenization, which is very similar to the conversion of the ERG derivation
trees to bilexical dependencies in PTB-style tokenization discussed in Section 3.4.3. The results
of the evaluation of the iibertagger performance before the conversion to PTB tokenization are
summarized in Table 4.8 and the results after the conversion are shown in Table 4.10.

For the automatic PTB PoS tagging, we experiment with the English Stanford Tagger ver-
sion 3.4 (Manning, 2011) and the TnT tagger (Brants, 2000). PTB tags in the gold DeepBank
are predicted with the TnT tagger, but from Table 4.9 the Stanford tagger appears to perform

Chapter 4. Contrasting parsing experiments 95

Test, supertags

Ubertagger
Tag precision 91.21
Tag recall 90.84
Tag F1-score 91.02

Table 4.8: Evaluation of automatic iibertagging on the test set before conversion to PTB to-
kenization (using the DeepBank sections 0-19 for training and the DeepBank section 21 for
testing)

Dev, PTB tags
Stanford Tagger TnT

Total # tags right | 36547 36363
Total # tags wrong | 1098 1282
Tag recall, % 97.08 96.59

Table 4.9: Performance of the English Stanford Tagger and TnT taggers on the development set
(using the DeepBank sections 0-19 for training and the DeepBank section 20 for testing)

Test, PTB tags Test, supertags
Stanford Tagger B&N, DT | Ubertagger B&N, DT
Total # tags right | 29918 29873 28422 28190
Total # tags wrong | 893 938 2389 2621
Tag recall, % 97.10 96.96 92.25 91.49

Table 4.10: Results of the automatic PTB PoS tagging with the English Stanford Tagger and
the B&N parser and the automatic supertagging with the tibertagger of Dridan (2013a) and
the B&N parser on the test set (using the DeepBank sections 0-19 for training and DeepBank
section 21 for testing)

slightly better therefore it was chosen for further experiments. Table 4.10 shows the perfor-
mance of the Stanford tagger on the test set.

The B&N parser starts from the raw strings and predicts PoS tags during parsing. Its tagging
performance with PTB tags and supertags on the test set is presented in Table 4.10.

Evaluation

As our main evaluation metrics, we chose three measures that were used in CoNLL shared
tasks: labeled accuracy score (LAS), unlabeled accuracy score (UAS) and label accuracy (LACC).
To compute these metrics, we run the evaluation script eval.pl which was developed and stan-
dardized for these competitions. To determine whether results are statistically significant we
used Dan Bikel’s Randomized Parsing Evaluation Comparator (Buchholz and Marsi, 2006) at
the 0.001 significance level.

96 4.3. Results

Malt parser, w/o punctuation
PTB tags

LAS UAS LACC
gold | pred. gold | pred. gold pred.
SB | 89.89 | 88.16 || 91.45 | 90.71 || 93.91 | 92.44
CD | 89.07 | 87.74 || 9241 | 91.55 || 91.34 | 90.26
DT | 87.54 | 86.76 | 89.80 | 89.22 || 89.88 | 89.22
PA | 81.53 | 79.79 | 84.81 | 83.82 || 90.29 | 88.78
Supertags

LAS UAS LACC
gold | pred. gold | pred. gold | pred.
SB | 88.80 | 85.88 || 91.16 | 88.81 || 92.98 | 90.84
CD | 88.80 | 86.51 || 91.86 | 90.13 || 91.64 | 89.69
DT | 90.65 | 84.07 || 91.54 | 87.05 || 93.05 | 87.19
PA | 80.07 | 77.69 | 84.24 | 82.37 | 88.72 | 87.12
PTB tags + supertags

LAS UAS LACC
gold | pred. gold | pred. gold pred.
SB | 91.04% | 88.32! || 92.48' | 90.77! || 94.73' | 92.59!
CD | 90.25% | 87.94! || 93.221 | 91.44! || 92.57* | 90.60!
DT | 91.68' | 85.85' || 92.54% | 88.82! || 93.70" | 88.29!
PA | 82.51' | 79.82! || 85.59' | 83.80! || 90.86' | 88.89!

Table 4.11: Parsing results of Malt on the Stanford Basic (SB), CoNLL Syntactic Dependencies
(CD), DELPH-IN Syntactic Derivation Tree (DT) and Prague analytical layer (PA) formats.
Punctuation is excluded from the scoring. PTB tags: Malt is trained and tested on PTB tags.
Supertags: Malt is trained and tested on supertags. PTB tags + supertags: Malt is trained on
PTB tags and supertags. ! denotes a feature model in which PTB tags function as PoS and
supertags act as additional features (in CPOSTAG field)

4.3 Results

We will now go on to present and discuss the results obtained in our experiments and ex-
amine these in terms of the parser employed, the chosen dependency format and PoS tag set.
Tables 4.11, 4.12 and 4.13 present scores ignoring punctuation and the corresponding values in
Tables 4.14, 4.15 and 4.16 present scores including punctuation.

From the parser perspective, MST is better than Malt for attachment in the traditional setup
with gold PTB tags on all the formats; on CD and DT MST has higher labeled and unlabeled
accuracy than Malt, and this picture is preserved when PTB tags are predicted with the Stanford
tagger (Table 4.11 and 4.12, PTB tags). The B&N parser outperforms both Malt and MST
on the CD, DT and PA formats in terms of labeled dependency score even though it does not
receive gold PTB tags during the test phase but predicts them (Table 4.13, Predicted PTB tags).
This can possibly be explained by the fact that B&N implements a novel approach to parsing:
beam-search algorithm with global structure learning.

Chapter 4. Contrasting parsing experiments

MST parser, w/o punctuation

PTB tags

LAS UAS LACC
gold pred. gold pred. gold pred.
SB | 90.00 | 88.10 || 92.38 | 91.35 || 93.75 | 92.11
CD | 89.92 | 88.63 || 93.40 | 92.49 || 92.25 | 91.19
DT | 89.41 | 88.47 || 91.98 | 91.14 || 91.57 | 90.87
PA | 82.00 | 80.21 || 86.88 | 85.74 | 89.74 | 88.32

Supertags

LAS UAS LACC
gold | pred. gold | pred. gold pred.
SB | 87.21 | 84.22 || 90.28 | 87.85 || 91.67 | 89.52
CD | 88.84 | 86.34 || 91.98 | 90.20 || 91.84 | 89.77
DT | 91.33 | 8538 | 92.11 | 88.32 || 93.86 | 88.63
PA | 79.30 | 77.09 || 84.83 | 83.08 || 87.81 | 86.42

PTB tags + supertags

LAS UAS LACC
gold pred. gold | pred. gold | pred.
SB | 90.65" | 88.38! || 93.20" | 91.76! || 94.02' | 92.30!
CD | 90.26' | 88.60! || 93.86' | 92.56! || 92.55% | 91.20!
DT | 93.232 | 88.14% || 94.17% | 90.98! || 95.122 | 90.52!
PA | 82.48' | 80.12! || 87.48" | 85.69' || 89.89' | 88.30!

97

Table 4.12: Parsing results of MST on the Stanford Basic (SB), CoNLL Syntactic Dependencies
(CD), DELPH-IN Syntactic Derivation Tree (DT) and Prague analytical layer (PA) formats.
Punctuation is excluded from the scoring. PTB tags: MST is trained and tested on PTB tags.
Supertags: MST is trained and tested on supertags. PTB tags + supertags: MST is trained
on PTB tags and supertags. ! denotes a feature model in which PTB tags function as PoS and
supertags act as additional features (in CPOSTAG field); 2 stands for the feature model which

exploits gold supertags as PoS and uses PTB tags as extra features (in CPOSTAG field)

98

B&N, w/o punctuation
Predicted PTB tags
LAS UAS LACC
SB 90.65 93.05 94.01
CDh 90.92 93.97 92.94
DT 90.91 93.18 92.76
PA 83.65 87.15 91.02
Predicted supertags
LAS UAS LACC
SB 86.88 90.59 91.02
CDh 87.97 92.05 90.55
DT 87.56 90.39 90.09
PA 79.91 84.72 88.19
Predicted PTB tags + gold/predicted supertags
LAS UAS LACC
gold | pred. | gold | pred. | gold | pred.
SB | 91.57 | 91.29 | 93.81 | 93.59 | 94.62 | 94.44
CD | 91.32 | 91.11 | 94.24 | 94.11 | 93.28 | 93.15
DT | 93.37 | 90.19 | 94.34 | 92.85 | 95.07 | 92.08
PA | 83.96 | 83.31 | 87.40 | 86.96 | 91.18 | 90.74
Predicted supertags + gold/predicted PTB tags
LAS UAS LACC
gold | pred. | gold | pred. | gold | pred.
SB | 88.48 | 87.73 | 91.15 | 91.09 | 92.47 | 91.76
CD | 88.92 | 88.51 | 92.47 | 92.30 | 91.37 | 90.96
DT | 87.93 | 87.86 | 90.75 | 90.73 | 90.36 | 90.32
PA | 81.35 | 80.75 | 85.64 | 85.31 | 89.35 | 88.86

4.3. Results

Table 4.13: Parsing results of B&N on the Stanford Basic (SB), CoNLL Syntactic Dependencies
(CD), DELPH-IN Syntactic Derivation Tree (DT) and Prague analytical layer (PA) formats.
The parser is trained on gold-standard data. Punctuation is excluded from the scoring. Predicted
PTB: the parser predicts PTB tags during the test phase. Predicted supertags: the parser predicts
supertags during the test phase. Predicted PTB + supertags: the parser receives supertags as
feature and predicts PTB tags during the test phase. Predicted supertags + PTB: the parser
receives PTB tags as feature and predicts supertags during the test phase

Chapter 4. Contrasting parsing experiments

Malt parser, with punctuation

PTB tags

LAS UAS LACC
gold pred. gold pred. gold pred.
SB | 88.81 | 87.16 || 90.19 | 89.40 || 94.57 | 93.27
CD | 88.30 | 87.12 || 91.24 | 90.46 || 92.32 | 91.38
DT | 89.03 | 88.35 || 91.02 | 90.52 || 91.10 | 90.53
PA | 80.43 | 78.76 || 83.74 | 82.73 | 90.39 | 89.05

Supertags

LAS UAS LACC
gold | pred. gold | pred. gold pred.
SB | 88.01 | 85.07 || 90.08 | 87.65 || 93.80 | 91.92
CD | 87.96 | 85.67 || 90.66 | 88.84 | 92.58 | 90.87
DT | 91.78 | 85.96 | 92.56 | 88.57 || 93.90 | 88.71
PA | 78.86 | 76.52 || 82.89 | 81.03 || 88.93 | 87.54

PTB tags + supertags

LAS UAS LACC
gold pred. gold | pred. gold | pred.
SB | 90.09' | 87.44! || 91.36' | 89.61! || 95.34! | 93.02!
CD | 89.50" | 87.26! || 92.13' | 90.34! || 93.54% | 91.66!
DT | 92.68' | 87.52! || 93.44 | 90.13! || 94.47" | 89.67!
PA | 81.33' | 78.76! || 84.44' | 82.64' || 90.91' | 89.18!

99

Table 4.14: Parsing results of Malt on the Stanford Basic (SB), CoNLL Syntactic Dependencies
(CD), DELPH-IN Syntactic Derivation Tree (DT) and Prague analytical layer (PA) formats.
Punctuation is included in the scoring. PTB tags: Malt is trained and tested on PTB tags.
Supertags: Malt is trained and tested on supertags. PTB tags + supertags: Malt is trained on
PTB tags and supertags. ! denotes a feature model in which PTB tags function as PoS and
supertags act as additional features (in CPOSTAG field); 2 stands for the feature model which

exploits supertags as PoS and uses PTB tags as extra features (in CPOSTAG field)

100

MST parser, with punctuation

PTB tags

LAS UAS LACC
gold pred. gold pred. gold pred.
SB | 89.37 | 87.53 || 89.37 | 90.40 || 94.50 | 93.07
CD | 89.45 | 88.20 || 92.51 | 91.60 || 93.16 | 92.23
DT | 90.64 | 89.82 | 9291 | 92.18 || 92.56 | 91.95
PA | 81.19 | 79.49 || 8595 | 84.82 || 89.95 | 88.69

Supertags

LAS UAS LACC
gold | pred. gold | pred. gold pred.
SB | 86.44 | 83.58 || 89.13 | 86.77 || 92.69 | 90.80
CD | 88.13 | 85.75 || 90.90 | 89.14 || 92.81 | 91.00
DT | 92.38 | 87.10 || 93.06 | 89.67 || 94.62 | 89.98
PA | 78.40 | 76.31 83.71 | 82.05 | 88.25 | 87.02

PTB tags + supertags

LAS UAS LACC
gold pred. gold | pred. gold | pred.
SB | 89.98' | 87.82! || 92.23 | 90.79! || 94.74' | 93.23!
CD | 89.78' | 88.20! || 92.96' | 91.69! || 93.42% | 92.23!
DT | 94.042 | 89.51' || 94.85% | 92.01! || 95.722 | 91.62!
PA | 81.68' | 79.47' || 86.54' | 84.84! || 90.08' | 88.67!

4.3. Results

Table 4.15: Parsing results of MST on the Stanford Basic (SB), CoNLL Syntactic Dependencies
(CD), DELPH-IN Syntactic Derivation Tree (DT) and Prague analytical layer (PA) formats.
Punctuation is excluded from the scoring. PTB tags: MST is trained and tested on PTB tags.
Supertags: MST is trained and tested on supertags. PTB tags + supertags: MST is trained
on PTB tags and supertags. ! denotes a feature model in which PTB tags function as PoS and
supertags act as additional features (in CPOSTAG field); 2 stands for the feature model which
exploits gold supertags as PoS and uses PTB tags as extra features (in CPOSTAG field)

Chapter 4. Contrasting parsing experiments

B&N, with punctuation

Predicted PTB tags
LAS UAS LACC
SB 90.26 92.38 94.72
CDh 90.57 93.26 93.75
DT 91.98 93.98 93.62
PA 82.91 86.37 91.13
Predicted supertags
LAS UAS LACC
SB 86.47 89.74 92.12
CDh 87.56 91.16 91.66
DT 88.99 91.48 91.26
PA 79.19 83.80 88.62
Predicted PTB tags + gold/predicted supertags
LAS UAS LACC
gold | pred. | gold | pred. | gold | pred.
SB | 91.16 | 90.90 | 93.14 | 92.92 | 95.26 | 95.10
CD | 90.87 | 90.68 | 93.44 | 93.32 | 94.05 | 93.94
DT | 94.15 | 91.31 | 95.01 | 93.65 | 95.65 | 92.99
PA | 83.24 | 82.63 | 86.63 | 86.21 | 91.29 | 90.89
Predicted supertags + gold/predicted PTB tags
LAS UAS LACC
gold | pred. | gold | pred. | gold | pred.
SB | 87.96 | 87.30 | 90.31 | 90.25 | 93.37 | 92.75
CD | 88.36 | 88.02 | 91.50 | 91.37 | 92.35 | 91.99
DT | 89.32 | 89.25 | 91.80 | 91.77 | 91.50 | 91.46
PA | 80.55 | 80.02 | 84.72 | 84.42 | 89.61 | 89.17

101

Table 4.16: Parsing results of B&N on the Stanford Basic (SB), CoNLL Syntactic Dependencies
(CD), DELPH-IN Syntactic Derivation Tree (DT) and Prague analytical layer (PA) formats. The
parser is trained on gold-standard data. Punctuation is included in the scoring. Predicted PTB:
the parser predicts PTB tags during the test phase. Predicted supertags: the parser predicts
supertags during the test phase. Predicted PTB + supertags: the parser receives supertags as
feature and predicts PTB tags during the test phase. Predicted supertags + PTB: the parser
receives PTB tags as feature and predicts supertags during the test phase

102 4.3. Results

Malt
Supertags
LAS UAS LACC
SB | 8744 8992 9195
CD | 87.37 90.52 90.43
DT | 87.86 89.53 90.63
PA | 7872 83.07 8&7.80
PTB tags + supertags
LAS UAS LACC
SB | 89.19' 91.54! 93.12!
CD | 88.66! 92.08% 91.28!
DT | 89.18" 90.90" 91.43!
PA | 80.43' 84.24' 89.20"

Table 4.17: Performance of Malt on the data annotated with PET-predicted supertags. PTB tags
are predicted with the Stanford tagger, supertags are predicted with the PET parser; punctuation
is excluded from the scoring. Supertags: Malt is trained and tested on supertags. PTB tags +
supertags: Malt is trained on PTB tags and supertags. ! denotes a feature model in which PTB
tags function as PoS and supertags act as additional features (in CPOSTAG field)

MST results deteriorate more than Malt when parsing SB and PA with gold supertags as
compared to PTB tags and the performance of Malt on these two formats is better than the
performance of MST (Table 4.11 and 4.12, Supertags). As we recall, this parser exploits context
features “PoS tag of each intervening word between head and dependent” (McDonald et al.,
2006). Due to the far larger size of the supertag set compared to the PTB tag set, such features
are sparse and have low frequencies. This leads to the lower scores of parsing accuracy for
MST. However, the transition from gold PTB to gold supertags affects parsing accuracy of Malt
and MST on DT to the better and MST outperforms Malt (compare Tables 4.11 and 4.12, PTB
tags, and Tables 4.11 and 4.12, Supertags). With predicted supertags MST has a larger drop in
labeled accuracy than Malt on all the formats and Malt has significantly better results than MST
on SB and DT.

We find that the combination of gold PTB tags and gold supertags improves the performance
of Malt on all the formats and MST on SB and DT, but the difference is not significant when
the supertags are predicted by the supertagger (Tables 4.11 and 4.12, PTB tags + supertags).
For B&N we also observe a rise of accuracy on SB and DT when gold supertags are provided
as feature for prediction of PTB tags (compare Table 4.13, Predicted PTB tags, and Table 4.13,
Predicted PTB tags + gold supertags). However, the combination of PTB tags with gold su-
pertags is not beneficial for parsing CD and PA, since the improvements are not statistically
significant.

In terms of efficiency, the parsers have different training times: it takes minutes to train
Malt, a few hours to train MST and about a day or longer to train the B&N parser. As stated by
Cer et al. (2010), Malt also has shorter running time therefore this parser is a good choice when
the speed is critical.

From the point of view of the dependency format, parsers have the highest LACC on SB

Chapter 4. Contrasting parsing experiments 103

and first-rate UAS on CD in most of the configurations (Tables 4.11, 4.12 and 4.13). This
means that SB is easier to label and CD is easier to parse structurally. DT appears to be a
more difficult target format for Malt and MST. This is not an unexpected result, since SB and
CD are both derived from PTB phrase structure trees directly and are oriented towards the
dependency parsing task. DT is not custom-designed for dependency parsing and is independent
from parsing-related issues in this sense. Unlike SB and CD, it is linguistically informed by
the underlying, full-fledged HPSG grammar. The CD format appears to be least affected by
interchanging gold supertags with predicted supertags. DT is the most affected, and the labeled
accuracy of Malt and MST on DT is significantly lower than on CD when supertags are used as
PoS and punctuation is not scored. Since DT and supertags are derived from the same grammar,
this result is explained by the fact that DT relies on the fine-grained type categorizations made
in ERG.

It is interesting to observe that the labeled accuracy scores of B&N are similar or better
for DT than SB and CD in most of the configurations. This result motivates our choice of DT
as a base for head-to-head parser comparison in Chapter 5 since B&N is able to learn the DT
scheme to the same level of performance as the SB and CD schemes. The surprising result is that
PA appears to be a significantly harder annotation scheme than SB, CD and DT for statistical
parsers as their LAS drop by more than 7% for PA. The latter format is harder both structurally
and in labeling, though the difference with other schemes in LACC is less drastic than in LAS
and UAS.

As we recall from Chapter 3, Jaccard similarity values show that CD and DT are structurally
closer to each other than SB and DT. Contrary to our expectations, the accuracy scores of the
parsers do not suggest that CD and DT are particularly similar to each other in terms of parsing.

Inspecting the aspect of tag set we conclude that traditional PTB tags are compatible with
SB, CD and PA but do not fit the DT scheme equally well, while ERG supertags are specific
to the ERG framework and do not seem to be appropriate for SB, CD and PA. Neither of these
findings seem surprising, as PTB tags were developed as part of the treebank from which SB,
CD and PA are derived; whereas ERG supertags are closely related to the HPSG syntactic
structures captured in DT. PTB tags were designed to simplify PoS-tagging whereas supertags
were developed to capture information that is required to analyze syntax in terms of HPSG
analyses.

For B&N the complexity of supertag prediction has significant negative influence on the
attachment and labeling accuracies (compare Predicted PTB tags and Predicted supertags in
Table 4.13). The addition of gold PTB tags as a feature lifts the performance of B&N and
its accuracy is even higher than of MST on SB, CD and PA with gold supertags (compare
Table 4.13, Predicted supertags, and Tables 4.11, 4.12, supertags).

With the PET parser we are able to predict supertags with a recall of 95.01% which is signif-
icantly more accurate than 92.25% with the standalone iibertagger. The parsing results for Malt
with predicted supertags would improve significantly as shown in Table 4.17 in comparison to
Table 4.11. However it would be strange and expensive (time and memory-wise) to use the full
PET parser as a supertagger, therefore this setup is not particularly realistic.

The results in Tables 4.11 and 4.17 indicate that DT is very sensitive to supertagging accu-
racy. For each PTB tag we collected corresponding supertags from the gold-standard training
set. For open word classes such as nouns, adjectives, adverbs and verbs the relation between

104 4.3. Results

PTB tags and supertags is many-to-many. Unique one-to-many correspondence holds only for
possessive wh-pronoun and punctuation.

Thus, supertags do not provide just an extra level of detalization for PTB tags, but PTB
tags and supertags are in part complementary. As discussed in Section 4.2, they contain bits of
information that are different. For this reason their combination results in slight, but not always
significant, increases of accuracy for all three parsers on all dependency formats (Tables 4.11
and 4.12, PTB tags + supertags, and Table 4.13, Predicted PTB + gold supertags and Predicted
supertags + gold PTB). B&N predicts supertags with an accuracy of 92% for SB which is
significantly lower than the state-of-the-art result of 95% (Ytrestgl, 2011).

When we consider punctuation in the evaluation, all scores improve, and in most cases sig-
nificantly, for all parsers on DT. This is explained by the fact that punctuation in DT is always
attached to the nearest token which is easy to learn for a statistical parser (Tables 4.14 and 4.16).
Similar observations are made in the later work of Ma et al. (2014) who propose to treat punctu-
ation marks as properties of context words for dependency parsing. They show that dependency
parsers, trained on PTB-inspired analysis of punctuation (like SB, CD and PA in our exper-
iments), achieve low accuracies on punctuation because heads of punctuation marks are not
well-defined linguistically; however, removing all punctuation from parsing results in a loss of
information important for dependency parsing.

We can also evaluate the effects of the treebank size. When less DeepBank data was avail-
able, we performed these experiments on the first 16 sections with a training set of 22,209
sentences and a test set of 1759 sentences (Ivanova et al., 2013b). The accuracy of the parsers
in all configurations is higher when we train on more DeepBank data. However, for many of
the current setups the difference with the previous results is not significant.

From the aspect of dependency scheme, the treebank size has the following impact:

e On DT all parsers show a significant improvement of accuracies in most of the setups on
a larger treebank.

* On SB Malt and MST do not show significant changes in accuracy in most configurations
with respect to the treebank size, whilst B&N has a significant rise of accuracy in the
setups where it has to predict supertags when more data is available.

* On CD Malt, MST and B&N (in the configuration in which it predicts PTB tags) do not
show significant changes of accuracy with respect to the treebank size.

* On the smaller amounts of data B&N performed better on SB and CD than on DT in
the setup where it had to predict PTB tags. Availability of more data eliminate these
differences in the B&N parser performance.

For the parsers we furthermore note an interesting effect of MST having a significant in-
crease of accuracy in more setups than Malt on the new data.
For the PoS tags we can make the following observations:

» with gold tags (PTB and supertags) the MST and B&N parsers have significant perfor-
mance improvements on DT as more data becomes available;

* Malt has significant improvements only on DT with gold PTB tags.

Chapter 4. Contrasting parsing experiments 105

PoS tag Description SB CD DT PA

CC Coordinating conjunction 80% 83% 67% 54%
IN Preposition or subordinating conjunction | 83% 70% 76% 78%
$ $ 90% 94% 93% 43%
CDh Cardinal number 94% 93% 91% 59%
NN Noun, singular or mass 92% 93% 90% 84%
NNP Proper noun, singular 5% 94% 92% 81%
NNS Noun, plural 91% 92% 90% 82%
MD Modal 98% 88% 83% T4%
VB Verb, base form 83% 97% 97% 85%
VBN Verb, past participle 8% 89% 90% 75%
VBG Verb, gerund or present participle 74% 83% 82% T2%
VBP Verb, non-3rd person singular present 86% 86% 84% 82%
VBZ Verb, 3rd person singular present 88% 91% 85% 83%
1 Adjective 93% 95% 89% 92%
RB Adverb 81% T0% 79% 81%

Table 4.18: Distribution of accuracy over PTB PoS tags when parsing with the Malt parser on
the four dependency formats

* B&N benefits from being supplied new data on all three schemes when it predicts su-
pertags.

Scoring punctuation had the following impact:

* for DT the scores improved significantly when punctuation was added while for SB and
CD the scores decreased for all three parsers.

4.4 Error analysis

In order to better understand our results we perform an error analysis where we examine
LAS for individual PoS tags and further analyze observed difficulties in parsing coordinations
and verbs. We analyze the results of parsing with gold PoS tags. In addition we attempt to
investigate which properties of the PA scheme make it particularly hard for parsers to process.

Table 4.18 shows the accuracy of the Malt parser on the frequent PTB PoS tags, however
the tendency holds for other parsers as well. The first group are PoS from notoriously difficult
linguistic structures: coordination and prepositional phrases; the second group are specific for
WSJ: the dollar sign ($) and cardinal numbers; the third group consists of nouns; the fourth
group consists of verbs; the fifth group are adjectives; the sixth group are adverbs. We observe
that the coordinating conjunction (CC) is particularly hard to parse with PA and DT analyses.
As we recall from Chapter 3, coordination receives different treatments in our formats, see Fig-
ure 4.1. Coordinating conjunction is chosen as the head of the coordination structure in DT and
PA, which has been shown by Schwartz et al. (2012) to be harder to parse with statistical parsers
than analyses that select the first conjunct as the head. Table 4.18 shows the accuracy of the

106 4.4. Error analysis

Format Precision Recall

SB 0% 0%

CD 86.21% 89.26%
DT 74.77% 69.82%
PA 55.49% 42.71%

Table 4.19: Precision and recall of the labeling and attachment of the outgoing arcs for the co-
ordinating conjunction (the “CC” PoS tag) for the Malt parser on different dependency formats
with PTB PoS tags

incoming arcs for the coordinating conjunction with the PoS tag “CC”. Accuracy of detection
and labeling outgoing dependency arcs is also different for the formats as demonstrated with
Table 4.19. SB has on average zero outgoing arcs from coordinating conjunction, CD one, DT
2 and PA 3-4 which makes it harder to predict outgoing arcs for PA in contrast to DT and for
DT in contrast to CD. SB has 0% precision and recall because by the structure of the coordina-
tion illustrated in Figure 4.1 a coordinating conjunction can never have outgoing arcs, and its
confusion matrix on the test set is the following: the number of true positives is 0, the number
of false negatives is 9 and the number of false positives is 12.

Though the approach used in PA and DT is harder for a parser to learn, it has some linguistic
advantages: using SB and CD annotations, we cannot distinguish the two cases illustrated with
the sentences (a) and (b) from WSIJ:

a) The fight is putting a tight squeeze on profits of many, threatening to drive the smallest
ones out of business and straining relations between the national fast-food chains and
their franchisees.

b) Proceeds from the sale will be used for remodeling and refurbishing projects, as well as
for the planned MGM Grand hotel/casino and theme park.

In the sentence a) “the national fast-food” refers only to the conjunct “chains”, while in the
sentence b) “the planned” refers to both conjuncts and “MGM Grand” refers only to the first
conjunct.

The Jaccard index values in Chapter 3 suggested that DT and CD are relatively similar to
each other. Although overall labeled and unlabeled attachment scores did not show particular
similarities in parsing DT and CD, the accuracies in Table 4.18 show that the performance of
the parser on DT is closer to the performance on CD than SB and PA on most types of verbal
PoS.

All parsers have high error rates on verbal PoS with all annotation formats. We analyzed the
errors manually comparing analyses of Malt parser with DT to the gold standard analyses. The
errors that concern attachment and labeling of verbs most commonly occur in longer sentences
with multiple verbs and coordinating conjunctions and these errors are sometimes correlated
with incorrect root detection (see Example (63) from WSJ where the top analysis is erroneous
and the bottom analysis is correct).

Chapter 4. Contrasting parsing experiments 107

f_____]g?ﬂ(' f__________ar“‘w

The quake ... knocked out electricity ... , cracked roadways and disrupted subway service ...

L e

In some cases the parser fails to detect longer dependencies: for the sentence in Exam-
ple (64) from WSJ the parser suggests that the past participle “kicked” modifies the noun while
in the gold standard it is a complement of the main verb.

We °d get our asses kicked .

(63)

(64)

Many errors on gerund verb forms occur when the gerund is modifying a noun in the gold
standard, see Example (65) from WSJ.

Right away you notice the following things ...
(65)

Our results from the previous section naturally raise the question of why the performance
of the parsers is much lower with the PA format than with other dependency schemes. The
analytical representation was originally developed for manual annotation of Czech, and later
on exploited for Arabic (Haji¢ et al., 2004), languages from different language families than
English. On the other hand, SB, CD and DT were originally designed for English.

From Table 4.18 we can conclude that conversion from the phrase structures of the Penn
Treebank into PA dependencies is noisy for some common WSJ constructions that include
dollar sign and numbers like “$ 3 billion”. While SB, CD and DT are rather consistent in
choosing the dollar sign as the head of the number in most of these cases, the annotation of such
structures in PA can vary depending on a context:

* a number can depend on a dollar sign, see Example (66);
* adollar sign can depend on a number, see Example (67);
* both a dollar sign and a number can depend on the noun, see Example (68);

* both can depend on something else, see Example (69)

/ \
charging companies $ 20000
(66) $ CcD
NN
The $§ 20000 tax

©7) $ cD

108 4.4. Error analysis

Format Recall Precision

SB 89.98% 89.98%
CD 93.52% 94.06%
DT 89.63% 89.63%
PA 83.84% 84.45%

Table 4.20: Recall and precision of dependency relation and attachment for root when parsing
with the Malt parser on the four dependency formats with PTB PoS tags

[
raise $ 40 million
$ o cD

(68)
(69)

—~)

arranged more than $ 3 billion
$ o cD

PA furthermore takes a complex approach to the annotation of punctuation. The final punc-
tuation is usually attached to root, as the precision and recall of dependency relation and at-
tachment for root are significantly lower for PA than for other formats (see Table 4.20 for Malt
parser; the tendency is similar for other parsers and other PoS tags), it introduces additional
challenges for correct head detection for punctuation.

Labeling is another point where PA differs notably from the other formats in the fact that
it has 17 different labels for the test set in contrast to SB, CD and DT that offer 49, 44 and 43
different labels correspondingly. Some labels in PA are in a sense overloaded: for example,
the Atr label can be used for several different types of modifiers: a modifier in a complex
noun phrase (““Yasumichi Morishita”), a head word in a modifying phrase (“became”) and an
adjective in a noun phrase (‘“last month”), in contrast to other formats, see Example (70).

(\
v | v | v |
Yasumichi Morishita , whose art gallery last month became a major shareholder ...
(70) SB ey !
‘ NMOD N
~(NAME} | | (o) \
v I ¥ | v
CcD Yasumichi Morishita , whose art gallery last month became a major shareholder ...
‘ HDN-AJ N
| |
v I v | v
DT Yasumichi Morishita , whose art gallery last month became a major shareholder ...
.) \‘
—{A— A
v || v . | ‘¢

PA Yasumichi Morishita , whose art gallery last month became a major shareholder ...

Chapter 4. Contrasting parsing experiments 109

The PA format allows non-projective dependencies, but it does not seem to be a factor
that complicates parsing since only 0.17% of the sentences in the training set and 0% of the
sentences in the test set are analyzed as non-projective with PA. SB, CD and DT provide 0% of
non-projective analyses on the training and test sets. The quantity of the long dependencies that
the format introduces also does not seem to play a significant role in our case: PA does not have
many more long dependencies than SB, CD and DT neither in general, nor on the PoS tags for
which it has the worst accuracy.

To conclude, the parsers make very similar errors on SB, CD and DT. The most common
problems concern coordination structures, preposition attachment and some types of verbs.
LAS for individual PoS are in general closer for the pair CD and DT rather than for the pair
SB and DT which can be an indirect indication of similarity of DT and CD in terms of parsing.
The PA format appears to be harder to learn than SB, CD and DT which could be related to the
fact that it was originally developed for morphologically rich languages and later adapted for
English. Although parsers have more difficulty to learn the analysis of coordination, attachment
of prepositions and other phenomena on PA than on other formats, the major issue is related
to PA permitting variations of the analysis of the dollar sign + number constructions which are
exceedingly common in the WSJ corpus.

4.5 Extrinsic evaluation

Syntactic analysis is usually an intermediate step in a larger natural language processing
task. Using a downstream application, we are interested to explore whether the small parsing
differences between CD, SB and DT affect the overall performance of the system and addi-
tionally test our claim that DT constitutes a reasonable choice of dependency representation
compared to CD and SB. Elming et al. (2013) showed that the choice of dependency format
can have considerable impact on end results of downstream applications, including SMT and
negation resolution.

We perform an extrinsic evaluation using negation resolution (NR) as our downstream eval-
uation task. The negation resolution system that we use conditions its decisions on both de-
pendency arcs and labels and it was sensitive to the choice of the annotation scheme in the
experiments of Elming et al. (2013).

NR is the task of determining, for a given sentence, which tokens are affected by a negation
cue (Lapponi et al., 2012a). A negation cue is an operator of negation, i.e. a word or a com-
bination of words that expresses negation (for example, “no”, “not”, “never”, “no longer”, “by
no means”). The scope of negation is the part of a sentence that is negated (Huddleston and
Pullum, 2002) and it includes all negated concepts. The negated event is the event/state inside
the scope which is semantically negated (Lapponi et al., 2012a). In the specific pre-existing
task data for negation scope resolution that we use for our extrinsic evaluation, only factual
events can be negated: events are absent in instances of imperatives, conditionals, suppositions
etc. Example (71) shows the negation cue marked in bold letters, the scope enclosed in square
brackets and the negated event underlined.

(71) [John had] never [said as much before].

110 4.5. Extrinsic evaluation

Train Dev Test
tokens 65,450 13,566 19,216
sentences 3644 787 1089
sentences with negation 848 144 235
cues 984 173 264
scopes 887 168 249
negated events 616 122 173

Table 4.21: Conan Doyle corpus statistics (Morante and Blanco, 2012)

Software and Data

For our experiment we use the negation resolution system UiO, (Lapponi et al., 2012b) that
was one of the best performing systems of the 2012 Computational Semantics (*SEM) shared
task (Morante and Blanco, 2012). UiO, is a CRF-based sequence-labeling system for negation
scope resolution relying on syntactic information from dependency graphs. The dataset is com-
posed of negation annotated stories of Conan Doyle prepared for the 2012*SEM shared task
(see corpus statistics in Table 4.21).

The gold cues are being used in this experiment on the development set and predicted cues
are used on the test set. This means that if the sentence in Example (71) occurred in the devel-
opment set, the system would have to identify “John had” and “said as much before” as scopes
and “said” as the negated event provided that “never” is already known to be a cue. However
if the sentence in Example (71) occurred in the test set, the system would first have to identify
“never” as a cue.

We use the evaluation software developed by the 2012*SEM shared task organizers (Morante
and Blanco, 2012) which applies the following metrics, ignoring the punctuation tokens:

Cue-level Fi-measure (Cues)

Scope-level Fj-measure (Scopes)

» Fj-measure over scope tokens (Scope tokens). The total of scope tokens in a sentence is
the sum of tokens of all scopes. For example, if a sentence has two scopes, one of five
tokens and another of seven tokens, then the total of scope tokens is twelve

» [7-measure over negated events (Negated), computed independently from cues and from
scopes

* Global F-measure of negation (Global): the three elements of the negation - cue, scope
and negated event - all have to be correctly identified (strict match)

» Percentage of correct negation sentences (CNS). This is the strictest evaluation measure
reported by the evaluation script, as there can be multiple instances of negation in one
sentence.

Chapter 4. Contrasting parsing experiments 111

B&N-CD B&N-SB B&N-DT || Malt-SB | Mate-yamada Mate-conll07 Mate-ewt Mate-lth

Scopes 79.57 81.69 80.43 80.43 81.27 80.43 78.70 79.57
Scope tokens 87.47 87.77 88.13 86.42 - - - -
Negated 75.96 71.15 73.33 79.44 76.19 72.90 73.15 76.24
Global 65.89 63.78 65.89 66.92 67.94 63.24 61.60 64.31
CNS 45.83 45.83 47.92 47.92 - - - -

Table 4.22: Performance of the negation resolution system UiO, (Lapponi et al., 2012b) on the
development set of the Conan Doyle corpus from the 2012*SEM shared task with gold cues
using dependency features from the analyses of B&N with CD, SB and DT dependencies in
contrast with previous work: (a) the analyses of the Malt parser with SB (Lapponi et al., 2012b)
and (b) the analyses of the Mate parser with yamada, conll-07, ewt and Ith dependencies
(Elming et al., 2013)

Results and discussion

In order to obtain syntactic features for the negation resolution system, we employ B&N
with CD, SB and DT representations. The choice of the parser is motivated by the experiments
in Section 4.3 in which this parser shows the highest dependency accuracy scores. We run the
negation resolution system with gold cues.

Table 4.22 presents the results of running the NR system on the analyses produced by B&N
with three annotation schemes, e.g. CD, SB and DT and also includes results from previous
work with the Malt parser on Stanford Basic dependencies (Lapponi et al., 2012b) and with the
Mate parser on yamada, conll07, ewt and 1th dependencies (Elming et al., 2013)>. The previous
work results are not directly comparable to our experiments with B&N because the models
in Lapponi et al. (2012b) are trained on sections 2-21 of the WSJ extended with about 4000
questions from the QuestionBank (Judge et al., 2006), the models in Elming et al. (2013) are
trained on sections 2-21 of WSJ while the models of B&N in our work are trained on sections
0-19 of the WSJ.

As observed in Elming et al. (2013), we get differences of performance across the three
formats: with B&N, CD appears to perform best for detection of negated events, SB for scopes
while DT shows the best performance on scope tokens, global negation and correct negated
sentences. Compared to the scores in the previous work, with B&N on DT we obtain better
performance on scopes and scope tokens and lower results for negation events, global negation
and correct negation sentences. Taking into account that the training set for the previous work
of Lapponi et al. (2012b) was larger, our results seem promising.

The extrinsic evaluation results support our hypothesis that the DT format is relevant for
parsing and applications relying on syntactic information from bilexical dependencies on par
with the commonly used CD and SB formats.

2CD, conll07 and Ith annotation schemes are obtained from PTB by running the LTH constituent-to-dependency
conversion tool of Johansson and Nugues (2007) with different command-line options.

112 4.6. Summary

4.6 Summary

In this chapter we performed an empirical comparison of four dependency schemes, three
statistical parsers and two part-of-speech tag sets. We investigated which properties of the
annotation formats are harder to learn with statistical parsers, how accurate the parsers are with
respect to each other in terms of accuracy and how the choice of the lexical types affects the
performance of the syntactic analyzers.

The main conclusions of the chapter are that SB, CD and DT are nearly equally hard to
learn with B&N when punctuation is not scored (i.e. the difference in the accuracy for DT and
at least one of these two schemes is statistically insignificant in almost all of the setups), and
DT is the easiest format for this parser when punctuation is considered in the overall accuracy
values. B&N is more accurate than Malt and MST in our setups while the Malt parser is the
fastest among the three. The traditional PTB PoS tags naturally fit the SB and CD schemes well,
while the larger set of ERG lexical types is unsurprisingly more suitable for the DT format. The
PA annotations appear to be more difficult due to a very frequent construction in WSJ text that
includes the dollar sign and a number.

As Miwa et al. (2010) showed that intrinsic and extrinsic evaluations do not always correlate,
it is interesting to contrast DT with the other schemes on a downstream application. We have
chosen negation resolution, the task of identifying tokens affected by a negation cue, because
this NLP task is sensitive to the differences in the input dependency annotation as shown in
Elming et al. (2013). Using the CRF-based system of Lapponi et al. (2012b) we compare DT to
SB and CD and conclude that each of them optimizes different evaluation metrics with no single
winner, though DT is best such metrics as scope tokens, global negation and correct negated
sentence.

Chapter 5

Cross-framework parser evaluation

In this chapter we compare three approaches to automatic syntactic analysis for English:
data-driven dependency parsing, statistical phrase structure parsing and a hybrid, grammar-
based parsing. These three parsing architectures differ in the underlying theories introduced
in Chapter 2 and produce different structures. We use syntactic bilexical dependencies as a
common basis for comparison. Dependency-based evaluation (Lin, 1998; Carroll et al., 1998)
is a common cross-platform evaluation approach where the heads, that play a central role in
dependency grammar, have a key part and can be recovered in computational frameworks based
on HPSG or some version of X’ theories. In our study we observe which trade-offs apply
along three dimensions—accuracy, efficiency, and resilience to domain variation. We show that
the hand-built grammar helps in accuracy and cross-domain syntactic parsing performance, but
that there are no significant differences in results for data-driven and grammar-based parsers in
extrinsic evaluation on the negation resolution task.'

5.1 Motivation

In the present work we seek to perform head-to-head comparison of the ERG parser to
the state-of-the-art data-driven syntactic analyzers. Grammar-based systems for natural lan-
guage processing rely on detailed linguistic knowledge incorporated in formal grammar with
constraints. The underlying linguistic grammar theory is expressed in the form of rules that
describe the valid composition of linguistic entities. The result consists of all possible syntactic
analyses of the sentence. Unlike grammar-based systems, data-driven systems do not perform
exhaustive linguistic analysis but rather rely on statistics and generalizations and are conven-
tionally assumed to be more robust and efficient than grammar-based systems.

A contrastive study requires data annotated in native parsers’ formats and a framework-
independent evaluation method. For phrase structure and dependency parsers the WSJ portion
of the Penn Treebank (Marcus et al., 1993) has been the predominant resource for English.
Availability of the ERG annotation layer over the WSJ text (Flickinger et al., 2012) makes it
possible to include the HPSG PET parser into the comparison. For the type of HPSG analyses
recorded in DeepBank, we applied a reduction to projective bilexical dependencies, Deriva-
tion Tree-Derived Dependencies (DT) (Zhang and Wang, 2009; Ivanova et al., 2012) that were

I'This chapter is an extended version of Ivanova et al. (2013a) and Ivanova et al. (2015).

113

114 5.2. Related work

discussed in detail in Section 3.4.1.

Dependencies are recognized as an attractive target representation for syntactic analysis and
have been repeatedly used for cross-formalism parser evaluation. We choose an experimental
setup like the one of Cer et al. (2010): first, parsing into the representation native for the given
parser and then deterministically reducing the structures to bilexical dependencies. In earlier
work, e.g. of Clark and Curran (2007a) and Miyao et al. (2007), the comparison of different
parsing approaches required a mapping between the annotation innate for a parser and the target
representation used as base for comparison. We argue that such conversions inevitably introduce
fuzziness into the comparison since they are based on heuristic rules and require changes of
lexical heads.

Large-scale grammars have been designed to deliver precise linguistic analysis and provide
broad coverage. We are interested in how the accuracy and coverage of a grammar-based parser
correlate with the state-of-the-art statistical analyzers. Time and space efficiency have long con-
stituted problems for grammar-driven parsing technologies though technological and scientific
breakthroughs have enabled overall run-time efficiency gains of a factor of around 2000 and
a reduction of the space consumption by several orders of magnitude?. Nevertheless grammar
parsing is still considered to be slower than contemporary statistical processing; in this chapter
we are going to evaluate how large this gap is. In addition, we seek to document how the trade-
offs in terms of parser accuracy and efficiency are affected by domain and genre variation, which
is possible due to the availability of the corpora instantiating a comparatively diverse range of
domains and genres annotated with ERG analyses (Oepen et al., 2004) in combination with the
conversion procedure described in Chapter 3.

5.2 Related work

Cross-framework parser comparison has continually attracted research interest and was in
focus of dedicated workshops such as the Workshop on Cross-Framework and Cross-Domain
Parser Evaluation (Bos et al., 2008). As we have already discussed in Section 2.4, adopting
dependency-based evaluation methods (Lin, 1998) is a commonly used approach to framework-
independent parser comparison.

Among dependency-based evaluation procedures, grammatical relations (GR) (Carroll et al.,
1998) have been the target of a number of benchmarks employing the PARC 700 DepBank
(King et al., 2003), a corpus of predicate-argument relations for 700 sentences from section 23
of the WSJ constructed for evaluation purposes. The resource was created semi-automatically
by the automatic conversion of deep parser output and manual correction of the structures. The
parsing system used to build the analyses is the XLE system (Maxwell and Kaplan, 1993) with
the underlying LFG formalism (Kaplan and Bresnan, 1982); only f-structures are used in the
conversion. A disadvantage of the GR-based method is that it requires a heuristic mapping
from “native” parser output to the target representation for evaluation, which makes the results
hard to interpret. The transformations are often non-trivial and require modifications in the
choice of heads and other adjustments (Kaplan et al., 2004; Clark and Curran, 2007a; Miyao
et al., 2007). The upper bounds of parser performance on GR are 84.76% for CCG (Clark and

Zhttp://www.delph-in.net/wiki/index.php/Background Accessed: 14 August 2015.

Chapter 5. Cross-framework parser evaluation 115

Curran, 2007a), 84.27% for Enju and 73.21% for C&J, Charniak and Stanford parsers (Miyao
et al., 2007) (upper bounds are computed by comparison of gold standard treebanks converted
to GR against DepBank). The nearly 20% loss of accuracy due to format transformations can
swamp any actual parser differences (Miyao et al., 2007).

Another dependency representation commonly applied for formalism-independent parser
comparison is the Stanford Dependency scheme (de Marneffe et al., 2006), which is inspired
by GR and is similar in concept. Although there is no hand-annotated treebank available, a pro-
gram for conversion of the PTB trees into SD relations is incorporated into the Stanford parser.
The advantages of SD is that the conversion from CFG trees is deterministic and comparisons of
phrase structure and direct dependency parsers can be run on PTB data and therefore related to
the previous work on parsing. However, for parsers producing formats other than phrase struc-
ture and dependency, similar challenging and fuzzy heuristic mappings as for GR are required
(Miyao et al., 2007). Unlike SD that was proposed outside the deep parsing community and
may lack the potential to assess deep grammar parsers, the dependency formalism that we use,
DT is defined in terms of a formal linguistic theory and directly captures decisions taken in the
grammar.

At the Workshop on Cross-Framework and Cross-Domain Parser Evaluation, PropBank was
mentioned as a candidate gold standard for cross-framework parser comparison (Bos et al.,
2008), however, organizers noted that it is not commonly used for parser evaluation. The ad-
vantage of PropBank is that it is developed independently of any specific grammar formalism.
Gildea and Jurafsky (2002) and Gildea and Palmer (2002) built a system to predict FrameNet
and PropBank semantic roles correspondingly from phrase structure trees produced by the sta-
tistical Collins parser (Collins, 1997). Their work shows that improvements in parsing trans-
late into better semantic interpretations. Burke et al. (2005) evaluate automatically predicted
f-structures of LFG against PropBank. Their method employs an automatic conversion of Prop-
Bank annotations to bilexical dependencies and a mapping of f-structures to the PropBank-style
semantic annotations in dependency format. The reported upper bound of precision for the
PropBank, computed using gold trees, is 71.1%. The authors described some challenges of the
mapping of f-structures to PropBank triples and pointed out the demand of a universal set of
gold standard PropBank triples. Among the probable reasons why PropBank is not commonly
employed in parser comparison are that annotations are outside the limits of the grammatical
level to facilitate parser evaluation (Bos et al., 2008) and that its annotations concern only se-
mantic roles of verbs and thus offer a fragmental dependency analysis for a sentence as we have
seen in Figure 3.7a in Chapter 3.

There has been a number of studies on parser comparison in two main directions: (a) con-
trasting phrase structure to dependency parsing and (b) contrasting hybrid grammar-based ap-
proaches to purely statistical parsing methods. Cer et al. (2010) examined the performance of
several dependency parsers versus phrase structure parsers in terms of speed and accuracy using
the SD scheme. They found that phrase structure parsers with output post-conversion to depen-
dencies are more accurate than direct dependency parsers, while some of the latter ones are
40%-60% faster. However most phrase structure parsers allow users to trade off accuracy for
speed, and a best balanced configuration that is both fast and more accurate than direct depen-
dency parsers is achievable for the constituent Charniak-Johnson parser. The effects of domain
shifts are not addressed in this work.

116 5.3. Experimental setup

Fowler and Penn (2010) formally showed that a wide range of CCGs are context-free. They
then trained the PCFG Berkeley parser on CCGBank (Hockenmaier and Steedman, 2007) and
achieved better scores in terms of supertagging accuracy, PARSEVAL measures and depen-
dency accuracy than with the CCG parser. They thus conclude that the specialized CCG parser
is not necessarily more accurate for parsing with CCG than the general-purpose Berkeley parser.
Since the derivation tree of the ERG can be represented in the form of constituency tree, we con-
trast the performance of the Berkeley parser and the deep ERG parser in a similar manner. The
study of Fowler and Penn (2010), however, fails to also take parser efficiency into account.

In a related work for Dutch, Plank and van Noord (2010) suggest that, intuitively, one should
expect grammar-driven systems to be more robust to domain shifts than purely data-driven sys-
tems. They substantiated this expectation by showing that the HPSG-based Alpino system
performs better and is more resistant to domain variation on parsing into Dutch syntactic de-
pendencies than the direct dependency parsers Malt and MST.

It has been repeatedly shown in previous work that depending on the choice of downstream
application, the results of intrinsic and extrinsic evaluation might not correlate. Intrinsic evalua-
tion provides assessment of a parser as an independent unit whereas extrinsic evaluation demon-
strates the effects of the choice of a particular parsing system as a module of some application.
These two analyses of the quality of a parser are not always in line.

For example, Molld and Hutchinson (2003) argue about the limited value of intrinsic eval-
uation for application benchmarking. They find that the difference in answer extraction perfor-
mance with two different dependency parsers is less drastic and does not agree on some metrics
with the results of intrinsic evaluation based on grammatical relations.

Miyao et al. (2008) were first to show that the accuracy of an application is similar for
different WSJ-trained parsers drawn from a variety of distinct frameworks: phrase structure,
dependency and grammar-based parsing. The authors experiment with several parsers and de-
pendency formats in application to the protein-protein interaction (PPI) extraction from biomed-
ical text. However, it is worth noting that parsing speed is significantly different which affects
the efficiency of the whole system. While in the experiments of Miyao et al. (2008) the depen-
dency parsers are the fastest, followed by the grammar parsers and the phrase structure parsers
are relatively slower, in the present work a slower dependency parser is employed which results
in different ranking with respect to speed.

5.3 Experimental setup

This section presents resources and tools employed in our study and describes how we tuned
statistical parsers.

Resources and tools

Data The in-domain experiments are carried out on the DeepBank data with the splits sug-
gested by the developers of this resource: sections 0-19 for training, section 20 for tuning and
section 21 for testing (WSJ). As we recall from Section 2.5, DeepBank in its version 1.0 lacks
analyses for some 15 percent of the WSJ sentences, for which either the ERG parser failed to

Chapter 5. Cross-framework parser evaluation 117

Sentences Tokens Types

—g Train 33,783 661,451 56,582
2 Tune 1,721 34,063 8,964
éﬁ WSJ 1,414 27,515 7,668
g CB 608 11,653 3,588
g sC 864 13,696 4,925
Z WM 993 7281 1,007
¢ WS 520 8,701 2,974

Table 5.1: Sentence, token, and type counts for the DeepBank and Redwoods data sets

| LAS UAS
CD | 90.92 9397
SB | 90.65 93.05
DT | 9091 93.18

Table 5.2: Parsing accuracy of B&N with three dependency schemes, measured as labeled
attachment score (LAS) and unlabeled attachment score (UAS), excluding punctuation symbols

suggest a set of candidates (within certain bounds on time and memory usage), or the annota-
tors found none of the available parses acceptable. For cross-domain tests the following parts
of the Redwoods treebank were used: an early essay on open source software “Cathedral and
the Bazaar” by Eric Raymond (CB); a fragment of the SemCor corpus which is a sense-tagged
corpus with the Brown Corpus as the text and WordNet as the lexicon (SC); resources from
the VerbMobil corpus, a collection of transcribed spontaneous speech recorded in a dialogue
task (VM); a part of the Wikipedia-derived WeScience Corpus (WS). Table 6.1 provides the
summary of sentence, token and type counts for the data sets.

It is fair to mention that the CB and VM datasets have been used in ERG development and
for this reason the linguistic phenomena occurring in these texts are probably well-covered in
the grammar, which might give some advantage to PET over statistical parsers. On the other
hand, SC has hardly had a role in grammar engineering, and WS and section 21 of the Wall
Street Journal (WSJ) are absolutely unseen and are entirely new for the PET parser trained on
ERG version 1212, used in the experiments below.

Dependency format The parsers are compared on the projective DT dependency representa-
tion grounded in the formal HPSG theory of grammar as described in Chapter 3. The adoption
of this format is justified by the observations from the two previous studies. Firstly, the struc-
tural analysis in Chapter 3 showed that this format corresponds to the basic variant of Stanford
Dependencies and to the CoNLL scheme from the dependency parsing competitions with the
strongest Jaccard similarity of unlabeled dependencies for the pair DT and CoNLL. Secondly,
the empirical study in Chapter 4 that investigated accuracy levels available for the different tar-
get representations when training and testing a range of state-of-the-art parsers on the same data
sets, demonstrated that differences in parsing DT and the commonly used Stanford Basic (SB)
and CoNLL (CD) representations are generally small (see Table 5.2) .

118 5.3. Experimental setup

theatre n }—{ was v H new. aj ‘

Figure 5.1: Ambiguous token lattice

Parsers The parsers that were trained and run in the series of experiments below are the
grammar-based PET parser (Callmeier, 2000), the dependency B&N parser (Bohnet and Nivre,
2012) and the Berkeley phrase structure parser (Petrov et al., 2006).

There are two setups for PET: one optimized for accuracy and the other one optimized for
efficiency. The variant with accuracy optimization, henceforth ERG,, is trained with the default
configuration used by the DeepBank and Redwoods developers. The more efficient variant,
ERG,, is the best-performing configuration of Dridan (2013a) with lattice-based sequence la-
beling over lexical types and lexical rules. In this setup of the parser supertagging is performed
over ambiguous tokenization using a model similar to a standard trigram Hidden Markov Model.
A simplified example of an ambiguous token lattice over which the model operates is shown in
Figure 5.1 (Dridan, 2013b). Aforesaid integration of generalization of supertagging, so-called
iibertagging, with PET offers speed-up at marginal loss in accuracy.

Unlike the other parsers in our experiments, PET does not have a trivial interface to accept
pre-tokenized input. We feed the parser raw strings and it internally operates over an ambiguous
token lattice. To emulate the effects of gold-standard tokenization, the parser is requested to
generate a 2000-best list of sentence analyses which is then filtered for the top-ranked analysis
matching the gold treebank tokenization. This approach is imperfect, as in some cases no token-
compatible analysis may be on the n-best list, especially so in the ERG, setup (where lexical
items may have been pruned by the sequence-labeling model). When this happens, we fall back
to the top-ranked analysis and adjust our evaluation metrics to robustly deal with tokenization
mismatches.

B&N was chosen because it achieves higher levels of tagging and parsing accuracies than
pipeline systems Malt and MST for typologically diverse languages such as Chinese, English,
and German. Our experiments on parsing different dependency schemes in Chapter 4 showed
that B&N is also less sensitive to the choice of dependency format than Malt and MST. We
apply this parser mostly out-of-the-box with an increased beam size of 80.

As a context-free grammar parser we chose the Berkeley parser which is currently one of
the best-performing (and relatively efficient) PCFG engines. Since Berkeley requires training
on phrase structure trees, we used ERG derivations of HPSG analyses that can be looked at
as context-free trees. For technical reasons, transformation from ERG to PTB tokenization is
not applicable in the setup with context-free trees therefore we limited experiments involving
Berkeley to ERG tokens. The Berkeley parser was run in an accurate mode in our experiments.

Chapter 5. Cross-framework parser evaluation 119

Raw
i n t h e > 7 0 s
0 1 2 3 4 5 6 7 8 9 10
Gold Parsed
in the * 70s in the ’70s
<0,2,in> <0,2,in>
< 3,6, the > <3, 6, the >
<7,8 " > <17,11,70s >

<8, 11, 70s >

Figure 5.2: Character ranges for the phrase “in the 70" which is tokenized differently in parser
output with respect to the gold standard

Evaluation We apply evaluation metrics standard for dependency parsing, e.g. UAS and LAS
(see Section 2.4), which we complement with tagging accuracy scores (TA), where appropriate.
However application of the standard CoNLL eval.pl scorer is complicated due to tokenization
mismatches in PET outputs related to the fact that PET cannot be forced to use gold tokenization
as discussed before. In order to use eval.pl we would have to consider sentences with any
tokenization mismatch as parse failure but in this scenario PET will be over-penalized since
some correct dependencies will be eliminated from the parser output. For this reason, we apply
another syntactic evaluation tool that does not require sentence segmentation and tokenization
to exactly match the gold standard - Robust Evaluation of Syntactic Analysis (RESA) (Dridan
and Oepen, 2013). Internally, RESA uses character-based token indexing from the raw text.
The phrase “in the *70s" in Figure 5.2 is tokenized differently by the parser with respect to the
gold standard. The tokens are represented by their start and end character positions in the raw
text. The parser analyzes ‘““70s" as one entity which spans from positions 7 to 11 in the raw
string, while in the gold standard “”70s" is split into tokens “’" and “70s" with the corresponding
character ranges <7,8> and <8,11>. RESA carries out evaluation over triples of start character
position, end character position and dependency label, and produces the same scores as eval.pl
when there are no segmentation differences.

Tuning

B&N The choices about the level of detail conveyed by DT dependency labels and PoS tags
made in Section 4.2 maximize the accuracy of the Malt parser. The goal of the tuning is to
find out whether B&N can successfully use more information from the HPSG constructions or
whether the fine distinctions result in sparseness and diminished accuracy. Table 5.3 demon-
strates that complete ERG constructions do not give an advantage over short versions in terms of
accuracy, therefore further experiments with B&N are carried out on the DT scheme consistent
with descriptions in Chapters 3 and 4.

120 5.3. Experimental setup

LAS | UAS | LACC | Coverage
long labels

86.83 [89.69 [89.76 | 100
short labels

87.29 [90.02 | 90.07 | 100

Table 5.3: Tuning of B&N on section 20 of DeepBank. Evaluation performed with eval.pl.
“Long labels” means that B&N is trained with the full ERG constructions; “short labels” means
that B&N is trained with the ERG constructions cut on the first underscore

Berkeley Due to its ability to internally rewrite node labels, the Berkeley parser should be
expected to adapt well to ERG derivations that compactly store information required to recon-
struct the full HPSG analysis in the form of the phrase structure trees. Compared to the phrase
structure annotations in the PTB, there are two structural differences. First, the inventories of
phrasal and lexical categories are larger, at around 250 and 1000, respectively, compared to only
about two dozen phrasal categories and 45 parts of speech in the PTB?. Second, ERG deriva-
tions contain more unary (non-branching) rules, recording for example morphological variation
or syntactico-semantic category changes*.

Table 5.4 shows experiments to tune the Berkeley parser by choosing whether to preserve
or skip unary productions, and whether to implement original ERG productions (“long”) for
phrase categories or their generalizations as used in DT (“short”) or to keep long labels for
unary rules and a variant with short labels for branching rules (“mixed”). We report results for
training with five and six split-merge cycles, where fewer iterations led to less parse failures
(“gaps” in Table 5.4).

Preserving unary rules seems favorable for the Berkeley parser, while for the length of the
phrase categories there are apparent trade-offs: by choosing long labels over short ones we
give up some coverage (“gaps” in Table 5.4) but gain in labeled accuracy. We do not observe
a single best-performer, but as our primary interest across parsers is dependency accuracy, we
select the configuration with unary rules and long labels, trained with five split-merge cycles,
which seems to afford near-premium LAS at near-perfect coverage. In addition, this setup does
not require modifications in the native ERG derivations.

3Examples of phrasal categories: PTB - ADJP (adjective phrase), NP (noun phrase), PP (prepositional phrase;
examples); ERG - sb-hd_mc_c (subject-head, main clause), sb-hd_nmc_c (subject-head, embedded clause).
Examples of lexical categories: PTB - NNS (noun, plural), JJR (adjective, comparative); ERG - n_pl_olr (plural
noun with “s” suffix), n-nh_j-cpd_c (compound from noun and adjective).

“Examples of unary rules: PTB - S (unary in a sentence where the noun phrase was left unspecified in the orig-
inal clause), NP (unary recursive rule); ERG - v_pas_odIr (morphological rule, past-participle), v_n3s-bse_ilr
(morphological rule, non-third person singular or base inflection), hdn_bnp-pn_c (bare noun phrase with a proper

noun).

Chapter 5. Cross-framework parser evaluation 121

Unary Rules Removed
Labels Long Short
Cycles 5 6 5 6
Gaps 3 3 0 0
TA 88.46 87.65 89.16 88.46
F, 74.53 73.72 75.15 73.56

LAS 83.96 83.20 80.49 79.56
UAS 87.12 86.54 87.95 87.15

Unary Rules Preserved

Labels Long Short Mixed
Cycles 5 6 5 6 5 6
Gaps 2 5 0 0 11 19
TA 90.96 90.62 91.11 91.62 90.93 90.94
F, 76.39 75.66 79.81 80.33 76.70 76.74
LAS 86.26 85.90 82.50 83.15 86.72 86.16
UAS 89.34 88.92 89.80 90.34 89.42 88.84

Table 5.4: Tagging accuracy (TA), PARSEVAL Fy, and dependency accuracy (LAS and UAS) for
the Berkeley parser on the development data. “Long” means that Berkeley is trained with the full
ERG constructions; “short” means that Berkeley is trained with the ERG constructions cut on
the first underscore; “mixed” means that Berkeley is trained with the the full ERG constructions
for unary rules and the ERG constructions cut on the first underscore for branching rules; “gaps”
stands for the number of sentences for which Berkeley does not produce an analysis; 5 and 6
stand for the number of split-merge iterations

‘ Gaps ‘ Time ‘ TA. ‘ LAS, UAS,

Berkeley 140 1.0 929 | 86.65 89.86

B&N 0+0 1.7 929 | 86.76 89.65

ERG, 0+0 10 97.8 | 92.87 9395

ERG. 13+44 1.8 964 | 91.60 92.72
Table 5.5: In-domain parsing experiments. Parse failures and token mismatches (“gaps”), effi-
ciency (“Time”) measured in seconds per sentence, tagging accuracy (“TA.") and dependency
accuracy (“LAS.” and “UAS.) on WSJ. Index . means that evaluation is performed with the

RESA software using character-based token indexing from the raw text

5.4 In-domain parsing results

Using the experimental setup described above, we perform a set of experiments where we
compare Berkeley, B&N and the two setups for PET, ERG, and ERG,, in terms of coverage,
efficiency and accuracy on WSJ. Table 5.5 provides a summary of the in-domain (section 21 of
WSJ) cross-paradigm comparison of the three parsers. The table shows trade-offs in coverage,
time, tagging accuracy and labeled and unlabeled dependency accuracies.

There are two sources of incomplete coverage: parse failures and differences in tokenization
in parse output with respect to the gold standard. The second problem is peculiar only to the
ERG parser, since it operates on raw strings while B&N and Berkeley receive gold tokens as

122 5.5. Cross-domain parsing results

input. B&N and ERG, deliver complete coverage, Berkeley experiences one parse failure,
whereas ERG, cannot parse 13 sentences (close to one percent of the test set), and we observe
44 inputs where parser output deviates in tokenization from the treebank. This is likely an
effect of the lexical pruning applied in this setup. Berkeley is the fastest parser in our setup
and ERG, is one order of magnitude slower. The joint segmentation and supertagging setup of
Dridan (2013a) leads to a speed-up of almost a factor of six and helps to achieve parsing speed
comparable with B&N. In terms of tagging and dependency accuracies, the two statistical data-
driven parsers perform very similarly. With the two setups of the grammar-driven parser there is
about 1.3% accuracy loss along all the three metrics for the faster ERG. due to the supertagging
constraints on the parser search space. However, the most important result is that both setups
of the ERG parser have significantly higher accuracies than B&N and Berkeley, with ERG,
resulting in 6% increase in labeled accuracy score.

5.5 Cross-domain parsing results

This section presents cross-domain experiments on the datasets from the Redwoods treebank
that aim to test the domain-resilience of the parsers in question and ascertain the ERG parser
gains in dependency accuracy over data-driven parsers. Table 5.6 introduces coverage, tagging
accuracy, labeled and unlabeled attachment scores for the four parsers applied to the four new
data sets without domain adaptation.

The first and most obvious observation is that for all the parsers domain shift adversely
affects accuracy scores, an expected and well-known effect (Gildea, 2001). However, the im-
portant fact is that the drop is significantly smaller for the ERG parsers in comparison to the
data-driven parsers across all the domains. As in the in-domain experiments, the Berkeley and
B&N parsers perform similarly to each other. At the same time accuracies of ERG, and ERG,
are relatively close to each other and notably higher than for the data-driven parsers. There is
a rather clear distinction between “easier” and “harder” domains for Berkeley and B&N: both
have the smallest labeled dependency accuracy loss (less than 6.4 points) on the texts from
the WeScience corpus (WS) and the largest gaps (more than 11.4 points) for the spontaneous
speech transcriptions (VM). For ERG, and ERG, the differences in accuracy scores are less
pronounced, though the ERG parsers also tend to perform better on WS and experience most
tokenization mismatches on VM. The tagging accuracies also indicate that the ERG parsers are
more resilient to domain variation than B&N and Berkeley, and that WS is the easiest domain
among the four for all the parsers, and VM is, on the other hand, the hardest. While B&N
achieves complete coverage, Berkeley experiences one parse failure on CB and SC just as on
the in-domain data, and 7 parse failures on VM and WS. It is interesting to note that ERG, has
less parse failures in the cross-domain experiments than in the in-domain test. The possible
reason for that can be that the average sentence length is shorter for the out-of-domain data
compared to WSJ.

From the out-of-domain results, it is evident that the general linguistic knowledge available
in ERG parsing makes it far more resilient to variation in domain and text type. However, we
did not perform domain adaptation for the statistical parsers.

Chapter 5. Cross-framework parser evaluation 123

Gaps TA. LAS. UAS,
Berkeley 140 87.1 78.13 83.14

0 B&N 0+0 87.06 | 77.70 82.96
ERG, 0+4 96.3 90.77 92.47

ERG. 8+8 95.3 90.02 91.58
Berkeley 140 87.2 79.81 85.10

> B&N 0+0 85.9 78.08 83.21
ERG, 0-+0 96.1 90.84 92.65

ERG. 1147 94.9 89.49 91.26
Berkeley 7+0 84.0 74.40 83.38

- B&N 0+0 83.1 7528 82.86
ERG, 0+40 94.3 90.44 92.27

ERG. 11+42 94.4 90.18 9175
Berkeley 740 87.7 80.31 85.11

‘é’ B&N 0+0 88.4 80.63 85.24
ERG, 0-+0 97.5 91.33 9248

ERG. 4+12 96.9 90.64 91.76

Table 5.6: Cross-domain parsing experiments. Coverage (parse failures and token mismatches)
and tagging and dependency accuracies on Redwoods test data. Attachment scores are calcu-
lated including punctuation symbols

5.6 Error analysis

The ERG parsers outperform the two data-driven parsers on the WSJ data. Through in-
depth error analysis, we seek to identify parser-specific properties that can explain the observed
differences. In the following, we look at (a) the accuracy of individual dependency types, (b)
dependency accuracy relative to (predicted and gold) dependency length, and (c) the distribution
of LAS over different lexical categories for Berkeley, B&N and PET (ERG,).

The histograms in Figures 5.3-5.7 present the distribution of the most frequent dependency
labels and the accuracy of the frequent individual dependency types on the in- and out-of-
domain datasets. We observe that over all domains, the relations hd-cmp (head-complement)
and sp-hd (specifier-head) are among the 5 most frequent and accurate. The notion of an adjunct
is difficult for all three parsers across domains as two of the most error-prone dependency labels
are the hd-aj (post-adjunction to a head) and hdn-aj (post-adjunction to a nominal head) relations
employed for relative clauses and prepositional phrases. The most common error for the latter
relation is verbal attachment.

Dependency length is the distance between a head and its argument. It has been noted that
dependency parsers may exhibit systematic performance differences with respect to dependency
length (McDonald and Nivre, 2007). Figures 5.8-5.12 show dependency label precision and
recall relative to dependency length.

Dependencies spanning many tokens have different frequencies on different domains: for
example, dependencies with length 21-30 comprise 0.4% of WSJ, 0.26% of CB, 0.3% of SC
0% of VM and 0.29% of WS. Sentences on VM are very short and this dataset contains twice as

124

8000

7000

5000

4000

3000

2000

1000

100

5.6. Error analysis

80

60

precision

40

20

0

l

P o o T z T E =z =z T
- £9 = PET = £ £ £ 38 3 g & & =
& 3 = 2 2 8 38 2 2 %
e } 5 % 5 3 2 & § I g
& Il Berkeley [} I T s = £
< 3 Bohnet&Nivre dependency label

Figure 5.3: Domain: WSJ. (Left) Distribution of dependency labels; (right) precision of attach-
ment of the most frequent dependency types

3500

3000

2500

2000

1500

1000

500

100

80

60

precision

40

20

0

[PET
Il Berkeley
[Bohnet&Nivre

HD-CM

SP-HD
SB-HD

=
o T
e}
4

HD-AJ
HDN
A-HD

HDN-AJ
N

A-HDN
MRK-NH

dependency label

Figure 5.4: Domain: CB. (Left) Distribution of dependency labels; (right) precision of attach-

ment of the most frequent dependency types

5000

4000

3000

2000

1000

PP-PP
VPPRVPPR

N-NH
HD-CL
Vv

100

80

60

precision

40

20

0

[PET
W Berkeley
[Bohnet&Nivre

HD-CM

SP-HD
SB-HD

HD-AJ
ROOT
A-HD

A-HDN
HDN-AJ
MRK-NH
FLR-HD

dependency label

Figure 5.5: Domain: SC. (Left) Distribution and precision of dependency; (right) attachment
of the most frequent dependency labels

Chapter 5. Cross-framework parser evaluation 125

3000 100
2500 80
2000
60
<
s
]
1500 S
5
40
1000
20
500
0 0
- TOITZOQZ2aZ42a0a Z2lFaa = = = T 4 z o
SEeeT22T8 2823055853078 ¢%F = PET s 5 2 2 £ 2 £ § 38 2
CQaaPrYaIsIeSgrsgx 252 8 8 2 & g & ¥ ¥ &8 I <
QTaa ETx2=2"g T7a EEE Berkeley o] o £ I = 2
3 Bohnet&Nivre dependency label

Figure 5.6: Domain: VM. (Left) Distribution of dependency labels; (right) precision of attach-
ment of the most frequent dependency types

3000 100

2500
80

2000

60

precision

40

20

0

xazZo o =z [=} T = = = z =z
=T [PET E 2 8 £ £ g &8 % = 8
S&50 R & £ @ 3 &8 I £ ¥

z ZI EEE Berkeley g 2 =T © Z E3 £ g
["

3 [Bohnet&Nivre dependency label

Figure 5.7: Domain: WS. (Left) Distribution of dependency labels; (right) precision of attach-
ment of the most frequent dependency types

126 5.6. Error analysis

100

80

80

60 60

Precision
Recall

a0 a0

20p| ~ - pet 20| ~ - pet
berkeley berkeley
— bohnet-nivre — bohnet-nivre
0 n n A n " n 0 n n A n "
0 5 10 15 20 25 30 0 5 10 15 20 25 40
Dependency length Dependency length

Figure 5.8: Domain: WSJ. (Left) Dependency label precision relative to predicted dependency
length; (right) label recall relative to gold dependency length

100 100 T T T T
~ N "
~ NV \‘ I
e Iy gt
80\ 1 80 v 1
N~/ [
! |
! |
! i
g sof i _ 6of k
2 1 ® I
@ 3
5 1 2 |
< 40} : 40t H
|
! !
- - pet - - pet !
20} p 1 20} p H
berkeley ! berkeley |
. I . H
— bohnet-nivre i — bohnet-nivre !
o n n ! . L o n n ! . . |
0 5 10 15 20 35 40 0 5 10 15 20 25 40
Dependency length Dependency length

Figure 5.9: Domain: CB. (Left) Dependency label precision relative to predicted dependency
length; (right) label recall relative to gold dependency length

few dependencies than SC domain although it comprises more sentences. In our experiments,
we find that Berkeley and B&N have comparable precision and recall on short dependencies (up
to five words), and on longer dependency relations (5-15 words) Berkeley holds a slight edge
over B&N, with PET systematically outperforming the two other parsers. Although B&N has
the lowest recall across domains, in terms of precision it surpasses Berkeley on dependencies
spanning 10-15 words on CB and VM.

The histograms in Figures 5.13-5.17 present the distribution of PoS tags over the datasets
and the distribution of LAS over different lexical categories. We observe that over all the do-
mains, the category X (others) has low frequency (below 75 in general, and 1 on WS). All parsers
show good performance on determiners (d) and complimentizers (cm). Nouns and verbs (n and
V) are frequent on all domains and parsers generalize quite well, while conjunctions (C) and
various types of prepositions (p and pp) are the most difficult for all three parsers. The cross-
domain picture is similar to the in-domain, but we find that the difference between the accuracy
of PET and the data-driven parsers on adjectives, adverbs and conjunctions is more pronounced
on the out-of-domain data than on the WSJ test set.

Chapter 5. Cross-framework parser evaluation

Precision

- - pet

berkeley

— bohnet-nivre
n

n

5

L n
10 15 20
Dependency length

) H
25 30 35 40

Recall

127

100 - - - — T
~ h g
\ ' s 1 [
\ Ve i
80 \ i 1
' (LI
[N
60} r ne g i
Aoyt
N R
[‘l I’g i ||
40t IS R R]
Vi [T
U [VI
- N [T i
201 pet [N : 1
berkeley [i
— bohnet-nivre Ly i
0 n N . . . L
0 5 10 15 20 25 30 35 40

Dependency length

Figure 5.10: Domain: SC. (Left) Dependency label precision relative to predicted dependency
length; (right) label recall relative to gold dependency length

Precision

pet
berkeley
bohnet-nivre]

n n
10 15 20 25 30 35 40
Dependency length

Recall

pet
berkeley
bohnet-nivre]

L n
5 10 15 20 25
Dependency length

30 35 40

Figure 5.11: Domain: VM. (Left) Dependency label precision relative to predicted dependency
length; (right) label recall relative to gold dependency length

Precision

- pet
berkeley
bohnet-nivre

5

10 15 20 25
Dependency length

Recall

100

80

60

40

20

- pet
berkeley \
bohnet-nivre N

5 10 15 20 25
Dependency leagth

Figure 5.12: Domain: WS. (Left) Dependency label precision relative to predicted dependency
length; (right) label recall relative to gold dependency length

128 5.6. Error analysis

It has been shown in the literature that coordinate structures headed by conjunctions are
harder to parse for direct dependency parsers while this analysis is more expressive linguisti-
cally (Schwartz et al., 2012), therefore it is not surprising that the DT analysis of coordination is
challenging for B&N. However, our results establish the same effect also for the PCFG parser
and to a lesser degree for ERG,. Nonetheless, conjunctions are among the lexical types on
which PET most clearly outperforms the other two parsers with respect to their attachment and
label. As it is evident from Table 5.7 which shows error rates of the parsers for the most com-
mon conjunctions “and”, “but” and “or” on the four domains, the error rates of PET do not
exceed 24%, while the error rates of other parsers vary in the range 24%-34% for the lexical
type ¢_xp_and_le (conjunction “and”). For many of the coordinate structures parsed correctly
by ERG, but not the other two on WSJ, we found that attachment to root constitutes the most
frequent error type — indicating that clausal coordination is particularly difficult for the data-
driven parsers.

Attachment of prepositional phrases is a significant and frequent source of ambiguity. ERG
lexical types provide a lot more detailed analysis of prepositions than standard PTB tags, for
instance distinguishing lexicalized PPs like “in full” among others and making explicit the dif-
ference between semantically contentful and vacuous prepositions, see below. An interesting
result is that parsers have high labeled accuracy scores for some preposition classes while fail-
ing to parse the others. Table 5.8 shows four preposition types for which all three parsers
make accurate predictions: p_np_ptcl-of_le (“history of Linux”)—a semantically vacuous
of, p_np_ptcl_le (“look for peace”)—another semantically vacuous preposition, p_np_i_le
(“talk about friends ”)—iﬁersective preposition, p_np_i-reg_le (“starting at 75 cents”)—
preposition which constrains its complement to a non-temporal noun phrase; all four types
select for noun phrase complements. For example, p_np_ptcl-of_le ranks among the twenty
most accurate lexical categories across the board. A frequent error of the statistical parsers for
the preposition type p_np_ptcl-of_le is attachment of the preposition to the number instead of
the % symbol in phrases like “64% of”. The errors related to incorrect attachment to coordi-
nating conjunction instead of conjunct are associated with the lexical types p_np_ptcl_le and
p_np_i_le, whilst for p_np_ptcl_le and p_np_i-reg_le errors on long dependencies are most
typical. PET demonstrates significantly stronger results than the data-driven parsers, which is
most likely by virtue of lexical information about the argument structure of heads encoded in
the grammar.

The ERG lexical rules, that function as lexical types in DT, encode valency information
in the form of an ordered sequence of complements for the given type, for example v_np-
pp_prop_le is a verb that requires two complements: a noun phrase and a prepositional phrase
(see Example (5.1)).

HD-CMP

X
. managers sneak massage therapists into the office ...

5.1) v_np-pp_prop_le

... below the 4 % to 5 % growth of recent years - but...
(5 2) n_pp_mc-of_le

Chapter 5. Cross-framework parser evaluation 129

12000 ——— — T
1.0
10000 R
08
8000 - 1
06
)
6000 3
04
4000 [1
02 = PET
Wl Berkeley
2000 =1 Bohnet&Nivre
oo a av c cm d n p pp pt VvV X
0 1 m " PoS
- c d

&
o
<
o
SE

Figure 5.13: Domain: WSJ. (Left) Distribution of PoS tags; (right) accuracy of parsers for dif-
ferent PoS tags. V - verb, n - noun, aj - adjective, av - adverb, p - preposition, pp - prep phrase,
d - determiner, C - conjunction, CmM - complementizer, X - miscellaneous, pt - punctuation

4500 ———— — T
1.0 - -
4000 [1
3500 g 08
3000 R
06
2500 1)
3
2000 1 04
1500 F g
02 = PET
1000 B I Berkeley
3 Bohnet&nNivre
500 |- 1 0.0
I aj av c cm g n p pp pt V X
0 I m . " PoS
aj av ¢ em d n p pp pt VvV X

Figure 5.14: Domain: CB. (Left) Distribution of PoS tags; (right) accuracy of parsers for dif-
ferent PoS tags

5000 T T T T T T T
1.0 - -
4000 T 0.8
3000 _ 0.6
)
3
04
2000 1
02 = PET
1000} i I Berkeley
3 Bohnet&nNivre
I oo aj av c cm g n p pp opt VvV X
0 1l n. n PoS
aj av ¢ ecm d n p pp pt VvV X

Figure 5.15: Domain: SC. (Left) Distribution of PoS tags; (right) accuracy of parsers for dif-
ferent PoS tags

130 5.6. Error analysis

2500
1.0
2000 1 08
1500 06
)
3
04
1000
02 = PET
500 i I Berkeley
3 Bohnet&nNivre
I 00 a av c cm d n p P Vv x
0 I m m PoS
aj av ¢ m ¢ n P pp VvV X

Figure 5.16: Domain: VM. (Left) Distribution of PoS tags; (right) accuracy of parsers for
different PoS tags

3500

1
3000
0.8
2500
0.6
2000
Py
3
1500 o4
1000 02 == PET a
W Berkeley
500 == B&N
0.0 -
a av c ecm d n p pp Pt v x
L1 ros
aj av c em d n P pp Pt v X

Figure 5.17: Domain: WS. (Left) Distribution of PoS tags; (right) accuracy of parsers for
different PoS tags

Chapter 5. Cross-framework parser evaluation 131

Labeled accuracy error rate
Lex. type || Freq. | PET | Berkeley | B&N [Freq. | PET | Berkeley | B&N
WSJ CB

c_xp_and_le || 521 | 14% 24% 24% 264 | 17% 31% 34%
c_Xxp_but le| 126 | 6% 8% 9% 61 7% 18% 25%
c_xp_or_le 92 | 12% 18% 27% 40 | 20% 40% 45%

SC VM

c xp_and_le || 400 | 16% 29% 34% || 177 | 7% 18% 17%
c_xp_but_le 69 4% 10% 12% 27 4% 7% 11%
c_xp_or_le 41 | 17% 29% 39% 26 | 19% 62% 65%

WS

c_ xp_and_le || 199 | 24% 32% 34%
c_xp_but_le 12 | 8% 33% 17%
c_xp_or_le 49 | 14% 29% 37%

Table 5.7: Error rates of PET, Berkeley and B&N for the three frequent conjunctions (“and”,
“put” and “or””) on WSJ, CB, SC and VM domains

LAS
Lex. type Freq. ‘ PET ‘ Berkeley ‘ B&N H Freq. ‘ PET ‘ Berkeley ‘ B&N
WSJ CB

p_np_ptcl-of_le | 358 | 100% 92% 94% 191 | 98% 90% 88%
p_np_ptcl_le 378 | 94% 78% 77% || 174 | 98% 72% 70%
p_np_i_le 744 | 80% 71% 64% | 285 | 76% 62% 64%
p_np_i-reg_le || 707 | 79% 72% 76% | 207 | 73% 62% 64%
SC VM
p_np_ptcl-of_le || 178 | 98% 92% 90% 28 | 100% 93% 93%
p_np_ptcl_le 224 | 96% 76% 71% 54 85% 63% 54%
p_np_i_le 369 | 78% 59% 66% | 205 | 68% 58% 61%
p_np_i-reg_le 378 | 75% 63% 66% 88 74 % 64% 73%

WS
p_np_ptcl-of_le || 161 0% 2% 1%
p_np_ptcl_le 157 | 1% 7% 6%
p_np_i_le 212 | 12% 16% 18%

p_np_i-reg_le 212 | 10% 14% 15%

Table 5.8: Labeled accuracy scores for the four frequent lexical types for prepositions for which
PET outperforms Berkeley and B&N

HD-CMP

. sounds more like a shaggy poet describing his work than ...
aj_pp_i-more_le

(5.3)

In order to gain a better understanding of the differences observed in the analysis of prepo-
sitions, we analyzed parse errors on prepositional complements for heads of various lexical
types, including most frequent verb, noun and adjunct, illustrated by Examples (5.1), (5.2)

132 5.7. Sanity experiments

type of head total | ERG, Berkeley B&N
aj_pp_i-more_le | 20 20 19 19
aj_pp_i_le 21 21 19 19
n_pp_c-of_le 93 93 86 88
n_pp_mc-of_le 82 82 75 79
v_p-np_le 58 58 51 53
v_pp_e_le 80 78 70 54

Table 5.9: Number of total and correctly analyzed with ERG,, Berkeley and B&N prepositional
complements for various lexical types of the head—adjunct, noun and verb—on the WSJ do-
main

domain ‘ total ‘ ERG, Berkeley B&N
WSJ 940 | 905 778 799
CB 469 | 446 348 354
SC 602 | 553 471 454
VM 164 | 142 113 119
WS 372 | 361 293 289

Table 5.10: Number of total and correct analyses of prepositional complement structures

and (5.3). Example (5.1) depicts the analysis of the predicate-argument structure of the verb
(“sneak”) with a noun phrase (“massage therapists”) and a prepositional phrase (“into the of-
fice”). Both B&N and Berkeley incorrectly define the head of the phrase “into the office” as
noun “therapists”, while ERG,, delivers the parse tree that corresponds to the gold standard. In
Example (5.2) ERG, correctly identifies “growth” as the head of prepositional phrase “of recent
years” at the same time as B&N attaches “of”” to the word “4” and Berkeley to the conjunction
“but” with erroneous dependency labels. In Example (5.3), ERG, has no problems with the
prepositional complement, and B&N and Berkeley predict the proper label, but wrongly sug-
gest attachment to the noun “work” and verb “sounds” correspondingly.

In most cases the lexical category of the head explicitly shows the requirement of a prepo-
sitional complement and taking advantage of this rule ERG, consistently outperforms other
parsers in- and cross-domain as depicted in Table 5.10.

It appears that lexical information about the argument structure of heads encoded in the
grammar allows ERG, to analyze these prepositions (in context) much more accurately.

5.7 Sanity experiments

Based on the results presented in the previous section it may be argued that the superior
performance of PET is caused by a large set of complex lexical types, sparsely distributed over
the corpus and the alternative tokenization approach. By design, the grammar-based parser is
better adapted to handle data in this format than statistical data-driven parsers.

In this section we are going to verify our results in more conventional setup, ruling out the
effects of the specifics of the ERG lexical rules and ERG-style tokenization. The goal is to

Chapter 5. Cross-framework parser evaluation 133

Lexical Types | PTB PoS Tags
scoring punct. | scoring punct.
Gaps LAS. UAS, | LAS. UAS.,
B&N 0+0 88.78 9152 | 91.56 93.63
ERG, | 13+9 92.38 9353 | 9238 93.53
B&N 0+0 81.56 86.18 | 84.54 88.53
ERG, 8+4 90.77 92.21 | 90.77 92.21
B&N 0+0 81.69 86.11 | 85.17 88.85
ERG, | 11+0 90.13 91.86 | 90.13 91.86
B&N 0+0 77.00 83773 | 82776 88.11
ERG, | 10+0 91.55 93.08 | 91.55 93.08
B&N 0+0 82.09 86.17 | 84.59 88.4l
ERG, 4+0 91.61 92.62 | 91.61 92.62

WS| VM | SC | CB |WSJ

Table 5.11: Coverage and dependency accuracies with PTB tokenization and either detailed or
coarse lexical categories

confirm that the performance of PET is not caused by its bias to particulars of unification-based
grammars or its internal capacities for morphological analysis guided by the ERG lexical rules.
The Berkeley parser is not included in this study because its output cannot be transformed
to a dependency tree with PTB tokens without substantial modifications of the original ERG
derivation structure due to technical reasons. In these experiments the B&N and ERG, parsers
are run with token-splitting style that complies with the PTB tradition, first using ERG lexical
rules as PoS, and then using only the standard set of PTB PoS tags.

The results are presented in Table 5.11. We observe that tokenization method indeed affects
the accuracies of both parsers and the PTB approach appears to be easier: the performance of
B&N improves by 2% on the in-domain data and between 1.5% and 3.9% on the out-of-domain
sets; for PET the increase in scores is less drastic and is below 1% on all the domains. The
difference between in-domain LAS for PET and B&N is diminished by 1.2% with the change of
the tokenization model, but the qualitative picture is still the same with PET producing stronger
results. The cross-domain differences in performance of PET and B&N remain extensive.

With further simplification by switching to PTB PoS tags, we find that the performance of
B&N on WSJ is boosted and the gap between PET and B&N reduces to 0.82% (labeled and
unlabeled attachment scores of ERG, do not change when moving from ERG lexical types to
PTB PoS because PET predicts both tag sets simultaneously, which means no parser re-training
or re-running is needed and the choice of the PoS type depends only on the settings of the
converter). However, ERG_. still provides 10% error reduction compared to B&N. The accuracy
difference between PET and B&N remains pronounced on the out-of-domain datasets and the
trend is the same as with ERG lexical types and ERG-style tokenization: while the cross-domain
performance of PET is comparable with in-domain results, B&N suffers significant accuracy
loss due to the domain shift. These results support the previous statements about the domain-
resilience of the grammar-based parser.

In the DT format punctuation symbols are attached to the nearest tokens to the left, which
makes statistical analysis of punctuation relatively simple. To eliminate this effect, we compute

134 5.8. Extrinsic evaluation on negation resolution task

PTB PoS Tags
scoring punct. | not scoring punct
LAS UAS | LAS UAS
B&N | 91.56 93.63 | 90.45 92.80
ERG, | 91.82 9297 | 91.08 92.38
B&N | 84.54 88.53 | 83.35 87.65
ERG. | 90.54 91.97 | 89.80 91.37
B&N | 85.17 88.85 | 83.56 87.62
ERG. | 89.95 91.68 | 89.05 90.97
B&N | 82.76 88.11 | 79.73 86.02
ERG,. | 91.64 93.17 | 90.36 92.15
B&N | 8459 88.41 | 83.20 87.46
ERG, | 91.61 92.62 | 90.78 91.91

WS| VM |SC | CB |WSJ

Table 5.12: Dependency accuracies computed with the eval.pl software for PTB tokenization
and coarse lexical categories

scores without taking into account punctuation. The RESA software does not support depen-
dency scoring without punctuation, for this reason we have to turn to the eval.pl software. For
B&N the switch of evaluation software makes no difference when scoring punctuation because
the parser provides full coverage and receives gold PTB PoS as input. For ERG,, however,
there are cases of parse failures and tokenization deviating from the gold standard where eval.pl
penalizes such cases stricter than RESA, i.e. the whole sentence is counted as incorrect by the
eval.pl software if there is any tokenization mismatch with the gold standard (compare Tables
5.11 and 5.12, evaluation on PTB tokens with punctuation for ERG,). Table 5.12 contrasts eval-
uation with and without punctuation symbols: the in-domain difference in LAS reduces to 0.63
percentage points while the gap on the cross-domain data remains over 5 percentage points.
Thus, the results of evaluation ignoring punctuation are qualitatively very similar to evaluation
with punctuation and do not add any novelty to our findings.

5.8 Extrinsic evaluation on negation resolution task

Using the task of negation resolution introduced in Section 4.5, we would like to test whether
the improved accuracy of the HPSG-based parser translates into better performance of the nega-
tion resolution system. As in Section 4.5, we use the UiO, system (Lapponi et al., 2012b), the
Conan Doyle corpus and the evaluation software of Morante and Blanco (2012). We produce
DT dependencies with PTB PoS tags for the NR software using PET and B&N. The Berkeley
parser is not included in the experiment because UiO, requires PTB tokenization.

Intrinsic parser evaluation on the 91 manually annotated sentences taken from the story
Wisteria Lodge, a sub-set of Conan Doyle development data, is shown in Table 5.13. The
Conan Doyle data set represents a new domain for the grammar as it was not available before the
release of the ERG in version 1212 applied in the present work. According to our expectations,
the results are very similar to the cross-domain evaluation in Table 5.11.

Chapter 5. Cross-framework parser evaluation 135

| Gaps TA, LAS. UAS,
B&N 0+0 9224 8392 87.92
ERG, | 0+0 9636 9254 93.84
ERG. | 0+3 9421 8922 9057

Table 5.13: Parse failures and token mismatches (‘gaps’), and tagging and dependency accuracy
on the sub-set of the Conan Doyle development data

ERG, ERG,
Train Dev Test Train Dev Test
total # sentences 3644 787 1089 || 3644 787 1089

% Coverage 89.96 O91.11 87.42 | 81.64 83.99 79.98
% Gold tokenization | 89.24 91.11 86.23 || 80.98 83.86 78.88
% Fall-back 10.76 8.89 13.77 || 19.02 16.14 21.12

Table 5.14: PET coverage on Conan Doyle training, development and test sets

Unlike B&N, PET does not deliver complete coverage because of parse failures (especially
the ERG, variant due to excessive pruning of the search space) and tokenization mismatches
with the gold standard (since processing starts from raw strings). For example, 26 sentences
from the training set parsed with ERG, differ from the gold sentences in tokenization of the
word “cannot”; for ERG, there are 24 such sentences. For the sentences that are not parsed
by PET, we fall back to the analyses of B&N. Table 5.14 shows the statistics that describe the
above mentioned issues: the coverage of PET, the proportion of sentences that received analysis
matching the gold tokenization and the proportion of sentences for which the fall-back to the
B&N parses is enabled, i.e. for ERG, 89.24% of the training set consists of the PET analyses
and 10.76% of the B&N analyses.

Tables 5.15 and 5.16 show the results for ERG,, ERG, and B&N with DT dependencies on
the development and test sets respectively. We include the scores from Lapponi et al. (2012b)
using the Malt parser with Stanford Basic dependencies for comparison. Somewhat unexpect-
edly, the performance contrasts observed in intrinsic parser evaluation in Table 5.6 are not re-
flected in the results of the extrinsic evaluation. The paired sign test shows that none of the
differences in experiments with the negation resolution system are statistically significant.

One hypothesis, explaining the results is that the accuracies of the parsers on the part of
the Conan Doyle domain that was not manually annotated are not significantly different, unlike
on the other domains. For testing this proposition, a manual HPSG annotation of the entire
Conan Doyle corpus is required. Another hypothesis that can explain the current picture is
that negation resolution in our setup is not as sensitive to parser accuracy as the other tasks
mentioned in the related work section, i.e. answer extraction (Molld and Hutchinson, 2003),
protein-protein interaction extraction (Miyao et al., 2008) and event extraction (Miwa et al.,
2010). In order to develop this hypothesis, we could choose another downstream application
relying on syntactic dependencies, such as semantic dependency parsing (Oepen et al., 2014).

136 5.9. Extrinsic evaluation on semantic dependency parsing

ERG, ERG. B&N | Malt
Cues 100 100 100 100
Scopes 80.00 80.85 80.43 | 80.00
Scope tokens | 86.65 88.10 88.13 | 85.75
Negated 75.73 73.33 73.33 | 80.55
Global 64.31 63.24 65.89 | 66.41
CNS 45.83 4444 4792 -

Table 5.15: Performance of the negation resolution system UiO, on the development set with
gold cues on the Conan Doyle corpus from the 2012*SEM shared task using dependency fea-
tures from the analyses of ERG,, ERG, and B&N with DT dependencies in contrast with the
analyses of the Malt parser with SB dependencies from Lapponi et al. (2012b)

ERG, ERG. B&N | Malt
Cues 91.31 9131 91.31]91.31
Scopes 73.52 74.83 75.40 | 72.39
Scope tokens | 83.90 83.61 85.09 | 82.20
Negated 61.29 6095 60.44 | 61.79
Global 53.73 5553 55.17 | 54.82
CNS 4043 41.28 41.28 -

Table 5.16: Performance of the negation resolution system UiO, on the test set with gold cues
on the Conan Doyle corpus from the 2012*SEM shared task using dependency features from
the analyses of ERG,, ERG, and B&N with DT dependencies in contrast with the analyses of
the Malt parser with SB dependencies from Lapponi et al. (2012b)

Chapter 5. Cross-framework parser evaluation 137

5.9 Extrinsic evaluation on semantic dependency parsing

Since the results of the extrinsic evaluation on negation resolution have not confirmed our
expectations, we are going to explore a second task, namely broad-coverage semantic depen-
dency parsing (SDP), a shared competition from SemEval 2014 (Oepen et al., 2014). The
best-performing system in the open track of the contest, called Priberam Martins and Almeida
(2014), is based on a feature-rich linear model that can take advantage of information from the
syntactic dependency parser. In the following, we will investigate whether syntactic dependency
features provided by the grammar-based system facilitate more accurate semantic parsing than
features delivered by the data-driven tools.

Broad-Coverage Semantic Dependency Parsing

By the definition from SemEval 2014, Broad-Coverage Semantic Dependency Parsing is
the problem of recovering sentence-internal predicate—argument relationships for all content
words. In contrast to syntactic parsing which targets the grammatical structure of a sentence,
semantic parsing aims to recover semantics, and while syntactic analysis is usually limited
to tree structure representations, semantic parsing applies to more general graph processing.
Semantic dependency parsing is to some extent related to semantic role labeling (Gildea and
Jurafsky, 2002). However the latter task is usually restricted to argument identification and
argument labeling of nominal and verbal predicates, while semantic parsers aim at recovering
semantic dependencies between all content words in a sentence. Another difference between
the tasks is that SDP in SemEval 2014 is limited to structural analysis by design and it does not
address the problem of predicate sense disambiguation.

The SDP 2014 dataset consists of sections 0-21 of the WSJ corpus annotated with the three
target representations which have been presented in Chapter 3: DM, EP and PT aligned on
the sentence and token levels. WSJ sentences that (a) lack gold-standard annotation in one of
the formats, or (b) do not exactly match across representations on the token level, or (c) are
analyzed with cyclic graph structures,—are not included in the set. We have used the resource
in our contrasting analyses in Section 3.5.

The task is organized into two tracks: systems in the closed track were trained only on the
data distributed by the task organizers while the systems in the open track could use additional
resources. We are, therefore, only interested in the latter track. In the open track of the SemEval
2014 shared task, participants were offered companion files containing Stanford Basic syntactic
dependencies produced by B&N. The evaluation measures are labeled precision (LP), labeled
recall (LR), labeled F1 (LF), and labeled exact match (LM) with respect to predicted triples
“predicate - dependency label - argument”.

The Priberam system of Martins and Almeida (2014) which relies on a model with second-
order features and decoding with dual decomposition, was ranked first in the open challenge,
and achieved the second highest score in the closed track. By virtue of syntactic features ex-
tracted from the output of the syntactic dependency parser, Priberam attains a consistent im-
provement of around 1% in LF for all three semantic dependency formats. We have chosen this
system for our extrinsic evaluation.

138 5.9. Extrinsic evaluation on semantic dependency parsing

| ERG, ERG, B&N | SemEval’14
LP | 90.88 90.77 8896 | 90.23
LR | 89.86 89.67 88.10 | 88.11
LF | 9037 90.22 8853 | 89.16
LM | 3242 32.64 2975| 26.85

Table 5.17: SemEval 2014 open track results of the Priberam system on DM

| ERG, ERG, B&N | SemEval’14
LP | 92.04 9219 9191 | 9256
LR | 89.67 89.89 89.63 | 9097
LF | 90.84 91.03 90.75 | 91.76
LM | 31.38 30.93 32.86 | 37.83

Table 5.18: SemEval 2014 open track results of the Priberam system on PAS

Parser comparison

In the following, we compare the quality of syntactic features produced by ERG,, ERG, and
B&N for the semantic parsing with Priberam. Using these three parsers we prepare companion
data with DT bilexical dependencies. Out of the 1348 sentences from the SDP test set, ERG,
and ERG, failed to deliver analysis for 11 and 24 sentences respectively, and, as in the previous
extrinsic evaluation on negation resolution in Section 5.8, we borrowed the missing data from
output of B&N which achieves complete coverage.

Tables 5.17, 5.18 and 5.19 present the results for DM, PAS and PCEDT respectively. For
comparison, we include the results of Priberam from the SemEval 2014 shared task using a com-
panion file generated by the task organizers using B&N with Stanford Basic dependencies. We
observe that the correlation of syntactic and semantic dependency schemes facilitates improved
semantic parsing: the best results for the DM scheme are obtained with a companion file with
DT dependencies constructed by ERG,, the top results for PAS—with the SB dependencies
from the B&N analyses, and for PCEDT all results are significantly lower than the Priberam
results in all setups. Both DT and DM are derived from ERG, and SB and PAS are related
because the SB dependencies for training B&N are generated from phrase structure parses of
PTB while PAS are derived from the HPSG-style annotation automatically produced from the
original bracketing annotations of Penn Treebank. In other words, DT and DM originate from
DeepBank and SB and PAS originate from PTB.

The results of the evaluation furthermore show that semantic parsing is clearly more sen-
sitive to parser performance than negation resolution, especially taking in account that from
Table 5.11 the maximum in-domain difference between ERG, and B&N in LAS is 0.82% when
using PTB tokenization with PTB PosS tags.

Chapter 5. Cross-framework parser evaluation 139

| ERG, ERG, B&N | SemEval’14
LP [79.62 7994 7942 | 80.14
LR | 75.67 7582 7545| 7579
LF | 7759 77.82 77.38 | 77.90
LM | 11.05 11.20 1098 10.68

Table 5.19: SemEval 2014 open track results of the Priberam system on PCEDT

5.10 Reflections on the SDP 2014 results

In this section we discuss some of the outcomes of the Task 8 Broad-Coverage Semantic
Dependency Parsing (SDP; Oepen et al. (2014)) at SemEval 2014 which we have already intro-
duced in the previous section. The official results of the task are in parallel with the observations
made in the current chapter: in the present work we have shown that the grammar-based parser
has higher accuracies than statistical analyzers on the syntactic format DT and that grammar-
based parsers are very competitive with the purely statistical systems on the semantic annotation
formats DM and EP (Miyao et al., 2014). The task can be also viewed as an intrinsic evaluation
of parsers on the three semantic dependency formats DM, EP and PT that were structurally
compared in Chapter 3.

One of the objectives of the shared task is to encourage engineering efforts in semantic
graph-based dependency parsing in contrast to syntactic tree-oriented processing. Tree struc-
tures are not well-suited for semantic parsing because in semantic analysis some nodes have
several semantic heads while other nodes do not carry semantic meaning on their own and
should be omitted from the graph. These requirements contradict tree constraints which moti-
vates more general processing of labeled directed graphs.

In the final results there are accuracies for the 6 different systems in the closed track and
6 different systems in the open track. We are most interested in the open track results because
these include evaluations of the grammar-based parsers PET and Enju’.

The systems that submitted results to the open track are called Priberam, CMU, Turku,
Potsdam, Alpage and In-House. For some systems there were two runs submitted. Priberam
(Martins and Almeida, 2014) is a linear model with second-order features (extension of the
TurboParser (Martins et al., 2013)); CMU (Thomson et al., 2014) is a feature-rich arc-factored
discriminative model; Turku (Kanerva et al., 2014) is a pipeline system of three support vector
machine classifiers for selecting dependencies, predicting dependency labels and selecting top
nodes; Potsdam (Agi¢ and Koller, 2014) are bidirectional graph-to-tree transformations com-
bined with syntactic dependency parsing; Alpage (Ribeyre et al., 2014) is two transition-based
dependency parsers with additional actions to handle graphs; and In-House (Miyao et al., 2014)
is an ensemble of parsers developed in parallel to the creation of the dependency representa-
tions: the PET parser with ERG 1212 grammar for DM, the Enju parser for EP and the Treex
system for PT. There is no specialized grammar-based parser for PT and the Treex system
combines data-driven dependency parsing with tectogrammatical conversion, therefore we will

3The “in-house” parsers are trained with knowledge derived from additional resources which was the reason
why their runs were not submitted in the closed track.

140 5.11. Summary

DM EP

Team Run | LP LR LF LM LP LR LF LM

Priberam 1 0.9023 0.8811 0.8916 0.2685 | 0.9256 0.9097 09176 0.3783
CMU 1 0.8446 0.8348 0.8397 0.0875 | 0.9078 0.8851 0.8963 0.2604
Turku 2 0.8094 0.8214 0.8153 0.0823 | 0.8733 0.8776 0.8754 0.1721
Turku 1 0.7989 0.8245 0.8115 0.0757 | 0.8742 0.8801 0.8771 0.1780
Potsdam 2 0.8132 0.8091 0.8111 0.0905 | 0.8941 0.8261 0.8588 0.0749
Alpage 1 0.8346 0.7955 0.8146 0.1076 | 0.8723 0.8282 0.8497 0.1543
Alpage 2 0.8577 0.7446 0.7971 0.0660 | 0.8860 0.8276 0.8558 0.1091
Potsdam 1 0.8454 0.7380 0.7880 0.0415 | 0.8972 0.7508 0.8175 0.0178
In-House 1 0.9258 0.9234 0.9246 0.4807 | 0.9209 0.9202 0.9206 0.4384

Table 5.20: Labeled Dependencies Including TOP Nodes

omit the discussion of parsing results on PT, since in this chapter we are focused on contrasting
grammar-based parsing with purely statistical parsing.

Tables 5.20 and 5.21° summarize labeled and unlabeled scores correspondingly on the DM
and EP representations for the systems submitted to the open track of the shared task. In-House
system has the highest labeled and unlabeled scores except LP and UP on EP where its results
are very close to the top Priberam values. There is a possible positive bias towards the In-House
ensemble in the testing data, similar to the bias towards the ERG parser on DT dependencies
in previous sections: WSJ sentences that lack gold-standard analyzes in DeepBank and Enju
treebanks are excluded from the SDP data. In addition, sentences that are analyzed with cyclic
graph structures in DM are also filtered out. Despite this fact, ERG and Enju parsers show very
competitive results for DM and EP, especially in terms of exact match (Miyao et al., 2014).

The direct head-to-head parser comparison on syntactic (discussed in the previous sections
of the present work) and semantic (SDP 2014) bilexical dependencies demonstrates competi-
tiveness of grammar-based approaches parsing. For the Enju parser comparisons to other sys-
tems have been carried out in the previous work of Miyao et al. (2007) and Bender et al. (2011)
and are in line with our conclusions. The strength of the grammar-based parsers can be ex-
plained by the depth of the linguistic information expressed in machine-readable format by the
grammar writers that is exploited during parsing.

5.11 Summary

In this chapter we compared the HPSG-driven parser PET with data-driven syntactic an-
alyzers using bilexical dependencies as the basis for comparison. Our intrinsic evaluation on
syntactic dependencies showed superior accuracy and resilience to domain and genre variation
for the ERG parser, which corresponds to the findings of Plank and van Noord (2010) for Dutch
language. The efficiency of the grammar-driven parser achieves the levels of the best direct
dependency parser. However, unlike the data-driven dependency and phrase structure grammar

Shttp://svn.delph-in.net/sdp/public/2014/results.tgz Accessed: 22 August 2014,

Chapter 5. Cross-framework parser evaluation 141

DM EP

Team Run | UP UR UF UM Up UR UF UM

Priberam 1 09141 0.8926 0.9032 0.2990 | 0.9362 0.9202 0.9281 0.3924
CMU 1 0.8603 0.8503 0.8553 0.0979 | 0.9179 0.8950 0.9063 0.2715
Turku 2 0.8287 0.8410 0.8348 0.0964 | 0.8876 0.8918 0.8897 0.1803
Turku 1 0.8182 0.8444 0.8311 0.0838 | 0.8885 0.8945 0.8915 0.1869
In-House 1 0.9361 0.9337 0.9349 0.5230 | 0.9320 0.9314 0.9317 0.4429
Alpage 2 0.8819 0.7656 0.8197 0.0779 | 0.9005 0.8412 0.8699 0.1150
Alpage 1 0.8574 0.8172 0.8368 0.1194 | 0.8895 0.8445 0.8664 0.1662
Potsdam 2 0.8337 0.8295 0.8316 0.1031 | 0.9078 0.8387 0.8719 0.0779
Potsdam 1 0.8643 0.7545 0.8057 0.0497 | 0.9099 0.7614 0.8291 0.0208

Table 5.21: Unlabeled Dependencies Including TOP Nodes

parsers, PET has partial coverage, and in most of this work we had to ignore some 15% of the
original data due to the absence of the gold-standard annotations, traditionally produced with
the ERG and PET. In practical applications, this flaw can be overcome by falling back on out-
puts of another parser for sentences lacking analysis, as we did in our extrinsic evaluation. The
better performance of the grammar-driven parser did not translate to the improved results of
the negation resolution task, chosen as the first task for extrinsic evaluation, while evaluation
on semantic dependency parsing, selected as the second task for extrinsic evaluation, correlates
with the results of the in-domain intrinsic parser comparison. In future work it would be inter-
esting to include more PCFG and transition-based dependency parsers in our comparison and
test parser outputs in other downstream applications, sensitive to results of syntactic analysis.

Similarly to our experiments, the shared task on Broad-Coverage Semantic Dependency
Parsing (SDP; Oepen et al. (2014)) can be seen as an intrinsic cross-paradigm evaluation of
parsers on semantic dependencies. Likewise to observations from our study, the tentative con-
clusion is that linguistically rich parsing achieves higher accuracy levels.

Chapter 6

Parser combination

A recurrent issue in grammar-based parsing concerns efficiency. In this chapter we seek to
prune the search space of the ERG parser based on high-confidence dependency predictions.
The goal of these experiments is to improve parser efficiency and in order to achieve it we carry
out a careful analysis of trade-offs across the dimensions of efficiency, coverage and accuracy.
Our hypothesis is that partly conflicting requirements of these three dimensions can be jointly
addressed and optimized by parser combination.

6.1 Introduction

The main criteria for assessment of parser performance are efficiency, coverage and accu-
racy. A good balance of the three is a challenge for grammar-based parsing. In order to in-
vestigate the possibility of improving and balancing efficiency, coverage and accuracy of ERG
parsing we experiment with parser combination, using bilexical dependencies to constrain the
PET parser. At the outset of our experimentation, we considered two different approaches to
parser combination which we will dub “loose” and “tight” integration.

With “loose” methods no modifications are introduced in the parsing mechanisms, but rather
the output of the dependency parser is employed as features to improve the stochastic parse
ranker. Kim et al. (2012) proposed to incorporate dependency features into a CCG reranker to
reorder n-best outputs of a CCG parser. Another method, implemented in Marimon et al. (2014)
for an HPSG parser is to compare the analysis delivered by the dependency parser and the one
chosen by the parse ranker, and then accept the automatically proposed analysis only if both are
identical.

With the “tight” methods the output of dependency parsers is used to modify the parsing pro-
cess of the grammar-based parser. Sagae et al. (2007) use bilexical dependencies to constrain the
application of wide-coverage HPSG rules during parsing. The authors distinguish “soft” and
“hard” constraints. When dependencies are applied as “hard” constraints the grammar-based
parser is forced to produce an analysis that strictly conforms to the output of the dependency
parser. When dependencies are considered as “soft” constraints the log-likelihood of the par-
tial parse trees is penalized if the application of HPSG rules results in structures that do not
correspond to the trees generated by the dependency parser.

The “loose” mechanism of parser combination does not interact with the parsing process

143

144 6.2. Related work

but rather re-shuffles parser outputs. Choosing that, we could only hope for some accuracy
improvements, but not any significant efficiency benefits. We therefore opted for the “tight”
method because it offers integration on a deeper level, affecting the parsing process directly,
thus it is promising for efficiency advances and possibly also modest accuracy gains. Applying
dependencies as “hard” constraints would mean performing extensive pruning which might lead
to significant loss of coverage as a side effect, therefore a safer alternative is using dependencies
as “soft” constraints to guide the parsing process.

In the following we will first review some previous work aimed at improving various aspects
of grammar-based parsing before we go on to describe our own experiments aimed at improving
HPSG parsing using a “tight” method of parser combination where DT dependency analyses are
used as soft constraints during parsing.

6.2 Related work

In the current section we provide a brief overview of several approaches to improve effi-
ciency, coverage and accuracy of grammar-based parsing. In focus of our discussion are lexical-
ized grammars (and parsing systems) that we have repeatedly mentioned in previous chapters:
LFG (Kaplan and Bresnan, 1982) with the XLE system (Maxwell and Kaplan, 1993), HPSG
(Pollard and Sag, 1994) with the PET (Callmeier, 2000), Alpino (Malouf and van Noord, 2004)
and Enju (Miyao and Tsujii, 2005) parsers, and CCG (Steedman, 2000) with the C&C syntactic
analyzer (Clark and Curran, 2007b).

6.2.1 Efficiency

Large-scale grammars involve rich formalisms and often encounter an extensive search
space in selecting the correct analysis for a given utterance. Parsing is complicated by the
ambiguity of natural language, in particular local ambiguities: each substring of an utterance
can receive many different interpretations when analyzed without broader context. Theoreti-
cally, there is no polynomial time complexity upper-bound for unification-based parsing (Car-
roll, 1993)[p. 146]. In practice most parsing time is indeed spent on unification operations,
however existing algorithms for parsing large feature structures usually have linear-time com-
plexity. Another important factor is related to exact inference: The HPSG parser PET computes
the complete forest and determines the globally correct n-best list of analysis, which is com-
putationally a lot more expensive than the approximate inference methods employed in most
phrase structure and dependency parsers.

Most of the techniques proposed to overcome problems of efficiency are based on reduc-
ing the search space using filtering and pruning techniques and typically lead to approximate
inference. A common filtering technique is context-free grammar approximation of the HPSG
representations called CFG filtering (Harbusch, 1990; Torisawa et al., 2000; Kiefer and Krieger,
2000) and PCFG filtering (Zhang and Krieger, 2011). Partial trees that are non-parseable by
the approximating grammar formalism are eliminated and parsing speed therefore improves
because the parser avoids unnecessary unification operations. Context-free grammar approxi-
mations can be induced with grammar-driven and corpus-driven approaches. In the grammar-
driven implementation CFG rules are compiled directly from the HPSG grammar (Kiefer and

Chapter 6. Parser combination 145

Krieger, 2004) whereas in the corpus-driven implementation CFG rules are derived from a tree-
bank (Krieger, 2007). The grammar-driven method, however, is intractable in practice since it
produces billions of CFG productions (Zhang and Krieger, 2011). The corpus-driven method
operates by acquisition of the CFG categories and rules from the derivation trees and estimation
of probabilities with naive maximal likelihood. A disadvantage of the corpus-driven approach
is unsoundness: sentences that the grammar would have accepted may be rejected if certain
valid CFG rules do not occur in the corpus.

In the beam thresholding approach (Ninomiya et al., 2005) edges from the chart cells are
pruned during parsing by tracking only n-best parses according to their figure of merit. In the
C-structure pruning method for LFG (Cahill et al., 2008) subtrees with probabilities below a
certain threshold at a particular cell in the chart are pruned based on a stochastic CFG model.
Cramer and Zhang (2010) address the problem of efficiency of the PET parser by restricting
the search space using an approach similar to C-structure pruning for LFG: setting a maximum
number of tasks per chart cell calculating the priorities of the tasks based on a PCFG model.

Another group of methods imposes linguistically motivated local constraints on lexical items
in order to improve efficiency. In supertagging (Bangalore and Joshi, 1999) lexical entries are
assigned to words in order to encode constraints on how a word can be combined with other
words and phrases (Matsuzaki et al., 2007) and in iibertagging (Dridan, 2013a) supertagging is
performed over ambiguous tokenization (see Sections 2.2.2 and 5.3 for more details).

Finally, maximum parsing time can be restricted to avoid long processing time. Skimming
(Kaplan et al., 2004) in LFG parsing with XLE denotes an interruption of the processing of a
subtree when the specified amount of memory or time spent exceeds a threshold that can be
tuned by the user-specific parameters. This mechanism helps to avoid timeouts and memory
exhaustion and guarantees parsing in polynomial time.

6.2.2 Coverage

Grammar engineers constantly face the challenge of ensuring coverage, i.e. enabling the pro-
cessing of unseen constructions and ungrammatical texts. Nowadays parsing with hand-written
precision-oriented linguistic grammars does not achieve complete coverage and occasionally
fails to process longer sentences. There are two main reasons for the lack of analyses: (1) the
parser exhausts its resources within given limitations on memory and space; (2) an appropriate
analysis is not found among the unpacked solutions from the forest.

In the second case the correct analysis is not in the forest because some lexical items are
not attested in the lexicon, certain constructions are missing from the grammar or because an
input is ungrammatical or fragmented. Ungrammatical input might contain typos, word and
phrase repetitions. Some constructions might be missing from the grammar because they are
unusual or have not been encountered by grammar developers in the corpora that was used
for grammar development. For parsing with ERG there is a distinction between “raw” and
“validated” coverage, where the former term conveys percentage of sentences that are assigned
an analysis by the parser and the latter term means the percentage of HPSG analyses that were
produced by the parser and manually verified by multiple annotators. ERG typically misses
some 10% of “validated” coverage.

Among known methods for improving the coverage of a grammar-based parser are partial

146 6.2. Related work

parsing and robustness rules.

Partial parsing (Kiefer et al., 1999) is a technique of building up as much of the analysis as
possible and then stitching chunk parses together. In XLE, a system for parsing and generating
LFGs, issues of incomplete coverage are handled by a fragment or chunk parsing. The standard
LFG is augmented with a “fragment grammar” so that the input can be analyzed as a sequence
of chunks. The best partial parse is the one that is constituted of the least number of chunks,
e.g. if a string can be analyzed as two NPs and a VP or as one NP and an S, the NP-S version is
chosen (Riezler et al., 2002). The rules in LFG are ranked based on optimality theory and rules
handling fragmented and ungrammatical structures are dispreferred. Partial parsing is also im-
plemented in the Dutch Alpino system (van Noord, 2001). Zhang et al. (2007a) experimented
with integration of partial parsing into the PET parser with three different partial parse disam-
biguation models in order to increase parser coverage. A partial parse in this setup is a set of
passive edges licensed by the grammar with non-overlapping spans that together cover all to-
kens of the input sentence. Zhang et al. (2007a) implement two models based on the maximized
conditional probability of the partial parse modeled similarly to the maximum entropy models
for full parse selection and compare them to the model based on the shortest path approach with
heuristic weights in which it is assumed that the best partial parse is the one that has the shortest
path (smallest summed weight) from the start vertex to the end vertex.

Cramer and Zhang (2010) proposed to add to the grammar a small number of radically
overgenerating robustness rules that can tackle extra-grammatical sentences. To increase the
robustness of the PET parser, Cramer and Zhang (2010) added a small set of overgenerating
rules to the HPSG grammar for German that can deliver analyses for sentences that cannot
be processed by the original grammar. The authors argue that robustness rules are superior to
partial parsing proposed in Zhang et al. (2007a) since the former theoretically should fill in the
gaps both in the lower and higher areas of the chart keeping the damage local when possible
while the latter combines partial analyses only at the top level.

6.2.3 Accuracy

The accuracy of automatic grammar-based analysis concerns the linguistic adequacy of the
syntactic trees output by the parser. As with efficiency, the problem of accuracy is closely
related to the ambiguity of natural languages. Grammatically sound analyses are not necessar-
ily correct, therefore statistical disambiguation models that emulate the structural preferences
inherent to a particular language are required to tackle the challenge.

Several methods, such as symbolic approaches, parse disambiguation with statistical mod-
els, supertagging and parser combination have been proposed in prior work to ensure sufficient
level of accuracy for grammar-based parsing.

In the symbolic approach new lexical items and rules are added to the grammar to restrict
the possible space of ambiguity. This method requires intensive human effort in grammar engi-
neering. Advanced methodologies and software such as LinGO Grammar Matrix (Bender et al.,
2002, 2010) and CLIMB (Fokkens, 2011) have been proposed to facilitate manual grammar de-
velopment. The LinGO Grammar Matrix customization system is a service for multilingual
grammar development that comprises a core HPSG grammar covering universal linguistic phe-
nomena and a set of libraries providing analyses for phenomena that vary across languages.

Chapter 6. Parser combination 147

CLIMB (Comparative Libraries of Implementations with Matrix Basis) is a system for multi-
lingual grammar engineering based on metagrammar development which gives grammar devel-
opers an opportunity to store competing analyses for the same linguistic phenomena and test
the impact of these alternatives as the grammar grows.

The method of parse disambiguation with statistical models described in Toutanova et al.
(2005) conveys an implementation of models that attempt to select the correct analysis for a
sentence based on statistics. Toutanova et al. (2005) build discriminative and generative models
over derivation trees of ERG analyses and enrich them with semantic and lexical information
which facilitate significant accuracy improvement.

Supertagging (Bangalore and Joshi, 1999) is a tagging process where lexical entries as-
signed to the tokens of a sentence encode constraints about how a word can be combined with
neighboring words and phrases. Although this method is primarily used to increase the effi-
ciency of grammar-based parsers, there is a number of studies showing that supertagging can
also facilitate gains in accuracy as well (Prins and van Noord, 2003; Foth and Menzel, 2006;
Ninomiya et al., 2007). The known trade-off of advancing efficiency and accuracy with su-
pertagging is reduced coverage.

Parser combination techniques (Henderson and Brill, 1999) encompass a range of methods
for combining parsers in order to achieve improved performance. Although parser combination
methods, such as PCFG filtering, are usually aimed at boosting the speed of grammar-based
analyses, Sagae et al. (2007) demonstrated 1% absolute improvement in accuracy of HPSG
parsing using soft dependency constraints. We will now examine in some detail previous work
on parser combination and relate this work to our goal of improving efficiency of the HPSG
parser.

6.2.4 Parser combination for improved efficiency and accuracy

Many (but not all) of the above methods for enhanced efficiency, coverage and accuracy
have already been adapted to parsing with the ERG. Among the methods that have not yet been
attempted with ERG before is parser combination. A variety of parser combination methods
proposed in previous work are presented in Section 2.3. In the current chapter we experiment
with parser integration in the spirit of Sagae et al. (2007), carrying-out a study of effects of
dependency constraints across the three dimensions of efficiency, coverage and accuracy.

As we recall from Section 2.3, Sagae et al. (2007) applied dependency constraints gen-
erated by syntactic dependency parsers to the HPSG parser Enju (Miyao and Tsujii, 2005).
The baseline in their experiments is set by running the HPSG parser on the development data
without dependency constraints. The training data for the dependency parser is prepared from
the HPSG treebank (Miyao et al., 2004) generated from the Penn Treebank: each sentence
from the HPSG treebank is first converted to CFG by removing long-distance dependencies
and then transformed to a dependency representation using a head-percolation table (Collins,
1999). The dependency parser is trained and run before HPSG parsing begins. The mechanism
of HPSG parsing is modified so that before application of each HPSG construction, such as
head-complement, the Enju parser identifies the corresponding dependency and checks whether
this dependency is also delivered by the dependency parser. As mentioned above, the authors
realize two types of constraints: hard, requiring the HPSG output to be strictly consistent with

148 6.3. Hypothesis testing

dependency constraints, and soft, penalizing in terms of log-likelihood any inconsistency of
partial parse trees created by the application of the HPSG constructions. When the HPSG struc-
ture is inconsistent with n dependencies the log-probability of the parse tree is reduced by nc,
where « is a meta parameter tuned to maximize the accuracy on the development set. The
authors experiment with the following constraints for the search space of the HPSG parser:

* all the dependencies produced by the left-to-right shift-reduce SVM parser implementing
the deterministic dependency parsing approach of Nivre and Scholz (2004);

* only dependencies produced by all the parsers from the parse ensemble of the left-to-right
shift-reduce SVM parser and the MST parser (McDonald et al., 2005b);

* only dependencies produced by all the parsers from the parse ensemble of the left-to-right
shift-reduce SVM parser, right-to-left shift-reduce SVM parser and the MST parser.

Our work is inspired by Sagae et al. (2007), as we are also using bilexical dependencies
to constrain an HPSG parser and we also experiment with parser ensembles with the goal of
selecting only high-quality bilexical dependencies. Nevertheless, several aspects of the present
work are considerably different: first of all, we are using labeled dependencies while Sagae
et al. (2007) worked with unlabeled dependency constraints; secondly, we introduce a sys-
tematic experimental study of a more comprehensive range of techniques for the selection of
high-confidence dependencies; thirdly, we use a broader range of statistical dependency parsers;
fourthly, we closely examine the effects of parser combination not only on accuracy and effi-
ciency but also on coverage since the PET parser does not always deliver analysis for all the
sentences in the dataset; and finally, we investigate whether results achieved on the in-domain
test data translate to new domains.

6.3 Hypothesis testing

When comparing various parser integration setups to the baseline, we will use hypothesis
testing to determine if the difference between a given configuration and the baseline is signif-
icant. S@gaard et al. (2014) show that the current practice of statistical significance testing in
Natural Language Processing yields unreliable results, and the authors suggest to use a smaller
significance level (o = 0.0025 instead of commonly used & = 0.05) and compare the systems
on different datasets across available system parameters. As in Chapter 4, we establish a sig-
nificance level of & = 0.001, and compare various parser combination setups to the baseline
model with respect to exact match and coverage across domains. We use three tests to verify
the results of one another, though even when all the tests agree, we should accept the output
with some grain of salt.

We will follow the methodology for exact match statistical significance testing explained in
Velldal (2009)[p. 139].

Exact match measures the percentage of sentences with the parse tree exactly matching the
gold standard, and coverage measures the percentage of parsed sentences, e.g. sentences that
were assigned at least one analysis. Exact match for an individual sentence is “1” if the parse
tree matches the gold, and “0” otherwise. In case a sentence is assigned several analyses, the

Chapter 6. Parser combination 149

score is discounted proportionally. Coverage for an individual sentence is “1” if a sentence is
parsed, and “0” otherwise. The null hypothesis is that the difference in performance of a certain
setup from the baseline is due to chance.

Comparing the performance of a setup to the baseline we will be looking at paired differ-
ences in scores, disregarding cases where the difference is zero. If the test set is comprised of
m sentences, we have to compute the differences ay — by, ..., a,, — b, Where a; represents a
score (exact match or coverage) of the ith sentence for a setup in question (A) and b; stands
for a score for the baseline (B) analysis for the ith sentence. We will ignore cases where the
difference is zero, which leaves us with a possibly reduced list of differences of size n. The
remaining differences in our list will be in most cases either +1, or —1; except for the cases
when the difference in exact match is a fractional number due to multiple analyses assigned to
a sentence.

Paired sign test This list of list of differences can be seen as a sequence of Bernoulli tri-
als with two possible outcomes—a positive value of a difference, and a negative value of a
difference—with an underlying binomial distribution. The null hypothesis is that the perfor-
mance of a given setup is not significantly different from the baseline, i.e. the probability of
success in a Bernoulli experiment is p = 0.5 meaning that there is equal chance for the dif-
ference a; — b; to have positive and negative values. We denote n* the number of times the
difference has a positive value and n~ the number of times the difference has a negative value
so that n = n™ + n~. The test statistic & is the smallest of the two sums: k = min(n*,n").
The cumulative probability of the binomial distribution is defined as

b n\)
folksn,p) =Y <Z.>pl(1 -p)" ", p=05

=0

The two-tailed p-value equals 2 x f.(k;n,p). If the p-value is smaller than or equal to the
significance level a = 0.001, we reject the null hypothesis that the performance of the setup is
different from the baseline due to chance only.

Normal approximation of the binomial distribution is used for larger samples n > 25 with
the standard score for the Z statistic:
k—p n

P 7/1’:570—:

n
4
The p-value can be found in the table for the Z statistic.

Paired Wilcoxon signed-rank test While the sign test measures how often one setup outper-
forms the other, the Wilcoxon signed-rank test captures to what degree one model is better than
the other. In the case of exact match and coverage as defined in our experiments, this aspect is
not very interesting on its own as the differences are almost always +1 or —1, but we use several
tests to verify the results of one another. The null hypothesis Hj is that the differences a; — b;
have a median value of zero. All the differences are assigned ranks according to their absolute
a; — b;|. If two or more differences are equal, the tied differences receive an average of
the ranks they would be set if they were not equal. For example, if the lowest difference value

values,

150 6.4. Experimental setup

is equal to 1 and there are five instances of such a difference, then if the tied differences had
different values they would be assigned ranks 1, 2, 3, 4 and 5, therefore an average rank that
should be assigned is 3 (F224H5 = 3)

We denote W™ as the sum of all the ranks associated with the positive differences (a; —b; >
0) and W~ as the sum of all the ranks associated with the negative differences (a; — b; < 0),
and the test statistic W is the smaller of the two sums, W = min(W™*, W ™). Looking up the
W statistic in the Wilcoxon distribution table as well as the size of the sample set n, we can
determine the p-value and reject the null hypothesis if the p-value is smaller or equal to the
significance level o = 0.001.

For larger samples with n > 20 the binomial distribution is approximated with the normal
distribution with the Z statistic computed by the following formula:

k— 1
Z= quN: n(n4+) o= Vn(n+1)(2n+1)/24

and the p-value is determined from the table for the Z statistic.

Paired t-test on two related samples Unlike the non-parametric signed and Wilcoxon signed-
rank tests, in the paired t-test the differences a; — by, . . ., a,, — by, are assumed to fit the normal
distribution. The null hypothesis Hy is that the mean of differences a; — b; has the value of zero.
A statistic t with n — 1 degrees of freedom is defined by the formula

o X
- sp/vn’
X, > ii(ai —bi) —A_-B
n
A1:a1_A731: 1,_B
. F;;l((ai —b) - Xpf = _ \/ S (A - By
) n—1 '

where X is the sample mean of differences, A is the sample mean of a sequence A, B is
the sample mean of a sequence B, sp is the sample standard deviation of differences, n is the
sample size. Looking up the t-distribution table for the ¢ statistic with n — 1 degrees of freedom
will give the p-value. If the p-value is smaller than or equal to the significance level oo = 0.001,
we reject the null hypothesis.

6.4 Experimental setup

An interesting research question of parser integration is how to choose high-quality depen-
dencies in order to maximize the benefits of combination. As shown by Sagae et al. (2007),
using the complete set of dependencies generated by the dependency parser as hard constraints

Chapter 6. Parser combination 151

for HPSG parsing reduces coverage drastically. Their best result was achieved by running a
parser ensemble of shift-reduce and graph-based parsers and choosing only those dependencies
on which both agree.

In the present study we propose three different approaches as well as a combination of
them to select the most reliable bilexical dependencies: filtering, confidence thresholding and
ensemble. With the term filtering we define choosing only dependencies (i) spanning up to
a maximum number of tokens; (ii) of a specific dependency type; (iii) with a dependent of a
certain PoS type; or (iv) a combination of these criteria. We identify filtering parameters with a
static analysis of dependencies on the development set in terms of precision and annotation rate
without running the HPSG parser with these constraints. Precision is the proportion of correct
system dependencies among all system dependencies and annotation rate is the proportion of
input tokens that are assigned heads, e.g. the proportion of system dependencies among all
tokens in the test set.

Confidence thresholding is an approach in which we rely on the functionality of some de-
pendency parsers to produce per-dependency confidence scores and once again we tune a score
threshold by performing a static analysis on the development set. In addition, we study the cor-
relation of per-dependency scores with the correctness of attachment and labeling of individual
dependencies.

Our ensemble method is similar to the method described in Sagae et al. (2007), as we use
several parsers and choose dependencies by unweighted voting, but we explore a wider range
of different parsing approaches and pay particular attention to parser efficiency.

In our experiments we use bilexical dependencies to restrict the search space of the HPSG
parser PET. In this chapter we switch to the ERG version 1214 (which is a minor patch release
of the ERG 1212 that was used in the previous chapters) and DeepBank 1.1 (a version following
DeepBank 1.0 used in previous chapters). Since we started our experimentation before the final
versions of the grammar and treebank were published, all our tuning experiments are performed
on a pre-release versions of the ERG 1214 and DeepBank 1.1 using sections 0-19 for training
and section 20 for development. The final testing is performed on the released versions of
the ERG and DeepBank using sections 0-20 for training and 21 for testing. Out-of-domain
experiments are carried out on the same parts of the Redwoods treebank as the out-of-domain
testing in Chapter 5: an early essay on open source software “Cathedral and the Bazaar” by
Eric Raymond (CB); a fragment of the SemCor corpus (SC); data from the VerbMobil corpus, a
collection of transcribed spontaneous speech recorded in a dialogue task (VM); and part of the
Wikipedia-derived WeScience Corpus (WS). For simplicity, we limit all the evaluations of the
PET parser integrated with dependency constraints to the sets of fully disambiguated sentences
with a unique gold standard analysis. In contrast to previous chapters, in this study we use
only PTB-style tokenization. Table 6.1 shows the data sets used in the present study and their
sentence counts.

In our experiments, bilexical dependencies are generated by an assortment of state-of-
the-art dependency parsers employing quite different parsing algorithms: the transition-based
Malt (Nivre et al., 2007b) version 1.7.2, the graph-based MST (McDonald et al., 2005b) ver-
sion 0.5.0, the transition-based parser with a graph-based model of Bohnet and Nivre (2012)
(dubbed B&N; transition-1.30.jar, beam 80), the transition-based Mate (Bohnet, 2010) (anna-
3.61 jar, beam 80) and the linear programming Turbo (Martins et al., 2013) version 2.2.0. Malt,

152 6.4. Experimental setup

Dataset # sentences #tokens Average sentence length

DeepBank pre-released

WSJ0-19 34,971 781,807 22.4
WSJ 20 1,782 (1,778) 39,963 22.4

DeepBank released

WSJ0-20 37,351 846,951 22.7
WSJ 21 1,476 (1,399) 33,570 22.7

Redwoods
CB 596 (596) 12,532 21.0
SC 861 (860) 15,426 17.9
VM 986 (985) 8,728 8.9
WS 449 (446) 8,325 18.5

Table 6.1: Sentence and token counts and average sentence length for data sets of DeepBank 1.1
and Redwoods prepared with ERG 1214: pre-released version of DeepBank is employed for
turing, released version of DeepBank is applied for testing and Redwoods is used for out-of-
domain experiments. For the sets on which we test parser integration setups we show in the
brackets the number of fully disambiguated sentences with a unique gold standard analysis

MST, Mate and Turbo have been run with PTB tags produced by the TnT part-of-speech tagger
(Brants, 2000), while B&N predicts PoS tags during parsing. In all cases, the tokenization has
been performed with the Regular Expression Pre-Processor (REPP) of Dridan and Oepen (2012).

Parser integration is realized via the so-called YY input mode' of the PET parser and all ex-
perimentation is based on PTB-style tokenization. Using ERG-style tokenization as PET input
would not work, because prefix and suffix punctuation would cause the named entity recogni-
tion to fail, for example the date “(01.02.2000)” would not be identified as a date because the
regular expression pattern does not include brackets. The YY format allows us to supply PET
not only with input tokens, but also with PoS tags (and their probabilities) and labeled depen-
dencies. Example (72) shows a representation of the gold dependency analysis in the Y'Y input
mode of the sentence “That depends.” from the VM part of the Redwoods treebank (with sen-
tence identifier, dependencies and tokens shown on separate lines for clarity) and Example (73)
illustrates the graphical representation of the corresponding dependencies.

(72) [1320384] |
0,0, 1, 1,"[— |sb-hd|5]", 0, "null")
(1, 1, 2, <0:4>, 1, "That", 0, "null", "WDT" 0.8254 "IN" 0.1448 "DT" 0.0298)
(2,2,3,1,"[— [root]", 0, "null")
(3, 3,4, <5:12>, 1, "depends", 0, "null", "VBZ" 1.0)
4,4,5,<12:13>,1,".", 0, "null", "." 1.0)

'http://moin.delph-in.net/Petinput Accessed: 14 August 2015.

Chapter 6. Parser combination 153

root
sb-hd

73) That depends .

Number “1320384” is a sentence identifier in the treebank. In the present sentence there
are three “regular” input tokens (“That”, “depends”, “.”) and two dependency “pseudo”-tokens
(“sb-hd”, “root”) which are depicted in round brackets with dependency annotations preceding

dependent tokens. The general YY format is the following:
(id, start, end, [link,] path+, surface, ipos, lrule+[, pos p+])

The first field in round brackets, id, is an identifier, e.g. “0” for the dependency token “sb-hd”,
“3” for the token “depends”. The second and third fields are start and end vertices, e.g. “0”
and “1” for the dependency “sb-hd”, “3” and “4” for the token “depends”. The field link is only
used for input tokens and stands for the character-based span of the token, e.g. “<5:12>” for the
token “depends” which corresponds to the sub-string from position “5” to “12”. The field path
stands for membership in one or more paths through a word lattice, e.g. “1” for all tokens and
dependencies in our example. For regular tokens the surface field provides the original string.
For dependencies the surface field records directionality (e.g. — - incoming dependency),
dependency label (e.g. “sb-hd”) and a start position in the character-based identifier of the head
for non-root dependencies (e.g. “5” for dependency “sb-hd”, which denotes that the character-
based identifier of the head token starts from position “5”, and from this information we can
derive that the head word for this dependency is “depends” because its character-based identifier
starts from position “5”: “<5:12>"). The ipos field can be used to provide information about
morphological segmentation and it denotes the position to which orthographemic rules apply,
but if we choose to rely on standard orthographemic annotation provided by the grammar, this
field should always be set to “0”. The lrule field can be employed to specify lexical rules
for morphological analysis, but to activate standard morphological analysis of PET, the value
should be set to “null”. The pos field is used only for tokens to specify the sequence of assigned
PoS tags with their corresponding probabilities, e.g. the token “That” is assigned three PoS
tags: “WDT* with probability 0.8254, “IN” with probability 0.1448, and “DT” with probability
0.0298.

It is important to note that we ignore dependencies that are not “native” to the ERG deriva-
tion trees, but are created artificially to comply with PTB-style tokenization (see Chapter 3).
There are three types of such dependencies: “PUNCT” (punctuation), “MWE” (multiword ex-
pression) and “NEG” (negation). In the example above, there would be a dependency with the
head “depends”, dependent ““.” and label “PUNCT” in the gold DT tree, but it is not included in
the YY input mode, because parser-internally the two PTB tokens are treated as a single ERG
token, where the period functions much like a suffix.

In addition, we exclude incoming dependencies to words containing hyphens (e.g. “couch-
potato”) and slashes (e.g. “Cities/ABC”) due to complications in tokenization. Table 6.2 that
we have already seen in Chapter 3, explains the pipeline of the tokenization process in PET
starting from initial to lexical tokens. Initial tokens are produced automatically with REPP and
emulate PTB-style tokenization. We extract these tokens from the gold treebanks and give them
as input to the dependency parsers and then to PET in YY input mode. Lexical tokens are

154 6.4. Experimental setup

Raw ‘Sun-filled’, well-kept Mountain View.
REPP
initial tokens [] [Sun-filled],[’1,[,], [well-kept], [Mountain], [View], [.]
chart-mapping
internal tokens [‘Sun-], [filled’,], [well-], [kept], [Mountain], [View.]
lexicon lookup
[‘sun-], [filled’,], [well- kept], [Mountain View.], [well-], [kept],

lexical tokens o tain 1. [View. |

Table 6.2: Tokenization pipeline during parsing with PET (Dridan, 2013b)

ERG derivation tree leaves corresponding to the lexicon entries that comply with the ERG-style
tokenization. For example, the word “couch-potato” is represented as one initial token (“couch-
potato”) but two lexical tokens (“couch-", “potato”) and the word “Cities/ABC” is represented
as one initial token (“Cities/ABC”) but three lexical tokens (“Cities”, “/”, “ABC”) in the ERG
analysis. However, it is not a rule that all words with a hyphen or slash are split into separate
lexical entries, as the representation of the word in the ERG-style tokenization depends on how
it is recorded in the lexicon of the grammar. When working with outputs from dependency
parsers, we do not know how the initial tokens in the parser output would correspond to the
lexical ones in the derivation tree in the PET analysis, and for this reason it is safer to discard
incoming dependencies on such tokens in the parser integration setup.

The mechanism of introducing dependency constraints is realized via a generic, declarative
interface developed by Dan Flickinger and Stephan Oepen. The interface is incorporated in
the ERG grammar 1214 and is compatible with such ERG parsers as PET and ACE (Packard,
2011). The possibility of using this interface was one of the reasons to switch to ERG version
1214 in this chapter. In the following, we describe the details of the internal realization of parser
integration.

PET has a standard mechanism called Token Mapping (Adolphs et al., 2008) for adaptation
of input tokens delivered by external preprocessors to the expectations of the grammar. Token
mapping is one of the phases of the chart mapping process which is a mechanism for the non-
monotonic, rule-based manipulation of chart items that are described by feature structures?.
Input tokens are formalized in token feature structures and token manipulation is realized by
formal devices of the grammar such as unification and co-indexation. During the phase of To-
ken Mapping PET operates on internal tokens that conform ERG derivation tree leaves. The
bilexical dependency constraints are enforced as features on the internal tokens by regular uni-
fication and are used to instantiate lexical tokens during the lexicon lookup. Lexical tokens are
annotated with information about their identifier, expected head (target) and dependency type
(label). All syntactic rules percolate these annotations in a special feature called “~DT” from
the head to the parent node and require the following unifications: (a) the target value on all
non-head daughters with the token identifier value on the head daughter; (b) the construction
type (i.e. the identity of the rule) with the label value on all non-head daughters. As a result

Zhttp://moin.delph-in.net/Chart_Mapping Accessed: 14 August 2015.

Chapter 6. Parser combination 155

EM C Tp

baseline 43776 94.7 11.62
upper bound 80.88 100 0.85

Table 6.3: Baseline and upper bound for parser combination on the development set. “EM” is
the exact match, “C” is the coverage, Tp is the running time of PET

the chart will only contain instances of syntactic rules that are compatible with the dependency
annotations. All other items fail in unification, i.e. are in fact never built, rather than pruned.

In the following experiments, the baseline for the parser integration setup is parsing with
PET without restricting the search space with dependencies and the upper bound is parsing
with gold dependencies.

6.5 Tuning

With the goal of reducing the large space of candidate combination methods and selecting
only the most promising setups, we perform tuning on the development set which is the section
20 of DeepBank (the test set is not used in the tuning experiments). This round of experiments
is performed with the pre-released versions of the grammar and treebank—the ERG 1214 and
DeepBank 1.1 correspondingly.

Table 6.3 shows the baseline (standard parsing with PET) and the upper bound (restrict-
ing the search space of the PET parser with gold dependencies) on the development set. The
maximum time that PET can use to process a sentence is a user-defined parameter and for the
baseline it is generously set to 5 minutes, the standard development configuration. It might
seem surprising that the baseline setup does not have a complete coverage since it is built with-
out pruning similarly to the gold-standard, except that the best analysis is chosen automatically
rather than manually. However the gold treebank is created on the faster machines with even
more generous recourse limits.

We experiment with several approaches to preparing bilexical dependencies for limiting the
search space of the HPSG parser: a) generating dependencies with an individual data-driven de-
pendency parser and then implementing either filtering parameters or confidence thresholding
to choose only the high-confidence dependencies; b) producing dependencies with ensembles
of parsers. For the integration of PET with an individual dependency parser we have chosen
the Turbo, B&N and MST parsers, as the first one is the most efficient state-of-the-art syntactic
analyzer, and the latter two provide per-dependency probability scores that we employ for con-
fidence thresholding. For ensemble integration with PET, the following groups of parsers are
used:

BMT B&N, Mate, Turbo;
MMMT Malt, MST, Mate, Turbo;

BMMMT B&N, Malt, MST, Mate, Turbo.

156 6.5. Tuning

‘LAS UAS LACC Time, self-eval. Time, average

Malt | 89.00 9148 91.16 12.141 0.0068
MST | 90.62 93.23 92.60 295.585 0.1859
B&N | 92.15 94.29 9381 25014 1.4037
Mate | 92.07 94.12 93.81 380.8 0.2137
Turbo | 91.72 94.02 93.52 171.43 0.0962

Table 6.4: Evaluation of individual parsers including punctuation on the development set (sec-
tion 20 of DeepBank). Self-evaluation time is measured in seconds, average time per sentence
is measured in seconds per sentence

The choice of ensemble groups is motivated by the following factors: the first ensemble
includes the newer state-of-the-art statistical tools therefore the expectation is that it will pro-
duce more precise dependencies, the second ensemble excludes the slowest parser B&N and
for this reason we anticipate greater efficiency gains, the third ensemble includes all five parsers
and we hypothesize that only high-confidence dependencies will be selected with a strict voting
approach.

The individual performance of the parsers on the development set of DeepBank is presented
in Table 6.4. All the parsers provide self-evaluation of how much total time it takes to parse
a given input set (see the column “Time, self-eval.”). Since we are more interested in the av-
erage parsing time per sentence, we divide the self-evaluation timing on the total size of the
development set which constitutes 1782 sentences (see the column “Time, average”). As the
baseline time of parsing with PET is 11.62 seconds per sentence (see Table 6.3) and the slowest
dependency parser among the five, B&N, has the time of 1.4037 seconds per sentence, running
the members of an ensemble in parallel we can expect significant speed up for the integrated
setup, even for ensembles including the slowest data-driven parser. However, the baseline mea-
surement is not directly comparable to the time estimates of the individual parsers because of
differences in evaluation approaches and the clusters on which the computation is performed.
All time evaluations for the dependency-based parsers are performed on a single CPU of the
Titan computer cluster of the University of Oslo and the parsers output a self-estimation of how
much time is elapsed for the parsing of a given input set. Efficiency estimations for PET (includ-
ing baseline and upper bound) are computed over six concurrent instances of the parser, each
parsing different sentences, on a computer node of the Abel computer cluster of the University
of Oslo and PET measures time for each sentence and the final evaluation is an average per
sentence. We argue that the average evaluation per sentence realized in PET is a more practical
predictor for parse times of new and variable-sized data sets than the total parsing time of a
given data set because the former is more general as it abstracts from a particular treebank.

The tuning is organized in two phases: firstly, for all the dependency setups we carry out a
static analysis using precision and annotation rate as evaluation measures and choose the best
configurations; secondly we integrate the selected setups with PET and single out integration
methods for in-domain testing based on coverage, efficiency and exact match.

Chapter 6. Parser combination 157

EM C Tp
baseline 43776 947 11.62
Turbo 3352 654 0.82
B&N 37.18 71.0 0.84
BMT, 3 votes 4359 89.3 1.07

MMMT, 4 votes 41.73 90.7 1.19
BMMMT, 3+ votes | 38.25 74.2 0.90
BMMMT, 5 votes | 43.36 93.4 1.29

Table 6.5: Results of parser combination without filtering on the development set. Setups inte-
grated with PET are evaluated using exact match (“EM”), coverage (“C”) and running time of
PET (“Tp”). Number of votes specifies how many parsers in the ensemble should agree on a
labeled dependency.

6.5.1 Filtering parameters

Table 6.5 reports the performance of different parsing combination approaches that we will
discuss in detail in the following sections. Some configurations already deliver quite good
results, for example the BMMMT ensemble with a requirement of all parsers in the ensemble
to agree on a dependency. We observe a great speed-up of parsing but at a cost of reduced
coverage. The motivation to define and tune the filtering parameters is preserving or even
improving coverage while still guaranteeing reasonable efficiency gains over the baseline. The
filtering parameters are defined and continuously specified during both phases of the tuning
process based on an error analysis of the individual parsers, ensembles and integration with
PET.

Filtering by dependency length. The first filtering criterion we consider is the maximum
dependency length, e.g. the maximum number of tokens that a given dependency spans over.
As it has been shown in previous studies (Eisner and Smith, 2010), long dependencies are
empirically rare and therefore statistical parsers are more prone to make mistakes on them. We
experiment with the length constraints of 10, 5 and 3 during tuning. Table 6.6 shows pairs of
setups where we vary only the dependency length parameter (indicated by L). With tighter upper
bounds on dependency length we filter dependencies more aggressively which results in lower
annotation rate (i.e. we select fewer dependencies), but it has positive effects on the coverage of
the integrated configuration as we can see from Table 6.6, where the best results are obtained
for dependency length 3.

Filtering by part-of-speech tag. Some constructions, such as coordination and PP-attachment,
are notoriously difficult for parsers and consequently by filtering by part-of-speech we hope to
identify more accurate dependencies. We select several PTB lexical types that guarantee mini-
mum 90% accuracy over CPOSTAGs for individual parsers on the development set: V' B (verb,
base form), NN P (proper noun, singular), PRP (personal pronoun), PRP$ (possessive pro-
noun), DT (determiner), W DT (wh-determiner), C'D (cardinal number), $ (dollar). In the

158 6.5. Tuning

P AR EM C Tp

BMT, 3 votes, L10 96.21 7595 | 43.25 89.8 1.10
BMT, 3 votes, L5 96.48 71.95 | 42.63 909 1.25
MMMT, 4 votes, L10 96.56 72.31 | 41.56 90.8 1.24
MMMT, 4 votes, L5 96.71 69.14 | 41.11 91.5 1.37
BMMMT, 5 votes, L10 97.24 70.86 | 43.14 935 1.32
BMMMT, 5 votes, L5 97.35 67.81 | 4280 939 1.46
BMT, 3 votes, prec80, L5 97.29 62.81 | 4241 920 1.68
BMT, 3 votes, prec80, L3 97.38 55.15| 4291 931 2.04

MMMT, 4 votes, prec80, LS 9741 61.18 | 42.07 92.7 1.81
MMMT, 4 votes, prec80, L3 97.46 53.96 | 42.41 934 2.17
BMMMT, 5 votes, prec80, L5 | 97.88 60.21 | 43.42 944 1.89
BMMMT, 5 votes, prec80, L3 | 97.91 53.14 | 43.59 949 2.28

Table 6.6: Tuning filtering parameter length of dependency. Static evaluation of ensembles
before integration is carried out using precision (“P”) and annotation rate (“AR”); setups inte-
grated with PET are evaluated using exact match (“EM”), coverage (“C”) and the running time
of PET (“Tp”). Number of votes specifies how many parsers in ensemble should agree on a
labeled dependency; “prec80” means that only those dependency types were selected for which
precision is 80% or higher on the development set for all the parsers in the ensemble; “L3”,
“L5”, “L10” means that dependencies spanning more than 3, 5 or 10 tokens correspondingly
are filtered out.

setup where we combine the Turbo parser with PET, we add two extra PoS tags VBN and
V' BZ because the accuracy of Turbo on these two PoS is also above the threshold of 90%. For
the ensemble BMMMT, this criterion is too strict as it filters out all the dependencies. Table 6.7
demonstrates the effect of this filtering criterion: by activating the filtering parameter by PoS we
select significantly fewer dependencies which results in low annotation rate in the static analysis
and slower parsing in the integrated setup, however we observe that the selected dependencies
are more accurate which is indicated by precision in the static analysis and we detect notable
gains for the coverage of the integrated setup.

Filtering by dependency type. As shown by McDonald and Nivre (2007), properties of de-
pendency types can have substantial impact on errors in data-driven dependency parsing. For
pruning by dependency type we attempt several strategies chosen from the static error analysis
of individual dependency parsers on the development set:

* filtering dependencies that have a frequency less than 300 and precision less than 70%
in the error analysis of the individual parsers that constitute the BMMMT ensemble;
Table 6.8 shows that this filtering approach does not give notable advantages neither in
the precision of selected dependencies nor in the coverage nor in the exact match of the
parser integration.

* selecting only dependency types for which the precision is minimum 80% in the er-
ror analysis of the individual parsers that constitute the BMMMT ensemble; Table 6.9

Chapter 6. Parser combination 159

P AR EM C Tp
BMT, 3 votes 96.12 77.62 | 43.59 89.3 1.07
BMT, 3 votes, pos8 97.82 27.31 | 4331 97.6 540
MMMT, 4 votes 96.52 73.51 | 41.73 90.7 1.19
MMMT, 4 votes, pos8 | 97.84 26.72 | 43.25 97.6 5.79
Turbo, prec80 93.51 7196 | 36.22 73.1 1.25
Turbo, prec80, pos10 | 96.00 30.85 | 42.01 93.8 4.12

Table 6.7: Filtering parameter part-of-speech tag of dependent. Static evaluation of ensembles
before integration is carried out using precision (“P”) and annotation rate (“AR”); setups inte-
grated with PET are evaluated using exact match (“EM”), coverage (“C”) and the running time
of PET (“Tp”). Number of votes specifies how many parsers in ensemble should agree on a
labeled dependency; “pos8”, “pos10” means that only dependencies for dependent token of one
of the 8 or 10 PoS are selected; “prec80” means that only those dependency types were selected
for which precision is 80% or higher on the development set for all the parsers in the ensemble

demonstrates that with this criterion we select more accurate dependencies and improve
the coverage of the integrated setup.

* selecting only the 11 most accurate (with precision higher than 98%) dependency types
from the error analysis of the BMMMT ensemble: N-NUM, ROOT , SB-HD, HD-HD,
J-N, SP-HD, FLR-HD, N-J, NUM-N, PP-PP, VP-VP; As follows from Table 6.10 this
filtering method improves precision in the static analysis and coverage of the integrated
setup.

* selecting only the 10 most frequent and accurate (with precision higher than 93%) de-
pendency types from the error analysis of the BMT ensemble: N-NUM, ROOT, SB-HD,
HD-CMP, SP-HD, NP-HDN, N-HDN, MRK-NH, NUM-N, HD-PCT; From Table 6.11
we find out that this filtering approach is not very effective for our purposes.

* selecting only the 8 most accurate (with precision higher than 90%) and frequent de-
pendency types from the error analysis of individual parsers included in the BMMMT
ensemble: N-NUM, SB-HD, HD-CMP, SP-HD, NP-HDN, N-HDN, NUM-N, HD-PCT;
From Table 6.12 we do not have enough evidence that this filtering parameter is useful.

* selecting only the 7 most accurate (with precision higher than 98%) dependency types
from the error analysis of the MST parser with the KD-Fix algorithm (Mejer and Cram-
mer, 2010, 2012): N-NUM, ROOT, SB-HD, HD-HD, J-N, SP-HD, HDN-NP. With this
filtering method we try to maximize coverage for the settings of the MST parser with
confidence thresholding.

PET integration with Turbo We have chosen the Turbo parser for direct combination with
PET because it shows state-of-the-art accuracy and efficiency. Table 6.14 displays the exper-
imentation with filtering the Turbo output and its integration with PET. Based on the tuning

160 6.5. Tuning

P AR EM C Tp
BMT, 3 votes 96.12 77.62 | 43.59 89.3 1.07
BMT, 3 votes, freq300, prec70 96.60 72.85|4291 90.3 1.22
MMMT, 4 votes 96.52 73.51 | 41.73 90.7 1.19
MMMT, 4 votes, freq300, prec70 | 96.90 69.66 | 42.29 91.5 1.36
BMMMT, 5 votes 97.20 72.01 | 4336 934 1.29
BMMMT, 5 votes, freq300, prec70 | 97.50 68.36 | 43.64 93.8 1.48

Table 6.8: Filtering dependencies that have frequency less than 300 and precision less than 70%.
Static evaluation of ensembles before integration is carried out using precision (“P”’) and annota-
tion rate (“AR”); setups integrated with PET are evaluated using exact match (“EM”), coverage
(“C”) and the running time of PET (“Tp”). Number of votes specifies how many parsers in
ensemble should agree on a labeled dependency; “freq300” means that only dependencies with
frequency more than 300 are selected; “prec70” means that only those dependency types were
selected for which precision is 70% or higher on the development set for all the parsers in the
ensemble

results, we have chosen the configuration of the Turbo parser with filtering parameters involv-
ing ten most accurate dependency types, ten PoS tags and maximum length of dependency of
five tokens for further experimentation on the test set as this setup shows the best values of
precision of dependencies, coverage and exact match on the development set.

6.5.2 Confidence thresholding

We define confidence thresholding as an approach to select high-quality bilexical depen-
dencies by setting a threshold on the per-dependency probability scores produced by a parser.
We explore this method for B&N and MST since these parsers estimate confidence for each
dependency.

Confidence thresholding with B&N

The B&N parser can generate per-dependency scores. In the current subsection we attempt
to use these scores to detect which dependency types the B&N parser predicts most reliably.

The parser produces three per-dependency probabilities: e-, x- and a-scores. The e-score is
the score of the completion model - a graph-based score. The x-score is the edge-based score
coming from the transition-based features. The a-score is an accumulated transition-based score
which includes shifts, swaps and the edge score.

We evaluate the correlation of the per-dependency e-, x- and a-scores with the correctness of
the attachment and dependency labels using the Pearson correlation coefficient which measures
the linear relationship between two datasets. This statistical measure ranges between -1 and 1
with 0 implying no correlation, 1 implying perfect positive correlation (as the variables in one
dataset increase, the variables in the other dataset also increase and vice versa) and -1 implying
perfect negative correlation (as the variables in one dataset increase the variables in the other
dataset decrease and vice versa). In order to compute the Pearson correlation, we collect six lists

Chapter 6. Parser combination 161

P AR EM C Tp
BMT, 3 votes, L5 96.48 71.95|42.63 90.9 1.25
BMT, 3 votes, L5, prec80 97.29 62.81 | 4241 92.0 1.68
MMMT, 4 votes, L5 96.71 69.14 | 41.11 91.5 1.37
MMMT, 4 votes, L5, prec80 9741 61.18 | 42.07 92.7 1.81
BMMMT, 5 votes, L5 97.35 67.81 | 42.80 939 1.46
BMMMT, 5 votes, L5, prec80 | 97.88 60.21 | 43.42 944 1.89

Table 6.9: Selecting only dependency types for which precision is minimum 80%. Static eval-
uation of ensembles before integration is carried out using precision (“P”’) and annotation rate
(“AR”); setups integrated with PET are evaluated using exact match (“EM”), coverage (“C”)
and the running time of PET (“T»”"). Number of votes specifies how many parsers in ensemble
should agree on a labeled dependency; “prec80” means that only those dependency types were
selected for which precision is 80% or higher on the development set for all the parsers in the
ensemble; “L5” means that dependencies spanning more than 5 tokens are filtered out

P AR |[EM C Tp
BMMMT, 5 votes 9720 72.01[4336 934 129
BMMMT, 5 votes, depl1 | 98.24 24.91 | 4426 98.1 4.86

Table 6.10: Selecting only dependencies of 11 types. Static evaluation of ensembles before
integration is carried out using precision (“P”) and annotation rate (“AR”); setups integrated
with PET are evaluated using exact match (“EM”), coverage (“C”) and the running time of PET
(“Tp”). Number of votes specifies how many parsers in ensemble should agree on a labeled
dependency; “depl1” means that only dependencies of one of the 11 dependency types are
selected

P AR EM C Tp
BMT, 3 votes 96.12 77.62 | 43.59 89.3 1.07
BMT, 3 votes, dep10 96.71 5940 | 41.17 899 1.68
BMT, 3 votes, L5 96.48 7195 | 42.63 909 1.25
BMT, 3 votes, L5, dep10 96.84 56.58 | 41.28 90.8 1.87
MMMT, 4 votes 96.52 73.51 | 41.73 90.7 1.19
MMMT, 4 votes, dep10 97.03 5737|4145 916 1.80
MMMT, 4 votes, LS 96.71 69.14 | 41.11 915 1.37
MMMT, 4 votes, L5, depl0 | 97.09 55.06 | 41.34 92.0 2.00
BMMMT, 5 votes 9720 72.01 | 4336 93.4 1.29
BMMMT, 5 votes, dep10 9749 56.46 | 4241 930 1.93
BMMMT, 5 votes, L5 97.35 67.81 | 42.80 939 1.46
BMMMT, 5 votes, LS, depl0 | 97.53 54.22 | 4229 934 2.13

Table 6.11: Selecting only dependencies of 10 types. Static evaluation of ensembles before
integration is carried out using precision (“P”’) and annotation rate (“AR”); setups integrated
with PET are evaluated using exact match (“EM”), coverage (“C”) and the running time of
PET (“Tp”). Number of votes specifies how many parsers in ensemble should agree on a
labeled dependency; “L5” means that dependencies spanning more than 5 tokens are filtered
out; “dep10” means that only dependencies of one of the 10 dependency types are selected

162

P AR EM C Tp
BMT, 3 votes 96.12 77.62 | 43.59 89.3 1.07
BMT, 3 votes, dep8 96.70 53.12 | 4145 91.1 194
MMMT, 4 votes 96.52 73.51 | 41.73 90.7 1.19
MMMT, 4 votes, dep8 | 97.03 51.50 | 41.90 92.6 2.11
BMMMT, 5 votes 97.20 72.01 | 4336 934 1.29
BMMMT, 5 votes, dep8 | 97.47 50.72 | 42.69 94.0 2.22

Table 6.12: Selecting only dependencies

are selected

6.5. Tuning

of 8 types. Static evaluation of ensembles before
integration is carried out using precision (“P”) and annotation rate (“AR”); setups integrated
with PET are evaluated using exact match (“EM”), coverage (“C”) and the running time of
PET (“Tp”). Number of votes specifies how many parsers in ensemble should agree on a
labeled dependency; “dep8” means that only dependencies of one of the 8 dependency types

P AR EM C Tp
MST, KD-Fix*0.05*50, thrl 96.65 57.16 | 38.19 89.2 2.44
MST, KD-Fix*0.05%50, thrl, dep7 | 98.67 18.88 | 43.59 96.9 6.46
MST, KD-Fix*0.05*%100, thrl 96.92 53.04 | 3892 90.5 2.79
MST, KD-Fix*0.05%100, thrl, dep7 | 98.78 17.84 | 43.53 96.7 6.07

Table 6.13: Selecting only dependencies of 7 types. Static evaluation of ensembles before
integration is carried out using precision (“P”) and annotation rate (“AR”); setups integrated
with PET are evaluated using exact match (“EM”), coverage (“C”) and the running time of
PET (“Tp”). KD-Fix*0.05*50 stands for the KDF-Fix algorithm with the parameters standard
deviation of 0.05 and K of 50; “thr” stands for the threshold on per-dependency probability
score; “dep7” means that only dependencies of one of the 7 dependency types are selected

Chapter 6. Parser combination

P AR EM C Tp
baseline 0 0 43776 94.7 11.62
Turbo 90.87 86.39 | 33.52 654 0.82
Turbo, L5 92.13 78.60 | 33.80 70.1 0.99
Turbo, dep10 93.23 63.86 | 36.28 74.2 1.33
Turbo, dep10, L5 93.86 60.23 | 36.78 774 1.54
Turbo, pos10 95.01 33.29 |40.78 91.8 3.44
Turbo, pos10, L5 95.57 31.79 | 41.28 93.4 4.00
Turbo, dep10, pos10 96.00 30.13 | 42.07 939 4.23
Turbo, depl0, posl0, L5 96.34 29.10 | 42.18 949 4.57
Turbo, dep10 or pos10 93.61 6292|3521 724 1.27
Turbo, dep10 or pos10, L5 | 92.90 67.02 | 36.00 76.0 1.45
Turbo, prec80 93.51 71.96 | 36.22 73.1 1.25
Turbo, prec80, L5 9422 6697 | 36.90 76.6 1.41

163

Table 6.14: Parser integration: Turbo and PET. Static evaluation of ensembles before integration
is carried out using precision (“P”) and annotation rate (“AR”); setups integrated with PET are
evaluated using exact match (“EM”), coverage (“C”) and the running time of PET (“Tp”).
“dep10” means that only dependencies of one of the 10 dependency types are selected; “pos10”
means that only dependencies for dependent token of one of the 10 PoS are selected; “L5”
means that dependencies spanning more than 5 tokens are filtered out; “prec80” means that only
those dependency types were selected for which precision is 80% or higher on the development

set for all the parsers in the ensemble

164 6.5. Tuning

| e-scores | x-scores | a-scores
correctness of attachment and labeling | 0.1878 | 0.0651 | 0.1088
correctness of attachment 0.1551 | 0.0514 | 0.1180
correctness of labeling 0.1827 | 0.0603 | 0.0857

Table 6.15: Correlation of per-dependency confidence scores of the B&N parser with correct-
ness of attachment and labeling

representing the correctness of attachment, labeling and both attachment and labeling prediction
(with the value 1 for correct predictions and the value O for incorrect predictions) and the e-,
x- and a-score values for each token in the development set. We further compute the Pearson
correlation coefficients for each of the three former lists with respect to each of the three later
lists, using the formula:

nY Ty — Y Ti) Yi
Vi al = (T)y = ()

where 7 is the number of tokens in the development set, z; are the values of one list and y;
are the values of the other list. The results shown in Table 6.15 suggest that there is no strong
correlation between probability scores and correctness of dependencies (since correlation scores
are higher than 0 but lower than 0.5). We decided nevertheless to tune the thresholds for the
scores in order to extract at least a small number of high-quality dependencies.

Figure 6.1 illustrates the effect of optimizing the B&N probability scores for precision on
the annotation rate. We observe an unsurprising reverse relationship between the two metrics
which shows that the more accurate dependencies we intend to select from the output of B&N,
the lower overall annotation rate is. We seek to find thresholds for the probability scores that
assure certain levels of precision and annotation rate. Table 6.16 summarizes the results of our

study. It is slightly confusing, but our interpretation of the annotation rate measure (which we
will refer as “PD”—the proportion of selected dependencies with respect to all dependencies
generated with B&N) in this context differs from the evaluation metric annotation rate (“AR”)
that we use to evaluate the resulted setups. In these early experiments we included dependencies
with labels “PUNCT”, “MWE”, “NEG” and incoming dependencies to words with hyphens and
dashes for the calculation of the proportion of selected dependencies (“PD”) for thresholding
the probability scores of B&N. But for the evaluation of the setups the metric annotation rate
(“AR”) is computed after filtering such dependencies. For this reason in Table 6.16 we observe
that when we set the level of “PD” to 20% (“PD20”) to threshold e-, x- and a-scores, the
evaluation results in an “AR” of only 7.58%.

As one can eyeball from Table 6.16 we achieve a speed-up over the baseline in all the
tested setups, however the coverage is at baseline level or higher only when less than 28% of
the dependencies are selected for integration with PET. Even though our initial analysis of the
reliability of per-dependency probability scores was not encouraging, there are two interesting
setups that we have chosen for experiments on the test set: (1) B&N with a filtering parameter
selecting only dependency types with minimum precision of 95% and “PR40” which provided
the best efficiency with coverage on the baseline level; and (2) B&N with a filtering parameter

Chapter 6. Parser combination 165

Relation of precision and annotation rate

60

50

40

30

Annotation rate

20

94 95 96 97 98 99
Precision

Figure 6.1: Precision versus annotation rate for B&N on the development set

P AR EM C Tp
baseline 0 0 4376 94.7 11.62
B&N, prec95, PD20 | 97.61 836 | 4336 95.7 7.58
B&N, prec95, PD40 | 96.00 27.65 | 43.31 94.7 3.42
B&N, prec95, PD60 | 94.97 47.20 | 42.01 88.5 1.69

Table 6.16: Confidence thresholding with B&N. Static evaluation of ensembles before integra-
tion is carried out using precision (“P”’) and annotation rate (“AR”); setups integrated with PET
are evaluated using exact match (“EM”), coverage (“C”) and the running time of PET (“Tp").
“prec95”, “PD20” means that the values of e-, x- and a-scores are tuned so that at least 20%
of all the generated dependencies are selected for integration with PET and the accuracy of the
selected dependencies is at least 95%

selecting only dependencies with minimum precision of 95% and “PR20” which offered the
best coverage in our tuning experiments.

Confidence thresholding with MST

The MST parser can produce per-edge confidence scores indicating the parser’s confidence
in the correctness of each predicted edge using the K Draws by Fixed Standard Deviation (KD-
Fix) method (Mejer and Crammer, 2010). The confidence score of each edge predicted by the
model is defined to be the fraction of parse trees containing this edge among the K trees (Mejer
and Crammer, 2012): '

J
v=2

K
where j is the number of parse trees that contain this edge (j € 0... K) so v € [0, 1]. We set
K =50 following Mejer and Crammer (2012).
Similarly to the experiments on confidence thresholding with B&N, we compute the Pearson
correlation for the MST per-dependency confidence scores and the correctness of the attachment

166 6.5. Tuning

‘ confidence scores

correctness of attachment and labeling 0.4728
correctness of attachment 0.5216
correctness of labeling 0.3823

Table 6.17: Correlation of MST per-dependency confidence scores estimated with KD-Fix al-
gorithm (standard deviation 0.05 and K 50) with correctness of attachment and labeling

and labeling. In accordance with Table 6.17 there is a moderate correlation between the MST
confidence scores and the correctness of the attachment with the correlation value of 0.5216 (the
Pearson correlation coefficient with a magnitude higher than 0.5 indicates that the two datasets
can be considered moderately correlated).

In the instructions included in the MST parser package example values of the KD-Fix pa-
rameters are 0.05 for the standard deviation and 50 for K. While tuning the parameters for the
KD-Fix algorithm we varied the standard deviation in the interval from 0 to 1 with the step of
0.1, and for each fixed standard deviation we tried K from 1 to 100 with the step of 1. The
graphs in Figure 6.2 suggest that the value 0.05 for the standard deviation is optimal and for
the parameter K value 50 is good while higher values can potentially improve the correlation,
because of this reason we also experimented with K 100 in the subsequent experiments.

rrelation of confidence scores as function of standard deviation for KDFix algorithm Correlation of confidence scores as function of K for KDFix algorithm

°
o

0.6

°
o
°
&

D
g
£
4
Correlation of confidence scores with correctness of dependencies
g ¢
20 e
—_—1a
.
.
.
:

°
=
-".

LY

.,
wam

°
N
9ome
el
o
N

° 0 asg e

o
o

o
o
o
>

Correlation of confidence scores with correctness of dependencies)

50 100 150 200
K

I
o

0.0 0.2 0.4 0.6 0.8 10 12
Standard deviation

!
&
3
o

Figure 6.2: Tuning standard deviation and K of the KD-Fix algorithm on the development
set. The graphs show the correlation of confidence scores with correctness of dependencies
depending on different values of parameters

In the tuning phase, we have experimented with 0.98, 0.99 and 1 as the threshold for the
per-dependency probability score, because we are only interested in high-confidence dependen-
cies. We observed slight (however, maybe insignificant) improvements of precision in the static
analysis when pruning dependencies based on a threshold of 1 rather than 0.98, and therefore
decided to select only dependencies with probability 1.

Table 6.18 provides an overview of the tuning experiments on confidence thresholding of
the MST parser and its integration with PET. For the experiments on the test set we have cho-
sen three setups: (1) MST with standard deviation 0.05, K 50 and threshold probability 1, -
maximizing coverage and exact match, (2) MST with standard deviation 0.05, K 50, threshold

Chapter 6. Parser combination 167

P AR EM C Tp
baseline 0 0 43776 94.7 11.62
MST, KD-Fix*0.05*50, thr0.98 96.29 63.13 | 37.35 862 1.99
MST, KD-Fix*0.05*50, thr0.99 96.65 57.16 | 38.19 89.2 2.43
MST, KD-Fix*0.05*50, thrl 96.65 57.16 | 38.19 89.2 244
MST, KD-Fix*0.05%50, thr1, dep7 98.67 18.88 | 43.59 969 6.46
MST, KD-Fix*0.05%50, thrl, prec80, L5 | 97.58 48.00 | 40.89 91.8 3.51
MST, KD-Fix*0.05%50, thrl, pos8 98.14 22.37 | 4442 97.2 6.11
MST, KD-Fix*0.05*50, thrl, L5 96.70 53.18 | 38.36 90.2 2.81
MST, KD-Fix*0.05*100, thrl 96.92 53.04 | 3892 90.5 2.79
MST, KD-Fix*0.05%100, thrl, dep7 98.78 17.84 | 43.53 96.7 6.07
MST, KD-Fix*0.05%100, thrl, prec80, L5 | 97.67 45.14 | 41.06 93.1 3.65
MST, KD-Fix*0.05*%100, thrl, pos8 98.34 21.29 | 43.03 96.7 6.35

Table 6.18: Confidence thresholding with MST. Static evaluation of ensembles before integra-
tion is carried out using precision (“P”’) and annotation rate (“AR”); setups integrated with PET
are evaluated using exact match (“EM”), coverage (“C”) and the running time of PET (“Tp").
KD-Fix*0.05*50 stands for the KDF-Fix algorithm with the parameters standard deviation of
0.05 and K of 50, “thr” stands for the threshold on per-dependency probability score; “dep7”
means that only dependencies of one of the 7 dependency types are selected; “prec80” means
that only those dependency types were selected for which precision is 80% or higher on the
development set for all the parsers in the ensemble; “L5” means that dependencies spanning
more than 5 tokens are filtered out; “pos8” means that only dependencies for dependent token
of one of the 8 PoS are selected

on probability 1, minimum precision of dependencies 80% from static analysis and maximum
dependency length 5, - optimizing the parsing time of PET; (3) MST with standard deviation
0.05, K 100, threshold probability 1, and 7 dependency types chosen from the static analysis -
offering very high precision of dependencies and compromised coverage, time and exact match.

6.5.3 Ensembles of parsers

For the ensemble method we have chosen five state-of-the-art data-driven dependency parsers:
Malt, MST, B&N, Mate and Turbo, and experimented with three ensembles: 1) BMT (B&N,
Mate, Turbo) as these three parsers are the most recent ones; 2) MMMT (Malt, MST, Mate,
Turbo) as this ensemble excludes the slowest parser B&N; 3) BMMMT (B&N, Malt, MST,
Mate, Turbo) joining the strengths of all five tools.

Table 6.19 sums up all configurations with the BMT ensemble and shows the results ob-
tained during tuning on the development set. Based on these results, we have chosen three con-
figurations for the experiments on the test set: BMT with agreement between all three parsers
which is the fastest setup; BMT with 3 votes and 8 PoS which provides the best coverage;
BMT with 3 votes, dependency type with minimum precision 80% from the static analysis and
maximum length 5 which balances coverage and speed.

The tuning experiments with the ensemble MMMT are introduced in Table 6.20. For the

168 6.5. Tuning
P AR EM C Tp
baseline 0 0 4376 947 11.62
BMT, 3 votes 96.12 77.62 | 43.59 89.3 1.07
BMT, 3 votes, L10 96.21 75.95 | 43.25 89.8 1.10
BMT, 3 votes, L5 96.48 71.95|42.63 90.9 1.25
BMT, 3 votes, pos8 97.82 27.31 | 4331 97.6 5.40
BMT, 3 votes, pos8, L5 9793 26.56 | 43.31 97.2 5.87
BMT, 3 votes, dep10 96.71 594 | 41.17 89.9 1.68
BMT, 3 votes, dep8 96.70 53.12 | 4145 91.1 1.94
BMT, 3 votes, freq300, prec70 96.60 72.85|4291 903 1.22
BMT, 3 votes, freq300, prec70, L5 | 96.77 68.59 | 42.80 91.5 1.37
BMT, 3 votes, dep10, L5 96.84 56.58 | 41.28 90.8 1.87
BMT, 3 votes, prec70, L5 96.77 68.59 | 42.80 91.5 1.37
BMT, 3 votes, prec80, L5 9729 62.81 | 42.41 92.0 1.68
BMT, 3 votes, prec80, L.3 97.38 55.15| 4291 93.1 204
BMT, 3 votes, dep10 or L5 96.41 7477 | 42.69 90.2 1.17
BMT, 3 votes, prec70 or pos8, L5 | 96.75 68.89 | 42.74 91.3 1.35

Table 6.19: Ensemble BMT, tuning. Static evaluation of ensembles before integration is carried
out using precision (“P”) and annotation rate (“AR”); setups integrated with PET are evaluated
using exact match (“EM”), coverage (“C”) and the running time of PET (“Tp”). Number of
votes specifies how many parsers in ensemble should agree on a labeled dependency; “dep10”
means that only dependencies of one of the 10 dependency types are selected; “pos10” means
that only dependencies for dependent token of one of the 10 PoS are selected; “L5” means
that dependencies spanning more than 5 tokens are filtered out; “prec80” means that only those
dependency types were selected for which precision is 80% or higher on the development set for
all the parsers in the ensemble; “freq300” means that only dependencies with frequency more

than 300 are selected

Chapter 6. Parser combination

P AR EM C Tp
baseline 0 0 4376 947 11.62
MMMT, 4 votes 96.52 73.51 | 41.73 90.7 1.19
MMMT, 4 votes, L10 96.56 72.31 | 41.56 90.8 1.24
MMMT, 4 votes, L5 96.71 69.14 | 41.11 91.5 1.37
MMMT, 4 votes, posS 97.84 26.72 | 43.25 97.6 5.79
MMMT, 4 votes, dep8 97.03 51.50 | 41.90 92.6 2.11
MMMT, 4 votes, dep10 97.03 57.37 | 41.45 91.6 1.80
MMMT, 4 votes, freq300, prec70 96.90 69.66 | 42.29 91.5 1.36
MMMT, 4 votes, dep10, L5 97.09 55.06 | 41.34 92.0 2.00
MMMT, 4 votes, freq300, prec70, L5 | 96.97 66.31 | 42.07 92.0 1.49
MMMT, 4 votes, prec70, LS 96.97 66.31 | 42.07 92.0 1.49
MMMT, 4 votes, prec80, LS 9741 61.18 | 42.07 92.7 1.81
MMMT, 4 votes, prec80, L3 9746 53.96 | 42.41 934 2.17
MMMT, 4 votes, pos8, L5 97.90 26.10 | 43.19 97.5 6.04
MMMT, 4 votes, prec70 or pos8, LS | 96.95 66.55 | 42.07 92.0 1.48

169

Table 6.20: Ensemble MMMT, tuning. Static evaluation of ensembles before integration is
carried out using precision (“P”) and annotation rate (“AR”); setups integrated with PET are
evaluated using exact match (“EM”), coverage (“C”) and the running time of PET (“Tp”).
Number of votes specifies how many parsers in ensemble should agree on a labeled dependency;
“dep10” means that only dependencies of one of the 10 dependency types are selected; “pos10”
means that only dependencies for dependent token of one of the 10 PoS are selected; “L5”
means that dependencies spanning more than 5 tokens are filtered out; “prec80” means that only
those dependency types were selected for which precision is 80% or higher on the development
set for all the parsers in the ensemble; “freq300” means that only dependencies with frequency

more than 300 are selected

170 6.5. Tuning

P AR EM C Tp
baseline 0 0 4376 947 11.62
BMMMT, 3+ votes 9299 84.94 | 38.25 742 0.90
BMMMT, 5 votes 97.20 72.01 | 43.36 934 1.29
BMMMT, 5 votes, L10 97.24 70.86 | 43.14 93.5 1.32
BMMMT, 5 votes, L5 97.35 67.81 | 42.80 939 1.46
BMMMT, 5 votes, dep8 97.47 50.72 | 42.69 94.0 222
BMMMT, 5 votes, dep10 9749 56.46 | 42.41 93.0 1.93
BMMMT, 5 votes, freq300, prec70 97.50 68.36 | 43.64 93.8 1.48
BMMMT, 5 votes, dep10, L5 97.53 5422|4229 934 2.13
BMMMT, 5 votes, freq300, prec70, LS | 97.55 65.12 | 43.42 942 1.58
BMMMT, 5 votes, prec70, L5 97.55 65.12 | 4342 942 1.59
BMMMT, 5 votes, prec80, L5 97.88 60.21 | 43.42 944 1.89
BMMMT, 5 votes, prec80, L3 9791 53.14 | 4359 949 228
BMMMT, 5 votes, prec70 or pos8, LS | 97.55 65.12 | 43.42 942 1.58
BMMMT, 5 votes, depl 1 98.24 2491 | 4426 98.1 4.86
BMMMT, 5 votes, depl1, LS 98.40 23.24 | 44.15 97.8 532

Table 6.21: Ensemble BMMMT, tuning. Static evaluation of ensembles before integration is
carried out using precision (“P”) and annotation rate (“AR”); setups integrated with PET are
evaluated using exact match (“EM”), coverage (“C”) and the running time of PET (“Tp”).
Number of votes specifies how many parsers in ensemble should agree on a labeled dependencys;
“dep10” means that only dependencies of one of the 10 dependency types are selected; “pos10”
means that only dependencies for dependent token of one of the 10 PoS are selected; “L5”
means that dependencies spanning more than 5 tokens are filtered out; “prec80” means that only
those dependency types were selected for which precision is 80% or higher on the development
set for all the parsers in the ensemble; “freq300” means that only dependencies with frequency
more than 300 are selected

experiments on the test set the setups (1) MMMT with 4 votes; (2) MMMT with 4 votes and
only 8 PoS from static analysis and (3) MMMT with 4 votes, minimum dependency precision
80% and maximum dependency length 3 are chosen as the candidates for the best time, coverage
and a compromise between the two.

Table 6.21 visualizes tuning experiments with the BMMMT ensemble. Compared to the
BMT and MMMT ensembles, the coverage for the BMMMT ensemble with a strict voting
scheme is substantially higher from the outset. For all three ensembles we observe a trade-off
between the coverage and the annotation rate: the coverage is maximized when the rigorous fil-
tering is applied, and the remaining top-quality dependencies preserved for parser combination
constitute roughly a quarter of all dependencies originally generated by the parsers in the en-
semble. This in turn has an impact on the final parsing time as the fewer dependency constraints
are used, the less speed-up is achieved. From all the possible setups of the BMMMT ensemble
we have chosen (1) BMMMT with 5 votes, (2) BMMMT with 5 votes and 11 dependency types
and (3) BMMMT with 5 votes, minimum dependency precision of 80% from the static analysis
and maximum length 3 guided by the same criteria as for other ensembles: best speed, coverage

Chapter 6. Parser combination 171

LAS UAS LACC Time, self-eval. Time, average
Malt 88.83 91.06 91.1 7.201 0.0048787
MST 90.23 9270 92.29 330.438 0.223874
B&N with confidence scoring | 92.11 94.19 93.78 1242 0.8415
Mate 92.17 94.13 93.86 269.1 0.1823
Turbo 91.62 93.81 93.37 89.935 0.0609
MST, KD-Fix*0.05*50 90.23 9270 9229 6678.886 4.525
MST, KD-Fix*0.05*100 90.23 9270 92.29 11254.396 7.6249

Table 6.22: Evaluation of individual parsers including punctuation on the test set (section 21
of DeepBank). Self-evaluation time is measured in seconds, average time per sentence is mea-
sured in seconds per sentence. KD-Fix*0.05%50 stands for the KDF-Fix algorithm with the
parameters standard deviation of 0.05 and K of 50

and some middle ground correspondingly.

6.6 In-domain parser integration experiments

In this section we will discuss the experiments performed on the test set of DeepBank (the
section 21) with the various setups that we have selected during the tuning phase. The goal
of these experiments is to achieve a speed-up of the HPSG parser without significant loss of
coverage and accuracy.

The performance of the individual parsers on the test set is shown in Table 6.22. The ex-
periments are performed on a powerful computing cluster with all nodes having a minimum
64 GB RAM, 16 physical CPU cores and connected by FDR (56 Gbps) Infiniband whereas for
the tuning phase the corresponding evaluations presented in Table 6.4 used an older and less
powerful computer cluster. For B&N a more powerful computing cluster ensures significantly
better running time. In all experiments in this section B&N is run with parameters to produce
per dependency scores though the confidence scores are only used for confidence threshold-
ing with B&N and are not employed in the ensemble methods. Similarly as during tuning,
efficiency is estimated allowing a dependency parser to use only one CPU. We assume that in-
dividual parsers in an ensemble can be run in parallel and that the total effective running time
of the ensemble is the performance of the slowest parser.

Table 6.22 demonstrates that the newer parsers, i.e. B&N, Mate and Turbo, are more ac-
curate than Malt and MST. Malt is, however, the fastest, followed by Turbo which is 12 times
slower, and B&N is the slowest among the five. It is interesting to note that MST is 20 times
slower when it is run with the activated KD-Fix algorithm and the K-parameter set to 50; when
K is increased to 100, the difference in running time is 34 times.

Selected setups from the tuning phase are re-trained with the released versions of the ERG
1214 and DeepBank 1.1 and evaluated on the test set of the treebank. An overview of the results
is given in Table 6.23. As we recall from the static analysis defined in Section 6.4, precision
(“P”) shows how accurate the selected dependencies are and the annotation rate (“AR”) indi-
cates how many dependencies were actually chosen for combination. The standard metrics in

172 6.6. In-domain parser integration experiments

P AR EM C Tp Tp Tr

baseline 0 0 3981 954 |0 8.16 8.16
upperbound 100 85.87 | 68.62* 100" | O 0.82 0.82
Turbo, depl0, pos10, L5 96.22 29.24 | 37.02* 94.9* | 0.06 3.88 3.94
MST, KD-Fix*0.05%50, thr1, pos8 98.59 20.73 | 39.17 97.4* | 453 5.74 1027

MST, KD-Fix*0.05*50, thr1, prec80,15 | 97.97 44.19 | 37.88 943 |4.53 323 7.76
MST, KD-Fix*0.05*100, thr1, dep7 98.96 15.73 | 39.74 97.1* | 7.62 591 13.53

B&N, prec95, PD20 97.11 825 |39.03 959 |0.84 6.66 7.50
B&N, prec95, PD40 95.97 31.25|37.53* 942 |0.84 276 3.60
BMT, 3 votes, pos8 97.67 2696 | 3896 97.6* | 0.84 449 5.33
BMT, 3 votes, -prec<80, L5 9742 62.86 | 38.74 93.0 | 0.84 1.50 2.34
BMT, 3 votes 96.28 76.96 | 38.53 90.2* | 0.84 1.00 1.84
MMMT, 4 votes, pos8 9797 2642 | 39.10 98.1* | 0.22 4.61 4.83
MMMT, 4 votes, -prec<80, L3 97.70 54.07 | 38.88 944 |0.22 202 224
MMMT, 4 votes 96.76 72.63 | 38.67 91.6 | 0.22 1.17 1.39
BMMMT, 5 votes, depl 1 98.16 25.24|39.89 974" | 0.84 397 4.81
BMMMT, 5 votes, -prec<80, L3 98.14 53.27 1 39.39 959 | 0.84 2.11 2.95
BMMMT, 5 votes 97.42 7123 |40.03 945 |0.84 1.23 2.07

Table 6.23: In-domain parser combination experiments. “Tp” - running time of a dependency
parser/ensemble, “Tp” - running time of PET with dependency restrictions, “T7” - total running
time of parser integration setup. Statistically significant results for the exact match and coverage
are marked with an *. KD-Fix*0.05*50 stands for the KDF-Fix algorithm with the parameters
standard deviation of 0.05 and K of 50, “thr” stands for the threshold on per-dependency proba-
bility score; “dep7” means that only dependencies of one of the 7 dependency types are selected;
“-prec<80” means that dependency types that had precision less than 80% on the development
set for at least one of the parsers in the ensemble are filtered out; “L5” means that dependen-
cies spanning more than 5 tokens are filtered out; “pos8” means that only dependencies for
dependent token of one of the 8 PoS are selected

ERG parsing, exact match (“EM”) and coverage (“C”), describe PET’s precision and robust-
ness. Since the efficiency of the dependency parsers and PET with dependency restrictions
were evaluated on the same computer cluster, we are approximating the running time of parser
integration: “Tp”” measures how much time it takes to produce bilexical dependencies, “Tp”
is the running time of PET with dependency restrictions, and “T7” is the total running time of
parser integration, i.e. the sum of “Tp” and “Tp” (all three measures are expressed in seconds
per sentence).

In the same manner as during tuning, we introduce a baseline by running PET without
dependency constraints with a maximum processing time per sentence of 5 minutes and we
establish the upper bound by running PET with gold dependencies. Compared to the baseline,
the upper bound parser has 1.7 times higher exact match, 4.6 percentage points higher coverage
and it is almost 10 times faster. Our primary goal is to achieve a speed-up over the baseline
while not compromising baseline coverage and minimizing the loss in exact match.

In the first parser combination experiment we generate dependencies with Turbo and apply

Chapter 6. Parser combination 173

the following filtering pattern: select a dependency only if it belongs to one of the 10 depen-
dency types, spans over less than 5 tokens and has a dependent from one of the 10 PoS types.
Static analysis shows that with this filtering policy we use only 29.24% of the dependencies
generated by Turbo with an average precision of 96.22%. We find that parser integration in this
setup is twice as fast as the baseline, but the exact match and coverage are significantly lower
the baseline.

In the second set of parser combination experiments we test three setups with the MST
parser with the KD-Fix algorithm: (1) MST with the KD-Fix algorithm with the standard de-
viation of 0.05 and K equals 50, selecting only dependencies with confidence score 1 and with
an application of a filtering parameter by PoS tag: only dependencies with the dependent of
8 specific PoS tags are selected; (2) similar to the first one, but with different filtering param-
eters: only dependencies spanning less than five tokens and belonging to a dependency type
that had precision of 80% or more on the development set during tuning are selected; (3) MST
with the KD-Fix algorithm with the standard deviation of 0.05 and K equals 100, selecting only
dependencies with the confidence score of 1 and only of 7 dependency types. As we can see
from Table 6.23, the first and the third setups are not interesting because there are no efficiency
gains compared to the baseline. Despite a minor 0.4 second speed-up, the second setup is also
not very promising because of the drop in exact match and coverage, although the statistical
significance tests do not confirm that the difference from the baseline is significant.

In the third set of parser combination experiments we integrate PET with B&N with dif-
ferent confidence thresholds tuned on the development set using precision and proportion of
selected dependencies PD (which is computed including punctuation, multiword expressions
and contracted negation as explained the the previous section). The setups differ in the quan-
tity of chosen dependencies: for the first one annotation rate is only 8.25% and for the second
one annotation rate is 31.25%. The first setup might be considered interesting as it offers some
0.5 seconds speed-up while the coverage is on the baseline level and the loss of exact match
is insignificant. We further find that although the second setup is rather fast (3.60 seconds in
contrast with 8.16 seconds baseline), the exact match is insufficient.

The fourth block of experiments concerns the parsing ensemble of B&N, Mate and Turbo
(BMT) in three configurations: (1) filtering by the PoS type of dependent; (2) filtering by de-
pendency type and dependency length; (3) no filtering. For all the experiments with ensembles,
we consider efficiency of the ensemble equal to the efficiency of the slowest parser (in this case
B&N with the processing time 0.84 seconds per sentence) because parsers in the ensemble can
be run in parallel. Although the first configuration has the lowest annotation rate (26.96%), it is
the most promising of all three configurations: we observe improvements in time and coverage
over the baseline with insignificant loss in exact match. The other two configurations exhibit a
speed-up but at a cost of low coverage. Whilst the drop in coverage is significant for the third
setup, the significance tests are insensitive to the difference between the baseline coverage and
the coverage of the second setup.

The fifth parser integration experiment is realized with an ensemble of Malt, MST, Mate and
Turbo (MMMT) in three configurations analogous to the BMT ensemble, with an exception that
in the second configuration the imposed restrictions on the length of dependencies are tighter:
less than three tokens compared to less than five for the BMT ensemble. MST is the slowest
parser in this ensemble therefore its efficiency, 0.22 seconds per sentence, is used to evaluate

174 6.7. Cross-domain parser integration experiments

Self-evaluation time, average, sent per sec
CB VM SC WS

Malt 0.01 0.005 0.007 0.011
MST 036 0.04 009 0.12
B&N 1.88 022 129 256
Mate 0.18 0.07 026 0.22
Turbo 0.12 0.05 0.08 0.18

MST, KD-Fix*0.05*50 | 3.92 0.75 299 3.22

Table 6.24: Evaluation of individual parsers including punctuation on CB, VM, SC and WS).
Self-evaluation time is measured in seconds, average time per sentence is measured in seconds
per sentence

the efficiency of the ensemble. Similarly as for the BMT ensemble, the first configuration with
filtering by the PoS type of the dependent is the best: both time and coverage improve and exact
match remains close to the baseline. The other two configurations result in a loss of coverage,
significant for the third setup and possibly due to chance for the second setup.

The last set of experiments is with an ensemble of B&N, Malt, MST, Mate and Turbo
(BMMMT) with the time 0.84 seconds per sentence equal to the slowest parser in the ensemble,
i.e. B&N. In the first configuration the filtering criterion is dependency type, in the second
configuration the filtering is realized by another dependency type criterion and dependency
length; in the third configuration no filtering is applied. The most successful setup is the first
one as it delivers good improvements of coverage and time and baseline value of exact match.
The second and third configurations are quite good as they are twice as fast as the first one and
do not cause a decrease of the exact match, but they do not, however, improve the coverage over
the baseline.

The overall best configurations are highlighted in italics and bold fonts in Table 6.23. These
are setups that allow us to achieve the main goal: to substantially reduce running time and in
some cases also coverage with minimal or no loss of exact match. In all experiments we observe
tradeoffs in coverage and efficiency: improving the running time of the integrated setup we
risk compromising coverage. We conclude that the ensemble approach to selective pruning of
dependencies seems to be most promising, and it appears that the more parsers are used for the
voting strategy, the better results are achieved.

6.7 Cross-domain parser integration experiments

In Chapter 5 we contrasted in-domain and cross-domain performance of different parsers
and observed that the grammar-based parser seems to be more domain-resilient. In this section
we investigate whether the efficiency gains obtained with the parser integration setups on the
in-domain data almost without loss of coverage and exact match, will generalize to the out-
of-domain data. For this purpose we use the same datasets from the Redwoods treebank as in
Section 5.5: CB, SC, VM and WS. The domain VM requires a special “speech” version of
ERG.

Chapter 6. Parser combination 175

P AR EM C Tp Tp Tr
baseline 0 0 2953 97.0 |0 6.00 6.00
upperbound 100 87.17 | 65.77* 100* | O 0.73 0.73
Turbo, depl0, pos10, L5 92.67 25.69 | 27.01 90.6* | 0.12 3.17 3.29
B&N, prec95, PD20 9521 6.66 | 3037 96.8 | 1.88 495 6.83
B&N, prec95, PD40 9253 29.36 | 28.19 86.2" | 1.88 1.95 3.83
BMT, 3 votes, pos8 95.65 21.85|29.53 96.8 | 1.88 3.71 5.9
BMT, 3 votes, -prec<80, L5 94.43 62.03 | 27.85 81.2* | 1.88 1.14 3.02
BMT, 3 votes 93.04 72.82 |27.01 76.8" | 1.88 0.87 2.75
MMMT, 4 votes, pos8 9548 21.35|28.69 96.6 | 036 391 427
MMMT, 4 votes, -prec<80, L3 | 93.83 53.01 | 26.68 79.2* | 0.36 1.39 1.75
MMMT, 4 votes 9272 68.51 | 26.01 73.8"|0.36 1.03 1.39
BMMMT, 5 votes, depl1 96.82 22.81 |29.53 98.0 | 1.88 3.10 4.98
BMMMT, 5 votes, -prec<80, L3 | 95.68 51.00 | 28.86 89.9" | 1.88 1.51 3.39
BMMMT, 5 votes 9492 65.39 | 2836 849" | 1.88 1.09 297

Table 6.25: Out-of-domain parser combination experiments on CB. The static evaluation of en-
sembles before the integration is carried out using precision (‘“P”’) and annotation rate (“AR”);
setups integrated with PET are evaluated using the exact match (“EM”), the coverage (“C”),
the running time of a dependency parser/ensemble (“Tp”), the running time of PET with de-
pendency constraints (“Tp”) and the total running time of a parser integration setup (“T7”).
Statistically significant results for the exact match and coverage are marked with an *. The
number of votes specifies how many parsers in an ensemble should agree on a labeled depen-
dency; “prec95”, “PD20” means that the values of the e-, x- and a-scores of B&N are tuned so
that at least 20% of all the generated dependencies are selected for the integration with PET and
the accuracy of the selected dependencies is at least 95%; “dep7”” means that only dependencies
of one of the 7 dependency types are selected; “-prec<80” means that dependency types that had
precision less than 80% on the development set for at least one of the parsers in the ensemble
are filtered out; “L5” means that dependencies spanning more than 5 tokens are filtered out;
“pos8” means that only dependencies for dependent token of one of the 8 PoS are selected

The individual running times of the dependency parsers are displayed in Table 6.24. B&N
time is measured with confidence scoring parameters. We do not include experiments with the
confidence scores produced by the MST parser on the out-of-domain data since the total running
time of the integrated setups on the in-domain data is below the baseline and efficiency on the
out-of-domain data is also very low as follows from Table 6.24.

Table 6.25 describes the experiments on the CB test set. As usual in the present study,
the baseline is established by parsing with PET without dependency constraints, and the upper
bound is the PET parser run with gold dependencies. The baseline values for the exact match is
27.01%, for coverage 90.6% and for the total running time 6 seconds per sentence. The upper
bound for the exact match is 65.77%, for coverage 100% and for the total running time 0.73
seconds per sentence.

Despite the improvements in the total running time, most of the setups have insufficient
coverage on the CB set. However, B&N with confidence thresholding parameters selected by

176 6.7. Cross-domain parser integration experiments

P AR | EM C Tp Tp Tr
baseline 0 0 4822 998 |0 0.78 0.78
upperbound 100 82.89 | 71.98* 100 | O 0.19 0.19
Turbo, dep10, pos10, L5 9243 31.77 | 46.50 92.6* | 0.05 043 048
B&N, prec95, PD20 9221 6.18 | 4772 99.0 | 022 0.70 0.92
B&N, prec95, PD40 88.73 23.80 | 44.97* 93.2* | 0.22 0.38 0.60
BMT, 3 votes, pos8 96.48 26.04 | 47.21 98.0* | 0.22 0.52 0.74
BMT, 3 votes, -prec<80, L5 9293 59.77 | 44.06* 88.3* | 0.22 0.31 0.53
BMT, 3 votes 91.25 65.97 | 43.55* 86.7 | 0.22 0.25 047
MMMT, 4 votes, pos8 96.24 25.58 | 47.92 97.9* | 0.07 0.51 0.58
MMMT, 4 votes, -prec<80, L3 | 94.23 52.81 | 48.63 93.7* | 0.07 0.36 043
MMMT, 4 votes 92.11 61.14 | 46.60 89.2* | 0.07 0.26 0.33
BMMMT, 5 votes, depl1 95.07 23.73 | 47.11 96.6* | 0.22 0.57 0.79
BMMMT, 5 votes, -prec<80, L3 | 9542 50.79 | 48.83 95.6" | 0.22 0.37 0.59
BMMMT, 5 votes 93.72 58.16 | 47.01 92.6* | 0.22 0.29 0.51

Table 6.26: Out-of-domain parser combination experiments on VM. The static evaluation of en-
sembles before the integration is carried out using precision (‘“P”’) and annotation rate (“AR”);
setups integrated with PET are evaluated using the exact match (“EM”), the coverage (“C”),
the running time of a dependency parser/ensemble (“Tp”), the running time of PET with de-
pendency constraints (“Tp”) and the total running time of a parser integration setup (“T7”).
Statistically significant results for the exact match and coverage are marked with an *. The
number of votes specifies how many parsers in an ensemble should agree on a labeled depen-
dency; “prec95”, “PD20” means that the values of the e-, x- and a-scores of B&N are tuned so
that at least 20% of all the generated dependencies are selected for the integration with PET and
the accuracy of the selected dependencies is at least 95%; “dep7”” means that only dependencies
of one of the 7 dependency types are selected; “-prec<80” means that dependency types that had
precision less than 80% on the development set for at least one of the parsers in the ensemble
are filtered out; “L5” means that dependencies spanning more than 5 tokens are filtered out;
“pos8” means that only dependencies for dependent token of one of the 8 PoS are selected

requiring the parser to achieve a precision of 95% and PD of 20%, shows an improved coverage
and a baseline level of the exact match but it is slower than the baseline and therefore deemed
as not interesting.

The parser ensemble setups maximized for coverage during tuning (i.e. BMT and MMMT
with part-of-speech filtering parameters and BMMMT with filtering by dependency type), de-
liver the best results on CB: improved running time, and coverage and exact match at the base-
line level.

None of the setups delivers a speed-up without significant loss in coverage on VM (see
Table 6.26). On SC and WS (see Tables 6.27 and 6.28) we obtain acceptable coverage, exact
match and time for the BMMMT ensemble with filtering by dependency type and the MMMT
ensemble with filtering by part-of-speech correspondingly.

During tuning and testing both on the in- and out-of-domain data we observe an inverse
relationship between time and coverage. On CB, SC and WS we furthermore notice that within

Chapter 6. Parser combination 177

P AR | EM C Tp Tp Tr
baseline 0 0 3826 98.7 |0 3.47 3.47
upperbound 100 87.29 | 69.53* 999 |0 0.61 0.61
Turbo, dep10, pos10, L5 93.53 27.64 | 3593 91.5*|0.08 1.80 1.88
B&N, prec95, PD20 9470 6.61 |37.44 979 | 129 295 424
B&N, prec95, PD40 92.09 28.37 3593 87.2*| 129 140 2.69
BMT, 3 votes, pos8 95.83 24.11 | 37.67 97.1 | 129 222 351
BMT, 3 votes, -prec<80, L5 9430 61.84 | 3523 82.8*| 1.29 0.93 222
BMT, 3 votes 9250 72.83 | 3291 79.3* | 1.29 0.75 2.04
MMMT, 4 votes, pos8 05.89 23.82 | 37.67 96.5"|0.26 2.19 245
MMMT, 4 votes, -prec<80, L3 | 94.50 54.77 | 35.00 83.7* | 0.26 1.03 1.29
MMMT, 4 votes 9299 68.64 | 32.44* 78.8* | 0.26 0.79 1.05
BMMMT, 5 votes, depl1 96.47 25.33 37.67 971 |129 190 3.19
BMMMT, 5 votes, -prec<80, L3 | 95.59 529 | 3698 89.7° | 1.29 1.09 2.38
BMMMT, 5 votes 9433 65.69 | 34.53* 855|129 0.85 2.14

Table 6.27: Out-of-domain parser combination experiments on SC. The static evaluation of en-
sembles before the integration is carried out using precision (‘“P”’) and annotation rate (“AR”);
setups integrated with PET are evaluated using the exact match (“EM”), the coverage (“C”),
the running time of a dependency parser/ensemble (“Tp”), the running time of PET with de-
pendency constraints (“Tp”) and the total running time of a parser integration setup (“T7”).
Statistically significant results for the exact match and coverage are marked with an *. The
number of votes specifies how many parsers in an ensemble should agree on a labeled depen-
dency; “prec95”, “PD20” means that the values of the e-, x- and a-scores of B&N are tuned so
that at least 20% of all the generated dependencies are selected for the integration with PET and
the accuracy of the selected dependencies is at least 95%; “dep7”” means that only dependencies
of one of the 7 dependency types are selected; “-prec<80” means that dependency types that had
precision less than 80% on the development set for at least one of the parsers in the ensemble
are filtered out; “L5” means that dependencies spanning more than 5 tokens are filtered out;
“pos8” means that only dependencies for dependent token of one of the 8 PoS are selected

178 6.7. Cross-domain parser integration experiments

P AR EM C Tp Tp Tr
baseline 0 0 3834 975 |0 5.05 5.05
upperbound 100 86.1 | 69.96* 100* | O 0.65 0.65
Turbo, depl0, pos10, L5 89.52 2532|3543 89.7° | 0.18 236 254
B&N, prec95, PD20 95.55 5.67 |3812 973 |256 4.16 6.72
B&N, prec95, PD40 9271 29.00 | 3520 87.2* | 256 1.95 451
BMT, 3 votes, pos8 92.12 19.96 | 37.67 96.6 | 2.56 2.89 545
BMT, 3 votes, -prec<80, L5 94.18 62.16 | 36.32 859" | 256 098 3.54
BMT, 3 votes 92.84 73.69 | 34.08 83.4* | 256 0.77 3.33
MMMT, 4 votes, pos8 91.33 1995|3722 955 |022 292 3.14
MMMT, 4 votes, -prec<80, L3 | 93.44 54.16 | 32.96* 80.3* | 0.22 1.13 1.35
MMMT, 4 votes 91.85 70.93 | 32.06* 76.7" | 0.22 0.83 1.05
BMMMT, 5 votes, depl1 95.59 21.79 | 36.32 948 |2.56 272 5.28
BMMMT, 5 votes, -prec<80, L3 | 9548 51.84 | 35.65 88.1" | 256 1.23 3.79
BMMMT, 5 votes 9423 67.24 | 3520 86.3" | 256 0.89 345

Table 6.28: Out-of-domain parser combination experiments on WS. The static evaluation of en-
sembles before the integration is carried out using precision (‘“P”’) and annotation rate (“AR”);
setups integrated with PET are evaluated using the exact match (“EM”), the coverage (“C”),
the running time of a dependency parser/ensemble (“Tp”), the running time of PET with de-
pendency constraints (“Tp”) and the total running time of a parser integration setup (“T7”).
Statistically significant results for the exact match and coverage are marked with an *. The
number of votes specifies how many parsers in an ensemble should agree on a labeled depen-
dency; “prec95”, “PD20” means that the values of the e-, x- and a-scores of B&N are tuned so
that at least 20% of all the generated dependencies are selected for the integration with PET and
the accuracy of the selected dependencies is at least 95%; “dep7”” means that only dependencies
of one of the 7 dependency types are selected; “-prec<80” means that dependency types that had
precision less than 80% on the development set for at least one of the parsers in the ensemble
are filtered out; “L5” means that dependencies spanning more than 5 tokens are filtered out;
“pos8” means that only dependencies for dependent token of one of the 8 PoS are selected

Chapter 6. Parser combination 179

ensemble groups higher coverage comes in pair with higher exact match. The latter however
does not hold for VM: for the MMMT ensembles, for example, the slowest setup with a total
running time of 0.58 seconds per sentence has a coverage of 97.9% and an exact match of
47.92% while a slightly faster setup with a total running time of 0.43 seconds per sentence has
a coverage of 93.7% and an exact match of 48.63%.

In conclusion, the out-of-domain parsing is generally faster than the in-domain parsing in
our experiments, which at least in part reflects shorter average sentence length and, thus, lower
structural complexity in our out-of-domain data, and the loss in coverage is larger. The MMMT
ensemble with filtering by part-of-speech and the BMMMT ensemble with filtering by depen-
dency type are the most robust across domains.

6.8 Summary

The goal of the present chapter is to explore the space of parser combination setups in order
to achieve efficiency gains over the baseline for grammar-based parsing without loss in coverage
and accuracy. Bilexical dependencies serve as an interface for the integration.

The main challenge of successful parser combination is to choose only high-quality depen-
dencies. The tested approaches include filtering, confidence thresholding and ensembles with
voting scheme. The confidence thresholding method did not deliver the first-rate results. For
B&N, per-dependency confidence scores do not correlate well with the correctness of the at-
tachment and labeling. For this reason we manage to select only a small number of reliable
dependencies which is in most setups not enough to improve efficiency of the HPSG pars-
ing. For MST, the parsing time increases dramatically when the algorithm for generation of
per-dependency probability scores is activated which makes it unattractive candidate for parser
combination. Ensemble method in combination with filtering, on the other hand, is fast and
reliable in picking out accurate dependencies.

We find that the results of our parser combination experiments are slightly better than one
could have expected both in- and out-of-domain as there are setups that allow us to realize our
goal of improving efficiency of PET. On the in-domain data not only we achieve a speed-up,
but in some configurations we also significantly improve coverage without causing a decrease
in accuracy. However, we did not achieve any gains in the exact match with the parsing com-
bination approach. Ensembles seem to be more resilient to domain shift than individual parsers
as the best results are achieved with MMMT with part-of-speech filtering and BMMMT with
filtering by dependency type.

Chapter 7

Conclusion

In the present work we have sought to bridge the gap between grammar-based and data-
driven parsing using bilexical dependencies as an intermedium. The primary aims of this dis-
sertation have been contributing to the understanding of the range of various dependency for-
mats, comparing a hybrid “deep” grammar-based parser to state-of-the-art statistical data-driven
parsers and improving the efficiency of the grammar-based parser using bilexical dependency
constraints.

7.1 Main conclusions

In the following we provide a summary of the project components and highlight the main
findings and empirical results.

In Chapter 3 we propose a conversion procedure from representations of the English Re-
source Grammar (Flickinger, 2000) to bilexical dependencies in order to prepare a basis for
parser comparison and parser combination and offer a more conventional format for the pre-
existing DELPH-IN treebanks for statistical parsing. Syntactic dependencies are obtained by
a procedure similar to phrase structure tree transformation to dependencies, i.e. by travers-
ing the derivation tree of the ERG and looking up the head daughter for each branching rule
in the grammar specification file. The resulting dependency format is projective. On the se-
mantic level conversion is performed from a reduced representation of MRS (Copestake et al.,
2005)—so-called Elementary Dependency Structures (Oepen and Lgnning, 2006)—that dis-
cards scope-related information. The converter itself is now freely available from the repository
of DELPH-IN resources.

The proposed dependency representations offer a dependency format for researchers outside
the DELPH-IN community who might be interested in using DELPH-IN treebanks, thus both
DT and DM are included in the standard release of DeepBank. DM graphs were used as one
of three target semantic representations in the Broad-Coverage Semantic Dependency Parsing
tasks in 2014 and 2015 (Oepen et al., 2014, 2015).

Formal representation of syntax is continuously debated and there exists a variety of anno-
tation schemes. Variation in dependency annotation is partially related to conflicting criteria for
identifying the head. We provide an overview of several syntactico-semantic dependency rep-
resentations (CD, CP, SB, SD, EP, PA, PT, DT and DM), carry out a detailed contrastive study

181

182 7.1. Main conclusions

of different choices made in different formalisms, such as functional or substantive heads, and
graph structural properties such as connectivity. For example, formats that are more semantic
in spirit usually exclude semantically vacuous words from the dependency graph, which also
affects the graph structure: analyses assigned to a sentence by more semantic formats often do
not constitute an acyclic tree structure as opposed to more syntactic representations. For many
linguistic constructions including coordination and prepositional phrases there is disagreement
among the formats about the representation of dependency structure. Quantitative compari-
son also indicates relatively low structural similarity of the formats in terms of Jaccard and F1
scores. The Stanford formats are most related to each other, PA and DT have highest pairwise
similarity scores with CD, DM shows agreement with EP, and PT corresponds with SD.

In Chapter 4 we further compare syntactic dependency formats intrinsically using three
direct data-driven dependency parsers and extrinsically in application to negation resolution, in
order to investigate which properties of an annotation scheme make it difficult to parse and what
effects the choice of the dependency format has on a downstream application.

As the transition-based and graph-based approaches have dominated the field of dependency
parsing, we have chosen for experimentation the transition-based parser Malt, the graph-based
parser MST and the Bohnet and Nivre (2012) parser (B&N) that brings together a transition-
based approach with global modeling. We use the syntactic annotation formats SB, CD, DT and
PA in combination with two PoS tag sets: PTB tags and supertags (more fine-grained lexical
types of the ERG). It follows from the results that B&N has the highest labeled accuracy among
the three parsers for most of the setups, and MST outperforms Malt in the conventional setup
with PTB PoS tags on all the formats. We find that SB is the easiest format to label and CD is the
easiest to process structurally, while PA appears to be the hardest annotation scheme for all three
parsers. DT is more difficult than SB and CD for Malt and MST, though B&N is able to learn
DT as well as SB and CD. As expected, there is a strong correlation between the PoS tag sets
and the annotation schemes: PTB tags suit the PTB-derived SB, CD and PA formats well and
supertags fit the DeepBank-derived DT format better. There is a many-to-many correspondence
between PTB tags and supertags which indicates that supertags do not provide an extra level of
detail over PTB tags but rather complement them. Punctuation marks are treated as postfixes in
ERG and as a consequence punctuation signs in DT are always attached to the nearest token to
the left which is an easy rule for a parser to learn in contrast to complex punctuation attachment
rules in the PTB-derived SB, CD and PA formats.

In the error analysis of the parsing results we examined LAS over individual PoS and dis-
cussed problems of parsing coordination and some verb types. DT and PA take the lowest-
accuracy conjunction-headed approach to coordination analysis which however disambiguates
cases of individual and shared modifiers as in the example “old men and women”. The verb
errors typically occur in longer sentences on dependencies spanning over many words and are
frequently related to incorrect root identification. Common errors of parsing the PA format are
related to the inconsistent analysis of phrases with dollar sign and numbers such as “$ 3 billion”
which are very frequent in WSJ text, complex punctuation attachment and overloaded labels.

The extrinsic evaluation of dependency formats on the negation resolution task shows that
CD is best for detection of negated events, SB for scopes and DT for scope tokens, global
negation and correct negated sentences. Both parsing and negation resolution results provide
convincing evidence that despite structural differences, DT is in many aspects similar to SB and

Chapter 7. Conclusion 183

CD and that these three schemes are to some extent interchangeable.

In Chapter 5 we use DT dependencies as the basis for cross-framework parser comparison.
We seek to measure the differences in accuracy, coverage and efficiency of grammar-based and
data-driven phrase structure and dependency syntactic analyzers and document the effects of
domain variation. We evaluate in-domain trade-offs in coverage, time, tagging accuracy and
labeled and unlabeled dependency accuracies for the PET (Callmeier, 2000), B&N (Bohnet and
Nivre, 2012) and Berkeley (Petrov et al., 2006) parsers. We observe that in terms of coverage
the grammar-driven parser is lagging behind the data-driven systems with two sources of incom-
plete analysis: parse failure and tokenization mismatch against the gold standard. The second
problem is caused by a technical requirement to start processing from a raw string while the
statistical systems accept pre-tokenized input. The parsing time of the grammar-based parser in
a configuration optimized for efficiency using the joint segmentation and supertagging setup of
Dridan (2013a) is comparable with B&N but stands behind Berkeley. The main result, which
also holds in cross-domain experiments, concerns significantly higher tagging and dependency
accuracies of the grammar-based parser in contrast to the data-driven systems.

We further carry out a set of sanity experiments where we show that the achieved results
are not owed to the use of complex lexical types and an alternative tokenization approach. In
the error analysis we find that head-complement and head-specifier are the easiest relations and
head-adjunct is the most difficult relation for all three parsers. B&N and Berkeley perform
similarly on short dependencies, and B&N is slightly more accurate than Berkeley on longer
dependency relations, while PET systematically outperforms the two other parsers in terms of
precision and recall of dependencies spanning different number of tokens. The systems gener-
alize well for nouns and verbs and make most errors on conjunction structures and prepositions.
The downstream tasks of negation resolution and semantic dependency parsing are used to test
whether observed intrinsic differences in syntactic parsing performance are significant for ap-
plications that exploit syntactic features. The results are ambivalent as for the first task we get
a negative answer and for the second task we get a positive answer. This may mean that some
applications are less sensitive than others to the accuracy of syntactic processing.

In different subfields of natural language processing a combination of different approaches
have facilitated improved results. In this dissertation we aim to bring together grammar-based
and data-driven dependency parsing. The strengths and differences of the two approaches sug-
gest that there are good grounds for combination of fast and robust statistical data-driven sys-
tems deriving analyses based on rich feature representations and scalable machine learning al-
gorithms, on the one hand, with grammar-based systems enhanced with statistical modules for
disambiguation producing theoretically-motivated fine-grained analyses that account for subcat-
egorization, multiword expressions and other subtle linguistics distinctions, on the other hand.
Carrying out a set of parser combination experiments in Chapter 6, we observe that the evalu-
ation metrics of efficiency and coverage stand in an inverse relationship, by improving one of
these two metrics, we risk to decrease the other one. Similarly, we observe trade-offs of ac-
curacy and efficiency: for the faster parser combination setups the exact match metric usually
shows a lower value. The relationship between accuracy and coverage is less clear: improved
coverage does not always lead to improved exact match, however poor coverage usually results
in low exact match. Exploring the space of various integrated setups we search for the ones that
offer an increase of efficiency over the baseline without sacrificing coverage or accuracy.

184 7.2. Research questions revisited

We seek to improve the efficiency of PET by constraining the application of linguistically
motivated wide-coverage HPSG rules with bilexical dependencies produced by data-driven de-
pendency parsers. We propose two methods for selecting high-quality dependencies generated
by data-driven parsers: relying on the per-dependency confidence scores produced by the indi-
vidual parsers and applying several filters—pruning dependencies by length, type and part-of-
speech tag of the node. In addition, we expand the ensemble approach of Sagae et al. (2007)
by including more state-of-the-art statistical parsers into an ensemble and applying our filtering
method to the output of the voting. We introduce a “static” analysis to reduce the space of candi-
date combination methods. For most of the setups we present three configurations optimized by
different criteria: with maximized coverage, with minimized running time, with balanced im-
provements in coverage and efficiency. Further experiments on the out-of-domain data indicate
that there are configurations that achieve efficiency gains which are resilient across a number of
domains with minimal loss in coverage and accuracy.

7.2 Research questions revisited

In the introduction of the thesis we posed several research questions which we will re-visit
here and briefly outline the results our study has yielded.

» Which abstract commonalities and differences can be identified among various depen-
dency representations?

At the start of our project in 2011, we witnessed a variety of dependency frameworks with no
unique standard. In our work we survey several syntactico-semantic dependency schemes for
English, focusing on structural differences and similarities. We observe a striking disagreement
among the formats with respect to graph structure, head properties and pairwise similarity.
For a number of linguistic constructions such as coordination, prepositional phrases, complex
verbs, complex nouns we observe a lot of variation in annotation. Some formats are designed
to ease computation while others tend to offer more linguistically-motivated analysis. From
quantitative analysis, pairwise Jaccard similarities and F1 scores are comparatively low for the
different formats. For our ERG-derived representations we discover that DT correlates well
with CD and DM is related to EP.

* How and to what degree can the syntactic and semantic layers of HPSG be expressed in
the form of bilexical dependencies?

We propose a deterministic conversion procedure in the spirit of Zhang and Wang (2009) from
the HPSG derivation tree to syntactic bilexical dependencies that we name DT and from ele-
mentary dependency structures (Oepen and Lgnning, 2006) - a reduced representation of Mini-
mal Recursion Semantics (Copestake et al., 2005) - to semantic bilexical dependencies dubbed
DM, and show that the former scheme is most similar to CoNLL (Johansson and Nugues,
2007) among other syntactic formats, and the latter one—to Enju predicate-argument structures
(Miyao and Tsujii, 2005) among other semantic formats.

* How does the choice of syntactic dependency annotation format affect the performance
of dependency parsers and downstream applications?

Chapter 7. Conclusion 185

We compare how well three statistical data-driven parsers learn four syntactic dependency for-
mats from annotated data with the goal to better understand the effect that choice of representa-
tion has on the performance of dependency parsers. We find that for Malt (Nivre et al., 2007b)
and MST (McDonald et al., 2005b) the linguistically-motivated DT and PA (Cmejrek et al.,
2004) formats appear to be harder to learn than the CD (Johansson and Nugues, 2007) and SB
(de Marneffe et al., 2006) formats which are custom-designed for dependency parsing, however,
the performance of B&N (Bohnet and Nivre, 2012) is not significantly affected by the choice
between the CD, SB and DT annotation schemes. We observe that most difficult structures for
an automatic analysis include coordinations, preposition phrases and some verbal constructions.
In an extrinsic evaluation of the negation resolution task each of the three dependency represen-
tations optimize different evaluation metrics with DT showing best results for such metrics as
scope tokens, global negation and correct negated sentence.

* How does the performance of the HPSG parser relate to data-driven syntactic analyzers?

We perform a comprehensive comparison of a grammar-based system to data-driven syntactic
analyzers on the basis of a shared dependency representation and measure parser performance
with respect to several aspects: PoS tagging accuracy, coverage, efficiency, labeled and unla-
beled accuracy, domain variation and in application to the downstream tasks of negation reso-
Iution and semantic dependency parsing. The results indicate that deep grammar parsing yields
superior accuracy and better domain resilience than purely statistical systems, though 15% of
the in-domain data is outside the grammar coverage and might in theory pose a tougher chal-
lenge for grammar-based than data-driven approaches. Extrinsic evaluation highlights different
sensitivity levels of applications relying on syntactic features to the choice of the syntactic pars-
ing platform.

* How can the performance of the HPSG parser be improved by reducing its search space
with a native dependency parser?

We carry out a range of parser combination experiments and show that the HSPG parser in-
tegrated with bilexical dependency constraints produced by ensembles of dependency parsers
achieves a speed-up at a minimal cost of coverage and accuracy. For some of the setups, the cov-
erage and accuracy are improved over the baseline along with the efficiency in the in-domain ex-
periments. The best results are achieved when only high-precision dependencies are selected for
combination. We propose and experiment with three methods and their combination for acquir-
ing most accurate bilexical dependencies from the output of data-driven dependency parsers.

7.3 Future research

There is still a number of paths to explore and open issues to investigate. Below we present
a brief overview of extensions and research directions that are potentially interesting for future
work.

186 7.3. Future research

Conversion of ERG structures to bilexical dependencies In our conversion procedure from
syntactic and semantic HPSG structures to bilexical dependencies we have chosen to maxi-
mally preserve decisions made in the grammar and therefore produced two novel dependency
formats—DT and DM.

The DM format was compared to other semantic dependency formalisms and it was adopted
in the shared tasks on Broad-Coverage Semantic Dependency Parsing (Oepen et al., 2014,
2015); nevertheless its properties are not yet sufficiently studied. For example, we are inter-
ested to investigate in more detail what information encompassed in MRS structures is lost
during the reduction to DM, in particular, what information is expressed by the non-lexical el-
ements from MRS that are excluded during the conversion. Furthermore, the role labels in DM
(ARG, ..., ARG,) could be linked to semantic roles from PropBank (Palmer et al., 2005) and
NomBank (Meyers et al., 2004) and the format could be subsequently applied to the task of
semantic role labeling.

As a topic for future work we suggest mapping ERG analyses to more standard dependency
schemes. Our study indicates that CD and EP are good candidates for mapping because these
two formats are structurally the closest to DT and DM correspondingly. Eskelund (2014) de-
signed and implemented a heuristic converter which made use of machine-learned classifiers
for labeling, to transform the DT format to CD. The conversion software achieves an unlabeled
attachment score of 90.0 and a labeled attachment score of 82.9, which is below the level we
would like to reach. We therefore propose to implement conversion directly from the ERG
derivation tree to CD and from MRS to EP using additional information encoded in the gram-
mar, rather than using the lossy reductions to DT and DM as intermediate steps in the conversion
process.

An alternative direction is mapping ERG analyses to Universal Dependencies (UD) (de Marn-
effe et al., 2014; Nivre, 2015), a format aiming at consistency in annotation between languages
proposed about two years after publication of our work on syntactico-semantic dependencies
hence unknown to us at the outset of this work. Investigation should resolve the questions
of whether to perform the mapping from syntactic or semantic levels of analysis or combining
knowledge from both of them, which of the three forms of UD—basic, enhanced, or parsing—is
most suitable for mapping and which conversion approach to adopt (statistical, heuristic).

Another next natural step is to generalize the conversion procedure for other DELPH-IN re-
source grammars—Japanese Resource Grammar Jacy (Siegel and Bender, 2002), German Re-
source Grammar GG (Miiller and Kasper, 2000), Spanish Resource Grammar SRG (Marimon,
2010), Portuguese Resource Grammar LXGram (Branco and Costa, 2010) and others.

Study of syntactico-semantic dependencies Our contrastive study of syntactico-semantic
dependencies from Chapter 3 can be extended by adding more dependency formalisms, such
as the aforementioned Universal Dependencies and dependencies from LFG (Cetinoglu et al.,
2010), and, similarly to the work of Eskelund (2014), exploring further linguistic characteristics,
granularity and variability of formats by computing average depth of dependency trees, combi-
nations of PoS tags and dependency labels, non-projective dependencies and other properties.
Apart from Jaccard similarity and unlabeled dependency, there are other symmetric similarity
measures appropriate for our task such as inner product, cosine similarity, Pearson correlation
and covariance. In order to gauge the utility of various formats, it would be interesting to con-

Chapter 7. Conclusion 187

trast them in such downstream applications as sentiment analysis and semantic role labeling.

Cross-framework parser comparison The obvious extensions of our study on parser com-
parison are including other PCFG and dependency parsers and trying a wider variety of down-
stream tasks. The performance of statistical parsers can be improved using tuning and domain
adaptation techniques. For example, the set of features for B&N could be enriched with clus-
ter features (e.g. Brown clustering) in order to achieve better domain resilience and the finer-
grained ERG lexical categories can be split into several features in order to fight data sparseness
while preserving the original information from DT.

Parser combination Parser integration offers a large space for experimentation. There are
several venues for future work on this topic. A first obvious step is an in-depth error analysis
that would help to better understand the strong and weak sides of parser combination approaches
that we have explored in this chapter. In particular, it would be interesting to look at individual
dependency types to clarify for which ones there are sufficient gains and losses. Secondly, there
is a number of dependency parsers, such as for example ClearParser (Choi and Palmer, 2011)
and ZPar (Zhang and Nivre, 2011), that could be used to build various ensembles. Another
direction is training a statistical ranker for choosing the high-confidence dependencies instead
of building ensembles. We can use unlabeled dependencies as a basis for parser integration, i.e.
pruning the search space of PET without dependency labels. For example, Turbo parser has a
model for scoring unlabeled dependencies.

Parser combination for improved efficiency of grammar-based parsing can be also tested on
other grammars from the DELPH-IN family—Japanese Resource Grammar Jacy (Siegel and
Bender, 2002), German Resource Grammar GG (Miiller and Kasper, 2000), Spanish Resource
Grammar SRG (Marimon, 2010), Portuguese Resource Grammar LXGram (Branco and Costa,
2010) and others. These grammars are compatible with PET. For parser integration experimen-
tation the grammars have to be augmented with an interface for enabling dependency constraints
in unification and a procedure for extraction of a dependency backbone from HPSG structures
(the latter module is already available for the Spanish Resource Grammar).

An alternative approach to parser combination is enabling the data-driven parser to learn
from the grammar-based parser. Preliminary experiments for ERG in this direction have been
carried out by Zhang and Wang (2009) who incorporated ERG features into the models of
Malt and MST and observed slight performance drops on in-domain data in comparison to
the original models and performance gains on the out-of-domain data. For LFG, @vrelid et al.
(2009) realized parser stacking by supplying the data-driven dependency parser with the features
derived from the output of the LFG-based parser. The parse accuracy on the enhanced data set
significantly surpasses the baseline scores in their experiments. Using features extracted from
the PET output to guide a statistical parser, such as B&N, we can test whether grammar-based
and data-driven parsers are complementary or overlapping (in case we achieve no performance
gains by reparsing).

Bibliography

Adolphs, Peter, Stephan Oepen, Ulrich Callmeier, Berthold Crysmann, Dan Flickinger, and
Bernd Kiefer. Some fine points of hybrid natural language parsing. In Proceedings of the
6th International Conference on Language Resources and Evaluation, Marrakech, Morocco,
May 2008.

Agié, Zeljko and Alexander Koller. Potsdam: Semantic Dependency Parsing by Bidirectional
Graph-Tree Transformations and Syntactic Parsing. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014), pages 465-470, Dublin, Ireland, 2014.

Apresjan, Jurij, Igor Boguslavskij, Leonid Iomdin, Aleksandr Lazurskij, Nikolaj Percov,
Vladimir Sannikov, and Leonid Cinman. Lingvisticeskoe obespecenie sistemy francuzsko-
russkogo avtomaticeskogo perevoda ETAP-1 [Linguistic provision of the French-Russian
automated machine translation system ETAP-1]. In Predvaritel’nye pyblikacii Problemnoj
gruppy po eksperimental’noj i prikladnoj lingvistike [Preprints of the Problem Group of Ex-
perimental and Applied Linguistics], volume 154, 155, 159, 160, 166, 167, 174, Moscow,
SSSR, 1984-85.

Apresjan, Jurij, Igor Boguslavskij, Leonid Iomdin, Aleksandr Lazurskij, Nikolaj Percov,
Vladimir Sannikov, and Leonid Cinman. Lingvisticeskoe obespecenie sistemy ETAP-2 [Lin-
guistic provision of the system ETAP-2]. Nauka, Moscow, SSSR, 1989.

Bangalore, Srinivas and Aravind K. Joshi. Supertagging: an approach to almost parsing. Com-
putational Linguistics, 25(2):237 —265, 1999.

Becker, Tilman and Peter Poller. Two-step TAG parsing revisited. In In Proceedings of
the Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks
(TAG4), page 143 — 146, Philadelphia, PA, USA, 1998.

Bender, Emily M., Dan Flickinger, and Stephan Oepen. The Grammar Matrix: An Open-Source
Starter-Kit for the Rapid Development of Cross-Linguistically Consistent Broad-Coverage
Precision Grammars. In Carroll, John, Nelleke Oostdijk, and Richard Sutcliffe, editors, Pro-
ceedings of the Workshop on Grammar Engineering and Evaluation at the 19th International
Conference on Computational Linguistics, pages 8—14, Taipei, Taiwan, 2002.

Bender, Emily M., Scott Drellishak, Antske Fokkens, Laurie Poulson, and Safiyyah Saleem.
Grammar Customization. Research on Language & Computation, 8(1):23-72, 2010. ISSN
1570-7075.

189

190 Bibliography

Bender, Emily M., Dan Flickinger, Stephan Oepen, and Yi Zhang. Parser evaluation over local
and non-local deep dependencies in a large corpus. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing, page 397 —408, Edinburgh, Scotland,
UK, July 2011.

Bikel, Daniel M. Intricacies of Collins’ Parsing Model. Computational Linguistics, 30(4):
479-511, 2004.

Bisk, Yonatan and Julia Hockenmaier. An HDP Model for Inducing Combinatory Categorial
Grammars. Transactions of the Association for Computational Linguistics, 1:75-87, 2013.

Black, Ezra, Fred Jelinek, John Lafferty, David M. Magerman, Robert Mercer, and Salim
Roukos. Towards History-based Grammars: Using Richer Models for Probabilistic Pars-
ing. In Proceedings of the Workshop on Speech and Natural Language, pages 134—139,
Harriman, New York, USA, 1992.

Bod, Rens. Beyond Grammar: An Experience-Based Theory of Language. CSLI Publica-
tions/Cambridge University Press, Cambridge, US, 1998.

Bohnet, Bernd. Top accuracy and fast dependency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computational Linguistics, page 89—97, Beijing,
China, August 2010.

Bohnet, Bernd and Jonas Kuhn. The best of both worlds: A graph-based completion model for
transition-based parsers. In Proceedings of the 13th Meeting of the European Chapter of the
Association for Computational Linguistics, page 77 —87, Avignon, France, 2012.

Bohnet, Bernd and Joakim Nivre. A transition-based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Conference on Natural Language
Learning, page 1455 — 1465, Jeju Island, Korea, 2012.

Booth, Taylor L. Probabilistic representation of formal languages. In IEEE Conference Record
of the 1969 Tenth Annual Symposium on Switching and Automata Theory, page 74—81, 1969.

Bos, Johan, Edward Briscoe, Aoife Cahill, John Carroll, Stephen Clark, Ann Copestake,
Dan Flickinger, Josef van Genabith, Julia Hockenmaier, Aravind Joshi, Ronald Kaplan,
Tracy Holloway King, Sandra Kuebler, Dekang Lin, Jan Tore Lgnning, Christopher Manning,
Yusuke Miyao, Joakim Nivre, Stephan Oepen, Kenji Sagae, Nianwen Xue, and Yi Zhang,
editors. Workshop on Cross-Framework and Cross-Domain Parser Evaluation, Manchester,
UK, 2008.

Bosco, Cristina and Alessandro Mazzei. The EVALITA Dependency Parsing Task: From 2007
to 2011. In Magnini, Bernardo, Francesco Cutugno, Mauro Falcone, and Emanuele Pianta,
editors, EVALITA, volume 7689 of Lecture Notes in Computer Science, pages 1-12. Springer,
2011.

Bibliography 191

Bosco, Cristina, Simonetta Montemagni, Alessandro Mazzei, Vincenzo Lombardo, Felice
Dell’Orletta, Alessandro Lenci, Leonardo Lesmo, Giuseppe Attardi, Maria Simi, Alberto
Lavelli, Johan Hall, Jens Nilsson, and Joakim Nivre. Comparing the influence of different
treebank annotations on dependency parsing. In Proceedings of the 7th International Con-
ference on Language Resources and Evaluation, Valletta, Malta, 2010.

Bouma, Gosse, Gertjan van Noord, and Rob Malouf. Alpino. Wide-coverage computational
analysis of Dutch. In Daelemans, W., K. Sima-an, J. Veenstra, and J. Zavrel, editors, Com-
putational Linguistics in the Netherlands, page 45—59, Amsterdam, The Netherlands, 2001.
Rodopi.

Branco, AntAsnio and Francisco Costa. A Deep Linguistic Processing Grammar for Por-
tuguese. In Computational Processing of the Portuguese Language, volume LNAI6001 of
Lecture Notes in Artificial Intelligence, page 86— 89, Berlin, Germany, 2010. Springer.

Brants, Thorsten. TnT — a statistical part-of-speech tagger. In Proceedings of the Sixth Con-
ference on Applied Natural Language Processing ANLP-2000, page 224 —231, Seattle, USA,
2000.

Bresnan, Joan. Lexical-Functional Syntax. Blackwell, Oxford, 2001.

Briscoe, E. J., J. A. Carroll, and A. Copestake. Relational evaluation schemes. In Proceedings of
the Workshop Beyond Parseval - towards improved evaluation measures for parsing systems

at the 3rd International Conference on Language Resources and Evaluation, Las Palmas,
Canary Islands, 2002.

Brown, Peter F., Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C.
Lai. Class-based N-gram Models of Natural Language. Computational Linguistics, 18(4):
467 -479, December 1992.

Buchholz, Sabine and Erwin Marsi. CoNLL-X shared task on multilingual dependency parsing.
In Proceedings of the 10th Conference on Natural Language Learning, page 149 — 164, New
York, NY, USA, June 2006.

Bunt, Harry, Paola Merlo, and Joakim Nivre, editors. Trends in Parsing Technology. Depen-
dency Parsing, Domain Adaptation, and Deep Parsing, volume 43. Springer, 2010.

Burke, Michael, Aoife Cahill, Josef van Genabith, and Andy Way. Evaluating Automatically
Acquired F-structures against PropBank. In Proceedings of the Tenth International Confer-
ence on LFG, pages 84-99, Bergen, Norway, 2005.

Cahill, Aoife, Mairéad McCarthy, Josef van Genabith, and Andy Way. Parsing with PCFGs and
Automatic F-Structure Annotation. In Proceedings of the 7th International Conference on
LFG, page 76-95, 2002.

Cahill, Aoife, Michael Burke, Ruth O’Donovan, Josef van Genabith, and Andy Way. Long-
distance Dependency Resolution in Automatically Acquired Wide-coverage PCFG-based
LFG Approximations. In Proceedings of the 42nd Meeting of the Association for Compu-
tational Linguistics, Barcelona, Spain, 2004.

192 Bibliography

Cahill, Aoife, John T. Maxwell, III, Paul Meurer, Christian Rohrer, and Victoria Rosén. Speed-
ing Up LFG Parsing Using C-structure Pruning. In Proceedings of the Workshop on Grammar
Engineering Across Frameworks, pages 33—40, Manchester, United Kingdom, 2008.

Callmeier, Ulrich. PET. A platform for experimentation with efficient HPSG processing tech-
niques. Natural Language Engineering, 6(1):99 — 108, March 2000.

Candito, Marie, Joakim Nivre, Pascal Denis, and Enrique Henestroza Anguiano. Benchmark-
ing of statistical dependency parsers for French. In Proceedings of the 23rd International
Conference on Computational Linguistics, page 108 — 116, Beijing, China, 2010.

Carpenter, Bob. The Logic of Typed Feature Structures. Cambridge University Press, Cam-
bridge, England, 1992. ISBN 0-521-41932-8.

Carroll, John and Stephan Oepen. High-efficiency realization for a wide-coverage unification
grammar. In Dale, Robert and K. F Wong, editors, Proceedings of the 2nd International Joint
Conference on Natural Language Processing, volume 3651 of Lecture Notes in Artificial
Intelligence, page 165 —176. Springer, Jeju, Korea, October 2005.

Carroll, John, Ted Briscoe, and Antonio Sanfilippo. Parser Evaluation: a Survey and a New
Proposal. In Proceedings of the 1st International Conference on Language Resources and
Evaluation, page 447 —454, Granada, Spain, 1998.

Carroll, John Andrew. Practical Unification-based Parsing of Natural Language. PhD thesis,
Computer Laboratory, Cambridge University, 1993.

Cer, Daniel, Marie-Catherine de Marneffe, Dan Jurafsky, and Chris Manning. Parsing to Stan-
ford Dependencies. Trade-offs between speed and accuracy. In Proceedings of the 7th In-
ternational Conference on Language Resources and Evaluation, page 1628 — 1632, Valletta,
Malta, 2010.

Cetinoglu, Ozlem, Jennifer Foster, Joakim Nivre, Deirdre Hogan, Aoife Cahill, and Josef van
Genabith. LFG Without C-Structures. In Proceedings of the 9th International Workshop on
Treebanks and Linguistic Theories, Tartu, Estonia, 2010.

Charniak, Eugene. Tree-bank Grammars. In Proceedings of the 13th National Confrerence on
Artificial Intelligence, page 1031 — 1036, Portland, OR, USA, 1996.

Charniak, Eugene. A maximum-entropy-inspired parser. In Proceedings of the 6th Conference
on Applied Natural Language Processing, page 132 — 139, Seattle, WA, USA, April 2000.

Charniak, Eugene and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt discrimina-
tive reranking. In Proceedings of the 43rd Meeting of the Association for Computational
Linguistics, page 173 — 180, Ann Arbor, MI, USA, June 2005.

Che, Wanxiang, Zhenghua Li, Yuxuan Hu, Yongqiang Li, Bing Qin, Ting Liu, and Sheng Li. A
Cascaded Syntactic and Semantic Dependency Parsing System. In Proceedings of the 12th
Conference on Natural Language Learning, pages 238-242, Manchester, UK, 2008.

Bibliography 193

Che, Wanxiang, Zhenghua Li, Yongqiang Li, Yuhang Guo, Bing Qin, and Ting Liu. Mul-
tilingual Dependency-based Syntactic and Semantic Parsing. In Proceedings of the 13th
Conference on Natural Language Learning, pages 49—54, Boulder, CO, USA, 2009.

Choi, Jinho D. and Martha Palmer. Getting the Most out of Transition-based Dependency
Parsing. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 687—692, Portland, Oregon, USA, 2011.

Chomsky, Noam. Syntactic Structures. Mouton, The Hague, 1957.

Chomsky, Noam. Aspects of the Theory of Syntax. Massachusetts Institute of Technology.
M.LT. Press, 1965. ISBN 9780262530071.

Chomsky, Noam. Remarks on nominalization. In Jacobs, R.A. and P.S. Rosenbaum, editors,
Readings in English transformational grammar. Ginn, 1970.

Chomsky, Noam. Lectures on Government and Binding. Foris Publications, Dordrecht, 1981.

Chomsky, Noam. The Minimalist Program. Current studies in linguistics series. MIT Press,
1995. ISBN 9780262531283.

Chu, Y. J. and T. H. Liu. On the shortest arborescence of a directed graph. Science Sinica, 14:
1396-1400, 1965.

Ciaramita, Massimiliano, Giuseppe Attardi, Felice Dell’Orletta, and Mihai Surdeanu. DeSRL:
A Linear-time Semantic Role Labeling System. In Proceedings of the 12th Conference on
Natural Language Learning, pages 258-262, Manchester, UK, 2008.

Clark, Stephen and James R. Curran. Formalism-independent parser evaluation with CCG
and DepBank. In Proceedings of the 45th Meeting of the Association for Computational
Linguistics, page 248 — 255, Prague, Czech Republic, 2007a.

Clark, Stephen and James R. Curran. Wide-coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics, 33(4):493 —552, 2007b.

Clark, Stephen, Julia Hockenmaier, and Mark Steedman. Building Deep Dependency Structures
with a Wide-coverage CCG Parser. In Proceedings of the 40th Meeting of the Association for
Computational Linguistics, page 327 — 334, Philadelphia, PA, USA, 2002.

Coch, José. Interactive generation and knowledge administration in MULTIMETEO. In Nineth
International Workshop on Natural Language Generation, page 300—303, Niagara-on-the-
Lake, Canada, 1998.

Collins, Michael. Three generative, lexicalised models for statistical parsing. In Proceedings of
the 35th Meeting of the Association for Computational Linguistics and the 7th Meeting of the
European Chapter of the Association for Computational Linguistics, page 16—23, Madrid,
Spain, July 1997.

Collins, Michael. Head-driven statistical models for natural language parsing. PhD thesis,
University of Pennsylvania, Philadelphia, 1999.

194 Bibliography

Collins, Michael. Discriminative training methods for Hidden Markov Models: Theory and
experiments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, volume 10, page 1-8, Philadelphia, PA, USA,
2002.

Copestake, Ann and Dan Flickinger. An open source grammar development environment and
broad-coverage English grammar using HPSG. In Proceedings of the 2nd International Con-
ference on Language Resources and Evaluation, Athens, Greece, 2000.

Copestake, Ann, Dan Flickinger, Carl Pollard, and Ivan A. Sag. Minimal Recursion Semantics.
An introduction. Research on Language and Computation, 3(4):281—332, 2005.

Corver, N. and H.C. van Riemsdijk. Semi-lexical Categories: The Function of Content Words
and the Content of Function Words. Studies in generative grammar. Mouton de Gruyter,
2001. ISBN 9783110166859.

Covington, Michael A. A fundamental algorithm for dependency parsing. In In Proceedings of
the 39th Annual ACM Southeast Conference, page 95— 102, Athens, GA, USA, 2001.

Cramer, Bart and Yi Zhang. Constraining Robust Constructions for Broad-coverage Parsing
with Precision Grammars. In Proceedings of the 23rd International Conference on Compu-
tational Linguistics, pages 223-231, Beijing, China, 2010.

Dagan, Ido, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entail-
ment challenge. In Quifionero-Candela, Joaquin, Ido Dagan, Bernardo Magnini, and Florence
d’Alché Buc, editors, Machine Learning Challenges. Evaluating Predictive Uncertainty, Vi-
sual Object Classification, and Recognising Tectual Entailment, volume 3944 of Lecture
Notes in Computer Science, page 177—190. Springer Berlin Heidelberg, 2006.

de Marneffe, Marie-Catherine and Christopher D. Manning. The Stanford typed dependencies
representation. In Proceedings of the COLING Workshop on Cross-Framework and Cross-
Domain Parser Evaluation, page 1 -8, Manchester, UK, 2008a.

de Marneffe, Marie-Catherine and Christopher D. Manning. Stanford typed dependencies man-
ual. Stanford University, 2008b.

de Marneffe, Marie-Catherine, Bill MacCartney, and Christopher D. Manning. Generating
typed dependency parses from phrase structure parses. In Proceedings of the 5th International
Conference on Language Resources and Evaluation, page 449 — 454, Genoa, Italy, May 2006.

de Marneffe, Marie-Catherine, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Gin-
ter, Joakim Nivre, and Christopher D. Manning. Universal Stanford dependencies. A cross-
linguistic typology. In Proceedings of the 9th International Conference on Language Re-
sources and Evaluation, page 4585 —4592, Reykjavik, Iceland, 2014.

Devos, Laurent and Michael Gilloux. GPSG Parsing, Bidirectional Charts, and Connection
Graphs. In Proceedings of the 13th International Conference on Computational Linguistics,
volume 2, page 151 — 155, Helsinki, Finland, 1990.

Bibliography 195

Ding, Yuan and Martha Palmer. Machine translation using probabilistic synchronous depen-
dency insertion grammars. In Proceedings of the 43rd Meeting of the Association for Com-
putational Linguistics, pages 541 —548, Ann Arbor, MI, USA, 2005. Association for Com-
putational Linguistics.

Dridan, Rebecca. Using lexical statistics to improve HPSG parsing. PhD thesis, Department of
Computational Linguistics, Saarland University, 2009.

Dridan, Rebecca. Ubertagging. Joint segmentation and supertagging for English. In Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language Processing, page
1-10, Seattle, WA, USA, October 2013a.

Dridan, Rebecca. Ubertagging. Presented at the 9th DELPH-IN Summit, July 2013b. URL
http://www.delph-in.net/2013/bec.pdf.

Dridan, Rebecca and Stephan Oepen. Parser evaluation using elementary dependency matching.
In Proceedings of the 12th International Conference on Parsing Technologies, page 225 —
230, Dublin, Ireland, October 2011.

Dridan, Rebecca and Stephan Oepen. Tokenization. Returning to a long solved problem. A
survey, contrastive experiment, recommendations, and toolkit. In Proceedings of the 50th
Meeting of the Association for Computational Linguistics, page 378 —382, Jeju, Republic of
Korea, July 2012.

Dridan, Rebecca and Stephan Oepen. Document parsing. Towards realistic syntactic analysis.

In Proceedings of the 13th International Conference on Parsing Technologies, Nara, Japan,
November 2013.

Edmonds, Jack R. Optimum branchings. Journal of Research of the National Bureau of Stan-
dards, T1B:233-240, 1967.

Eisner, Jason and Noah Smith. Favor Short Dependencies: Parsing with Soft and Hard Con-
straints on Dependency Length. In Trends in Parsing Technology: Dependency Parsing,
Domain Adaptation, and Deep Parsing, pages 121-150. Springer, 2010.

Eisner, Jason M. Three new probabilistic models for dependency parsing: An exploration. In
Proceedings of the 16th International Conference on Computational Linguistics, page 340 —
345, Copenhagen, Denmark, 1996.

Eisner, Jason M. Smoothing a probabilistic lexicon via syntactic transformations. PhD thesis,
Department of Computer and Information Science, University of Pennsylvania, 2001.

Elming, Jacob, Anders Johannsen, Sigrid Klerke, Emanuele Lapponi, Hector Martinez, and
Anders Sggaard. Down-stream effects of tree-to-dependency conversions. In Proceedings of
the 2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, page 617 — 626, Atlanta, Georgia, USA, 2013.

Eskelund, Norveig. Dependency interconversion. Master thesis, Department of Informatics,
University of Oslo, 2014.

196 Bibliography

Farkas, Richard, Bernd Bohnet, and Helmut Schmid. Features for Phrase-Structure Reranking
from Dependency Parses. In Proceedings of the 12th International Conference on Parsing
Technologies, page 209 —214, Dublin, Ireland, 2011.

Flickinger, Dan. Lexical Rules in the Hierarchical Lexicon. PhD thesis, Stanford University,
Stanford, CA, USA, 1987.

Flickinger, Dan. On building a more efficient grammar by exploiting types. Natural Language
Engineering, 6 (1):15-28, 2000.

Flickinger, Dan. Toward a Cross-Framework Parser Annotation Standard. In Proceedings of
the 22nd International Conference on Computational Linguistics, pages 24—28, Manchester,
UK, 2008.

Flickinger, Dan, Yi Zhang, and Valia Kordoni. DeepBank. A dynamically annotated treebank
of the Wall Street Journal. In Proceedings of the 11th International Workshop on Treebanks
and Linguistic Theories, page 85— 96, Lisbon, Portugal, 2012. Edi¢des Colibri.

Fokkens, Antske. Metagrammar Engineering: Towards systematic exploration of implemented
grammars. In ACL:11, page 1066—1076, 2011.

Foland, William and James Martin. Dependency-Based Semantic Role Labeling using Con-
volutional Neural Networks. In Proceedings of the Fourth Joint Conference on Lexical and
Computational Semantics, pages 279-288, Denver, Colorado, 2015.

Foth, A. Kilian and Wolfgang Menzel. Hybrid Parsing: Using Probabilistic Models as Predic-
tors for a Symbolic Parser. In Proceedings of the 21st International Conference on Compu-
tational Linguistics and the 44th Meeting of the Association for Computational Linguistics,
pages 321-328, Sydney, Australia, 2006.

Fowler, Timothy A. D. and Gerald Penn. Accurate context-free parsing with Combinatory Cat-
egorial Grammar. In Proceedings of the 48th Meeting of the Association for Computational
Linguistics, page 335 — 344, Uppsala, Sweden, 2010.

Fujita, Sanae, Francis Bond, Stephan Oepen, and Takaaki Tanaka. Exploiting semantic infor-
mation for hpsg parse selection. In ACL 2007 Workshop on Deep Linguistic Processing, page
25-32, Proceedings of the 45th Meeting of the Association for Computational Linguistics,
2007.

Fundel, Katrin, Robert Kiiffner, and Ralf Zimmer. Relex—relation extraction using dependency
parse trees. Bioinformatics, 23(3):365-371, 2007.

Gaifman, Haim. Dependency systems and phrase-structure systems. Information and Control,
8(3):304-337, 1965.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. Generalized Phrase Struc-
ture Grammar. Basil Blackwell, Oxford, 1985.

Bibliography 197

Gerdes, Kim and Sylvain Kahane. Defining dependencies (and constituents). In Proceedings of
the 1st International Conference on Dependency Linguistics, page 17—27, Barcelona, Spain,
2011.

Gildea, Daniel. Corpus variation and parser performance. In Proceedings of the 2001 Con-
ference on Empirical Methods in Natural Language Processing, page 167 —202, Pittsburgh,
USA, 2001.

Gildea, Daniel and Julia Hockenmaier. Identifying Semantic Roles Using Combinatory Cate-
gorial Grammar. In Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, pages 57-64, Sapporo, Japan, 2003.

Gildea, Daniel and Daniel Jurafsky. Automatic labeling of semantic roles. Computational
Linguistics, 28:245 — 288, 2002.

Gildea, Daniel and Martha Palmer. The Necessity of Parsing for Predicate Argument Recogni-
tion. In Proceedings of the 40th Meeting of the Association for Computational Linguistics,
pages 239-246, Philadelphia, Pennsylvania, 2002.

Goldberg, Yoav and Michael Elhadad. Inspecting the Structural Biases of Dependency Parsing
Algorithms. In CONLL: 10, pages 234-242, Uppsala, Sweden, 2010.

Grishman, Ralph, Catherine Macleod, and John Sterling. Evaluating Parsing Strategies Using
Standardized Parse Files. In Proceedings of the 3rd Conference on Applied Natural Language
Processing, page 156 —161, Trento, Italy, 1992.

Haji¢, Jan. Building a syntactically annotated corpus. The Prague Dependency Treebank. In
Issues of Valency and Meaning, page 106 — 132. Karolinum, Prague, Czech Republic, 1998.

Haji¢, Jan, Otakar Smrz, Petr Zemdanek, Jan Snaidauf, and Emanuel Beska. Prague Arabic
Dependency Treebank: Development in Data and Tools. In Proceedings of the NEMLAR
International Conference on Arabic Language Resources and Tools, pages 110-117, Cairo,
Egypt, 2004.

Haji¢, Jan, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antonia
Marti, Lluis Marquez, Adam Meyers, Joakim Nivre, Sebastian Pad6, Jan §tépének, Pavel
Strandk, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. The CoNLL-2009 Shared Task:
Syntactic and Semantic Dependencies in Multiple Languages. In Proceedings of the 13th
Conference on Natural Language Learning, page 1 —18, Boulder, CO, USA, 2009.

Hall, Johan. Transition-Based Natural Language Parsing with Dependency and Constituency
Representations. PhD thesis, Computer Science, Vixjo University, 2008.

Harbusch, Karin. An Efficient Parsing Algorithm for Tree Adjoining Grammars. In Proceed-
ings of the 28th Meeting of the Association for Computational Linguistics, page 284 —-291,
Pittsburgh, PA, USA, 1990.

198 Bibliography

Harrison, P., S. Abney, E. Black, D. Flickinger, C. Gdaniec, R. Grishman, D. Hindle, B. In-
gria, M. Marcus, B. Santorini, and T. Strzalkowski. Evaluating syntax performance of
parser/grammars of English. In Proceedings of the Workshop on Evaluating Natural Lan-
guage Processing Systems, page 71 —77, Berkeley, CA, USA, 1991.

Hays, David G. Dependency Theory: A Formalism and Some Observations. Language, 40(4):
511-525, 1964.

Henderson, John C. and Eric Brill. Exploiting Diversity in Natural Language Processing: Com-
bining Parsers. In Proceedings of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora, page 187 —194, College Park, MD,
USA, 1999.

Hockenmaier, Julia and Mark Steedman. CCGbank. A corpus of CCG derivations and depen-
dency structures extracted from the Penn Treebank. Computational Linguistics, 33:355 —396,
2007.

Hopcroft, John E. and Jeffrey D. Ullman. Introduction to Aautomata Theory, Languages, and
Computation. Addison-Wesley, 1979.

Horacek, Petr, Eva Zamecnikov4, and Ivana Burgetovd. Generalized Phrase Structure Gram-
mar. Materials for Lectures FR97/2011/G1 - Formal Models in Natural Language Processing,
2011a. URL http://www.fit.vutbr.cz/~meduna/work/lib/exe/fetch.php?media=lectures:
phd:fr97:fmnl04-gpsg.pdf.

Horécek, Petr, Eva Zamec¢nikov4, and Ivana Burgetovd. Head-Driven Phrase Structure Gram-
mar. Materials for Lectures FR97/2011/G1 - Formal Models in Natural Language Processing,
2011b. URL http://www.fit.vutbr.cz/~meduna/work/lib/exe/fetch.php?media=lectures:
phd:fr97:fmnl05-hpsg.pdf.

Huddleston, R.D. and G.K. Pullum. The Cambridge Grammar of the English Language. Cam-
bridge textbooks in linguistics. Cambridge University Press, 2002. ISBN 9780521431460.

Hudson, Richard. English word grammar. Journal of Linguistics, 28:500-505, 1990.

Ivanova, Angelina, Stephan Oepen, Lilja @vrelid, and Dan Flickinger. Who Did What to
Whom? A contrastive study of syntacto-semantic dependencies. In Proceedings of the Sixth
Linguistic Annotation Workshop, page 2—11, Jeju, Republic of Korea, 2012.

Ivanova, Angelina, Stephan Oepen, Rebecca Dridan, Dan Flickinger, and Lilja @vrelid. On
Different Approaches to Syntactic Analysis Into Bi-Lexical Dependencies. An Empirical
Comparison of Direct, PCFG-Based, and HPSG-Based Parsers. In Proceedings of the 13th
International Conference on Parsing Technologies, page 63 —72, Nara, Japan, 2013a.

Ivanova, Angelina, Stephan Oepen, and Lilja @vrelid. Survey on Parsing Three Dependency
Representations for English. In Proceedings of the ACL 2013 Student Research Workshop,
page 3137, Sofia, Bulgaria, 2013b.

Bibliography 199

Ivanova, Angelina, Stephan Oepen, Rebecca Dridan, Dan Flickinger, Lilja @vrelid, and
Emanuele Lapponi. On Different Approaches to Syntactic Analysis Into Bi-Lexical De-
pendencies. An Empirical Comparison of Direct, PCFG-Based, and HPSG-Based Parsers. In
press, 2015.

Johansson, Richard and Pierre Nugues. Extended constituent-to-dependency conversion for
English. In Proceedings of the 16th Nordic Conference of Computational Linguistics, page
105 —-112, Tartu, Estonia, 2007.

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. Tree adjunct grammars. Journal of
Computer and System Sciences, 10(1):136—163, 1975. ISSN 0022-0000.

Judge, John, Aoife Cahill, and Josef van Genabith. QuestionBank: Creating a Corpus of Parse-
Annotated Questions. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th Meeting of the Association for Computational Linguistics, page
497 -504, Sydney, Australia, 2006.

Jurafsky, Daniel and James H. Martin. Speech and Language Processing. An Introduction to
Natural Language Processing, Speech Recognition, and Computational Linguistics. Prentice-
Hall, Upper Saddle River, NJ, USA, 2 edition, 2009.

Kahane, Sylvain. The Meaning-Text Theory. In Agel, Vilmos, Ludwig M. Eichinger,
Hans Werner Eroms, Peter Hellwig, Hans Jurgen Heringer, and Henning Lobin, editors, De-
pendency and Valency. An International Handbook on Contemporary Research, page 546 —
570. de Gruyter, Berlin/New York, 2003.

Kanerva, Jenna, Juhani Luotolahti, and Filip Ginter. Turku: Broad-Coverage Semantic Parsing
with Rich Features. In Proceedings of the 8th International Workshop on Semantic Evalua-
tion (SemEval 2014), pages 678—682, Dublin, Ireland, 2014.

Kaplan, Ronald and Joan Bresnan. Lexical Functional Grammar. A formal system for gram-
matical representation. In Bresnan, Joan, editor, The Mental Representation of Grammatical
Relations, page 173 -281. MIT Press, Cambridge, MA, USA, 1982.

Kaplan, Ronald M., Stefan Riezler, Tracy H. King, John T. Maxwell III, Alexander Vasserman,
and Richard S. Crouch. Speed and Accuracy in Shallow and Deep Stochastic Parsing. In
Proceedings of Human Language Technology conference (HLT) / North American chapter of
the Association for Computational Linguistics annual meeting (NAACL) of the 2004, pages
97-104, 2004.

Kawahara, Daisuke, Keiji Shinzato, Tomohide Shibata, and Sadao Kurohashi. Precise Infor-
mation Retrieval Exploiting Predicate-Argument Structures. In Proceedings of the Sixth In-
ternational Joint Conference on Natural Language Processing, page 37—45, Nagoya, Japan,
2013.

Kay, Martin. Parsing in Functional Unification Grammar. In Dowty, D. R., L. Karttunen, and
A. M. Zwicky, editors, Natural Language Parsing, page 251 —278. Cambridge University
Press, Cambridge, England, 1985.

200 Bibliography

Kay, Martin. Readings in Natural Language Processing. chapter Algorithm Schemata and
Data Structures in Syntactic Processing, page 35—70. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1986.

Kiefer, Bernd and Hans-Ulrich Krieger. A context-free approximation of Head-driven Phrase
Structure Grammar. In Proceedings of the 6th International Conference on Parsing Tech-
nologies, page 135 — 146, Trento, Italy, 2000.

Kiefer, Bernd and Hans-Ulrich Krieger. A Context-Free Superset Approximation of
Unification-Based Grammars. In New Developments in Parsing Technology. Kluwer, 2004.

Kiefer, Bernd, Hans-Ulrich Krieger, John Carroll, and Rob Malouf. A Bag of Useful Techniques
for Efficient and Robust Parsing. In Proceedings of the 37th Annual Meeting of the As-
sociation for Computational Linguistics (ACL-ANNUAL’99), pages 473-480, College Park,
Maryland, USA, 1999.

Kiefer, Bernd, Hans-Ulrich Krieger, and Detlef Prescher. A Novel Disambiguation Method
for Unification-Based Grammars Using Probabilistic Context-Free Approximations. In Pro-

ceedings of the 19th International Conference on Computational Linguistics, Taipei, Taiwan,
2002.

Kim, Sunghwan Mac, Dominick Ng, Mark Johnson, and James R. Curran. Improving Combina-
tory Categorial Grammar Parse Reranking with Dependency Grammar Features. In Proceed-
ings of the 24th International Conference on Computational Linguistics, page 1441 — 1458,
Mumbai, India, 2012.

King, Tracy Holloway, Richard Crouch, Stefan Riezler, Mary Dalrymple, and Ronald M. Ka-
plan. The PARC 700 Dependency Bank. In Proceedings of the 4th International Workshop
on Linguistically Interpreted Corpora, page 1 -8, Budapest, Hungary, 2003.

Kittredge, Richard I. and Alain Polguere. Dependency grammars for bilingual text generation:
inside FoG’s stratification models. In Proc. Int. Conf. on Current Issues in Computational
Linguistics, page 318 —330, Penang, Malaysia, 1991.

Klein, Dan and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of
the 41st Meeting of the Association for Computational Linguistics, page 423 —430, Sapporo,
Japan, July 2003.

Klein, Dan and Christopher D. Manning. Corpus-based Induction of Syntactic structure: Mod-
els of Dependency and Constituency. In Proceedings of the 42nd Meeting of the Association
for Computational Linguistics, page 478 —485, Barcelona, Spain, 2004.

Koo, Terry, Xavier Carreras, and Michael Collins. Simple semi-supervised dependency parsing.
In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics:
Human Language Technology Conference, page 595 — 603, Columbus, OH, USA, June 2008.

Krieger, Hans-Ulrich. From UBGs to CFGs A Practical Corpus-Driven Approach. Natural
Language Engineering, 13(4):317-351, 2007.

Bibliography 201

Krieger, Hans-Ulrich and Ulrich Schéfer. TDL - A Type Description Language for Constraint-
Based Grammars. In Proceedings of the 15th International Conference on Computational
Linguistics, page 893 — 899, Kyoto, Japan, 1994.

Kiibler, Sandra, Ryan McDonald, Joakim Nivre, and Graeme Hirst. Dependency Parsing. Mor-
gan and Claypool Publishers, USA, 2009. ISBN 1598295969.

Kucera, Henry and W. Nelson Francis. Computational analysis of present-day American En-
glish. Brown University Press, Providence, RI, 1967.

Lapponi, Emanuele, Jonathon Read, and Lilja @vrelid. Representing and resolving negation
for sentiment analysis. In Proceedings of the 2012 ICDM Workshop on Sentiment Elicitation
Jfrom Natural Text for Information Retrieval and Extraction, Brussels, Belgium, 2012a.

Lapponi, Emanuele, Erik Velldal, Lilja @vrelid, and Jonathon Read. UiO2: sequence-labeling
negation using dependency features. In Proceedings of the Ist Joint Conference on Lexical
and Computational Semantics, page 319 —327, Montréal, Canada, June 2012b.

Levin, B. English Verb Classes and Alternations: A Preliminary Investigation. University of
Chicago Press, 1993. ISBN 9780226475332.

Lin, Dekang. Dependency-based Evaluation of MINIPAR. In Proceedings of the Workshop on
the Evaluation of Parsing Systems, page 317 —329, Granada, Spain, 1998.

Lipton, Zachary Chase, Charles Elkan, and Balakrishnan Narayanaswamy. F1-Optimal
Thresholding in the Multi-label Setting. The Computing Research Repository (CoRR),
abs/1402.1892, 2014.

Lgnning, Jan Tore, Stephan Oepen, Dorothee Beermann, Lars Hellan, John Carroll, Helge
Dyvik, Dan Flickinger, Janne Bondi Johannessen, Paul Meurer, TorbjAyrn NordgAérd, Vic-
toria Rosén, and Erik Velldal. LOGON. A Norwegian MT effort. Uppsala, Sweden, 2004.

Ma, Ji, Yue Zhang, and Jingbo Zhu. Punctuation Processing for Projective Dependency Parsing.
In Proceedings of the 52nd Meeting of the Association for Computational Linguistics, pages
791-796, Baltimore, MD, USA, 2014.

Magerman, David M. Statistical Decision-tree Models for Parsing. In Proceedings of the
33th Meeting of the Association for Computational Linguistics, pages 276283, Cambridge,
Massachusetts, USA, 1995.

Malouf, Robert and Gertjan van Noord. Wide coverage parsing with stochastic attribute value
grammars. In IJCNLP-04 Workshop: Beyond shallow analyses - Formalisms and statistical
modeling for deep analyses., Hainan Island, China, 2004.

Manning, Christopher D. Part-of-speech Tagging from 97% to 100%: Is It Time for Some Lin-
guistics? In Proceedings of the 12th International Conference on Intelligent Text Processing
and Computational Linguistics, page 171 —189, Tokyo, Japan, 2011.

202 Bibliography

Marcus, Mitchell, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpora of English. The Penn Treebank. Computational Linguistics, 19:313 —330, 1993.

Marimon, Montserrat. The Spanish Resource Grammar. In Proceedings of the 7th International
Conference on Language Resources and Evaluation, page 700 —704, Valletta, Malta, 2010.

Marimon, Montserrat, Nuria Bel, and Lluis Padré. Automatic Selection of HPSG-Parsed Sen-
tences for Treebank Construction. Computational Linguistics, 40(3):523-531, 2014.

Martins, André F. T., Miguel B. Almeida, and Noah A. Smith. Turning on the Turbo: Fast Third-
Order Non-Projective Turbo Parsers. In Proceedings of the 51th Meeting of the Association
for Computational Linguistics, pages 617-622, Sofia, Bulgaria, 2013.

Martins, T. André F. and C. Mariana S. Almeida. Priberam. A turbo semantic parser with second
order features. In Proceedings of the 9th International Workshop on Semantic Evaluation,
page 471 —476, Dublin, Ireland, 2014.

Matsumoto, Shotaro, Hiroya Takamura, and Manabu Okumura. Sentiment Classification Using
Word Sub-sequences and Dependency Sub-trees. In Ho, TuBao, David Cheung, and Huan
Liu, editors, Advances in Knowledge Discovery and Data Mining, volume 3518 of Lecture
Notes in Computer Science, pages 301-311. Springer Berlin Heidelberg, 2005. ISBN 978-3-
540-26076-9.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic CFG with latent annota-
tions. In Proceedings of the 43rd Meeting of the Association for Computational Linguistics,
page 75—82, Ann Arbor, MI, USA, June 2005.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsujii. Efficient HPSG parsing with supertag-
ging and CFG-filtering. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI 2007), page 1671 —1676, Hyderabad, India, 2007.

Maxwell, John T. and Ronald M. Kaplan. The Interface Between Phrasal and Functional Con-
straints. Computational Linguistics, 19(4):571-590, 1993.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd Meeting of the Association for Computational
Linguistics, page 91 —98, Ann Arbor, MI, USA, 2005a.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Haji¢. Non-projective dependency
parsing using spanning tree algorithms. In Proceedings of the Human Language Technology
Conference and Conference on Empirical Methods in Natural Language Processing, page
523 -530, Vancouver, British Columbia, Canada, 2005b.

McDonald, Ryan, Kevin Lerman, and Fernando Pereira. Multilingual dependency analysis
with a two-stage discriminative parser. In Proceedings of the 10th Conference on Natural
Language Learning, pages 216-220, 2006.

Bibliography 203

McDonald, Ryan T. and Joakim Nivre. Characterizing the errors of data-driven dependency
parsing models. In Proceedings of the 2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Conference on Natural Language Learning, page 122—-131,
Prague, Czech Republic, 2007.

Mehrabi, Saeed, Anand Krishnan, Sunghwan Sohn, Alexandra M. Roch, Heidi Schmidt, Joe
Kesterson, Chris Beesley, Paul R. Dexter, C. Max Schmidt, Hongfang Liu, and Mathew J.
Palakal. DEEPEN: A negation detection system for clinical text incorporating dependency
relation into NegEx. Journal of Biomedical Informatics, 54:213-219, 2015.

Mejer, Avihai and Koby Crammer. Confidence in Structured-prediction Using Confidence-
weighted Models. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 971-981, Cambridge, MA, USA, 2010.

Mejer, Avihai and Koby Crammer. Are You Sure?: Confidence in Prediction of Dependency
Tree Edges. In Proceedings of Human Language Technologies: The 2012 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, pages 573—
576, 2012.

Mel’Cuk, Igor A. Semantics: From Meaning to Text, volume 1 of Semantics: From Meaning to
Text. John Benjamins Publishing Company, 2012. ISBN 9789027205964.

Meyers, Adam, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika Zielinska, Brian
Young, and Ralph Grishman. Annotating noun argument structure for NomBank. In Pro-
ceedings of the 4th International Conference on Language Resources and Evaluation, page
803 —806, Lisbon, Portugal, 2004.

Miwa, Makoto, Sampo Pyysalo, Tadayoshi Hara, and Jun’ichi Tsujii. Evaluating Dependency
Representations for Event Extraction. In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 779-787, 2010.

Miyao, Yusuke and Jun’ichi Tsujii. Probabilistic Disambiguation Models for Wide-Coverage
HPSG Parsing. In Proceedings of the 43rd Meeting of the Association for Computational
Linguistics, page 83—90, Ann Arbor, MI, USA, 2005.

Miyao, Yusuke and Jun’ichi Tsujii. Feature forest models for probabilistic HPSG parsing.
Computational Linguistics, 34(1):35—80, 2008.

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsujii. Corpus-Oriented Grammar Devel-
opment for Acquiring a Head-driven Phrase Structure Grammar from the Penn Treebank. In
Proceedings of the 1st International Joint Conference on Natural Language Processing, page
684 — 693, Hainan Island, China, 2004.

Miyao, Yusuke, Kenji Sagae, and Jun’ichi Tsujii. Towards framework-independent evaluation
of deep linguistic parsers. In Proceedings of the 2007 Workshop on Grammar Engineering
across Frameworks, page 238 —258, Palo Alto, California, 2007.

204 Bibliography

Miyao, Yusuke, Rune S@tre, Kenji Sagae, Takuya Matsuzaki, and Jun’ichi Tsujii. Task-oriented
Evaluation of Syntactic Parsers and Their Representations. In Proceedings of the 46th Meet-
ing of the Association for Computational Linguistics, page 46—54, Columbus, OH, USA,
2008.

Miyao, Yusuke, Stephan Oepen, and Daniel Zeman. In-House. An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the 8th International Workshop on Semantic Evaluation,
page 63 —72, Dublin, Ireland, 2014.

Moll4, Diego and Ben Hutchinson. Intrinsic Versus Extrinsic Evaluations of Parsing Systems.
In Proceedings of the EACL 2003 Workshop on Evaluation Initiatives in Natural Language
Processing: Are Evaluation Methods, Metrics and Resources Reusable?, page 43 —50, Bu-
dapest, Hungary, 2003.

Montemagni, Simonetta, Francesco Barsotti, Marco Battista, Nicoletta Calzolari, Ornella
Corazzari, Alessandro Lenci, Antonio Zampolli, Francesca Fanciulli, Maria Massetani,
Remo Raffaelli, Roberto Basili, MariaTeresa Pazienza, Dario Saracino, Fabio Zanzotto, Na-
dia Mana, Fabio Pianesi, and Rodolfo Delmonte. Building the Italian Syntactic-Semantic
Treebank. In Abeillé, Anne, editor, Treebanks, volume 20 of Text, Speech and Language
Technology, pages 189-210. Springer Netherlands, 2003. ISBN 978-1-4020-1335-5.

Morante, Roser and Eduardo Blanco. *SEM 2012 Shared Task. Resolving the scope and fo-
cus of negation. In Proceedings of the 1st Joint Conference on Lexical and Computational
Semantics, page 265 —274, Montréal, Canada, June 2012.

Miiller, Stefan and Walter Kasper. HPSG analysis of German. In Wahlster, Wolfgang, editor,
Verbmobil: Foundations of Speech-to-Speech Translation, pages 238-253. Springer, Berlin,
Germany, 2000.

Nanni, Debbie. On the surface syntax of constructions with easy-type adjectives. Language, 56
(3):568-591, 1980.

Neuhaus, Peter and Norbert Broker. The Complexity of Recognition of Linguistically Ade-
quate Dependency Grammars. In Proceedings of the 35th Meeting of the Association for
Computational Linguistics and the 7th Meeting of the European Chapter of the Association
Sfor Computational Linguistics, page 337 — 343, Madrid, Spain, 1997.

Nilsson, Jens. Transformation and Combination in Data-Driven Dependency Parcing. PhD
thesis, Vixjo University, School of Mathematics and Systems Engineering, 20009.

Ninomiya, Takashi, Yoshimasa Tsuruoka, Yusuke Miyao, and Jun’ichi Tsujii. Efficacy of Beam
Thresholding, Unification Filtering and Hybrid Parsing in Probabilistic HPSG Parsing. In
Proceedings of the 9th International Conference on Parsing Technologies, pages 103-114,
Vancouver, British Columbia, Canada, 2005.

Ninomiya, Takashi, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. A log-linear model
with an n-gram reference distribution for accurate HPSG parsing. In Proceedings of the 10th
International Conference on Parsing Technologies, page 60 —68, 2007.

Bibliography 205

Nivre, Joakim. An efficient algorithm for projective dependency parsing. In Proceedings of
the 8th International Conference on Parsing Technologies, page 149 —160, Nancy, France,
2003.

Nivre, Joakim. Dependency grammar and dependency parsing. Technical Report 05133, School
of Mathematics and Systems Engineering (MSI), Vixjo University, 2005.

Nivre, Joakim. [Inductive Dependency Parsing. Text, Speech, and Language Technology.
Springer, Dordrecht, The Netherlands, 2006.

Nivre, Joakim. Sorting Out Dependency Parsing. In Nordstrgm, Bengt and Aarne Ranta, edi-
tors, Advances in Natural Language Processing, volume 5221 of Lecture Notes in Computer
Science, pages 16-27. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-85286-5.

Nivre, Joakim. Non-projective dependency parsing in expected linear time. In Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, volume 1, page 351 —359,
Suntec, Singapore, 2009.

Nivre, Joakim. Towards a universal grammar of natural language processing. In Proceedings
of the 16th International Conference on Intelligent Text Processing and Computational Lin-
guistics, Cairo, Egypt, 2015.

Nivre, Joakim and Ryan McDonald. Integrating Graph-Based and Transition-Based Depen-
dency Parsers. In Proceedings of the 46th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technology Conference, page 950—958, Columbus,
OH, USA, 2008a.

Nivre, Joakim and Ryan T. McDonald. Integrating Graph-Based and Transition-Based Depen-
dency Parsers. In Proceedings of the 46th Meeting of the Association for Computational
Linguistics, page 950—958, Columbus, OH, USA, 2008b.

Nivre, Joakim and Jens Nilsson. Pseudo-projective dependency parsing. In Proceedings of the
43rd Meeting of the Association for Computational Linguistics, page 99—106, Ann Arbor,
MI, USA, 2005.

Nivre, Joakim and Mario Scholz. Deterministic Dependency Parsing of English Text. In Pro-
ceedings of the 20th International Conference on Computational Linguistics, page 64—70,
Geneva, Switzerland, 2004.

Nivre, Joakim, Johan Hall, and Jens Nilsson. Memory-based dependency parsing. In Proceed-
ings of the Sth Conference on Natural Language Learning, page 49 — 56, Boston, MA, USA,
2004.

Nivre, Joakim, Johan Hall, Sandra Kiibler, Ryan McDonald, Jens Nilsson, Sebastian Riedel,
and Deniz Yuret. The CoNLL 2007 shared task on dependency parsing. In Proceedings
of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Conference on Natural Language Learning, page 915-932, Prague, Czech Republic, June
2007a.

206 Bibliography

Nivre, Joakim, Johan Hall, Jens Nilsson, Atanas Chanev, Giilsen Eryigit, Sandra Kiibler, Sve-
toslav Marinov, and Erwin Marsi. MaltParser: A language-independent system for data-
driven dependency parsing. Natural Language Engineering, 13(2), 2007b.

Nivre, Joakim, Laura Rimell, Ryan McDonald, and Carlos Gémez Rodriguez. Evaluation of
dependency parsers on unbounded dependencies. In Proceedings of the 23rd International
Conference on Computational Linguistics, page 833 — 841, Beijing, China, 2010.

Oepen, Stephan and John Carroll. Ambiguity packing in constraint-based parsing. Practical
results. In Proceedings of the 1st Meeting of the North American Chapter of the Association
for Computational Linguistics, page 162 — 169, Seattle, WA, USA, 2000.

Oepen, Stephan and Jan Tore Lgnning. Discriminant-based MRS banking. In Proceedings of
the 5th International Conference on Language Resources and Evaluation, page 1250 — 1255,
Genoa, Italy, 2006.

Oepen, Stephan, Daniel Flickinger, Kristina Toutanova, and Christopher D. Manning. LinGO
Redwoods. A rich and dynamic treebank for HPSG. Research on Language and Computa-
tion, 2(4):575-596, 2004.

Oepen, Stephan, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajic,
Angelina Ivanova, and Yi Zhang. SemEval 2014 Task 8. Broad-coverage semantic depen-
dency parsing. In Proceedings of the 9th International Workshop on Semantic Evaluation,
page 63 —72, Dublin, Ireland, 2014.

Oepen, Stephan, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinkovd, Dan
Flickinger, Jan Haji¢, and Zdenka Uresova. SemEval 2015 Task 18. Broad-coverage se-
mantic dependency parsing. In Proceedings of the 10th International Workshop on Semantic
Evaluation, page 915 —926, Denver, CO, USA, 2015.

Oostdijk, Nelleke. The Spoken Dutch Corpus. Overview and first Evaluation. In Proceedings of
the 2nd International Conference on Language Resources and Evaluation, Athens, Greece,
2000.

@vrelid, Lilja and Joakim Nivre. When word order and part-of-speech tags are not enough —
Swedish dependency parsing with rich linguistic features. In Proceedings of the International
Conference on Recent Advances in Natural Language Processing (RANLP), pages 447451,
2007.

@vrelid, Lilja, Jonas Kuhn, and Kathrin Spreyer. Cross-framework parser stacking for data-
driven dependency parsing. TAL (Traitement Automatique des Langues), special issue on
Machine Learning for NLP, 2009.

Packard, Woodley. ACE: the Answer Constraint Engine. http://sweaglesw.org/linguistics/
ace/, 2011. Accessed: 14 August 2015.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated
Corpus of Semantic Roles. Computational Linguistics, 31(1):71 -106, March 2005. ISSN
0891-2017.

Bibliography 207

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of the 21st International Conference on Compu-
tational Linguistics and the 44th Meeting of the Association for Computational Linguistics,
page 433 —440, Sydney, Australia, July 2006.

Plank, Barbara and Gertjan van Noord. Grammar-driven versus data-driven. Which parsing
system is more affected by domain shifts? In Proceedings of the 2010 Workshop on NLP
and Linguistics: Finding the Common Ground, page 2533, Uppsala, Sweden, July 2010.
Association for Computational Linguistics.

Pollard, Carl and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Studies in Contempo-
rary Linguistics. The University of Chicago Press, Chicago, USA, 1994.

Poon, Hoifung and Pedro Domingos. Unsupervised semantic parsing. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing, Singapore, 2009.

Popel, Martin and Zden&k Zabokrtsky. TectoMT. Modular NLP framework. Advances in Nat-
ural Language Processing, page 293 —304, 2010.

Popel, Martin, David Marecek, Jan étépének, Daniel Zeman, and Zdenék Zaboknsk}’f. Coor-
dination Structures in Dependency Treebanks. In Proceedings of the 51th Meeting of the
Association for Computational Linguistics, page 517 —527, Sofia, Bulgaria, 2013.

Prins, Robbert and Gertjan van Noord. Reinforcing parser preferences through tagging. Traite-
ment Automatique des Langues, 44(3):121 -139, 2003.

Pyysalo, Sampo, Filip Ginter, Juho Heimonen, Jari Bjorne, Jorma Boberg, Jouni Jédrvinen, and
Tapio Salakoski. Bioinfer: a corpus for information extraction in the biomedical domain.
BMC Bioinformatics, 8(1):1-24, 2007.

Rambow, Owen and Aravind K. Joshi. A formal look at dependency grammars and phrase-
structure grammars, with special consideration of word-order phenomena. CoRR, abs/cmp-
1g/9410007, 1994. URL http://arxiv.org/abs/cmp-Ig/9410007.

Ramsay, Allan. Effective Parsing with Generalised Phrase Structure Grammar. In Proceedings
of the 2nd Meeting of the European Chapter of the Association for Computational Linguistics,
page 5761, Geneva, Switzerland, 1985.

Rasooli, Mohammad Sadegh, Amirsaeid Moloodi, Manouchehr Kouhestani, and Behrouz Mi-
naei Bidgoli. A Syntactic Valency Lexicon for Persian Verbs: The First Steps towards Persian
Dependency Treebank. In 5th Language and Technology Conference (LTC), page 227 —231,
Poznan, Poland, 2011.

Razimovi, Magda and Zden&k Zabokrtsky. Morphological Meanings in the Prague Dependency
Treebank 2.0. In Matousek, Véclav, Pavel Mautner, and Tomds Pavelka, editors, Text, Speech
and Dialogue, volume 3658 of Lecture Notes in Computer Science, pages 148—155. Springer
Berlin Heidelberg, 2005. ISBN 978-3-540-28789-6.

208 Bibliography

Read, Jonathon, Dan Flickinger, Rebecca Dridan, Stephan Oepen, and Lilja @vrelid. The We-
Search Corpus, Treebank, and Treecache. A comprehensive sample of user-generated con-
tent. In Proceedings of the 8th International Conference on Language Resources and Evalu-
ation, page 1829 — 1835, Istanbul, Turkey, May 2012.

Rehbein, Ines and Josef Van Genabith. Evaluating evaluation measures. In Proceedings of the
16th Nordic Conference of Computational Linguistics, page 372 —379, Tartu, Estonia, 2007.

Ren, Xiaona, Xiao Chen, and Chunyu Kit. Combine Constituent and Dependency Parsing via
Reranking. In Proceedings of the 23rd International Joint Conference on Artificial Intelli-
gence, page 2155-2161, Beijing, China, 2013.

Ribeyre, Corentin, Eric Villemonte de la Clergerie, and Djamé Seddah. Alpage: Transition-
based Semantic Graph Parsing with Syntactic Features. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval 2014), pages 97-103, Dublin, Ireland,
2014.

Riezler, Stefan, Tracy H. King, Ronald M. Kaplan, Richard Crouch, John T. Maxwell, III, and
Mark Johnson. Parsing the Wall Street Journal Using a Lexical-Functional Grammar and
Discriminative Estimation Techniques. In Proceedings of the 40th Meeting of the Association
for Computational Linguistics, pages 271-278, Philadelphia, PA, USA, 2002.

Rimell, Laura and Stephen Clark. Porting a lexicalized-grammar parser to the biomedical do-
main. Journal of Biomedical Informatics, 42(5):852—865, 2009.

Rimell, Laura, Stephen Clark, and Mark Steedman. Unbounded dependency recovery for parser
evaluation. In Proceedings of the 2009 Conference on Empirical Methods in Natural Lan-
guage Processing, page 813 —821, Singapore, 2009.

Rosenbaum, Peter S. The grammar of English predicate complement constructions, volume 46.
MIT Press, 1967.

Sag, Ivan A., Thomas Wasow, and Emily M. Bender. Syntactic Theory: A Formal Introduction.
CSLI Lecture Notes. Center for the Study of Language and Information, Stanford,California,
second edition, 2003. ISBN 9781575863993.

Sagae, Kenji and Alon Lavie. Parser Combination by Reparsing. In Proceedings of Human
Language Technologies: The 2006 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, page 129 —132, New York City, USA, 2006.

Sagae, Kenji and Jun’ichi Tsujii. Dependency parsing and domain adaptation with LR models
and parser ensembles. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Conference on Natural Language Learning, page 1044 —
1050, Prague, Czech Republic, 2007.

Sagae, Kenji, Yusuke Miyao, and Jun’ichi Tsujii. HPSG Parsing with Shallow Dependency
Constraints. In Proceedings of the 45th Meeting of the Association for Computational Lin-
guistics, page 624 —631, Prague, Czech Republic, 2007.

Bibliography 209

Schmid, Helmut. Efficient Parsing of Highly Ambiguous Context-free Grammars with Bit
Vectors. In Proceedings of the 20th International Conference on Computational Linguistics,
page 162—168, Geneva, Switzerland, 2004.

Schwartz, Roy, Omri Abend, and Ari Rappoport. Learnability-based syntactic annotation de-
sign. In Proceedings of the 24th International Conference on Computational Linguistics,
Mumbai, India, December 2012.

Sgall, Petr, Eva Hajicov4, and Jarmila Panevova. The Meaning of the Sentence and Its Semantic
and Pragmatic Aspects. D. Reidel Publishing Company, Dordrecht, The Netherlands, 1986.

Shieber, Stuart M. An Introduction to Unification-Based Approaches to Grammar, volume 4 of
CSLI Lecture Notes. CSLI Publications, Stanford, CA, 1986. ISBN 0-937073-00-8.

Siegel, Melanie and Emily M. Bender. Efficient deep processing of Japanese. In Proceedings
of the 3rd Workshop on Asian Language Resources and International Standardization at the
19th International Conference on Computational Linguistics, Taipei, Taiwan, 2002.

Snow, Rion, Dan Jurafsky, and Andrew Y. Ng. Semantic taxonomy induction from heteroge-
nous evidence. In Proceedings of the 21st International Conference on Computational Lin-
guistics and the 44th Meeting of the Association for Computational Linguistics, Sydney, Aus-
tralia, 2006.

S¢gaard, Anders, Anders Johannsen, Barbara Plank, Dirk Hovy, and Héctor Martinez Alonso.
What’s in a p-value in NLP? In Proceedings of the Eighteenth Conference on Computational
Natural Language Learning, pages 1-10, Ann Arbor, Michigan, 2014.

Steedman, Mark. The Syntactic Process. MIT Press, Cambridge, MA, USA, 2000. ISBN
0-262-19420-1.

Straiidk, Pavel and Jan Stépanek. Representing Layered and Structured Data in the CONLL-ST
Format. In Proceedings of the Second International Conference on Global Interoperability
for Language Resources, page 143 —152, Hong Kong, China, 2010. City University of Hong
Kong. ISBN 978-962-442-323-5.

Suppes, Patrick, Dan Flickinger, Elizabeth Macken, Jeanette Cook, and Tie Liang. Description
of the EPGY Stanford University Online Courses for Mathematics and the Language Arts.
In Proceedings of the International Society for Technology in Education, San Diego, USA,
2012.

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluis Marquez, and Joakim Nivre. The
CoNLL 2008 Shared Task on Joint Parsing of Syntactic and Semantic Dependencies. In Pro-
ceedings of the 12th Conference on Natural Language Learning, page 159 — 177, Manchester,
UK, 2008.

Tesniére, Lucien. Eléments de syntaxe structurale [Elements of Structural Syntax]. Klincksieck,
Paris, 1959.

210 Bibliography

Thomson, Sam, Brendan O’Connor, Jeffrey Flanigan, David Bamman, Jesse Dodge, Swabha
Swayamdipta, Nathan Schneider, Chris Dyer, and Noah A. Smith. CMU: Arc-Factored, Dis-
criminative Semantic Dependency Parsing. In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014), pages 176—180, Dublin, Ireland, 2014.

Tojo, Satoshi and Ken Saito. Analysis of The Elements by HPSG. In Proceedingsof the 19th-
Pacific Asia Conference on Language, Information and Computation, pages 325-332, Taipei,
Taiwan, R.O.C., 2005.

Torisawa, Kentaro, Kenji Nishida, Yusuke Miyao, and Jun-Ichi Tsujii. An HPSG Parser with
CFG Filtering. Natural Language Engineering, 6(1):63 — 80, 2000.

Toutanova, Kristina, Christopher D. Manning, Dan Flickinger, and Stephan Oepen. Stochas-
tic HPSG Parse Disambiguation using the Redwoods Corpus. Research on Language and
Computation, 3:83 —105, 2005.

Townsend, Richard, Adam Tsakalidis, Yiwei Zhou, Bo Wang, Maria Liakata, Arkaitz Zubiaga,
Alexandra Cristea, and Rob Procter. Warwickdcs: From phrase-based to target-specific senti-

ment recognition. In Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 657-663, Denver, Colorado, 2015.

Tratz, Stephen and Eduard Hovy. A Fast, Accurate, Non-Projective, Semantically-Enriched
Parser. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, page 1257 — 1268, Edinburgh, Scotland, UK, 2011.

Vadas, David and James Curran. Adding Noun Phrase Structure to the Penn Treebank. In
Proceedings of the 45th Meeting of the Association for Computational Linguistics, page 240 —
247, Prague, Czech Republic, 2007.

van der Wouden, Ton, Heleen Hoekstra, Michael Moortgat, Bram Renmans, and Ineke Schu-
urman. Syntactic Analysis in the Spoken Dutch Corpus (cgn). In Proceedings of the 3rd
International Conference on Language Resources and Evaluation, Las Palmas, Spain, 2002.

van Noord, Gertjan. Robust Parsing of Word Graphs. In Junqua, Jean-Claude and Gertjan van
Noord, editors, Robustness in Language and Speech Technology, volume 17 of Text, Speech
and Language Technology, pages 205-238. Springer Netherlands, 2001. ISBN 978-90-481-
5643-6.

Cmejrek, Martin, Jan Haji¢, and Vladislav Kuboii. Prague Czech-English Dependency Tree-
bank: Syntactically Annotated Resources for Machine Translation. In Proceedings of the 4th
International Conference on Language Resources and Evaluation, Lisbon, Portugal, 2004.

Velldal, Eric. Empirical Realization Ranking. PhD thesis, Department of Linguistics, Depart-
ment of Informatics, University of Oslo, 2009.

Velldal, Erik, Lilja @vrelid, Jonathon Read, and Stephan Oepen. Speculation and negation:
Rules, rankers and the role of syntax. Computational Linguistics, 38(2):369 —410, 2012.

Bibliography 211

Vilares, David, Miguel A. Alonso, and Carlos Gémez-Rodriguez. A syntactic approach for
opinion mining on Spanish reviews. Natural Language Engineering, 21:139-163, 1 2015.
ISSN 1469-8110.

Zolkowskij, Aleksandr and Igor Mel’¢uk. O vozmoZnom metode i instrumentax seman-
ti¢eskogo sinteza [On potential method and instruments for semantic synthesis]. Naucno-
texniceskaja informacija [Scientific and Technological Information], page 23 —28, 1965.

Zolkowskij, Aleksandr and Igor Mel’¢uk. O semanticeskom sinteze [On semantic synthesis].
Problemy kybernetiki [Problems of Cybernetics], page 177 —238, 1967.

Wabhlster, Wolfgang, editor. Verbmobil. Foundations of Speech-to-Speech Translation. Springer,
Berlin, Germany, artificial intelligence edition, 2000.

Wang, Mengqiu, Noah A. Smith, and Teruko Mitamura. What is the Jeopardy model? A quasi-
synchronous grammar for QA. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Conference on Natural Language Learning,
Prague, Czech Republic, 2007.

Wetherell, C. S. Probabilistic languages: A review and some open questions. Computing
Surveys, 12(4):361—379, 1980.

Wintner, Shuly. Unification Grammars, part II. Materials for Lectures on Computational Lin-
guistics, 2005. URL http:/cs.haifa.ac.il/~shuly/teaching/06/nlp/ug2.pdf.

Wu, Shuangzhi, Dongdong Zhang, Ming Zhou, and Tiejun Zhao. Efficient Disfluency Detection
with Transition-based Parsing. In Proceedings of the 53rd Annual Meeting of the Association
Sfor Computational Linguistics and the 7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural Language Processing, pages 495-503,
Beijing, China, 2015.

Xia, Fei. Automatic grammar generation from two different perspectives. PhD thesis, Depart-
ment of Computer and Information Science, University of Pennsylvania, 2001.

Xia, Fei and Martha Palmer. Converting Dependency Structures to Phrase Structures. In Pro-
ceedings of the 1st International Conference on Human Language Technology Research, page
1-5, San Diego, CA, USA, 2001.

Yakushiji, Akane, Yusuke Miyao, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii. Automatic
construction of predicate-argument structure patterns for biomedical information extraction.
In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Process-
ing, pages 284-292, 2006.

Yamada, Hiroyasu and Yuji Matsumoto. Statistical dependency analysis with support vector
machines. In Proceedings of the 8th International Conference on Parsing Technologies,
page 195-206, Nancy, France, 2003.

Ytrestgl, Gisle. CuteForce — Deep Deterministic HPSG Parsing. In Proceedings of the 12th
International Conference on Parsing Technologies, pages 186—197, Dublin, Ireland, 2011.

212 Bibliography

Ytrestgl, Gisle, Stephan Oepen, and Dan Flickinger. Extracting and annotating Wikipedia sub-
domains. In Proceedings of the 7th International Workshop on Treebanks and Linguistic
Theories, page 185 —197, Groningen, The Netherlands, 2009.

Zeman, Daniel and Zden&k Zabokrtsky. Improving Parsing Accuracy by Combining Diverse
Dependency Parsers. In Proceedings of the 9th International Conference on Parsing Tech-
nologies, page 171 — 178, Vancouver, British Columbia, Canada, 2005.

Zhang, Hui, Min Zhang, Chew Lim Tan, and Haizhou Li. K-Best Combination of Syntactic
Parsers. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, page 1552 — 1560, Singapore, 2009a.

Zhang, Yi and Hans-Ulrich Krieger. Large-scale corpus-driven PCFG approximation of an
HPSG. In Proceedings of the 12th International Conference on Parsing Technologies, page
198 — 208, Dublin, Ireland, October 2011.

Zhang, Yi and Rui Wang. Cross-domain dependency parsing using a deep linguistic grammar.
In Proceedings of the 47th Meeting of the Association for Computational Linguistics, page
378 —386, Suntec, Singapore, 2009.

Zhang, Yi, Valia Kordoni, and Erin Fitzgerald. Partial Parse Selection for Robust Deep Process-
ing. In Proceedings of the Workshop on Deep Linguistic Processing, pages 128—135, Prague,
Czech Republic, 2007a.

Zhang, Yi, Stephan Oepen, and John Carroll. Efficiency in Unification-Based N-Best Parsing.
In Proceedings of the 10th International Conference on Parsing Technologies, page 48 —59,
Prague, Czech Republic, July 2007b.

Zhang, Yi, Rui Wang, and Hans Uszkoreit. Hybrid Learning of Dependency Structures from
Heterogeneous Linguistic Resources. In Proceedings of the 12th Conference on Natural
Language Learning, page 198 —202, Manchester, UK, 2008.

Zhang, Yi, Rui Wang, and Stephan Oepen. Hybrid Multilingual Parsing with HPSG for SRL. In
Proceedings of the 13th Conference on Natural Language Learning, pages 31-36, Boulder,
CO, USA, 2009b.

Zhang, Yue and Stephen Clark. A tale of two parsers: Investigating and combining graph-
based and transition-based dependency parsing using beam-search. In Proceedings of the
2008 Conference on Empirical Methods in Natural Language Processing, page 562—571,
Honolulu, USA, 2008.

Zhang, Yue and Joakim Nivre. Transition-based dependency parsing with rich non-local fea-
tures. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technology Conference, volume 2, page 188 —193, Portland,
OR, USA, 2011.

Zhang, Yue and Joakim Nivre. Analyzing the effect of global learning and beam-search on
transition-based dependency parsing. In Proceedings of the 24th International Conference
on Computational Linguistics, page 1391 — 1400, Mumbai, India, December 2012.

Bibliography 213

Zhao, Hai, Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa. Mul-
tilingual Dependency Learning: Exploiting Rich Features for Tagging Syntactic and Seman-
tic Dependencies. In Proceedings of the 13th Conference on Natural Language Learning,
pages 61-66, Boulder, CO, USA, 2009.

Zhuang, Li, Feng Jing, and Xiao-Yan Zhu. Movie review mining and summarization. In Pro-
ceedings of the 15th ACM international conference on Information and knowledge manage-
ment, page 43 —50, Arlington, Virginia, USA, 2006.

Zwicky, Arnold M. Heads. Journal of Linguistics, 21:1-29, 3 1985.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

