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Abstract 

A robust, fast and sensitive capillary column switching reversed-phase (RP) liquid 

chromatography (LC) method with back flushing of the pre-column and ultraviolet (UV) 

detection has been developed to investigate the stability of angiotensin II and bradykinin 

stored in different matrices and by different temperatures. The loading mobile phase 

(MP) containing acetonitrile (AcN) – H2O – formic acid (FA) (2 : 97.95 : 0.05, v/v/v) 

was delivered isocratically at a flow rate of 0.200 mL/min. Manual injections of 200 μL 

were made with an external loop, and the samples were loaded on a HotSep Tracy 

column (Kromasil C18; 5 x 1 mm (inner diameter (ID)), 5 µm). After a loading time of 

3.5 min the analytes were back flushed from the pre-column and transferred to the 

separation column, a HotSep Kromasil C18 column (50 x 0.3 mm (ID), 3.5 µm), using an 

eluent consisting of AcN – H2O (gradient) with 20 mM NH4
+HCOO- and 0.05 % FA 

added, delivered at a flow rate of 0.005 mL/min. In-line UV detection was performed at 

210 nm. The limits of detection (LOD) were ~10 ng/mL for bradykinin and below 1 

ng/mL for angiotensin II. The robustness of the system is discussed. 

 

An isocratic and a gradient eluting nano LC-UV system and a column switching gradient 

nano LC-UV method, all with a Kromasil C18 nanocolumn (150 x 0.1 mm (ID), 3.5 μm), 

were developed for bradykinin determination. 

 

The signal responses for bradykinin dissolved in H2O and 20 % AcN with FA added in 

different amounts were compared using direct infusion electrospray time-of-flight mass 

spectrometry (direct infusion-ESI-TOF-MS) at different capillary voltages. 

 

The ratio of theoretical dilution of two different capillary columns was calculated and 

compared to the experimental dilution ratio obtained with those columns using capillary 

RPLC coupled to an electrospray time-of flight mass spectrometer (ESI-TOF-MS). 
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Abbreviations and definitions 

a.a. ammonium acetate 

AcN acetonitrile 

a.f. ammonium formate 

ang II angiotensin II 

ANOVA analysis of variance 

As asymmetry 

α selectivity 

Bl. blank 

brad bradykinin 

C18, C18 octadecyldimethyl-silane 

cLOD concentration limit of determination 

conc. concentration 

D theoretically dilution 

df degree of freedom 

ESI electrospray ionization 

F freezer 

FA formic acid 

H Peak height 

HFBA heptafluorobutyric acid 

ID inner diameter 

Inj. injection 

Inj. seq injection sequence 

LC liquid chromatography 

K refrigerator 

m/z mass to charge ratio 

MeOH methanol 

mLOD mass limit of detection 

MP mobile phase 

MS mass spectrometry 
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N/m plate number per meter 

neu neurotensin 

OD outer diameter 

OHAc acetic acid 

P1 pump 1; loading pump 

P2 pump 2; analytical pump 

PE polyethylene 

PP polypropylene 

R room temperature 

RP reversed-phase 

Rs resolution 

RSD relative standard deviation 

s absolute standard deviation 

S/N signal to noise ratio  

SP stationary phase 

SPE solid-phase extraction 

TFA trifluoroacetic acid 

TOF time-of-flight 

tR retention time 

UV ultraviolet 

V1 valve 1; injection valve 

V2 valve 2; switching valve 

X  mean, average 

 9



1. Introduction 

1.1 Bradykinin and angiotensin II 

Proteins and peptides are compounds that consist of long chains of 20 different amino 

acids connected to each other through peptide bindings. Molecules with less than 50 

amino acids are often referred to as peptides, while the larger molecules are called 

proteins [1]. Kinins are peptides that are produced from a plasma protein (called 

kininogen) under influence from specific proteases called kallikreins. Among the kinins 

is the nonapeptide bradykinin (brad) with the following amino acid sequence: arg - pro - 

pro - gly - phe - ser - pro - phe – arg. The molecular structure of bradykinin is shown in 

Figure 1. The molecular mass of brad is 1060.2206 g/mol. Kinins have a very short half-

life; they are inactivated through corresponding peptidases after a few seconds. The 

Angiotensin-Converting-Enzyme (ACE, also called kininase) is of significant importance 

in this process (Figure 2) [2]. 

 
Figure 1: The bradykinin molecular structure [3]. 
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Figure 2: Biosynthesis and breakdown of bradykinin and angiotensin II [2, 4]. 
 

In humans, cats and rats contracting muscles release kinins. Bradykinin contributes, 

among other things, to increased blood pressure, heart rate and blood flow in the muscles. 

It has also been observed that bradykinin increases the glucose utilization of the working 

muscles [5]. In order to investigate bradykinin’s possible contribution to muscle pain, it is 

useful to monitor the kinin level in muscle tissues. This has been done by the sampling of 

substances from the muscle tissue of rats using micro dialysis, with Ringer’s acetate as 

dialysis solvent (Experimental, Table 2). Methods, including radioimmunoassay (RIA, 

described in Section 1.2) [6] and LC-ESI-MS [7], have been used for the quantification of 

the kinins in the dialysate.  

 

Angiotensin II (ang II) is an octapeptide with the amino acid sequence: Asp-Arg-Val-

Tyr-Ile-His-Pro-Phe (Figure 3), that is created when the biologically inactive angiotensin 

I is cleaved by the ACE, the same enzyme that catalyses the breakdown of bradykinin 

into inactive peptides (Figure 2). The molecular mass of ang II is 1181.359 g/mol. 

 

Ang II is one of the most potent vasoconstrictors known, and thus important for the 

maintenance of blood pressure and volume. Ang II is also among the hormones that 

regulate water and electrolyte content and it also facilitates the release of norepinephrine 

[2, 8]. 
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Figure 3: The angiotensin II molecular structure [3]. 

 

E. R. Vickers et al [9] investigated the stability of bradykinin in saliva. 0.5 mL saliva 

donated from 6 volunteers (three females and three males between the ages of 23 and 40 

years) was added to 0.5 mL 0.1 M orthophosphoric acid and the pH was measured before 

the solution was vortex-mixed and centrifuged. Each of the 6 samples was divided into 

two aliquots and added bradykinin giving an absolute mass of 50 and 500 ng per HPLC 

injection, respectively. Then all samples were subdivided into two aliquots and stored at 

20ºC for 5 days and 4ºC for 60 days, respectively. The stability was monitored during the 

period using a HPLC-UV system at room temperature with a mobile phase containing 

AcN – H2O – trifluoroacetic acid (TFA) (19:80.9:0.1, v/v/v) delivered isocratically at a 

flow rate of 0.4 mL/min. The column used was C8 (7 μm particles, 100 Å pore size, 150 x 

3.9 mm (ID)). UV detection was performed at 220 nm. Bradykinin in these solutions was 

found to be stable for 5 days stored at 20ºC and for 60 days when stored at 4ºC. 
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1.2 Methods of determination 

There are three techniques that are often applied for peptide and protein determination: 

two-dimensional (2D) gel electrophoresis, liquid chromatography, and capillary zone 

electrophoresis (CZE). LC and CZE are suitable for both protein and peptide separation, 

while 2D gel electrophoresis is only suitable for protein separation and large peptides (> 

10 kDa). Capillary electrophoresis (CE) has higher separation efficiency than LC, while 

repeatability is better and peak capacity is higher for LC. Both CE and LC are suitable for 

on-line detection and automation, and both perform high protein recoveries and fast 

separation times [10-12]. However, CE suffers from poor concentration sensitivity, due to 

the limited sample volume that can be loaded. Short path lengths in the absorbance-

related detectors make the method even less sensitive. To overcome these problems 

creating longer path lengths should be considered, for example by using Z-cells or bubble 

cells, or on-line preconcentration techniques [13-15]. Another disadvantage is that 

capillary electrophoresis, capillary zone electrophoresis and capillary electro-

chromatography are not easily coupled with MS [14]. On-line preconcentration for CE of 

bradykinin, angiotensin and related peptides can be done when using a C18 concentrator 

cartridge with a dynamic pH junction within the capillary that focuses the analytes [15]. 

Matsubara et al reported separation of eleven angiotensin II analogues using capillary 

electrophoresis [16]. 

 

CZE has been applied for separation of kinins (bradykinin and similar substances) with 

laser fluorescence detection  [17] and purity profiling of among others bradykinin and 

angiotensin I with UV detection [18]. 

 

Several LC detection methods for angiotensin II and bradykinin have been reported: for 

example UV detection [9, 19-21] and MS detection, including both ESI-MS [7, 9, 19, 22] 

and MALDI-MS (coupled off-line to microbore HPLC) [23]. Also HPLC-fluorescence 

methods for angiotensin II and bradykinin detection are reported [24-26] all including 

derivatization in order to make the peptide fluorescent. A disadvantage is that the 

derivatization may be rather time consuming when doing it off-line. 
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Radioimmunoassay (RIA) is an extremely sensitive and selective method used to test 

hormone levels in the blood. It involves mixing a radioactive antigen with its antibody, 

then adding an unlabeled (or "cold") antigen in known quantities and finally measuring 

the amount of labelled antigen displaced. Several methods for determination of 

bradykinin in blood and plasma by radioimmunoassay have been reported [27-29]. 

Voelker and co-workers reported a method that coupled solid-phase extraction (SPE), 

HPLC and radioimmunoassay (RIA) for quantifying angiotensin II in plasma [30]. 

 

The degradation of peptides and proteins can be of both physical and chemical nature. 

Changes of the peptides and proteins, due to physical instability, involves the unfolding 

of the peptides/proteins and the aggregation of the compounds (while the chemical 

structure remains the same); these can be caused by changes in temperature, ionic 

strength, pH or other factors [31]. Changes in molecular size and shape, due to the 

unfolding process, can be studied with size exclusion chromatography [32, 33] and 

electrophoresis [34, 35]. Among other methods that can be applied to monitor the 

unfolding process are spectroscopic methods, like fluorescence spectroscopy, since the 

spectroscopic properties of the proteins/peptides are changed, and Fourier transform 

infrared (FT-IR) [36] and 1H-NMR, that can measure the changes in chemical shifts. 

 

The chemical instability of peptides and proteins (changes of the primary structure), is 

caused by degradation reactions such as oxidation/reduction, deamidation, hydrolysis, 

racemisation, arginine conversion and β-elimination [31]. 

 

Oxidation, one of the major degradation pathways, often gives hydrophilic products; 

mass changes, as well as changes in spectroscopic and electrochemical properties, may 

also be observed [31]. In RP-HPLC-UV the oxidation products have a shorter retention 

time compared to the original protein/peptide, and UV detection, while relatively little 

specific, is widely applied [37, 38]. Fluorescence [38-40] and electrochemical detection 

[41] have also been reported. Protein/peptide oxidation can also be studied by single or 

tandem MS [42, 43], which provide information on the molecular masses and how the 

products fragmentize. 
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Reduction of proteins/peptides gives more hydrophilic products than the original 

compound for peptides and smaller proteins. RP-HPLC and electrophoresis are suitable 

for study of this process. 

 

1.3 Micro and capillary chromatography 

Horváth et al introduced microcolumn LC in 1967 [44]; the breakthrough, however, did 

not come before the mid 1970’s [45]. Narrow column diameter makes connecting to MS 

without flow splitting easier. Miniaturized LC requires less solvents, reagents and 

packing materials [46, 47], and limited sample amounts are needed [45]. One of the main 

advantages of using narrower columns is enhanced detection performance with the use of 

concentration sensitive detection devices. This is due to reduced chromatographic 

dilution [47-50]. In addition increased sensitivity of electrospray ionization has been 

observed due to more efficient ionization at lower flow rates [14]. The decreased inner 

diameter of the columns also lowers the heat capacity and thus permits much easier 

control of column temperature and more rapid response to temperature gradients [46, 47]. 

Although micro and capillary LC has these advantages over conventional LC, it also has 

disadvantages. Extra column band broadening, mostly originating from dead volumes in 

the injection valve, connecting tubes and/or detection flow cell, have to be minimised to 

prevent loss of efficiency and resolution of the packed capillary and micro LC columns 

[51]. Connecting tubes with narrower ID will lead to a reduction of the dead volume [14]. 

Another disadvantage is that small injection volumes or masses cause decreased detection 

sensitivity [45]. On-column focusing techniques may eliminate this problem by using 

sample solvent with low eluent strength compared to the mobile phase used in order to 

focus the analytes in a small plug on the column entrance [51-53]. However, the most 

promising way to increase the sensitivity is sample enrichment using a switching valve 

system. This is described in Section 1.4. 

 

To further increase the sensitivity, nano LC can be used. The first commercial nano LC 

system was produced by LC Packings (Sunnyvale, CA, USA) in the mid 1990’s. This 
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technique often requires flow splitting of the mobile phase prior to injection. By UV 

detection, according to Beer-Lambert Law (A = εbc = abc), the absorbance is 

proportional to the concentration and the optical path length. If the path length is too 

long, diffusion of the analyte will occur at low flow rates (i.e. nano LC-UV), causing 

peak broadening. To avoid this problem UV-detectors with U- or Z-shaped 

configurations can be used to reduce the dead volumes, while maintaining a relatively 

long optical path length [54]. 

 

In proteomics nano LC is often connected to MS and MS/MS (tandem MS). ESI can be 

connected on-line to LC and is therefore traditionally the most used ionization technique 

for LC [45]. An electrospray interface with a narrower inner diameter of the needle tip 

(usually 1-3 μm) is called nanospray; a reduction of the flow rate (usually < 100 nL/min) 

is achieved [55]. The primary application of capillary and nanoscale LC-ESI-MS have 

been in protein and peptide analysis [45]. Schmelzer et al used both LC-ESI-ion trap-MS 

and nano ESI-qTOF-MS to characterize human skin peptides produced by proteolytic 

digestion [56]. 

  

Saito et al [47] classified the LC columns according to their internal diameter (Table 1). 

As can be seen from the table; columns with an ID of 0.01 – 0.1 mm are classified as 

nanocolumns. 

 
Table 1: LC classified according to the ID of the columns [47]. 

Column designation Typical ID [mm] 

Conventional HPLC 3 – 5 

Narrow-bore HPLC 2 

Micro LC 0.5 – 1 

Capillary LC 0.1 – 0.5 

Nano LC 0.01 – 0.1 

Open tubular LC 0.005 – 0.05 
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1.4 Large volume injection 

To increase the concentration sensitivity of miniaturised LC systems, large volume 

injections using column switching technique with pre-column and analytical column 

could be applied [51]. To prevent broadening of the peaks, the switching valve must 

provide a low dead volume flow path. The valve must also be capable of high-pressure 

operations without deterioration [57]. As observed by Vissers et al [51] on-column 

focusing (i.e. dissolving the sample in a non-eluting solvent) must be applied when 

injecting large sample volumes in order to avoid band broadening effects. Further the 

loading mobile phase must be a weak eluent with respect to the separation mechanism on 

the second column and it also must be miscible with the separation mobile phase [57]. 

This allows improvements of the limits of detection (LOD) by several orders of 

magnitude. 

 

As Vissers (1999) emphasized, large volume injections are routinely applied for the 

analysis of protein and peptide samples [45]. 
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1.5 Aim of study 

In our research group we are working towards the determination of the concentration of 

neurotransmitters in rat brain tissue, bradykinin and similar compounds in muscle tissue, 

and other projects involving peptides. Thus, it is important to know how to store peptides 

solutions without decrease in concentration. 

 

Hence the aim of this study was to develop a fast, robust, selective and sensitive 

chromatographic method for the determination of peptides with bradykinin and 

angiotensin II as model substances, and measure their concentration after storage in 

different water matrices at different temperatures. 

 

The robustness of a gradient capillary LC-UV column switching system was investigated 

and discussed in detail. Additionally, preliminary testing of nano LC systems to be used 

in further proteomic studies was done. Finally MS-conditions for peptide analysis were 

optimized.  
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2. Experimental 

2.1 Chemicals and reagents 

HPLC grade AcN and glass distilled grade toluene was obtained from Rathburn 

Chemicals Ltd. (Walkerburn, UK). Grade 1 water was obtained from a Milli-Q plus 185 

system (Millipore, Bedford, MA, USA). Bradykinin, angiotensin II and neurotensin were 

provided by Sigma-Aldrich (St. Louis, MO, USA). Ammonium acetate (NH4
+CH3COO-, 

analytical grade (AG)), acetic acid glacial 100% (OHAc, analytical grade) and 

trifluoroacetic acid (for spectroscopy) were provided by Merck (Darmstadt, Germany). 

Water (HPLC grade), ammonium formate (NH4
+HCOO-, analytical grade for mass 

spectroscopy) and 50 % formic acid (FA, analytical grade for HPLC) were obtained from 

Fluka (Steinheim, Germany), uracil from Nutritional Biochemicals Corporation 

(Cleveland, OH, USA) and carbon tetrachloride (CCl4) from Prolabo (Paris, France). 

Helium (4.6, 99.996 %) and nitrogen (4.0, 99.99 %) were provided by AGA (Oslo, 

Norway). Ringer’s acetate was made in-house by solving the prescribed salts (Table 2) in 

HPLC water. 

 
Table 2: Salt content and electrolytes in Ringer’s acetate. 

Salts pr 1000 mL solution: Mass Producer Electrolyte 

Magnesium chloride 

hexahydrate (AG) 

203 mg Fluka Magnesium 1 mmol/L

Calcium chloride dehydrate 

(AG) 

294 mg Merck Calcium 2 mmol/L

Potassium chloride (AG) 298 mg Merck Potassium 4 mmol/L

Sodium acetate (AG) 4.08 g Merck Acetate 30 mmol/L

Sodium chloride (AG) 5.84 g Merck Chloride 110 mmol/L

   Sodium 130 mmol/L
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2.2 Columns and column preparation 

The columns that were compared in the preliminary testing are listed in Table 3. 
 

Table 3: Testing of columns for peptide separation. 

Type Manufacture ID [mm] 
Length 

[cm] 

Pore 

size [Å] 

Particle 

size [µm]

(1) Poroshell 300 SB-

C18 (short) 

Agilent Technologies, 

CA, USA 
0.3 7.5 300 5.0 

(2) HotSep Kromasil 

C18-100 

G&T Septech AS 

(Kolbotn, Norway) 
0.3 5.0 100 3.5 

(3) ProntoSIL C18-300 G&T Septech AS 0.3 5.0 300 3.0 

(4) Poroshell 

300SB-C18 (long) 

Agilent Technologies 0.5 15.0 300 5.0 

(5) ACE 

(packed in-house) 

Advanced Separation 

Technologies 

(Whippany, NJ, USA) 

0.3 10.1 100 3.0 

(6) ACE 

(packed in-house) 

Advanced Separation 

Technologies 
0.3 9.9 100 3.0 

 

Other analytical columns that were used during this work were Kromasil C18 (150 x 0.1 

mm (ID), 3 μm) purchased from G&T Septech AS and Zorbax SB-C18 (150 x 0.5 mm 

(ID), 5 μm) purchased from Agilent Technologies. HotSep Tracy Kromasil C18 pre-

columns (5 x 1 mm (ID), 5 μm) were purchased from G&T Septech AS. 

 

The ACE C18 analytical column (Table 3), and the Kromasil C18 (Eka Nobel; Bohus, 

Sweden) pre-column used for the preliminary testing were slurry packed using AcN and 

grade 1 water (70:30, v/v) as packing fluid. The Kromasil C18 pre-columns were ~ 5.5 cm 

long and had a particle size of 10 µm and a pore size of 100 Å. The fused silica capillary 

(Polymicro Technologies Inc.; Phonex, AZ, USA) used to pack the columns had an ID of 

320 µm and an outer diameter (OD) of 450 µm. 
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A suspension of ~30 mg of the packing material and 200 μL carbon tetrachloride was 

sonicated for ~10 min in an ultrasonic bath. A desired length of the capillary was cut and 

a nut, graphite/vespel ferrule (FS1.4), filter (2SR1) and union (1/16) obtained from Valco 

Instruments Co., Inc. (Houston, TX, USA) were installed at one end. The other end of the 

capillary was connected to a packing chamber (made in-house) through a nut and ferrule. 

The sonicated slurry of packing material was then transferred to the packing chamber 

using a syringe made in-house of a Omniflex 2 mL plastic syringe connected via an 

union, nut and ferrule to a ~12 cm long fused silica capillary (320 µm ID/450 µm OD). 

The other end of the packing chamber was connected to an ISCO Model 100 DM syringe 

pump with an ISCO Series D pump controller (Teledyne Isco Inc., Lincoln, NE, USA). 

The pump, delivering the packing fluid containing AcN - grade 1 H2O (70:30, v/v), was 

preset to start at 100 bar and increase the pressure at 100 bar/min until 650 bar was 

reached. The vent between the pump and packing chamber was opened, and when 

equilibrium at 100 bar was obtained, the program was started. The pressure was held at 

650 bar for ~15 min. Then the vent was closed, letting the column depressurize to 

atmospheric pressure (~20 min). The rest of the system was depressurized using a 

program with a rate of -100 bar/min. Finally, the packing chamber was disconnected 

from the pump, and the column was disconnected from the packing chamber, and nut, 

ferrule, filter and union were installed at the open end of the column. As Saito et al 

emphasize in their article [47] attention should be paid during the packing process in 

order to avoid any undesirable void volume in the column as well as obtaining a stable 

packing structure. 
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2.3 Instrumentation 

2.3.1 Reversed-phase capillary LC-UV switching system 

A reversed-phase capillary LC switching system with back flushing of the pre-column 

was used during this study (a sketch is shown in Figure 4). Capillaries used were either 

fused silica capillaries or steel tubing obtained from Polymicro Technologies (Phonex, 

AZ, USA) and Supelco (Bellefonte, PA, USA), respectively; the types and dimensions 

are shown in Figure 4. External injection loops with volumes of 50, 75, 100, 150, 200 and 

300 µL were prepared using steel tubing. All connections were made with ZU1C unions, 

FS1.4 graphite/vespel ferrules and nuts purchased from Valco. 

 
Figure 4: Schematic drawing of the capillary LC column-switching system. Yellow; fused silica capillaries 
and grey; steel tubing. Dimensions: 030 = 30 μm ID, 100 = 100 μm ID and 700 = 700 μm ID. 
 

Pump 1 (P1) delivered the non-eluting loading mobile phase and pump 2 (P2) delivered 

the eluting mobile phase. Two 6-port valves were used as valve 1 (V1) and valve 2 (V2). 

With both V1 and V2 in position 1 the external injection loop was filled manually using a 

1 mL sterile BD Plastipak syringe obtained from Becton Dickinson UK Ltd. (Oxford, 

UK). By switching V1 to position 2 the sample was loaded on the preconcentration 

column by the loading mobile phase at a flow rate of 0.070 mL/min when Kromasil C18 

(55 x 0.320 mm (ID), 10 μm, packed in-house) were used as pre-column or at 0.200 
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mL/min when HotSep Tracy Kromasil C18 (5 x 1 mm (ID), 3.5 μm) were used as pre-

column. After 3.5 min, V2 was also switched to position 2, and thus the analytes were 

back-flushed from the pre-column and transferred to the analytical column by the 

separation mobile phase. 

  

The outlet of the analytical column was connected to a Linear UVIS UV-detector (Linear 

Instruments, Reno, NV, USA) equipped with a 100 µm ID fused capillary for in-line 

detection at a wavelength of 210 nm. The signals from the detector were converted by a 

Perkin Elmer Nelson 900 Series Model 941 interface (Perkin Elmer, Boston, MA, USA) 

and transferred to a PC with TotalChrom Navigator (Perkin Elmer) where the 

chromatogram could be further processed. 

 

2.3.1.1 System 1 (isocratic capillary LC-UV column switching system) 

System 1 is an isocratic system used for preliminary investigation of different MP 

(Section 3.1.3). Two isocratic Hitachi LC pumps from Merck, P1 and P2, were delivering 

the loading MP at a flow rate of 0.100 mL/min and the analytical MP at a flow rate of 

0.005 mL/min, respectively. Two 6 port valves, a Rheodyne 7000 (Rohnert Park, CA, 

USA) and a ChemInert C2-1006 from Valco, operated as V1 and V2, respectively. The 

pre-column used was a Kromasil C18 column (55 x 0.320 mm (ID), 10 µm, packed in-

house), and the analytical column was a HotSep Kromasil C18 column (50 x 0.3 mm (ID), 

3.5 µm). 

 

2.3.1.2 System 2 (gradient capillary LC-UV column switching system) 

A HotSep Tracy Kromasil C18 column (5 x 1 mm (ID), 5 µm) and a HotSep Kromasil C18 

column (50 x 0.3 mm (ID), 3.5 µm) were used as pre-column and analytical column, 

respectively. An isocratic Hitachi LC pump (Merck) delivered the non-eluting loading 

mobile phase. The loading MP used when testing the maximum injection volume 

contained AcN – H2O (2:98, v/v) with 20 mM NH4
+CH3COO- added, delivered at a flow 

rate of 0.200 mL/min. For stability testing the loading MP consisted of AcN – H2O – FA 

(2 : 97.95 : 0.05, v/v/v). An Agilent 1100 capillary gradient pump (Palo Alto, CA, USA; 
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pump 2) with an incorporated on-line vacuum degasser delivered the eluting analytical 

mobile phase from two chambers; A and B. The mobile phase used was as follows:  In 

chamber A: AcN – H2O (2:98, v/v) with 20 mM NH4
+HCOO- and 0.05 % formic acid 

added, pH = 3.1; In chamber B: AcN – H2O (90:10, v/v) with 20 mM NH4
+HCOO- and 

0.05 % formic acid added, pH = 5.2. The gradient used was: 10-50 % B in 5 min and then 

held at 50 % B in 2 min at a flow rate of 0.005 mL/min. Also here a Rheodyne 7000 and 

a ChemInert C2-1006 were used as V1 and V2, respectively. 

 

2.3.2 Nano LC and direct-infusion MS systems 

2.3.2.1 System 3 (nano LC-UV) 

Injections were performed with a ChemInert C4-0004 (Valco) injection valve equipped 

with a 20 nL internal loop. An Agilent 1100 capillary gradient pump delivered the eluting 

analytical MP. The mobile phase used was as follows: In chamber A: AcN – H2O (2:98, 

v/v) with 20 mM NH4
+HCOO- and 0.05 % formic acid added, pH = 3.1;  In chamber B: 

AcN – H2O (90:10, v/v) with 20 mM NH4
+HCOO- and 0.05 % formic acid added, pH = 

5.2. For isocratic elution 16 % B with a flow rate of 0.3 μL/min was used, and for 

gradient elution 0-100 % B in 10 min was delivered at a flow rate of 0.6 μL/min. As 

separation column, a Kromasil C18 nanocolumn (150 x 0.1 mm (ID), 3.5 μm) from G&T 

Septech was used. The detection was performed at a wavelength of 210 nm using a 

Linear UVIS UV detector, and the data was processed by TotalChrom Navigator. 

 

2.3.2.2 System 4 (gradient nano LC-UV column switching system) 

System 4 is similar to System 2 only with a few modifications. A Kromasil C18 column 

(53 x 0.320 mm ID, 10 μm) and Kromasil C18 column (150 x 0.100 mm (ID), 3.5 μm) 

were used as pre-column and analytical column, respectively. The loading flow rate was 

0.200 mL/min and the analytical flow rate was 0.6 μL/min. The gradient used was 0-100 

% B in 10 min. V1 used was ChemInert C2-1036 (Valco) and V2 was still ChemInert 

C2-1006 (Valco). 
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2.3.2.3 System 5 (direct infusion-ESI-TOF-MS) 

Direct infusion electrospray mass spectra were obtained using a Harvard Apparatus Pump 

11 infusion pump (Holliston, MA, USA) operating at a flow rate of 10 μL/min directed 

into the Micromass LCT orthogonal accelerated ESI-TOF-MS (Manchester, UK). The 

mass to charge ratio (m/z) scan range was 200-1300. The MS was equipped with a Z-

spray atmospheric pressure electrospray ionization source, which was modified to handle 

μL/min flow rates. The ionization was performed in the positive mode and bradykinin 

was observed as [M+H]2+ with a m/z of 530.8. The voltages used are listed in Table 4. 

 
Table 4: Voltage settings in the MS. 

Capillary voltage 3.5 kV 

Extraction cone 3 V 

Sample cone 20 V 

 

Some fragmentation of the analyte was observed between the capillary and the MS due to 

the relatively high sample cone voltage. The nebulizer gas and desolvation gas (nitrogen 

2.0 (99.99 %)) were delivered at rates of 50 and 250 L/hour, respectively. This ensured a 

stable spray and supported solvent vaporization. The instrument was controlled and the 

data processed by Mass Lynx version 4.0 software (Micromass). 

 

2.3.2.4 System 6 (gradient capillary LC-ESI-TOF-MS) 

System 6 is similar to the gradient nano LC-UV System (System 3) described in Section 

2.3.2.1. As analytical columns two different capillary columns were used; Kromasil C18 

(50 x 0.3 mm (ID), 3.5 μm) and Zorbax SB-C18 (150 x 0.5 mm (ID), 5 μm) with flow 

rates of 5 and 10 μL/min, respectively. The UV-detector was substituted by the same 

ESI-TOF-MS described in System 5 (Section 2.3.2.3) and the same MS settings were 

used. 
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2.3.3 Other instruments 

2.3.3.1 Molecular Absorption Spectrometry 

To measure the absorbance of different solutions a Hitachi Model U-2000 double-beam 

spectrophotometer with screen and printer was used. The quartz cuvettes used had a light 

path of 1 cm. 

 

2.3.3.2 pH-meter 

All pH-measurements were done with a pH-electrode from Hanna Instruments 

(Bedfordshire, UK) after adding all ingredients, including eventual organic solvents. 

Generally, pH is defined as the negative logarithm of the hydrogen ion activity in an 

aqueous solution. In this work however, the term pH refers to the apparent pH (the value 

measured with a pH-meter). 

 

2.4 Preparation of solutions 

Salts and other solids were weighed using an analytical balance with 4 decimals. 

Volumes below 10 mL were measured using microliter pipettes, volumes below 100 mL 

were measured using volumetric pipettes and volumes above 100 mL were measured 

with glass volumetric flasks. HPLC grade water obtained from Fluka was used to make 

all the peptide stock solutions, diluted peptide solutions, Ringer’s acetate and also the 

NH4
+HCOO- solution and MPs used during the stability testing. 

 

2.4.1 Mobile phases 

The mobile phases were degassed with 4.6 helium in 10-15 min prior to use. The MP 

used in the stability testing was also filtered through a Millipore type HVLP 0.45 μm 

filter (Billerica, MA, USA). MP delivered with the Agilent gradient pump was not 

degassed prior to use, since it had an on-line incorporated vacuum degasser. 
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2.4.2 Ringer’s acetate 

The Ringer’s acetate solution was made by solving the salts listed in Table 2 in water. It 

was then sonicated and filtered through a 0.45 µm Minisart-plus filter with CA-

membrane and GF-prefilter (Sartorius AG, Göttingen, Germany) prior to use. 

 

2.4.3 Stock solutions 

1 mg/mL stock solutions of peptides were made by adding 5 mL of H2O to 5 mg of 

peptide stored in the original container and then transferred to 1.5 mL polypropylene (PP) 

Plastibrand Transparent Microsentrifuge tubes (Brand GMBH, Wertheim, Germany). 

 

2.4.4 Peptide solutions used during the column testing 

Working solutions of ~0.1 mg/mL of bradykinin, angiotensin II and neurotensin used 

during the column testing were made by appropriate dilution of the peptide stock 

solutions. 

 

2.4.5 Peptide solutions for stability testing 

6 different peptide samples (Table 5) were prepared for stability testing. The peptide 

concentration was 1 µg/mL in all solutions. 
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Table 5: Test solutions of 1 μg/mL ang II and brad for stability testing. 

No Peptide Solvent Ra Kb Fc

1 Ang II H2O 1 PE viald 25 PP vialse 25 PP vials 

2 Ang II 27.7 mM Ringer’s acetate 3 PE vials 30 PP vials -- 

3 Ang II 20 mM NH4
+HCOO- 

solution, pH = 3.0 (adjusted 

with formic acid before 

adding ang II) 

3 PE vials 30 PP vials -- 

4 Brad H2O 1 PE vial 25 PP vials 25 PP vials 

5 Brad 27.7 mM Ringer’s acetate 3 PE vials 30 PP vials -- 

6 Brad 20 mM NH4
+HCOO- 

solution, pH = 3.0 (adjusted 

with formic acid before 

adding brad) 

3 PE vials 30 PP vials -- 

 a room temperature 
 b refrigerator 
 c freezer 
 d 20 mL polyethylene vials for scintillation counting 
 e Plastibrand 1.5 mL polypropylene vials 

 

Solution no 1 and no 4 were prepared by appropriate dilution of the peptide stock 

solutions in water. Solution no 2 and no 3 were made by appropriate dilution of peptide 

stock solution and 277 mM Ringer’s acetate in water. A 20 mM NH4
+HCOO- solution 

was adjusted to pH = 3.0 using FA. To make solution no 3 and no 6 the peptide stock 

solutions were diluted to the desired concentration using the ammonium acetate solution. 

 

Each peptide sample was divided into several aliquots in Plastibrand 1.5 mL PP vials 

(Brand GMBH) and 20 mL polyethylene (PE) vials for scintillation counting (Zinsser 

Analytic GMBH, Frankfurt, Germany) and stored in room temperature (R, ~20ºC), 

refrigerator (K, ~11ºC) and freezer (F, ~ -23ºC) (Table 5). All solutions were made the 

same day as the stability testing was started; defined as day 0. 
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2.4.6 Bradykinin solutions for MS 

Three bradykinin solutions with a concentration (conc.) of 10 μg/mL dissolved in water, 

20 % AcN and different amounts of formic acid (Table 6) were prepared for the 

preliminary testing of MS conditions. 

 
Table 6: Bradykinin solutions for MS. (The % is given in volume-%.) 

No Brad conc. (μg/mL) % formic acid % AcN % H2O 

1. 10 0.05 20 79.95 

2. 10 0.5 20 79.5 

3. 10 1.5 20 78.5 
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3. Results and discussion 

Bradykinin and angiotensin II are often represented at low concentrations in biological 

samples, for instance in muscle tissue. Determination of bradykinin and angiotensin II is 

included in several finished and future projects in our research group. Therefore it is 

useful to know by which temperature and in which matrices low concentrations of those 

peptides can and cannot be stored when using them for practical work over time. 

Sensitivity is achieved by using a reversed-phase capillary LC column switching system 

with back flushing of the preconcentration column and UV detection. 

 

3.1 Method development 

3.1.1 Stationary phases 

Octadecyldimethyl-silane (C18) is a well-known packing material in reversed-phase 

HPLC. It is often used for peptide analysis [58]. In this work 5 different C18 materials 

were tested for their ability to separate peptides in preliminary experiments (Appendix, 

Section 6.1.2). A Kromasil column (50 x 0.3 mm (ID), 3.5 μm) was found to be the best 

choice with regard to plate number per meter, selectivity and asymmetry. In addition our 

group has had good results with Kromasil as stationary phase (SP) in both pre-column 

and analytical column from previous work with peptides and other analytes [19, 59-69]. 

In a column switching system the stationary phase in the pre-column should 

preconcentrate the analytes in a small band at the column entrance. The stationary phase 

in the separation column should give slightly higher relative retention than the SP in the 

pre-column in order to provide refocusing of the analytes. Since the particle size of the 

separation column was 3.5 μm, an in-house made Kromasil C18 column with particle size 

of 10 μm was chosen as pre-column in order to ensure refocusing of the analytes. Larger 

particle size also lowers the column pressure enabling higher flow rates. This is 

favourable when injecting large sample volumes in order to complete the sample loading 

in a short period of time. The choice of SP is in agreement with the conclusions that 
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Thomas Bjellaas obtained during work in his thesis [70]. The commercial Kromasil pre-

column used in parts of the study had a particle size of 5 μm (also larger than the particles 

in the analytical column). This pre-column was shorter than the in-house made one; the 

length influenced the back-pressure, thus allowing higher flow rates even though the 

particle size was smaller. 

 

3.1.2 Mobile phases 

Separation of peptides using reversed-phase liquid chromatography is performed with a 

mobile phase that contains water, organic modifiers and ion-pairing agents or buffers. 

The organic solvent ensure suitable elution strength to desorb the peptide from the 

stationary phase, while the buffer or ion-pairing agent adjusts the pH and interacts with 

the peptide to ensure separation with sufficient resolution. As an organic modifier for 

peptide analysis, AcN is widely used due to both its low viscosity that limits the back-

pressure and its extremely low UV absorbance even at low wavelengths [58]. Issaq et al. 

[71] compared two organic modifiers, methanol (MeOH) and AcN with respect to the 

chromatographic separation, and found that AcN generally provided better resolution, 

selectivity, symmetry and efficiency than MeOH. 

 

Peptides are large molecules, thus having a large surface. This enables interactions 

between the peptides and C18 chain at several places. In addition peptides often have 

several basic amino acid groups that can attach to the deprotonated residual  silanol 

groups of the packing material, called secondary interactions, when a neutral or basic 

mobile phase are used. Since all these interactions have to be broken before the peptides 

elute from a column, tailing and peak broadening are often observed. At lower mobile 

phase pH however, both the peptides and the silanol groups are protonated, thus 

decreasing the secondary interaction and giving less tailing. 

  

Adding trifluroacetic acid to the mobile phase has three main advantages; it decreases the 

pH value of the mobile phase, acts as an ion-pairing agent and, in addition,  has little UV-

absorption at low wavelengths. However, the main disadvantage is that TFA causes 
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decreased sensitivity in ESI-MS detection, due to ion suppression of the analytes [58, 72, 

73]. 

 

0.1 % TFA was added to the mobile phases used during the column testing (Appendix, 

Section 6.1.2). Since the chromatographic method developed in this thesis was meant to 

be connected to an ESI-TOF-MS, a MP with no TFA added was desired, thus other ion-

pairing agents were investigated. In order to avoid the ion suppression caused by TFA, 

formic acid and acetic acid are often used as ion-pairing agent for peptide separations. A 

good resolution is unfortunately not always obtained using these acids [58]. McCalley 

[74] reported recently a study of the chromatographic separation of basic peptides 

obtained by using different mobile phase additives; TFA, FA, ammonium formate and 

phosphate buffer, at constant pH (2.3-3.2). Since mobile phases that contained FA 

produced poor separation, inorganic salts are non-volatile and thus not favourable by MS 

detection and TFA gives rise to ion suppression of the analytes, McCalley concluded that 

ammonium formate was the best choice among the studied additives. 

 

3.1.3 Preliminary mobile phase testing 

The next step was to set up an isocratic reversed-phase capillary LC-UV switching 

system with back-flushing of the pre-column (System 1, Section 2.3.1.1) and test 

different mobile phases to find the mobile phases best suited for the determination of 

angiotensin II and bradykinin. The mobile phases that were tested are listed in Table 7. 

Different combinations of loading and separation MP were compared; all containing H2O 

and AcN with an additive like ammonium formate (a.f.), ammonium acetate (a.a.) or 

formic acid (FA) added. 

 

 32



Table 7: Overview of the mobile phases tested. 

Loading mobile phase Analytical mobile phase 

No 

% 

AcN 

% 

H2O 
Additive 

pH-

adjustment 

% 

AcN 

% 

H2O 
Additive 

pH-

adjustment

1 2 98 20 mM a.a. -- 16 84 20 mM a.f. -- 

2 2 98 20 mM a.a. -- 16 84 20 mM a.f. 3.15 

3 2 98 20 mM a.a. -- 16 84 20 mM a.f. 3.37 

4 2 98 20 mM a.a. -- 16 84 20 mM a.a. -- 

5 2 98 20 mM a.a. 3.15 16 84 20 mM a.f. 3.15 

6 1 99 20 mM a.f. -- 16 84 20 mM a.f. 3.15 

7 2 98 20 mM a.f. -- 16 84 20 mM a.f. 3.15 

8 2 98 20 mM a.f. -- 16 84 20 mM a.a. -- 

9 2 97.95 0.05 % FA -- 16 83.95 0.05 % FA -- 

10 2 97.95 0.05 % FA -- 16 84 20 mM a.f. 3.15 

11 1 99 20 mM a.f. -- 16 84 20 mM a.f. 3.15 

12 2 98 20 mM a.f. -- 16 84 20 mM a.f. 3.15 

13 2 97.95 0.05 % FA -- 14 85.95 0.05 % FA -- 

 

When comparing the chromatograms for the different MPs, some observations were 

easily made. MPs no 9 and 13 (both with FA as additive in both loading MP and 

analytical MP) are not suitable for peptide separations, due to bad repeatability and too 

short retention times, thus they are excluded from the calculations below (Figure 5-7). 

Also MP no 4, 8 and to a lesser extent no 1 gave relatively bad repeatability. None of the 

MPs showed good results with respect to peak tailing, but some are worse than others. 

MP no 6, 7 and 8 gave very asymmetric peaks and MP no 2 also gave relatively 

asymmetric peaks (Figure 5). The plate number per meter (N/m) was also calculated, 

showing that MP no 4, 6 and 12 gave the lowest value, and MP no 10 showed the best 

results (Figure 6). Figure 7 shows the k-values obtained with the different mobile phases. 

As can be seen MPs no 1, 4 and 8 gave too high k-values, while the other MPs provided 

relatively ideal k-values (~ 2). From the evaluation above, MP no 3, 5, 10 and 11 (all 

having AcN – H2O (16:84, v/v) with 20 mM ammonium formate added pH-adjusted to 
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either 3.15 or 3.37 as analytical mobile phase) showed the best performance with respect 

to asymmetry and plate number per meter. Among those four mobile phases no 3 and 5 

showed the largest peak height (no 3 was slightly better than 5). However, low pH for 

both loading MP and separation MP was chosen in order to avoid secondary interactions. 

Therefore the following solvent mixtures (MP no 5) were chosen as loading MP and 

separation MP, respectively: AcN – H2O (2:98, v/v) with 20 mM NH4
+CH3COO- added 

and AcN – H2O (16:84, v/v) with 20 mM NH4
+CH3COO- added, both adjusted to pH = 

3.15 using formic acid. Bacterial growth was observed in the loading mobile phase, 

therefore AcN – H2O – FA (2 : 97.95 : 0.05, v/v/v) were used as loading MP during the 

stability testing (MP no 10), because it showed similar asymmetry (As) and better N/m 

than MP no 3. 

 
Figure 5: Asymmetries of the bradykinin peaks using different MPs. 
(The numbers at the y-axis refers to the MPs listed in Table 7) 
 

 
Figure 6: The calculated plate number per meter (bradykinin) using different MPs. 
(The numbers at the y-axis refers to the MPs listed in Table 7) 
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Figure 7: The k-values for bradykinin obtained with different MPs. 
(The numbers at the y-axis refers to the MPs listed in Table 7)  
 

Since the chosen MP still showed some tailing, gradient elution was used for the rest of 

the study. The analytical pump had two chambers delivering the MP as follows. In 

chamber A: AcN – H2O (2:98, v/v) with 20 mM NH4
+HCOO- and 0.05 % formic acid 

added; In chamber B: AcN – H2O (90:10, v/v) with 20 mM NH4
+HCOO- and 0.05 % 

formic acid added. The gradient used was: 10-50 % B in 5 min and then held at 50 % B 

in 2 min at a flow rate of 0.005 mL/min. 

 

When injecting large volumes it is essential that the stationary phase of the pre-column 

and the loading mobile phase used provide sufficient focusing of the analytes. Therefore 

the breakthrough of the analytes on the chosen pre-columns, the in-house made Kromasil 

C18 precolumn (53 x 0.320 mm (ID), 10 μm) and the commercial Kromasil C18 pre-

column (5 x 1 mm (ID), 5 μm) were tested with the chosen loading mobile phases. Both 

loading MPs used during this work were tested: one containing AcN – H2O (2:98, v/v) 

with 20 mM NH4
+CH3COO- added and the other containing AcN – H2O – FA (2 : 97.95 : 

0.05, v/v/v). By substituting the column in System P (described in App. 6.1.1) with the 

pre-columns (one at a time), and using a flow rate of 0.200 mL/min, no signals were 

found 50 min after injecting the analyte (one injection with angiotensin II and one 

injection with bradykinin), indicating no breakthrough on either columns. 

 

Phase collapse may occur in reversed-phase LC using alkyl bonded phases (like C8 or 

C18) as stationary phase and mobile phase containing less than 5 % organic solvent. This 
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phenomenon may cause peak tailing, gradient regeneration delays and decreased, and 

sometimes also non-repeatable, retention times. Washing the column with a solution 

containing 50 % (or more) organic solvent may regenerate the column [75]. The loading 

mobile phases used in this project contained less than 5 % organic modifier, but since the 

separation mobile phase used in the capillary LC part of the study was delivered with a 

gradient of 10-50 % B (containing up to 46 % AcN), no phase collapse was observed. For 

the nano LC even more AcN was delivered at the end of the separation MP gradient. 

 

Investigation of the influence of Ringer’s acetate on the peak shape and retention time of 

ang II is described in the Appendix, Section 6.1.3. 

 

3.2 Detection 

T. Bjellaas tested the ultraviolet light absorption of different peptides including ang II and 

brad at 210 and 280 nm, and found that the absorption at 280 nm was very weak or if 

observable at all [70]. At wavelengths higher than 210 nm the absorbance of MP 

impurities, additives and salts are smaller, thus the signal to noise ratio (S/N) may 

increase when the wavelength is increased from 210 nm provided that the absorbance of 

the analyte itself is not decreased. Therefore, in this project, the ang II signal at 210 and 

230 nm were compared using System P (described in Appendix, Section 6.1.1), with a 

MP consisting of AcN – H2O – OHAc (22:77.9:0.1, v/v). It was observed that 210 nm 

provided a higher signal and higher S/N, and thus higher sensitivity, for ang II than 230 

nm. Therefore a wavelength of 210 nm was chosen for the peptides in this thesis, as in 

Bjellaas’ thesis [70]. 

 

3.3 Injection volume 

The aim of the study was to investigate the stability of low concentrations of ang II and 

brad stored in different water matrices and at different temperatures because these 

peptides are present at low concentrations in biological samples. Therefore a sensitive 

method was required. Large injection volumes can be performed to enhance the 

 36



sensitivity of a capillary LC method. Too high injection volumes however, are time 

consuming and may cause breakthrough and overloading of the column. The maximum 

binding capacity of polypeptides on a reversed-phase column depends on the column 

volume and on the size of the hydrophobic part of the molecule versus the total molecular 

weight [58]. Therefore investigation of the linearity of the injection volumes versus peak 

areas is important. 

 

5 µg/mL of bradykinin and angiotensin II were injected at volumes of 50.6, 75.3, 100.8, 

156.0 and 198.3 µL (300.0 µL of ang II was also injected) and the linearities of the 

injected volumes versus peak heights were then monitored. The injection volumes are 

later in this thesis referred to as 50, 75, 100, 150, 200 and 300 µL. A gradient capillary 

LC-UV column switching system (System 2; Section 2.3.1.2) was used during the 

investigation. The raw data can be seen in Appendix, Section 6.2.1.  

  

The relationship between the average peak areas (of 2-5 replicates) of ang II and the 

injection volumes are plotted in Figure 8. The linear regression lines (drawn in red) have 

r-values of 0.991 (for injection volumes of 50, 75, 100, 150 and 200 µL) and 0.989 (for 

injection volumes of 50, 75, 100, 150, 200 and 300 µL). Figure 9 shows the relationship 

between the peak areas and the injection volumes (50, 75, 100, 150 and 200 µL) of 

bradykinin. The linear regression line (also here drawn in red) has an r-value of 0.984. 

 

As can be seen from both Figure 8 and 9, the average peak areas obtained with an 

injection volume of 150 µL, are slightly smaller than expected, due to the fact that the 

values lay below the regression lines). This may indicate that the injection loop used for 

150 µL injections may give a smaller volume than expected. The difference in r-values 

between the plots of peak areas of ang II versus injection volumes including and 

excluding 300 μL (r = 0.991 and 0.989, respectively), shows that the regression line for 

the plot excluding 300 μL fits the data better. This may indicate that 300 μL gives a slight 

breakthrough, but this cannot be stated for sure. Another fact that supports this theory is 

that the regression lines for ang II and brad should intersect the y-axis slightly above 

origo, since the volume inside the injection valve is neglected in the volume calculations. 

 37



The regression lines for ang II and brad with injection volumes of 50-200 μL nearly 

intersect origo, while the regression line for ang II, including the injection volume of 300 

μL, intersects the y-axis at a higher y-value. 

 

200 μL was chosen as the injection volume, just to be sure that no breakthrough would 

occur while also saving loading time. 

  

 
Figure 8: The relationship between the average peak areas of ang II and the injection volumes (50, 75, 100, 
150, 200 and 300 µL). The linear regression lines are drawn red; r = 0.991 (for volumes excluding 300 µL) 
and r = 0.989 (for volumes including 300 µL). 
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Figure 9: The relationship between the peak areas of bradykinin and the injection volumes (50, 75, 100, 
150 and 200 µL). The linear regression line is drawn red, r = 0.984. 
 

3.4 Limit of detection 

The limit of detection of an analyte is most commonly defined as the concentration 

giving a signal that is 3 times the background noise. 

  

Since peptides like angiotensin II and bradykinin most often are represented in biological 

samples at low concentrations, it is important to obtain a method with as low detection 

limits as possible. The detection limits for angiotensin II and bradykinin were tested 

using System 2 (Section 2.3.1.2) with an injection volume of 200 µL. The concentration 

limit of detection (cLOD) of brad were found to be approximately 10 ng/mL (Figure 10), 

thus giving a mass limit of detection (mLOD) of ~ 2 ng. The cLOD of angiotensin II was 

below 1 ng/mL giving a mLOD below 0.2 ng (Figure 11). 
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Figure 10: An overlay of two chromatograms showing 200 μL of 10 ng/mL bradykinin injected into a 
gradient capillary LC-UV switching system with detection wavelength of 210 nm. The columns used were 
a Kromasil C18 column (50 x 0.3 mm (ID), 3.5 μm) and a Kromasil C18 pre-column (5 x 1 mm (ID), 5 μm). 
The loading MP (AcN – H2O (2:98, v/v) with 20 mM NH4

+CH3COO- added) and the analytical MP (AcN – 
H2O (gradient) with 20 mM NH4

+HCOO- and 0.05 % FA added) were delivered at a flow rate of 0.200 and 
0.005 mL/min, respectively. 
 

 

 
Figure 11: A chromatogram of angiotensin II at a concentration of 1 ng/mL. 200 μL ang II was injected 
into a capillary LC-UV switching system. The columns used were a Kromasil C18 column (50 x 0.3 mm 
(ID), 3.5 μm) and a Kromasil C18 pre-column (5 x 1 mm (ID), 5 μm). The loading MP (AcN – H2O (2:98, 
v/v) with 20 mM NH4

+CH3COO-
 added) and the analytical MP (AcN – H2O (gradient) with 20 mM 

NH4
+HCOO- and 0.05 % FA added) were delivered at a flow rate of 0.200 and 0.005 mL/min, respectively. 

UV detection was performed at 210 nm. 
 

3.5 Stability testing of bradykinin and angiotensin II 

Investigation of the stability of 1 μg/mL angiotensin II and bradykinin stored in three 

different matrices and by different temperatures (Table 5) was carried out using System 2 

(Section 2.3.1.2) with a injection volume of 200 µL. The total analysis time was: 3.5 min 

loading, 6.5 min analytical separation and 5 min reconditioning of the columns. 

 

All peptide solutions were made the same day and stored in polypropylene or 

polyethylene vials in room temperature (∼20ºC), refrigerator (∼11ºC) or freezer (∼-23ºC). 
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Each day 2 vials with each of the analyte solutions were taken out of the refrigerator and 

the freezer app. 1 hour prior to analysis. 

 

Measurements of the peak areas for ang II were done on days 0, 1, 2, 3, 4, 5, 7, 14, 19 

and 24. Brad was measured on days 0, 1, 2, 3, 4, 5, 8, 15, 21 and 24. (Day 0 is defined as 

the day that the solutions were made). Ang II in H2O (in room temperature) was not 

analyzed on day 19 and brad in H2O (in room temperature) was not analyzed on day 21. 

 

Chromatograms of bradykinin dissolved in NH4
+HCOO- (pH = 3.0) and angiotensin II 

dissolved in H2O, both stored in the refrigerator and measured the 3rd day, are shown in 

Figure 12 a and b, respectively. 

 
 

  
Figure 12: a) A chromatogram of bradykinin dissolved in NH4

+HCOO- (pH = 3.0) and stored in the 
refrigerator for 3 days and b) a chromatogram of angiotensin II dissolved in H2O and stored in the 
refrigerator for 3 days. 200 μL of 1 µg/mL peptides was injected in a gradient capillary LC-UV switching 
system with detection wavelength of 210 nm. The columns used were a Kromasil C18 column (50 x 0.3 mm 
(ID), 3.5 μm) and a Kromasil C18 pre-column (5 x 1 mm (ID), 5 μm). The loading MP (AcN – H2O (2:98, 
v/v) with 20 mM NH4

+CH3COO-
 added) and the analytical MP (AcN – H2O (gradient) with 20 mM 

NH4
+HCOO- and 0.05 % FA added) were delivered at a flow rate of 0.200 and 0.005 mL/min, respectively. 

 

Histograms showing the measured peak areas of the peptides each day are shown in 

Figure 13-26 (R = room temperature, K = refrigerator, F = freezer). The purple columns 

show the average peak areas. In those cases where three replicates were made, the values 

for the absolute standard deviation, s, are calculated and the green columns illustrate the 

average peak area plus or minus the s value ( sX ± ). When only two replicates were 

made; the blue column illustrates the lowest peak area and the yellow column the largest 

peak area. In those cases where only one replicate was made, the peak area is shown with 
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a purple column. The raw data (both for peak areas and retention times) from this part of 

the project are shown in Table A7-A10 (Appendix, Section 6.2.2). The total averages of 

the peak areas for the peptides in each solution for the whole period are given in Table 8. 

A high value of relative standard deviation (RSD) indicates a great change in peak area 

during the period. 

 
Figure 13: Peak areas obtained for ang II dissolved in H2O and stored at room temperature. When two 
replicates were made; the purple column shows the average peak area, while the blue column illustrates the 
lowest peak area and the yellow column the largest peak area. In those cases where only one replicate was 
made, the peak area is shown with a purple column. 
 

 
Figure 14: Peak areas obtained for ang II dissolved in H2O and stored in the refrigerator. The purple 
columns show the average peak areas. In those cases where three replicates were made, the value of the 
absolute standard deviation, s, is calculated and the green columns illustrate the average peak area plus or 

minus the s value ( sX ± ). When only two replicates were made; the blue column shows the lowest peak 
area and the yellow column the largest peak area. 
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Figure 15: Peak areas obtained for ang II dissolved in H2O and stored in the freezer. The purple columns 
show the average peak areas. In those cases where three replicates were made, the value of the absolute 
standard deviation, s, is calculated and the green columns illustrate the average peak area plus or minus the 

s value ( sX ± ). When only two replicates were made; the blue column shows the lowest peak area and 
the yellow column the largest peak area. 
 

 
Figure 16: Peak areas obtained for ang II dissolved in Ringer’s acetate and stored at room temperature. 
The purple columns show the average peak areas. In those cases where three replicates were made, the 
value of the absolute standard deviation, s, is calculated and the green columns illustrate the average peak 

area plus or minus the s value ( sX ± ). When only two replicates were made; the blue column shows the 
lowest peak area and the yellow column the largest peak area. 
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Figure 17: Peak areas obtained for ang II dissolved in Ringer’s acetate and stored in the refrigerator. The 
purple columns show the average peak area. In those cases where three replicates were made, the value of 
the absolute standard deviation, s, is calculated and the green columns illustrate the average peak area plus 

or minus the s value ( sX ± ). When only two replicates were made; the blue column shows the lowest 
peak area and the yellow column the largest peak area. 
 

 
Figure 18: Peak areas obtained for ang II dissolved in NH4

+HCOO- at pH = 3.0 and stored at room 
temperature. The purple columns show the average peak areas, while the blue columns show the lowest 
peak areas and the yellow columns the largest peak areas. 
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Figure 19: Peak areas obtained for ang II dissolved in NH4

+HCOO- at pH = 3.0 and stored in the 
refrigerator. The purple columns show the average peak areas. In those cases where three replicates were 
made, the value of the absolute standard deviation, s, is calculated and the green columns illustrate the 

average peak area plus or minus the s value ( sX ± ). When only two replicates were made; the blue 
column shows the lowest peak area and the yellow column the largest peak area. 
 

 
Figure 20: Peak areas obtained for brad dissolved in H2O and stored at room temperature. The purple 
columns show the average peak areas, while the blue columns show the lowest peak areas and the yellow 
columns the largest peak areas. 
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Figure 21: Peak areas obtained for brad dissolved in H2O and stored in the refrigerator. The purple 
columns show the average peak areas. In those cases where three replicates were made, the value of the 
absolute standard deviation, s, is calculated and the green columns illustrate the average peak area plus or 

minus the s value ( sX ± ). When only two replicates were made; the blue column shows the lowest peak 
area and the yellow column the largest peak area. 
 

 
Figure 22: Peak areas obtained for brad dissolved in H2O and stored in the freezer. The purple columns 
show the average peak areas. In those cases where three replicates were made, the value of the absolute 
standard deviation, s, is calculated and the green columns illustrate the average peak area plus or minus the 

s value ( sX ± ). When only two replicates were made; the blue column illustrates the lowest peak area 
and the yellow column the largest peak area. In those cases where only one replicate was made, the peak 
area is shown with a purple column. 
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Figure 23: Peak areas obtained for brad dissolved in Ringer’s acetate and stored at room temperature. The 
purple columns show the average peak areas. In those cases where three replicates were made, the value of 
the absolute standard deviation, s, is calculated and the green columns illustrate the average peak area plus 

or minus the s value ( sX ± ). When only two replicates were made; the blue column shows the lowest 
peak area and the yellow column the largest peak area. In those cases where only one replicate was made, 
the peak area is shown with a purple column. 
 

 
Figure 24: Peak areas obtained for brad dissolved in Ringer’s acetate and stored in the refrigerator. The 
purple columns show the average peak areas. In those cases where three replicates were made, the value of 
the absolute standard deviation, s, is calculated and the green columns illustrate the average peak area plus 

or minus the s value ( sX ± ). When only two replicates were made; the blue column shows the lowest 
peak area and the yellow column the largest peak area. 
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Figure 25: Peak areas obtained for brad dissolved in NH4

+HCOO- at pH=3.0 and stored at room 
temperature. The purple columns show the average peak areas. In those cases where three replicates were 
made, the value of the absolute standard deviation, s, is calculated and the green columns illustrate the 

average peak area plus or minus the s value ( sX ± ). When only two replicates were made; the blue 
column shows the lowest peak area and the yellow column the largest peak area. 
 

 
Figure 26: Peak areas obtained for brad dissolved in NH4

+HCOO- at pH=3.0 and stored at room 
temperature. The purple columns show the average peak areas, while the blue columns show the lowest 
peak areas and the yellow columns the largest peak areas. 
 

 48



Table 8: The total average of the peak areas for each peptide solution. The average is calculated from the 
average peak area obtained each day. 

Peptide solution X  S RSD [%] 
Ang II in H2O R 41074.5 ⋅  3107 ⋅  13 
Ang II in H2O K 31075.4 ⋅  3106 ⋅  12 
Ang II in H2O F 31098.4 ⋅  3105 ⋅  10 
Ang II in Ringer’s acetate R 31016.4 ⋅  3107 ⋅  17 
Ang II in Ringer’s acetate K 31091.2 ⋅  3107 ⋅  25 
Ang II in NH4

+HCOO- R 31061.6 ⋅  3103.2 ⋅  4 
Ang II in NH4

+HCOO- K 31042.6 ⋅  3103.2 ⋅  4 
Brad in H2O R 3106.5 ⋅  4102.2 ⋅  40 
Brad in H2O K 31020.6 ⋅  3105 ⋅  8 
Brad in H2O F 31012.6 ⋅  3105 ⋅  8 
Brad in Ringer’s acetate R 31033.6 ⋅  3104 ⋅  6 
Brad in Ringer’s acetate K 31093.5 ⋅  3105 ⋅  8 
Brad in NH4

+HCOO- R 31088.7 ⋅  3108.2 ⋅  4 
Brad in NH4

+HCOO- K  4 31082.7 ⋅ 3107.2 ⋅ 
 

As can be seen from the histograms in Figure 13-26 and Table 8 the peptides are most 

stable when dissolved in NH4
+HCOO- (pH = 3) and stored at room temperature or in the 

refrigerator. Brad is also quite stable when dissolved in Ringer’s acetate (especially at 

room temperature), and to some extent in water stored either in the refrigerator or in the 

freezer. The most significant loss of peptide concentration is observed in the solution of 

brad dissolved in water stored at room temperature. Also ang II dissolved in Ringer’s 

acetate, especially when stored in the refrigerator experienced a significant loss of 

concentration. A special phenomenon is observed for ang II dissolved in Ringer’s acetate 

and stored in the refrigerator; the concentration decreased quite significantly the first 24 

hours, the same is not observed for the same solution stored at room temperature. Ang II 

dissolved in water and stored in the refrigerator or in the freezer also experienced a 

significant loss of peptide concentration the first 24 hours. The same effect is not 

observed in any of the bradykinin solutions. 

 

All chemical processes (chemical reactions) are accelerated when the temperature is 

increased. Since the observed concentration loss the first 24 hours for angiotensin II was 

observed after storage at lower temperatures, this may indicate that the loss was not due 

 49



to chemical reactions. The concentration changes are more likely related to physical 

processes, which might include adsorption of the analyte to the walls of the vials or 

precipitation of the analyte. Many compounds display polymorphism, i.e. can crystallise 

with different crystal structures. The different crystal forms of a compound have the same 

solubility, but the dissolution kinetics may be different; in other words some crystal 

forms dissolve at different rates. This may be the reason why some angiotensin II seems 

to have been lost after cooling and subsequent thawing. The peptide solutions were taken 

out of the refrigerator and freezer ~1 hour prior to analysis, and this may have been an 

insufficient period of time in order to dissolve the analytes again. The same kind of 

argument applies to adsorption. If the angiotensin II was adsorbed to the walls of the 

vials, 1 hour in room temperature prior to analysis may have been insufficient time in 

order to dissolve all the analyte, due to the possible presence of other crystal forms of the 

analyte than prior to the first dissolution. 

 

The concentration loss for angiotensin II the first 24 hours was not observed in the 

acidified (pH = 3) NH4
+HCOO- solution, while it was observed in the Ringer’s acetate 

and H2O solutions, stored at lower temperatures, which had a pH close to 7. Following 

the argument above this must has been due to a differential solubility of ang II in acidic 

and neutral/mildly basic solutions. At pH = 7 ang II is protonated on the arginine, 

partially protonated on the histidine, deprotonated at the C-terminus, while the N-

terminus remains neutral (to a good approximation). This gives a total of ∼2.5 (positive 

and negative) charges. At pH = 3, the arginine is still protonated, the histidine is 

completely protonated and the N-terminus is protonated, while the C-terminus is neutral 

(again to a good approximation). This gives a total of 3 (positive and negative) charges. 

Generally, an increased number of charges gives rise to increased solubility in water. The 

lower number of charges at pH = 7 may be the reason why angiotensin II experienced a 

concentration loss in Ringer’s acetate and H2O after cooling but not in the acidified 

NH+HCOO- solution, since angiotensin II should have a lower solubility at pH = 7 than 

pH = 3. 
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For bradykinin the two arginines are protonated at both pH = 3 and pH = 7, the amidine 

functional group is much more basic than a simple amino group, and the C-terminus is 

deprotonated at pH = 7 and neutral at pH = 3, while the N-terminus is neutral at pH = 7 

and protonated at pH = 3, thus giving a total of 3 (positive and negative) charges in both 

neutral and acidic solutions. This is the same number of charges that angiotensin II has in 

acidic solution. At pH = 7 brad has a higher number of charges than ang II, indicating 

that brad could be more hydrophilic than ang II at neutral pH. This is supported by the 

elution order of the two peptides: brad having a shorter retention time on the hydrophobic 

column than ang II. This may be the reason why no significant concentration loss was 

observed in the bradykinin solutions during the first 24 hours. Since bradykinin has the 

same number of charges at both pH = 3 and pH = 7, it is reasonable to assume that the 

solubility of bradykinin is approximately the same in both neutral and acidic solutions. 

 

When looking exclusively at the peak shapes of angiotensin II and bradykinin during the 

stability testing period, it is observed that the peak shape of bradykinin only remains the 

same throughout the testing period when dissolved in NH4
+HCOO- and stored in the 

refrigerator, the same solution is also quite stable at room temperature, only observing a 

slight peak tailing on day no 24. Brad dissolved in Ringer’s acetate stored in the 

refrigerator showed some tailing with traces of peak(s) in the tailing from the 15th day 

(Figure 27), while stored in room temperature this phenomenon appeared from the 3rd 

day. Brad dissolved in water also showed some tailing with traces of peak(s) in the tailing 

similar to the peak shape shown in Figure 27; the phenomenon appeared at room 

temperature already after 5 days, and after 8 days when stored in the refrigerator or in the 

freezer. In both cases this traces of peak(s) in the tailing is most likely breakdown 

products, since there are no other substances present in the solutions than the peptide (ang 

II or brad) and the water matrix. 
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Figure 27: A chromatogram of bradykinin dissolved in Ringer’s acetate and stored in the refrigerator for 
15 days. 200 μL of 1 µg/mL bradykinin was injected in a gradient capillary LC-UV switching system with 
a detection wavelength of 210 nm. The columns used were a Kromasil C18 column (50 x 0.3 mm (ID), 3.5 
μm) and a Kromasil C18 pre-column (5 x 1 mm (ID), 5 μm). The loading MP (AcN – H2O (2:98, v/v) with 
20 mM NH4

+CH3COO- added) and the analytical MP (AcN – H2O (gradient) with 20 mM NH4
+HCOO- and 

0.05 % FA added) were delivered at a flow rate of 0.200 and 0.005 mL/min, respectively. 
 

Angiotensin II dissolved in water and stored at room temperature, in the refrigerator or in 

the freezer and ang II dissolved in NH4
+HCOO- (pH = 3.0) stored in the refrigerator 

showed similar results; after 7 days one tiny peak that co-eluted with the analyte was 

observed with a retention time that was slightly longer than ang II (an example is shown 

in Figure 28). This small peak had a quite stable area for the rest of the testing period. 

The same was observed for ang II dissolved in Ringer’s acetate and stored at room 

temperature or in the refrigerator, but here the co-eluting peak was already observed at 
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day no 4, and stored at room temperature it was slightly larger at the end of the project. 

The worst ang II peak shape was observed when it was dissolved in acidic (pH = 3.09) 

NH4
+HCOO- and stored at room temperature. Here the small co-eluting peak was 

observed from day no 7. From day 14 the peak had (several) tiny peak(s) in the tailing. 

 

 
Figure 28: A chromatogram of ang II dissolved in H2O and stored in the refrigerator for 14 days. 200 μL of 
1 µg/mL ang II was injected in a gradient capillary LC-UV switching system with UV detection at 210 nm. 
The columns used were a Kromasil C18 column (50 x 0.3 mm (ID), 3.5 μm) and a Kromasil C18 pre-column 
(5 x 1 mm (ID), 5 μm). The loading MP (AcN – H2O (2:98, v/v) with 20 mM NH4

+CH3COO- added) and 
the analytical MP (AcN – H2O (gradient) with 20 mM NH4

+HCOO- and 0.05 % FA added) were delivered 
at a flow rate of 0.200 and 0.005 mL/min, respectively. 
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In conclusion, based on both peak areas and peak shape, both angiotensin II and 

bradykinin are most stable when dissolved in acidic (pH = 3) NH4
+HCOO- and stored in 

the refrigerator. 

 

3.6 Carryover study 

The classical carryover is caused by a cavity somewhere in the system where the analyte 

collects and then elutes gradually as several blanks are injected which gives a peak that is 

smaller for each injection. J. W. Dolan has described a procedure for solving carryover 

problems in systems that include an autosampler [76]. The eventual carryover in System 

2 (Section 2.3.1.2) was investigated using 1 µg/mL bradykinin as test substance (solution 

no 1 in Table 6, Section 2.4.6, stored in the freezer). One analysis of bradykinin test 

solution and then four analysis with HPLC grade water (Fluka) were performed (overlay 

of the chromatograms; see Figure 29). A carryover of 9.2 % was observed in the first 

blank injection, and in blank injection no 4 there was still a carryover of 2.4 %. Since 

carryover problems had been experienced using Rheodyne valves at earlier occasions, 

this injection valve was suspected to be the origin of the carryover problems, and the 

Rheodyne valve was therefore rinsed with fresh AcN and investigated again following 

the same procedure and similar results were observed (overlay of the chromatograms is 

not showed). 
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Figure 29: An overlay of the chromatograms for 1 µg/mL bradykinin and then four analysis with HPLC 
water injected into a capillary LC-UV switching system using a Rheodyne injection valve with a 200 μL 
external loop. The columns used were a Kromasil C18 column (50 x 0.3 mm (ID), 3.5 μm) and a Kromasil 
C18 pre-column (5 x 1 mm (ID), 5 μm). The loading MP (AcN – H2O (2:98, v/v) with 20 mM 
NH4

+CH3COO- added) and the analytical MP (a gradient of AcN – H2O with 20 mM NH4
+HCOO- and 0.05 

% FA added) were delivered at a flow rate of 0.200 and 0.005 mL/min, respectively. UV detection was 
performed at 210 nm. 
 

Then the Rheodyne valve was replaced with a Valco valve (rinsed with fresh AcN prior 

to use). Another bradykinin injection followed by two injections of HPLC grade water 

were performed (overlay of the chromatograms; see Figure 30). The results are given in 

Table 9 (the raw data are given in Table A11 in Appendix, Section 6.2.3). 
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Figure 30: An overlay of the chromatograms for 1 µg/mL bradykinin and then two analysis with HPLC 
water injected in a capillary LC-UV switching system using a Valco injection valve (rinsed) with a 200 μL 
external loop. The columns used were a Kromasil C18 column (50 x 0.3 mm (ID), 3.5 μm) and a Kromasil 
C18 pre-column (5 x 1 mm (ID), 5 μm). The loading MP (AcN – H2O (2:98, v/v) with 20 mM 
NH4

+CH3COO- added) and the analytical MP (AcN – H2O (gradient) with 20 mM NH4
+HCOO- and 0.05 % 

FA added) were delivered at a flow rate of 0.200 and 0.005 mL/min, respectively. UV detection was 
performed at 210 nm. 
 

As can be seen from Table 9 app. 10 % carryover in the first blank injection, and still 2-3 

% carryover in the 4th blank injection were observed using the Rheodyne valve both 

before and after rinsing (the carryover after rinsing of the valve was even slightly higher 

than before, but this may be due to random uncertainty). The Valco valve showed much 

better results. The carryover in the first blank injection after the bradykinin injection was 

just 2.0 %. That is significantly lower than the carryover observed when using the 

Rheodyne valve. In the second blank injection the carryover was minimal. 
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Table 9: Carryover for Rheodyne and Valco injection valves. The results are given in peak area relative to 
the peak area when bradykinin was injected. (The overlays of the chromatograms are showed in Figure 29 
and 30) 
Injection 

sequence 
Rheodyne valve Rheodyne valve (rinsed) Valco valve (rinsed) 

Brad 100 % 100 % 100 % 

Blank 1 9.2 % 10.4 % 2.0 % 

Blank 2 3.4 % 6.0 % 0.60 % 

Blank 3 3.2 % 4.1 % -- 

Blank 4 2.4 % 3.2 % -- 

 

The carryover effect has probably not influenced the results of the stability testing since 

the analyte concentration was similar in every injection. The first injection in the morning 

may have given a slightly smaller effect because of dissolution and subsequent washing 

prior to the first injection. However, since the first injection often gave very bad peak 

shape, this analysis was not included in the stability testing. 

 

3.7 Robustness 

The robustness of a HPLC method describes the capacity of the system to remain 

unaffected by variations in method parameters. When working with analytical chemistry 

a sensitive, robust and fast system is desirable. In a reversed-phase capillary LC-UV 

column-switching system like System 2 (Section 2.3.1.2) several parameters influence 

the speed and sensitivity of the system. Several parameters have been tested in this work 

to obtain an optimized method for peptide determination: loading flow rate, loading time 

of the sample on the pre-column and reconditioning time of the pre-column with the 

loading MP. Consideration was also given to whether or not the peak area or shape 

changed  when the pre-column was replaced, as well as to how the retention time was 

influenced by the varying age of the MP. 1 μg/mL bradykinin was used as test solution. 
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3.7.1 Loading flow rate and sample loading time 
When injecting large sample volumes it is important to ensure a complete transfer within 

a reasonable period of time of the analytes from the injection loop to the pre-column. 

Increased flow rates will decrease the loading time, but increase the pressure in the 

system. Excessive pressure will shorten the lifetime of the column and other parts of the 

chromatographic system. 

 

As mentioned earlier, packing materials with 10 and 5 μm particles were chosen for the 

in-house made and commercial pre-columns, respectively, in order to ensure refocusing 

of the analyte on the analytical column, which contains smaller particles. The large 

particles in the pre-column also create lower background pressure, and thus enable higher 

flow rates. In addition, a short pre-column lowers the pressure. Since leakage was 

observed in the valves at pressures above 200-250 bar, a flow rate that did not give more 

than 200 bar was chosen. For the in-house made Kromasil pre-columns that means a flow 

rate of 0.070 mL/min. Since the commercial Kromasil pre-columns were shorter (only 5 

mm compared to 53 mm for the in-house made pre-columns) a flow rate of 0.200 mL/min 

could be used for those columns. No significant change in sensitivity was observed when 

the loading flow rate was changed in the range 0.070 – 0.200 mL/min (chromatogram not 

shown), and the system was therefore found to be robust with respect to such changes. 

 

The time needed to transfer the analytes from the injection loop (through the capillaries 

and switching valve) to the pre-column at a flow rate of 0.200 mL/min is calculated to be 

approximately 1.5 minutes. To be sure that complete transfer of the analyte to the pre-

column occurred, the peak areas, shapes and retention times obtained using loading times 

of 3.5 and 5.0 min were compared. The peak area, peak shape and retention times of the 

analyte were similar for both loading times, thus 3.5 minutes is sufficient time 

(chromatograms not shown). 

 

3.7.2 Recondition time of the pre-column 

When both valves are in position 2 the analytical mobile phase is going through the pre-

column. Since the analytical MP at the end of the gradient is a stronger eluent than the 
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loading MP, it is essential to have a sufficient reconditioning time of the pre-column 

before injecting a new sample, in order to avoid breakthrough of the analytes in the pre-

column. On the other hand a speedy method is desired, so the reconditioning time should 

not be too long. The retention times, peak shapes and areas of bradykinin obtained when 

using a reconditioning time of 5 min were reproducible and also similar to what was 

observed when using longer reconditioning times, thus 5 minutes of reconditioning was 

chosen. 

 

3.7.3 Are the peak areas and shapes changing when the pre-column is replaced? 

Since the pre-column has to be replaced from time to time, it is good to know how robust 

the system is with respect to such replacements. The peak areas of brad obtained with an 

old pre-column (Hot Sep Tracy, Kromasil C18, 5 x 1 mm (ID), 5 μm) and a new pre-

column of the same type were compared. The peak areas are given in Appendix, Table 

A13. 

 

Using the t-test, the average peak areas before and after replacement of the pre-column 

were found to be significantly different at the 5 % level, but at the 1 % level the average 

were not significantly different (Appendix, Section 6.3.1). This means that the system is 

relatively robust, with regard to replacement of the pre-column. 

 

3.7.4 Does the age of the MP influence the retention time? 

It is time consuming to make new pH-adjusted mobile phases containing water, organic 

solvent and MP additives or buffers. Therefore it is convenient to make a big reservoir of 

MP. However, when doing qualitative analysis the age of the MP must be considered 

because an old MP may give longer retention times than a new MP due to AcN (or other 

organic solvents and modifiers used) which are more volatile than water, and will thus 

evaporate faster. If the retention time is significantly influenced by the age of the MP, 

then making MP more often (in some cases every day) should be considered. In this work 

the mobile phases were replaced when the reservoir was empty, but MP older than 5 days 
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was not used. It was investigated whether or not the retention time changed after making 

new MP. 

 

The retention times for bradykinin were measured using analytical mobile phases that 

were several days old. Then the retention time was measured after replacing the MP in 

chamber A, and measured again after replacing the MP in chamber B. The retention times 

are given in Table A14 in Appendix. An analysis of the variance (ANOVA) was 

performed in order to investigate whether the sample mean values differed significantly 

(Appendix, Section 6.3.2). According to the ANOVA the sample mean did not differ 

significantly when the MP was replaced. 

 

All retention times for bradykinin and angiotensin II obtained during the stability testing 

are listed in Appendix, Table A7-A10. The average of the retention time for each peptide 

stored under different conditions was calculated and the RSD values found for the two 

peptides varied between 1.1 and 2.7 %. Thus the system was found to be quite robust 

with regard to the age of the MP. 

 

3.8 Nano LC-UV 

3.8.1 Nano LC-UV 

Nano LC gives lower radial dilution than capillary LC, and thus higher peaks. In peptide 

analysis the highest sensitivity possible is desirable, due to limited concentrations in 

biological samples. In order to obtain more experience with nano LC, some preliminary 

testing has been done in this project. 

  

An isocratic nano LC-UV system (System 3, described in Section 2.3.2.1) was built, and 

20 nL of 1 mg/mL bradykinin was injected into the system. A chromatogram is shown in 

Figure 31. 
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Figure 31: Chromatogram of 20 nL of 1 mg/mL bradykinin injected in an isocratic nano LC-UV system 
with Kromasil C18 nanocolumn (150 x 0.1 mm (ID), 3 μm) as separation column. The MP, consisting of  
AcN – H2O (16.08 : 83.92, v/v) with 20 mM NH4

+HCOO- and 0.05 % FA added, was delivered at a flow 
rate of 0.3 μL/min 
 

Since the MP gradient used in the stability testing functioned well, a similar gradient was 

used in this part of the work; 0-100 % B in 10 minutes (See Section 2.3.2.1, System 3 for 

more details). A chromatogram is shown in Figure 32. 

 

 
Figure 32: Chromatogram of 20 nL of 1 mg/mL bradykinin injected in a gradient nano LC-UV system 
with a Kromasil C18 nanocolumn (150 x 0.1 mm (ID), 3 μm) as analytical column. Gradient elution were 
performed using a MP consisting of AcN – H2O with 20 mM NH4

+HCOO- and 0.05 % FA added that was 
delivered at a flow rate of 0.6 μL/min. UV detection was performed at 210 nm. 

 61



3.8.2 Column switching gradient nano LC-UV 

In this part of the work System 4 (Section 2.3.2.2) was used. 200 μL of 5 ng/mL of 

bradykinin was injected (chromatogram; see Figure 33).  

 
Figure 33: Chromatogram of 200 µL 5 ng/mL bradykinin injected in a gradient nano LC-UV switching 
system with back flushing of the pre-column. The bradykinin is eluted after ~28.5 min. The columns used 
were a Kromasil C18 nanocolumn (150 x 0.1 mm (ID), 3 μm) and a Kromasil C18 pre-column (53 mm x 
0.320 mm (ID), 5 μm). The loading MP (AcN – H2O (2:98, v/v) with 20 mM NH4

+CH3COO-
 added) and 

the analytical MP (AcN – H2O (gradient) with 20 mM NH4
+HCOO- and 0.05 % FA added) were delivered 

at a flow rate of 200 and 0.6 μL/min, respectively. UV detection was performed at a wavelength of 210 nm. 
  

Since the inner diameter of the analytical Kromasil nanocolumn (0.1 mm) is lower than 

the ID of the analytical Kromasil capillary column (0.3 mm), a lower flow rate has to be 

used in order to avoid excessive back pressure. The dimensions of the pre-column are (53 

mm x 0.320 mm (ID)) giving a volume of 4.26 μL. This volume is relatively large 

compared to the flow rate used (0.6 μL/min), so the expected time used to transfer the 

analytes from the pre-column to the analytical column is app. (4.26 / 0.6 min) ≈ 7 min. 

The large negative peak in the chromatogram (Figure 33) is caused by the long time, app. 

10 min, that it takes for pump 2 to flush through the pre-column, and then through the 

analytical column. 

  

This experiment shows that it is important to use a small pre-column when using a slow 

flow rate, in order to avoid too long void times. E.g. a commercial pre-column with the 

dimensions: 0.320 mm x 5 mm gives a volume of 0.402 μl, thus giving a void time that is 

app. 10 times less than the time observed in this experiment. The disadvantages of  small 

pre-columns are lower analyte capacity and relatively low robustness. 
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3.9 Mass spectrometry 

3.9.1 Direct infusion-ESI-TOF-MS 

When LC is connected to ESI-MS it is important to find a mobile phase that is 

compatible with both LC and ESI-MS; the mobile phase should generally consist of an 

organic modifier (AcN or MeOH) and a volatile buffer. Excessive buffer concentrations 

may cause ion suppression of the analyte, while insufficient concentrations may give 

peak tailing and poor efficiency [73]. As mentioned before, TFA gives good resolution in 

RP-LC, but unfortunately causes ion suppression of the analyte in ESI-MS [58, 72, 73]. 

Investigations of other additives, and also methods to remove the TFA post-column have 

been reported [73]. Methods where the mobile phase contains a mixture of different ion-

pairing agents have also been reported [77, 78]. Temesi and Law [79] reported a study of 

the influence of TFA, formic acid and ammonium acetate in respect to analyte response 

obtained with the MS. They found that MPs containing formic acid gave the highest 

analyte signal, while TFA gave the lowest. Issaq and co-workers [71] compared the 

influence of different ion-pairing agents, including TFA, heptafluorobutyric acid 

(HFBA), acetic acid and formic acid, on the MS response and chromatographic 

separation of different peptides and proteins, using RPLC-ESI-MS, for the determination 

of peptides and proteins. TFA provided the best resolution, as expected, and the worst 

resolution was obtained with HFBA, while formic acid gave the highest MS response. 

They concluded that formic acid and acetic acid provided the best balance between 

chromatographic resolution and MS response. 

 

In this study the purpose was to find the most appropriate concentration of formic acid, to 

obtain the highest analyte signal as possible. The results from these preliminary tests will 

be used in further studies in our group. To find the highest analyte signal, three different 

solutions containing 10 μg/mL bradykinin dissolved in 20 % AcN and different amounts 

of FA (0.05, 0.5 and 1.5 %) and water (Table 6) were injected directly into a Micromass 

LCT orthogonal accelerated ESI-TOF-MS (System 5, Section 2.3.2.3). The ESI was 

carried out with a Z-spray atmospheric pressure ionization source, which was modified 

with a spray capillary of 25 μm ID to handle flow rates in the low μL/min range. The 
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ionization was performed in the positive mode. The capillary voltage was changed during 

the experiment (Figure 34) and the MS signal intensities were obtained in a total ion 

chromatogram (TIC) (Figure 34). As the term TIC indicates, the total ion current is 

plotted against the time (or scan number), thus the MS is used as a general detector since 

there is no selectivity in the data. Some fragmentation of the analyte was observed 

between the capillary and the MS due to the relatively high sample cone voltage. The TIC 

(Figure 34) shows that the highest signal intensity is obtained when 10 μg/mL bradykinin 

is dissolved in a matrix containing AcN – FA – H2O (20 : 0.05 : 79.95, v/v/v) and the MS 

is operated with a capillary voltage of 3500 V. Acids or salts in the matrix help the 

ionization process, but excessive concentrations of acids or salts compete for  ionization 

with the analyte (suppression of the analyte). García et al. [80] observed an initial 

increase in the MS response when low concentrations of formic acid, acetic acid, TFA or 

ammonium formate were used as the ion-pairing agent; but at higher concentrations the 

signal decreased. From the TIC shown in Figure 34 the same effect can be seen at a 

capillary voltage of 3000 V, where 0.5 % FA gave better response, than 0.05 % FA, 

while 1.5 % FA gave the lowest signal.  Higher capillary voltage often gives better 

sensitivity, but with excessive voltage electron discharge may occur, making the 

instrument less sensitive and shortening its lifetime. As mentioned above 3500 V gave 

the highest MS signal, when using 0.05 or 1.5 % FA, while 0.5 % FA gave the highest 

signal at 3000 V (Figure 34). A test voltage of 4000 V was also planned, but when this 

was tried, the ESI tip began to glow bluish indicating excessive electron discharge, so the 

experiment was stopped immediately. 
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Figure 34: TIC (m/z = 200 – 1300) of direct infusion of 10 μg/mL bradykinin dissolved in matrices 
containing 20 % AcN and different amounts of FA (0.05, 0.5 and 1.5 %) and H2O. 
 

3.9.2 Capillary LC-ESI-TOF-MS 

The theoretical and experimental ratio of analyte dilution for two different capillary 

separation columns were compared. 20 nL 10 μg /mL bradykinin dissolved in AcN – FA 

– H2O (20 : 0.05 : 79.05, v/v) (solution no 1, Table 6) was injected into a gradient 

capillary LC-ESI-TOF-MS (System 6; Section 2.3.2.4). During the first three injections a 

Kromasil C18 capillary column (50 x 0.3 mm (ID), 3.5 μm) was used, and then a Zorbax 

SB-C18 capillary column (150 x 0.5 mm (ID), 5 μm) was used during the next three 

injections. The flow rates were 5 and 10 μL/min, respectively, which are the ideal flow 

rates for the columns. The results are shown in Table A12 (Appendix, Section 6.2.4). The 

average retention time obtained with the Kromasil column was 5.79 min (RSD = 0.29 %), 

while the Zorbax column’s average was 7.91 min (RSD = 2.9 %). The difference in tR is 

related to the different flow rates, column volumes, particle size and carbon load. The 
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average peak areas for bradykinin were 31.7 (RSD = 3.7 %) and 20.7 (RSD = 2.9 %) 

obtained with the Kromasil and Zorbax column, respectively. The RSD values show that 

the system gives quite repeatable retention times and peak areas. Figure 35 shows an 

overlay of the chromatograms of two randomly chosen analyses, one obtained with the 

Kromasil column and one with the Zorbax column to show the difference in peak height. 
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Figure 35: Overlay of two chromatograms (EIC; m/z = 530.8) obtained when injecting 20 nL 10 μg/mL 
bradykinin dissolved in a matrix containing AcN – FA – H2O (20 : 0.05 : 79.05, v/v/v) into a capillary LC-
ESI-TOF-MS first with a Kromasil C18 column (50 x 0.3 mm (ID), 3.5 μm) and then using a Zorbax SB-
C18 column (150 x 0.5 mm (ID), 5 μm) at flow rates of 5 and 10 μL/min, respectively. The MP used was 
AcN – H2O (gradient) with 20 mM NH4

+HCOO- and 0.5 % FA added. 
 

The theoretical dilution, D, ratio of the two columns is: 
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Since the Zorbax column gives rise to a 2.78 times higher dilution of the analyte than the 

Kromasil column the peak height (H) will be app 2.78 times higher for the Kromasil 

column, however the measured peak height ratio is only: 

04.2
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Kromasil
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The difference is contributed to experimental conditions; it may be that the MS settings 

used are more favorable for a flow rate of 10 μL/min compared to 5 μL/min. Since 

Kromasil provides significantly higher peak heights, that are also slightly sharper, it can 

be assumed that this column also will give a better LOD. 
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4. Conclusion 

This study has specified a robust, sensitive and fast gradient capillary LC column 

switching system with on-column UV detection for peptide determination. Preliminary 

studies of a nano LC-UV column switching system established that a low volume pre-

column should be used in order to decrease the time required to transfer the analytes from 

the pre-column to the analytical column. By using direct infusion-ESI-TOF-MS the MS-

conditions were optimized with respect to capillary voltage and the concentration of 

formic acid used as mobile phase additive. The theoretical dilution ratio of two different 

capillary columns was calculated and compared to the experimental value obtained using 

a capillary LC-ESI-TOF-MS system. Investigation of the stability of angiotensin II and 

bradykinin in different aqueous matrices demonstrated that both peptides are most stable 

when they are dissolved in acidic NH4
+HCOO- and stored in the refrigerator. 
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Appendix 

6.1 Preliminary testing 

6.1.1 Preliminary testing system (System P) 

For column testing (Section 6.1.2) and preliminary mobile phase testing (Section 6.1.3) a 

capillary reversed-phase LC-system (called System P) was used. 

 

During the column testing a 25 µL laboratory syringe from SGE (Ringwood, Victoria, 

Australia) was used to inject the sample into a Valco ChemiInert C4 injection valve 

equipped with a 50 nL internal loop.  The different columns were kept in a Mistral oven 

(Spark Holland, Emmen, The Netherlands) to ensure a temperature of 25°C. An isocratic 

Hitachi L-7110 (Merck) pump delivered the mobile phase consisting of different ratios of 

AcN/H2O with 0.1 % TFA added at a flow rate of 0.005 mL/min. UV detection was 

performed at a wavelength of 210 nm using a Spectra 200 UV-Vis detector obtained from 

Spectra-Physics (San José, CA, USA) equipped with an on-column optical cell made in-

house. A Schimadzu C-R6A Chromatopac integrator processed the data. 

 

To test different MPs a modified System P was used. The injections were performed 

through a Valco ChemInert C4-0004 injection valve with a 20 nL internal loop. The 

column was kept at room temperature and UV detection at 210 nm was performed using 

a Linear UVIS UV-detector (Linear Instruments) equipped with 100 μm ID fused silica 

capillary for on-column detection. The detector signals were converted by a Perkin Elmer 

Nelson 900 Series Model 941 interface and transferred to a PC with TotalChrom 

Navigator where the chromatogram could be read or further processed. 
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6.1.2 Column testing 

To find suitable pre-columns and analytical columns for peptide analysis, five different 

columns (Table 3, Section 2.2) were compared using System P (described in Section 

6.1.1). The columns were first tested using different amounts of AcN in the MP; 15, 20, 

23 and 25 % AcN in H2O with 0.1 % TFA added (column no 1, Poroshell (short) and no 

4, Poroshell (long) (Table 3) were also tested with 18 % AcN). The test solution 

contained a mixture of 0.1 mg/mL bradykinin, angiotensin II and neurotensin (neu) 

dissolved in water, and the retention order was brad, ang II and neu. Two chromatograms 

are shown in Figure A1. k-values, plate number per meter, selectivity (α), asymmetry and 

peak resolution (Rs) for the different columns and mobile phases are calculated and  

shown in the histograms in Figure A2-A6. 

 

    
Figure A1: Chromatograms of the test solution (mixture of ~0.1 mg/mL bradykinin, angiotensin II, 
neurotensin dissolved in water). 50 nL of the peptide mixture was injected into an isocratic capillary LC-
UV system with a Kromasil C18 column (0.5 x 0.3 mm (ID), 3.5 μm). The mobile phases containing a) 
AcN – H2O (23:77, v/v) with TFA added (99.9:0.1, v/v) and b) AcN – H2O (25:75, v/v) with TFA added 
(99.9:0.1, v/v) were delivered at a flow rate of 0.005 mL/min. UV detection was performed at a wavelength 
of 210 nm. 

 76



 
Figure A2: k – values for the second peak, k(2). 

 

 
Figure A3: Plate number per meter for the 5 different columns tested using mobile phases with different 
AcN-content and flow rates. 
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Figure A4: The selectivity between peak 1 and 2, and between peak 2 and 3 using different columns and 
MP compositions. 
 

 
Figure A5: The peak asymmetries for the separated peptides obtained on the 5 columns tested using 
mobile phases with different AcN-content. 
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Figure A6: The peak resolution (Rs) for the peptides on the 5 columns using different mobile phase flow 
rates. 
 

Three of the columns (no 1. Poroshell (short), no 2. Kromasil and no 3. ProntoSIL) were 

also tested with MP delivered at flow rates of 0.010 and 0.020 mL/min. Mixtures of 

AcN/H2O (with 0.1 % TFA added) that gave similar k-values for the second peak (Figure 

A2) on each column were used as mobile phase. Examples of chromatograms are shown 

in Figure A7. The differences in N/m-values between the columns are shown in Figure 

A3 (the MP contents are also given in the figure). 
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Figure A7: Chromatograms of the test solution (mixtures of ~0.1 mg/mL bradykinin, angiotensin II, 
neurotensin dissolved in water) injected into an isocratic capillary LC-UV system with a Kromasil C18 
column (50 x 0.3 mm (ID), 3.5 μm). The injection volume was 50 nL and detection was performed at 210 
nm. The mobile phase (AcN – H2O (25:75, v/v) with TFA (99.9:0.1) added) was delivered at a flow rate of 
a) 0.010 mL/min and b) 0.020 mL/min. 
 

Finally, the efficiencies of the columns were investigated using toluene. Toluene is a 

relatively inert neutral compound: shows no secondary interactions with the rest-silanol 

groups, has reasonable retention on C18 material and has UV absorbance. Since it also is 

easily available at most labs it is commonly used as test substance when investigating 

columns. 

 

The test solutions consisted of 1 mg/mL toluene dissolved in H2O (for column no 3 the 

toluene was dissolved in a mixture of AcN and H2O (70:30, v/v)). Since toluene was 

detected at a wavelength of 261 nm, uracil had to be added to the MP as a t0-tracer 

because the mobile phase did not give any solvent peak at that wavelength. Figure A8 

shows a representative chromatogram. The k-values obtained with toluene as analyte are 

given in Figure A9 and the N/m-values in Figure A10 (the MP contents are shown in both 

figures). 
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Figure A8: Chromatogram of 50 nL 1 mg/mL toluene injected into a capillary LC-UV system with a 
Kromasil C18 column (50 x 0.3 mm (ID), 3.5 μm). The mobile phase (AcN – H2O (45:55, v/v)) was 
delivered at a flow rate of 0.005 mL/min. UV detection was performed at 210 nm. 
 

 
Figure A9: k-values for toluene using different columns and different mobile phases. 

 

 
Figure A10: N/m-values obtained using different columns and different mobile phases. 
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The Kromasil and the ACE columns obtained the highest plate number per meter, except 

at high flow rates, when a mixture of three peptides was injected (Figure A3). The 

Kromasil column gave an N/m-value of 33 000 (when tested with 23 % AcN), and the 

ACE column gave an N/m-value of 38 000 (with 20% AcN as eluting solvent). In a 

column switching system high efficiency is favourable for the analytical column. The 

problem with the ACE column however, was that the retention time (tR) using 20 % AcN 

was too long (tR(brad) ~12.5 min, tR(ang II) ~23.5 min and even longer retention time for 

neu).When toluene was used as test substance Kromasil had a significantly higher plate 

number per meter (N/m ~ 87 000).  Kromasil also showed low asymmetry values; 1.17-

1.60 for the peaks that were investigated (Figure A5). The ACE and Kromasil columns 

also obtained the highest k-values for the second peak (Figure A2), and thus the longest 

retention time, making them suitable as pre-columns in a column switching system. All 

five columns showed selectivity (Figure A4) between 1.5 and 2.5 (except the α(1,2) for 

7.5 cm Poroshell column and α(2,3) for 15 cm Poroshell column both using 23 % AcN). 

 

When the short Poroshell, Kromasil and ProntoSIL columns were tested at high flow 

rates, the ProntoSIL showed no loss in efficiency and high resolution at all flow rates 

(Figure A3 and A6) in contrast to the other columns. 

 

When using a flow rate of 0.005 mL/min the Kromasil and ACE columns are the best 

choice, due to good selectivity and high N/m. The Kromasil, however, also gave lower 

asymmetry and more suitable retention times. At higher flow rates the ProntoSIL column 

is a good alternative because it maintains the efficiency and high selectivity. 

 

6.1.3 Preliminary testing of mobile phases 

Since the aim of the study was first, to develop a chromatographic method for the 

determination of bradykinin, lysyl-bradykinin and arginyl-bradykinin and then, to 

measure their concentrations in muscle tissue from human and rats, the method had to 

deal with the large salt concentration in the real samples caused by the dialysis liquid, 
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Ringer’s acetate, used to extract the peptides from the tissue. Different properties of 

Ringer’s acetate were investigated. 

 

The pH was measured in 5 different mobile phases (Table A1), and the absorbance of the 

three first MP (Table A1) was measured using a molecular absorption spectrophotometer 

(described in Section 2.3.3.1). The absorbencies of the mobile phases are shown in Table 

A2-A4 and Figure A11-A13. Finally the influence of the MP on the peak shape and 

retention time of ang II was investigated using System P (Section 6.1.1). The 

chromatograms are given in Figure A14. 

  
Table A1: pH in different mobile phases. 

Mobile phase pH 

AcN-H2O (14:86, v/v) with OHAc (99.9/0.1, v/v) added 3.3 

AcN-Ringer’s acetate (14:86, v/v) with OHAc (99.9/0.1, v/v) added 5.2 

AcN-Ringer’s acetate (14:86, v/v) 7.4 

AcN-H2O (14:86, v/v) with 20 mM NH4
+HCOO- added 6.1 

AcN-H2O (14:86, v/v) with 20 mM NH4
+CH3COO- added 6.7 
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Figure A11: The absorbance of AcN-H2O (14:86, v/v) with OHAc added (99.9/0.1, v/v). 

 

 
Table A2: The absorbance of AcN-H2O 
(14:86, v/v) with OHAc added (99.9/0.1, 
v/v). 
Wavelength [nm] ABS 
300.0 0.000 

290.0 0.001 

280.0 0.001 

270.0 0.001 

260.0 0.001 

250.0 0.002 

240.0 0.014 

230.0 0.093 

220.0 0.311 

210.0 0.587 

200.0 0.700 
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Figure A12: The absorbance of AcN-Ringer’s acetate (14:86, v/v) with OHAc added (99.9/0.1, v/v). 

 

 
Table A3: The absorbance of AcN-
Ringer’s acetate (14:86, v/v) with OHAc 
added (99.9/0.1, v/v). 
Wavelength [nm] ABS 
300.0 0.001 

290.0 0.002 

280.0 0.003 

270.0 0.003 

260.0 0.004 

250.0 0.007 

240.0 0.030 

230.0 0.209 

220.0 0.878 

210.0 2.465 

200.0 3.428 
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Figure A13: The absorbance of AcN-Ringer’s acetate (14:86, v/v). 

 

 
Table A4: The absorbance of AcN-
Ringer’s acetate (14:86, v/v). 
Wavelength [nm] ABS 
300.0 0.000 

290.0 0.000 

280.0 0.001 

270.0 0.001 

260.0 -0.002 

250.0 -0.003 

240.0 0.009 

230.0 0.102 

220.0 0.532 

210.0 1.893 

200.0 3.337 
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Figure A14: Chromatograms of 20 nL injections of ang II. A capillary LC-UV system was used. Different mobile 
phases were investigated: 1. AcN-H2O (14:86, v/v) with OHAc added (99.9/0.1, v/v), 2. AcN-Ringer’s acetate (14:86, 
v/v) with OHAc added (99.9/0.1, v/v), 3. AcN-Ringer’s acetate (14:86, v/v), 4. AcN-H2O (14:86, v/v) with 20 mM 
NH4

+HCOO- added and 5. AcN-H2O (14:86, v/v) with 20 mM NH4
+CH3COO- added. All MPs were delivered at a flow 

rate of 0.005 mL/min. UV detection was performed at 210 nm. 
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6.2 Raw data 

6.2.1 Injection volumes 

The peak areas for different injection volumes of ang II (Table A5) and brad (Table A6) 

were measured and the average, X , and the absolute and relative standard deviation, s 

and RSD, respectively, were calculated. The relative standard deviations for each volume 

varied from 0.25 - 3.3 %, which shows that the system gives relatively repeatable results. 

 

The data below was used in the plots shown in Figure 8-9 in the section on Injecting 

volume (Section 3.3): 

 
Table A5: Peak areas for different injection volumes of ang II. (Inj. = injection) 

Volume Inj. 1 Inj. 2 Inj. 3 Inj. 4 Inj. 5 X  S 
RSD 

[%] 

50 1069308 1037539 1039798 1077419 -- 610056.1 ⋅  4100.2 ⋅  1.9 

75 1628941 1584546 1559416 -- -- 61059.1 ⋅  4104 ⋅  2.2 

100 2018853 1992433 2146211 1991409 1999806 61003.2 ⋅  4107 ⋅  3 

150 2879793 2876834 2979688 -- -- 61091.2 ⋅  4106 ⋅  2.0 

200 4332657 4210616 4112921 -- -- 61022.4 ⋅  
4100.2 ⋅

5101.1 ⋅  2.6 

300 5207197 5399127 -- -- -- 5303162 -- -- 

 
Table A6: Peak areas for different injection volumes of brad. 

Volume Inj. 1 Inj. 2 Inj. 3 X  S RSD [%] 

50 1070122 1121118 1140962 61011.1 ⋅  4107.3 ⋅  3 

75 1528276 1576672 1523047 610543.1 ⋅  4100.3 ⋅  1.9 

100 1898515 1889157 1895658 610894.1 ⋅  3105 ⋅  0.25 

150 2514498 2549729 2684862 61058.2 ⋅  4109 ⋅  4 

200 3764320 3798265 3894527 61082.3 ⋅  4107 ⋅  1.8 
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6.2.2 Peak areas and retention times obtained during the stability testing 

All peak areas and retention times from the stability testing are showed in Tables A7-
A10.  
 
Grubbs’ test [81], recommended by ISO in preference to Dixon’s test was used to 
exclude eventual outliers: 
 

 
s

X- valuesuspected
G =          (The suspected value is included when s is calculated.) 

 
Table A.6 in “Statistics and Chemometrics for Analytical Chemistry” [81] gives the 
critical values of G for P = 0.05. The suspected value is treated as an outlier if the 
calculated G-value is larger than the critical value. 
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Table A7: Peak areas for ang II stored in different matrices at different temperatures. 
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Table A8: Peak areas for brad stored in different matrices at different temperatures. 
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6.2.3 Carryover 

 
Table A11: Results carryover. (Inj. seq. = Injection sequence, Inj. = Injection; Bl. = Blank) 

Rheodyne valve Rheodyne valve (rinsed) Valco valve (rinsed) 

Inj. 

seq. Peak area 

Peak area 

relative to the 

bradykinin 

peak 

Peak area 

Peak area 

relative to the 

bradykinin 

peak 

Peak area 

Peak area 

relative to the 

bradykinin 

peak 

Inj. 56272 100 % 57414 100 % 75164 100 % 

Bl.1 5193 9.2 % 5942 10.4 % 1530 2.0 % 

Bl.2 1889 3.4 % 3420 6.0 % 454 0.60 % 

Bl.3 1823 3.2 % 2329 4.1 % -- -- 

Bl.4 1336 2.4 % 1818 3.2 % -- -- 

 

6.2.4 Peak areas and retention times obtained using capillary LC-ESI-TOF-MS 

 
Table A12: The retention times and peak areas for 10 μg/mL bradykinin dissolved in AcN – FA – H2O (20 
: 0.05 : 79.95, v/v). 
Column Injection tR [min] Peak area 

1 5.82 31 

2 5.80 31 

3 5.75 33 

X  5.79 31,7 

S 0.04 1.2 

Kromasil C18; 

50 x 0.3 mm (ID), 

3.5 μm 

RSD [%] 0.6 4 

4 7.94 21 

5 7.90 21 

6 7.90 20 

X  7.910 20.7 

S 0.023 0.6 

Zorbax SB-C18; 

150 x 0.5 mm (ID) 

5 μm 

RSD [%] 0.29 2.9 
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6.3 Statistic 

6.3.1 F-test and pooled two-sample t significance test 

The peak areas using old and new pre-columns (Table A13) were compared using 

statistical tests. 

 
Table A13: The peak areas for 1 µg/mL bradykinin with an old versus a new pre-column of the same type. 

Old pre-column 

(population 2) 

New pre-column 

(population 1) 

 

Peak area Peak area 

1 78083.2 77172.0 

2 75513.0 79272.0 

3 77304.5 79519.0 

4 77654.5 80355.0 

5 78051.0 -- 

6 77047.5 -- 

X  41073.7 ⋅   41091.7 ⋅  

S 3100.1 ⋅  3104.1 ⋅  

RSD [%] 1.2 1.7 

 

A hypothesis is established; H0:  (where and  are the variances for the 

peak areas obtained with the new and old pre-columns, respectively), saying that the 

difference between two sample variances is not significant. To investigate whether the 

hypothesis could be retained or not, the statistic F was calculated: 

2
2

2
1 σσ = 2

1σ
2
2σ

 

010.2
955

1354
2

2

2
2

2
1 ≈==

s
sFcalc  

The number of degrees of freedom are n1 – 1 = 4 – 1 = 3 (numenator) and n2 -1 = 6 – 1 = 

5 (denominator). 
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There is no reason to expect in advance that the variance of one population should be 

greater than the other, so a two-sided test is chosen. To find the critical value of F with a 

probability of 0.05 Table A.4 in “Statistics and Chemometrics for Analytical Chemistry” 

written by Miller and Miller [81] was used giving a Ftab (3,5) = 7.764. Since Ftab < Ftab, the 

H0 is retained; there is no significant difference between the two variances at the 5 % 

level, thus pooled two-sample t procedures can be used to compare the experimental 

means. 

 

The pooled s is calculated: 
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The statistic t is calculated: 
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The degree of freedom (df) is estimated to be: 

df = 8264221 =−+=−+ nn  

giving the critical value, ttab(8) = 2.306 (obtained from TABLE D in “Introduction to the 

Practice of Statistics” written by Moore and McCabe [82]) for P = 0.05. Since tcalc > ttab 

the H0 is rejected; the two means of the peak areas ( 1X  and 2X ) are significantly 

different at the 5 % level. However, for P = 0.01 the critical value, ttab(8) = 2.896, thus the 

H0 is retained, and the two means of peak areas using an old and a new pre-column are 

not significantly different at the 1 % level. 

 

6.3.2 ANOVA 

Analysis of variance can be used to distinguish between variations which are caused by 

changes in method parameters and random errors. The retention times obtained using MP 

of different ages is listed in Table A14.  
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Table A14: The retention times for 1 µg/mL bradykinin using analytical mobile phase of varying age 1) 
old MP, 2) new MP in chamber A but old MP in chamber B and 3) new MP in both chambers were 
measured. The injection volume was 200 μL. The loading MP (AcN – H2O (2:98, v/v) with 20 mM 
NH4

+CH3COO- added) and analytical MP (AcN – H2O (gradient) with 20 mM NH4
+HCOO- and 0.05 % FA 

added) were delivered at a flow rate of 0.200 and 0.005 mL/min, respectively. 
 Old MP New MP in A New MP in A and B 

Ret time brad (inj. 1) 5.73 min 5.68 min 5.60 min 

Ret time brad (inj. 2) 5.70 min 5.65 min 5.65 min 

X  5.715 min 5.665 min 5.625 min 

 

ANOVA was performed, using a CASIO CFX-9850GC PLUS graphic calculator, to see 

whether the difference in sample means is due to random error or caused by the changes 

of MP. Since only one parameter (change of MP) may affect the result of the experiment 

(retention time of brad), one-way ANOVA can be used. The calculations obtained were: 

 

F = 5.6744   calculated F-value (Fcalc) 

P = 0.095599   P-value 

χpón-1 = 0.02677   

Fdf = 2    Degree of freedom (between-sample) 

SS = 8.1333 ⋅ 10-3  Sum of squares (between-sample) 

MS = 4.0666 ⋅ 10-3  Mean square (between-sample) 

Edf = 3   Degree of freedom (within-sample) 

SSe = 4.3521   Sum of squares (within-sample) 

MSe = 1.4507   Mean square (within-sample) 

 

The critical F-value, F2,3 = 9.552 (found in Table A.3 in “Statistics and Chemometrics for 

Analytical Chemistry” [81]). Since Fcalc < F2,3 the sample means do not differ 

significantly, thus the variations in sample means is due to random error. 
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