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Introduction 

This thesis investigates how cellular debris can cause inflammation which may damage heart cells after acute 

myocardial infarction. The purpose of my introduction is to contextualize our findings in the clinical settings 

that we model and to provide the reader with a theoretical rationale for the research questions we have posed 

and our experimental approaches.  

Clinical perspectives 

Although the mortality of acute myocardial infarction is declining in Norway, survivors of large AMIs are at 

high risk for heart failure, a major cause of mortality and morbidity. Despite advanced treatment, heart failure 

remains a deadly disease1. Although there is evidence that the post-infarction inflammatory response is 

maladaptive2, it is currently not a target for treatment. Improved fundamental understanding of the innate 

immune response that acute myocardial infarction holds the promise of better therapy. 

Ischemic heart disease is a global health issue 

In the last two decades there has been a dramatic improvement in prevention strategies, treatment options and 

subsequently short- and long-term prognosis for acute myocardial infarction and other ischemic heart disease. 

However, ischemic heart disease remains a leading cause of death in the industrialized world, and each year 

3.8 million men and 3.4 million women die from the disease world wide3. In Norway, ischemic heart disease 

(ICD I20-25) was the cause of 4852 deaths in 2012, accounting for 12 per cent of all deaths4. On a global 

scale, low income countries are disproportionately affected, where over 40 % of deaths in persons under the 

age of 60 are attributable to cardiovascular disease, versus 4 % in high income countries5. 

Current diagnostics and treatment 

Early recognition of possible acute myocardial infarction followed by early and successful reperfusion therapy 

by thrombolysis or percutaneous coronary intervention (PCI) is crucial to a favorable outcome6. A reduction in 

symptom-to-reperfusion time and the implementation of a number of treatment strategies has dramatically 

reduced morbidity and mortality. Current strategies are focused on primary and secondary preventative 

measures including weight, glucose, cholesterol and blood pressure management, public anti-smoking 

campaigns and dietary guidelines advising reduced intake of saturated fatty acids.  Acute management focuses 

on reperfusion therapy by thrombolysis and increasingly, primary PCI.  
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Post-infarction medical care including β1 adrenergic antagonists, inhibition of the renin-angiotensin-

aldosterone system by angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers, 

cholesterol management with statins, as well as a number of other antihypertensive and -lipidemic agents 

represent important advances in  treatment. In addition to pharmaceuticals, treatment such as cardiac 

resynchronization therapy and valvular or revascularization surgery in selected patients have contributed to 

reduced mortality and morbidity from ischemic heart disease. In addition to prompt pharmacological or 

mechanic reperfusion therapy, appropriate prehospital care is vital. Current treatment comprises analgesia 

(usually opioids), vasodilatation (nitric oxide donors, such as glyceryl trinitrate), platelet inhibition, β1 

adrenergic antagonists, each of which has clinically proven risk-reward benefits7,8 and high-flow oxygen. 

Although it is difficult to identify the most important causes of reduced mortality from ischemic heart disease, 

the mortality from acute myocardial infarction in Norway has fallen dramatically in the last three decades 

(figure 1). However, despite all these advances, ischemic heart disease remains a major killer in industrialized 

nations and it is even on the rise in many developing countries9. 

 

 

 
Figure 1. Historical development of population-adjusted mortality from ischemic heart disease and ischemic heart disease deaths in 
2012. Modified from data from Statistics Norway4.  
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Figure 2. Despite rich treatment arsenal, heart failure remains deadly. Heart failure (HF) treatment modified from Up to date and 
right panel modified from data from the Echocardiographic Heart of England Screening (ECHOES) study1. 

Modulating post-infarction inflammatory response  

The inflammatory response which follows acute myocardial infarction is important for healing the broken 

heart by replacing necrotic patches of myocardium with scar tissue. Because this response was evolutionarily 

honed to protect damaged skin and mucous membranes against bacterial infections, it could be excessive in the 

post-ischemic heart.  Modulation of the innate response could benefit clinical myocardial ischemia-reperfusion 

injury, but promising preclinical findings were lost in translation10. However, a better fundamental 

understanding of the triggers, mediators and cellular effects of the post-infarction inflammatory response could 

pave the way for targeted therapy that could benefit millions of patients every year. 

Theoretical Background 

Myocardial ischemia/reperfusion injury 

The aphorism time is tissue accurately describes the urgency of acute myocardial infarction6. After twenty 

minutes of ischemia11, myocardium begins to succumb and reperfusion is the therapy of choice7. 

Paradoxically, the restoration of blood flow to post-ischemic tissue is injurious. The discovery of ischemic 

preconditioning12 – tissue protection from brief non-lethal ischemia prior to prolonged ischemia – sparked 

hope for tissue salvage beyond that offered by early reperfusion. As one cannot deploy tissue-protective 

strategies prior to acute myocardial infarction, the molecular mechanisms for reperfusion injury have been 

intensely studied in search of clinically useful adjunct treatment to prompt reperfusion.  

 

During prolonged ischemia, energy production is switched from oxygen-dependent oxidative phosphorylation 

to glycolysis with resulting lactate accumulation and acidification. This starts a dangerous spiral: The extrusion 

of hydrogen ions by the Na+/H+ exchanger and impaired function of the Na+/K+ pump cause intracellular 
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accumulation of sodium ions, which in turn are exchanged for calcium ions by reverse mode of the Na+/Ca2+ 

exchanger (NCX)13 which leads to intracellular calcium accumulation. Reperfusion injury comprises four 

entities: Reperfusion arrhythmias, myocardial stunning, microvascular obstruction and lethal reperfusion 

injury3. Only the latter will be discussed. Lethal myocardial ischemia-reperfusion injury is the reperfusion-

induced demise of cardiomyocytes that were viable at the end of ischemia. A large body of evidence implicates 

some key mediators. Reactive oxygen species (ROS) generated in the early post-ischemic myocardium14,15 can 

damage cellular membranes including the mitochondria which can release additional ROS16. ROS may also 

damage the sarcoplasmic reticulum which may release calcium ions that cause hypercontracture of the 

myofibrils and cardiomyocyte death17. Rapid restoration of physiological pH has also been shown to be 

injurious18.  

 

There is evidence that several pathways converge on the mitochondria and that mitochondrial permeability 

transition (MPT) is important in lethal reperfusion injury19. Mitochondrial permeability transition is an 

increase in the permeability of the mitochondrial membranes to molecules < 1500 Daltons19,20 and is thought to 

be caused by the opening of a membrane spanning MPT pore, the MPTP21. The molecular composition of the 

MPTP remains elusive despite intensive study. Both voltage dependent anion channels (VDAC) and adenine 

nucleotide translocase (ANT) were likely candidates but shown non-essential for mitochondrion-dependent 

cell death22,23. However translocator protein24 and cyclophilin-D25 are necessary for MPT. Intriguingly, 

cyclophilin-D dependent MPT appears to be important for necrotic, but not apoptotic cell death26 and the 

cyclophilin-D inhibitor cyclosporine A reduces infarct size in patients27,28. In addition to these mechanisms, the 

inflammatory response that follows acute myocardial infarction and reperfusion13 is also a mediator of lethal 

reperfusion injury2.  

The innate immune response 

The immune system constitutes two parts separated by speed and specificity: The fast-responding, all-purpose 

innate response, and the slower, but more precise, specific response29. Although this thesis only investigates 

aspects of innate immunity, a brief mention of the former is warranted for completeness and because the 

specific or adaptive immunity has also been implicated in ischemia-reperfusion injury30. Specific immunity 

comprises specific receptors on B lymphocytes and T lymphocytes. These receptors are subjected to somatic 

recombination and mutation, which probably produces receptors that are specific for antigens on all pathogens 

the host will ever encounter. Upon activation, B and T lymphocyte clones will proliferate and collectively 

mount a highly specific response to an invading microorganism. Because the organism might succumb to 

infection before a specific response is successfully mounted, an immediate, all-purpose response is also 

required – the innate immune response.  
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The innate immune response comprises mainly phagocytic cells and their mediators which plays a key role in 

tissue repair of damaged organs31. In the heart which has negligible regenerative capacity, cardiomyocytes are 

not replaced after myocardial infarctions and the innate immune response crucially replaces dead myocardium 

with scar tissue which allows the heart chambers to remain patent. Cells of the innate immune system are 

quickly recruited to sites of injury or infection in response to signs of injury from the body or the invading 

microorganism29. Similarly, debris from necrotic cardiac cells and extracellular matrix is released to the 

extracellular milieu and the circulation after myocardial infarction2.  It has been known for a long time that 

immune cells infiltrate the post-infarction myocardium32. The signals that recruit these cells may depend on 

how the cell dies – as uncontrolled, unregulated necrotic demise may release more and a wider range of 

intracellular molecules and thereby pose a more powerful stimulus of the innate immune system than 

controlled necroptotic or apoptotic cell death33. However, microorganisms and dead cells will inevitably 

release clues of their presence. 

Exogenous and endogenous triggers of inflammation 

The innate response relies on recognition of non-self in order to respond to a limited number of structures that 

are highly conserved across microorganisms. Structures that are part of microorganisms and are capable of 

triggering the innate response are called pathogen-associated molecular patterns, or PAMPs, and include 

constituents of bacterial cell walls or propulsion machinery and viral and bacterial nucleic acids. 

 

Endogenous molecules that trigger the innate immune system are called damage-associated molecular patterns 

(DAMPs)34. DAMPs released from post-ischemic cardiomyocytes may include high-mobility group box 135,36, 

heat-shock proteins37-40, adenosine triphosphate41, uric acid42 and mitochondrial DNA (mtDNA)43,44. These 

beacons of danger from the outside or within are recognized by receptors of the innate immune system called 

pattern recognition receptors or PRRs. 

Pattern recognition receptors 

Germline-encoded PRRs are classified into five major groups: Absent in melanoma (AIM)-like receptors 

(ALRs), C-type lectin receptors (CLRs), nucleotide-binding oligomerization domain (NOD)-like receptors 

(NLRs), retinoid acid inducible gene 1 (RIG1)-like receptors (RLRs),  and toll-like receptors (TLRs)45. CLRs 

and TLRs are membrane-bound and ALRs, NLRs and RLRs are cytosolic45 (figure 3). 
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Figure 3. Cellular localization and typical microbial ligands for the five main groups of pattern recognition receptors46. IFI16: 
Gamma-interferon-inducible protein 16; NLRC4: NLR family, caspase recruitment domain (CARD) containing 4.  

Toll-like receptors and signaling pathways 

TLRs are among the best described PRRs46. Identified in the fruit fly Drosophila melanogaster in 198547, Toll-

receptor was shown crucial for anti-fungal defense48, and the following year the first human ortholog was 

described49. There are thirteen known mammalian TLRs and TLR1-10 are functional in humans50. mRNA for 

most TLRs is expressed in the murine51 and human heart52 and protein of TLR253, TLR454 and TLR955 have 

been found in the heart. TLRs contain a C-terminal cytoplasmic signaling domain, called toll IL-1 receptor 

(TIR) domain56, a single transmembrane helix and an N-terminal ligand recognition domain57. The 

characteristically horse shoe shaped ligand recognition domains are exposed to the extracellular face of the cell 

or to the lumen of endosomes, topologically equivalent to the outside of the cell58. These domains contain 

leucine-rich repeats (LRRs)57, the highly conserved building blocks of TLRs, which are also found in plants59. 

Upon activation TLRs associate to form m-shaped homodimers59. Heterodimerization occurs and may 

contribute to increased ligand repertoire60 along with association with non-toll co-receptors like CD1461-63, 

myeloid differentiation 1 (MD-1)64 and MD-265. 

 

The function of the mammalian TLRs has largely been determined by functional ablation in mice. TLR1-2 and 

5-6 are expressed on the cell surface and recognize lipopeptides (TLR2), peptidoglycans (heterodimers of 

TLR2 and 1 or 6), lipoproteins (TLR4) and flagellin (TLR5). TLR 3 and 7-9 are found intracellularly in 

endolysosomes and recognize RNA (TLR3, 7-8) and DNA (TLR9)46. 

 

• Plasma-membrane TLRs 1-2, 4-6 recognize lipids, lipoproteins, prototeins
• Endosomal TLRs 3, 7-9 recognize nucleic acids

• RIG-I recognizes viral RNA (5' triphosphategroup)

• AIM2 and possibly IFI16 recognize double-stranded bacterial and viral 
DNA
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• Dectins recognize fungal cell wall
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When activated, TLRs recruit adaptor proteins to trigger a signaling cascade that culminates in the 

transcription of pro-inflammatory genes. TLR adaptor proteins contain TIR domains which associate with the 

cytoplasmic TIR domains of TLRs. The intracellular cascades downstream of TLR activation are broadly 

myeloid differentiation primary response gene 88 (MyD88)-dependent or MyD88-independent66,67. The latter 

is also known as the TIR-domain-containing-adaptor-inducing IFNβ (TRIF)-dependent pathway. With the 

exception of TLR3, all TLRs can signal through the MyD88-dependent pathway66. Some TLRs require TIR-

domain containing adaptor protein (TIRAP, also known as MAL; MyD88-adapter-like) to bind indirectly to 

MyD8868. MyD88 recruitment stimulates recruitment and phosphorylation of interleukin-1 receptor associated 

kinase (IRAK) 4, which recruits IRAK-1 and IRAK-2 to the complex. The IRAK family interacts with the E3 

ubiquitin ligase tumor necrosis factor α associated factor 6 (TRAF6)69, which, when activated recruits 

transforming growth factor β activated kinase 1 (TAK1) to the IRAK-1/TRAF6 complex by binding TAK1 

binding protein 2 (TAB2) and 3 (TAB3)69. In plasmacytoid dendritic cells (pDCs), TRAF6 also activates 

interferon regulatory factor 7 (IRF7), in a TRAF3 and osteopontin (OPN) dependent manner70-72, which then 

translocates to the nucleus and induces transcription of type 1 interferons70. 

 

Though both pathways culminate with the activation of the pro-inflammatory transcription factor nuclear 

factor kappa light chain enhancer of activated B cells (NF-κB), MyD88 dependent TLR signaling bifurcates at 

TAK1 activation: 1) The TAK1 complex phosphorylates inhibitor of κB kinase β (IKKβ)73,74, which then 

phosphorylates inhibitor of NF-κB, IκB (IκBα). IκBα is bound NF-κB, but is ubiquitinated and degraded upon 

activation, which then releases NF-κB75. NF-κB translocates to the nucleus and induces transcription of pro-

inflammatory cytokines like TNFα, pro-IL-1β, and IL-6. 2) The TAK1 complex activates kinase cascades 

which culminate in the phosphorylation of mitogen-activated protein (MAP) kinases c-Jun N-terminal kinase 

(JNK), p38 and extracellular signal-regulated kinases (ERK1/2)76,77, which have a wide range of cellular 

functions including cell survival, differentiation and proliferation78. Moreover, MAPK stabilize mRNA 

downstream of NF-κB and thereby increase translation of pro-inflammatory cytokines79.  

 

MyD88 independent/TRIF dependent signaling begins with TRIF binding to TLR3 or to TLR4 via TRIF-

related adapter molecule (TRAM)80. TRIF interacts with TNF receptor type 1 associated DEATH domain 

protein (TRADD)81, pellino-1 and receptor interacting protein 1 (RIP1)82 to activate TAK183, which then 

activates NFᴋB as in the MyD88 dependent pathway. In addition, TRIF activates TANK-binding kinase 1 

(TBK1) and inhibitor or ᴋB kinase I (IKKi) via TRAF3 to phosphorylate IRF370,84, which then translocates to 

the nucleus to induce transcription of IFNβ85. As TLRs are capable of responding to a large number of ligands 

and initiate intracellular events potentially detrimental to the cell, it is crucial that TLR signaling is subject to 
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negative regulation86. TIR-TIR and other protein-protein interactions are crucial for function TLR signaling, 

and negative regulators exist at the level of MyD8887,88, TIRAP88, TRAM89, IRAK90,91 and TRAF92. As the vast 

majority of studies on PRRs have been conducted in B lymphocytes or dendritic cells, canonical signaling may 

apply for example in cardiomyocytes. 

Toll-like receptor 9 

TLR9 is trafficked to endoplasmic reticulum by the transmembrane protein Unc93b93 where it resides until 

activation94,95. Activated TLR9 forms homodimers upon recognition of DNA ligands and translocates to 

endolysosomal compartments94,95. TLR9 was first shown to recognize bacterial DNA containing unmethylated 

CpG motifs96, but also recognizes  DNA from viruses97 and plasmodium species98. The crystal structure of the 

unliganded LRR-containing ectodomain was recently reported99, but the details of TLR9 ligand interaction are 

not clear. TLR9 signals through MyD88, IRAK and TRAF6 activation before bifurcation into NF-κB and IRF7 

pathways which culminate in the transcription of proinflammatory cytokines and type 1 interferons, 

respectively100 (figure3). Synthetic CpG oligonucleotides show specificity in pathway activation: CpG B 

potently activates the NFᴋB pathway, CpG A activates the IRF pathway while CpG C stimulates both101. CpG 

A contains phosphodiester palindromic CpG-containing sequences and CpG B contains multiple six nucleotide 

CpG motifs with the general formula: purine (A/G)-pyrimidine (C/T)-C-G-pyrimidine (C/T)-pyrimidine (C/T) 

and commercial CpG B commonly contains fully phosphorothioated backbone, more nuclease-resistant than 

phosphorodiester backbone102. IRF pathway preference may be driven by higher order structures as CpG A is 

multimeric and CpG C is dimeric, but monomeric CpG B exhibits little IRF stimulation103. Though TLR9 

shows sequence preference it potentially recognizes a large number of sequences, and it has been suggested 

that the sugar backbone is also of importance104.  
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Figure 4. TLR9 signaling105. Mandatory MyD88, IRAK, TRAF6 activation before bifurcation into NF-κB pathway and IRF7 pathways, 
whose translocation to the nucleus culminates in the transcription of proinflammatory cytokines (such as TNFα, pro-IL1) and type 1 
interferons (IFNα1 and IFNβ1), respectively. TLR9: Toll-like receptor 9, MyD88: myeloid differentiation primary response gene 88; 
IRAK: interleukin-1 receptor associated kinase; TRAF: tumor necrosis factor α associated factor; TAK: transforming growth factor β 
activated kinase IKK: inhibitor of κB kinase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; TNFα: Tumor 
necrosis factor alpha; IL-1β: Interleukin 1 beta; OPN: Osteopontin; IRF: Interferon regulatory factor; IFN: interferon 

TLR9 in the heart 

TLR9 mRNA51,52,55,106 and protein55 have been demonstrated in the heart. CpG DNA induces myocardial 

inflammation55 and reduces contractility in isolated cardiomyocytes55,107 via TLR955. In cardiac fibroblasts, 

CpG induces TNFα and impairs function108. It has been shown that CpG pretreatment protects the mouse heart 

from subsequent ischemia-reperfusion injury109,110, while another study showed no effect of CpG priming111.  

 

Results are similarly conflicting on the role of TLR9 in acute systemic inflammatory response syndrome 

(SIRS) induced cardiac dysfunction. While it has been shown that high-dose CpG B induces SIRS and cardiac 

dysfunction112 and that TLR9 ablation protects against CpG induced SIRS112 and polymicrobial sepsis113, 

TLR9 stimulation via CpG has been shown to rescue cardiac dysfunction after polymicrobial sepsis114, severe 

hypovolemic shock115 and LPS-induced shock116. 
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Figure 5. Summary of studies on TLR9 in the heart structured in four categories: Basic cardiac biology, acute SIRS-induced cardiac 
dysfunction ischemia-reperfusion injury, chronic heart failure. Citations are found in the text. 

In two different models of heart failure, CpG was found to be beneficial as CpG B pretreatment reduced 

cardiac inflammation and attenuated transaortic constriction (TAC)-induced hypertrophy117 and CpG C 

partially rescued cardiac function in isopreterenol-induced cardiac hypertrophy118. However, Kinya Otsu's 

group showed in an elegant study that DNase2a knock-out mice had more pronounced myocardial 

inflammation and higher mortality after TAC, that could be rescued by TLR9 inhibition44. Further, it was 

shown that myocardial inflammation was caused by undegraded mitochondrial DNA44. In non-immune cells, 

such as neurons and cardiomyocytes, it has been proposed that TLR9 activation does induce transcription of 

proinflammatory genes, but rather is a signal to metabolic conservation via 5' adenosine monophosphate-

activated protein kinase (AMPK)119. TLR9 is an intracellular receptor and in order to bind to extracellular 

DNA, the DNA must first be internalized. 

DNA sensing receptors 

Though TLR9 is the focus for this thesis, more than ten cytosolic DNA sensors have been reported in recent 

years120. While Mediators of interferon responses include Z-DNA-binding protein 1/ DNA-dependent activator 

of IFN-regulatory factors (ZBP1/DAI)121, RNA polymerase III122, aspartate-glutamate-any amino acid-

aspartate/histidine (DExD/H)-box helicase 36 (DHX36)123 and gamma-interferon-inducible protein 16 

(IFI15)124. AIM2125 and DHX9123 are inducers of IL-1β or TNFα. Also, stimulator of interferon genes (STING, 

TMEM173) is a central signaling molecule to the innate immune response to cytosolic DNA126. These DNA 

sensors have primarily been studied in dendritic cells and little is known about their expression or role in the 

heart. 

 

Basic cardiac 
biology

Under basal conditions, CpG puts the brake on cardiac cells
• CpG uptake in cardiac myocytes impairs contractility and hearts signal through NFκB
• CpG reduces energy expenditure in cardiac myocytes via SERCA2 and AMPK
• CpG reduces proliferation and function in cardiac fibroblasts

Ischemia-
reperfusion 

injury

CpG pretreatment can protect the heart from subsequent ischemia
• Despite consistent inflammatory responses after CpG, two studies found reduction of 

infarct size after CpG pretreatment, while one study found no effect, possibly due to 
dosing or hepatic CpG degradation

Acute SIRS 
induced cardiac 

dysfunction

Dual role for TLR9 in Systemic Inflammatory Response Syndrome
• CpG drives SIRS and TLR9 inhibition improves cardiac function, but conflicting results 

on TLR9 activity in polymicrobial sepsis and beneficial role of CpG B in non-SIRS 
hemorrhagic shock

Chronic 
heart failure

TLR9 drives cardiac dysfunction induced by DNA released from stressed hearts 
• DNAse II crucial for degrading DNA, which damages the heart via TLR9
• CpG C attentuates iso-induced cardiac hypertrophy and dysfunction
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DNA internalization in non-phagocytic cells 

Though non-phagocytic cells, cardiomyocytes appear to internalize extracellular material. However, the 

mechanisms by which cardiomyocytes take up extracellular macromolecules has not been widely studied. It 

has been reported that CpG DNA can be internalized by adult primary cardiomyocytes55, but the mechanism 

for uptake of DNA is not known. Phagocytosis cannot be ruled out, but other forms of endocytosis/pinocytosis; 

clathrin-mediated endocytosis (CME), clathrin-independent endocytosis (CIE) or macropinocytosis127 are more 

likely. Both CME and CIE can be receptor-mediated (RME). Transmembrane diffusion is highly unlikely as 

even small DNA molecules are heavily charged. Though little is known about uptake mechanisms for CpG, it 

has been shown that the uptake of 20-mer oligonucleotides into human colorectal ademocarcinoma cells was 

inhibited by phenylarsine oxide128, an inhibitor of macropinocytosis and phagocytosis whose mechanism of 

action is unknown127. 

 

Candidates for RME include scavenger receptors – structurally heterogeneous receptors first associated with 

internalization of oxidized low-density lipoprotein129. As well as mediating uptake of a number of different 

molecules, scavenger receptors also participate in cellular signaling and are considered a PRR subclass by 

some researchers129. Though the role of scavenger receptors in the uptake of DNA in the heart is not known, 

scavenger receptor type A was dispensable for internalization of CpG DNA in macrophages130. 

 

Nucleolin is a candidate for trans-sarcolemmal DNA transport. Nucleolin is abundant in the nucleolus of 

eukaryotic cells and implicated in ribosome maturation, RNA and DNA metabolism and shuttling of pre-

RNAs from the nucleus to the cytoplasm131,132. Nucleolin is expressed on the cell surface of many cell types133 

and several lines of evidence underlie the hypothesis that cell-surface nucleolin is important for internalization 

of DAMPs, including immunogenic DNA. Cell-surface nucleolin is important for the attachment of HIV-1 to 

the cell surface of CD4+ T cells134 and is required for internalization of human parainfluenza virus type 3 to 

airway epithelial cells135. Cell-surface nucleolin is the receptor for a 26-mer DNA oligonucleotide136, which is 

around the same size as CpG DNA. Further, cell-surface nucleolin mediates the uptake of ~8000 kDa DNA 

nanoparticles137, which is slightly larger than CpG DNA138.  
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Aims of the study 

The purpose of this thesis is to investigate the role of cellular debris in extending cardiomyocyte injury after 

acute myocardial infarction. Understanding the cellular response to the sterile inflammation that follows 

ischemic tissue damage holds the promise for new therapy. 

 

We hypothesized that mitochondrial DNA is a damage-associated molecular pattern and is released from the 

heart after acute myocardial infarction, which triggers the innate immune system via TLR9 and NF-κB. We 

propose that cell-surface nucleolin can internalize immunogenic DNA. Specifically, our aims were: 

 Investigate the release of mitochondrial DNA from the post-ischemic human heart (paper I) 

 Investigate if mtDNA activates TLR9 and contributes to cardiomyocyte injury (paper II) 

 Investigate if cardiomyocytes mount an inflammatory response to mitochondrial DNA and if cell-

surface nucleolin aids in internalization of DNA (paper III) 

 

 

  
Figure 6. High-level cartoon representation of the hypotheses explored in this thesis. Dead and dying cardiomyocytes release their 
extracellular contents including mitochondrial DNA (mtDNA), which can be detected in the circulation. mtDNA is internalized via 
nucleolin in healthy cardiomyocytes and causes an unwanted inflammatory response via toll-like receptor 9 (TLR9) and NF- κB which 
propagates the ischemic injury. 
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Paper I 

Summary of results   

Increased circulating mtDNA after myocardial infarction  

Marte Bliksøen1, Lars Henrik Mariero1, Ingrid Kristine Ohm1, Fred Haugen, Arne Yndestad, Svein Solheim, 

Ingebjørg Seljeflot, Trine Ranheim, Geir Øystein Andersen, Pål Aukrust, Guro Valen2, Leif Erik Vinge2 Int J 

Cardiol. 2012 Jun 28;158(1):132-4  

Aim: Investigate the release of mitochondrial DNA from the post-ischemic human heart 

Key findings 
 ST elevation myocardial infarction (STEMI) patients (n=20) had higher levels of mtDNA in cell-free 

plasma than stable angina pectoris (SAP) patients (n=10) three hours after PCI 

 mtDNA release was higher in patients with transmural myocardial infarction than patients with non-

transmural infarction as evaluated by cardiac MRI 

 The release of mtDNA correlated with max troponin T release 

 The heart is a likely source of circulating mtDNA, as mtDNA is detected in effluents from isolated, 
perfused mouse hearts 

 
 
 
 
 
  
 

 

 

 

 

 

Figure 7. Cardiac mtDNA release after STEMI. mtDNA was extracted from blood samples of 20 STEMI and 10 SAP patients 
undergoing PCI, and amplified with real-time PCR using primers for the mtDNA-specific NADH dehydrogenase, ND1. Data are mean 
± SEM 

 
 
 
__________________ 
1These authors contributed equally to the paper 
2These authors have a shared last authorship 
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Paper II 

Extracellular mtDNA activates NF-κB via TLR9 and induces cell death in cardiomyocytes 

Marte Bliksøen, Lars Henrik Mariero, Kirsti Ytrehus, Anton Baysa, Fred Haugen, Ingebjørg Seljeflot, Jarle 

Vaage, Guro Valen1, Kåre-Olav Stensløkken1 

Aim: Investigate if mtDNA activates TLR9 and contributes to cardiomyocyte injury 

Key findings 
 Sonicated mtDNA and plasma from STEMI patients trigger e-selectin-driven NF-κB signaling in HEK 

cells in a TLR9 dependent manner 

 NF-κB activity was increased in luciferase reporter mice after in vivo intraperitoneal injection with 

mtDNA and CpG 

 Isolated adult murine cardiac myocytes internalize mitochondrial DNA 

 mtDNA induces cell death in isolated adult murine cardiomyocytes and reduces the time to 

mitochondrial membrane potential depolarization  
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Figure 8. TLR9 dependent NF-κB activation by mtDNA-containing patient serum. A: HEK293 co-expressing TLR9 and NF-κB 
luciferase reporter (TLR9+) were stimulated for four hours with 10% serum from patients with ST-segment elevation myocardial 
infarction (STEMI, n=6) with high mtDNA levels or stable angina pectoris (SAP, n=6) with low mtDNA levels. The luciferase signal 
detected was detected by a CCD camera, corrected for protein content and normalized to SAP. B: Identical experiments were 
performed in HEK293 NF-κB luciferase reporter cells lacking TLR9 (TLR9-). Data presented as mean ± SEM. To detect significant 
differences, student's t test was used (*p<0.05). 
 
 
 
 
 
__________________ 
1These authors have a shared last authorship 
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Paper III 

Blocking cell surface nucleolin in heart cells prevents uptake of immunogenic DNA 

Lars Henrik Mariero, Anton Baysa, Yuchuan Li, May-Kristin Torp, Guro Valen, Jarle Vaage, Kåre-Olav 
Stensløkken 
 

Aim: Investigate if cardiomyocytes mount an inflammatory response to mitochondrial DNA and if cell-surface 

nucleolin aids internalization of DNA  

Key findings 

 mtDNA induces inflammation in cardiomyocytes during hypoxia / reoxygenation 

 Extracellular DNA induces TLR9 dependent NF-κB activity during hypoxia / reoxygenation 

 Nucleolin is expressed on cardiomyocyte membranes 

 Nucleolin inhibition reduces uptake of CpG DNA in cardiomyocytes and cardiac fibroblasts 
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Figure 9. mtDNA induces inflammation in cardiomyocytes during hypoxia-reoxygenation (H/R). Quantitative real-time PCR on 
isolated adult C57BL/6 murine cardiomyocytes (n=4-11 individuals) exposed to 40 minutes of non-lethal glucose-free hypoxia (<0.5% 
O2) followed by two hours of reoxygenation (H/R +) or time-matched normoxic conditions with medium change (H/R -). Cells were 
either exposed to murine mitochondrial DNA (mtDNA, 20 μg/mL), nuclear DNA (nDNA, 20 μg/mL) or normal medium (data not 
shown). The data shows relative gene (2-ΔΔct) expression of interleukin-1β (IL-1β, A), tumor necrosis factor α (TNFα, B), and 
interferon β1 (Ifnβ1, E) normalized to the expression of the housekeeping gene Rpl32 with normoxic control cells as the calibrator. For 
each gene, the gene expression of normoxic control cells is set to 1.0. The dotted horizontal line and the numerical value to the right 
represents the mean gene expression of hypoxic control cells. Data is presented as mean ± SEM. To detect significant differences 
between normoxic control and exposure groups, the student's t-test was used (*p<0.05, **p<0.01). 
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Methodological considerations  

As paper I was published as a brief communication with very limited word count, full description of the 

methods used in that paper are included in this section. For papers II and III, only a brief mention of the 

method prefaces methodological consideration, as full methods are described in the papers.  

Study group 

The study protocol was approved by the Regional committee for medical research ethics and all patients gave 

written, informed consent to participate. Patient plasma and serum was obtained from previously collected 

material139. Thirty men and women between 30 and 75 years with STEMI (n=20) or stable angina pectoris 

(SAP, n=10), admitted to Ullevål University Hospital, Oslo, Norway, were included. All were treated 

successfully with percutaneous coronary intervention (PCI) in a central coronary artery obtaining normal blood 

flow. Heparin (70 IU/kg i.v.) was given to all patients during the PCI procedure in both groups. Four of the 

STEMI patients were given Gp IIb/IIIa receptor blocker. Inclusion criteria in the STEMI group were typical 

symptoms with ST-segment elevation in the electrocardiogram and occlusion of a central coronary artery 

verified by coronary angiography. Patients in the SAP group had symptoms consistent with SAP, and 

angiographic coronary artery stenosis. Exclusion criteria in both groups were previous transmural infarction, 

cardiogenic shock or co-morbidities like malignancy, stroke or significant inflammatory, endocrine or lung 

disease. The included patients were treated in accordance with current guidelines.  

 

The sample size is small and concerns for heterogeneity in age, gender, co-morbidities, medications and other 

confounders is a possible source of error was met by strict exclusion criteria. There were no differences in 

baseline characteristics between the groups other than more previous PCI procedures in the stable angina 

pectoris patients139. Infarct sizes in the study population were relatively small, which might limit the extent to 

which DNA was released to the circulation. However, as we were able to detect mtDNA in the circulation of a 

small number of patients with modest infarctions suggests that the release of mtDNA after myocardial 

infarction is quite large. Quantification of circulating mtDNA in STEMI patients prior to PCI would allow 

determination of the contribution of reperfusion to the wash-out of mtDNA from the post-ischemic tissue to 

the circulation. Unfortunately, it was not practically possible to obtain these samples. Moreover, our first time-

point in both study groups was three hours post PCI. It is conceivable that DNases in the tissue and circulation 

had degraded DNA by that time, and that peak levels of circulating mtDNA were higher than we were able to 

quantify with our study. 
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Blood sampling 

Venous blood was collected immediately before PCI in the SAP group and in both groups after 3 and 12 hours 

and after 1, 3, 5, 7 and 14 days. From day 1, all samples were obtained from fasting patients before intake of 

medication. Serum was prepared by centrifugation within 1 h at 2500g for 10 min. DNA was isolated from 

platelet-poor plasma obtained by centrifugation within 30 min at 4°C and 3000g for 20 min. Samples were 

stored at -80°C until analysis. Troponin T (reference values <0.03 μg/L) was analyzed in serum by routine 

methods at the clinical laboratory at Oslo University Hospital Ullevål (Cobas e601 assay, Roche Diagnostics, 

Basel, Switzerland). 

 

Platelets or leukocytes are possible sources of mitochondrial DNA in the blood samples, but care was taken to 

quickly centrifuge the samples to obtain platelet-poor plasma. A single centrifugation of plasma has been 

shown be reliable for quantification of circulating mtDNA140. All samples were stored at -80°C to prevent lysis 

or degradation prior to analysis. 

Cardiac magnetic resonance imaging (MRI) 

In the STEMI group, cardiac MRI was performed with a 1.5 T whole body scanner (Philips Intera, Best, The 

Netherlands) and analysis was performed on a View Forum workstation (Philips Medical Systems). Short axis 

images were acquired for left ventricular volume and ejection fraction analysis. Infarct size by MRI was 

determined with the gadolinium late contrast enhancement technique141 six weeks after PCI. SAP patients did 

not undergo cardiac MRI, which reduced the statistical power to detect a possible correlation between the level 

of circulating mtDNA and infarct size. 

Extraction of mitochondrial DNA from human plasma and qPCR 

DNA was extracted from cell-free platelet-poor plasma samples with Qiagen QIAamp® DNA Blood Mini Kit 

according to the manufacturer’s instructions (Qiagen, USA). In order to control procedural variability, 50 μl of 

plasma was spiked with 15.63 pg/mL mtDNA-enriched murine DNA and 10 μg linear acrylamide (Ambion, 

Applied Biosystems, TX, USA). DNA was eluted in 300 μl nuclease-free water before a 10 μl aliquot was 

analyzed by qPCR with SYBR Green chemistry. DNA was analyzed using Applied Biosystems 7300 Real-

Time PCR system (Applied Biosystems, Life Technology Corporation, CA, USA). The primers used for these 

assays were mitochondrially encoded NADH dehydrogenase (MT-ND1), mitochondrially encoded cytochrome 

c oxidase III (MT-CO3), genomic 18S and specific murine mtDNA-primers142 (table 1). Standard curves were 

made from mtDNA-enriched DNA isolated from human placental tissue and murine liver using Mitochondria 

Isolation Kit for Tissue (Thermo Fischer Scientific, IL, USA) and the primers targeting human mtDNA and 
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were proven specific for their respective species. The concentration of murine mtDNA used to spike the 

human plasma samples was several thousand-fold lower than that of the human mtDNA.  

Ex vivo (Langendorff) perfusion 

To study if the myocardium could release mtDNA, isolated mouse hearts were subjected to global ischemia 

and reperfusion. Male C57BL/6 mice were anesthetized with 5% sodium pentobarbital (60 mg/kg) and 

heparinized (500 IU i.p). After anesthesia, the heart was rapidly excised and placed in ice-cold Krebs-Henseleit 

buffer (KHB, containing in mmol/L: NaCl 118.5; NaHCO3 25.0; KCl 4.7; KH2PO2 1.2; MgSO4 1.2; glucose 

11.1; CaCl2 1.8) and the aorta was cannulated and the heart mounted on a Langendorff system 

(ADInstruments, Castle Hill, NSW, Australia).  

 

Hearts were retrogradely perfused with warm (37°C), oxygenated (95% O2, 5% CO2) KHB at a constant 

pressure of 70 mmHg. The heart temperature was monitored and kept constant at 37°C during the experiment. 

A fluid-filled balloon was inserted into the left ventricle via the left atrium to measure heart rate (HR) and 

ventricular pressures (Power lab system, ADInstruments). Left ventricular end-diastolic pressure (LVEDP) 

was set to 5—10 mmHg at the start of stabilization, and changes in LVEDP as well as left ventricular systolic 

pressure (LVSP) were measured throughout the experimental protocol. Left ventricular developed pressure 

(LVdevP=LVSP-LVEDP) and maximum and minimum derivative of left ventricular pressure development 

(LVdp/dtmax and LVdp/dtmin) were calculated. Coronary flow (CF) was measured by collecting the coronary 

effluent. Animals with aortic cannulation time > 3 min, CF >4 ml/min, LVSP <80 mmHg, HR <220 beats per 

minute during stabilization or irreversible reperfusion arrhythmias (asystole or ventricular fibrillation) were 

excluded from the study. All hearts underwent 20 min of pre-ischemic stabilization, 30 min global ischemia 

and 60 min reperfusion. Coronary effluents were collected during the last 5 min of stabilization and throughout 

reperfusion. The effluents were frozen immediately at -20°C for further analysis by qPCR. After reperfusion, 

hearts were sectioned perpendicular to the long axis and four central 1 mm ventricular slices were incubated at 

37°C in 1% triphenyltetrazolium chloride (TTC) for 15 min. After incubation the slices were gently pressed 

between two glass plates and photographed (Nikon, Coolpix 5400). The infarct area was measured as 

percentage of total area minus cavities and calculated with Adobe Photoshop by a researcher blinded to the 

experimental groups.  

 

Langendorff perfusion is a staple in heart research143 but the denervated, cell-free perfusion is often criticized 

as an overly simple model. In paper I, isolated mouse hearts were retrogradely perfused to investigate if the 

post-ischemic myocardium is a source of mtDNA. For this application, isolated heart perfusion is an advantage 

as it reduces non-myocardial sources of mtDNA. However, as leukocytes contribute to the damage of the post-
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ischemic heart it is imaginable that this cell-free model underestimates ischemic damage to the myocardium 

and subsequent mtDNA release. Importantly, our lab enforces strict exclusion criteria144 to ensure that hearts 

are comparable and well functioning prior to ischemia.  

Quantification of mtDNA in coronary effluents from isolated hearts  

DNA was isolated from coronary effluents from nine mouse hearts using the DNeasy blood & tissue kit 

(Qiagen) and qPCR using mouse mtDNA primers142 (117 bp, see table 1) was performed. mtDNA-enriched 

DNA from mouse livers was used for standard curves and the relative standard curve method was used to 

quantify mtDNA release. Samples were run in duplicate using SYBR Green chemistry and the amount of 

mtDNA was normalized to total coronary flow and perfusion time. 

In vivo NF-κB luciferase activity following i.p. mtDNA and CpG administration 

In paper II, mtDNA or CpG was administered to transgenic mice that express firefly luciferase under the 

control of three NF-κB response elements, enabling real-time in vivo imaging of NF-κB activity145. 300 μL 

vehicle or equal volume containing 200 μg mtDNA or 100 μg CpG C was injected i.p. and animals were 

imaged for luciferase reporter activity twice: immediately after injection and after six hours. Though both CpG 

C and mtDNA activated NF-κB in vivo, it is clear from the data that there were non- or low responders in both 

the treatment groups. This could be attributable to differences in the reporter system, such as varying induction 

of the signal, or due to failed i.p. injections. The reporter system is well tested146 and the injections were 

performed by experienced experimentalists. However, despite varying responses, clear differences were seen 

in animals injected with mtDNA or CpG C compared to control. The relatively high CpG dose is in line with 

published reports108,109,111,116. Moreover, though the total amount of DNA injected was quite high, we have 

shown that the majority is of nuclear origin, so that <50 μg of the injected DNA is actually mtDNA. Also, 

though fragmented, each mtDNA is considerably larger than the ~22-mer CpG. Assuming that the mtDNA 

fragments are 100-1000 bp, the number of CpG agonists would outnumber the number of mtDNA agonists by 

a factor of ~5-50. Collectively, this suggests that the potency of pure mtDNA might actually rival that of CpG. 

Non-lethal hypoxia / reoxygenation for primary heart cells and cell lines 

In paper III, we established a model of non-lethal hypoxia / reoxygenation for primary cells and cell lines. 

Several publications describe glucose-free H/R for primary adult murine cardiomyocytes with hypoxia (0-1.5 

per cent) from 0.5-1 hour147-151 up to 4-5 hours152,153 and reoxygenation from 0-17 hours. These models induce 

cell death as measured by trypan blue148 or LDH release147. However, to investigate the immunogenicity of 

DNA in H/R, we sought to limit the release of possible DAMPs from dying cardiomyocytes and therefore 

wanted a non-lethal model. We conducted pilot experiments and found that 1 hour of hypoxia followed by 2 
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hours of reoxygenation induced cell death, but that 40 minutes of hypoxia and 2 hours of reoxygenation did 

not.  

Preparation of mtDNA and nDNA agonists 

Male C57BL/6 mice were euthanized by cervical dislocation and a transverse laparotomy was performed. 

After ligating the hepatic hilus to prevent bile contamination, the liver was quickly excised en bloc and the 

hepatic hilus was removed. Liver tissue was dissected into 4-6 pieces of 200-250 mg (a liver from a 25 g 

mouse yields ~1.2 g of liver excluding large vessels and gall bladder) which were washed in sterile PBS and 

kept on ice. The liver pieces were homogenized using a pre-chilled dounce tissue grinder (Kontes 2 mL, 

Vineland, NJ, USA) and mitochondria were isolated (Pierce Mitochondria Isolation Kit for Tissue, Thermo 

Fisher Scientific, MA, USA). In brief, tissue samples were dounced with pestle A and B until low resistance 

(about 10 times each) before centrifugation at 700g and 4°C for 20 min to pellet nuclei which were stored on 

ice and later used to isolate primarily nuclear DNA. The supernatant was centrifuged at 3,000g and 4°C for 15 

min, resuspended in 500 μL washing solution (50 % solution C from the aforementioned mitochondria 

isolation kit and 50 % MQ H2O) before centrifugation at 12,000g and 4°C for 5 min, which was repeated three 

times. DNA was isolated from isolated mitochondria and crude nuclear fractions with a DNA isolation kit 

(DNeasy Blood & Tissue Kit, Qiagen) and eluted in 2 x 100 μL AE buffer. Isolated mtDNA was pooled as 

was nDNA, and the DNA was precipitated overnight at 4°C in 2 x volume 96 % ethanol and 1/10 final volume 

3M sodium acetate pH 5.2. Precipitated DNA was centrifuged at ~10,000 rpm for 20 minutes at 4°C, washed 

with 70 % ethanol and centrifuged at ~10,000 rpm for 5 minutes at 4°C. Air-dried DNA pellets were 

resuspended in 110 μL AE buffer, of which 100 μL was fragmented on ice using a 30 kHz/50W ultrasonic 

sonicator (Hielscher UPH50, Hielscher Ultrasonics, Teltow, Germany) with a 0.5 mm head at 14 μm for 2 x 30 

seconds.  

 

The relative quantities of mitochondrial and nuclear DNA in the preparations was evaluated by qPCR using 

primers for murine MT-ND-1 (mitochondrially encoded NADH dehydrogenase for mitochondrial DNA and 

NDUFV1 (NADH dehydrogenase (ubiquinone) flavoprotein 1, for nuclear DNA (see table 1 for primer 

sequences).  
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Figure 10. qPCR quality control of DNA agonists. The relative quantities of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in 
the preparations were evaluated by qPCR using primers for murine MT-ND-1 (mitochondrially encoded  NADH dehydrogenase 1) for 
mtDNA and NDUFV1 (NADH dehydrogenase (ubiquinone) flavoprotein 1) for nDNA. A; ct values for each gene in mitochondrial and 
nuclear fractions. B; from the equation DNA content (pg) = genome size (bp) / (0.978 x 109), the mass mtDNA and nDNA in our typical 
20 μg/mL stimulation was estimated. C: fragmentation of sonicated (+) or non-sonicated (-) DNA was confirmed by 1 % agarose gel 
electrophoresis with a DNA ladder (L) and visualized with SYBR Safe. 

The relative abundance of mtDNA and nDNA from isolated livers was quite stable, as were the absolute ct 

values. The mouse mitochondrial genome contains 16.295 kilobases154 and its nuclear genome contains about 

2.493 gigabases155, making the latter 1.53 x 105 larger. DNA mass can be calculated from the number of base 

pairs156. 

DNA content (pg)  genome size (bp) / (0.978 x 109)   

From this equation, the mass of the mitochondrial genome is 1.67 x 10-6 pg and the nuclear 5.10 x 10-1 pg / 

genome. If the quantities of nDNA and mtDNA were equal in a sample as evaluated by real-time qPCR, 

mtDNA PCR products should outnumber nDNA by 1.53 x 105, or a ct value for mtDNA that is 17.2 (log2(1.53 

x 105)) lower than for nDNA. We estimated the mass of mtDNA and nDNA in our typical 20 μg / ml 

stimulation. In the mitochondrial samples, the ratio of nDNA to mtDNA in this isolation was 217.2-15.6 = 21.62 = 

3.08. This sample contains 3.08 times more nuclear DNA than mtDNA, which in 20 μg total DNA translates to 

4.90 μg mtDNA and 15.10 μg nDNA. In the nuclear extracts, the ratio of nDNA to mtDNA was 217.2-8.5 = 28.7 = 

423. This sample contains 423 times more nuclear DNA than mtDNA, which in 20 μg total DNA translates to 

0.047 μg mtDNA and >19.95 μg nDNA. 

 

The integrity of the isolated DNA, as well as degree of fragmentation after ultrasonification was visualized on 

a 1 % agarose (SeaKem, Lonza, Basel, Switzerland) gel visualized using a commercially available DNA dye 

(Life Technologies SYBR Safe, Thermo Fisher Scientific, Waltham, MA, USA). Fragmentation to 100-1000 

bp was considered acceptable. 
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DNA preparations were tested by qPCR for the relative abundance of nuclear and mitochondrial DNA, and 

DNA fragmentation was verified by gel electrophoresis. Several methods of tissue homogenization and DNA 

isolation were tested, including bead mill and hand-held rotor homogenizer and MN-DNA isolation columns, 

but the combination of dounce homogenization and the Pierce mitochondria isolation kit for tissue and Qiagen 

DNeasy columns provided the best yield and purity. The first concern was to ensure reasonable yield of 

mitochondrial and nuclear DNA with minimal cross-contamination. mtDNA was isolated from isolated 

mitochondria, with additional washing steps to the manufacturer's protocol to increase purity. For nuclear 

DNA isolation, we used crude nuclear extracts obtained by centrifugation of tissue homogenate. A second 

concern was the possible contamination of non-DNA DAMPs or even PAMPs in the DNA preparations. 

Severe infection in donor animals is unlikely as organs were excised under clean conditions from animals that 

were housed in individually ventilated cages and fed autoclaved feed. Sentinel animals in the animal facility 

are routinely tested for infection. Further, DNA was isolated with spin column which should reduce carry-over 

of non-nucleic acids. Proteinase K was used and the samples were not RNAse-treated. However, incubation at 

56°C for about 1 hour was performed as part of the DNA isolation protocol as well as preferential binding of 

DNA to the spin columns should reduce RNA contamination. Further, mtDNA and nDNA agonists were 

isolated from the same animals and in all experiments both mtDNA and nDNA were used, reducing possible 

impact from different contaminant concentrations in the two fractions. Preparations were tested for the 

presence of LPS retrospectively. Both liver and heart are rich sources of mtDNA, both containing about 3000 

copies of the mitochondrial genome per cell157, which show similar methylation patterns157. In our experience, 

one mouse liver yields around 1.0-1.2 g of tissue excluding the hepatic hilus, which corresponds to the mass of 

around five to ten mouse hearts excluding the great vessels158. In addition, the mitochondrial DNA yield from 

the soft liver tissue is much greater than the compact myocardium. Thus, the current study would have 

required several hundred mice for DNA extraction if we were to use the heart as a source. The liver was 

chosen for its large size, relatively simple homogenization and high number of mitochondria157. We used 

qPCR primers against sequences that appear only once in the nuclear or mitochondrial genome, respectively. 

Estimations of mass in our DNA preparations assume equal primer efficiencies (experimentally confirmed) 

and equal distribution of guanine, adenine, thymine and cytosine in the mitochondrial and nuclear genomes. 

Further, the estimation assumes that qPCR will detect two copies of NDUFV1 for each diploid nuclear 

genome.  

 

We were unable to produce absolutely pure mitochondrial DNA isolations from mouse livers, but found it 

salient to use primary adult tissue from mice for extraction as a proof of concept. Around 75 per cent of the 

DNA in the mitochondrial fractions was nuclear. However, the difference in mitochondrial DNA in the 
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mitochondrial and nuclear fractions was >100-fold (4.90 versus 0.047 μg / ml). Observed differences in 

treatment with mtDNA and nDNA likely represent concentration dependent effects of mtDNA, even though 

the primary constituent of both preparations is nuclear DNA.  

Isolated adult murine cardiomyocytes and cardiac fibroblasts 

In papers II and III, primary cells from mouse hearts were used for several applications. Cardiomyocytes were 

isolated and cultured as previously described159,160. Under clean conditions, hearts from non-responsive 

pentobarbital-anesthetized mice were quickly excised, washed in ice cold perfusion buffer (containing in 

mmol/L: NaCl 120.4; KCl 14.7; KH2PO4 0.6; Na2HPO4 0.6; MgSO4 1.2; Na-HEPES liquid 10.0; glucose 5.5; 

NaHCO3 4.6; taurine 30.0; BDM 10.0) cannulated via the aorta and subjected to retrograde perfusion in a 

Langendorff apparatus heated to 37°C. Hearts were perfused for 4 minutes with buffer alone to purge blood 

before 12 minutes perfusion with perfusion buffer containing 1.3 mg/mL collagenase II (Worthington 

Biochemical, Lakewood, USA, batch #42B13273, 370 U/mg) to digest the extracellular matrix; the last 8 

minutes in the presence of 40 μM CaCl2. The digested ventricles were cut from the perfusion apparatus just 

apical to the valvular plane, mechanically disrupted and suspended in perfusion buffer containing 12.5 μM 

CaCl2 and 10 % FBS (HyClone Bovine Calf Serum, cat. #SH30073.03, lot #AVA60491, Thermo Fisher 

Scientific, MA, USA). Cardiomyocytes were serially centrifuged at 20g for three minutes at room temperature, 

gradually reintroducing Ca2+ to  a final concentration of 1.2 mM by resuspending the cardiomyocytes in FBS-

supplemented perfusion buffer containing [Ca2+] of 12.5, 100, 400 and 800 μM, respectively, before 

resuspension in plating medium containing endotoxin-tested MEM (#M5775, Sigma-Aldrich, St. Louis, MO, 

USA) with 10 % FBS, 10 mM BDM (2,3-Butanedione monoxime, #B0753; Sigma-Aldrich), 100 Units/mL 

penicillin G; (#P7794 Sigma-Aldrich) and 2 mM L-glutamine (#25030-024, Invitrogen, Carslbad, CA, USA). 

Cells were plated on six-well plates pre-coated with 1μg/cm2 laminin (#354232; BD Biosciences, East 

Rutherford, NJ, USA). After 1-2 hours in equilibrated plating medium, the majority of viable cardiomyocytes 

had attached to the culture dish and plating medium was changed to short-term culture medium containing 

0.10% BSA (#A8806 Sigma-Aldrich), 100 U/mL penicillin, 2 mM L-glutamine, and 1 mM BDM in MEM. All 

stimulations in our experiments were performed in short term medium.  

 

Cardiomyocytes were stimulated in short-term medium with added sonicated mtDNA (20 μg / mL), nDNA (20 

μg / mL) or volume-matched AE buffer (10 mM Tris-HCl, 0.5 mM EDTA, pH 9, Qiagen). Cardiomyocytes 

were washed once with PBS before addition of 350 μl RLT buffer (Qiagen), scraping with a rubber cell scraper 

(#353085, BD Falcon) before snap freezing in liquid nitrogen. The cells were stored in an ultra freezer at -

80°C until RNA extraction.  
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Isolated cardiomyocytes is an important model in our group and the technique has been refined over several 

years. With experience, it is a reproducible and reliable model with wide applicability. The inclusion time to 

excise and hang hearts for isolation of cardiomyocytes in our lab is <4 minutes and perfusion buffer is pH 

adjusted, sterile filtered and prepared freshly the day of the experiments, as are all the cell culture media. 

Through gradual reintroduction of calcium, viability and purity of the cardiomyocyte fraction are improved. 

Though each isolation was not tested for purity, we routinely test the quality of isolation by qPCR for 

contamination from fibroblasts, endothelial cells or smooth muscle cells. For studies of the innate immune 

system, it is important to note the perfusion procedure is not sterile and it is difficult to categorically rule out 

contamination of the isolated cells. However, we make every effort to produce clean, uncontaminated and 

healthy cardiomyocytes: Animal health is monitored, instruments are autoclaved, all solutions sterile filtered, 

the perfusion rig is cleaned with MQ H2O prior to each isolation and cleaned with MQ H2O and 70 % ethanol 

after every isolation. Regularly, all tubing is replaced and glass autoclaved. Cell isolation and culture is 

performed in a cell-culture facility in a laminar air flow bench. Incubators are regularly autoclaved and 

cultured cells mycoplasma tested. In stimulations of isolated cardiomyocytes, the volume of DNA or AE solute 

was ~1 % of final volume, reducing the likelihood of non-specific dilution effects. The presence of DNases in 

the medium or supplements was not evaluated and exogenous DNases could have been used as an additional 

control. 

 

To assess the purity of cardiomyocyte isolation, RNA was isolated using a commercially available kit (Rneasy 

Mini, Qiagen) according to the manufacturer’s instructions and cDNA was reverse transcribed using a 

commercially available kit (Quanta qScript, Quanta Biosciences, Gaithersburg, MD, USA) and real-time qPCR 

using SYBR Green PCR chemistry (Applied Biosystems) conducted with primers for cardiomyocytes (Tnni3, 

troponin I, cardiac 3) fibroblasts (Vim, vimentin) endothelial cells (Pecam1/CD31) and smooth muscle cells 

(Acta2, α-2 smooth muscle actin). Please refer to table 1 for primer sequences. The purity obtained was in line 

with previous findings in our group and considered acceptable. 

Cardiomyocyte viability assessment  

Isolated cardiomyocytes were stimulated with DNA added 48, 24 and 4 0.5 hours before the staining protocol. 

Each ligand had its own time-matched control with short-term medium plus vehicle. Cells were stained with 

Hoechst, propidium iodide and MitoTracker deep red. The cells were visualized and quantified using an 

Olympus Scan^R imaging station with inbuilt software and equal automatic settings for all experiments. 

Images were taken at 25 fixed positions within each well using a 10X objective and a triple-band emission 

filter. Individual cardiomyocytes were detected based on MitoTracker deep red intensity after a Hoechst based 
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autofocus. Objects larger than one cardiomyocyte were automatically excluded from the analysis. The 

percentage of necrotic cells (propidium iodide positive cells divided by all cells) was calculated on the basis of 

a fixed threshold in each well.  

 

The method has clear advantages. First of all, fully automated image acquisition allows quantification of a 

large number of cells. In our setup, 25 standardized images are obtained from each well, ensuring large 

statistical power. Moreover, image analysis is automated, based on standardized conditions set by the 

researcher which allows unbiased quantification. In many regards, the technique offers the advantages of flow 

cytometry, but because it is based on image analysis, the images that underlie the analysis can be viewed for 

verification of the automated analysis. 

Laser-induced mitochondrial membrane depolarization 

Cardiomyocytes were exposed to DNA agonists and incubated for 20 minutes in fresh short-term medium 

containing 1.25 μM tetramethylrhodamine methyl ester (TMRM) and 10 mM BDM161 and live cells were 

imaged using confocal microscopy in a HEPES-buffered solution162 with 10 mM BDM 37°C and 2% CO2. 

TMRM accumulation in mitochondria is proportional to the mitochondrial membrane potential (ΔΨ) and the 

signal is lost with mitochondrial depolarization. There is concurrent ROS production and the technique 

indirectly measures ROS-induced ROS release163. Laser-induced loss of mitochondrial membrane models 

mitochondrial function and MPT in isolated cardiomyocytes. It is important to note, however, that this 

relatively crude method does not measure ROS directly. Approximately 10-14 pairs of mitochondria were 

analyzed by a person blinded to the experimental groups to ensure statistical power and objective analysis.  

Uptake of fluorescent DNA 

In papers II and III, uptake of fluorescent DNA was studied. In paper II, mtDNA and nDNA were sonicated 

and amplified by PCR164 to incorporate fluorescent nucleotide triphosphates. DNA was cleaned by silica 

column purification. Commercially available fluorescent CpG B served as positive control and DNA-free PCR 

product with fluorescent dCTP served as negative control. Cells were incubated two hours or overnight and 

DNA uptake was evaluated by confocal microscopy. Though very brightly positive cells invariably showed 

rounded morphology, there was intracellular fluorescent signal in elongated, morphologically normal 

cardiomyocytes incubated with fluorescent mtDNA, nDNA and CpG, suggesting that cardiomyocytes are 

capable of internalizing extracellular DNA.  

 

In paper III, we used fluorescent CpG C to investigate the internalization of extracellular DNA. CpG C was 

chosen as it is a less potent activator of NF-κB than CpG B. Primary cardiomyocytes or cultured cardiac 



36 

 

fibroblasts were incubated ~16 hours in 20 μg/mL CpG with or without 200 nM midkine and fluorescent 

images were acquired and quantified using an Olympus Scan^R imaging station with inbuilt software as 

outlined above. For cardiomyocytes, the average maximum fluorescence was used as a measure for CpG 

uptake and for cardiac fibroblasts; the average fluorescence per spot. The analysis settings were different 

because the number of spots was lower in the cardiomyocytes and not all cells contained fluorescent signal. 

Though the uptake of CpG by different cell types could not be appropriately analyzed by the same parameters, 

equal automated settings were applied within each cell type. Automated fluorescent imaging offers high 

power, but with the disadvantage of not separating between intracellular and extracellular fluorescent signal. 

Cells were incubated with CpG overnight as to maximize time for uptake and reduce the likelihood of 

detecting extracellular CpG. Further, wells were washed prior to fixation and only fluorescent signals that were 

within the perimeter of the cell were quantified. Further, intracellular presence of CpG was confirmed by 

confocal microscopy. The cell-surface nucleolin blocker midkine134,165 was used. Any chemical inhibitor may 

have off-target effects that may directly or indirectly influence experimental outcomes. Midkine did not 

influence morphology or viability of cardiac cells in our experiments. It is important to note that midkine is a 

dual-function cytokine implicated in progression of inflammatory disease, such as experimental autoimmune 

encephalomyelitis166, but with protective effects in both myocardial infarction167 and in post-infarction heart 

failure168,169. For further dissection of the role of cell-surface nucleolin in the uptake of immunogenic DNA, it 

is salient to understand the role of midkine in that model system, or use a more targeted approach, such as 

genetic modification or a more specific inhibitor. 

Mouse models for inflammation research 

In this thesis, C57BL/6 mice have been used for several experiments, including DNA isolation from liver 

tissue, in vivo stimulation with extracellular DNA in NF-κB reporter mice, ex vivo heart perfusion and 

isolation of cardiomyocytes and cardiac fibroblasts. Mice are commonly used in all fields of biomedical 

research, including studies of innate immunity. Lately, mouse models have come under fire in inflammation 

research as significant discrepancies between the inflammatory responses in humans and mice were 

reported170. However, reanalysis of the same data resulted in the opposite conclusion171 and inflammation 

researchers professed that the mouse is still a valid model172. The controversy over these recent data, however, 

serves as a reminder to resist the temptation of direct extrapolation of findings in animal models to human 

disease. 

Human embryonic kidney 293 NF-κB luciferase reporter cells 

Two different NF-κB reporter cell lines overexpressing TLR9 and matched TLR9 deficient controls were used. 

In paper II, HEK293 cells stably co-expressing human TLR9 and the luciferase reporter construct pELAM-luc 
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(HEK293TLR9pELAM) were used with HEK293 cells without the TLR9 as controls (HEK293pELAM-luc)173. Cells 

were incubated six hours with normal medium supplemented with 10 % serum from patients with STEMI or 

angina pectoris and NF-κB luciferase reporter activity was quantified. mtDNA containing serum from STEMI 

patients induced TLR9 dependent NF-κB activity. The cells could have been treated with DNase to show that 

it was in fact DNA in the serum samples which induced NF-κB activity. Unfortunately, those experiments 

could not be performed due to scarcity of the clinical material. However, the observation that the NF-κB 

activity was TLR9 dependent is evidence of a DNA mediated effect. Further, it suggests that the samples were 

not contaminated by significant amounts of other PRR agonists, like LPS, which would have induced NF-κB 

activity independent of TLR9. Importantly, in vitro incubation with patient serum was performed shortly after 

the quantification of mtDNA in the same samples, so the risk of additional degradation was minimal. Further, 

as the study patients had modest infarctions, samples used for in vitro stimulation probably did not contain 

uncommonly high concentrations of mtDNA. 

Human embryonic kidney 293 NF-κB SEAP reporter cells 

Because the agonists used in paper III were all murine, an NF-κB reporter system with mouse TLR9 was used. 

HEK-Blue mTLR are commercially available HEK293 cells co-transfected with mouse TLR9 and an inducible 

embryonic alkaline phosphatase reporter coupled to NF-κB174. The cells were exposed to mtDNA, DNA and 

CpG and hypoxia / reoxygenation or normoxia. Though HEK293 is a cancer cell line and in many respects far 

from cardiomyocytes, it offers a relatively simple model to study loss-and-gain of function and concurrent 

reporter activity in living cells. As such, the model is a tool for molecular dissection of cellular phenomena. 

Cell lines of cardiac origin exist and the murine atrial tumor-derived HL-1 line175 is among the most widely 

used. We have previously used HL-1 cells176 but chose commercially HEK293 lines as the advantages of 

cardiomyocyte-like properties of HL-1 cells did not outweigh the disadvantages, such as loss of contractility 

with passaging and low genetic stability, in studies of cellular signal transduction. The effects of extracellular 

DNA on NF-κB reporter activity were not corroborated by experiments with DNase treatment to degrade 

DNA. However, the dependence on TLR9 was shown by inhibition at the receptor (CpGi) and endosomal 

processing (chloroquine) level as well as in cells lacking TLR9.  

Quantitative polymerase chain reaction (qPCR) 

qPCR was used in all the papers in this thesis. In paper II, qPCR was used to determine the mRNA expression 

of TLR9 in mouse hearts and isolated cardiomyocytes, cardiac fibroblasts and cultured cardiac fibroblasts and 

here, the data is presented as ct values. In paper III, the gene expression of nucleolin and inflammatory genes 

downstream of TLR9 activation was determined. Data is shown as relative expression (2-ΔΔct) normalized to the 

endogenous control Rpl32 (60S ribosomal protein L32). As cells from each animal were seeded on separate 
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cell culture plates and the variation between the individuals was quite large, delta ct values were calibrated to 

normoxic control cells from each animal. Primers were designed to produce amplicons that span exon 

junctions where possible and tested for efficiency and primer dimerization. Water and cDNA reactions without 

reverse transcriptase were included. 

 

Target Species Primer sequences Accession 
number Application 

MT-ND1 
Mitochondrially encoded  NADH dehydrogenase 1 

Human (+) 5'-ATA CCC ATG GCC AAC CTC CT-3' 
(-) 5'-GGG CCT TTG CGT AGT TGT AT-3' 

NC_012920.1 Quantify circulating mtDNA in patients in paper I 

MT-CO3 
Mitochondrially encoded cytochrome c oxidase III 

Human (+) 5'-ATG ACC CAC CAA TCA CAT GC-3' 
(-) 5'-ATC ACA TGG CTA GGC CGG AG  -3' 

NC_012920.1 Quantify circulating mtDNA in patients in paper I 

18S 
Genomic 18 S 

Human (+) 5'-CGG CTA CCA CAT CCA AGG AA-3' 
(-) 5'-GCT GGA ATT ACC GCG GCT-3' 

NR_003286 Quantify circulating nDNA in patients in paper I 

mtDNA 
117 bp amplicon 

Mouse (+) 5'-CCC AGC TAC TAC CAT CAT TCA AGT-3' 
(-) 5'-GAT GGT TTG GGA GAT TGG TTG ATG T-3' 

NC-005089.1 Quantify  mtDNA in coronary effluent from  isolated mouse 
hearts in paper I 

Tnni3 
Troponin I, cardiac 3 

Mouse (+)-5'-GAG ATG GAA CGA GAG GCA GAA-3' 
(-)-5'-CGG CAT AAG TCC TGA AGC TCT T-3') 

NM_009406.3 Assess purity of isolated cardiomyocytes (CM) 

Vim 
Vimentin 

Mouse (+)-5'-CCC TGA ACC TGA GAG AAA CTA ACC-3'  
(-)-5'-GTC TCA TTG ATC ACC TGT CCA TCT-3') 

NM_011701.4  Assess purity of isolated cardiac fibroblasts, contamination 
in CM fraction 

Pecam1 
platelet/endothelial cell adhesion molecule 1 / CD31 

Mouse (+)-5'-TCC CCG AAG CAG CAC TCT T-3' 
(-)-5'-ATG ACA ACC ACC GCA ATG AG-3' 

NM_001032378.1 Assess contamination from endothelial cells in isolated CM 
and fibroblasts (CF) 

Acta2 
α-2 smooth muscle actin 

Mouse (+)-5'-TCC TGA CGC TGA AGT ATC CGA TA-3' 
(-)-5'GGT GCC AGA TCT TTT CCA TGT C-3' 

NM_007392.3 Assess contamination from smooth muscle cells in isolated 
CM and CF 

Tlr9 
Toll-like receptor 9 

Mouse (+)-5'-CCT GGC ACA CAA TGA CAT TCA T-3' 
(-)-5'-GCT GAA GTC AAG AAA CCT CAC TGA-3' 

NM_031178.2 Assess contamination from endothelial cells in isolated CM 
and CF 

Rpl32 
Ribosomal protein L32 

Mouse (+) 5'-TCG TCA AAA AGA GGA CCA AGA AG-3' 
(-) 5'-CCG CCA GTT TCG CTT AAT TT  -3' 

NM_172086.2 Housekeeping gene / endogenous control 

Ifna1 
Interferon alpha 1 

Mouse (+) 5'-CCT GAA CAT CTT CAC ATC AAA GGA-3' 
(-) 5'-AGC TGC TGG TGG AGG ATC AAA-3' 

NM_010502.2 Quantify type 1 interferon response in paper III 

Ifnb1 
Interferon beta 1 

Mouse (+) 5'-GAA AGG ACG AAC ATT CGG AAA T-3' 
(-) 5'-CGT CAT CTC CAT AGG GAT CTT GA-3' 

NM_010510.1 Quantify type 1 interferon response in paper III 

Il1b 
Interleukin 1 beta 

Mouse (+) 5'-TGA CAG TGA TGA GAA TGA CCT GTT C-3' 
(-) 5'-GGA CAG CCC AGG TCA AAG G-3' 

NM_008361.3 Quantify pro-inflammatory cytokine response in paper III 

Il6 
Interleukin 6 

Mouse (+) 5'-TTC CTC TCT GCA AGA GAC TTC CA-3' 
(-) 5'-GGG AGT GGT ATC CTC TGT GAA GTC-3' 

NM_031168.1 Quantify pro-inflammatory cytokine response in paper III 

Tnf 
Tumor necrosis factor (alpha) 

Mouse (+) 5'-GAC CCT CAC ACT CAG ATC ATC T-3' 
(-) 5'-TCC TCC ACT TGG TGG TTT GC-3' 

NM_001278601.1 Quantify pro-inflammatory cytokine response in paper III 

mt-Nd1  
NADH dehydrogenase 1, mitochondrial 

Mouse (+) 5'-TCG ACC TGA CAG AAG GAG AAT CA-3' 
(-) 5'-GGG CCG GCT GCG TAT-3' 

NC_005089.1  Quantify mtDNA content in DNA agonists 

Ndufv1  
NADH dehydrogenase (ubiquinone) flavoprotein 1 

Mouse (+) 5'-GAG CAG GAC TTC TCC TTC ACA TC-3' 
(-) 5'-CCC GTC TCA GGG CAC CTT-3' 

NC_000085.6  Quantify nDNA content in DNA agonists 

Ncl 
Nucleolin 

Mouse (+) 5'-AGC ACC TGG AAA ACG GAA GA-3' 
(-) 5'-GGT GTA GTT GGT TCT GAG CCT TCT A-3' 

NM_010880.3 Quantify nucleolin expression in various cells and tissues in 
paper III 

Table 1: Real-time qPCR primer sequences. All real-time qPCR primers were ordered for SYBR Green chemistry from Eurofins 
(Hamburg, Germany) at final concentrations of 10 pM, with the exception of Unc93b1 (accession number NM_001161428.1, not listed 
in the table as primer sequence is proprietary to Life Technologies) an inventoried Taqman 20x primer/probe set (#Mm00457643_m1, 
Life technologies) 

Protein immunoblotting  

In paper II, the protein expression of TLR9 was investigated by protein immunoblotting. Our main objective 

was to investigate the expression of TLR9 in cardiomyocytes and cardiac fibroblasts. Two different antibodies 

were used and LS-B756 (LifeSpan BioSciences, rabbit anti-human and –mouse polyclonal) proved best suited. 

Protein immunoblotting is a semi-quantitative technique which only detects relatively large differences in 

protein expression. There is potential for both false positive and negative findings. Therefore, both positive and 

negative controls were included in the form of HEK293 cells with or without the expression of murine TLR9. 
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The sensitivity of the band in the positive control was confirmed as its intensity increased when cells were 

treated with the TLR9 agonist CpG B and its specificity was confirmed by the absence of signal in protein 

lysates from TLR9null cells. Protein extracts from mice of the same strain with genetic deletion of the protein of 

interest are often used as negative controls. However, the most widely used TLR9 knock-out model expresses 

a c-terminal protein fragment96 detectable by our antibody. 

 

Protein immunoblotting was used to investigate the expression of nucleolin in paper III. To identify the sub-

cellular localization of the protein we investigated pure sub-cellular fractions and showed by immunoblotting 

the presence of nucleolin on the membrane of cardiomyocytes, a finding also confirmed by 

immunocytochemistry. It has been reported that nucleolin protein of about 110 kDa appears to be cleaved 

during in vivo ischemia-reperfusion, as the intensity diminishes simultaneously with the appearance of a 80 

kDa band177, whereas we predominantly found a band of ~76 kDa in the membranes of cardiomyocytes. It has 

been shown in Jurkat cells and human T lymphocytes that glycosylation is important for directing nucleolin to 

the cell-surface, and that cell-surface nucleolin in these cell types has a weight of ~110 kDa178,179. However, as 

the expression of nucleolin in the membranes of cardiomyocytes has not previously been investigated, species 

differences, cell type differences as well as the use of different primary antibodies can account for high 

abundance of ~76 kDa nucleolin in cardiomyocyte membranes in our study. 

Statistical analysis  GraphPad Prism 5.0 or 6.0 (GraphPad Software, CA, USA) was used for statistical analyses. Student's t-

test, ANOVA or paired t-test was used, where appropriate. p<0.05 was considered statistically significant and 

p≤0.1 was regarded a tendency. Significance is denoted by p value or by symbols where *p<0.05, **p<0.01, 

***p<0.001. Unless otherwise stated, data is presented as mean ± SEM. 
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Discussion 

We have shown that the heart is the likely source of mtDNA released to the circulation after myocardial 

infarction180, that mtDNA triggers TLR9 dependent NF-κB activation in two different cell lines and in vivo. 

Further, we have shown that non-lethal hypoxia/reoxygenation and TLR9 ligands synergistically activate NF-

κB and that cardiomyocytes express pro-inflammatory cytokines in response to mtDNA and non-lethal 

hypoxia/reoxygenation. Finally, we have shown that nucleolin is expressed on cardiomyocyte membranes and 

that it might be important for internalization of immunogenic DNA. 

Inhibition of post-infarction inflammation in acute myocardial infarction patients 

It has long been known that acute myocardial infarction causes inflammatory changes in the myocardium32. 

The consensus model is that the myocardium contains relatively few resident leukocytes181, and neutrophils 

infiltrate the myocardium within twenty-four hours and macrophages within seven days2. In our model of acute 

H/R in cardiomyocytes, we have modeled the inflammatory effects in the cardiomyocyte as the influx of 

inflammatory cells is sparse at this time point. The influx of innate immune cells to the post-ischemic 

myocardium is the organism's go-to response to initiate tissue repair. However, the processes that ensue were 

not evolutionarily honed to repair the broken heart10. Ischemic heart disease typically occurs after reproductive 

age and the response to sterile cardiac inflammation should therefore not be under evolutionary pressure. It is 

therefore a reasonable hypothesis that the intense innate response whose main function is to repair injured cells 

and protect against bacterial infections, could be excessive in the post-ischemic heart. As a corollary, 

modulation of the innate response could benefit clinical myocardial ischemia-reperfusion injury. 

 

Glucocorticoids are powerful but non-specific anti-inflammatory drugs used for a wide range of acute and 

chronic inflammatory conditions182. On one hand, glucocorticoids should reduce the pro-inflammatory 

signaling after myocardial infarction, but at the same time blunting of this signaling could delay the normal 

healing process31. There are concerns of delayed healing and aneurism formation in patients treated with 

glucocorticoids following myocardial infarction183. A meta-analysis of 11 controlled trials including more than 

2,600 patients showed a 26% decrease in mortality with acute corticosteroid treatment after acute myocardial 

infarction (odds ratio 0.74 with 95% confidence interval 0.59 to 0.94, p<0.05)184. However, chronic 

corticosteroid use for inflammatory disease might increase the risk of acute myocardial infarctions185. 

Moreover, high-dose i.p. methylprednisolone given to rats with transmural myocardial infarctions reduced the 

number of cardiomyocytes in the infarct area leading to a thinner ventricular wall three days post infarction186. 

Thus, untargeted disruption of the normal healing process in sterile inflammation following myocardial 

infarction might unwise and a more focused approach is warranted.  
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One more focused strategy that has been investigated is antibodies against integrins CD11 and CD1810, which 

are instrumental for leukocyte adhesion and rolling187. This strategy was shown to reduce infarct size by 90 per 

cent in the cat188, 50 per cent in the dog189 and 40 per cent in the baboon190. However, the promising preclinical 

findings were lost in translation. In two studies of around 400 AMI patients, anti-CD18191 or anti-

CD11/CD18192 antibodies failed to improve  post-thrombolysis coronary blood flow or infarct size. In fact, 

there were indications of increased susceptibility to bacterial infections in both studies191,192. A smaller study at 

the same time showed no beneficial effects of anti-CD11/CD18 antibodies administered as an adjunct to 

primary PCI193. Similarly, the SELECT-ACS trial did not show benefit of inhibiting P-selectin194, another 

leukocyte adhesion molecule shown to benefit experimental myocardial ischemia-reperfusion injury195 and the 

FIRE trial showed no effect of inhibition of VE-cadherin196. Similarly, small studies targeting the complement 

system and matrix metalloproteinases have been disappointing197. Inhibition of interleukin 1 receptor improved 

post-infarction outcomes in preclinical studies, but in pilot patient studies using the IL1 receptor antagonist as 

an adjunct to PCI, results have been equivocal198,199. Chronic TNFα inhibition appears to reduce the incidence 

of AMI in patients with psoriasis200 or rheumatoid arthritis201 and reduces experimental ischemia-reperfusion 

injury by reducing post-infarction inflammation202. The acute effects of TNFα inhibition in AMI have not been 

subject to rigorous investigation. In a first-in-human trial of 26 NSTEMI patients, the TNFα inhibitor 

etanercept reduced post-infarction inflammatory response, but increased platelet-monocyte aggregation203. To 

date, no studies have evaluated functional endpoints of TNFα inhibition in AMI197.  

 

The track-record of translating preclinical studies of immune modulation during acute myocardial infarction 

into the clinical setting is poor. The earlier trials of anti-inflammatory strategies were studied as an adjunct to 

thrombolysis, and it is possible their effectiveness would be greater as an adjunct to PCI. Michel Ovize's group 

has demonstrated clinical benefit of cyclosporine in AMI27,28, an inhibitor of mitochondrial permeability 

transition. Though this might be the mechanism of action, cyclosporine is foremost a post-transplantation anti-

rejection drug, whose main function is to inhibit production of interleukin 2, instrumental for T cell 

activation204. As a side note, T cells have been shown to infiltrate the post-ischemic myocardium and to be 

important for the propagation of ischemia-reperfusion injury in a mouse model30. Despite the failures of 

clinical trials, the role of the post-infarction inflammatory response in myocardial ischemia-reperfusion injury 

remains a valid research question because some of the early clinical trials may have been premature. There is 

evidence for benefit of targeted approaches and the important basic science questions that remain 

independently legitimize further inquiry. Moreover, addressing the triggers of inflammation, such as mtDNA, 

represents a potent strategy for modulating the post-infarction inflammatory response. 
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Circulating cell-free nucleic acids are markers and makers of damage 

During myocardial ischemia-reperfusion injury, cardiomyocytes die by necrosis, necroptosis, autophagy and 

apoptosis205. While the former is unregulated, passive process, the latter three are regulated and energetically 

demanding. Necroptosis was discovered relatively recently206 and is a form of regulated necrosis207. Autophagy 

is a survival mechanism whereby damaged organelles can be recycled in controlled manner208, but it can also 

contribute to cell death in the heart209. Apoptosis is a highly regulated form of programmed cell death210. 

Depending on the route of demise, the contents of a dead cell may be released to the extracellular space where 

it may come in contact with other, viable cells. The question then becomes if extracellular, or even circulating, 

cell-free nucleic acids are injury-inducing or merely the smoking gun in a battle that has died down? 

 

On a cellular scale, the havoc created by acute myocardial infarction is likely to lead to the release of all 

intracellular components to the extracellular milieu. Large infarctions release the nucleic acids from a large 

number of cells, which may be detected in the circulation if the capacity of tissue and circulating DNases is 

exceeded. At least five studies have shown cell-free circulating DNA in acute myocardial infarction patients211-

215. Our study was the first to report circulating mtDNA in patients, which was detectable in patients with 

relatively modest infarcts three hours after reperfusion180. Thus, circulating cell-free nucleic acids likely 

represent markers of damage.  Other studies have used non-sequence specific methods to detect DNA211,213-215, 

but we used qPCR which is both sensitive and specific. However, as mtDNA is not tissue specific, cell-free 

mtDNA can arise from any damaged tissue, or even be released from neutrophils216,217. Therefore, though 

circulating cell-free DNA or mtDNA are likely markers of damage they are non-specific to myocardial injury 

and may therefore be of limited diagnostic or prognostic value. As sequence-specific qPCR-based assays are 

relatively time-consuming, these are unlikely to compete with current ELISA-based technology for the 

detection of circulating myocardial proteins for the diagnosis of AMI.  However, the quantification of post-

infarction circulating, cardiac-enriched micro-RNAs218 using specific point-of-care testing for nucleic acids219 

represents a possible avenue for DNA-based AMI diagnostics in the future. Moreover, what separates mtDNA 

from other circulating DNA is its capacity to also inflict damage on viable tissue.  

Mitochondrial DNA is a damage-associated molecular pattern 

Mitochondria are prokaryotic endosymbionts220 whose DNA and proteins exhibit chemical and structural 

differences to nuclear DNA and genomically encoded proteins. For example, mtDNA resembles bacterial 

DNA, which contains pro-inflammatory unmethylated CpG motifs221,222. Because mitochondria occupy 25% of 

the volume of the human heart223, severe tissue damage can release substantial amounts of mitochondrial 

components. Per cell, the heart contains more than ten times more mtDNA than the spleen, three times more 

than kidney and nearly twice that of the brain157.  
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CpG DNA injected intra-articularly (i.a.) in mice was shown to recruit innate immune cells and cause TNFα 

mediated arthritic changes224 and TLR9 was demonstrated as a receptor for CpG DNA96. CpG-containing 

mtDNA but not nDNA induced NF-κB-mediated TNFα release when injected i.a. in mice and oxidative 

damage to the mtDNA appeared to be important for its inflammatogenic properties222. Further, extracellular 

mtDNA was found in the synovial fluids222 and serum225 of patients suffering from rheumatoid arthritis. 

Interestingly, the pro-inflammatory effects of mtDNA were mediated by cells of the innate immune system and 

independent of B or T lymphocytes222.  More recently, mtDNA has been shown to induce sterile inflammation 

through TLR9 in human neutrophils43 and in pressure-overloaded heart failure in mice, undegraded mtDNA 

induces inflammation and worsens outcome after transaortic constriction44. We have shown that mtDNA 

fragmented mtDNA triggers NF-κB activation in a TLR9 dependent mechanism in an in vivo mouse model 

and in HEK293 cells and that fragmented mtDNA induces the transcription of pro-inflammatory cytokines in 

isolated adult murine cardiomyocytes during H/R. Collectively, there is convincing evidence that mtDNA is 

inflammatogenic and act as a DAMP.  

 

However, the molecular patterns present in mitochondrial DNA that are responsible for its immunostimulatory 

properties are not fully clarified. Bacterial, but not vertebral DNA activates NK cells226. In bacterial DNA, the 

prevalence of CpG dinucleotides is as expected by chance, but in vertebral genomes the prevalence is about 

one quarter of predicted, a phenomenon dubbed CpG suppression227. B cells are stimulated by oligonucleotides 

that contain CpG dinucleotides, but not non-CpG oligonucleotides228. It appears that methylation of CpG 

motifs is of importance as methylation of bacterial DNA abolished its ability to stimulate B cells228 and 

demethylation of murine genomic DNA increased immunostimulatory effects229. However, demethylation of 

genomic DNA did not increase the immunogenicity to the level of bacterial DNA, suggesting that CpG 

methylation alone does not account for the differences in bacterial and vertebral DNA229. Although 

unmethylated CpG dinucleotides probably contribute to the immunogenicity of mtDNA versus nDNA, there 

are most likely other contributing factors than CpG suppression and CpG methylation.  It has been proposed 

that inhibitory motifs may play a role, which may be more common in nDNA229. DNA-protein interactions 

might also be important, as binding of CpG DNA to HMGB1230,231 or mtDNA to TFAM232 (mitochondrial 

transcription factor A) enhance the immunogenicity of mtDNA230,232. In our study, DNA was extracted using 

silicon columns which reduces the risk of contamination of other DAMPs or PAMPs, suggesting that the 

observed effects were mediated by mtDNA. Regardless of the quantitative impact of different molecular 

motifs on the immunogenicity, we show in paper II and paper III that mtDNA does indeed function as a 

DAMP, activating NF-κB via TLR9 in two different HEK293 lines, and that this activation does not occur 
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with nDNA. This supports the hypothesis that differences in structure or sequence or other properties between 

mtDNA and nDNA. 

The abundance of mtDNA in the heart hints at importance for cardiac inflammation 

As ischemia and reperfusion inevitably destroys myocardium, the post-ischemic cardiomyocyte is immersed in 

intra- and extracellular DAMPs including high-mobility group box 135,36, heat-shock proteins37-40, adenosine 

triphosphate41 and uric acid42, all of which can activate PRRs. Also, polymorphonuclear leukocytes whose 

proteolytic enzymes directly damage cardiomyocytes quickly infiltrate the tissue2. It is therefore important to 

note that although this thesis is devoted to a single pathway from mtDNA via nucleolin to TLR9 to NF-κB and 

IRF to proinflammatory cytokines and type I interferons, there are many other DAMPs and many other 

receptors which contribute to the post-infarction inflammatory response. This thesis investigates only one 

pathway among several which contribute to post-infarction inflammation. However, the abundance of mtDNA 

in the heart underpins the importance of identifying its receptors and the impact of their activation on cardiac 

inflammation.  

The cardiomyocyte as an immune cell 

Under normal conditions the heart is less immunologically active than many other tissues which function to 

continuously survey for microorganisms or other signs of danger. The presence of innate immune receptors in 

the heart may represent vestigial receptors which have eluded evolutionary pressure. The heart can be exposed 

to exogenous triggers of innate immunity when normal defenses break down and to endogenous triggers when 

large-scale tissue damage occurs. For the human heart, the most common trigger of innate immunity is 

ischemia-reperfusion injury233. For a long time, the heart has been recognized as a target of immune reactions 

after infection234 or infarction32. However, the heart might also play and active role in immunity235. The first 

prerequisite for the heart as an immunological organ is the expression of PRRs. The heart expresses TLRs 

mRNA for TLRs 1-10 with TLR4 and TLR2 as the most abundant52. The presence of TLRs would suggest that 

cardiomyocytes are capable of mounting a response to TLR ligands, and for ischemia-reperfusion236,237 and 

LPS-induced shock237,  myocardial TLR4, not just that expressed in immune cells, is important for the 

immunological response236,237. Similarly for TLR9, stimulation with bacterial DNA or CpG rich DNA induces 

myocardial inflammation55 and reduces cardiomyocyte contractility55,107. It has been shown that TLR9 

activation by CpG does not cause prototypical pro-inflammatory signaling in normoxic neonatal rat 

cardiomyocytes, but rather induce an AMPK-dependent energy-conservation119. We hypothesized, however, 

that cardiomyocytes during normoxia respond differently to danger signals than during hypoxia-reoxygenation. 

In paper III, we show that the gene expression of the pro-inflammatory cytokines interleukin-1β, tumor-

necrosis factor α and interferon α1 was upregulated by mtDNA, but not nDNA in cardiomyocytes exposed to 
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40 minutes of non-lethal hypoxia and two hours of reoxygenation, showing a clear pro-inflammatory 

phenotype to mtDNA when under cellular stress. Importantly, the immunological functions of the 

cardiomyocytes in situations of cellular stress are likely due to interaction with other cell types, including 

immune cells and cardiac fibroblasts, which may function as sentinel cells in the heart108 

Cardiomyocytes internalize DAMPs 

For ligands whose receptors reside inside the cell, ligand uptake is a prerequisite for activation. We have 

shown in papers II and III that cardiomyocytes internalize DNA, which has also been shown by other 

investigators in normal55 and pathological circumstances44,55. However, the mechanism for internalization of 

DNA is unknown, as is its function. First, there might be a difference in the rate of internalization under 

normal and pathological situations – possibly the stressed cardiomyocyte is more likely to internalize 

extracellular material, which could be regulated at the level of the receptor or mechanism responsible for 

internalization. Second, the cardiomyocyte's capacity to respond to internalized DAMPs could also be context-

specific. Under normal circumstances, DAMPs could signal low-grade danger and induce metabolic adaptation 

in the cardiomyocyte119. As we have shown in paper III, cardiomyocytes mount an inflammatory response to 

extracellular DNA when exposed to H/R but not under normal circumstances. Further, under chronic stress, 

DAMPs cause a maladaptive response in the cardiomyocyte44. Therefore, it is tempting to speculate that 

inhibition of internalization of DAMPs such as mtDNA is a viable strategy for reducing receptor activation. 

Can cell-surface nucleolin be responsible for DNA internalization? 

TLRs recognize nucleic acids in endosomes238, but endosomal localization is probably not important for ligand 

recognition. Rather, compartmentalization appears to be a mechanism to avoid unwanted activation and 

probably autoimmunity as chimeric TLR9 expressed on the cell-surface recognizes self-DNA239. Although 

cell-surface TLR9 has been described240, its primary location is in the endosome. Therefore, the ligand – CpG 

DNA or mtDNA – must be internalized for recognition. We initially hypothesized that endocytosis was 

responsible for the uptake of DNA, but found in paper III that two different inhibitors of endocytosis did not 

inhibit the uptake of fluorescent CpG in cardiomyocytes. Transmembrane diffusion and phagocytosis are 

unlikely. Other investigators have provided evidence of receptor-mediated endocytosis of CpG in B cells 

without implicating a specific receptor241. Candidates for RME include scavenger receptors, which are 

considered a PRR subclass by some129. RAGE has been implicated in CpG internalization230, as have eight 

different RNA-binding proteins in microglia242. We investigated the role of another RNA-binding protein, 

nucleolin, in the internalization of DNA in cardiac cells. Nucleolin shuttles pre-RNAs from the nucleus to the 

cytoplasm131,132 and facilitates the attachment of HIV-1 to the cell surface of CD4+ T cells and is required for 

internalization of human parainfluenza virus type 3 to airway epithelial cells135. Cell-surface nucleolin is the 
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receptor for a 26-mer DNA oligonucleotide136 and mediates the uptake of DNA nanoparticles137. We show in 

paper III that nucleolin is expressed in the membranes of cardiomyocytes and that its inhibition reduces the 

uptake of fluorescent CpG. Although we do not show direct evidence of CpG or mtDNA interaction with cell-

surface nucleolin, it does represent a possible route for internalization of immunogenic DNA in 

cardiomyocytes and cardiac fibroblasts. It is important to note that midkine is a dual-function cytokine 

implicated in progression of inflammatory disease, such as experimental autoimmune encephalomyelitis166, but 

with protective effects in both myocardial infarction167 and in post-infarction heart failure168,169.  It is tempting 

to speculate that one of the protective roles of midkine in these studies could be via reduced uptake of 

immunogenic mtDNA. 
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Concluding remarks 

Experimental evidence in this thesis is in line with our main hypothesis that cellular debris from dead 

cardiomyocytes cause inflammation which contributes to post-ischemic damage to the heart. Specifically, the 

main findings were: 

 Mitochondrial DNA is released from the post-ischemic human heart 

 Mitochondrial mtDNA activates TLR9 and NF-κB and contributes to cardiomyocyte injury 

 Cardiomyocytes mount an inflammatory response when exposed to mitochondrial DNA during H/R 

and cell-surface nucleolin may be responsible for internalization of DNA 

 

If an experiment answers one question, two more arise. These, and more, will be the subject of future 

experiments in our group: 

 Is mitochondrial DNA also released from the human heart during heart surgery? 

 Is circulating mitochondrial DNA free or bound to proteins or packed in vesicles? 

 Which parts of mitochondrial DNA are immunogenic? 

 Are there other mitochondrial components that may drive inflammation if released? 

 Does mitochondrial DNA cause more potent inflammation in men than in women? 

 Which other receptors in the heart are important for extending post-ischemic cardiomyocyte injury? 

 How do cardiomyocytes and other cell types interact during post-ischemic inflammation? 

 How does cell-surface nucleolin internalize DNA? 

 What are the end effects of the inflammatory response of cardiomyocytes? 

 

The over-reaching aim of this line of research is to improve post-infarction outcomes for patients. Better 

understanding of the molecular mechanisms that drive the maladaptive post-ischemic inflammatory response 

in the heart will allow future therapy to strike the right balance between maladaptive inflammation and critical 

tissue repair. The abundance of mitochondria in the heart hints at the importance of their once-bacterial 

components as triggers of inflammation and as potential therapeutic targets. 
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