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Abstract 

Recent advances in hydrological impact studies points that the response of specific 

catchments to climate change scenario using a single model approach is questionable. Based 

on this hypothesis, this study was aimed at investigating the impact of climate change on the 

hydrological regime of river basins in three different climatic zones (China, Ethiopia and 

Norway) using WASMOD and HBV hydrological models. Specifically the objectives 

include (i) examining and comparing the hydrological response of different river basins to 

climate change scenarios, (ii) testing the sensitivity of WASMOD and HBV models, and (iii) 

testing the sensitivity of climate change scenarios in different climatic regions. The climate 

change response of the three basins (Didessa, Dongjiang and Elverum) were evaluated in 

terms of runoff, actual evapotranspiration and soil moisture storage change for incremental 

precipitation and temperature change scenarios using HBV and WAMOD models. The 

parameters of hydrological models were determined in the study catchment using current 

climatic inputs and observed river flows. The historical time series of climatic data was 

adjusted according to the climate change scenarios. The hydrological characteristics of the 

catchments under the adjusted climatic conditions were simulated using the calibrated 

hydrological model. Finally, comparisons of the model simulations of the current and 

possible future hydrological characteristics were performed. The calibration and validation 

results of WASMOD and HBV models show that both models can reproduce the runoff with 

acceptable accuracy for each basin. The findings of this study demonstrated that high 

sensitivity was observed for Didessa and Elverum to precipitation and temperature changes, 

respectively. However, Dongjiang was found less sensitive to both precipitation and 

temperature changes. In general, the results imply that there is limitation in moisture and 

temperature for Didessa and Elverum, respectively. The hydrological impact of climate 
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change resulted from synthetic scenario using the two models indicate that the sensitivity of 

catchments in response to different climate change scenario was different in different 

climatic regions. Thus, the result demonstrated a concern that hydrological impact of climate 

change analysis using single hydrological model may lead to unreliable conclusion. In this 

regard, conducting multi model analysis is one way to reduce such uncertainty. Finally, we 

recommend further research in this area in order to exhaustively explore hydrological impact 

of climate change in different regions. 
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1. Introduction 

1.1  Background Information 

Climate change refers to the change in the state of the mean and/or variability of climate 

properties over time, due to natural variability or as a result of anthropogenic activity (IPCC, 

2007). The anthropogenic production of greenhouse gases will induce many changes in the 

natural environment. The most obvious of these are on the climate, through increasing mean 

global temperatures, modifying precipitation distributions and change evapotranspiration 

rate (Karl, 1996). Nowadays there is strong scientific evidence that the average temperature 

of the Earth’s surface is increasing due to greenhouse gas emissions and predicted that mean 

surface temperatures may rise 0.3–0.6
o
C per decade in the 21st century (IPCC, 2001).  

With respect to hydrology, climate change can cause significant impacts on water resources 

by resulting changes in the hydrological cycle. The increasing trend of temperature will lead 

to greater amounts of water vapour in the atmosphere and the hydrological cycle will be 

intensified with more precipitation. However, the extra precipitation will be unequally 

distributed around the globe. Some parts of the world may see significant reductions in 

precipitation, or alterations in the timing of wet and dry seasons and would lead to increases 

in both floods and droughts (Seino et al., 1998). The spatial change in amount, intensity and 

frequency of the precipitation will affect the magnitude and frequency of river flows; 

consequently, it will substantially affect the water resources at local and regional levels. 

Climate change is expected to have adverse impacts on socioeconomic development in all 

nations and the degree of the impact will differ. Such hydrologic changes will affect nearly 

every aspect of human well-being, from agricultural productivity and energy use to flood 

control, municipal and industrial water supply, and fish and wildlife management (Xu, 
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2000). The tremendous importance of water in both society and nature underscores the 

necessity of understanding how a change in global climate could affect regional water 

supplies and it has motivated many researchers to conduct studies using different 

approaches. In this regard, quantitative estimates of the hydrological effects of climate 

change at local and regional scales are essential for understanding and solving the potential 

water resource management problems associated with water supply for domestic and 

industrial water use, power generation, and agriculture (Steele-Dunne et al., 2008). 

Therefore, the ability to understand the hydrologic response of climate change will help 

policy makers to guide planning and form more resilient infrastructure in the future. 

Hydrological models provide a framework to conceptualise and investigate the relationships 

between climate, and water resources (Jothityangkoon et al., 2001). The three most often 

used classification of hydrological models are; empirical or black-box, conceptual or grey-

box, and physically based distributed or white-box models. Empirical models do not 

explicitly consider the governing physical laws of the process involved, but only relate input 

to output through some transform function. Conceptual models consider physical laws but in 

highly simplified form and represent the effective response of an entire catchment, without 

attempting to characterise the spatial variability of the response explicitly. Physically based 

distributed models contain parameters that have concurrent measurements of physical 

significance and explicitly represent the spatial variability of most of the important land 

surface characteristics (Xu, 2006). 

Many studies of the impact of climate change on the hydrology of specific geographic 

regions with single hydrological model have been reported (Beldring et al., 2008; 

Christensen et al., 2004; Jha et al., 2006; Steele-Dunne et al., 2008; Xu, 2000). When multi 

models are used to investigate the hydrological impact of climate change, big differences 
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exist in model prediction depend on the climate scenarios, the season, and the hydrological 

variables under examination (Jiang et al, 2007). Therefore, they warn that future water 

resources scenarios predicted by any particular hydrological model represent only the results 

of that model, and strongly recommend that more studies using different hydrological 

models on different climatic regions need to be carried out in order to provide more general 

conclusions. This study attempts to place the hydrological consequences of climate change 

in three different climate zones using two hydrological models and provide complete 

depiction in order to provide more general conclusions as recommend more studies using 

different hydrological models on different catchments (Jiang et al., 2007). The two models 

used to investigate the hydrological impact of climate change have been used widely in 

different climatic regions. They are HBV-light, daily water balance model described in 

(Seibert. J., 1998) and WASMOD, monthly water balance model described in (Xu, 2002). 

The potential of the models for studies of climate change impact on hydrological regimes of 

river basins is presented (Beldring et al., 2008; Steele-Dunne et al., 2008; Xu, 2000).  

1.2 Objectives of the study 

This study is aimed at investigating the impact of climate change on the hydrological regime 

of river basins in three different climatic zones using WASMOD and HBV hydrological 

models. Specifically the objectives are: 

 To examine and compare the hydrological response of different climatic zones river 

basin’s to different climate change scenarios. 

 To test the sensitivity of WASMOD and HBV models for climate change scenarios 

in different climatic regions  

 To test the sensitivity of different climate change scenarios in different climatic 

regions using two hydrological models.  
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2. Study areas and data 

2.1 Dongjiang Basin (China) 

Dongjiang basin is one of the Zhujiang sub-basins located in Guangdong and Jiangxi 

provinces in southern China (Figure 1). The drainage area of the river basin is 25,555 Km
2
 

and flows from north-east to south-west direction. The landscape of the basin is 

characterized by hills which account 78.1 % and the remaining 14.4 % is plains (Jin et al., 

2008).  Dongjiang basin has sub-tropical climate with the mean annual temperature of 21
o
C 

and average annual rainfall of 1747 mm for the period 1960 – 1988. Frontal and typhoon 

type of storms are the most common type of rainfalls which generate precipitation for the 

basin. The temperature of the basin occasionally dropped below 0
o
C in the mountains of the 

upstream area during the winter time (Jiang et al., 2007). In this study, areal rainfall was 

calculated from the records of the 51 stations using the Thiessen polygon method, mean 

daily temperature from 8 stations and evaporation data from 5 stations were organized in 

order to use as model input for the period of 1978 – 1988.  

2.2 Didessa Basin (Ethiopia) 

Didessa river basin is located in the South Western part of Ethiopia (Figure 1). The 

catchment area of the river basin encompasses approximately 9981 Km
2
 up to the river 

gauge near Arjo as it is extracted a Shuttle Radar Topographic Mission (SRTM) Digital 

Elevation Model (DEM).  Didessa river is a part of the upper Blue Nile drainage system and 

it covers around 5.4 % of the upper Blue Nile basin area and the river is the largest tributary 

of upper Blue Nile river which contributes 10.7 % of the total discharge (Conway, 2000). 

Climate of the study area varies from humid to semiarid and most precipitation occurs in the 

wet season called Kiremt (May-September) which accounts 78 % of the annual precipitation. 
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The remaining precipitation occurs in the dry season from October to April, which accounts 

22 % according to the 1985-1999 precipitation data. The primary climatic and hydrologic 

daily data set used for this study was obtained from Ethiopian National Meteorological 

Agency and Ministry of Water Resources respectively. The climatic data contain 

precipitation, temperature and evaporation, while the hydrological data contain river 

discharge. The rainfall data base of daily time series consisted of records from 10 rainfall 

stations with 7 time series covering the period from 1985 to 1999, while the remaining 3 

started operation during 1987 – 1990. The model input of areal precipitation data was 

calculated using the Thiessen polygon method and the daily data were aggregated to create 

monthly data set. 

2.3 Elverum Basin (Norway) 

Elverum catchment is a part of Glomma basin and located in the south eastern part of 

Norway (Figure 1). The drainage area of the basin up to Elverum river gauge station is 

15449 Km
2
. The head waters are partially glacier-faced high mountains and drain 

downstream to south, Lake Mjosa, the largest lake in Norway. The upper head water is the 

catchment of Hummelvoll which is nested within Elverum. The basin is characterized by 

cold winter and relatively warm summer (the mean annual temperature at Hummelvoll is 

0.3
o
C and the mean annual precipitation ranges from 450 – 890 mm). The hydrology of the 

area is characterized by low flow during winter caused by snow accumulation and high flow 

during snow melt in spring or early summer (Henny A.J. van Lanen et al., 2008). All the 

hydro-climatic data consider in this study was acquired from Norwegian Water Resource 

and Energy Directorate (NVE). and from Norwegian Meteorological institute (eKlima) 

archive.  
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Figure 1. The catchment of Didessa, Dongjiang, and Elverum and their location Ethiopis, China, and Norway 
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3. Methodology 

3.1 Approach  

Research on hydrological impact of climate change is a three-step process essentially consists 

of: (1) producing global climate change scenarios by using general circulation models 

(GCMs) in association with increasing greenhouse gases, (2) producing regional and 

catchment scale climate change scenarios by using hypothetical method or downscaling 

techniques through which the GCM outputs are downscaled to the scales compatible with 

hydrological models, and (3) producing future water resources scenarios at regional and 

catchment scales by using hydrological models with regional and catchment scale climate 

change scenarios as input.  

Such studies usually follow the four steps (Xu, 1999; Xu, 2005): 

1. The parameters of hydrological models were determined in the study catchment using 

current climatic inputs and observed river flows for model calibration and validation. 

2. The historical time series of climatic data was adjusted according to the climate 

change scenarios (hypothetical or downscaled). 

3. The hydrological characteristics of the catchment under the adjusted climate were 

simulated using the calibrated hydrological model. 

4. Comparisons of the model simulations of the current and possible future hydrological 

characteristics were performed 

3.2 Climate Change Scenarios 

The development of climate change scenarios is an important step in the hydrological impact 

of climate change study. A climate change scenario refers to a representation of the 



 

8 

 

difference between some plausible future climate and the current or control climate (IPCC, 

2001).  It is a probable indication of what the future could be like over decades or centuries, 

given a specific set of assumptions. A number of different methods exist to construct climate 

change scenarios that include techniques utilising climate analogues, synthetic scenarios,  

general circulation model (GCM) scenarios (Carter, 1995).  

Analogue scenarios are constructed by identifying recorded climate regimes which may 

resemble the future climate in a given region. These records can be obtained either from the 

past (temporal analogues) or from another region at the present (spatial analogues) (IPCC-

TGICA, 2007). Therefore, in analogues scenarios, spatially or temporally displaced climate 

data are used as climate change scenarios.  

Arbitrary (Synthetic) scenarios describe techniques where particular climatic elements are 

changed by a realistic but arbitrary amount, often according to a qualitative interpretation of 

climate model simulations for a region. For example, adjustments of baseline temperatures by 

+1, +2, +3 and +4°C and baseline precipitation by ±5, ±10, ±15 and ±20 percent could 

represent various magnitudes of future change (IPCC-TGICA, 2007). For instance, this type 

of climate change scenario has been used to study the effects of climate change on water 

resources in central Sweden (Xu, 2000). The main advantages of synthetic scenarios are 

simple to apply, transparent and easily interpreted by policy makers and non-specialists. In 

addition, they capture a wide range of possible changes in climate, offering a useful tool for 

evaluating the sensitivity of an exposure unit to changing climate. Since individual variables 

can be altered independently of each other, synthetic scenarios also help to describe the 

relative sensitivities to changes in different climatic variables. Moreover, they can assist in 

identifying thresholds or discontinuities of response that might occur under a given 
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magnitude or rate of climate change. Different studies can readily apply the same synthetic 

scenarios to explore relative sensitivities of exposure units. This is potentially useful for 

comparing and synthesizing the potential effects of climate change over different sectors and 

regions (IPCC-TGICA, 2007). 

General circulation models (GCMs) are sophisticated mathematically based simulations of 

the world’s climate including atmospheric, oceanic, cryospheric, and land surface 

components (Gagnon and Gough, 2005). GCMs, often in conjunction with nested regional 

models or other downscaling methods, have the potential to provide geographically and 

physically consistent estimates of regional climate change which are required in impact 

analysis. However, their resolution is quite coarse relative to the scale of exposure units in 

most impact assessments. Given the limitations of GCMs grid-point predictions for regional 

climate change impact studies, an alternative option is to downscale GCM’s climate output 

for use in hydrological models. Downscaling can be defined as a technique that allows 

increases the resolution of the Global Climate Models (GCMs regional scale) to obtain local 

scale surface weather for several applications (IPCC-TGICA, 2007).  

In this study, we used only the hypothetical scenario in order to investigate the response of 

river basins in different climatic zone to climate change and the sensitivity of hydrological 

models (WASMOD and HBV) for the same climate change scenarios. In order to cover a 

wide range of climate variability, ten hypothetical climate change scenarios were derived 

from combinations of two absolute temperature changes and five relative precipitation 

changes (Table 1).  
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Table 1. Hypothetical climate change scenarios 

Scenarios 1 2 3 4 5 6 7 8 9 10 

ΔT (
o
C) 2 2 2 2 2 4 4 4 4 4 

ΔP (%) -20 -10 0 +10 +20 -20 -10 0 +10 +20 

 

3.3 Hydrological Models 

Hydrologic models are simplified, conceptual representations of a part of the hydrologic 

cycle and predominantly used for hydrologic prediction and understanding of hydrologic 

processes (Dooge, 1977). Based on the description of the physical processes, hydrological 

models can be classified as conceptual model which consider physical laws but in highly 

simplified form, and physically based models which contain parameters that have concurrent 

measurements of physical significance. On the other hand, according to the spatial 

description of catchment processes, hydrological models can be categorized as lumped 

model, treating the complete basin as a homogeneous whole, and distributed model, the 

whole basin is divided into elementary unit areas like a grid net and flows are passed from 

one grid point (node) to another as water drains through the basin (Xu, 2006). For this study, 

WASMOD lumped conceptual hydrological model and HBV semi-distributed conceptual 

models are selected based on; (1) the nature of physical processes that interact to produce the 

phenomena under investigation, (2) availability of the required information, (3) widely 

applicability and popularity of the models, and (4) the acquaintance with the models.  
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3.3.1 HBV Model 

HBV model was first developed at the Swedish Meteorological and Hydrological Institute 

(Bergstrom and Forsman, 1973). The HBV model is a water balance based mathematical 

model of the hydrological processes in a catchment used to simulate the runoff properties 

using rainfall, temperature and potential evaporation data. The model consists of different 

routines representing snow by a degree-day method, soil water and evaporation, groundwater 

by three linear reservoir equations and channel routing by a triangular weighting function 

(Seibert, 1997). The HBV model version used in this study is HBV light (Seibert, 2005) and 

the conceptualization of the model is shown in Fig 2 (Seibert. J., 1998).  

 

Figure 2. Schematic structure of HBV model 

As described by Seibert (2005), the HBV model runs on daily time step to simulate daily 

discharge using daily rainfall, temperature and potential evaporation as inputs. Precipitation 

is simulated to be either snow if the temperature is below the threshold temperature TT (°C) 



 

12 

 

or rain if the temperature is above the threshold temperature, TT (°C). In order to represents 

systematic errors in the snowfall measurements and the ‘missing’ evaporation from the snow 

pack in the model, snowfall correction factor, SFCF (-) is multiplied by the precipitation 

simulated to be snow when the temperature is below TT. Snow melt is calculated with the 

degree-day method (Eq. (A1)). The snow pack retains melted water and rainfall until it 

exceeds a certain fraction, CWH (-), which is the water equivalent of the snow. Liquid water 

within the snow pack refreezes according to a refreezing coefficient, CFR (-) (Eq. (A2)). 

 Melt = CFMAX *(T(t) −TT)                                                                          (A1) 

 Refreezing = CFR*CFMAX *(TT −T(t))                                                      (A2) 

Rainfall and snow melt (P) are divided into water filling the soil box and groundwater 

recharge depending on the relation between water content of the soil box (SM (mm)) and its 

largest value (FC (mm)) (Eq. (A3)). Actual evaporation from the soil box equals the potential 

evaporation if SM/FC is above LP (-), while a linear reduction is used when SM/FC is below 

LP (Eq. (A4)). 

 
arg ( )

( )

BETA

rech e SM t

p t FC
                                                                                 (A3) 

( )
* m in ,1

*
act pot

SM t
E E

FC LP
                                                                          (A4) 

Groundwater recharge is added to the upper groundwater box (SUZ (mm)). PERC (mm d-1) 

defines the maximum percolation rate from the upper to the lower groundwater box (SLZ 

(mm)). For the lake area, precipitation and evaporation is added and subtracted directly from 

the lower box. Runoff from the groundwater boxes is computed as the sum of two or three 

linear outflow equations (K0, K1 and K2 (d
-1

)) depending on whether SUZ is above a threshold 

value, UZL (mm), or not (Eq. (A5)). This runoff is finally transformed by a triangular 
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weighting function defined by the parameter MAXBAS (d) (Eq. (A6)) to give the simulated 

runoff (mm d
-1

). The model has in total 10 parameters to be calibrated. 

 
2 1 0

( ) * * * max( , 0)
GW

Q t K SLZ K SUZ K SUZ SLZ                                (A5) 

 
1

2

1

( ) ( ) * ( 1)

2 4
, ( ) *

2

M AXBAS

aim G W

i

i

i

Q t C i Q t i

M AXBAS
w here c i u du

M AXBAS M AXBAS

                             (A6) 

3.3.2 WASMOD model 

The Water And Snow balance MODeling system (WASMOD) is a conceptual lumped 

modeling system. The model version used in this study was developed by (Xu, 2002). 

WASMOD is monthly water balance model that requires monthly values of areal 

precipitation, potential evapotranspiration and air temperature as inputs. The model outputs 

are monthly river flow and other water balance components, such as actual 

evapotranspiration, slow and fast components of river flow, soil-moisture storage and 

accumulation of snowpack. The schematic representation of WASMOD is given in Fig 3 

(Xu, 2002).  

  



 

14 

 

 

Figure 3. The concept of WASMOD model system  

As the model described in (Xu, 2002), temperature-index function is used to separate rainfall 

rt and snowfall st and then snowfall is added to the snowpack spt (the first storage) at the end 

of the month, of which a fraction mt melts and contributes to the soil-moisture storage smt. 

Temperature-index method is used to calculated snowmelt. A part of rainfall is subtracted and 

added to interception evaporation loss before the rainfall contributes to the soil storage. The 

soil storage contributes to evapotranspiration et , to a fast component of flow ft and to base 

flow bt. All the above mentioned processes are governed by six parameters (a1 - a6) and the 

principal equations for the parameters are presented in Table 2 (Engeland et al., 2005). When 
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the model is applied to snow free catchments, only 3 parameters need to be calibrated which 

are controlling actual evapotranspiration, fast flow and slow flow, respectively. 

Table 2 Principal equations for the parameters of WASMOD model  

Snowfall                                         st = pt{1 – exp[–(ct – a)/(a1 – a2)]
2
}

+
                a1 ≥ a2 

Rainfall                                           rt = pt – st 

Snow storage                                  spt = spt-1 + st – mt 

Snowmelt                                        mt = spt{1 – exp[–(ct – a2)/(a1 – a2)]
2
}

+
 

Potential evapotranspiration           ept = [1 + a3(ct – cm)]epm 

Actual evapotranspiration               et = min{wt[1 – exp(–a4ept)], ept}                  0 ≤ a4 ≤ 1 

Slow flow                                        bt = a5(sm
+

t-1)
2
                                                 a5 ≥ 0 

Fast flow                                          ft = a6(sm
+

t-1)
2
 (mt + nt)                                    a6 ≥ 0 

Water balance                                  smt = smt-1 + rt + mt – et – bt – ft 

wt = rt + sm
+

t-1 is the available water; sm
+

t-1 is the available storage; nt = rt – ept(1 – exp(rt/ept)) 

is the active rainfall; pt and ct are monthly precipitation and air temperature respectively; and 

epm and cm are long-term monthly averages. ai (i = 1, …, 6) are the model parameters. The 

superscript plus means x
+
 = max(x,0). 

3.4 Model Calibration and Validation 

Model calibration and validation are necessary and critical steps in any model application. 

For most lumped hydrological models, calibration is an iterative procedure of parameter 

evaluation and refinement, as a result of comparing simulated and observed values of interest. 

Model validation is an extension of the calibration process.  Its purpose is to assure that the 

calibrated model properly assesses all the variables and conditions which can affect model 

results. It also demonstrate the ability to predict field observations for periods separate from 
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the calibration effort and evaluated through qualitative and quantitative measures involving 

both graphical comparisons and statistical tests (Donigian, 2005). 

Conceptual hydrological models are designed to approximate the dominant physical 

processes of the hydrological cycle with the help of a series of connected mathematical 

equations (Beven, 2001). The parameters of WASMOD and HBV models cannot be directly 

determined from field observation or estimated from catchment characteristics, instead 

determined through the calibration procedure. For HBV model, Monte Carlo procedure was 

used to investigate the best parameter values using the results of a large number of model 

runs with randomly generated parameter sets. Using the best parameter set, the first one year 

period used as a warm up period to initialize the model before actual calibration and the 

remaining periods were divided in such a way that two-third of the data was used for the 

calibration and one-third of the data was used for validation. In the case of WASMOD, an 

automatical optimization is used. After the specification procedure, two-third of the data was 

used for calibration and the remaining one-third of the data for validation.  

It is a common practice to make use of some statistical criteria to evaluate model 

performance. Among the many model performance indicators, the Nash–Sutcliffe model 

efficiency coefficient (E) has been widely used to quantitatively describe the accuracy of 

model output. The coefficient can range from minus infinity to one with higher value 

indicating better performance (Nash and Sutcliffe,(1970).It is defined as: 

2

2

( )
1

( )

obs sim

obs obs

Q Q
E

Q Q
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Where Qobs and Qsim represent observed and simulated discharge respectively and 
obs

Q is 

observer mean value.  The value of E represents the extent to which the simulated value is the 

better predictor of the observed mean. However, the mean value cannot fully indicate how 

well individual simulated values match observed values. To overcome this limitation, Root 

mean square error (RMSE) and Relative volume error (RVE) were also employed.   

The root mean square error (RMSE) is the measure of differences between values predicted 

by a model and values actually observed. The root mean square error (RMSE) is defined as;  

2

1
( )

t t

n

obs simt
Q Q

RM SE
n

 

Where Qobs and Qsim represent observed and simulated discharge respectively and n is a 

number of observations. RMSE measures the average magnitude of error. Since the errors are 

squared before they are averaged, it gives relatively high weight to large errors. The value of 

RMSE can ranges from 0 to and lower values are better. 

Relative volume of error (RVE) tells us how close the simulated value is to the observed 

value.  It gives an indication of how good the simulated value is relative to the size of 

observed values and defined as; 

( )
(% ) 100

( )

obs sim

obs

Q Q
RVE

Q

 

Where, Qobs and Qsim represent observed and simulated discharge respectively.   
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4. Results and Discussion 

4.1 Evaluation of model performance in reproducing historical records 

Statistical and visual comparisons of observed and simulated values were conducted to 

evaluate the performance of WASMOD and HBV models on different basin scale at different 

climate zones. In order to compare the statistical performance of the two models, the daily 

time step result of HBV model is aggregated into monthly values. The evaluated performance 

statistics for the calibration and validation period are presented in Table 3. For visual 

comparisons, observed and simulated runoff graphs are presented in the appendix; only the 

statistical evaluations are briefly discussed here.  

The value of Nash–Sutcliffe coefficient (E) in Table 3 indicates that both models are 

performed quite well in all catchments and it ranges from 0.88 to 0.96 for calibration period 

and from 0.80 to 0.95 for validation period. The value of E obtained using WASMOD model 

ranges from 0.88 to 0.94 for calibration and from 0.80 to 0.90 for validation and the highest 

and the lowest value obtained was at Shuntian and Dembi catchments for calibration period, 

respectively. The value of E obtained using HBV model ranges from 0.88 to 0.96 for 

calibration and from 0.84 to 0.95 for validation and the highest and the lowest value obtained 

was at Shuntian and Dembi catchments for calibration period, respectively. Although E 

values are in the acceptable range for all basins for both models, relatively slightly higher 

RMSE and RVE were obtained at Dembi but it is within the acceptable range.  

For the validation period, the performance of both models were somewhat reduced in the 

Hummelvoll catchments.  Although there was limited reduction in E, the corresponding low 

error (RMSE and RVE) obtained increased the confidence of the models performance to 
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simulate the historical records at acceptable accuracy. Overall, the result shows that both 

models perform well to reproduce historical records from the three climate zones. 

Comparisons of mean monthly runoff values simulated by WASMOD and HBV models with 

the observed values are as depicted in Fig 4. There is a good agreement in the mean monthly 

observed runoff with both model simulations. Relatively to other catchments, observed runoff 

for the months May and July at Dongjiang basin showed a slight difference with mean 

monthly runoff simulation by both models. The mean monthly runoff simulations of both 

models were over estimated for the month of August at Elverum and Hummelvoll 

catchments. WASMOD simulated runoff was also overestimated for September at 

Hummelvoll catchment. Generally, our result demonstrates that both models were able to 

reproduce the dynamics of monthly runoff hydrograph for all catchments.  

In order to evaluate the capability of WASMOD and HBV models in simulating runoff, the 

daily result of HBV model is aggregated into monthly values and the monthly model 

simulated runoff are correlated with the corresponding observed runoff values using linear 

regression equation Y aX b  for each catchment. In the regression equation, Y represented 

model calculated runoff, X is observed runoff, a  is slope and b is intercept.  

Observed and simulated runoff values were relatively less correlated for Hummelvoll 

catchment (R
2
=0.86) and highly correlated for Shuntian catchment (R

2
=.92) using 

WASMOD model (Fig 5). At the same time using HBV model, observed and simulated 

runoff were relatively less correlated for Dembi catchment (R
2 

= 0.87) and highly correlated 

for Shuntian (R
2 

=0.96) (Fig 6).    
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Table 3. Model performance statistics obtained using WASMOD and HBV models for different basins and sub-basins during the specified 

calibration and validation period 

 

Country 

Basins and  

sub-basins 

Area 

(Km
2
) 

 

Model 

Calibration Validation 

Period E RMSE RVE (%) Period E RMSE RVE (%) 

 

 

China 

Dongjiang 25555 
HBV 1978-1983 0.91 15.87 1.64 1984-1988 0.84 15.44 8.98 

WASMOD 1978-1983 0.91 15.57 -1.09 1984-1988 0.83 16.24 4.04 

Shuntian 1357 
HBV 1978-1983 0.96 16.37 0.95 1984-1988 0.95 15.53 -4.42 

WASMOD 1978-1983 0.94 21.6 -2.24 1984-1988 0.90 2.23 -8.59 

 

 

Ethiopia 

Didessa 9981 
HBV 1987-1992 0.89 11.59 -0.38 1993-1996 0.87 11.18 -11.36 

WASMOD 1987-1993 0.89 11.6 -1.2 1993-1996 0.90 11.14 -5.32 

Dembi 1806 
HBV 1987-1993 0.88 27.55 2.38 1994-1998 0.85 25.19 -16.22 

WASMOD 1987-1993 0.88 30.00 -3.85 1994-1998 0.87 24.5 -0.88 

 

 

Norway 

Elverum 15449 
HBV 1985-1992 0.90 10.8 0.40 1993-1997 0.90 11.40 -15.5 

WASMOD 1985-1992 0.92 11.49 2.65 1993-1997 0.85 16.21 -1.28 

Hummelvoll 2411 
HBV 1980-1988 0.90 12.58 0.90 1989-1995 0.90 12.2 -0.80 

WASMOD 1980-1988 0.89 14.93 -1.87 1989-1995 0.80 17.45 -8.40 
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Figure 4. Comparisons of mean monthly observed runoff with WASMOD and HBV 

simulated runoff in each catchment. 

The R
2
 values of both models calculation for all catchments indicate that the observed and 

calculated runoff is well correlated. Concerned the value of the slope, the slope close to one 
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is relatively less bias and observed at Shuntian, Elverum and Hummelvoll for HBV model 

and at Shuntian and Didessa for WASMOD model. On the other hand, relatively high bias of 

slope is observed at Hummelvoll and Dongjiang catchments using HBV and WASMOD 

models respectively.. The bias in the interception is relatively high at Dongjiang catchment 

using WASMOD model and at Dembi catchment using HBV model. 

Generally, the statistical results and visual observation of observed and calculated runoff 

graph shows that both WASMOD and HBV models can reproduce historical monthly runoff 

series at all tested climate zone catchments with an acceptable accuracy. No significant 

difference exists between the two models in reproducing the historical records. The main 

purpose of comparing the observed runoff with model simulated value is to check the 

capability of the models in reproducing the historical records at acceptable accuracy on 

different climate zones in order to make sure that the simulations under climate change 

conditions will be predicted well.   
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Figure 5. Scattered plot and regression equation of observed versus WASMOD calculated 

monthly runoff values at (a) Dongjiang, (b) Shuntian, (c) Didessa, (d) Dembi, (e) Elverum, 

(f) Hummelvoll. 
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Figure 6. Scattered plot and regression equation of observed versus HBV calculated monthly 

runoff values at (a) Dongjiang, (b) Shuntian, (c) Didessa, (d) Dembi, (e) Elverum, (f) 

Hummelvoll. 
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4.2 Hydrological response of basins for climate change scenarios using WASMOD 

and HBV models  

The ultimate objective of the whole processes is to generate an estimate of change in hydro-

climatic variables for a given scenario in different climate zones that characterize the future 

climate. It is important to be aware of the various environmental responses for climate 

change and specifically, it is vital for water resource management to be sentient of the effect 

of climate change on hydro-climatic variables. Obviously, runoff is crucial to provide an 

indication for the degree of impact of climate change on water resource. The hydro-climatic 

variables other than runoff included in this study are actual evapotranspiration and soil 

moisture storage. For all the variables, the change is analyzed on mean annual and monthly 

average values.  

4.2.1 Mean annual runoff change 

The outputs from the two hydrological models are analyzed to detect the percentage change 

in mean annual runoff and the results are presented in Figure 7.  

From HBV model result, the potential decrease in mean annual runoff for scenario 6 (ΔP = -

20%, and ΔT = 4
o
C) is relatively bigger from other scenarios for all catchments in the 

prediction of both models. According to HBV model result using scenario 6, big mean 

annual runoff change is observed in Didessa catchment and the mean annual run off reduces 

by 54.2 %. Relatively less change is observed in Hummelvoll catchment and the mean 

annual runoff reduces by 31.3 %. The change in Dongjiang and Shuntian catchments is -38.7 

% and -36.2 % respectively. Based on WASMOD results using the same scenario, the 

biggest change in annual runoff is also in Didessa catchment and it is estimated 51.7 % 
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runoff reduction and relatively less change is observed in Hummelvoll catchment and the 

mean annual runoff reduces by 7.8 %. In addition, the reduction of runoff in Elverum and 

Dongjiang catchment using the same scenario is by 50.8 % and 51.7 % respectively.  

On the other hand, the potential increase in mean annual runoff is observed on scenario – 5 

(ΔP = +20%, and ΔT = 2
o
C) for all catchments as compare with scenario 6 (ΔP = -20%, and 

ΔT = 4
o
C). According to HBV result, the highest and lowest change is in Didessa and 

Hummelvoll catchments and the runoff increases by 34.7 % and 10.1 % respectively. In 

Dongjiang and Elverum catchments, the mean annual runoff increases by 20.6 % and 14.5 % 

respectively. According to WASMOD results, the highest runoff change is estimated in 

Didessa and runoff increases by 39.9 %. The lowest change is in Elverum and it is estimated 

15.1 % runoff increase. In Dongjiang basin, the runoff increases by 28.4 %.  

For scenario 3 (ΔP = 0%, and ΔT = 2
o
C), in the absence of precipitation change, According 

to WASMOD result, mean annual runoff reduces by 14.2 %, 9.1 % and 0 % in Elverum, 

Didessa and Dongjiang catchments. Based on HBV result, the mean annual runoff reduces 

by 10.2 %, 12.7 %, and 7.6 % in Elverum, Didessa, and Dongjiang catchment respectively. 

Beside to this, when we compare for scenario 8 (ΔP = 0%, and ΔT = 4
o
C), if temperature 

further increases by 4
o
C, the mean annual reduction estimated by WASMOD is 26.1 %, 16.8 

%, and 0 % in Elverum, Didessa and Dongjiang whereas according to HBV estimation, the 

runoff reduces by 13.9 %, 22.6 % and 20.7 % in Elverum, Didessa and Dongjiang 

catchments.  

The relative change in mean annual runoff due to temperature change (from 2
o
C to 4

o
C) for 

a given precipitation (from -20 % to 20 %) is quite different for different region. According 

to HBV result, the runoff reduction ranges from 8.4 % to 12.3 % for Elverum catchment, 
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from 7.9 % to 11.6 % for Didessa catchment and from 4.9 to 7.6 % for Dongjiang 

catchment. According to WASMOD result, the mean annual runoff reduction ranges from 

9.7 % to 13.6 % for Elverum catchment, from 5.0 % to 11.1 % for Didessa catchment, and 

for Dongjiang catchment, there is no change.   
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Figure 7. Mean annual runoff change estimated by HBV model (upper graph) and 

WASMOD model (lower graph)  using 10 scenarios in different catchments 
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Figure 8. Mean annual runoff change estimated by WASMOD and HBV models 

The significant change in mean annual runoff on the three basins for all climate change 

scenarios are shown in Fig 8. Different climatic zones may response differently for the same 

scenario and hydrological models. In WASMOD prediction as it is shown in Figure 8, 

Didessa basin response sensitively for each change in precipitation for both 2 
o
C & 4 

o
C 

temperature change. While the response of Dongjiang and Elverum basins are almost similar 

and not as sensitive as Didessa basin.  In all catchment cases, the temperature change from 

2
o
C to 4

o
C for a given precipitation change increases the magnitude of changes in mean 

annual runoff. The prediction of WASMOD and HBV model as it is shown in Fig 8, Didessa 

basin is sensitive for each precipitation change and the magnitude of mean annual runoff 

change is high in the case of WASMOD as compare with HBV result. Dongjiang and 

Elverum basins are not sensitive as Didessa basin.  
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4.2.2 Mean annual actual evapotranspiration change 

Models results for ten future climate change scenarios on six catchments are illustrated in 

Fig 9. As it is shown in the figure, the mean annual actual evapotranspiration change 

detected by HBV model for all catchments are relatively higher as compare with WASMOD 

model results. According to HBV result, actual evapotranspiration change for Elverum 

catchment is as high as 55.5 % when temperature change by 4
o
C and where as the change 

detected by WASMOD for the same catchment and for the same scenario is 49.2 %.  The 

mean annual actual evapotranspiration change detected using both models for Elverum 

catchment shows that the catchment is more sensitive for change in temperature than for 

change in precipitation and it reflects that the limiting factor for actual evaporation is energy 

than moisture. 

 

Figure 9. Mean annual actual evapotranspiration change estimated by WASMOD and HBV 

models 
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As WASMOD result shows that the mean annual actual evapotranspiration change of 

Dongjiang catchment is relatively less sensitivity for both temperature and precipitation 

change as compare with HBV result. 

According to WASMOD result, the mean annual actual evapotranspiration of Didessa 

catchment is more sensitive for precipitation change than temperature change but according 

to HBV result, the catchment is relatively less sensitive for precipitation change and 

moderately sensitive for temperature change.  

4.2.3 Mean annual soil moisture storage change 

The percentage change in mean annual soil moisture storage in response to ten climate 

change scenarios using WASMOD and HBV models are shown in Fig 10.   

 

Figure 10. Mean annual soil moisture storage change estimated by WASMOD and HBV 

models for each catchment 
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From WASMOD results, the mean annual change of soil moisture in Didessa catchment is 

relatively sensitive for a given precipitation change than the other catchments but according 

to HBV result, the catchment is not uniquely sensitive for precipitation change. In the case of 

Elverum catchment, the mean annual soil moisture change is more sensitive for precipitation 

change using WASMOD as compare with HBV results. The sensitivity of Dongjiang 

catchment for precipitation change is almost similar for both WASMOD and HBV model 

prediction but the sensitivity of the catchment for temperature change is in the case of HBV 

is more sensitive than WASMOD results.  

From HBV a result, the change in soil moisture storage is relatively negative for all 

scenarios on all catchments and this result reflect that the temperature increase scenario is 

significantly reduces the soil moisture storage in all regions. The differences in soil moisture 

storage change estimate by WASMOD in different catchments is high due to the fact that the 

model does not have upper and lower threshold limit for soil moisture storage where as in 

the case of HBV model, the lower and upper soil moisture storage limit is defined during 

parameter optimization procedure.   

4.2.4 Mean monthly runoff change 

The application of scenario 1 (ΔT = 2
o
C & ΔP = -20 %) and the percent of change in mean 

monthly runoff estimated by the two models in the three climate zone catchments are 

illustrated in the Fig 11.  The Fig shows that in the case of Elverum catchment, the 

percentage change in mean monthly runoff rises in April and considerably drops from May 

to throughout the year in both model predictions. Except April, the estimated mean monthly 

runoff change is negative. The pattern of mean monthly runoff change detected by the two 

models is relatively similar but the magnitude is significantly different.    



 

32 

 

 

Figure 11. Comparison of mean monthly change in runoff simulated by WASMOD (upper 

graph) and HBV (lower graph) for scenario 1 (ΔT = 2
o
C & ΔP = -20 %) 

The application of scenario 1 for Didessa catchment results that there is significant 

difference between HBV and WASMOD model calculated changes in mean monthly runoff. 

According to WASMOD result, runoff reduced by 64.1 % in March and it is the maximum 

reduction but in November, the runoff reduced by 41.3 % and it is the lowest reduction. 

When we see the estimation of HBV model, the maximum reduction of mean monthly runoff 

is attended in May and it is 78.0 % and relatively lowest reduction of runoff is in November 

and it is by 22.9 %.  

In the case of Dongjiang catchment, the application of scenario 1 results that the percentage 
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lowest change in January in both model prediction. The highest percentage change in mean 

-80

-60

-40

-20

0

20

1 2 3 4 5 6 7 8 9 10 11 12

WAS-Dong

WAS-Dide

WAS-Elver

%
 c

h
an

ge
 in

 r
u

n
o

ff

Month

WASMOD

-100

-80

-60

-40

-20

0

20

1 2 3 4 5 6 7 8 9 10 11 12

HBV-Elver

HBV-Dide

%
 c

h
an

ge
 in

 r
u

n
o

ff

Month

HBV



 

33 

 

monthly runoff is -39.2 % and -37.6 % and the lowest is-26.5 % and -21.6% by using HBV 

and WASMOD models respectively.  

 

Figure 12. Comparison of mean monthly change in runoff simulated by WASMOD (upper 

graph) and HBV (lower graph) for scenario 5 (ΔT = 2
o
C & ΔP = +20 %) 

The application of scenario 5 (ΔT = 2
o
C & ΔP = +20 %) and the percent change in mean 

monthly runoff predicted by the two models for the three catchments are illustrated in Fig 

12. According to WASMOD result as it is shown in the figure, the mean monthly runoff 

calculation for Elverum catchment is rises as high as 120.1 % in April and considerably 

drops to -18.8 % in June and the change is positive for the rest of months. On the other hand, 

the prediction of HBV model for the same catchment shows the same trend except the 

difference in magnitude of changes which is the highest in April and lowest in June and it is 

66.0 % and -20.4 % respectively.  
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According to WASMOD calculation for Didessa catchment, the percentage change in mean 

monthly runoff ranges from 42.5 % in August to 23.4 % in January. Whereas according to 

HBV prediction, the runoff reduced by 10.6 % in April and increases by 36.3 % in June.  

In Dongjiang catchment, the trend of percent change in mean annual runoff predicted by 

using the two model is almost similar and it ranges from 7.2 % to 30.4 % in December and 

May in the case of WASMOD prediction and 11.8 % to 27.9 % in December and April in 

the case of HBV prediction. 

By the application of scenario 6 (ΔT = 4
o
C & ΔP = -20 %), the percent change in mean 

monthly runoff predicted by both WASMOD and HBV model is shown in Fig 13. As it 

revealed in the figure, According to WASMOD result for Elverum catchment, the percent 

change in mean monthly runoff is positive in March and April and the change is highest in 

April (42 %) but for the rest of the months, the percent change is negative and the lowest 

change attends in Jun and it is -47 %. Based on HBV model prediction, the percent of 

change in mean monthly runoff ranges from 0.3 % in April to -76.8 % in May. 

According to WASMOD estimation of change in mean monthly runoff for Didessa 

catchment, it ranges from -73.8 % in March to -46.6 % in November. Whereas in line with 

HBV prediction, the percent change in mean monthly runoff ranges from -10.6 % in Jun to 

36.3 % in April. 
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Figure 13. Comparison of mean monthly change in runoff simulated by WASMOD (upper 

graph) and HBV (lower graph) for scenario 6 (ΔT = 4
o
C & ΔP = -20 %) 

For Dongjiang catchment, the percent change in mean monthly runoff is not considerably 

fluctuating in both model cases and the range is from -42.0 % in May to -26.0 % in 

December in line with WASMOD prediction and from -44.0 % in May to -31.3 % in January 

according to HBV prediction.   
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Fig 14. As it is shown in the figure, according to WASMOD estimation for Elverum 
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case of HBV prediction, the percent change ranges from 70.5 % to 7.3 % from July to April 

and during May and June, the percent change is -56.8 % and -35.0 % respectively. 

 

Figure 14. Comparison of mean monthly change in runoff simulated by WASMOD (upper 

graph) and HBV (lower graph) for scenario 10 (ΔT = 4
o
C & ΔP = +20 %) 

According to the estimation of WASMOD for Didessa catchment, the percent change in 

mean monthly runoff is negative from February to April and it becomes positive from May 

to January. The maximum positive change attended in September and it is 33.4 %. The 

lowest change is occurred in March and it is -9.6 %. In line with HBV model prediction, 

from December to May, the percent change ranges from -32.6 % to -2.8 % and the maximum 

reduction of runoff is in April. On the other hand, from June to November the percent 

change ranges from 1.7 % to 17.5 % and maximum increase occurs in August. 
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In line with WASMOD prediction of mean monthly runoff change for Dongjiang catchment, 

the change ranges from 2.0 % in December to 23.5 % in May. According to HBV model 

prediction, the percent change in mean monthly runoff is not fluctuated as in the case of 

WASMOD and the change ranges from 5.6 % in December to 19.3 % in May. 

4.2.5 Mean monthly Actual evapotranspiration change 

The application of scenario 1 (ΔT = 2
o
C & ΔP = -20 %) and the percent change in mean 

monthly actual evapotranspiration predicted by the two models for the three catchments are 

illustrated in Fig 15. As it is shown from the figure, the percent change in actual 

evapotranspiration predicted by WASMOD for Elverum catchment ranges from 0 % to 25.7 

% and the change is highest in April. For Didessa catchment, the change ranges from -46.9 

% in February to 0.1 % in June. For Dongjiang catchment, the change ranges from -4.8 % in 

May to -1 % in January.  

On the other hand, the prediction of HBV model for the same scenario shows that the 

percentage change in actual evapotranspiration for Elverum catchment ranges from -8.9 % in 

November to 61.5 % in October. Mean annual evapotranspiration reduced only on 

November otherwise it increases for the other months. For Didessa catchment, the 

percentage change ranges from -46.9 % in February to 10.1 % in November and Mean 

monthly actual evapotranspiration reduces from December to May and increases from June 

to November. The prediction for Dongjiang catchment shows that, the percent change ranges 

from -10.6 % in December to 0.1 % in June and except June, in other months the actual 

evaporation decreases.  
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Figure 15. Comparison of mean monthly change in actual evapotranspiration simulated by 

WASMOD (upper graph) and HBV (lower graph) for scenario 1 (ΔT = 2
o
C & ΔP = -20 %) 

The application of scenario 5 (ΔT = 2
o
C & ΔP = +20 %) and the percent change in mean 

monthly actual evapotranspiration predicted by the two models for the three catchments are 

shown in Fig 16. The prediction of WASMOD shows that the percent change in mean 

monthly actual evapotranspiration for Elverum catchment reaches its maximum in April and 

it is 34.6 % and from April to October, the change ranges from 24.9 % to 34.6 %. For 

Didessa catchment, it ranges from 8.2 % in May to 17.5 % in January. For Dongjiang 

catchment, the percent change in mean monthly actual evapotranspiration ranges from 12.7 

% in January to 20.3 % in May.  
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Based on the prediction of HBV model, for Elverum catchment, the percent change in mean 

monthly actual evapotranspiration ranges from -16.8 % in November to 61.9 % in October. 

For Didessa catchment, the percent change ranges from 12.6 % in March to 22.3 % in 

January. For Dongjiang catchment, the percent change ranges from 12.3 % in January to 23 

% in April. 

 

Figure 16. Comparison of mean monthly change in actual evapotranspiration simulated by 

WASMOD (upper graph) and HBV (lower graph) for scenario 5 (ΔT = 2
o
C & ΔP = +20 %) 

The application of scenario 6 (ΔT = 4
o
C & ΔP = -20 %) and the percent change in mean 

monthly actual evapotranspiration predicted by the two models for the three catchments are 

shown in Fig 17. As it is shown in the graph, the percent change in mean monthly actual 

evapotranspiration predicted by WASMOD for Elverum catchment ranges from 0 % in 
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March to November to 53.9 % in April. For Didessa catchment, it ranges from -54.2 % in 

February to 20.1 % in September. Actual evapotranspiration increases from June to 

November and decreases from December to May. For Dongjiang catchment the percent 

change in mean monthly actual evapotranspiration ranges from 1.9 % in May to 4.9 % in 

October.  

The prediction of HBV model for Elverum catchment using scenario 6 also shows that, the 

percent change ranges from 6.1 % in December to 100.7 % in October. For Didessa 

catchment, the mean monthly actual evapotranspiration change ranges from -21.8 % in 

March to 40.1 % in September. For Dongjiang catchment, it ranges from -11.1 % in 

December to 9.1 % in May.  

 

Figure 17. Comparison of mean monthly change in actual evapotranspiration simulated by 

WASMOD (upper graph) and HBV (lower graph) for scenario 6 (ΔT = 4
o
C & ΔP = -20 %) 
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The application of scenario 10 (ΔT = 4
o
C & ΔP = +20 %) and the prediction of mean 

monthly actual evapotranspiration of the two models for the three catchments are revealed in 

Fig 18. As it is shown in the figure, the percent change in Mean monthly actual 

evapotranspiration estimated by WASMOD for Elverum catchment ranges from 0 % to 65 

%. From November to March, there is no change in actual evapotranspiration whereas in 

April it increases by 65 % and the fluctuation of change is relatively high as compare with 

the other catchments. For Didessa catchment, it ranges from 5.6 % in February to 25.2 % in 

May. For Dongjiang catchment, it ranges from 19.8 % in January to 29.7 % in May.  

 

Figure 18. Comparison of mean monthly change in actual evapotranspiration simulated by 

WASMOD (upper graph) and HBV (lower graph) for scenario 10 (ΔT = 4
o
C & ΔP = +20 %) 
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According to HBV model prediction, for Elverum catchment, the percent change in mean 

monthly actual evapotranspiration ranges from 4.9 % in January to 108.1 % in October. For 

Didessa catchment, it ranges from 6.9 % in March to 40.1 % July to September. For 

Dongjiang catchment, it ranges from 14.9 % in December to 35.7 % in April.   

4.2.6 Mean monthly soil moisture storage change  

Soil moisture change is one of the relevant variables for assessing climate change impact on 

hydrological regimes of basins since it incorporates the integrated effect of precipitation, 

evaporation and runoff.  

 

Figure 19. Comparison of mean monthly change in soil moisture storage simulated by 

WASMOD (upper graph) and HBV (lower graph) for scenario 1 (ΔT = 2
o
C & ΔP = -20 %) 
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As it is shown in Fig 19, mean monthly soil moisture storage decreases in all regions in 

response to the application of scenario 1 when 2⁰C temperature increases combine with 20 

% precipitation reduction. However, the seasonal variation of soil moisture change is 

relatively less in Dongjiang and Elverum basin as compare with Didessa basin in both 

models estimation.  

The percent change in mean monthly soil moisture storage in response to scenario 1 (ΔT = 

+2⁰C & ΔP = -20 %) using WASMOD model ranges from -9.1 % in July to -10.6 % in April 

for Dongjiang basin, from -8.4 % in April to –19.6 % in August for Elverum basin, and from 

-54.4 % in December to -24.7 % in September for Didessa basin. 

According to HBV model prediction of mean monthly soil moisture storage change as 

shown in Fig 19, the estimated change is relatively small in Dongjiang and Elverum basin as 

compare with Didessa and has a constant seasonal pattern with slightly higher in April for 

Dongjiang and in June for Elverum basin. The percent change in mean monthly soil moisture 

storage ranges from -2.4 % to -12.7 % for Elverum, and from -16.6 % to -26.4 % for 

Dongjiang basin. The estimated change for Didessa basin for the same scenario shows 

relatively bigger seasonal variation and it ranges from -35.8 % in April to -6.1 % in 

September. 

Fig 20 shows that mean monthly change in soil moisture storage at each basin for scenario 5 

(ΔT = +2⁰C & ΔP = + 20 %). The estimation of change in soil moisture storage by using 

WASMOD model shows that the soil moisture change is relatively large and positive for 

Didessa basin and it ranges from 6.2 % in April to 20.8 % in December. The change is 

highest during wet season and lowest during dry season. 
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Figure 20. Comparison of mean monthly change in soil moisture storage simulated by 

WASMOD (upper graph) and HBV (lower graph) for scenario 5 (ΔT = 2
o
C & ΔP = +20 %) 

For Dongjiang basin, the estimated change is positive and it ranges from 2.0 % to 5.6 % with 

small seasonal variation. For Elverum basin, the change is relatively small and negative from 

June to September and positive from October to May. The change ranges from -1.3 % in 

June to 7.9 % in April.  

Based on HBV model estimation of mean monthly moisture storage change, seasonal 

variation is observed in all basins. For Elverum basin, the percent change ranges from -6.3 % 

in June to 3.6 % in April and the change are positive from January to April and negative 

from May to December. For Didessa basin, the change substantially dropped -13.2 % in 

March. The change is negative from September to May during dry and hot season. On the 
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other hand, the change rises to 3.1 % in June and the change is positive from June to August. 

For Dongjiang basin, the change ranges from -6.6 % in January to 2.2 % in April and the 

change is negative from July to February and positive from March to June.   

 

Figure 21. Comparison of mean monthly change in soil moisture storage simulated by 

WASMOD (upper graph) and HBV (lower graph) for scenario 6 (ΔT = 4
o
C & ΔP = -20 %) 

The investigation of climate change impact on soil moisture storage by applying scenario 6 

(ΔT = +4⁰C & ΔP = -20 %) using WASMOD model are illustrated in Fig 2. It shows that for 

Didessa basin, a distinct decrease in soil moisture up to 64.4 % from December to February 

during hot and dry period. The change ranges from -64.6 % to -28.1 %. For Dongjiang basin, 

the seasonal variation is small. The percent change in mean monthly moisture storage is 

negative throughout the year and it ranges from -10.8 % in January to -13.2 % in December. 
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For Elverum basin, the soil moisture storage ranges from -29.4 % in August to -8.5 % in 

April. 

According to HBV model result from the application of scenario 6, seasonal variability of 

soil moisture storage change is high for all catchments and at the same time the percent 

change is negative. In Didessa basin, the percent change ranges from -51.7 % to -19.6 % in 

March and September respectively. In Dongjiang basin, it ranges from -37.7 % in December 

to -22.6 % in May, and in Elverum basin, it ranges from -9.6 % in March to -24 % in June. 

 

Figure 22. Comparison of mean monthly change in soil moisture storage simulated by 

WASMOD (upper graph) and HBV (lower graph) for scenario 10 (ΔT = 4
o
C & ΔP = +20 

%). 
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Estimate of soil moisture storage change by applying scenario 10 (ΔT = +4⁰C & ΔP = +20%) 

using WASMOD and HBV models are shown in Fig 22. The prediction of WASMOD 

shows that for Didessa basin, the seasonal variability of soil moisture storage change highest 

and it ranges from -18.5 % in February to 12.5 % in August with negative change from 

January to May and positive from June to December. For Elverum basin, the seasonal 

variation is relatively lower as compared with Didessa but higher when it compared with 

Dongjiang basin and the percent change in soil moisture storage ranges from -9.7 % in July 

to 10.6 % in April. For Dongjiang basin, the seasonal variability of soil moisture storage is 

relatively less as compared with the other two basins and it ranges from -0.6 % in January to 

4.3 % in April. 

The investigation of soil moisture change using scenario 10 by HBV model shows higher 

variability for all basins and at the same time the percent change is negative. For Didessa 

basin, the percent change ranges from -28.1 % in February to -1.4 % in July, and For 

Dongjiang basin; it ranges from -3.6 % in April to -19.4 % in December.  

4.3 Sensitivity analysis of the two models in different climatic regions using climate 

change scenarios 

4.3.1  Sensitivity of the two models to estimate mean annual runoff change  

Model sensitivity analysis involved the application of 10 scenarios (the combination of two 

temperature change and 5 precipitation change scenarios). These sensitivity analyses are 

expressed as change in mean annual runoff by WASMOD and HBV models in different 

climate zone basins (Fig 23). Both models show that mean annual runoff is more sensitive to 

change in precipitation than to change in temperature for all basins. In Didessa and Elverum 

basins, the change in mean annual runoff calculated by WASMOD is more sensitive for 
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precipitation change than HBV model results whereas in Dongjiang basin, the sensitivity of 

the two models for precipitation change is almost similar. The magnitude of mean annual 

runoff change estimated by WASMOD is relatively higher than HBV result In Dongjiang 

basin while, in Didessa basin, WASMOD estimate is higher for precipitation increase 

scenario and in Elverum for precipitation reduction scenarios. Therefore, the overall 

sensitivity of mean annual runoff estimation by WASMOD and HBV models to climate 

change scenarios across different climate zone basins are different. 

 

Figure 23. Comparison of mean annual change runoff in response to precipitation increase 

for a given temperature change using WASMOD and HBV simulation for each basin. 

4.3.2 Sensitivity of the two models to estimate mean annual actual evapotranspiration 

change  

Model sensitivity analysis was carried out based on 10 synthetic scenarios. As it is shown in 

Fig 24, there is significant difference between the magnitudes of change estimated by the 

two models. HBV model estimates relatively higher change for all basins as compared with 

WASMOD model. Both models confirm that Elverum basin is more sensitive in actual 
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evapotranspiration change in response to temperature change but relatively less sensitive for 

precipitation change. The magnitude of mean annual actual evapotranspiration change 

estimated by HBV model is higher than WASMOD in all catchments. The mean annual 

actual evaporation change estimated by WASMOD in Didessa basin is more sensitive for 

precipitation change than temperature change as compared to HBV model estimate and the 

sensitivity of HBV model for temperature change is higher as compare with WASMOD 

model. The sensitivity of both models in terms of estimating mean annual actual 

evapotranspiration in Dongjiang basin is moderately sensitive for both temperature and 

precipitation change but there is significantly difference in magnitude for temperature 

increase by 4 
o
C scenario.  

 

Figure 24 Comparison of mean annual change in actual evapotranspiration in response to 

precipitation increase for a given temperature change using WASMOD and HBV 

simulations for each basin. 
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4.3.3 Sensitivity of the two models to estimate mean annual soil moisture storage 

change  

Sensetivity analysis of WASMOD and HBV models to estimate mean annual soil moisture 

storage change in each climatic region is illustrated in Fig 25. As it is shown in the figure, 

the estimations of the two models have relatively similar pattern except the magnitude 

difference for Dongjiang basin but the magnitude of difference increases when for 

temprature change scenario increase from 2⁰C to 4⁰C. in Didessa basin, WASMOD is more 

sensetivity for preceptation change than HBV model and the estimated mean annual soil 

moisture change by WASMOD model is higher than HBV estimated change for prceptation 

increasing scenarioes. For Elverum basin, WASMOD is more sensitive for preceptation 

change than HBV mode. 

 

Figure 25. Comparison of mean annual change in soil moisture storage in response to 

precipitation increase for a given temperature change using WASMOD and HBV simulation 

for each basin 
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4.3.4 Sensitivity of the two models to estimate mean monthly runoff change  

The estimation differences of mean monthly runoff by the two models for Elverum basin 

(For the increase in temperature from 2 
o
C to 4

o
C combines with 20 % reduction and 20 % 

increase in precipitation) is shown in the Fig 26.  

 

Figure 26 Comparison of mean monthly change in runoff in response to 20 % precipitation 

decrease (upper graph) and 20 % precipitation increase (lower graph) for a given 

temperature change using WASMOD and HBV simulation for Elverum basin 

As it is revealed from the figure, the seasonal variability of runoff change estimated by both 

WASMOD and HBV models for Elverum basin has similar pattern. The runoff from late 
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for both precipitation change scenario (ΔP = -20 %, in the upper graph and ΔP = +20 %, in 

the lower graph of Fig 26) by using both models. The prediction of change detected by HBV 

-100

-80

-60

-40

-20

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12

WAS-Elver-2oC

WAS-Elver-4oC

HBV-Elver-2oC

HBV-Elver-4oC

%
 c

h
an

ge
 in

 r
u

n
o

ff

Month

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12

WAS-Elver-2oC

WAS-Elver-4oC

HBV-Elver-2oC

HBV-Elver-4oC

%
 c

h
an

ge
 in

 r
u

n
o

ff

Month



 

52 

 

model is relatively higher than the estimation of WASMOD during this period. At the same 

time the magnitudes of change in mean monthly runoff for a temperature increase by 2 ⁰C 

and precipitation decrease by 20 % is relatively higher than the temperature change by 4 ⁰C 

and precipitation increase by 20 % in both models case for this period.  

During winter time (December to April) runoff increase in both model prediction and the 

magnitude of change is higher in WASMOD model prediction as compare with HBV model 

and relatively higher for 4⁰C increases in temperature and 20% increase in precipitation, 

reflecting the fact that the temperature increases sufficiently enough to cause snowmelt and 

the combination of snowmelt with 20% precipitation increase results higher runoff during 

this time. The spring peak runoff is estimated in April using both models for both scenarios.     

 

Figure 27. Comparison of mean monthly change in runoff in response to 20 % precipitation 

decrease (upper graph) and 20 % precipitation increase (lower graph) for a given 

temperature change using WASMOD and HBV simulation for Dongjiang basin 
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As it is illustrated in Fig 27, the estimation of mean monthly runoff at Dongjiang basin using 

WASMOD and HBV models have similar pattern for both scenario increases in temperature 

by 2 ⁰C and 4 ⁰C combine with 20 % reduction (upper graph) and 20 % increase (lower 

graph) in precipitation.  

The estimation of mean monthly runoff by HBV model using the scenario of 20 % increase 

in precipitation (lower graph), is relatively higher from November to April as compare with 

WASMOD estimation. In both model runoff estimation, temperature increase from 2 ⁰C to 4 

⁰C for both precipitation change scenario results reduction in runoff.  

 

Figure 28 Comparison of mean monthly change in runoff in response to 20 % precipitation 

decrease (upper graph) and 20 % precipitation increase (lower graph) for a given 

temperature change using WASMOD and HBV simulation for Didessa basin 
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Fig 28 shows that the estimation of mean monthly runoff by using both WASMOD and 

HBV models has quite different pattern of seasonal variability for Didessa basin. For 

precipitation reduction scenario (ΔP = -20% in the upper graph), seasonal variability is lass 

in the case of WASMOD model estimation as compare with HBV model estimation. While 

significant reduction of runoff is estimated during rainy season by HBV model. On the other 

hand in the case of precipitation increase scenario (ΔP = +20% in the lower graph), the 

seasonal variability is higher in HBV prediction of runoff as compare with WASMOD 

prediction. In addition to this runoff reduction is estimated by WASMOD from February to 

April whereas HBV estimation shows more than 20 % runoff increase during this time. 

4.3.5 Sensitivity of the two models to estimate mean monthly actual 

evapotranspiration change  

Prediction difference of the two models on mean monthly actual evapotranspiration for 

Dongjiang basin using temperature increase from 2 
o
C to 4

o
C and 20 % reduction and 20 % 

increase in precipitation scenarios is shown in Figure 29.  

It shows that using precipitation reduction scenario (upper graph), estimation of actual 

evapotranspiration by using HBV model from March to July is relatively higher than the rest 

of months while in the estimation of WASMOD model, the estimation is relatively lower 

during this time. In the case of precipitation increase scenario (lower graph), the seasonal 

variation have similar patterns and the prediction of HBV model is relatively higher than 

WASMOD prediction.  
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Figure 29 Comparison of mean monthly change in actual evapotranspiration in response to 

20 % precipitation decrease (upper graph) and 20 % precipitation increase (lower graph) for 

a given temperature change using WASMOD and HBV simulation for Dongjiang basin. 

Figure 30 Indicates that using scenario with precipitation reduced by 20 % (upper graph), the 

estimation of actual evaporation of the tow model for Didessa basin is considerably different 

during dry season (January to May) the change detected by HBV model is relatively higher 

than WASMOD estimation. Whereas during wet season, the two models detect the change 

similarly except HBV estimation using scenario with 4 ⁰C temperature increase which detect 

the change relatively high. Using scenario with precipitation increase by 20 % (lower graph), 

the change detected by the two model is significantly varying from January to April during 
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December, the change estimated by WASMOD with 4
o
C temprature increase scenario and 

by HBV with 2 
o
C temprature increase scenario is the same. Using scenario with 4 ⁰C 

temperature increase, HBV model predicts much higher actual evapotranspiration change 

than WASMOD prediction for the same scenario during this period. 

 

Figure 30 Comparison of mean monthly change in actual evapotranspiration in response to 

20 % precipitation decrease (upper graph) and 20 % precipitation increase (lower graph) for 

a given temperature change using WASMOD and HBV simulation for Didessa basin. 

The actual evapotranspiration change detected by the two model using scenario with 

precipitation reduced by 20 % (upper graph), for Elverum basin is shown in Fig 31. The 

pattern of seasonal variability detected by the two models is similar with significant 

magnitude difference. Using scenario with temperature change by 2⁰C, the estimation of 

-60

-40

-20

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12

WAS-Did (2 ͦ C)

WAS-Did (4 ͦ C)

HBV-Did (2 ͦ C)

HBV-Did (4 ͦ C)

%
 C

h
an

ge
 in

 e
va

p
o

tr
an

sp
ir

at
io

n

Month

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12

WAS-Did (2 ͦ C)

WAS-Did (4 ͦ C)

HBV-Did (2 ͦ C)

HBV-Did (4 ͦ C)

%
 C

h
an

ge
 in

 e
va

p
o

tr
an

sp
ir

at
io

n

Month



 

57 

 

WASMOD model is relatively higher during April and May and relatively lower from June 

to October as compared with HBV model prediction. The peak is in April according to 

WASMOD estimation whereas HBV estimation shows the peak in October. For scenario 

with temperature increase by 4⁰C, HBV prediction is much higher than WASMOD 

prediction except April for which WASMOD estimates relatively higher.  

 

Figure 31 Comparison of mean monthly change in actual evapotranspiration in response to 

20 % precipitation decrease (upper graph) and 20 % precipitation increase (lower graph) for 

a given temperature change using WASMOD and HBV simulation for Elverum basin 

Using scenario with precipitation increase by 20 % (lower graph), the seasonal variability 

pattern is almost similar with the upper graph but the magnitude of change is relatively 

higher and the actual evapotranspiration change estimated by the two models for the months 

from June to August is almost the same.   
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4.3.6 Sensitivity of the two models to estimate mean monthly soil moisture storage 

change 

The soil moisture change detected by the two models for Dongjiang basin is shown in Fig 

32. As it indicated from the figure, soil moisture change detected by the two models using 

scenarios with precipitation reduced by 20 % (upper graph) and increase by 20 % (lower 

graph)is significantly different. Seasonal variability detected by WASMOD model is slightly 

higher than variability detected by HBV estimation for both scenarios. In addition to that, the 

magnitude of change estimated by HBV model is relatively lower as compare with the 

change detected by WASMOD model for both precipitation increase and reduction 

scenarios.  

 

Figure 32 Comparison of mean monthly change in soil moisture storage in response to 20 % 

precipitation decrease (upper graph) and 20 % precipitation increase (lower graph) for a 

given temperature change using WASMOD and HBV simulation for Dongjiang basin. 
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The soil moisture change estimated by WASMOD and HBV models for Didessa basin is 

shown in Fig 33. The figure shows that, the patterns of seasonal variability detected by the 

two models are similar except magnitude differences for both scenarios. The change 

estimated by HBV model is relatively higher as compare with WASMOD model prediction 

for both scenarios. In the case of scenario with precipitation increase by 20 % and 

temperature increases by 2 ⁰C, the change detected by WASMOD model is positive 

throughout the year and much higher than HBV model estimation for the same scenario.  

 

Figure 33 Comparison of mean monthly change in soil moisture storage in response to 20 % 

precipitation decrease (upper graph) and 20 % precipitation increase (lower graph) for a 

given temperature change using WASMOD and HBV simulation for Didessa basin. 
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As it is shown in Fig 34, seasonal variability of soil moisture storage change estimated by 

both models for Elverum basin has similar pattern. In the case of precipitation reduced by 20 

% scenario, soil moisture storage change detected by HBV model is relatively lower as 

compared with WASMOD estimation and soil moisture storage change estimated for April 

is the same for both temperature change scenarios but HBV estimation of change is quite 

different.  In the case of precipitation increase scenario (lower graph), the change detected by 

HBV model is lower as compared with WASMOD estimation of change.  

 

Figure 34 Comparison of mean monthly change in soil moisture storage in response to 20 % 

precipitation decrease (upper graph) and 20 % precipitation increase (lower graph) for a 

given temperature change using WASMOD and HBV simulation for Elverum basin. 
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5. Conclusion  

In this study, WASMOD and HBV models were applied using different climate change 

scenarios to study the hydrological responses of climate change in Didessa, Dongjiang, and 

Elverum river basins located in different continents. The two models were preferred for their 

simplicity and flexibility in running with limited data set. The models can run using 

perception and temperature time series along with long term mean monthly evaporation and 

temperature data as inputs in the absence of other climatic data. 

The calibration and validation results of WASMOD and HBV models were driven by 

observed hydro-climatic data set show that both models can reproduce the runoff with 

acceptable accuracy for each basin. One of the performance criterions which are used to 

evaluate the model result is Nash and Sutcliffe efficiency coefficient (E) and in this study it 

ranges from 0.88 to 0.94 for calibration and 0.80 to 0.90 for validation period using 

WASMOD model, and 0.88 to 0.96 during calibration and 0.84 to 0.95 during validation 

period using HBV model.  

The hydrological impact of climate change resulted from synthetic scenario indicates that the 

sensitivity of catchments in response to different climate change scenario is quite different in 

different climatic regions. The mean annual runoff response was highly sensitive to 

precipitation and temperature changes in both models for Didessa and Elverum basins, 

respectively. However, mean annual runoff response to precipitation and temperature 

changes was moderately sensitive for Dongjiang basin. Actual evapotranspiration response 

to temperature change was highly sensitive in Elverum catchment, but less sensitive to 

precipitation change. Although Didessa show a higher sensitivity for precipitation change 

relative to Dongjiang, the actual evapotranspiration response to precipitation and 
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temperature was moderately sensitive in both models. The results imply that there is 

limitation in moisture and temperature for Didessa and Elverum respectively. WASMOD 

and HBV models show different Soil moisture storage response to precipitation change for 

all basins although the sensitivity was high for Didessa using WASMOD and low for 

Elverum in case of HBV model.  

In terms of seasonal variability, there is high mean monthly runoff variation which is highly 

dependent on scenario, hydrological model, and the region where the catchment is found. 

Incremental scenario application for Dongjiang basin showed a very small seasonal variation 

for runoff in both model simulations. However, Elverum basin showed a considerable 

increase in late winter and early autumn runoff while spring runoff decreases in both model 

simulations except magnitude differences. For Didessa basin, there was significant 

difference between WASMOD and HBV simulations where the seasonal variation in runoff 

in the case of HBV simulation was high as compared with WASMOD simulation.  

There are many sources of uncertainty in hydrological impact study using hydrological 

models. The result of this study demonstrates that model simulation under climate change 

condition is significantly different even though the performances of hydrological models are 

within the range of acceptable accuracy for a historical time series in a given environment. 

Based on this finding, there is a concern that hydrological impact of climate change analysis 

using single hydrological model may lead to unreliable conclusion. In this regard, 

conducting multi model analysis is one way to reduce such uncertainty. Therefore, we 

recommend further research in this area in order to exhaustively explore hydrological impact 

of climate change in different regions. 
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Appendices 

Appendix 1 Simulated and observed monthly runoff for each catchment using WASMOD model 
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Appendix 2 Simulated and observed monthly runoff for each catchment using HBV model 
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