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Abstract

Paltridge (1975, 1978) proposed that the atmosphere seeks to maximize en-
tropy production, as a non-equilibrium thermodynamic system. He con-
structed a simple box model of the atmosphere which yields surprisingly
realistic predictions for the latitudinally-averaged surface temperature, frac-
tional cloud cover and meridional heat fluxes.

The poleward shift of the mid-latitude storm tracks is one of the most ro-
bust predicted features under global warming. Graff and LaCasce (2012)
examined the relation between perturbed sea surface temperature (SST) and
the intensity and position of the storm tracks using an Atmospheric General
Climate Model (CAM 3.0). In line with several other studies, their findings
suggest that both the intensity and position change in response to altered
SST.

Heat transport in the atmosphere is intensified in the storm tracks. Thus,
a change in the position of the storm tracks should correspond to a change
in the maximum heat transport. The purpose of this study is to examine
atmospheric sensitivity, and the sensitivity of atmospheric heat transport in
particular, to changes in SST using a simplified energy balance model based
on the principle of Maximum Entropy Production (MEP), similar to Pal-
tridge’s MEP model (1975; 1978).

A hierarchy of box models are developed and investigated, including Pal-
tridge’s original model. An Atmospheric MEP (AMEP) model is developed
to make a model comparison with CAM 3.0 possible. The results from
the AMEP model are compared to data from Graff and LaCasce (2012),
to explore if we can capture the SST dependence. Despite having feedback
mechanisms, the AMEP model is able to predict the main tendencies of the
changes in temperature, convective heat flux and meridional heat transport.
However,it fails to capture the shift in the meridional heat transport.
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Chapter 1

Introduction

There are two great unexplained mysteries in our understanding of the universe. One is

the nature of a unified generalized theory to explain both gravity and electromagnetism.

The other is an understanding of the nature of turbulence. After I die, I expect God to

clarify the general field theory to me. I have no such hope for turbulence.1

The parade of weather systems continuously developing and extinguishing
over the mid-latitudes plays an essential part of mid-latitude climate. First,
it determines local weather and precipitation patterns in particular. Second,
it influences the general circulation in the atmosphere, due to the meridional
transport of heat, moisture and momentum.

Mid-latitude cyclones, i.e. transient synoptic eddies, often move in preferred
tracks. These tracks are called storm tracks and are characterized by maxima
in transient eddy activity and eddy fluxes of heat and moisture (Hartmann,
1994, Ch. 6). In the Northern Hemisphere (NH) the storm tracks are most
prominent downstream of the Tibetan Plateau over the Pacific Ocean and
downstream of the Rocky Mountains over the Atlantic Ocean. In the South-
ern Hemisphere (SH) the storm tracks are located over the Southern Ocean
and are more zonally symmetric than in the NH, due to the greater fraction
covered by sea.

The storm tracks have a seasonal cycle. They shift equatorward from fall to
midwinter and then migrate poleward afterwards (Lu et al., 2010). During
the winter season, both the storm tracks and the jet stream intensify. There
is a strong coupling between the storm tracks and the jet, and changes in
the intensity or location of one affects the intensity and location of the other.
That said, interactions between the large scale flow and the storm tracks are
still not fully understood.

The storm tracks also shift poleward in response to global warming (Kushner
et al., 2001; Yin, 2005; Lorenz and DeWeaver, 2007; Lu et al., 2007; Brayshaw

1Theodore Von Kármán (1881-1963)
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2 1 Introduction

et al., 2008; Lu et al., 2010; Graff and LaCasce, 2012). As opposed to the
seasonal shifts, this is a shift in the mean location of the tracks. The shift
leads to substantial changes in precipitation patterns, as well as in fluxes of
heat and momentum, and has large ramifications for mid-latitude regional
climate. Nevertheless, the mechanisms responsible for the shift are not clear.

A shift similar to that seen in the storm tracks is found for the mid-latitude
jet. This jet is associated with mid-latitude momentum convergence due
to eddy activity and is called the eddy-driven jet. The Intergovernmental
Panel on Climate Change Fourth Assessment Report (IPCC, 2007) found
that global circulation models (GCMs) predict a robust poleward shift of the
eddy-driven jet in both hemispheres as a response to increased greenhouse
gas forcing (Meehl et al., 2007). Due to the strong coupling between the
storm tracks and the jet, a shift in both the storm tracks and the jet is ex-
pected. However, separating cause and effect in this matter is not simple.
With so many open research questions, many different approaches have been
applied in order to study interactions between the large scale flow and eddy
circulation under global warming.

General Circulation Models (GCMs) are used to simulate many of these dy-
namic processes, as we understand them. These models are undoubtedly
useful at times, but the enormous calculation schemes needed and the nu-
merous feedback mechanisms taking place make GCMs difficult to grasp.
Separation of cause and effect is not simple and the results obtained are
never better than the method used to represent the process in the first place.

Another common approach is to use simpler models, e.g. one or two dimen-
sional energy balance models (ebms), to analyze the time-mean flow. These
models are easier to grasp and have the advantage that multiple simulations
can be conducted rapidly. Ebms provide a method by which to look at more
specified dependencies, but are seldom able to represent the non-linearity of
dynamic processes captured by the GCMs.

Graff and LaCasce (2012) used an Atmospheric GCM (CAM 3.0) to examine
changes in the storm tracks due to sea surface temperature (SST) forcing.
They found that SST forcing induced changes in both the strength and po-
sition of the storm tracks. The changes in the storm tracks corresponded
with changes in the eddy-driven jet. Their results are consistent with results
from other studies (Brayshaw et al., 2008; Lu et al., 2010). Due to feedback
mechanisms in CAM 3.0, there are numerous variables affected by the altered
SST. This makes it difficult to single out the reasons for the storm track shift
observed in CAM 3.0.

In an attempt to resolve some of the difficulties in research on the mech-
anisms responsible for the shifts, the purpose of this study is to examine
atmospheric sensitivity, and the sensitivity of atmospheric heat transport in
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particular, to changes in SST using an ebm based on the principle of Max-
imum Entropy Production. To do so, the shift in the storm tracks is examined
using a simplified ebm without any feedback mechanisms. The experiments
conducted are based on the study of Graff and LaCasce (2012). Chapter 2 is
therefore devoted to presenting their study, which acts as the main incentive
for the work carried out in this thesis. The ebm used in this thesis does not
contain any dynamics, so neither cyclones nor jet streams exist. The focus
is on the shift in the maximal meridional heat transport in the atmosphere.
The location of the maximal transport corresponds with the location of the
storm tracks.

The ebm is based on the principle of Maximum Entropy Production (MEP),
which states that for a thermodynamic system in non-equilibrium (e.g. the
climate system), the most probable steady state will be the one with max-
imum entropy production. Dyke and Kleidon (2010), Kleidon (2009, 2004)
and Dewar (2009) argue that the MEP constraint can account for some of
the lacking dynamics and that the results obtained may be the same as if
dynamical processes were present.

Ebms based on the MEP principle have previously been used in climate sens-
itivity studies. Grassl (1981) investigated climate sensitivity for a doubling
of CO2 using a one dimensional zonal ebm constrained by MEP. The results
were inconclusive when compared to a pure ebm. Pujol and Llebot (2000b)
used a two dimensional horizontal ebm constrained by MEP to test differ-
ent climate scenarios. Pujol and Llebot achieved reasonable results when
compared to observations of the current climate, but the model exhibited
unexpectedly low sensitivity at high latitudes for different climatic scenarios.
Paltridge et al. (2007) examined cloud feedback and the response of surface
temperature to a doubling of CO2. Compared to results from a GCM, the
results where partly consistent. Lorenz et al. (2001) used a one dimensional
zonal ebm constrained by MEP to study atmospheres on different planets.
Their model successfully predicted zonally averaged temperatures on Earth,
Mars and Titan.

The inconclusive results from these studies do not confirm or disprove the
assumption that the climate system on Earth acts to maximize entropy pro-
duction. The goal of the present study is to apply a more strenuous test of
the ebm and compare the results to the results of a GCM. The ebm used
in the present study also invokes the MEP principle. The fundamentals of
the MEP principle and different applications of MEP theory are discussed in
detail in chapter 3.

After having presented the main background and theory, the process of find-
ing a suitable model is examined. Paltridge (1975, 1978) constructed the
first MEP model. His model is reviewed first (chapter 4). As Paltridge’s
model is not suited for our purpose, a hierarchy of box models are developed
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and investigated (chapter 5). Finally, an Atmospheric MEP model (AMEP)
is developed (chapter 6) to allow for a model comparison with CAM 3.0.
To compare results from two models that differ in every possible way is not
straightforward. The data from CAM 3.0 sometimes need to be calculated in
certain ways to make the comparison possible. Where new data calculations
are needed a thorough description is given.

The results from AMEP are compared to data from Graff and LaCasce
(2012), to see if the models exhibit similar SST dependence (chapter 7).
A summary and a discussion of the results are given in chapter 8 and 9.



Chapter 2

The Incentive

Strong meridional gradients in surface temperatures are a common feature
of mid-latitude climate. Storm tracks have long been associated with these
surface temperature gradients and sea surface temperature (SST) gradients
in particular (Brayshaw et al., 2008). Global warming is known to cause an
increase in the SST (Levitus et al., 2000) and this in turn affects the storm
tracks (Brayshaw et al., 2008; Lu et al., 2010; Graff and LaCasce, 2012).

An increase in the mean SST, increases the heat supply from the surface
to the atmosphere. This in turn imposes temperature gradients in the at-
mosphere, which in combination with the increased latent heat release, is
expected to promote storm growth (Brayshaw et al., 2008).

Under global warming, the SST gradients change as well. This is due in part
because an increase in SST alters the temperature gradient between the con-
tinents and the oceans. The imposed SST gradients play an essential part in
the storm track shift (Brayshaw et al., 2008) and in cyclone development in
itself.

The idea that cyclone activity is proportional to the background temperature
gradient originates from the work of Charney (1947), Eady (1949) and Phil-
lips (1954) and their theories of baroclinic instability. Baroclinic instability
arises in rotating, stratified fluids subject to horizontal temperature gradients
(Vallis, 2006) and is the main mechanism behind cyclone formation in the
atmosphere. Eady, Charney and Phillips all provided linear theories of baro-
clinic instability which state that the growth rate of baroclinic disturbances
(e.g. cyclones) is proportional to the baroclinicity of the fluid. Changes in
the surface temperature gradients under global warming affect the baroclini-
city and hence alter the cyclone activity and the storm tracks.

Several studies examine the relations between changes in the SST, the res-
ulting baroclinicity and the response of the jet and storm tracks (Brayshaw
et al., 2008; Lu et al., 2010; Graff and LaCasce, 2012). The study of Graff
and LaCasce (2012) is explained in detail in the following section.

5



6 2 The Incentive

2.1 The study of Graff and LaCasce (2012)

Graff and LaCasce (2012) examine the sensitivity of the mid-latitude storm
track position and intensity to the SST boundary forcing using an Atmo-
spheric General Circulation Model (AGCM). The model used is the NCAR
Community Atmosphere Model version 3, CAM 3.0, henceforth referred to
as CAM3. The resolution used is T42 in the horizontal which can capture
features and their horizontal derivatives down to approximately 950km (Hack
et al., 2006); they also used 26 height levels in the vertical. The storm tracks
in this study are based upon bandpass transient variances. In addition to
the storm tracks, the position and intensity of both the subtropical and the
eddy-driven jet, the circulation cells and changes in the meridional transport
of heat and momentum are examined.

The SST is changed in several different runs in order to examine the effects
on the storm tracks, as a result of SST anomalies and SST gradients, in
combination and separately. Graff and LaCasce (2012) execute five different
experiments in addition to the control run. The SST is altered by 2K in
different latitude bands (see figure 2.1):

The 2K run: the SST increased by 2K uniformly over the entire ocean.
The 2K-Lowlat run: the SST increased equatorward of 45◦N/S, increasing
both the low latitude heating and the mid-latitude SST gradients.
The 2K-Tropics run: the SST increased equatorward of 15◦N/S, increasing
low latitude heating and the SST gradients around 15◦N/S.
The 2K-Highlat run: the SST increased poleward of 45◦N/S, decreasing
mid-latitude SST gradients.
The Minus 2K-Highlat run: the SST decreased poleward of 45◦N/S,
increasing mid-latitude SST gradients.

The Results

The data used derive from 20-year averages for the NH winter, DJF, for
the period 1 Dec.1980 - 28 Feb.2000. A bandpass filter is applied, retaining
fluctuations of approximately 2.5-6 days, to capture the storms. Both the
intensity and position of the storm tracks change as a response to the SST
forcing.

Increasing the low latitude heating and/or the SST gradients at mid-latitudes,
i.e. the 2K, the 2K-Lowlat and the Minus 2K-Highlat runs, result in intens-
ification and a poleward shift of the jet. For the Minus 2K-Highlat run the
largest changes occur in the eddy-driven jet, while for the two other runs,
i.e. the 2K and the 2K-Lowlat runs, the changes occur for both the subtrop-
ical and the eddy-driven jets. The shift in the storm tracks and the jets are
accompanied by an intensification and expansion of the Hadley cell.
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2K run: DJF SST difference plot

0.0 0.5 1.0 1.5 2.0 2.5
K

c) d)

 

180W150W120W 90W 60W 30W GM 30E 60E 90E 120E 150E 180E
Longitude

             
 

90S

60S

30S

EQ

30N

60N

90N

L
at

itu
de

 

 

 

 

 

 

 

2K-highlat run: DJF SST difference plot
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2K-tropics run: DJF SST difference plot
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Figure 2.1: The altered SST compared to the control run in the different experi-
ments. (a) The 2K-Lowlat run, (b) The 2K run, (c) the 2K-Highlat run (changes
equal the changes in the Minus 2K-Highlat run except negative values used), (d)
the 2K-Tropics run. The contour interval is 0.5 K as indicated in the bars beneath
the figures. Figure 1 from Graff and LaCasce (2012).

The 2K-Tropics run and the 2K-Highlat run exhibit quite opposite results
of the other runs. In both runs an equatorward shift of the storm tracks
are seen and in the 2K-Highlat run the storm tracks also weakens. In the
2K-Tropics run there is intensification and an equatorward shift in the sub-
tropical jet. In the 2K-Highlat the eddy-driven jet shifts equatorward while
the subtropical jet remains unchanged. A contraction of the Hadley cell is
seen in both runs.

Consider for example Figure 6 from Graff and LaCasce (2012) shown here as
figure 2.2. The figure shows the difference of the results from the 2K-Lowlat
run and the control run. In figure 2.2 a, b, d and f only data from bandpass-
filtered fields are shown. In figure 2.2 c and e the temporally-averaged fields
are shown. Figure 2.2 a), c) and d) are of main interest when a comparison
is made later on in this work.

Figure 2.2 a) shows the bandpass-filtered Z difference fields. Z is the stand-
ard deviation of the temporally-averaged field of the geopotential height. The
storm tracks have both intensified and shifted poleward in both hemispheres
compared to the control run. The maxima in the Z field are approximately
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2K-lowlat run: DJF BP Z difference plot

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14
m

80N60N40N20NGM20S40S60S80S
Latitude

         

800

600

400

200

Pr
es

su
re

 (
hP

a)

 

 

 

 

2K-lowlat run: DJF σB1 difference plot
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2K-lowlat run: DJF u difference plot
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2K-lowlat run: DJF BP v’T’ difference plot
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2K-lowlat run: DJF MOC difference plot
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2K-lowlat run: DJF BP u’v’ difference plot
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Figure 2.2: Zonally averaged DJF difference plots from the 2K-Lowlat run. The
thick solid (stippled) contours are positive (negative) control run contours for refer-
ence. The thin filled contours are difference field contours. (a) The bandpass(BP)
standard deviation difference field, Z. (b) The difference field for the Eady para-
meter of maximum baroclinic growth, σB1. (c) The mean wind difference field, u.
(d) The meridional heat transport, v’T’, difference field. (e) The difference field
for the meridional overturning circulation streamfunction, Φ. (f) The meridional
flux of momentum, u’v’, difference field. Figure 6 from Graff and LaCasce (2012).
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20% stronger and the shift is approximately 7 to 8◦N/S.

Figure 2.2 c) shows the temporally- and zonally-averaged zonal wind, u. In
the SH both the subtropical jet and the eddy driven jet have intensified and
shifted. The eddy-driven jet is shifted poleward while the subtropical jet is
shifted upward. The distinction between the two jets is not so clear in the
NH, but intensification and a poleward shift are clearly seen.

The bandpass-filtered eddy heat flux, v’T’, seen in figure 2.2 d), has in-
tensified and shifted poleward in both hemispheres. The difference is almost
barotropic over much of the troposphere.
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Chapter 3

The principle of Maximum
Entropy Production (MEP)

Are you sitting comfortably? Then I’ll begin1

The circulation in the atmosphere and ocean transforms the absorbed solar
radiation into motion and determines the weather and climate as we know it.
The circulation has many degrees of freedom and exhibits nonlinear interac-
tions of several components on different time scales. This makes predictions,
both for weather and climate, complicated. The dynamics in such systems
are chaotic and characterized by internally generated variability.

GCMs and ebms are used to study the dynamical processes determining the
climate. Both approaches can provide useful information in their own way,
but either way we face the same problem; the non-linear dynamic regime is
difficult to grasp. As a result there is a search for a fundamental principle that
governs the dynamics of non-linear systems. To find the existence of such
a principle would increase our understanding and simplify the calculations
needed to predict the features of our climate system.

3.1 In search of an extremum principle

Chaotic systems, like the climate system, exhibit aperiodic behavior that
depends sensitively on initial conditions, making long-term predictions im-
possible. Lorenz (1963) showed that tiny errors in measuring the current
state of the atmosphere would be amplified rapidly, eventually leading to
poor forecasts. Feigenbaum (1978, 1983) discovered that in spite of the dis-
order, there are certain universal laws (e.g. Feigenbaum’s δ) governing the
transition from regular to chaotic behavior. Completely different systems
can become chaotic the same way. In this way Feigenbaum found a structure

1Julian Lang, Listen With Mother, BBC radio 1950-1982.

11
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embedded in nonlinear systems.

Similarly, researchers have sought certain fundamental principles under which
the nonlinear systems operate. These might help predict “climate”, i.e. the
mean state of the system. Several attempts have been made to find such a
principle for the general circulation on Earth (Paltridge, 1975, 1978; Ziegler
and Wehrli, 1987; Dewar, 2003, 2005; Kleidon, 2004, 2009), and for the at-
mospheric circulation in particular (Lorenz, 1955, 1960; Lin, 1982).

Edward N. Lorenz (1955; 1960) suggested that the general circulation of the
atmosphere may be operating near its maximum possible rate, such that the
generation of available potential energy (APE) is maximized. Charles A. Lin
(1982) found that the principle of maximization of APE was reduced to a
maximization of the correlation between heating and temperature deviation
when applied to a one dimensional zonal ebm. G. W. Paltridge (1975; 1978)
showed by using a one-dimensional zonal ebm that the climate system was
working as to maximize the rate of entropy production. Paltridge (1979;
1981; 2001) also suggested that the energy flow actually was maximizing the
rate of dissipation, instead of the entropy production, and argued that the
maximization of one did not necessarily imply the maximization of the other.

One question arises; do these extremal states differ or are they different sides
of the same grand thermodynamic potential? Figure 3.1 shows some of the
processes considered in the articles mentioned in the previous paragraph.
Diabatic effects, as radiative and frictional heating, generate the total po-
tential energy in the atmosphere. The total potential energy is the sum of
the internal and the potential energy. The kinetic energy dissipates by vis-
cous forces with entropy production and frictional heating as a result. In a
steady state all the arrows must be equal in magnitude. This implies that
the generation of APE transformed into kinetic energy equals the rate of
dissipation of energy by frictional forces, and the dissipation of energy is an
irreversible process generating entropy. It is tempting to draw the conclusion
that maximizing one means maximizing them all and that all the extremum
principles suggested correspond to the same steady state.

Ozawa et al. (2003) showed that if the entire atmosphere is assumed to be in
a steady state and that the viscous heating rate is negligible compared to the
radiative heating (or cooling), the generation of APE is proportional to the
entropy production and hence maximization of one would imply maximiza-
tion of both. Ozawa et al. (2003) findings contradict the findings of Paltridge
(1979, 1981, 2001). However, it is beyond the scope of this thesis to find the
“true” answer for this question (but I hope it will occupy your thoughts after you finish reading.).

3.2 Maximum Entropy Production

In this thesis only one of the extremal principles is considered, namely the
maximization of the rate of entropy production. The Maximum Entropy
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Figure 3.1: The energy cycle in the atmosphere. Diabatic heating generates
internal and potential energy (Total potential energy). Parts of the total potential
energy (i.e. APE) is converted into kinetic energy which dissipates due to viscosity.
In a steady state all the arrows must equal in magnitude. Figure adapted from
Lorenz (1955).

Production Principle states that for a steady state system, the MEP state is
the most probable state out of many possible non-equilibrium steady states.
The MEP principle arises from non-linear thermodynamics and is an attempt
to extend the second law of thermodynamics to non-equilibrium systems.

3.2.1 The lack of proof

The MEP principle has not been proven, but many other principles we con-
sider correct, like the first and second law of thermodynamics, (or most
theories in social sciences) have never been proven either. All the successful
applications of these laws have lead to a consensus of their validity. The
same applies for the MEP principle. The only way to prove it seems to be
applying it to numerous (climate) scenarios and judging the results obtained.

Many attempts have been made to relate the MEP principle to other existing
principles, like the second law of thermodynamics, and in this way "prove"
it (Ziegler and Wehrli, 1987; Dewar, 2003, 2005). The numerous attempts
have not yet accomplished this goal and the assumptions made in the deduc-
tions have often been less obvious than the MEP principle itself (Martyushev,
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2010).

Consequently no proof for the MEP principle is given in this chapter either.
Instead a explanation of the fundamentals of non-linear thermodynamics and
the assumptions made for the MEP theory is given.

3.2.2 Equilibrium and non-equilibrium

thermodynamics

The theory of thermodynamics is based on two fundamental laws. The first
law of thermodynamics states that the energy of an isolated system is con-
served. The second law of thermodynamics states that any large system in
equilibrium will be found in the state with the greatest entropy (Schroeder,
2000). Non-equilibrium thermodynamics describes transport processes in
systems that are out of equilibrium and for such systems the second law of
thermodynamic needs to be reformulated to make it more suitable for our
purposes.

A brief explanation of the differences in the equilibrium and non-equilibrium
regime of thermodynamics is given later on in this section, but first it is
important to clarify what we refer to when we say entropy.

Entropy - one word, different meanings

By far the most abused word in science is entropy.2

Many definitions of entropy appear in literature and it is not always clear
which definition is used. The experimental entropy S of Clausius, Gibbs
and G. N. Lewis, S(T, P, N,...), is a function of the observed macroscopic
quantities. Shannon defined an information entropy S = −

∑

piln(pi) which
is a property of any probability distribution. In quantum theory the en-
tropy is defined as S = −Tr(ρln(ρ)), where ρ is the density matrix and Tr is
the trace. Then there is the more common Bolzmann, Einstein and Planck
entropy S = k · ln(Ω), where k is the Bolzmann constant and Ω is the mul-
tiplicity of a given macrostate. At last we will mention Gibbs entropy which
is similar to the information entropy, S = −k ·

∑

piln(pi). There are several
more as well.

The expression for entropy used in this thesis is the classical thermodynamic
definition of entropy based on the work of Rudolf Clausius (Clausius, 1865).
Clausius’ Inequality states that the following equation must be true for any
cyclic process, reversible or irreversible,

∮

dQ

T
≤ 0 (3.1)

2Jaynes (1980)
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over any possible path, where dQ is the amount of heat added to the system
and T is the absolute temperature of the system. The equality holds if the
process is reversible, for which the expression is the called Clausisus’ Equality,
i.e.

∮

dQrev

T
= 0 (3.2)

where dQrev is the amount of heat added quasi-statically to the system. The
integral in equation 3.2 is path-independent of a quasi-static process, but is
uniquely defined by the initial and final states of the system. Thus we can
define a state function; the entropy S, which satisfies

0 =

∮

dQrev

T
=

∮

dS (3.3)

It follows that the entropy is defined with respect to some arbitrary constant,
which defines zero entropy. The definition of this constant is ambiguous and
will not be included, so the physical meaning is the change in entropy, rather
than the absolute value of the entropy itself. The change in entropy is defined
as

∆S ≡
∫

dQrev

T
(3.4)

for a reversible process.

There is no unique expression for irreversible processes. If we consider some
process where the system changes from state A to state B along a path that
may be irreversible and are restored to its initial state, A, along a reversible
path, we can write the Clausius Inequality as

∫ B

A

dQ

T
+

∫ A

B

dQrev

T
≤ 0 (3.5)

where dQ is the heat added along the path from A to B and dQrev is the
heat added along the reversible path, B to A. Since the path from B to A is
reversible, it can be carried out in reverse, giving

∫ A

B

dQrev

T
= −

∫ B

A

dQrev

T
= −∆SA→B (3.6)

using the expression from 3.6 in 3.5, we get

∫ B

A

dQ

T
− ∆SA→B ≤ 0 (3.7a)

∆SA→B ≥
∫ B

A

dQ

T
(3.7b)

for infinitesimal changes

dS ≥ dQ

T
(3.8)
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Equation 3.8 is the second law of thermodynamics for which

dS =
dQrev

T
(reversible process) (3.9)

dS ≥ 0 (irreversible process) (3.10)

Equilibrium thermodynamics

The second law of thermodynamics, i.e. equation 3.8, states that the entropy
tends to increase (Schroeder, 2000). If a system has a different temperature
from its surroundings, energy exchange between the system and its surround-
ings occurs spontaneously from the warmer to the cooler region. Dissipation
of energy raises the temperature in the colder region and temperature gradi-
ents within the system dissipate in time. The dissipation of energy is an
irreversible process and produces entropy. Thermodynamic equilibrium is
achieved when the system has the same temperature as the surroundings
and the energy exchange between the two, and hence production of entropy,
stops. The entropy production for the system is

dS

dt
= Ṡirr ≥ 0 (3.11)

where Ṡirr is the production of entropy within the system due to irrevers-
ible processes. A system in thermodynamic equilibrium is in a state with
maximum entropy; hence Ṡ will equal zero when the equilibrium state is
achieved.

Non-equilibrium thermodynamics

Not all systems can reach a state of thermodynamic equilibrium. The Sun,
space (e.g. surroundings) and the Earth (e.g. system) is one example of
a system which is kept in a non-equilibrium state. Energy is continuously
exchanged and dissipated between the system and its surroundings, and the
state of thermodynamic equilibrium is never reached. According to Ziegler
and Wehrli (1987) the total entropy production for a non-equilibrium system
is changing as

Ṡ = Ṡirr − Ṡrev (3.12)

where Ṡirr is the entropy produced inside the system (see equation 3.11) and
Ṡrev is the reversible contribution which represents the divergence of entropy
fluxes, i.e. the net entropy exchange from the system with its surroundings,
with the net entropy export defined as positive.

Here is worth noting
Ṡirr = Ṡ + Ṡrev ≥ 0 (3.13)

so the second law is still fulfilled even if the entropy production within the
system, i.e. Ṡ, decreases in time.



3.2 Maximum Entropy Production 17

A steady state of the system is reached when the generation rate of the
potential energy is balanced by the energy dissipation rate (see figure 3.1),
so no kinetic energy is stored in the system. Then the net production of
entropy within the system (i.e. Ṡirr) equals the net export of entropy from
the system to its surroundings (i.e. Ṡrev )

Ṡ = 0 → Ṡirr = Ṡrev =
dF

T
(3.14)

where

dF =
dQrev

dt
(3.15)

3.2.3 The entropy production for the climate on Earth

Figure 3.2: The Earth’s climate system (i.e. the atmosphere-ocean system) and
its surroundings. Given the assumption that the climate system is in a steady state,
the entropy produced within the climate system equals the net entropy export from
the system to its surroundings. This results in zero entropy production within the
climate system and a positive entropy production of the surroundings, i.e. the Sun,
the Earth and space. Figure adapted from Ozawa et al. (2003).

The climate system on Earth is a system far from thermodynamic equilib-
rium. The net inbalance in radiation between the tropics and the poles sus-
tains temperature gradients and acts as a driving force for global circulation.
The circulation in the atmosphere and in the ocean continuously transports
heat from the tropics toward the poles and by doing so dissipates energy
resulting in entropy production.
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To use the MEP principle one needs a system in steady state. The climate
system, with its seasonal variations, is not in a steady state. In addition, in
a long term mean, the climate is warming. However, if one considers zonal
and annual mean, the inflow rate of energy in the climate system equals the
outflow rate of energy, since no heat is stored in the system and one can
argue that in this case the climate system is in a steady state.

Given the assumptions above, one can consider the climate system as a sys-
tem driven towards a MEP state and, consequently, a maximization of Ṡirr

(see equation 3.12).

In what follows, expressions for the entropy production, Ṡ, Ṡirr and Ṡrev, are
calculated and the quantity maximized representing the MEP state shown.
The derivations in this section are based on those of Ziegler and Wehrli
(1987); Ozawa et al. (2001) and Kleidon (2009)

The climate system, i.e. the atmosphere and the ocean, can be regarded as
a small, dissipative system connected to two surrounding heat reservoirs, the
Sun and the Earth, see figure 3.2. The entropy production of a dissipating
system is given by

Ṡ =
dS

dt system
=

d

dt

[
∫

V

ρs dV

]

=

∫

V

∂(ρs)

∂t
dV +

∫

A

ρsv · n̂ dA (3.16)

where ρ is the density of the fluid, s is the entropy pr. unit mass, v is
the velocity at surface A, V is the volume of the system, A is the surface
bounding the system and n̂ is the surface normal (positive outward).
Using the continuity equation

∂(ρs)

∂t
= ρ

∂s

∂t
+ s

∂ρ

∂t
= ρ

∂s

∂t
−∇ · (ρsv) + ρv · ∇s (3.17)

and Gauss’ theorem
∫

A

ρsv · n̂ dA =

∫

V

∇ · (ρsv) dV (3.18)

the entropy production (equation 3.16) can be written as

Ṡ =

∫

V

ρ

[

∂s

∂t
+ v · ∇s

]

dV (3.19)

The expression in square brackets is the time derivative of the entropy pr.
unit mass (ds/dt). Using the general thermodynamic relation

ds =
dq

T
=

du + p dV −
∑

µj dnj

T
(3.20)

for which q is the heat gain pr. mass unit, we get

ṡ =
1

T

(

du

dt
+ p

d(1/ρ)

dt
−

∑

µj

dnj

dt

)

(3.21)
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where u is the internal energy pr. unit mass, p is pressure, µj is the chemical
potential of component j, nj is the number of the jth component pr. unit
mass. Since we do not consider any change in the chemical composition in
the climate system the last term is not included in further calculations. By
substituting for the time derivative

ṡ =
∂s

∂t
+ v · ∇s (3.22)

and using the continuity relation

d(1/ρ)

dt
= − 1

ρ2

dρ

dt
=

1

ρ
∇ · v (3.23)

equation 3.19 can be written as

Ṡ =

∫

V

[

1

T

(

ρ
∂u

∂t
+ ρv · ∇u + p∇ · v

)]

dV (3.24)

The terms in the parentheses can be rewritten using the relations

ρ
∂u

∂t
+ ρv · ∇u =

∂(ρu)

∂t
+ ∇ · (ρuv) (3.25)

and
u = cvT (3.26)

where cv is the specific heat constant per unit mass at constant volume,
giving

Ṡ =

∫

V

[

1

T

(

∂(ρcvT )

∂t
+ ∇ · (ρcvTv) + p∇ · v

)]

dV (3.27)

which is the rate of entropy change in the system (i.e. equation 3.12).

The entropy of the surrounding system (i.e. the Sun, the Earth and space)
is changed by the net heat fluxes through the boundary surface (A), in our
case the top of the atmosphere (TOA). The radiative heat exchange between
the Sun, the Earth and space is irreversible and we do not know how to
calculate entropy changes for irreversible processes, but it does not matter.
Entropy is a state function and independent of path. We have to imagine a
reversible path which will result in the same dQ and calculate the entropy
change for this path using Clausius equation, which states that the entropy
production by the net heat flux emitted through TOA is given by the net
heat flux divided by the absolute temperature

Ṡrev =

∫

A

dFnet

T
dA (3.28)

where Fnet is the net heat flux pr. unit surface at TOA and defined positive
outward. Note that we can not do this for Ṡirr since we do not have any
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expression for dQ from irreversible processes.

Using equation 3.13, the entropy production due to irreversible processes, i.e.
turbulent heat transfer, in the climate system can be written as

Ṡirr = Ṡ + Ṡrev

=

∫

V

[

1

T

(

∂(ρcvT )

∂t
+ ∇ · (ρcvTv) + p∇ · v

)]

+

∫

A

dFnet

T
dA (3.29)

If the climate system is in a steady state, the entropy of the system should
remain unchanged, i.e. Ṡ =0. Hence, the entropy production due to turbulent
heat transfer, Ṡirr, becomes

Ṡirr = Ṡrev =

∫

A

dFnet

T
dA (3.30)

So the MEP state for our climate system has

Ṡirr =

∫

A

dFnet

T
dA = maximum (3.31)

3.2.4 Entropy production due to radiation processes vs.

turbulent heat transfer

Figure 3.3: The energy budget for the Earth. Globally averaged energy fluxes
given in [W/m2]. The flux values are taken from Trenberth et al. (2009) and are
based on satellite retrievals from the CERES data sets. The net absorption of
0.9W/m2 for the surface resulting in global warming is included but will not be
discussed (the purpose of including the figure is quite different).

A schematic of the global mean energy budget for the climate system is shown
in figure 3.3. The values in brackets represent the energy fluxes in W/m2
and the temperatures are the brightness temperature of the Sun (5800K),
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the global mean surface temperature (288K) and the global mean emission
temperature of Earth (255K). The entropy production in the universe due to
all irreversible processes in the climate system on Earth can be calculated as
(Ozawa et al., 2003)

Ṡuniverse ≃ Ṡsurr =
( 1

TATM

− 1

TSUN

)

dFsun

=
( 1

255K
− 1

5800K

)

239 W

m2
≃ 0.9 W

Km2
(3.32)

This entropy production can be partitioned into atmosphere, surface and
atmosphere-surface interaction components

Ṡturb =
( 1

255K
− 1

288K

)

97 W

m2
= 0.04 W

Km2
= 0.05Ṡuniverse (3.33)

Ṡ sw
surf

=
( 1

288K
− 1

5800K

)

161 W

m2
= 0.53 W

Km2
= 0.59Ṡuniverse (3.34)

Ṡ sw
atm

=
( 1

255K
− 1

5800K

)

78 W

m2
= 0.03 W

Km2
= 0.33Ṡuniverse (3.35)

Ṡ lw
atm

=
( 1

255K
− 1

288K

)

63 W

m2
= 0.28 W

Km2
= 0.03Ṡuniverse (3.36)

The entropy produced due to absorption of solar radiation by the atmosphere
and the surface are by far the greatest terms (equations 3.34 and 3.35), but
it is not the entropy produced by radiative processes that is maximized ac-
cording to the MEP theory.

In turbulent heat transfer there is a competing process between the heat flux
and the temperature gradient. Changes in one of them alter the other, result-
ing in a non-linear entropy production (described in detail in section 3.2.6).
In contrast, when radiation is absorbed, there are no feedback mechanisms
between the radiative flux and the absorptivity of the absorbing matter. Oz-
awa et al. (2003) argued that absorption of radiation can in this context be
considered a linear process and linear processes are not maximized. Con-
sequently, it is only the entropy production from the turbulent heat transfer
that tends to be maximized even if the contribution from this term is only
5% of the total entropy production (see equation 3.33).

Pujol and Llebot (1999, 2000a) used a one dimensional zonal ebm based on
the MEP model made by Paltridge (1975; 1978) (described in chapter 4)
to calculate annually- and zonally-averaged surface temperatures and cloud
cover maximizing the entropy production. Pujol and Llebot; Pujol and Llebot
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executed different runs including all of the entropy production components
(eqn. 3.33-3.36) and only the entropy production produced from turbulent
heat transfer (eqn. 3.33 ). The results for the different entropy production
runs were the same, indicating that the entropy produced from turbulent
processes is the one that tends to be maximized.

3.2.5 Maximum vs. minimum entropy production

The MEP principle differs from another well-known entropy principle pro-
posed by Prigogine (1947), namely The Principle of Minimum Entropy Pro-
duction. The principle states that stationary non-equilibrium states are char-
acterized by a minimum entropy production. The theorem applies only to
the linear regime of dynamics for fluids without any turbulent motions. The
assumptions needed to apply this principle are numerous, making it not ap-
plicable for most systems. The relationship between the minimum entropy
production principle and the MEP principle is not simple, but the two are ab-
solutely different (Martyushev and Seleznev, 2006) and should not be mixed.
The minimum entropy production principle is not discussed further in this
work.

3.2.6 MEP for a two-box blackbody climate system

Figure 3.4: (a) A two-box blackbody model of the climate system is used to
calculate the entropy production associated with the meridional heat flux, ζ, from
the tropics to the polar region. One box represents the tropics and the other box
represents the polar region. The solar insolation at TOA is FT and FP for the
tropics box and the polar box, respectively. Both boxes emit radiation according
to Stefan-Bolzmann law.
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In the previous sections the MEP theory fundamentals are explained. This
additional example is included with the intention of making the theory easier
to understand and to explain the MEP calculation method used throughout
this thesis.

Figure 3.4 shows a two-box representation of the climate system. One box
represents the tropics and the other represents the polar region. There is an
incoming flux of solar radiation, F, in each box, with greater insolation in the
tropics. Both boxes emit radiation according to the Stefan-Boltzmann law.
In addition to radiative fluxes, there is a meridional heat flux, ζ , representing
turbulent heat transfer from the warmer to the colder regions in the system.

Assuming energy balance within each box provides two equations

FT − σT 4
T − ζ = 0 (3.37)

FP − σT 4
P + ζ = 0 (3.38)

Assuming the insolation in each box, FT and FP , are known, there are three
unknowns, T1, T2 and ζ , but only two equations. To solve the system of
equations we need a third condition. Assuming that the system is in a MEP
state provides this condition. This can be written as

Ṡirr = Ṡrev = − ζ

TT

+
ζ

TP

= ζ
( 1

TP

− 1

TT

)

= maximum (3.39)

The sign convention used is that the entropy production is positive when
heat is added to the box, i.e. ζ for the polar region box, and negative when
heat is removed from the box, i.e. ζ for the tropics box. For simplicity the
subscript of Ṡirr is dropped hereafter

Defining

ζ = ζT = −ζP (3.40)

the energy balance equation for each box i={T,P} can be written as

Fi − σT 4
i − ζi = 0 (3.41)

where ζi is the meridional heat divergence of box i. The system can now
easily be extended to contain an arbitrary number of boxes.

The maximization problem

If we first consider the continuous case, using infinitely many boxes, the
energy balance equation at each latitude, φ, can be written as

F (φ) − σT (φ)4 − ζ(φ) = 0 (3.42)
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The total entropy production due to the meridional heat divergence is

Ṡtotal = −
∫ π

2

−
π

2

ζ(φ)

T (φ)
dφ = −

∫ π

2

−
π

2

F (φ) − σT (φ)4

T (φ)
dφ (3.43)

which is maximized with respect to the temperature, T (φ), to find the MEP
state. This is a variational problem, and the integral is in the standard
variational form

∫ π

2

−
π

2

F(φ, T, T ′)dφ (3.44)

where F(φ, T, T ′) = F (φ)−σT (φ)4

T (φ)
and T’=dT/dφ. The corresponding Euler-

Lagrange (E-L) equation is

d

dφ

∂F
∂T′

− ∂F
∂T

= 0 (3.45)

and since F is only a function of T the E-L equation is reduced to

∂F
∂T

= 0 (3.46)

This shows that maximizing the total entropy production is the same as
maximizing the entropy production w.r.t. temperature at each latitude sep-
arately. So one may maximize the entropy production in each “box”, instead
of the total entropy production.

The solution method

To find the maximum entropy production, the method of Lagrange multi-
pliers is used. The entropy production associated with the meridional heat
divergence in the ith box model is

Ṡi = − ζi

Ti

= −Fi − σT 4
i

Ti

(3.47)

To find the maximal entropy production for each box, we need to find ζi

such as to maximize Ṡi subject to the global radiative equilibrium constraint
∑

i Fi − σT 4
i = 0, which states that no energy is stored within the system.

To solve this problem a Lagrangian cost function, L , is used

L =
∑

i

− ζi

Ti

+ β
∑

i

Fi − σT 4
i =

∑

i

Fi − σT 4
i

Ti

− β
∑

i

Fi − σT 4
i (3.48)

where β is the Lagrangian multiplier, constant for all boxes. The constrained
maximum of the Ṡ can be found by maximizing L with respect to β and Ti.
Thus to find the MEP state for the system, we need to solve the non-linear
equation:

∂L

∂Ti

= σT 4
i

(

4βTi − 3
)

− Fi = 0 (3.49)
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for each box separately, subject to the constraint

∂L

∂β
= −

∑

i

Fi − σT 4
i = 0 (3.50)

The solution is obtained numerically. Equation 3.49 is solved for each box
separately, while β is adjusted until equation 3.50 is satisfied.

If we return to the two boxes seen in figure 3.4 we now have a method
for solving the system of equations and to find the three unknowns TT , TP

and ζ . For insolation FT =300Wm−2 and FP =170Wm−2, we get TT =262K ,
TP =244K and ζ=32Wm−2. These values are reasonable in light of the global
mean emission temperature on Earth of 255K (Hartmann, 1994, Ch. 2) and
the observed meridional heat divergence of 20-40Wm−2 (Lorenz et al., 2001).
The two box models are investigated further in chapter 5.

3.2.7 The linear approach

Some assume a flux gradient relation between ζ and TT − TP = ∆T , i.e.

ζ = k · ∆T (3.51)

with k being the effective conductivity. They then check for solutions, which
depends on k, in relation to MEP. This approach is used in several studies
(Lorenz et al., 2001; Kleidon, 2004, 2009) applying two-box blackbody sys-
tems like the one seen in figure 3.4.

Figure 3.5 shows the corresponding heat flux, ζ , the temperature difference,
∆T , and entropy production, Ṡ, as the conductivity, k, varies between 0
and 100Wm−2K−1. Each value of k corresponds to a steady state for the
two-box climate system. The entropy produced is a result of two competing
processes; the horizontal heat flux and the temperature gradient between the
boxes. Changes in one of them (i.e. ζ or ∆T ) alters the other.

Having k=0 Wm−2K−1 gives ζ=0, making the entropy production, Ṡ, zero.
This state corresponds to a state of radiative equilibrium for each box separ-
ately. For k=100 Wm−2K−1, the heat flux erases the temperature gradient,
resulting in ∆T=0, which also makes the entropy production zero. This state
corresponds to a state of thermal equilibrium in the system. The state of our
two-box climate system is somewhere in between those two extreme states of
radiative and thermal equilibrium.

The entropy production exhibits a maximum at k≃ 2Wm−2K−1(figure 3.6(b))
and it is this steady state the MEP theory predicts for our two-box climate
system to evolve towards.
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Ṡirr = Ṡrev
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Figure 3.5: A number of possible steady states for the two-box climate system
and the corresponding heat flux, ζ, (black, dashed line and right y-axis), the tem-
perature difference, ∆T (red, solid line and left y-axis) and the associated entropy
production,Ṡ, (blue, solid line and left y-axis) for each steady state as the con-
ductivity, k, is varied between 0-100Wm−2K−1 . Each value of k corresponds to
a steady state from the two-box climate system. A maximum in the entropy pro-
duction is seen for k≃ 2Wm−2K−1. The figure is based on work by Kleidon (2004,
2009).

Figure 3.6(a) shows the temperatures for the two boxes and the meridional
heat flux as the two-box climate system evolves to a steady state. The system
is in a non-equilibrium state since the temperature gradient is maintained.
As the system reaches the steady state the entropy produced within the sys-
tem equals the entropy exported to the surroundings resulting in a constant
entropy in the system (see figure 3.6(b)). The entropy in the surroundings
(i.e. the universe) still increases, fulfilling the second law of thermodynamics.

Lorenz et al. (2001) used the same method to study the atmospheres of Titan,
Mars and Earth. They found the mean conductivity of the meridional heat
transfer in the Earth’s atmosphere to be in the range of 0.7-2.6Wm−2K−1

which is in line with the findings in Kleidon (2004, 2009).

We will later on show that the linear parametrization approach used in Lorenz
et al. (2001); Kleidon (2004, 2009) only is valid for small temperature differ-
ences.
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Figure 3.6: The system reaching one of the possible steady states seen in figure 3.5.
(a) Temperature and flux evolving in time for a system with conductivity k = 0.6
Wm−2K−1. The difference in the temperature in the tropics box (red, solid line)
and the temperature in the polar box (blue, solid line) stabilizes, as the steady state
is reached. A constant ∆T corresponds to constant heat flux (black, solid line).(b)
Associated entropy production, entropy exportation and entropy for the system in
(a). As the climate system reaches the steady state, the entropy production within
the system (blue, dashed line) equals the net export of entropy from the system to
the surroundings (green, dashed line) and consequently a constant entropy (black,
solid line) within the system is obtained. The figure is based on work by Kleidon
(2004, 2009).
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Chapter 4

Paltridge’s MEP Model

The first climate model based on the MEP principle was published by G. W.
Paltridge in 1975 (Paltridge, 1975) and developed further in 1978 (Paltridge,
1978). Paltridge used a 10 box zonally averaged energy balance model and
solved for 4 unknowns; the meridional heat flux, the surface temperature, the
cloud cover and the vertical flux of sensible and latent heat. The results were
remarkable. The model was later extended to include 20 boxes (Paltridge et
al., 2007) and it is this model that will be discussed throughout this chapter.

Paltridge’s model is based on two broad thermodynamical constraints; the
maximization of the entropy produced in the system and the maximization
of the vertical flux of sensible and latent heat from the surface to the atmo-
sphere.

O’Brien and Stephens (1995) published an article where they described a
method for solving the system of equations used in Paltridge’s MEP model.
The derivations made are to a great extent analytical and the method is easy
to use. O’Brien and Stephens (1995) also proved that only one single MEP
state solution exists.

Many of the MEP climate models used later on are based on Paltridge’s
model and provide the same results (Grassl, 1981; Wyant et al., 1988; Pujol
and Llebot, 1999, 2000a,b). Since the MEP principle turned out to be difficult
to prove, Paltridge’s results are often used to demonstrate the exceptional
prediction properties of the MEP principle for the climate on Earth.(Kleidon,
2009; Ozawa et al., 2003).

In this chapter Paltridge’s MEP model (Paltridge, 1975, 1978; Paltridge et al.,
2007) and Stephens and O’Brien’s calculations (O’Brien and Stephens, 1995)
are explained in detail and the model results are shown. Paltridge’s model is
a complex ebm and some of the calculations made can be difficult to grasp.
They are discussed more in detail in the subsequent chapters. A sensitivity
test of all the parameters used is included, followed by a conclusion regarding
the suitability of Paltridge’s model in a model intercomparison with CAM3.

29



30 4 Paltridge’s MEP Model

4.1 Paltridge’s MEP model

4.1.1 The overall model

Paltridge’s MEP model is a 20-box energy balance model where each box
represents the zonal mean condition of a latitude zone. Each box is divided
into an atmosphere layer and a surface layer for which energy balance is
assumed for each layer separately. All of the boxes have equal surface area.
The adjacent boxes cover the globe, from the South Pole to the North Pole.
The only transport between the boxes is the meridional heat flux (see figure
4.1). In addition to the horizontal flux, there are fluxes of radiation and
convective heat within each box.

Figure 4.1: A 10 box conceptual MEP model. Each box represents one latitude
zone and is divided into an atmosphere and a surface layer. There are 20 boxes
in Paltridge’s MEP model. Only 10 boxes are shown for the illustration. ζA and
ζo are the atmospheric and the oceanic components of the normalized meridional
heat convergence defined in section 4.1.2

4.1.2 The individual box

The solar radiation budget for one zonal latitude zone

Figure 4.2 shows the solar radiation budget for one latitude zone. The incom-
ing solar flux at TOA is F0ξ, where F0 is the solar constant and ξ = π/cos(φ)
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Figure 4.2: The solar radiation budget for one latitude zone. F0 is the solar
constant, ξ = π/cos(φ) and F0ξ = I, where I is the measured insolation at TOA, g
is the planetary albedo in clear sky conditions (1-θ) and d is the planetary albedo
in cloudy conditions (θ). See table 3.1 for exact values used in the model.

is the ratio of the actual surface area, at a latitude φ, to the projected area
seen by the sun. The planetary albedos for clear and cloudy sky are g and
d, respectively. The cloud fraction of a latitude zone is θ and the clear sky
fraction is (1 − θ).

The net solar flux at TOA,FSW (TOA) , is the incoming solar flux minus the
reflected solar flux and can be written as

FSW (TOA) = F0ξ − F0ξ(1 − θ)g − F0ξθd = F0ξ
(

1 − g − θ
(

d − g
))

= F0

(

A − Bθ
)

(4.1)

where A = ξ
(

1 − g
)

and B = ξ(d − g).
The planetary albedo for clear sky, g, and cloudy sky, d, at TOA are defined
as

g = g0 + α(1 − g0 − k)(1 − g0) (4.2)

d = d0 + α(1 − d0 − kc)(1 − d0) (4.3)

where g0 and d0 are the fractional atmospheric reflection in clear and cloudy
sky, α is the surface albedo and k and kc are the fractional solar absorption
by clear and cloudy sky, respectively.

The net solar flux at the surface, FSW (0), is the net incoming solar flux minus
the reflected solar flux from the atmosphere and the surface and the solar
radiation absorbed by gasses in the atmosphere and by liquid water in clouds.
The solar flux at the surface can be written as
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FSW (0) = F0ξ − F0ξ(1 − θ)gs − F0ξθds − F0ξk(1 − θ) − F0ξkCθ

= F0ξ
(

1 − (gs + k) − θ
(

ds + kc − (gs + k)
))

= F0

(

P − Qθ
)

(4.4)

where P = ξ(1 − (gs + k)) and Q = ξ(ds + kc − (gs + k)). The fractional
reflection and absorption of the atmosphere are defined as

gs + k = 1 − (1 − α)(1 − g0 − k) (4.5)

ds + kc = 1 − (1 − α)(1 − d0 − kc) (4.6)

which is the fraction of incoming solar radiation (which is 1) minus the frac-
tion of solar radiation absorbed by the surface.

The longwave radiation budget for one zonal latitude zone

Figure 4.3: Longwave radiation budget for one zonal latitude zone. The figure
shows the longwave radiation exchange between the surface, the atmosphere and
space in the model. There are two bands, one 100% opaque with width ǫa and one
100% clear with width 1-ǫa. The squares represent the cloud covered area of the
atmosphere, θ. The clear sky areas have a width 1-θ. T, Ta, TCB and TCT are
the surface temperature, the atmospheric radiative temperature, the cloud base
temperature and the cloud top temperature, respectively. The surface has a mean
emissivity ǫ and the cloud emissivity is ǫc
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A two band model is used in the longwave spectra of the model (see figure
4.3). One of the bands is 100% opaque and has a width ǫa. All the atmo-
spheric clear sky emission and absorption takes place in this band. The other
band is regarded 100% clear and has a width 1−ǫa. The clear band represents
the atmospheric window. The atmospheric window, 8.5µm ≤ λ ≤ 12.5µm
(Paltridge, 1974), is a region where the atmosphere is relatively transparent
to longwave radiation. Transmission of radiation between the surface and
space can only take place in the cloud free fraction of the clear band and
downward radiation will only appear in the presence of clouds. Within the
opaque band the absorbing atmospheric gases are regarded as a blanket, ra-
diating upward with a blackbody temperature, Ta, and radiating downward
with a blackbody temperature close to the surface temperature, so the net
exchange of radiative energy between the surface and the opaque band is
assumed to be zero (shown as dashed arrows in figure 4.3).

The net longwave flux at TOA, FLW (TOA), is

FLW (TOA) = ǫaθǫcσT 4
CT +(1−θ)ǫaσT 4

a +(1−ǫa)θǫcσT 4
CT +(1−ǫa)(1−θ)ǫσT 4

(4.7)
To simplify the equations used in this model, the blackbody radiation of the
atmosphere, the cloud base and the cloud top are expressed as fractions of
the blackbody radiation of the surface

F =
σT 4

a

σT 4
(4.8a) f ′ =

σT 4
CB

σT 4
(4.8b) f =

σT 4
CT

σT 4
CB

(4.8c)

Using these simplifications FLW (TOA) can be written as

FLW (TOA) = ff ′θǫcσT 4 + ǫa(1 − θ)FσT 4 + (1 − ǫa)(1 − θ)ǫσT 4

= σT 4
(

ǫaF + ǫ(1 − ǫa) − θ
(

ǫaF + ǫ(1 − ǫa) − ǫcff ′
))

= σT 4
(

C − Dθ
)

(4.9)

where C = ǫaF + ǫ(1− ǫa) is the fractional atmospheric emission in clear sky
plus the fractional surface emission attenuated by atmospheric absorption,
and D = ǫaF+ǫ(1−ǫa)−ǫcff ′ is the fractional longwave emission from clouds.

Assuming no energy exchange between the surface and the atmosphere in
the opaque band, the net longwave flux at the surface, FLW (0), is

FLW (0) = (1 − ǫa)σǫT 4 − (1 − ǫa)θǫcσT 4
CB (4.10)

Applying the temperature simplifications, i.e. equations 4.8a,b,c, FLW (0)
can be written as

FLW (0) = (1− ǫa)σǫT 4 − (1− ǫa)θf
′ǫcσT = σT 4

(

ǫ(1− ǫa)− θ
(

(1− ǫa)ǫcf
′
))

= σT 4
(

R − Sθ
)

(4.11)

where R=ǫ(1 − ǫa) is the fractional surface emission attenuated by atmo-
spheric absorption and S=(1 − ǫa)ǫcf

′ is the fraction of downward emission
from the cloud base.
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The total energy budget for one zonal latitude zone

Figure 4.4: The total energy budget for one zonal latitude zone. The black arrows
represent solar radiation, the brown arrows represent terrestrial radiation, the blue
arrow represents flux of latent and sensible heat and the green arrows represent
meridional heat convergence. See table 4.1 for explanation of the constants used.

In addition to radiative fluxes there are fluxes of latent and sensible heat,
LE + H, and meridional heat convergence, ∆X, within each box (see figure
4.4). The meridional heat flux has an atmospheric component, ∆XA, and an
oceanic component, ∆Xo, such that ∆X = ∆XA + ∆Xo.

To ease the calculations the fluxes are normalized by the solar constant,
F0

ζ =
∆X

F0
(4.12a) η =

σT 4

F0
(4.12b) q =

LE + H

F0
(4.12c)

The energy balance for one box is

F0(A − Bθ) − σT 4(C − Dθ) + ∆X = 0 (4.13a)

(A − Bθ) − η(C − Dθ) + ζ = 0 (4.13b)

The energy balance for the surface layer only is

F0(P − Qθ) − σT 4(R − Sθ) − (LE + H) + ∆Xo = 0 (4.14a)

(P − Qθ) − η(R − Sθ) − q + ζo = 0 (4.14b)

where ζo = ζ − ζA is the oceanic part of the meridional heat convergence.
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There are two energy balance equations for each box for which η, q, θ and
ζ are the unknowns. To solve the system of equations two more constraints
are needed.

4.1.3 The first maximization principle

The first maximization principle used in the model is the maximization of
the vertical flux of latent and sensible heat (LE+H) from the ground to the
atmosphere. The vertical heat flux is maximized w.r.t. both surface tem-
perature and cloud cover. By using this principle it is possible to get an
expression for the surface temperature and the cloud cover that satisfies the
energy balance equations and which yields a maximum of LE+H. Assuming
that the vertical heat flux exchange occurs on a much shorter timescale than
the meridional heat exchange, the two processes are considered independent.
The calculations made are based on the work of O’Brien and Stephens (1995).

The cloud faction, θ, can be eliminated from the surface layer equation using
the equation for the total box, making the normalized flux of latent and
sensible heat, q, a function independent of θ

θ =
ζ + A − Cη

B − Dη
→ q = ζo + (P −Rη)− (Q− Sη)

(

ζ + A − Cη

B − Dη

)

(4.15a)

Note that η is the normalized blackbody radiation from the surface and a
measure of the surface temperature. For that reason η will be referred to as
the surface temperature throughout the calculations in this chapter.

The surface temperature can be eliminated in the same way making q a
function independent of η

η =
ζ + A − Bθ

C − Dθ
→ q = ζo + (P −Qθ)− (R − Sθ)

(

ζ + A − Bθ

C − Dθ

)

(4.15b)

To find an extreme of q with respect to η and θ, we need to calculate ∂q/∂η =
0 and ∂q/∂θ = 0.
The calculations give the roots

Dη − B = ±
√

BS − DQ

CS − DR

√

BC − AD − Dζ = ±H
√

γ (4.16)

Dθ − C = ±

√

CS − DR

BS − DQ

√

BC − AD − Dζ = ±H−1√γ (4.17)

where H and γ are defined as

H =

√

BS − DQ

CS − DR
(4.18)
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γ = BC − AD − Dζ (4.19)

To get a realistic solution we need

BS − DQ

CS − DR
≥ 0 and γ ≥ 0

In their article, Stephen and O’Brien (1995) state that BS-DQ>0, CS-DR >0
and γ>0 for realistic parameter values which will guarantee a real solutions.
Although this is satisfied for the parameters used in Paltridge’s MEP model,
it is not always the case (section 4.3).

To see whether the expression for θ and η are maxima or minima we need to
calculate ∂2q/∂η2 and ∂2q/∂θ2 at the zeroes of ∂q/∂η and ∂q/∂θ respectively.
The calculations show that

∂2q

∂η2
= ±2

CS − DR

H
√

γ
(4.20a)

∂2q

∂θ2
= ±2H

BS − QD
√

γ
(4.20b)

CS-DR and BS-QD are already assumed to be greater that zero, so to find
the two maxima the roots with the negative sign are chosen. Consequently
the maximization of vertical convection requires that

Dη − B = −H
√

γ (4.21)

θ − C = −H−1√γ (4.22)

All the radiation constants A, B, C, D, P, Q, R and S are combinations of
the parameters used for the zonal latitude zone, which means that both the
surface temperature and the cloud fraction are constrained to be functions
of the meridional energy convergence.

4.1.4 The second maximization principle

The second maximization principle used in Paltridge’s model is the prin-
ciple of maximization of entropy production. Paltridge defines the entropy
production in the ith box to be

Pi = −∆Xi

Ta,i

(4.23)

which is the entropy produced due to the meridional energy convergence. Ta,i

is the radiative temperature of the atmosphere. The total rate of entropy
produced is the sum of the entropy production in each box

P =
∑

i

Pi (4.24)
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The radiative atmospheric temperature, Ta,i, can be calculated from the OLR
terms at TOA (see figure 4.3) for the ith box as

ǫaσT 4
a,i = ǫaǫcff ′

iθiσT 4
i + ǫa(1 − θi)FσT 4

i

= ǫaσT 4
i

(

ǫcff ′

iθi + F (1 − θi)
)

(4.25)

Ta,i =
4

√

F0ηi

σ

(

F − θi(F − ǫcff ′

i)
)

(4.26)

Because both η and θ can be expressed in terms of ζ , the atmospheric tem-
perature can be written as

Ta,i =

(

F0

σ

)
1

4

Gi(ζi)

where Gi(ζi) =

[(

Bi

Di

−
Hi

√
γi

Di

)(

F −
(

Ci

Di

−
√

γi

HiDi

)

(

F −ǫcff ′

i

)

)]
1

4

(4.27)

Note that Gi is a function of ζi alone and does not depend on other ζj, j 6= i.

Let Q denote the normalized entropy production

Q =
P

F
3

4

0 σ
1

4

=
1

F
3

4

0 σ
1

4

∑

i

∆Xi

T̃a,i

=
∑

i

ζi

Gi(ζi)
(4.28)

which is maximized subject to the constraint

∑

i

ζi = 0 (4.29)

which states that since the climate system is assumed to be in a steady state,
no heat can be stored within the system.

The method of Lagrange multipliers, described in section 3.2.6, is used to
solve this problem . Let L be the Lagrangian cost function and β the
Lagrangian multiplier, then

L = Q − β
∑

i

ζi =
∑

i

(

ζi

Gi(ζi)
− βζi

)

(4.30)

The constrained maximum of Q can be found by solving for the maximum
of L with respect to β and ζi

∂L

∂β
= −

∑

i

ζi = 0 (4.31)

∂L

∂ζi

=
1

Gi

− ζi

Gi
2

dGi

dζi

− β = 0 (4.32a)
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Equation 4.31 is the energy constraint already assumed to be true.

To get the MEP state we need to solve the non-linear equation

ζi

dGi

dζi

− Gi + βGi
2 = 0 (4.32b)

for each zonal latitude zone in the model. The equation is solved numerically
and the solution obtained is proved to be unique by Stephens and O’Brien
(O’Brien and Stephens, 1995).

In the 2007 version of the MEP model (Paltridge et al., 2007), Paltridge also
includes a tuning parameter of the atmospheric temperature, z0. The use of
the radiative atmospheric temperature to calculate the entropy production
results in values that are too small for the meridional energy convergence,
ζ (Paltridge, 1975, 1978). To compensate for this, a tuning factor, which
increases the atmospheric temperature and hence alters the entropy produc-
tion and the solution, is included, i.e. Ta,i = z0Ta,i, where z0 = 1.07.

Since all boxes are defined to have the same surface area, the meridional heat
transport is calculated as

Fφ =
4πR2

E

20

∫ π

2

−
π

2

ζ(φ)dφ (4.33)

where RE is the radius of the Earth, φ is the mean latitude for the box and
dφ is the horizontal width of each box. The fraction 4πR2

E/20 is the mean
surface area of each box.

4.1.5 The results from Paltridge’s MEP model

The results from Paltridge’s MEP model are shown in figure 4.5 (blue, solid
line). Also included are control run results from CAM3 (black, solid line).
Given its simplicity, the MEP model results are quite impressive.

The results from the MEP model are more zonally symmetric about the
equator than the data used in the comparison. The parameters used in Pal-
tridge model are weighted by the appropriate land/sea fraction for the given
latitude zone, although it seems like the differences are not captured properly
when compared to surface temperatures in CAM3.

The surface temperature comparison is remarkable (figure 4.5(a)). The only
place where the surface temperatures from the MEP model do not follow
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Name Value Represents
I * The mean insolation
g0 * The atmospheric albedo in clear sky
d0 * The atmospheric albedo in cloudy sky
α * The surface albedo
ǫ * The surface emissivity
f’ * The ratio T 4

CT /T 4
CB

k * The fractional atmospheric absorption in
clear sky

kc 0.20 The fraction of atmospheric absorption in
cloudy sky

F 0.55 The ratio Ta4/T 4

f 0.80 The ratio T 4
CB/T 4

ǫa 0.75 The atmospheric clear sky emissivity
ǫc 1.00 The cloud emissivity
z0 1.07 The tuning factor for the atmospheric tem-

perature
SW: All constants are fractional

values of F0

A ξ(1 − g) Net solar flux at TOA in clear sky
B ξ(d − g) Net solar flux at TOA in cloudy sky
P ξ(1 − (gs + k)) Net solar flux at the surface in clear sky
Q ξ(ds + kc − (gs + k)) Net solar flux at the surface in cloudy sky
LW: All constants are fractional

values of F0η
ma ǫaF fractional atmospheric emission in clear sky
mg ǫ(1 − ǫa) fractional surface emission attenuated by

atmospheric absorption
mc ǫcff ′ fractional upward emission from cloud top
nc ǫcf

′(1 − ǫa) fractional downward emission from cloud
base

C ma + mg Net longwave flux at TOA in clear sky
D ma + mg - mc Net longwave flux at TOA in cloudy sky
R mg Net longwave flux at the surface in clear sky
S nc Net longwave flux at the surface in cloudy

sky
Other:

T̃a
4

√

F0ηi

σ

(

F − θi(F − ǫcff ′

i)
)

the radiative temperature of the atmo-
sphere used to calculate the production of
entropy

Table 4.1: The different parameters and radiation constants used in Paltridge’s
MEP model. All parameters are weighted by the appropriate land/sea fraction of
the given latitude zone. * values listed in Table 4.2
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Figure 4.5: The results from Paltridge’s MEP model (blue, solid lines). (a)
Surface Temperature, (b) The Cloud Cover, (c) The Convective Heat Flux, (d) The
Meridional Heat Convergence, ζ, (e) the Meridional Heat Transport, Fφ. Results
from CAM3 (black, solid lines) are also included.
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Lat. I, W/m2 g0 d0 α, SH α, NH f’ ǫ, SH ǫ, NH k, SH k, NH
72.8◦ 186 0.130 0.57 30 25 0.80 0.99 0.99 0.1468 0.1880
58.4◦ 242 0.095 0.43 7.3 9.8 0.80 0.99 0.98 0.1877 0.1866
48.7◦ 288 0.080 0.39 6.2 10.4 0.80 0.99 0.98 0.1896 0.1859
40.6◦ 324 0.070 0.37 6.1 9.3 0.80 0.99 0.98 0.1898 0.1832
33.4◦ 355 0.060 0.35 6.7 9.6 0.78 0.99 0.97 0.1887 0.1814
26.8◦ 376 0.055 0.34 7.8 10.8 0.75 0.98 0.97 0.1868 0.1835
20.5◦ 393 0.050 0.33 8.3 9.8 0.71 0.98 0.97 0.1859 0.1841
14.5◦ 406 0.047 0.32 7.5 8.3 0.70 0.99 0.99 0.1873 0.1821
8.6◦ 413 0.045 0.31 7.4 7.9 0.70 0.99 0.99 0.1875 0.1832
2.9◦ 420 0.045 0.30 7.2 7.1 0.70 0.99 0.99 0.1878 0.1558

Table 4.2: Parameter values used in Paltridge’s MEP model. The Lat column
represents the mean latitude of the zonal latitude zone. What the other parameters
represents are explained in Table 4.1

the CAM3 data, is near Antarctica, where the surface temperatures are ex-
tremely cold.

Perhaps the most fascinating result of Paltridge’s MEP model is the cloud
cover fraction (figure 4.5(b)). This is especially true since the cloud cover
fraction is a function of the meridional energy convergence and is based on
a not well known principle: the principle of maximum convection. A com-
parison with CAM3 is not straightforward since there are great uncertainties
associated with cloud cover data in GCMs in general, but the main features
of the cloud cover are captured in a satisfactory way. The local maxima in
the cloud cover fraction at the equator, associated with the ITCZ, and at mid
latitudes, due to storms, are seen. Also seen are the two minima in the cloud
cover, associated with the descending branches of the Hadley circulation.

The flux of latent and sensible heat is greater and smoother compared to
the CAM3 result. The local minimum in the latent heat flux at the equator
is not captured in the MEP model (figure 4.5(c)) . This may not be too
surprising since the reasons for this minimum are complex.

Also the meridional heat convergence and the meridional heat transport re-
sembles the CAM3 results (figure 4.5(d)-(e)). Note that the meridional heat
convergence and the transport, calculated from CAM3 data (see chapter 2 for
details), are only the atmospheric components and hence smaller compared
to results from a fully coupled climate model.

4.2 A sensitivity test of Paltridge’s MEP model

Lord Kelvin once said: With three parameters, I can fit an elephant. Paltridge
is using thirteen parameters in his model. If you can fit an elephant using
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three parameters, imagine what you can do using thirteen! One of the main
questions asked in this thesis is if a MEP model is able to capture shifts
in the meridional heat transport in response to altered SST. In trying to
answer this question, it is essential to know if the accurate model results
are a consequence of good parameter choices, or if the model actually is
capable of capturing the main features of our climate. Therefore, to get
a better understanding of Paltridge’s MEP model, a sensitivity test of the
parameters is included and discussed.

4.2.1 The sensitivity test

There are thirteen parameters in Paltridge’s MEP model, but only twelve of
them are tested. The cloud emissivity is assumed to equal 1 in all the calcu-
lations. Changing it would mean changing the equations used in the model,
which is not in our interest. It is arguable whether the cloud emissivity even
is a parameter at all in this model.

Each of the twelve remaining parameters have been tested separately, so while
altering one parameter value (or values if the parameter value changes with
latitude) the others remain unchanged. How much it is possible to change
the value(s) differs from one parameter to another. Changes that are too big
either cause complex solutions or unrealistic cloud cover fraction for which,
θ < 0 or θ > 1, and these results are not included.

4.2.2 The sensitivity test results

Figure 4.6 and 4.7 show the results of the sensitivity test. The test results
are presented as fractional changes in the global mean values of the solutions
from the perturbed MEP model run to the global mean values of the solution
from the original run. The solution presented from the MEP model includes
the cloud cover (black, solid line), the surface temperature (dark blue, solid
line), the convective heat flux, H+LE, (light blue, solid line) and the me-
ridional heat transport for the Southern hemisphere (red, dashed line) and
for the Northern hemisphere (green, dashed line). The y-axis is the mean
fractional change in the MEP model solutions relative to the original run.
The x-axis is the fractional change in the parameter value(s) relative to the
original value(s). The point (1,1) represents the original run.

The mean surface temperature is not very sensitive to parameter changes.
There are hardly any changes seen at all except for altered insolation (see
figure 4.6(a)). Also the mean value of the vertical flux of sensible and latent
heat, H+LE, does not exhibit any great changes, except for changes in the
surface albedo (figure 4.6(f)) and changes in the surface emissivity (figure
4.7(a)). The meridional heat transport shows higher parameter dependency
than what is seen for both the surface temperature and the convective heat
flux. High values are especially seen for the longwave radiation parameters
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F, f, f’ and z0 (figure 4.6(b) and (e) and figure 4.7(e) and (f))

What really stands out though are the large changes in the cloud cover frac-
tion as a response to parameter changes. This is true for nearly all of the
parameters and shows that the cloud cover acts as the main contributor in
restoring energy balance within each box. E.g. if a box gains too much
energy, an increased cloud cover fraction will increase the albedo for which
a smaller amount of solar radiation is absorbed, resulting in a new the en-
ergy balance state in the box. As a response to this, O’Brien and Stephens
(1995) wrote in their article: If so, the best procedure for modeling clouds in
a general circulation model (GCM) might be to introduce them as regulating
elements, rather than to attempt to predict cloud condensation nuclei, water
vapor, entrainment and all the microphysics of cloud formation. Using a
simple energy balance model does not provide many ways to restore energy
balance. An adjustment of the cloud cover is one of very few options. To
suggest that the clouds on Earth act in order to restore energy balance, is
probably an overstatement.

The main conclusions drawn from this test is that the cloud cover fraction
acts as the restoring energy balance force and as a consequence small changes
in the parameters cause huge changes in the cloud cover. This is a charac-
teristic of the MEP model and not necessarily a negative one, but it is very
important keep in mind of when the proper use of Paltridge’s MEP model is
considered. A further discussion of this is included in the last section of this
chapter.

A comment on how to present the sensitivity test results

Most of the sensitivity tests done on Paltridge’s model (Grassl, 1981; Pujol
and Llebot, 1999, 2000a) use the ratio of changes in the global mean value.
The same is done in figure 4.6 and 4.7. This way of presenting the results
does not give the full picture. The results can change quite substantially
due to parameter changes without changing the global mean value of the
results. One example is the sensitivity test of the atmospheric tuning factor,
z0. Figure 4.8(a) shows that the global mean value of the cloud cover fraction
(black, solid line) does not change much as z0 changes. Figure 4.8(b) gives a
different picture. Huge changes occur in the cloud cover fraction with up to
80% increase in the tropics and up to 40% decrease at high latitudes. Since
there are both great increases and decreases of the cloud cover happening for
the same parameter change, the mean global value stays almost the same as
in the original run.
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(a) I: insolation at TOA
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(b) F: ratio Ta4/T 4
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(c) g0: atmospheric albedo, clear
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(d) d0: atmospheric albedo, cloudy
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(e) z0: tuning factor for Ta
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(f) α: surface albedo

Figure 4.6: The sensitivity test of the parameters used in Paltridge’s MEP model.
The figures show the fractional changes in the MEP model global mean results
relative to the global mean results from the original run which are: The Cloud Cover
(black, solid line), The Surface Temperature (dark blue, solid line), The Convective
Heat Flux, H+LE, (light blue, solid line), The Meridional Heat Transport for the
Southern hemisphere (red, dashed line) and for the Northern hemisphere (green,
dashed line).
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(a) ǫ: surface emissivity
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(b) ǫa: atmospheric emissivity

0.98 1 1.02 1.04 1.06 1.08 1.1
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Fraction of k

[F
ra

ct
io

na
l c

ha
ng

es
]

 Fractional changes in the mean values of the results
 due to the variations in k

 

 

Temperature
Cloud Clover
H + LE
Transport SH
Transport NH

(c) k: atmospheric absorption, clear
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(d) kc: atmospheric absorption, cloudy
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(e) f: ratio Tcb4/T 4
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(f) f’: ratio Tct4/T cb4

Figure 4.7: The sensitivity test of the parameters used in Paltridge’s MEP model.
The figures show the fractional changes in the MEP model global mean results
relative to the global mean results from the original run which are: The Cloud Cover
(black, solid line), The Surface Temperature (dark blue, solid line), The Convective
Heat Flux, H+LE, (light blue, solid line), The Meridional Heat Transport for the
Southern hemisphere (red, dashed line) and for the Northern hemisphere (green,
dashed line).
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On the other hand, including 60 sensitivity figures such as figure 4.8(b) in
order to give the complete picture is not a good option either. The sensitivity
test of the cloud cover due to changes in z0 is an extreme case and most of
the changes are captured in a satisfactory way by figure 4.6 and 4.7. For this
reason the global mean value is chosen, with a gentle warning.
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Figure 4.8: Sensitivity test of the tuning factor of the atmospheric temperature,
z0. The figures show the fraction of changes in the cloud cover relative to the
original run. (a) Fractional changes in the global mean value of the cloud cover
(black, solid line) does not change much, but great zonal changes in the cloud cover
fraction still occur as seen in (b).

4.3 The radiation constants

The sensitivity test provides interesting information about changes in the res-
ults as a consequence of changes in the parameters, but cannot say anything
about the parameter value(s) chosen in the first place. It is difficult to tell
if the values used in Paltridge’s MEP model are reasonable. Some disregard
Paltridge’s MEP model due to his parameter definitions (Martyushev and
Seleznev, 2006) and maybe they do so for good reasons. A parameter like
the fraction of the OLR from the cloud top to the OLR from the surface (i.e.
f · f ′) is not straightforward to calculate.

The radiation constants used, (i.e. A, B, C...etc. See figure 4.10 for details)
which are combinations of the parameters, are easier to handle. Net flux
data at TOA and the surface from CAM3 are used to calculate the same
constants. E.g. A = FSW,clear(TOA)/F0, where FSW,clear(TOA) is the net
solar flux at the top of the atmosphere for clear sky conditions.

The constants calculated from CAM3 will not necessarily denote the same
physical properties as in the MEP model, but will represent the same frac-
tional radiation flux. For instance, S represents the fractional downward
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radiation flux from the cloud base in the clear band in the MEP model and
is the net longwave flux between the atmosphere and the surface under cloudy
conditions as a fraction of the black body radiation emitted by the surface.
The S calculated from CAM3 will also represent the net longwave flux at
the surface under cloudy conditions and is given as a fraction of the black
body radiation emitted by the surface, but is not only the downward radi-
ation from the cloud base since the radiation exchange processes in CAM3
are much more complex.

The results are shown in figures 4.9 and 4.10. The MEP results are shown
as solid lines while the dashed lines are the CAM3 results. The H defined
in equation 4.18 can be seen in figure 4.9. H is real for the parameters used
in the MEP model, but complex at low and middle latitudes as a result of
CS-DR < 0 for the CAM3 data, contrary to the assumptions made when H
was defined.

(a)

−60 −40 −20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

H=
√

BS−SD
CS−DR

Latitude

[fr
ac

tio
n]

 

 

The MEP model
CAM 3

(b)

Figure 4.9: (a) Schematic showing the radiation constants described in the text.
The figure shows the total energy budget for one box in Paltridge’s MEP model.

(b) H is defined as
√

BS−DQ
CS−DR

and represents no physical quantity. H is complex in

CAM3 at low latitudes due to CS-DR < 0.

Figure 4.10(a) shows the annual-mean absorbed solar radiation at TOA.
Paltridge’s MEP model represents the absorbed solar radiation well. The
radiation constants representing the solar flux fractions are also similar in
the two models (figure 4.10(c) and (d)), especially the clear sky values, A
and P.

Figure 4.10(b) shows the emitted longwave radiation at TOA. The MEP
model overestimates the OLR for all latitudes and at equator in particular,
compared to CAM3. The most striking feature is the constant values used
for the fractional
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(a) Absorbed Solar Radiation
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(c) A and P: Net solar flux in clear sky
at TOA and at the surface, respectively.
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(d) B and Q: Net solar flux in cloudy
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(f) D and S: Net longwave flux in cloudy
sky at TOA and at the surface.

Figure 4.10: A comparison of the radiation constants (see figure 4.4 and text for
details) used in the MEP model and the ones calculated from CAM3 data. The
shortwave and longwave constants are fractional values of F0 and F0η respectively
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longwave fluxes in the MEP model (see figure 4.10(e) and (f)). Zonal vari-
ations in the longwave radiation fluxes are expected, especially for cloudy
conditions. It is for cloudy conditions that the MEP model shows the greatest
difference from CAM3.

The parameters used in the MEP model capture the solar fluxes much better
than the longwave fluxes. Extinction of solar radiation in the atmosphere
can be described by a simple exponential function (Beer’s law) while it gets
much more complicated in the longwave spectra since both absorption and
emission processes are occurring simultaneously. As a result, solar fluxes are
in general much easier to parametrize than longwave fluxes, as seen for the
radiation constants used in the MEP model.

4.4 Conclusions

The results from Paltridge’s MEP model are impressive, but the underlying
causes of these results are not clear. A fair question to ask is if Paltridge’s
results are a lucky accident (Dewar, 2009) and actually a consequence of
good parameter choices more than a demonstration of exceptional MEP pre-
dictions? Without a clear answer to this question, it is hard to justify the
further use of his model.

Another problem is that Paltridge’s model has an active surface layer, whereas
CAM3 is an atmosphere-only model. Further comparisons require a more
simplified model. This model is developed in the subsequent chapters. Such
a model requires that the surface temperature, which will be prescribed, is
decoupled from the atmospheric temperature. In Paltridge’s model the at-
mospheric temperature is fixed to the surface temperature through the para-
meter F. Thus, setting the surface temperature determines the atmospheric
temperature. This is undesirable when testing a sensitivity to SST.

The sensitivity tests show that the cloud fraction is the main restoring force
in the MEP model. This is probably not the case in CAM3 for which the
cloud cover fraction only shows small changes (see figure 9.3) between the dif-
ferent SST runs. Also the use of twelve parameters is in itself a problem. All
the parameters used make it hard to distinguish the good from the bad in this
model. Using a model which is not fully understood is not a desirable option.

The next two chapters examine the process of building an AMEP model. It
is desirable to fully understand the AMEP model, so the aim is to make it
as simple as possible. To do that, we start out with a very simple model and
then add complexity. The simplest MEP model possible is a two-box MEP
model, so we start with that.
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Chapter 5

Two-box MEP models

The sciences do not try to explain...they mainly make models1

The advantages of two-box models are first that they are instructive. The
results are easy to grasp and a lot of the calculations can be done analytically.
Second, two box models have been used to study planetary atmospheres be-
fore (e.g. Lorenz et al. (2001)). Third, the two-box atmospheric MEP model
developed in this chapter lay the foundation for the AMEP model finally
used in the comparison with CAM3.

In the process of making an AMEP model, horizontal box models and ver-
tical box models are developed and investigated, independently at first and
in combination later on. Initially, the box models are considered to be closed
systems, i.e. both the atmosphere and the surface are considered together.
Later, only the atmosphere layer is analyzed.

In Paltridge’s MEP model only the entropy associated with the meridional
heat transport is maximized. Entropy is also produced due to vertical heat
transfer, like convection of latent and sensible heat. Paltridge did not con-
sider the entropy production from these processes. Instead he employed the
principle of maximum convection (e.g. Busse (1978)). The principle of max-
imum convection will no longer be used in this thesis. Instead the entropy
production is maximized in both vertical and horizontal direction.

5.1 The horizontal box models

Several two-box models are used to represent the climate system on Earth
in different ways and to find the MEP states for the systems (i.e. the two
boxes). Box 1 represents the tropics and Box 2 represents higher latitudes
and the entropy production of the system is associated with the horizontal
heat transport between them. The insolation at TOA for Box 1 and Box 2

1John von Neumann (1903-1957)
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are F1 and F2, and are assumed known. The temperatures of the boxes and
the horizontal heat flux between them, are unknowns.

The total entropy production for the system is defined as

Ṡ =
dFheat,1

T1
+

dFheat,2

T2
(5.1.1)

where dFheat,1 and dFheat,2 are the heat convergence and T1 and T2 are the
absolute temperatures in Box 1 and Box 2, respectively. As discussed in
section 3.2.4, it is the entropy production associated with turbulent motion
alone that is maximized, i.e.

Ṡ = − ζ1

T1

+
ζ2

T2

= ζ
( 1

T2

− 1

T1

)

= maximium (5.1.2)

where ζ1 = −ζ2 = ζ .

5.1.1 The blackbody model

The blackbody model described in this section is the same as described in
section 3.2.6. The model is included in order to investigate parameter de-
pendence and to add completeness to the models descriptions made in this
chapter. The only difference between this model and the model from section
3.2.6 is the subscripts. Instead of a tropics (T) and a polar (P) box, the
boxes are labeled 1 and 2.

The Earth-atmosphere system is assumed to be a blackbody, so the only pro-
cesses considered in this model are the absorption of solar radiation and the
emission of longwave radiation, as well as the horizontal heat flux between
the two boxes. A steady state of thermal equilibrium is assumed for each
box separately. The energy balance equation for each box can be written as

Fi − σT 4
i − ζi = 0 (Box i) (5.1.3)

for i={1,2}.

The system (i.e. the two boxes together) is assumed to be in global radiative
equilibrium, hence the sum of the incoming solar radiation equals the sum
of the OLR, which provide the constraint

F1 + F2 − σT 4
1 − σT 4

2 = 0 (5.1.4)

The entropy production in box i can be written as

Ṡi = − ζi

Ti

= −Fi − σT 4
i

Ti

(5.1.5)

To find the maximal entropy production possible for this system, we need
to find ζi such as to maximize Ṡi subject to the equilibrium constraint in
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equation 5.1.4. The method of Lagrangian multipliers described in section
3.2.6 is used with

∂L

∂Ti

= 4βσT 5
i − 3σT 4

i − Fi = 0 (5.1.6)

∂L

∂β
= −

∑

i=1,2

Fi − σT 4
i = 0 (5.1.7)

The result is shown in figure 5.1. The insolation in Box 2, F2, is set constant
to 200Wm−2, while the insolation in Box 1, F1, varies from 200Wm−2 to
600Wm−2. The blue, solid line is the temperature in Box 1 and the black,
solid line is the temperature in Box 2 (figure 5.1(a)). The horizontal heat
flux between the two boxes is seen as the red, solid line in figure 5.1(b).

The two boxes are in thermal equilibrium for F1=F2=200Wm−2, which
causes zero horizontal heat flux, i.e. ζ=0. As the insolation in Box 1 in-
creases, the temperature in Box 1 increases much more rapidly than in Box
2. The increased temperature gradient between the two boxes results in an
increased horizontal heat flux.

Kleidon (2004) and Lorenz et al. (2001) used similar two-box models (see
example used in section 3.2.6). As noted, the horizontal heat flux between
the boxes was expressed as a linear function ζ = k ·(T1−T2) = k ·∆T , with k
being the effective conductivity. Both studies showed that for the atmosphere
on Earth the maximum entropy production occurred for k≃ 2 Wm−2K−1.
Figure 5.1(b) shows that k≃ 2 Wm−2K−1 (black, solid line) is a reasonable
result, but the linear flux parametrization is only valid for small values of
∆T

5.1.2 The grey atmosphere and black surface model

The next step is to extend the model into a more realistic representation of
the climate system. A surface layer with fixed temperatures is included in
each box. The surface layer is considered a blackbody. The atmosphere is
no longer considered a blackbody, but radiates as a grey body, ǫσT 4, where
ǫ is the mean global atmospheric emissivity. Using Kirchhoff’s law, which
states that the atmospheric emissivity equals the atmospheric absorptivity
for an atmospheric layer in thermal equilibrium, a fraction, ǫ, of the longwave
radiation emitted from the surface is absorbed by the atmosphere, while the
remaining fraction, (1 − ǫ), is emitted to space.

The energy balance equation for box i is

Fi − ǫσT 4
i − (1 − ǫ)σT 4

si − ζi = 0 (Box i) (5.1.8)

where i={1,2}.
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Figure 5.1: (a) The resulting temperatures corresponding to the MEP state in
Box 1 (blue line) and in Box 2 (black line) for the two box model . The insolation
in Box 1 varies between 200Wm−2 and 600Wm−2, while the insolation in Box 2
is constant and equals 200Wm−2. (b) The horizontal heat flux, ζ, as a function of
the temperature difference between the two boxes, ∆T = (T1 − T2). Also included
is the 2∆T parametrization (see text for details).

The system is assumed to be in global radiative equilibrium, which provides
the constraint

F1 + F2 − ǫσT 4
1 − (1 − ǫ)σT 4

s1 − ǫσT 4
2 − (1 − ǫ)σT 4

s2 = 0 (5.1.9)

Defining the cost function as before, we obtain

∂L

∂Ti

= ǫσT 4
i (4βTi − 3) − Fi + (1 − ǫ)σT 4

si = 0 (5.1.10)

∂L

∂β
= −

∑

i=1,2

Fi − ǫσT 4
i − (1 − ǫ)σT 4

si = 0 (5.1.11)

The insolation in Box 2 is kept constant and equal to 200Wm−2, while the
insolation in Box 1 varies between 200Wm−2 and 600Wm−2. The emissivity
equals 0.9, calculated from Trenberth et al. (2009), in both boxes. The sur-
face temperatures are fixed and equal to 290K and 265K in Box 1 and Box
2, respectively.

The results are shown in figure 5.3. For equal or nearly equal values of the
insolation in the boxes, the temperature in Box 1 is colder than in Box 2,
which causes a negative heat flux. This is a consequence of a greater OLR
surface term loss in Box 1 due to a warmer surface temperature than in Box
2. As the insolation in Box 1 increases, the temperature in Box 1 becomes
much warmer than the temperature in Box 2 which causes an increased heat
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Figure 5.2: A two-box model representing the climate system on Earth. The sur-
face layers are assumed blackbodies with fixed temperatures, while the atmosphere
layers are assumed grey bodies radiating with an emissivity ǫ. F1 and F2 are the
insolation at the top of Box 1 and Box 2, respectively.

flux from Box 1 to Box 2.

The results are not too different from the blackbody results from the previ-
ous section, due to the high value of ǫ. Also included in figure 5.3(a) are the
fixed surface temperatures for the two boxes (dashed lines). As the insola-
tion increases the atmosphere gets warmer than the surface in both boxes.
Because the surface temperatures stay fixed, only the atmosphere heats as a
response to the increased insolation.

The atmospheric emissivity, ǫ

In the real atmosphere the emissivity will vary in magnitude, as well as
between “boxes”. Variations in the atmospheric emissivity has a great im-
pact on the solution as shown in figure 5.4. Here the insolation is set constant
to 300Wm−2 in Box 1 and 200Wm−2 in Box 2, while ǫ varies between 0 and
1. The surface temperatures stay fixed.

As seen in the temperature plot, figure 5.4(a) there is no solution for ǫ < 0.29.
The reason for this is not due to the MEP assumption, but a consequence of
fixed surface temperatures and the assumption of a system in global radiative
balance. An emissivity smaller than 0.29 will require negative OLR terms in
order to keep the energy balance at TOA, which is impossible.
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Figure 5.3: (a) The resulting atmospheric temperatures in Box 1 (blue, solid line)
and for Box 2 (black, solid line) for the two box model as the insolation in Box 1
varies between 200Wm−2 and 600Wm−2, while the insolation in Box 2 is constant
and equals 200Wm−2. The atmospheric emissivity is set equal to 0.9 in both boxes.
Also included is the fixed surface temperatures for Box 1 (blue, dashed line) and
for Box 2 (black, dashed line). (b) The corresponding horizontal heat flux, ζ, as a
function of the temperature difference between the two atmospheric layers.

If we consider the case where ǫ = 0.25, the insolation in Box 1 equals the
OLR from the surface term, i.e. (1− ǫ)σT 4

s1. In Box 2 the OLR from surface
term is 10W/m2 greater than the insolation term. To keep the global radi-
ative equilibrium constraint, one of the atmospheric radiation terms, ǫσT 4

i ,
must become negative which is impossible, so no solution exists. For the
atmosphere on Earth, ǫ is in general greater than 0.3.

Both atmospheric layers gain energy as the emissivity increases (see figure
5.4(a)). This is a consequence of an increased energy supply to the atmo-
sphere from the surface layer, ǫT 4

s , which is greater than the increased loss
of radiation from the atmosphere to space, ǫT 4, since both atmosphere lay-
ers stay colder than their respective surface layers. The atmosphere layer
in Box 1 gains more energy due to a warmer surface temperature than the
atmosphere layer in Box 2, causing an increased horizontal heat flux as the
emissivity approaches 1 (see figure 5.4(a)).

5.1.3 A two-box atmospheric MEP model

As seen in section 5.1.2, keeping the surface temperatures fixed has a great
impact on the solution. The surface temperatures are not fixed in CAM3,
but act as a boundary which is allowed to change in response to the heat
exchange with the atmosphere. The surface temperature forcing on the other
hand can be fixed in the model. Later on, perturbed SST runs are performed



5.1 The horizontal box models 57

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−50

0

50

100

150

200

250

300

Emissivity [fraction]

[K
el

vi
n]

 Temperature

 

 

Atmosphere, Box 1
Atmosphere, Box 2

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

20

40

Emissivity [fraction]

[W
/m

2 ]

 Horizontal Heat Flux, ζ

 

 

ζ

(b)

Figure 5.4: Temperature and heat flux responses to changes in the emissivity,
0 ≤ ǫ ≤ 1. The insolation and surface temperatures in both boxes are set constant
and equal to 300Wm−2, 290K and 200Wm−2, 265K in Box1 and Box 2 respectively.
There is no solution for ǫ ≤ 0.29 due to the failing of the equilibrium constraint.

for both CAM3 and the MEP model. To compare the two models, the MEP
model needs to act as an atmosphere model, using the surface temperature
as a boundary forcing.

A more complete two-box MEP model is seen in figure 5.5. In this, the atmo-
sphere absorbs a fraction A of the incoming solar radiation and a fraction, ǫ,
of the terrestrial radiation emitted from the surface. The atmosphere emits a
fraction ǫ of longwave radiation in two directions, to space and to the surface.
The other constants are as described in the previous sections. In this section
only the radiation processes are considered. Convective fluxes between the
surface and the atmosphere will be added subsequently (see section 5.2).

The MEP model will be run with different surface layer temperatures later
on (chapter 6). The increased surface temperatures act as an energy forcing
at the surface boundary. Because the surface itself is not in equilibrium,
the global radiative equilibrium constraint at TOA and the energy balance
assumption in the surface layer will no longer be valid.

Each atmospheric box is assumed to remain in energy balance, independent
of the surface temperatures used, providing the equation

FiA − 2ǫσT 4
i + ǫσT 4

si − ζi = 0 (Box i) (5.1.12)

for each box i={1,2}
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Figure 5.5: A two-box model representing the atmosphere. The surface layers
act as an energy forcing boundary and the horizontal heat flux considered is only
the atmospheric component. The atmosphere absorbs a fraction A of the solar
radiation and the atmosphere emits energy as a grey body with an emissivity ǫ.
F1 and F2 are the insolation at the top of Box 1 and Box 2, respectively.

ζ is now only the atmospheric component of the horizontal heat flux. The
equilibrium constraint used is

∑

i=1,2

ζi = 0 (5.1.13)

which states that no heat is stored within the atmosphere.

With the analogous cost function, the constraints become

∂L

∂Ti

= ǫσT 4
i (8βTi − 6) − FiA − ǫσT 4

si = 0 (5.1.14)

∂L

∂β
= −

∑

i=1,2

FiA − 2ǫσT 4
i + ǫσT 4

si = 0 (5.1.15)

The resulting atmospheric temperatures and heat flux can be seen in figure
5.6. A is constant and equals 0.3 (calculated from Trenberth et al. (2009))
in both layers. The other constants are as described in the previous section.

The atmospheric temperature in both boxes and the horizontal heat flux
between them show less variation than in the previous model results. The
reason is mostly because of the specified atmospheric absorptivity of solar
radiation, A, resulting in a much smaller energy gain in the boxes. The heat
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Figure 5.6: (a) The resulting atmospheric temperatures in Box 1 (blue, solid line)
and Box 2 (black, solid line) for the atmosphere only MEP model. The insolation
in Box 1 varies between 200Wm−2 and 600Wm−2, while the insolation in Box 2
is constant and equals 200Wm−2. The surface temperatures in both boxes are
set constant and equal 290K and 265K in Box1 (blue, dashed line) and Box 2
(black, dashed line), respectively. The atmospheric emissivity is set equal to 0.9
and the atmospheric absorptivity equals 0.3, in both boxes. (b) The atmospheric
component of the horizontal heat flux, ζ, as a function of the temperature difference
between the two atmospheric layers.

flux appears linear. This is a result of the reduced temperature difference
between the two layers, ∆T . As seen in the previous sections, the heat flux
is almost linear for small ∆T values.

The atmospheric absorptivity, A

Increasing the absorptivity of solar radiation increases the atmospheric tem-
perature in both boxes because of the extra energy gain. This can bee seen
in figure 5.7, which shows the response to variations in the atmospheric ab-
sorptivity for constant insolation, emissivity and surface temperatures. For
equal values of A, Box 1 gains more energy than Box 2 because of the greater
insolation in Box 1. This causes the temperature in Box 1 to warm more than
in Box 2, which increases the temperature gradient between the boxes, res-
ulting in a greater heat flux.

The atmospheric emissivity, ǫ

In comparison with the previous models, the atmosphere now emits radi-
ation in two directions causing a doubling of the atmospheric loss of long-
wave radiation. Decreasing the emissivity makes the atmospheric temperat-
ures increase (see figure 5.8(a)) due to reduced radiation loss. The reduced
emissivity also causes the temperature difference in the two boxes to decrease,
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Figure 5.7: Temperature (a) and heat flux (b) responses to changes in the at-
mospheric absorptivity, 0 ≤ A ≤ 1. The insolation and surface temperatures in
both boxes are set constant and equal to 300Wm−2, 290K and 200Wm−2, 265K
in Box1 and Box 2, respectively.
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Figure 5.8: Temperature (a) and heat flux (b) responses due to variations in the
emissivity, 0 ≤ ǫ ≤ 1. The insolation and surface temperatures in both boxes are
set constant and equal to 300Wm−2, 290K and 200Wm−2, 265K in Box1 and Box
2, respectively.

resulting in a smaller heat flux between the boxes.

This result is quite the opposite of that obtained from the model in section
5.1.2, where the temperatures of the atmosphere layers, within each box,
increased as the emissivity increased, resulting in a greater heat flux for ǫ
approaching 1. The same values for the fixed surface temperatures were
used in both models. The difference is that in the model in section 5.1.2 the
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atmosphere-surface system was considered together. As such, increasing the
surface temperature causes a decrease in the atmospheric temperature. In
this model, where the energy balance of the surface is relaxed, the surface
temperature actually warms the atmosphere. This is in line with the CAM3
results, presented hereafter.

5.2 The vertical box model

Figure 5.9: A two box model representing the atmosphere and the surface layer.
The atmosphere absorbs a fraction A of the incoming solar radiation, F . The
remaining part is absorbed by the surface. The atmosphere radiates in both dir-
ections with an emissivity ǫ and a radiative temperature T . The surface radiates
as a blackbody with a radiative temperature TS . There is also a convective flux of
latent- and sensible heat, Fc, between the surface and the atmosphere layer.

Only radiative processes have been considered so far. There is also an ad-
ditional heat flux that needs to be taken into consideration, namely the
convective fluxes of sensible and latent heat between the surface and the at-
mosphere. To see how to include those, we consider a two-box vertical model.
The approach is to use the model to see how the convective fluxes depend on
the temperature difference between the atmospheric and surface layer. This
will allow us to parametrize the convective fluxes in the preceding box model.

In constructing an atmospheric MEP model, only the energy balance equa-
tion for the atmospheric layer remains (see section 5.1.3). When the con-
vective heat flux is added to the system, there are too many unknowns to
find a MEP solution. One way to solve this problem is to parametrize the
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convective heat flux. In this section a parametrization method based on the
MEP principle is shown.

The transport processes of convective heat between the atmosphere and the
surface are also turbulent processes; thus a steady state of MEP can be found
for the convective heat transfer as well as for the horizontal heat flux. The
entropy produced from the convective heat flux is

Ṡ = Fc

( 1

T
− 1

Ts

)

(5.2.1)

where Fc is the convective heat flux, T is the absolute temperature of the
atmosphere and Ts is the absolute temperature of the surface. Fc is defined as
positive if the atmosphere gains heat from the surface. The entropy produced
from the convective heat flux is the only entropy production considered in
this section.

5.2.1 A vertical two-box MEP model

The model consists of two boxes, representing the atmospheric and the sur-
face layer (see figure 5.9). The layers are assumed to be in thermal equi-
librium separately, i.e. there is no temperature gradient within one layer.
The total system is also assumed to be in global radiative equilibrium, hence
the incoming solar radiation equals the OLR at TOA. There is no horizontal
energy exchange in the model.

The atmosphere absorbs a fraction A of the incoming solar radiation, while
the remaining fraction, 1-A, is absorbed by the surface. The atmosphere
radiates equally in both directions with an emissivity ǫ. A fraction, ǫ, of the
longwave radiation emitted from the surface is absorbed by the atmosphere,
while the remaining fraction, (1 − ǫ), is emitted to space. In addition there
is a convective flux of latent and sensible heat, Fc, between the surface and
the atmosphere.

Assuming thermal equilibrium within each layer separately, the energy bal-
ance equations for the atmosphere and the surface can be written as

FA + Fc + ǫσT 4
s − 2ǫσT 4 = 0 (Atmosphere) (5.2.2a)

F (1 − A) + ǫσT 4 − Fc − σT 4
s = 0 (Surface) (5.2.2b)

with the radiative equilibrium constraint

F = ǫσT 4 + (1 − ǫ)σT 4
s (5.2.3)

Equation 5.2.3 is used to express the surface temperature as a function of
the insolation and the atmospheric temperature. Assuming F, A and ǫ to
be known, the entropy production is now only a function of the atmospheric
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temperature, T. To find the MEP state the entropy is maximized w.r.t. the
atmospheric temperature alone.

Since the two terms expressing Fc in the energy balance equations 5.2.2a,b
denote the same quantity, a necessary condition is that the two terms must
be equal, i.e.

∑

i=
Atmosphere

Surface

Fc,i = 2ǫσT 4 − FA − ǫσT 4
s + F (1 − A) + ǫσT 4 − σT 4

s

= 3ǫσT 4 + F (1 − 2A) − 1 + ǫ

1 − ǫ
(F − ǫσT 4) = 0 (5.2.4)

which provides the cost function

L =
2ǫσT 4 − FA −

(

ǫ
1−ǫ

)

(F − ǫσT 4)

T
−β

(

3ǫσT 4+F (1−2A)−1 + ǫ

1 − ǫ
(F−ǫσT 4)

)

(5.2.5)
To find the maximum entropy production we need to find Ti and β s.t.

∂L

∂T
= 3ǫσT 4

(

2+
ǫ

1 − ǫ

)

+F
(

A+
ǫ

1 − ǫ

)

−4βǫσT 5
(

3+
1 + ǫ

1 − ǫ

)

= 0 (5.2.6)

∂L

∂β
= −

(

3ǫσT 4 + F (1 − 2A) − 1 + ǫ

1 − ǫ
(F − ǫσT 4)

)

= 0 (5.2.7)

The resulting T and Fc is shown in figure 5.10. The incoming solar radiation,
F , varies between 200Wm−2 and 600Wm−2. As in the previous sections, the
atmospheric absorptivity of solar radiation, A, equals 0.3, and the atmo-
spheric emissivity, ǫ, equals 0.9. The temperatures of the atmospheric layer
(blue, solid line) and the surface layer (black, solid line) can be seen in figure
5.10(a). The convective heat flux, Fc, is seen as red dots in figure 5.10(b).
Also included in figure 5.10(b) is the parametrization of Fc seen as a black
solid line.

Both the surface and the atmospheric temperatures increase as the insolation,
F, increases. The surface temperature increases faster than the atmospheric
temperature, making the convective heat flux increase as well.

The convective heat flux is proportional to (Ts − T )4 with a proportional-
ity constant k = 9.6 · 10−4Wm−2K−4 for the given values of F, A and ǫ.
k=k(F,A,ǫ) and will vary for different values of F, A and ǫ than the one used
in this example. The ∆T 4 dependence may not seem too surprising since the
longwave fluxes also radiate proportional to T 4, but in most climate models
the convective heat flux is parametrized proportional to (Ts − T ), where the
proportionality constant includes other factors such as wind speed, surface
roughness, specific humidity, air density, etc. The convective heat flux in
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Figure 5.10: (a) The resulting atmospheric (blue line) and surface (black line)
temperatures due to changes in the insolation, 200Wm−2 ≤ F ≤ 600Wm−2. The
atmospheric parameters are kept constant, ǫ=0.9 and A=0.3. (b) The correspond-
ing vertical flux of latent and sensible heat, Fc, as a function of the temperature
difference between the two boxes, ∆T = (Ts − T ). Also included is a ∆T 4 para-
metrization of Fc (see text for details).

CAM3 is based on such a linear dependence.

Changes in the atmospheric absorptivity and emissivity will cause changes
in the temperatures for both the atmospheric and the surface layer, which
also affects the convective heat flux.

The emissivity, ǫ

Figure 5.11 shows the temperature in the atmospheric layer and the surface
layer for different values of the atmospheric emissivity and the corresponding
convective heat flux. In the limit of a white atmosphere, i.e. ǫ = 0, all the
OLR originates from the surface. Without any greenhouse effect, the tem-
perature in the atmospheric layer is determined solely by the insolation, F.
For A6= 0, the atmosphere gains solar energy without losing any longwave
energy to the surroundings, resulting in a very warm atmospheric temperat-
ure. The corresponding convective heat flux is negative indicating an energy
flow from the atmosphere to the surface.

As the emissivity increases the atmosphere has an additional radiative sink
resulting in a decreasing temperature while the surface gains more and more
radiative energy from the atmosphere. Hence the temperatures in the two
layers approach each other and are equal for ǫ = 0.3 (figure 5.11(a)). For
ǫ > 0.3 the surface temperature is warmer than the atmospheric temperature,
and the temperature gradient between the layers intensifies as ǫ becomes
greater, resulting in a positive and increasing convective heat flux.
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Figure 5.11: Variations in temperatures (a) and the convective heat flux (b) due
to changes in the atmospheric emissivity,ǫ. A=0.3, F = 300W/m2 and 0 ≤ ǫ ≤ 1.
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Figure 5.12: Variations in temperatures (a) and the convective heat flux (b) due
to changes in the atmospheric absorptivity, A, of solar radiation. 0 ≤ A ≤ 1, ǫ =
0.9, F = 300W/m2

The absorptivity of solar radiation, A

Increasing A results in an increased energy supply to the atmosphere and a
decreased energy supply to the surface. For A = 0 the surface layer absorbs
all of the incoming solar radiation resulting in a very warm surface (figure
5.12(a)) and a large convective flux from the surface to the atmosphere (fig-
ure 5.12(b)). As A increases the atmospheric layer warms while the surface
layer cools, resulting in a reduced convective heat flux. The atmosphere gets
warmer than the surface, causing a negative heat flux for A approaching 1.
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For small values of ǫ and large values of A, the atmosphere becomes warmer
than the surface. In the climate system on Earth, the value of A is relatively
small and the value of ǫ is relatively large in general. Therefore this will not
cause problems in the AMEP model described in the next chapter.



Chapter 6

AMEP

6.1 The AMEP box model

For comparison with results from CAM3, we require more resolution than
in a two-box model. The atmospheric MEP model discussed in the previous
chapter (section 5.1.3), is extended here to include 64 boxes. This gives a
latitudinal resolution of approximately 2.8 degrees, the same resolution used
in CAM3. Also included are fluxes of sensible and latent heat, discussed in
section 5.2. Each box represents the zonal mean conditions for an atmo-
spheric column and the adjacent boxes cover the globe from the South Pole
to the North Pole. The annually- and zonally-averaged surface temperatures
from CAM3 are used as a boundary forcing in the model.

In this section the focus is on the expression for ζ , defining the Lagrangian
cost function. Reflectivity of solar radiation, R, and zonal variations of the
atmospheric parameters, R, A and ǫ, are discussed in the subsequent section.
For now the FiA term in the energy balance equations represents the energy
gain from solar insolation in the ith atmospheric column, denoted as Box i,
and the subscripts for the A and ǫ are dropped to ease the following calcula-
tions.

Assuming that the vertical heat exchange occurs on a much shorter timescale
than the meridional heat exchange, the two processes are treated independ-
ently. The parametrization for the convective heat flux

Fc = k(Tsi − Ti)
4 sign(Tsi − Ti) (6.1)

calculated in section 5.2 is used. The additional term sign(Tsi − Ti) is ad-
ded to the parametrization to include Tsi < Ti conditions, but is dropped
hereafter to simplify the equations. The horizontal heat flux, ζ , is from now
referred to as the meridional heat divergence.

The energy balance for each atmospheric column can be written as

FiA + k(Tsi − Ti)
4 − 2ǫσT 4

i + ǫσT 4
si − ζi = 0 (Box i) (6.2)

67
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Since the convective heat flux is parametrized, it is only the entropy produc-
tion associated with the meridional heat divergence that is maximized (see
section 3.2.4). It is the entropy production from this heat transfer which is
considered in all calculations throughout the chapter.

The energy constraint for the atmosphere is

64
∑

i=1

ζi cos(φi) = 0 (6.3)

which states that there is no heat stored within the atmosphere. The cos(φ)
term is included to account for the different areas of the latitude zones the
atmospheric columns cover, with larger areas covered for columns at low lat-
itudes than at higher latitudes.

The total entropy production associated with the horizontal heat divergence
is

Ṡ = −
64

∑

i=1

ζi

Ti

cos(φ) (6.4)

The Lagrangian cost function, L , used to maximize the entropy production
can be written as

L =
64

∑

i=1

( ζi

Ti

− βζi

)

cos(φi) (6.5)

To find the MEP state we need to find Ti and β s.t.

∂L

∂β
= −

64
∑

i=1

ζi cos(φi) = 0 (6.6)

∂L

∂Ti

=
(

Ti

∂ζi

∂Ti

(1 − βTi) − ζi

)

cos(φi) = 0 (6.7a)

which means that
∂L

∂Ti

= Ti

∂ζi

∂Ti

(1 − βTi) − ζi = 0 (6.7b)

where
∂ζi

∂Ti

= −
(

4k(Tsi − Ti)
3 + 8ǫσT 3

i

)

(6.8)

∂L /∂Ti is solved numerically for each box separately, while ∂L /∂β provides
the energy constraint for the total model.
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6.2 Parameters

In a complex model like CAM3, it is not easy to understand the response to
altered SST because of all the changes that occur in the different model runs.
Parameters like the emissivity, ǫ, the absorptivity, A, and the reflectivity, R,
of the atmosphere are changed in CAM3 when the SST is altered. Different
water vapor content in the atmosphere and altered cloud cover fraction are
two of the changes that modify the parameters; ǫ, A and R. With this in
mind, the parameters used in AMEP are not changed between the different
SST runs, in order to rule out some of the feedback mechanisms. Adjusting
the parameters so that they mimic the changes observed in the perturbed
SST runs in CAM3, will contradict the main reason for choosing a simple
model in the first place.

First a AMEP run is performed (section 6.2.2) where the parameters are kept
constant between runs and boxes. Secondly, the parameters are varied zon-
ally while being kept constant between the runs (section 6.2.3). By using the
same parameters for all runs, changes in the results are only a consequence of
changes in Ts. This makes the AMEP results even easier to grasp. However,
AMEP is a zonally-averaged model and changes in the parameters as a func-
tion of latitude are expected. Using parameters that vary zonally provides a
more realistic situation.

Before presenting the AMEP results using the two parameter options, it is
necessary to determine the proportionality constant, k, used in the paramet-
rized convective heat flux.

6.2.1 The proportionality constant k

The results from the AMEP model will be compared with output from CAM3
later on. It is therefore important to see if the (Ts−T )4 parametrization also
is valid for the latent- and sensible heat flux in CAM3. In CAM3, air-sea
turbulent fluxes are calculated from the bulk formulas (Collins et al., 2004):

LH = LρaCEU∆q (latent heat) (6.1)

SH = cpρaCHU∆θ (sensible heat) (6.2)

where ρa is the air density, U is the wind speed, cp is the specific heat at
constant pressure and L is the latent heat of vaporization. ∆θ and ∆q are
the potential temperature difference and the difference in specific humidity
between the sea surface and the lowest model level. CH and CE are aerody-
namic transfer coefficients for temperature and humidity, respectively.

The vertical MEP model has one atmospheric layer. CAM3 has 26 atmo-
spheric layers. To do a comparison it is necessary to use one atmospheric
temperature that represents the mean atmospheric temperature in CAM3.
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This temperature is chosen to be the density-weighted average atmospheric
temperature

T ≡

∫

V

T (x, y, z) · ρ(x, y, z)dV

∫

V

ρ(x, y, z)dV
(6.3)

where T (x, y, z) is the temporally-averaged atmospheric temperature and
ρ(x, y, z) is the temporally-averaged atmospheric density in CAM3.

Figure 6.1 shows the latent and sensible heat output from CAM3 as red
and blue dots. The blue dots represent values from the SH and the red
dots are values from the NH. ∆T = (Ts − T ) is the temperature differ-
ence between the surface and the density-weighted average atmospheric tem-
perature. Also included are the linear (green, solid line) and the ∆T 4

(black, solid line) parametrization of the heat fluxes. The linear fit for
the latent heat is 4.97Wm−2K−1∆T − 77.28Wm−2 and for the sensible
heat 1.18Wm−2K−1∆T − 17.49Wm−2. The corresponding ∆T 4 fit are 7.5 ·
10−5Wm−2K−4∆T 4 and 2 · 10−5Wm−2K−4∆T 4 for the latent and sensible
heat, respectively.
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(a) Latent heat flux
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Figure 6.1: Annually- and zonally-averaged latent and sensible heat calculated
in CAM3 (red and blue dots). (a) Blue dots are southern hemisphere(SH) val-
ues and red dots are northern hemisphere(NH) values. (a) and (b) A linear fit
(green solid line) and a ∆T 4 fit (black solid line) are also included. For the lin-
ear fit the proportionality constants are 4.97Wm−2K−1∆T − 77.28Wm−2 and
1.18Wm−2K−1∆T − 17.49Wm−2 for the latent and sensible heat respectively,
and for the ∆T 4 fit the proportionality constants are 7.5·10−5Wm−2K−4 and
2·10−5Wm−2K−4

The ∆T 4 parametrization of the latent heat is remarkably accurate (see figure
6.1(b)), especially for the NH flux values. This result is surprising consider-
ing the linear specific humidity dependence and the many constants used in
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the parametrization of the latent heat in CAM3. Here it is worth noting that
the ∆T 4 parametrization only requires one constant. For the sensible heat
flux neither the linear nor the ∆T 4 fit have much accuracy, but the linear fit
is somewhat better than the ∆T 4 fit.

The total convective heat flux, i.e. the latent plus the sensible heat flux, is
shown in figure 6.2. The results are presented as described for the latent and
sensible heat flux results. The linear fit is 6.15Wm−2K−1∆T − 94.77Wm−2

and the ∆T 4 fit is 9 · 10−5Wm−2K−4∆T 4 for the total heat flux. The latent
heat flux, being the larger, dominates the sensible heat flux, making the ∆T 4

parametrization of convective heat flux more suitable than the more common
linear approach (figure 6.2(a)).

Both the linear fit and the ∆T 4 fit are less accurate at the equator (see figure
6.2(b)). The reasons for the local minimum in the convective heat flux at
the equator are complex and related to the extensive deep clouds associated
with the ITCZ, the weaker winds in the area and warm SSTs (Seager et al.,
2003). Such processes are too complex to capture with a simple temperature
dependence.
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Figure 6.2: Annually- and zonally-averaged total convective heat flux (latent plus
sensible heat) from CAM3 (red and blue dots). Blue dots are Southern Hemisphere
(SH) values and red dots are Northern Hemisphere (NH) values. (b) Blue dots are
CAM3 values. A linear fit (green solid line) and a ∆T 4 fit (black solid line) are
also included. The proportionality constants are 6.15Wm−2K−1∆T −94.77Wm−2

and 9·10−5Wm−2K−4 for the linear and the ∆T 4 fit, respectively

Perturbed SSTs

The convective heat flux changes between the different runs in CAM3 as
a result of the altered SST. Table 6.1 shows the different parametrization
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of the convective heat for all the CAM3 runs. The 2K run, 2K-lowlat run
and the 2K-tropics run have almost the same values for the proportional-
ity constants. The same is the case for the control run, the 2K-highlat
run and the Minus 2K-highlat run. Since we do not want to take feedback
mechanisms into account when choosing parameter values, the value of the
proportionality constant, k, is set to equal the control run value. Thus we
take k=9 · 10−5Wm−2K−4 for all the AMEP runs.

6.2.2 The constant parameter option

Trenberth et al. (2009) made a global annual mean energy budget for the
Earth using satellite measurements from the CERES data sets. The CERES
data are from the March 2000 to May 2004 period.

The emitted radiation from the surface was calculated to be 396Wm−2 and
the OLR at TOA was calculated to be 239Wm−2 of which 40Wm−2 came
from surface radiation passing through the atmospheric window. Assuming
the surface radiates as a blackbody, the global annual mean atmospheric
emissivity, ǫ, can be calculated as

σT 4
s = 396Wm−2

(1 − ǫ)σT 4
s = 40Wm−2

ǫ = 1 − 40Wm−2

396Wm−2
= 0.90

The incoming solar radiation equals 341Wm−2 for which 79Wm−2 is reflec-
ted back to space by clouds and the atmosphere. This gives an atmospheric
reflectivity R = 0.23.

78Wm−2 of the remaining part of the incoming solar radiation, i.e. 262Wm−2,
is absorbed by the atmosphere, corresponding to an atmospheric absorptivity
A = 0.298≃0.3

For the convective heat flux parametrization, the proportionality constant k,
is set to 9 · 10−5Wm−2K−4 determined in section 6.2.1.

Assuming the calculated parameters stay constant for all latitudes, the energy
balance equation for the atmospheric column in Box i can be written as

Fi(1 − R)A + k(Tsi − Ti)
4 − 2ǫσT 4

i + ǫσT 4
si − ζi = 0 (Box i) (6.4)

where ǫ=0.9, R=0.23, A=0.3 and k=9·10−5Wm−2K−4.

The calculations used to find the maximum entropy production are as de-
scribed in the previous section where

ζi = Fi(1 − R)A + k(Tsi − Ti)
4 − 2ǫσT 4

i + ǫσT 4
si (Box i) (6.5)
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3

Run Latent Heat Sensible Heat Total Convective Heat
Control
linear fit 4.97Wm

−2
K

−1∆T -77.28Wm
−2 1.18Wm

−2
K

−1∆T -17.49Wm
−2 6.15Wm

−2
K

−1∆T -94.77Wm
−2

∆T 4 fit 7.5·10−5
Wm

−2
K

−4∆T 4 2·10−5
Wm

−2
K

−4∆T 4 9·10−5
Wm

−2
K

−4∆T 4

2K
linear fit 5.56Wm

−2
K

−1∆T -89.62Wm
−2 1.28Wm

−2
K

−1∆T -20.89Wm
−2 6.83Wm

−2
K

−1∆T -110.51Wm
−2

∆T 4 fit 8.4·10−5
Wm

−2
K

−4∆T 4 2.3·10−5
Wm

−2
K

−4∆T 4 1.07·10−4
Wm

−2
K

−4∆T 4

2K-Lowlat
linear fit 5.55Wm

−2
K

−1∆T -88.73Wm
−2 1.28Wm

−2
K

−1∆T -20.89Wm
−2 6.83Wm

−2
K

−1∆T -109.08Wm
−2

∆T 4 fit 8.2·10−5
Wm

−2
K

−4∆T 4 2.3·10−5
Wm

−2
K

−4∆T 4 1.07·10−4
Wm

−2
K

−4∆T 4

2K-Tropics
linear fit 5.45Wm

−2
K

−1∆T -87.09Wm
−2 1.30Wm

−2
K

−1∆T -20.44Wm
−2 6.75Wm

−2
K

−1∆T -107.53Wm
−2

∆T 4 fit 8.2·10−5
Wm

−2
K

−4∆T 4 2.2·10−5
Wm

−2
K

−4∆T 4 1.05·10−4
Wm

−2
K

−4∆T 4

2K-Highlat
linear fit 4.95Wm

−2
K

−1∆T -77.28Wm
−2 1.17Wm

−2
K

−1∆T -17.60Wm
−2 6.12Wm

−2
K

−1∆T -94.88Wm
−2

∆T 4 fit 7.7·10−5
Wm

−2
K

−4∆T 4 2·10−5
Wm

−2
K

−4∆T 4 9.6·10−5
Wm

−2
K

−4∆T 4

Minus 2K-Highlat
linear fit 4.98Wm

−2
K

−1∆T -76.72Wm
−2 1.17Wm

−2
K

−1∆T -16.89Wm
−2 6.14Wm

−2
K

−1∆T -93.62Wm
−2

∆T 4 fit 7.7·10−5
Wm

−2
K

−4∆T 4 2·10−5
Wm

−2
K

−4∆T 4 9.7·10−5
Wm

−2
K

−4∆T 4

Table 6.1: Parametrization of latent and sensible heat flux in CAM3 for the control run and all perturbed SST runs, using linear and ∆T 4

approximations.
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is used for the meridional heat divergence.

The atmospheric meridional heat transport is calculated as

Fφ = 2πR2
E

∫ π

2

−
π

2

ζ cos(φ) dφ (6.6)

where Fφ is the meridional heat transport as a function of latitude. Fφ is
given in petawatts (PW).

Here it is worth noting that this definition is slightly different than the one
defined in Paltridge’s model (section 4.1.4), for which the boxes were defined
to have the same surface area. In this model the boxes have the same latit-
udinal width, dφ.

The AMEP result using constant parameters

The AMEP results using constant parameters, are shown in figure 6.3. The
mean properties of the atmosphere are captured in a satisfactory way.

The atmospheric temperature (black, solid line) is seen in figure 6.3(a). Also
included are the surface temperatures from CAM3 used as the boundary
forcing in AMEP (blue, solid line). The atmospheric temperature is much
colder than the surface temperature. This is to be expected since the mean
radiative atmospheric temperature of 255K is much colder than the surface
temperature of 288K (Hartmann, 1994, Ch. 2) The only exception is over
Antarctica where the surface temperatures are extremely cold. The atmo-
spheric temperature profile is also flatter, showing less latitudinal variation
than the surface temperature profile.

The convective heat flux, Fc, is seen in figure 6.3(b). The convective heat flux
is bell-shaped, with maximum values of 95Wm−2in the tropics. The flux is
not quite symmetric about the equator, with larger values in the NH. The
characteristic local minimum in latent heat at the equator does not appear.
This was not expected though since the parametrization method failed to
capture this minimum as well.

The meridional heat divergence, ζ , is seen in figure 6.3(c). The shape of ζ
is dominated by the convective heat flux. This is also observed in the real
atmosphere (Hartmann, 1994, Ch. 6).

Figure 6.3(d) shows the northward heat transport (eqn. 6.6). Two maxima
are seen at 35◦N/S with a transport of approximately 7PW. The transport is
expected to peak with a maximum of approximately 4-5PW(Hartmann, 1994,
Ch. 6) . The high values seen in figure 6.3(d) indicates that the atmosphere
gains too much heat at low latitudes. This is a consequence of the radiation
budget in AMEP, as explained in the following section.



6.2 Parameters 75

−80 −60 −40 −20 0 20 40 60 80
230

240

250

260

270

280

290

300

310

Latitude

[K
el

vi
n]

 Temperature

 

 

T surf
T atm

(a)

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

Latitude

[W
/m

2]

 Convective Heat Flux, k = 9e−5

(b)

−80 −60 −40 −20 0 20 40 60 80
−150

−100

−50

0

50

100

Latitude

[W
/m

2]

  Meridional Heat Flux, ζ

(c)

−80 −60 −40 −20 0 20 40 60 80
−8

−6

−4

−2

0

2

4

6

8

Latitude

[P
W

]

  Meridional Heat Transport, F
φ

(d)

Figure 6.3: (a) The Atmospheric (black line) and surface (blue line) temperat-
ure,(b) the convective heat flux, (c) the meridional heat divergence,ζ, and (d) the
meridional heat transport calculated using AMEP with constant parameters A,
R, ǫ and k. The surface temperature acts as a boundary forcing and is the same
regardless of the parameters used.

The radiative energy budget

In the real atmosphere the stratosphere is in approximately radiative equi-
librium while the troposphere has a net radiative cooling rate of about
1.5Kday−1 (Hartmann, 1994, Ch. 3). Considering the atmosphere as one
layer, a radiative loss is expected. The radiative loss is balanced by the con-
vective heat flux from the surface and the meridional heat transport from low
to high latitudes. The radiation budget for AMEP is shown in figure 6.4(a).
The figure shows the total sum of emitted radiation from the atmosphere and
the total absorbed radiation, which is the sum of the absorbed solar radi-
ation and the absorbed radiation emitted from the surface. Calculated values
from Trenberth et al. (2009) show that the atmosphere emits 502Wm−2 and
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absorbs 434Wm−2 annually- and globally-averaged. The numbers are not
too different from what is seen in figure 6.4(a), but indicate that too much
radiation is absorbed in AMEP.
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Figure 6.4: (a) The radiation budget in AMEP using constant parameter values
for all boxes. The absorbed radiation (solid line) is the sum of the absorbed solar
radiation and the absorbed terrestrial radiation in the atmosphere. The emitted
radiation (dashed line) is the total radiation emitted from the atmosphere in both
directions. (b) The radiative heating budget is the absorbed radiation minus the
emitted radiation in AMEP. The atmosphere experiences a radiative cooling for
all latitudes. (c) and (d) The radiation budget as described above, using zonally-
varying parameter values in AMEP.

The large latitudinal variation in the radiation budget is unexpected. The
profile of the total radiation budget in AMEP is similar to the surface tem-
perature profile. In the real atmosphere the radiation loss is approximately
100Wm−2 (Hartmann, 1994) and does not exhibit great variation between
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latitudes. The same is true of CAM3 (see section 7.1.2). The latitudinal devi-
ation in the radiation budget causes too small radiative loss at low latitudes,
resulting in large heat transport.

6.2.3 The zonally-varying parameter option

The numbers calculated from the work by Trenberth et al. (2009) are globally-
and annually-averaged values, while AMEP is a zonally- and annually-averaged
model. Applying parameters calculated from global mean conditions to zonal
mean conditions can cause errors since the emissivity, the absorptivity and
the reflectivity of the atmosphere are not expected to stay constant over dif-
ferent latitude zones. Using a single layer solar radiation model and data
from CAM3 provides another method of calculating the parameters, ǫ, A
and R, used in the AMEP model.

The shortwave parameters

Figure 6.5: Schematic representing the first two reflections in a single layer solar
radiation model. Moving from left to right, the arrows represent the radiative
fluxes associated with the incident solar radiation, first reflection, and second re-
flection. A, Ra, and rs are the atmospheric absorption fraction during a single
pass through the atmosphere, the fraction of reflection, and the surface albedo
respectively. Figure adapted from Donohoe and Battisti (2010).

The short wave parameter calculations are based on the work of Donohoe and
Battisti (2010). Figure 6.5 shows a single layer atmosphere-surface system
for a given latitude zone. Three processes are accounted for: the atmospheric
reflection (Ra), the atmospheric absorption (A) and surface reflection (rs).
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Each process is assumed isotropic. The incoming solar radiation in each
latitude zone equals one unit and Ra, A and rs are fractions of the insolation
unit. Only two reflections are shown in figure 6.5, but these processes are
repeated infinitely. Using the one layer model, the total fraction of reflected
radiation at TOA,f ↑TOA, can be written as a sum

f ↑TOA= Ra+rs(1−Ra−A)2+rs
2Ra(1−Ra−A)2+rs

3Ra
2(1−Ra−A)2+......

= Ra + rs(1 − Ra − A)2
[

1 + rsRa + (rsRa)
2 + ....

]

= Ra + rs

(1 − Ra − A)2

1 − Rars

(6.7)

Similar infinite series can be obtained for the total fraction of downwelling,f ↓surf ,
and upwelling flux,f ↑surf , of solar radiation at the surface

f ↓surf= (1 − Ra − A) + rsRa(1 − Ra − A) + rs
2Ra

2(1 − Ra − A) + ......

= (1 − Ra − A)
[

1 + rsRa + (rsRa)
2 + ....

]

=
(1 − Ra − A)

1 − Rars

(6.8)

f ↑surf= rs(1 − Ra − A) + rs
2Ra(1 − Ra − A) + rs

3Ra
2(1 − Ra − A) + ......

= rs(1 − Ra − A)
[

1 + rsRa + (rsRa)
2 + ....

]

= rs

(1 − Ra − A)

1 − Rars

= rsf ↓surf (6.9)

If F is the insolation in for a given latitude zone, the upwelling solar flux at
TOA is F (TOA) ↑= Ff ↑TOA, the downwelling solar flux at the surface and
the upwelling solar flux at the surface are F (0) ↓= Ffsurf ↓ and F (0) ↑=
Ff ↑surf , respectively. For the upwelling and downwelling fluxes, data from
CAM3 is used. The result is shown in Figure 6.6

The longwave parameter

An estimate for the atmospheric emissivity can be calculated from the OLR
at TOA using CAM3 data. The OLR from CAM3 for a given latitude zone
i can be written as

OLRi = ǫiσT 4
i + (1 − ǫi)σT 4

si (6.10)

where T is the mean radiative temperature of the atmosphere and Ts is the
surface temperature. OLR data from the control run and the 2K run were
used. The data are from the first day of the CAM3 run in which the SST
differs between the two runs, while all the other parameters are assumed
to be unchanged. The assumption is justified because of the short running
time of the model (6hrs) compared to the typical adjustment time of the
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Figure 6.6: Annually- and zonally-averaged surface albedo rs, atmospheric re-
flection Ra and atmospheric absorption A. The parameter values are derived from
CAM3 using a single layer solar radiation model (see text for details)

atmosphere (O(day)). For a given latitude zone i, the difference in OLR can
be written as

OLRi,2K−OLRi,control =
(

ǫiσT 4
i +(1−ǫi)σT 4

si

)

2K
−

(

ǫiσT 4
i +(1−ǫi)σT 4

si

)

control

=
(

(1 − ǫi)σT 4
si

)

2K
−

(

(1 − ǫi)σT 4
si

)

control

ǫi = 1 − OLRi,2K − OLRi,control

σ(T 4
si,2K − T 4

si,control)
(6.11)

Although this is a crude estimate, the mean value equals 0.9 and coincides
with the value determined from Trenberth et al. (2009). The emissivity
result is shown in Figure 6.7. The calculation method fails when the surface
temperature, Ts, in the two runs equal, which happens at high latitudes. For
those areas the mean value is used.

The AMEP result using zonally varying parameters

The energy balance equation for the atmospheric column in Box i using this
approach is

Fi

(

Ai+Airsi

(1 − Rai − Ai))

1 − rsiRai

)

+k(Tsi−Ti)
4−2ǫiσT 4

i +ǫiσT 4
si−ζi = 0 (Box i)

(6.12)
The calculations used to find the maximum entropy production will be as
described in the section 6.1, using

ζi = Fi

(

Ai + Airsi

(1 − Rai − Ai))

1 − rsiRi

)

+ k(Tsi − Ti)
4 − 2ǫiσT 4

i + ǫiσT 4
si (Box i)

(6.13)
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Figure 6.7: The zonally averaged atmospheric emissivity. The calculation used
fails for the highest latitudes due to equal Ts in the two runs. For those latitudes
the mean value of 0.9 is used

for the meridional heat divergence. The difference plot for AMEP between
using the zonally-varying parameters and the constant parameters, are shown
in figure 6.8. The differences between the two runs are small for all outputs.
The reason for the small changes can be seen in figure 6.4. The parameters,
ǫ, A and R, influence the radiation budget in each box. In spite of the dif-
ferences in the radiation budget for the constant parameter AMEP run and
the zonally-varying parameter AMEP run (see figure 6.4(a) and (c)), the net
radiative cooling stays the same in both runs (see figure 6.4(b) and (d)).

When comparing the different results between the two parameter options
in the altered SST run (not shown), no significant difference between the
two options are seen. Due to the small changes in the results using zonally-
varying parameters, instead of constant parameters, the constant parameters
are used from now on. The reason for choosing the constant parameter option
is that it makes the results derived from AMEP even easier to understand.
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Figure 6.8: The difference between the zonally-averaged parameter run and the
constant parameter AMEP run in (a) atmospheric temperature, (b) convective
heat flux, Fc, (c) the meridional heat divergence, ζ, and (d) the meridional heat
transport, Fφ. The differences are all small.
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Chapter 7

Results

In order to conduct a perturbed SST comparison it is essential to determine
comparable fields between AMEP and CAM3 (sections 7.1.1 and 7.1.2). The
following examination of a control run comparison of the two models (section
7.1.3) will provide grounds for the subsequent perturbed SST comparison
(section 7.2).

7.1 The control run comparison

AMEP is an annually- and zonally-averaged model, which is necessary be-
cause the atmosphere needs to be in approximately steady state, in order to
apply the MEP principle. Consequently the fields from CAM3 used in the
comparison need to be annually- and zonally-averaged fields too.

7.1.1 The atmospheric temperature and the convective

heat flux in CAM3

The atmospheric temperature and the convective heat flux are default fields
in CAM3. CAM3 has 26 atmospheric temperature fields; one for each vertical
layer. To make a comparison with the atmospheric temperature in AMEP,
the density-weighted average atmospheric temperature, defined in section
5.2, is used. This temperature represents the mean atmospheric temperature
in CAM3 and is necessary to use because AMEP only has one mean at-
mospheric temperature for each atmospheric column. The density-weighted
average atmospheric temperature, henceforth referred to as the atmospheric
temperature, is shown in figure 7.1(a). Also shown in 7.1(a) is the surface
temperature, Ts. The latent heat flux (LH), the sensitive heat flux (SH) and
the total convective heat flux (LH + SH) are shown in figure 7.1(b). All
fields are 20 year time- and zonally- averaged fields.

The meridional heat divergence and the meridional heat transport in the
atmosphere are not field values in CAM3. To make a model intercomparison
between AMEP and CAM3, these values need to be determined. To do that,
values from the atmospheric energy budget in CAM3 are used.

83
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Figure 7.1: (a) The annually- and zonally-averaged surface temperature (blue
line) and density-weighted atmospheric temperature (black line). (b) The annually-
and zonally-averaged latent heat flux, LH, (dashed, black line), sensible heat flux,
SH, (black, dash-dotted line) and total convective heat flux, LH+SH, (black, solid
line).

7.1.2 The energy budget in CAM3

The atmospheric energy balance calculations used in this section are based
on the calculations of Hartmann (1994, Ch. 6). The local energy balance of
an atmospheric column can be written as

∂E

∂t
= RA + LH + SH − ζ (7.1)

where ∂E/∂t is the change of the energy content of an atmospheric column
with time, RA is the net radiative heating, LH is the latent heat release, SH
is the sensible heat and ζ is the horizontal energy divergence.

The net radiative heating, RA, is the difference between the net radiative
heating at TOA and the net radiative heating at the surface, i.e.

RA = RTOA − Rsurface (7.2)

The data used from CAM3 is a 20-year annual average, so every atmospheric
column is considered to be in energy equilibrium, which means that no energy
is stored within the column, i.e.

∂E

∂t
= 0 (7.3)

This is used to get an estimate of ζ

ζ = SH + LH + RA (7.4)
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The resulting atmospheric energy budget is shown in figure 7.2(a). The
atmosphere experiences a net radiative cooling of approximately 100Wm−2

with only small latitudinal variations. The energy loss is partly balanced
by the flux of sensible and latent heat from the surface. The atmosphere
gains energy at low latitudes, since the convective heat flux exceeds the
radiative energy loss, and loses energy at middle and high latitudes where
the convective heat flux is greatly reduced. The energy budget is balanced
by the meridional energy transport. The atmospheric energy transport is
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Figure 7.2: (a) The atmospheric energy budget from the control run in CAM3
includes the latent heat flux, LH,(dash-dotted line), the sensible heat flux, SH,
(dotted line), the net radiative heating, RA, (dashed line) and the horizontal energy
divergence, ζ, (solid line) which is calculated as a sum of the other energy budget
components. (b) Total meridional energy transport in the atmosphere.

calculated the same way as for the AMEP model (see section 6.2.2), i.e.

Fφ = 2πR2
E

∫ π

2

−
π

2

ζ cos(φ) dφ (7.5)

where RE is the radius of the Earth. Fφ is a function of latitude, φ, given in
petawatts(PW) and shown in figure 7.2(b).

7.1.3 AMEP vs. CAM3; a control run comparison

In order to make a comparison between AMEP and CAM3, it is essential
to account for differences in the control run results in the two models. The
control run fields for AMEP were described in section 6.2.2 and shown in
figure 6.3. The difference plots between the AMEP and CAM3 control run
results are shown in figure 7.3.
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Figure 7.3: AMEP minus CAM3 difference plot. (a) Temperature, (b) Convective
heat flux, (c) Meridional heat divergence, (d) Meridional heat transport.

The atmospheric temperature difference plot is seen in figure 7.3(a). The
mean atmospheric temperature for AMEP is warmer for all latitudes. The
AMEP temperature profile is also much flatter, which results in a greater
difference at middle and high latitudes. The greatest differences occur close
to Antarctica, where the CAM3 temperatures are extremely cold.

The difference plot for the convective heat flux is seen in figure 7.3(b). The
convective flux is smaller and more confined in the tropics in AMEP than
in CAM3, which causes large differences at mid-latitudes between the two
models. The local minimum in the convective heat flux at the equator seen
in CAM3, was not captured in the parametrized heat flux. This results in
significant differences between the two models close to the equator as well.

The differences in the atmospheric temperatures and the convective heat
fluxes are closely connected. In the parametrization of the convective heat
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flux used in the AMEP model, k(Ts − T )4, the same k value as calculated
from CAM3 is used. The k value was obtained using precisely the density-
weighted atmospheric temperature used in this temperature comparison. The
fact that the temperatures in AMEP are warmer than in CAM3 for all latit-
udes, makes the k(Ts−T )4 term smaller in the AMEP model at all latitudes.
This is especially true at middle and high latitudes where the temperature
differences are greater. This is reflected in the convective heat flux difference
plot which shows such large values, due to the fourth power of the temper-
ature difference used in the parametrization.

The difference in the meridional heat divergence results from the two models
is seen in figure 7.3(c). The shape of the meridional heat divergence is highly
dependent on the convective heat flux, so the reasons for these differences are
the same as the ones mentioned above. For a more thorough discussion of
the relation between the changes in the convective heat flux and the changes
in ζ see section 7.2.3.

Although the atmosphere gains more convective heat in CAM3 compared to
AMEP, the atmosphere gains more heat in total in AMEP due to less radi-
ative cooling (see figure 6.4) at low latitudes as explained in section 6.2.2.
The increased energy gain in AMEP is reflected in the meridional transport
difference plot (see figure 7.3(d)) for which the AMEP transport is much
larger than the transport calculated from CAM3.

Thus there are significant differences between the two models’ results. These
are especially seen in the convective heat flux, the meridional heat diver-
gence and the meridional heat transport. Although the results differ between
AMEP and CAM3, it is the differences between the perturbed temperature
runs and the control run for each model separately we are interested in. The
changes in the models, in response to the altered SST for CAM3 and the
altered Ts for the AMEP model, are the most important part of the com-
parison. The underlying causes for the differences seen above are easily
understood and should not hinder the model intercomparison.

7.2 The perturbed SST comparison

To see if AMEP is able to detect shifts in the maximal meridional heat
transport due to altered SST, five perturbed surface temperature runs are
conducted. The results from each run are then compared to results from the
corresponding runs in CAM3.

The different SST runs executed in the study of Graff and LaCasce (2012) are
described in detail in section 2.1. For AMEP, the temporally- and zonally-
averaged surface temperature fields, Ts, from CAM3 are used in the different
runs. The changes in Ts differ from the SST changes imposed. The surface
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Figure 7.4: The surface temperatures used as a boundary forcing in AMEP are
the temporally and zonally averaged surface temperature fields from CAM3. (a)
Temporally- and zonally-averaged surface temperature profile used in the AMEP
control run. (b) The difference between the surface temperatures used in the other
runs and the control run .

temperatures over the continents and over sea ice are not forced in the CAM3
runs. Some of the energy gained in the atmosphere due to the SST forcing
is transported by the atmospheric circulation, resulting in modified surface
temperatures also over continents and ice, but the changes are not as distinct
as the SST forcing. Also, the changes in the surface temperatures are more
evident in the SH due to the greater fraction covered by sea. CAM3 is run
until a new equilibrium state is achieved. It is the annually- and zonally-
averaged surface temperatures from this state that is used as the Ts forcing
in AMEP.

The Ts used in the AMEP control run is seen in figure 7.4(a). The differences
in the Ts profiles used in the perturbed Ts runs and the control run are seen
in figure 7.4(b). The changes in Ts are not as well defined as the differences
seen for the altered SST, but the temperature tendency in the runs is clearly
captured.

The perturbed surface temperatures act as a lower boundary forcing in both
models. The greatest forcing is in the SH where the fraction covered by
ocean is much greater in the NH. For this reason the changes in the results
are expected to be greater in the SH than in the NH, which is also seen.

Figures 7.5, 7.6, 7.8 and 7.10 show the differences in the mean atmospheric
temperature, the convective heat flux, the meridional heat divergence and
the meridional heat transport between the perturbed SST runs and the con-
trol run in CAM3 and the perturbed Ts runs and the control run in AMEP.
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The results for both models are included in the figures. The differences in
the CAM3 results are seen as green, solid lines in all figures and the corres-
ponding AMEP results are seen as blue, solid lines.

The 2K-Lowlat run, the 2K run and the 2K-Tropics run are all heated in
the tropics and exhibit some of the same features. The runs are referred to
as the lowlat heating runs when all of them are included in the description.
Also the changes seen in the 2K-Highlat run and the Minus 2K-Highlat run
are similar and are described together as the ±2K-Highlat runs.

7.2.1 The mean atmospheric temperature difference

Figure 7.5 shows the difference between the perturbed runs and the control
run in the mean atmospheric temperature for both models. The atmospheric
temperature used for the CAM3 results is the density-weighted averaged at-
mospheric temperature defined in section 5.2. Also included is the differences
in Ts, which is the same for both models (red, dashed line).

The 2K-Lowlat run (7.5(a))
The increase in the SST by 2K equatorward of 45◦N/S is reflected in Ts.
The Ts heating effect is present at all latitudes in the NH, while it is small at
high latitudes in the SH, except over Antarctica. The imposed Ts gradient at
45◦ is much sharper in the SH compared to the NH. The mean atmospheric
temperatures in CAM3 warm by 2.6 K in the tropics and decrease smoothly
at higher latitudes. The temperatures in AMEP warm less, with a constant
warming of 1.6K equatorward of 45◦N/S. At higher latitudes, the warming
in AMEP equals the warming seen for Ts in the NH and is greater than what
is seen for Ts in the SH.

The 2K run (7.5(b))
There is a nearly constant 2K warming in Ts for all latitudes, except at high
latitudes in the SH. The changes seen in the 2K run resemble the 2K-Lowlat
run. The warming in the two models is exactly the same as seen in the 2K-
Lowlat run, except that the warming occurs over a larger area. The reduction
in heating at high latitudes is also less than what was seen in the 2K-Lowlat
run and is less than the warming in Ts for both models.

The 2K-Tropics run (7.5(c))
Ts is increased by 2K in the tropics, with the imposed SST gradient at 15◦N/S
clearly seen. The change in the Ts is nearly zero at mid-latitudes, with an
increase at high latitudes. The changes seen in the atmospheric temperature
in the tropics resemble the changes seen in the heated area in the two previ-
ous runs except that the heating is less in AMEP, approximately 1.3K. All
temperature profiles show warming at high latitudes.
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Figure 7.5: The difference in the mean atmospheric density-weighted temperature
between the perturbed SST runs and the control run for CAM3 (green, solid line).
The difference in the atmospheric temperature between the perturbed Ts runs
and the control run for the AMEP model (blue, solid line). Also included is the
difference in the zonal mean surface temperature field, Ts, from CAM3 (red, dashed
line).
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The ±2K-Highlat runs (7.5(d),7.5(e))
The changes seen in the 2K-Highlat and the Minus 2K-Highlat run look
almost exactly the same, except for the sign difference. Ts is increased (de-
creased for the Minus 2K-Highlat run) by 2K at 45◦S and by approximately
1.2K at 45◦N. The changes in Ts are less at high latitudes. Temperatures in
AMEP also exhibit greater warming (cooling) in the SH than in the NH, but
the changes are less than in Ts, with approximately 1K warming (cooling)
at 45◦S and 0.6K at 45◦N. The CAM3 temperatures also increase (decrease)
at 45◦N/S, but the changes are not as sharp as in the surface temperature
profiles. There is a 1K warming (cooling) south of 45◦S and 0.6K warming
(cooling) north of 45◦N. The CAM3 temperatures do not decrease (increase)
at high latitudes. None of the temperature profiles show any changes equat-
orward of 45◦N/S.

Generally the atmospheric temperature in AMEP exhibits the same shape as
the changes in Ts, although the changes in the AMEP model are somewhat
smaller. The changes in CAM3 exhibit a smoother profile than what is seen
for both AMEP and Ts. The lowlat heating runs all show a greater atmo-
spheric temperature warming than the increase in the surface temperature
in the CAM3 runs. This feature is not seen in AMEP. For the ± 2K-Highlat
runs both AMEP and CAM3 show smaller changes than seen in Ts.

7.2.2 The convective heat flux difference

The differences in convective heat flux (CHF) are shown in figure 7.6. Also
included are the changes in Ts (red, dashed line) described in the previous
section.

The 2K-Lowlat run (7.6(a))
The CHF is increased equatorward of 45◦N/S and reduced poleward of 45◦N/S
in both models. The reduction is seen in both hemispheres for CAM3 and
only in the SH for AMEP. The strong gradients in the CHF changes are
located at the same latitude as the changes in Ts. The changes are large for
CAM3, especially in the SH. For AMEP the greatest increase in CHF is seen
at low latitudes, with nearly constant values. The CHF is reduced at mid-
latitudes in the SH and are unaltered at middle and high latitudes in the NH.

The 2K run (7.6(b))
The results for the 2K run resemble what is seen in the 2K-Lowlat run, but
the magnitude of change in the 2K-run is smaller for CAM3. CAM3 shows
two large peaks in the increased CHF at mid-latitudes and a reduction at
higher latitudes. AMEP exhibits an increase in CHF at all latitudes, except
at high latitudes in the SH. The greatest increase in CHF with AMEP is seen
at low latitudes, with less variation than what is seen with CAM3. Still, the
two peaks at mid-latitudes are present, as seen in CAM3.
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(c) 2K-Tropics
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Figure 7.6: The difference in the Convective Heat Flux (CHF) between the per-
turbed SST runs and the control run for CAM3 (green, solid line) and between
the perturbed Ts runs and the control run for the AMEP model (blue, solid line).
Also included is the difference in the zonal mean surface temperature field, Ts (red,
dashed line), from CAM3. Note the two different y-axis.
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Figure 7.7: The difference in the Convective Heat Flux (CHF) between the per-
turbed SST runs and the control run for CAM3 (green, solid line). Also included
are the CHF parametrization Fc = k ·(Ts−T )4 sign(Ts−T ) (red, solid line), where
k=9·10−5Wm−2K−4 and the CHF parametrization using k values from table 6.1
(black, dashed line). The CHF parametrization is described in detail in section 5.2
and in section 6.2.1.
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The 2K-Tropics run (7.6(c))
The 2K-Tropics run shows the greatest increase in CHF of all the runs with
both CAM3 and AMEP. The changes in CHF, for CAM3, peak at 10◦N/S,
with an increase of 37Wm−2 and 33Wm−2, respectively. The changes are
less, close to the equator. There is a sharp drop in CHF at 15◦N/S and it
is reduced compared to the control run. The location of the strong CHF
gradients are the same as the changes in Ts. The changes in CHF are also
smaller at higher latitudes. It is worth noting that the changes in CAM3 for
the 2K-Tropics run are greater in the NH. This is quite the opposite than
what is seen for the other runs. AMEP also exhibits an increase in CHF
equatorward of 15◦N/S and a reduction poleward of 15◦N/S. The changes
however are much smaller than seen in CAM3 and the local minimum at
equator in CAM3 is not present in AMEP.

The ±2K-Highlat runs (7.6(d),7.6(e))
The changes in CHF are nearly zero at low latitudes where Ts is unaltered.
The CHF is reduced (increased in the Minus 2K-Highlat run) in CAM3
between 20◦N/S-40◦N/S. This reduction (increase) is not seen in AMEP or
in Ts. At 45◦N/S the CHF increases (decreases) rapidly in both models, with
the greatest changes seen for CAM3. The changes in the CHF are small at
high latitudes

Thus there is a clear tendency in the results: where there is surface and atmo-
spheric heating, the fluxes of latent and sensible heat increase. AMEP and
CAM3 exhibit the same tendencies, but CAM3 shows much more structure,
rapid shifts and greater changes in CHF than does AMEP. For both models
the changes seen in CHF and Ts are connected and often occur at the same
location.

The CHF parametrization

The CHF parametrization used in AMEP was determined using a vertical
MEP model (section 5.2). The parametrized CHF was compared to CHF
fields from CAM3 (section 6.2.1). The result showed that the parametriza-
tion used for CHF succeeded in capturing the main CHF field in CAM3 (see
figure 6.2). However, changes in CHF differ considerably in the two models,
as seen in the results discussed above. In order to find out why, the para-
metrized CHF, as used in AMEP, is tested using CAM3 data and the results
are compared to CHF fields in CAM3.

The CHF in AMEP is parametrized as

CHF = k · (Ts − T )4 sign(Ts − T )

where k is the proportionality constant and equals 9·10−5Wm−2K−4, T is
the atmospheric temperature and Ts is the surface temperature. k is kept
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constant for all runs, so the parametrization restricts CHF to change only
due to changes in the atmospheric temperature and in Ts.

The changes in CHF using the parametrized CHF with CAM3 data are cal-
culated as

∆CHF =
[

k ·(Ts−T )4 sign(Ts−T )
]

SST run
−

[

k ·(Ts−T )4 sign(Ts−T )
]

control

The result is shown in figure 7.7. The changes in the CHF field from CAM3
are seen as green, solid lines (same result as seen in figure 7.6). The changes
in the parametrized CHF are seen as red, solid lines.

Although the CHF parametrization succeeds in capturing the main CHF field
from CAM3, it fails to capture the CHF changes. This is especially true for
the lowlat heating runs. This is because the atmospheric temperature warms
more than Ts at mid- and low latitudes (see figure 7.5(a,b,c)), resulting in

(Ts − T ) lowlat
heating

< (Ts − T )control

Consequently CHF is reduced in the lowlat heating runs compared to the
control run. This is clearly seen in figures 7.7(a,b,c). It is worth noting that
the same problem occurs using a linear parametrization.

The ±2K-Highlat runs exhibit greater similarity between the CHF field and
the parametrization. The atmospheric temperature increases (decreases for
the Minus 2K-Highlat run) less than Ts (see figure 7.5(d,e)), so the problem
seen in the lowlat heating runs does not occur in these runs. The paramet-
rized CHF is able to capture some of the larger changes, still the gradients
in the parametrized CHF are smaller than in CAM3.

Also included in figure 7.7 is the same CHF parametrization as described
above, but using different k values for each SST run. The k values were
calculated from CHF fields in CAM3 and are listed in table 6.1. This method
improves the results in the lowlat heating runs. This is especially true when

(Ts − T ) lowlat
heating

< (Ts − T )control

for which the CHF parametrization failed when the same k value was used
in all runs. However, using different k values for each run worsen the results
in the ±2K-Highlat runs, in particular at low latitudes where

(Ts − T )±2K Highlat ≃ (Ts − T )control

This suggests that we may not be able to take k to be constant. Rather
k should probably be dependent on temperature and/or humidity. Thus
the changes in CHF in CAM3 are more involved than represented by the
parametrization used in AMEP. This will be discussed further in section
9.1.1.
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Figure 7.8: The difference in the Meridional Heat Divergence, ζ, between the
perturbed SST runs and the control run for CAM3 (green, solid line) and between
the perturbed Ts runs and the control run for the AMEP model (blue, solid line).
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(c) 2K-Tropics
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(d) 2K-Highlat
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Figure 7.9: The difference in the Atmospheric Net Radiative Heating, RA,
between the perturbed SST runs and the control run for CAM3 (green, solid line)
and between the perturbed Ts runs and the control run for the AMEP model (blue,
solid line). Also included is the difference in the zonal mean surface temperature
field, Ts (red, dashed line), from CAM3. Note the two different y-axis.
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7.2.3 The meridional heat divergence difference

The difference plots for the meridional heat divergence, ζ , are shown in fig-
ure 7.8. Most importantly, the shape of ζ is highly determined by the shape
of the CHF. Consequently the changes seen in ζ correspond to the changes
seen in CHF described in in section 7.2.2. This is true for both models. A
detailed description of the changes seen for ζ is therefore not included. The
magnitude of the changes on the other hand, differs from the results seen for
CHF. This is because changes also occur in the radiation heating budgets for
all the perturbed runs, in turn affecting ζ . The changes in the net radiative
heating, RA, for all the perturbed runs are seen in figure 7.9.

The changes in AMEP are highly dependent on the changes in Ts. This
is expected. The insolation and the atmospheric absorptivity of solar radi-
ation, A, stay the same for the different runs, resulting in no change in the
absorbed solar radiation. This means that the changes in RA are determined
only by changes in the longwave radiation budget. The longwave radiation
parameter, ǫ, also stays constant for all runs, making the changes in RA de-
termined only by changes in Ts and the atmospheric temperature (see figure
7.5). The changes can be written as

∆RA ≃ ∆
(

AF (1 −R) − 2ǫσ(T + δT )4 + ǫσ(Ts + δTs)
4
)

≃ −4ǫσ
(

2δT − δTs

)

(7.1)
∆RA ∝ δTs − 2δT (7.2)

This is not the case for the changes seen in RA for CAM3, where RA changes
in response to altered solar absorption and altered absorption and emittance
of longwave radiation. In CAM3, the lowlat heating runs experience increased
radiative cooling in response to the altered SST. The only exceptions are at
40◦N/S in the 2K-Tropics run for which the atmosphere warms. AMEP also
shows atmospheric cooling in the lowlat heating runs, but less where there
is surface heating, and radiative warming at low latitudes in the 2K-tropics
run. This is quite the opposite from what is seen in CAM3, where the cooling
increases as the SST warms.

In the ±2K-Highlat runs, the changes occur poleward of 45◦N/S and are of
opposite sign in the two models. In AMEP there is radiative heating (cooling
in the Minus 2K-Highlat run) at high latitudes. In CAM3 there is radiative
heating (cooling) at the same location as the changes seen in Ts and radiative
cooling (warming) at high latitudes.

Nevertheless, the changes in CHF are one order of magnitude larger than the
changes in RA. So changes in ζ are still dominated by the changes in CHF,
i.e.

∆ζ ≃ ∆CHF (7.3)

∆CHF differs in magnitude, but has the same tendencies in both models.



7.2 The perturbed SST comparison 99

−80 −60 −40 −20 0 20 40 60 80
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

[P
W

]

Latitude

 Meridional Heat Transport difference plot
2K−Lowlat minus control run

 

 

AMEP
CAM3

(a) 2K-Lowlat

−80 −60 −40 −20 0 20 40 60 80
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

[P
W

]

Latitude

 Meridional Heat Transport difference plot
2K minus control run

 

 

AMEP
CAM3
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(c) 2K-Tropics
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Figure 7.10: Difference in the Meridional Heat Transport between the perturbed
SST runs and the control run for CAM3 (green, solid line) and between the per-
turbed Ts runs and the control run for the AMEP model (blue, solid line).
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7.2.4 The meridional heat transport difference

The difference plots for the meridional heat transport, Fφ, are seen in figure
7.10.

The 2K-Lowlat run (7.10(a))
Fφ increases in both models in response to the increased temperatures, but
how Fφ changes differs. Consider the SH. In AMEP, the change is negative
over the hemisphere, indicating an increase in the (southward) flux. How-
ever, with CAM3, the difference is positive near the equator and negative
to the south. The result is that the maximum transport shifts southward,
towards the pole. In the NH, AMEP behaves the same, while CAM3 has
a more localized maximum. This also causes a poleward shift, albeit a less
pronounced one than in the SH. Note too that the maximum changes are
slightly smaller in AMEP than in CAM3.

The 2K run(7.10(b))
The differences in the 2K runs resemble those in the 2K-Lowlat runs, but
with smaller magnitudes. The sharp maxima in the changes in CAM3 are
located poleward of the maxima in the 2K-Lowlat run and peak at 57◦S and
54◦N. A reduction in Fφ at low latitudes is again seen in the SH. The maximal
transports are shifted poleward in both hemispheres. In AMEP the peaks
are slightly equatorward compared to the 2K-Lowlat run. The transport in-
creases, but no shift occurs. The result is similar to the 2K-Lowlat run. The
increase in Fφ is greater in AMEP than in CAM3 in the SH.

The 2K-Tropics run (7.10(c))
For the 2K-Tropics run both models show increased transport in the trop-
ics. The changes seen are the greatest of all the runs. The results from the
two models are similar, but the increase is greater in CAM3 than in AMEP.
Although CAM3 exhibits a greater increase in Fφ in the tropics, no equator-
ward shift of the maximal transport occurs. The reason for this is the second
peak at mid-latitudes in each hemisphere, which makes the transport also
increase at mid-latitudes. The equatorward shift is clearly seen if only eddy
transport is considered (not shown). The increase is not as great in AMEP
as in CAM3, but the maxima occur at the same latitudes as in CAM3. An
equatorward shift in the maximal transport is seen in AMEP. This is the
only run where a shift of the maximal transport is seen in AMEP.

The ±2K-Highlat runs (7.10(d))
The CAM3 result exhibits small changes in the tropics. Fφ is reduced at mid-
latitudes (increased for the Minus 2K-Highlat run) and increased (decreased)
at high latitudes. For the Minus 2K-Highlat run there is also a small decrease
in Fφ in the tropics. Sharp minima (maxima) are located at mid-latitudes in
CAM3, resulting in a equatorward (poleward) shift of the maximal transport
in both hemispheres. AMEP exhibits a reduction (increase) in Fφ for both
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hemispheres and no shifts in the transport occur.

The changes in Fφ have the same magnitude and exhibit similar tendencies
in both models. The changes peak at the same latitude for the two models
in the 2K-Tropics runs and the ±2K-Highlat runs. In the 2K-Lowlat runs
and the 2K runs, the peaks in AMEP are equatorward of the peaks in CAM3.

Thus an important difference between AMEP and CAM3 is the shape of
the changes in Fφ. CAM3 exhibits sharp maxima at mid-latitudes for all
runs, except the 2K-Tropics run where the sharp maxima are located at low
latitudes. The changes in AMEP are smoother, occur over larger areas and
exhibit a shape similar to the shape of Fφ itself. The sharp, localized changes
in Fφ result in the shifts of the maximal transport in CAM3. In AMEP the
transport only increase (i.e. the 2K-Lowlat, 2K and Minus 2K-Highlat runs)
or decrease (i.e. the 2K-Highlat run). The only exception is the 2K-Tropics
run for which an equatorward shift of the maximal transport is seen in AMEP.

Although AMEP shows some of the same tendencies in the changes in the
atmospheric temperature, CHF, ζ and Fφ as seen in CAM3, AMEP is not
generally able to capture the shifts in the maximal meridional heat transport.
The reasons for this will be discussed in chapter 9.
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Chapter 8

Summary

In order to arrive at a suitable model, several models have been presented.
Before discussing the results found in the present study, a summary of the
work carried out in this thesis is suitable.

Graff and LaCasce (2012) used an AGCM (CAM3.0) to study changes in
storm tracks due to altered SST. Brayshaw et al. (2008) did a similar study
using aquaplanet simulations to investigate the tropospheric response to mid-
latitude SST anomalies. The results of the studies were consistent, showing
that SST forcing induced changes in both the strength and position of the
subtropical and the eddy-driven jet. The changes in the eddy-driven jet cor-
responded with changes in the storm tracks.

The purpose of the present study was to see if an ebm, exploiting the MEP
principle, was able to capture these changes. Graff and LaCasce (2012) in-
vestigated shifts in jets, storm tracks and meridional heat fluxes. For the
meridional heat fluxes, band passed filtered fields were used, but consistent
changes were seen in the mean fields as well (see figure 2.2 in section 2.1).
Tropospheric mixing and transport in middle and high latitudes are driven
mainly by synoptic eddy activity. Thus, the shift in storm tracks seen in their
study should correspond to a shift in the maximal meridional heat transport
in the atmosphere. Bandpass-filtered fields could not be used in the model
intercomparison in this thesis, hence changes in the maximal mean transport
were investigated instead.

Paltridge (1975, 1978) proposed the first MEP model, which was a coupled
atmosphere-ocean model. Ebms constrained by MEP have later been used
to study climate sensitivity (Grassl, 1981; Pujol and Llebot, 2000b; Lorenz
et al., 2001; Paltridge et al., 2007) and have showed inconclusive results.

An examination of Paltridge’s MEP model proved it unsuitable for the present
study. The model is an air-sea model containing both atmospheric and
oceanic heat transport, while the aim of the present study was to exam-
ine changes in the atmospheric transport only. Consequently we needed to
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construct an Atmospheric MEP model (AMEP) to be able to compare our
results with results from CAM3. In order to make an AMEP model it was
necessary to build a hierarchy of box models.

First two-box models were developed and investigated. We started out with
a simple model, making it more complex, closing in on the AMEP model.
Horizontal two-boxes models were made, starting out with the simplest case,
the Blackbody Assumption. Then we made the two-box model more realistic
by adding atmospheric emissivity and by fixing the surface temperature,
i.e. Grey Atmosphere, Black Surface. In the final version of the horizontal
two-box model, only the atmospheric layer was considered, i.e. An two-box
atmospheric MEP model.

Only radiative processes were considered in the horizontal two-box mod-
els. In order to investigate fluxes of sensible and latent heat, a vertical box
model was made. The results from the vertical MEP model was used to para-
metrize the convective heat flux (CHF). The parametrization was confirmed
using CHF data from CAM3 and the proportionality constant, k, determined.

Going from 2 to 64 boxes, a multi-box horizontal atmospheric MEP model,
namely the AMEP model, was constructed. This model is an ebm using the
MEP state as a constraint. The convective heat fluxes were parametrized
using the results found in the vertical two-box model, and SST forcing was
made possible. Shifts in the maximal heat transport were then investigated.

The results from AMEP were compared with results from CAM3. There was
a good correspondence between the changes seen in the atmospheric tem-
peratures in both models. However, CAM3 exhibits broader changes in the
lowlat heating runs, indicating that more heat is gained at higher latitudes
in CAM3.

The changes in meridional heat transport differ considerably between the
two models. AMEP has changes that mirror the total transport curve, while
CAM3 has more localized changes. Thus the total AMEP transport increases
or decreases, while the maximal transport in CAM3 shifts as well. The only
exception was in the 2K-Tropics run, where an equatorward shift in the
maximal transport was seen in AMEP. Nevertheless, AMEP generally fails
to capture the shifts in the maximal heat transport seen in CAM3.

The main reason for this is the changes in CHF, which differ considerably
between the two models. The meridional heat divergence, ζ , is the sum of
CHF and the net radiative heating, RA. RA ≃ −100Wm−2 and shows little
latitudinal variance. The changes in RA, due to altered SST, are also fairly
small. Consequently;

∆ζ ≃ ∆ CHF
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This shows that the changes in the meridional heat divergence are mainly de-
termined by changes in CHF. CHF exhibits abrupt changes and large values
in the altered SST runs. The abrupt changes are often located at the same
latitudes as the SST forcing stops. The changes in CHF are responsible for
the shifts in the maximal heat transport. Since AMEP fails to capture the
CHF changes, the shifts in the transport are not captured either.
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Chapter 9

Discussion and Conclusions

Results show that CAM3 exhibits a shift in the meridional heat transport
due to altered SST, while AMEP does not. The reasons for this difference
are discussed below (section 9.1). A discussion of the application of the MEP
principle is also provided (section 9.2), before the conclusions (section 9.3)
are given.

9.1 Discussion of results

9.1.1 CHF

The parametrized CHF used in AMEP failed to capture the changes in CHF
seen in CAM3, indicating that changes in CHF depend on more than only
atmospheric and surface temperature changes.

The moisture content in the atmosphere can change in response to altered
temperatures. A warmer atmosphere can contain more moisture and a
warmer ocean (or a wet surface) can evaporate more water. The Clausius-
Clapeyron equation shows the relation between saturated vapor pressure and
temperature in the atmosphere and can be written as (Wallace and Hobbs,
2006)

des

dT
=

L

T · (α2(T ) − α1(T ))
(9.1)

where es is the saturated water vapor pressure, L is the latent heat of va-
porization and equals 2.25·106Jkg−1. α1 and α2 are the specific volumes of
liquid water and water vapor at temperature T. Equation 9.1 shows that the
saturation vapor pressure changes approximately exponentially with temper-
ature. Consequently, small changes in temperature can cause big changes in
the saturation pressure. The increased saturation pressure makes a larger
water vapor content in the atmosphere possible.

Figure 9.1 shows changes in specific humidity, q, for the perturbed SST runs
in CAM3. Also included are changes in CHF for the corresponding runs.
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Figure 9.1: The changes in the specific humidity, q, (blue, solid line) and the
convective heat flux, CHF, (green, solid line) between the perturbed SST runs and
the control run in CAM3.
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The changes in CHF are the same as seen in figure 7.6 in section 7.2.2. The
changes in specific humidity give a measurement of changes in the moisture
content in the atmosphere. The moisture content in CAM3 is indeed chan-
ging in the heated areas (cooled for the Minus 2K-Highlat run). For the
2K-Tropics runs and the ±2K-Highlat runs the changes in the specific hu-
midity correlate well with changes in CHF. The correlation is not as good in
the 2K-Lowlat and 2K runs.

As seen in equation 9.1; a warmer atmosphere can contain more moisture
before it is saturated. The increased moisture content results in increased
latent heat release, which dominates CHF. Moisture is not included in AMEP
and the results in figure 9.1 indicate that this can be one of the reasons why
AMEP fails to capture the CHF changes.
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Figure 9.2: Scatter plot of atmospheric temperature and specific humidity us-
ing reanalyse data from ECMWF (blue dots). The data used are the vertically-
averaged data from the five lowest levels of the atmosphere. All data are from the
1st of April 2008. Also included is an exponential fit of the reanalysis data (red,
solid line).

One way to include moisture in AMEP is to parametrize the specific hu-
midity in the atmosphere in terms of temperature. To find a relationship
between the temperature and specific humidity in the atmosphere, ECMWF
operational reanalysis data were obtained from the ECMWF data server.
ECMWF reanalysis data are model data assimilated with observational data
in a 4D assimilation process, in order to statistically best represent the cur-
rent state of the atmosphere. A global 1x1 degree grid was selected for model
temperatures and specific humidity values.

Figure 9.2 shows a scatter plot of the atmospheric temperature and specific
humidity. Vertically-averaged reanalysis data from the lowest levels of the
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atmosphere were used for all global points using daily averages of April 1st
2008. Using global values should ensure that all conditions are covered. To
be implemented it is, however, recommended to use more data, to see if there
are annual or zonal differences, and possibly look at data for several more
atmospheric layers.

The fitted curve is an exponential fit to the reanalysis data. The relationship
between the two observed properties is

q = h1 · eh2T (9.2)

where q is the specific humidity, T is the atmospheric temperature, h1 =
4.3 ·10−8gkg−1 and h2 = 6.6 ·10−2K−1. The moisture dependence on temper-
ature could be included in the parametrized CHF in AMEP by implementing
the findings in equation 9.2 into the proportionality constant k. Instead of
using a constant k for all latitudes, k could be a function of the atmospheric
temperature. This way, k could include the specific humidity in the atmo-
spheric layer. This could be one way of accounting for moisture effects in the
atmosphere in AMEP.

Another way of including moisture changes in AMEP is to use new para-
meters for each SST run, and in this way capture the changes in CHF. The
atmospheric reflectivity, absorptivity, emissivity and the proportionality con-
stant k differ in each SST run and could be recalculated in CAM3. These
new parameters could then be used in AMEP to reproduce the CHF changes
seen in CAM3. This defeats the intention of applying a simplified model in
the first place, as it forces AMEP to act as CAM3. If AMEP was able to
provide the same results as CAM3 using the SST changing parameters, the
AMEP results would be true tautologically.

In addition, clouds could be added to the model. The clouds are not in-
dependent variables in AMEP. The mean cloud cover fraction is included
through the parameters used, i.e. the atmospheric reflectivity, absorptiv-
ity and emissivity of radiation. Since the parameters stay constant between
boxes and in various runs, the cloud cover fraction stays fixed as well. The
cloud cover in CAM3 varies both zonally and between the various runs (see
figure 9.3). The zonal changes in the cloud cover within each run are greater
than the cloud cover changes between the runs, but neither of the changes
are captured in AMEP. This could also be important for the differences seen
in the results between the two models. However, the changes in the cloud
cover are not consistent with the forcing in the perturbed SST runs and the
magnitude of change is somewhat small, indicating that the clouds may not
be that important. The similarities between ∆ CHF and ∆ ζ suggest that
the changes in CHF are more important.
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Figure 9.3: (a) Annually- and zonally averaged cloud cover fraction in the control
run in CAM3. (b) Fractional changes in annually- and zonally-cloud cover between
the perturbed SST runs and the control run in CAM3.

9.1.2 Dynamics

Another important difference between the two models is the dynamics. AMEP
is an ebm and does not resolve any dynamics. CAM3, on the other hand,
take atmospheric dynamics into account.

It is fair to ask whether the use of a simplified ebm without any dynamics
is suited to investigate shift in storm tracks, which is a highly dynamic fea-
ture. The intention was that the MEP state constraint used could account
for some of the lacking dynamics and that AMEP would be able to cap-
ture the results of the dynamic features, as proclaimed by Dyke and Kleidon
(2010) and Dewar (2009). For further discussion of this claim, see section 9.2.

The dynamics turned out to make a difference. Consider for example the
2K-Lowlat runs, for which there is a positive SST (CAM3) / Ts (AMEP)
forcing at low and middle latitudes. The atmosphere gains extra heat from
the surface due to increased surface emission of radiation and increased CHF.
The only way AMEP can redistribute the excess heat is to move it poleward.
Because no dynamics are included in AMEP, no specific regions are preferred
for the additional heat transport.

In CAM3, the extra heat gained in the atmosphere alters the atmospheric
circulation in several ways. The heating affects the atmospheric baroclinicity,
which has ramifications for the jet and the storm tracks. Equally important
is that strong baroclinic zones are preferred regions for cyclone development;
hence the atmospheric heat transport is larger in these regions in CAM3.
This latitudinal dependence for the heat transport in CAM3 is different from
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AMEP, where no preferred region for the heat transport exists.

In the 2K-Lowlat run, large changes in both the mean and the eddy circula-
tion occur in CAM3. The jets are intensified and shifted poleward. The same
result is seen for the storm tracks. In addition, changes in the meridional
overturning circulation are seen, e.g. the expansion of the Hadley Cell (see
section 2.1 for further details). The changes seen in the CAM3 results are
partly a consequence of all the circulation changes described above. None
of these circulation changes occur in AMEP, and no shift in the transport is
seen.

The impact of dynamics is also seen in the temperature difference plot (figure
7.5 in chapter 7) for the two models. The changes in the atmospheric tem-
perature in AMEP mirror the gradients in the forced Ts. The temperature
changes seen in CAM3 are much broader, indicating more efficient atmo-
spheric mixing. The atmospheric mixing flattens the transitions from the
heated regions to the unaltered regions, which is not the case in AMEP.

It may be possible to include some dynamics in AMEP. One method could
be to parametrize ζ in terms of the meridional temperature gradient, dT/dy.
By doing this, baroclinic instability could be crudely included in AMEP.
The parametrization could guarantee that strong mixing occurs at the same
latitude as the temperature gradient. This method could account for some
of the latitudinal dependence seen in CAM3, but lacking in AMEP.

9.2 Discussion of the MEP principle

For an isolated system the entropy is maximized when the system is in ther-
modynamic equilibrium. For a system out of thermodynamic equilibrium
there is no proof that such a state exists. However, the MEP principle pro-
claims that a steady state system out of thermodynamic equilibrium will be
in a state of maximum entropy production. There is little theory backing
the MEP principle. Other quantities which may be maximized instead have
been suggested, such as the APE (Lorenz, 1960).

There are different views on why the MEP principle works and how it can
be used. Although the MEP principle itself is not the main subject in this
thesis, I think it deserves some closing remarks. The problem of interest is
the same; how to predict macroscopic behavior of non-equilibrium physical
systems (e.g. turbulent heat transport in the atmosphere), but the purpose
of the MEP principle differ.

9.2.1 The MEP principle as a physical principle

The MEP principle can be regarded as a physical principle, which contains
physical assumptions beyond the more familiar laws of physics (e.g. conser-
vation of mass, conservation of energy, etc.). From this point of view the
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MEP principle is regarded as a fundamental adjustability of non-equilibrium
systems, e.g. the Earth will adjust it self as to maximize the entropy produc-
tion. Kleidon (2004, 2009) and Lorenz et al. (2001) apply the MEP principle
in this context. A 2-box model is used to find estimates of the effective con-
ductivity of the linearized heat transport (see section 3.2.7). Kleidon (2004,
2009) studied the total heat transport in the climate system on Earth, while
Lorenz et al. (2001) studied the atmospheric heat transport on Earth and
other planets. The effective conductivity was determined to be the one cor-
responding to the MEP state for the system under consideration.

One question comes to mind regarding these studies, and also regarding
Paltridge’s MEP model, namely the lack of some essential details, like the
rotation rate of the Earth. A substantial part of the atmospheric heat trans-
port is due to synoptic eddies which would not exist in the absence of the
Coriolis force. Would the heat transport in the atmosphere stay the same
if the world spun twice as fast? These properties are buried in the effective
conductivity parameter used in the linearization of the heat flux. However,
no information about it is given in the models used to calculate it in the first
place.

Walker and Schneider (2006) investigated changes in the strength and me-
ridional extent of the Hadley circulation due to altered rotation rate of the
Earth using an idealized GCM. Their findings showed that the Hadley cir-
culation became wider and stronger as the rotation rate decreased.

Dyke and Kleidon (2010) argue that Paltridge (1975, 1978), Kleidon (2004,
2009) and Lorenz et al. (2001) still managed to find realistic predictions
using the MEP principle. This tells us that such details (s.a. the Coriolis
force) are irrelevant for the purpose of the models and demonstrate that
complex systems, like planetary atmospheres, may not be required to get
accurate predictions for some properties. For instance; if the world spun
twice as fast, the synoptic eddies would probably differ, but the efficiency
of the transport may stay the same, since the eddies also depend on the
baroclinicity of the atmosphere. E.g. more efficient eddies would decrease
the temperature gradients and in this way decrease the baroclinicity, making
the eddies less efficient. Walker and Schneider (2006) findings suggest that
Dyke and Kleidon (2010) argument may be too simple.

9.2.2 The MEP principle as a Messenger of Essential

Physics

The MEP principle can be regarded as a passive algorithm that translate
physical information into predictions without introducing any additional
physics or assumptions (Dewar, 2009). The algorithm (like MaxEnt (Jaynes,
1957a,b) used in information theory) produces the least biased estimate pos-
sible on the given information. In this context the MEP principle can only
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predict phenomena that are already predictable. The physical constraints
used are the law of physics and the predictions are found by using for in-
stance the equations of motion, from which we could predict system behavior
without any reference to the MEP principle. So why should we care?

Instead of simulating all microscopic physics in detail, only to discover that
most of the microscopic behavior is irrelevant to the macroscopic behavior,
the MEP principle seeks to identify a set of essential physical assumptions
that provide the same result. The identification of the essential physics may
only be achieved through trial and error (Dewar, 2009). The MEP state
should be chosen because it reflects the physical assumptions, not because
the system in itself is driven to the MEP state physically.

Every student in meteorology has a comprehension of the frequently used
concept of an air parcel. We use air parcels because we do not bother to cal-
culate every single molecule movement in the air. Instead, we choose an air
parcel and define the macroscopic quantities, like temperature and pressure
for that parcel, regardless of its microscopic properties. The same way of
thinking describes this view of MEP. The microscopic properties (e.g. every
single cyclone) are not important when we consider climate predictions. In-
stead we can define certain physical assumptions that give us the predictions
directly, without the use of enormous calculation schemes which are needed
in GCMs in order to calculate the same predictions.

9.3 Conclusions

The main conclusions derived from this thesis’ investigations are provided in
bullet points below.

• A vertical MEP model was used to investigate fluxes and sensible and
latent heat. The result showed a ∆T 4 dependence in CHF. The result
was compared to CHF data from CAM3, for which a similar dependence
was found. This was especially true for fluxes of latent heat. The
result indicates that the MEP assumption may be suitable for studying
vertical convection.

• The Atmospheric MEP model, AMEP, managed to capture the main
tendencies in the atmospheric temperature and the meridional heat
transport changes seen in CAM3. However, AMEP failed to capture
the shifts in the maximal heat transport due to the Ts forcing. The
only exception was in the 2K-Tropics run where an equatorward shift
of the maximal transport was seen in AMEP. In this run the shift in
the maximal heat transport was toward the region where the forcing
occurred, indicating an increased transport out of the heated region.
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The large and abrupt changes in CHF in CAM3, were not captured by
AMEP. This is the reason why AMEP failed to capture the transport
shifts in CAM3. AMEP is too simple to capture non-trivial changes
in the atmospheric circulation because it has neither a Hadley cell nor
baroclinic instability. To capture the circulation changes, the AMEP
needs dynamics and possible a moisture parametrization. Equally im-
portant is the strong latitude dependence in the heat transport in
CAM3 needs to be present in AMEP. Dynamics matter and these are
not captured in AMEP. Consequently, AMEP is not suited for studying
the shifts in the meridional heat transport.

• While the MEP principle obviously has its limitations, it does offer
computational efficiency. However, the findings in this thesis may sug-
gest that the dynamics of the eddies in the atmosphere and the strong
relation between the eddies and the meridional heat transport, may be
too important to be regarded as microscopic properties of the climate
system.

• An interesting result seen in this thesis, which is not directly related to
MEP, is the relation

∆CHF ≃ ∆ζ

seen in CAM3. CAM3 exhibits large changes in CHF as a response to
altered SSTs. It is the changes in the meridional heat divergence, ζ ,
which cause the shift in the maximal meridional heat transport. Due
to fairly small changes in the net radiative heating, the changes in ζ are
determined mainly by changes in CHF. This finding indicates that the
changes in CHF can be more important than previously presumed for
the shift in the storm tracks in CAM3. This finding provides grounds
for further research.
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