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Abstra
tA short range, limited area ensemble predi
tion system, LAMEPS, is 
urrently in oper-ational use at the Norwegian Meteorologi
al Institute. It employs 3D-Var for 6 hourlydata assimilation 
y
ling for analysis of the 
ontrol fore
ast. Initial time and lateralboundaries ensemble perturbations are 
omputed from the 20 + 1 member TEPS (tar-geted EPS at ECMWF). LAMEPS is run with the quasi-hydrostati
 model HIRLAMversion 7.1.4. on a 12 km horizontal grid mesh. In this study we have downs
aled ea
hLAMEPS member with the non-hydrostati
 UK Met O�
e Uni�ed Model (UM) version6.1 in order to study the predi
tability and the predi
tions of extreme weather related toa polar low observed in the Barents and Norwegian Seas between 3 and 4 Mar
h 2008.This event was extensively 
overed by the observation 
ampaign of the IPY-THORPEXproje
t. UM is in this study 
on�gured with 4 km horizontal grid mesh. The domainsize has been investigated by using two di�erent domains, one with 390×490 and onewith 300×300 grid points. Furthermore, the sensitivity to the physi
al parameterizationin the stable boundary layer has also been explored.Regular observation data, satellite data, and IPY-THORPEX 
ampaign data have beenused to 
ompare with the ensemble fore
asts. Probabilities of di�erent meteorologi
alparameters and o

urren
e of extreme weather events have been studied along withensemble means, ensemble spread and 
ontrol runs. In addition, two new model diag-nosti
s for 
omparing against observation data have been developed. These are 
loudtop temperatures and tra
king of the polar lows path. The ensemble fore
ast shows
lear improvements by in
reasing horizontal resolution with non-hydrostati
 dynami
s.However, the size of the integration domain a�e
ts the predi
tion substantially. Theimprovements are greatest for the large domain. The fore
asts are also sensitive tothe physi
al parameterization. The experiments with less verti
al mixing in the stableboundary layer redu
e the area of high probability for the large domain. The resultsof the tra
king algorithm, whi
h �nds the strongest mesos
ale tra
k in ea
h ensemblemember, show that the lo
ation of the strongest tra
k depends on domain size and theperturbation of the physi
s.
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Chapter 1Introdu
tionPolar lows are intense, mesos
ale vorti
es that develop during 
old air outbreaks overa warmer o
ean, usually poleward of the polar front (Rassmussen and Turner, 2003).These features often produ
e heavy pre
ipitation and strong winds, and o

ur frequentlyalong the 
oast of Norway during winter. Sin
e polar lows are 
ommonly a

ompaniedby severe weather whi
h may 
ause great risk to human life and property, it is parti
u-larly important to fore
ast these phenomena with a high degree of a

ura
y. Numeri
alWeather Predi
tion (NWP) models are important for polar low fore
asting. However,due to sparse observational data, their small s
ale stru
ture, and their rapid develop-ment, it is 
hallenging to predi
t polar lows. Further, be
ause of the 
haoti
 natureof the atmosphere, small errors in the initial 
onditions will grow with lead time andin this way gradually deteriorate the quality of a single deterministi
 fore
ast (Lorenz,1963). Model de�
ien
ies are also a sour
e of fore
ast error, whi
h redu
es the skill ofthe deterministi
 fore
ast. In addition, for limited area modeling (LAM), the lateralboundary data also introdu
e errors in the fore
asts (Gustafsson et al., 1998). As a re-sult of these sour
es of fore
ast error, deterministi
 fore
asts are generally not su�
ientwhen predi
ting polar lows and asso
iated extreme weather.An ensemble predi
tion system (EPS) should take into a

ount all these sour
es offore
ast errors, and in this way fore
ast the a
tual predi
tability of the atmosphere.An EPS 
onsist of a range of individual fore
asts, i.e. ensemble members, where ea
hmember uses slightly di�erent initial 
onditions. The error growth in a fore
ast is �ow-dependent, whi
h means that in a regime of high predi
tability, the error growth ismu
h smaller than when the weather is very unpredi
table. The spread between thedi�erent ensemble members gives an indi
ation of the a
tual predi
tability of the at-mosphere. The di�erent initial 
onditions are 
onstru
ted from the analysis whi
h hasbeen perturbed, ex
ept the 
ontrol run whi
h is unperturbed. At the European Centrefor Medium-Range Weather Fore
asts (ECMWF) the perturbations added to the initial
onditions are based upon a mathemati
al method 
alled singular ve
tor de
omposition(Buizza and Palmer, 1995; Molteni et al., 1996). The model de�
ien
ies have been in-
luded in the ensemble system by sto
hasti
ally perturbing the model physi
s (Buizzaet al., 1999). By 
onstraining the perturbation norm to a spe
i�
 area, the singularve
tors will seek the perturbations with largest norm at �nal time (e.g. 48 h). Thismethod of 
onstru
ting targeted EPS (TEPS) with target over Northern Europe for 483



4 CHAPTER 1. INTRODUCTIONh singular ve
tors has showed improvement in fore
ast skill (Frogner and Iversen, 2001).At the Norwegian Meteorologi
al Institute (met.no), the TEPS is used to 
onstru
t ini-tial and lateral perturbations to a High Resolution Limited Area Model, HIRLAM, andin this manner a high resolution Limited Area Modeling Ensemble Predi
tion System(LAMEPS) is obtained. HIRLAM is a quasi-hydrostati
 model and its LAMEPS 
on-�guration is a 12 km horizontal grid mesh. LAMEPS has, to a large extent, improvedthe fore
asting of high impa
t weather, but the resolution is still too 
oarse to resolvemany important mesos
ale features (Jensen et al., 2006).It is thought that with in
reased horizontal resolution, the predi
tability of the mesos
aleswill be enhan
ed (e.g. Mass et al., 2002). Hen
e to better investigate the smaller s
alesover an area of interest, dynami
al downs
aling is performed. In dynami
al downs
al-ing a global or regional 
oarse resolution model provides initial and lateral boundary
onditions (LBCs) to a model with higher resolution. The higher resolution model doesnot produ
e its own analysis. It is intended that the high resolution model should pro-du
e realisti
, �ne-s
ale details over a region, and in parti
ular where surfa
e stru
tureshave �ne details. However, dynami
al downs
aling is not straight forward, and severalstudies indi
ate that domain size, lo
ation, horizontal resolution, and lateral boundary
onditions, in addition to the models' representation of topography, vegetation, andphysi
al des
riptions, all a�e
t the model results (e.g. Laprise et al., 2000; Xue et al.,2007; Brankovi¢ et al., 2008). For instan
e, Xue et al. (2007) found that fore
ast resultswere 
ru
ially dependent on the domain size, LBCs, and grid spa
ing, and emphasizedthe point that a small domain may hamper the improvements in the fore
ast. If thedomain is small enough it will be too 
ontrolled by the lateral boundaries. The domainshould be large enough to be able to spin-up small s
ale features not present in theinitial or lateral 
onditions. Xue et al. (2007) also investigated the e�e
t of the lo
ationof the domains, and it was observed that information lost at the lateral boundaries washard to reprodu
e in the simulations within the new domain.In this study, the 21 members of 12 km resolution LAMEPS are downs
aled by theUK Met O�
e Uni�ed Model (UM) with 4 km resolution. In this way a very high-resolution ensemble predi
tion system, UM-EPS, is obtained. The sensitivity of the sizeof the domain has been investigated by employing two di�erent domains with 300× 300and 390×490 grid points, but both 
on�gurations have a horizontal grid spa
ing of 4 km.The main goal of this study is to see how mu
h new information is added with a veryhigh resolution ensemble predi
tion system, as well as how the skill in predi
ting highimpa
t weather is in�uen
ed. UM-EPS has therefore been tested on a polar low eventthat was extensively observed during the IPY-THORPEX 
ampaign (IPY-THORPEX,2009), one of the proje
ts during the International Polar Year (IPY, 2009). Also, a morerealisti
 dynami
al 
ore will be investigated, sin
e HIRLAM is a quasi-hydrostati
 modelwhere the 
onve
tion is parameterized while UM is a non-hydrostati
 model, whi
h al-lows for high verti
al velo
ities and a

elerations, and the 
onve
tion is partly resolvedexpli
itly and partly parameterized (Lean et al., 2008). Ensemble mean and the spreadbetween the members, together with fore
ast probabilities, have been 
ompared withregular observation data as well as observation data from the 
ampaign. In addition to



5these more 
onventional veri�
ation methods, two new methods to evaluate the fore
astshave been in
luded: (1) Pseudo satellite images 
al
ulated from model prognosti
 �eldsand, (2) a tra
king methodology to tra
k polar lows. The pseudo-satellite images areadopted from a method originally developed for HIRLAM (Tijm, 2004). The tra
kings
heme of Hodges (1994, 1995, 1999) has been used with the aim to tra
k the mesos
ale
y
lones in UM-EPS.This thesis is divided as follows: The ba
kground for this study is given in Chapter2, where �rst a review of the predi
tability of weather will be given. Then the dy-nami
al downs
aling performed in this study will be des
ribed. Chapter 2 ends withan introdu
tion to polar lows where there will be a 
loser des
ription of the polar lowobserved during the IPY-THORPEX 
ampaign. The veri�
ation methodology will bepresented in Chapter 3, followed by the results in Chapter 4 and a dis
ussion in Chapter5. We end with some 
on
luding remarks and ideas for future work.
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Chapter 2Ba
kground
2.1 Predi
tability of weatherNumeri
al weather predi
tion (NWP) is an initial value problem, where the ability tomake skillful fore
asts depends on the realism of the atmosphere and the boundary 
on-ditions in NWP models, and to know the initial 
onditions a

urately (Kalnay, 2003).These two sour
es of ina

ura
ies may 
ontribute to amplifying the fore
ast errors anddeteriorate the quality of a single deterministi
 fore
ast with lead time. When the er-rors are saturated the errors grow no further and the predi
tability limit is rea
hed. Atthat stage the fore
ast will not add any new information 
ompared to 
limate statis-ti
s. The predi
tability of the atmosphere varies from day to day, be
ause the errorgrowth depends on the a
tual weather 
onditions. A 
omplete fore
ast thus also fore-
ast the predi
tability of the atmosphere. Ensemble predi
tion is a method to integrateensembles of deterministi
 fore
asts in order to estimate the probability density fun
tion(PDFs) of fore
asted states (Buizza, 2002). In this way an ensemble predi
tion system(EPS) will fore
ast for how long time the weather 
an be predi
ted. This se
tion givesan introdu
tion to predi
tability of weather and EPSs, with emphasis on the EPS ap-plied at European Centre for Medium Range Weather Fore
asts (ECMWF).Criti
al dependen
e on the initial 
onditionsIn 1904 the Norwegian meteorologist Vilhelm Bjerknes proposed that the atmosphere isa deterministi
 system, where all states at a given time 
an be solved with the physi
allaws if only the initial state is known. But unfortunately the initial state 
annot beof in�nite a

ura
y, and will always 
ontain a tiny error. Lorenz (1963) dis
overed the
riti
al dependen
e on the initial 
onditions with his famous 
o�ee break, where hedid the same fore
ast twi
e just with a small initial round o� error in di�eren
e, andsurprisingly the results gradually developed very di�erently. If the �ow was periodi
, thesmall error from the round o� should have returned to the initial state. Due to this non-periodi
ity and sin
e there was a 
riti
al dependen
e on the initial 
onditions, Lorenzrealized that 
haos is prevalent for atmospheri
 �ows (Lorenz, 1963). In his experimentsLorenz used a highly trun
ated set of 
onve
tion equations whi
h was represented in a3D phase spa
e (Lorenz equations): 7



8 CHAPTER 2. BACKGROUND
Figure 2.1: The Lorenz attra
tor. See text for explanations. Figure adapted from Palmeret al. (2006).

dx

dt
= σ(y − x) (2.1)

dy

dt
= rx − y − xz (2.2)

dz

dt
= xy − bz (2.3)The parameters σ, r and b are kept 
onstant with the integration, and Lorenz set theseparameters to σ=10, r=28 and b=8/3. This resulted in fully non-periodi
 solutions and
haoti
 behavior and the set of all possible solutions are 
alled the Lorenz attra
tor.The two wings of the attra
tor 
an be 
onsidered as two di�erent �ow regimes. Figure2.1 shows the �ow obtained by integrating the equations several times with slightly dif-ferent initial 
onditions, and Figure 2.1a, b and 
 show three di�erent sets of the initial
onditions and the evolution with time. In 2.1a the system is in a highly predi
tableinitial state, as all points stay 
lose together with time. A less predi
table state is shownin 2.1b, where the points stay 
lose in the beginning, but after a while begin to diverge.In 2.1
 there is very short predi
tability, sin
e all the points diverge early in the fore
astand end up far from ea
h other. Figure 2.1 illustrates the basis for ensemble predi
tion,where the predi
tability of the atmosphere is dependent on the initial state (Palmeret al., 2006).Ensemble predi
tion systemsLorenz (1963) dis
overed that the fore
ast skill is 
riti
ally dependent on the initial
onditions as a 
onsequen
e of instabilities in the atmosphere. The unstable pro
essesin the atmosphere determine how fast the small initial errors will grow and how farinto the future before the predi
tability limit is rea
hed. Lorenz (1969) estimated theweather predi
tability limit to about two weeks. However, the error growth is faster atthe smaller s
ales than the larger s
ales and rea
h the predi
tability limit �rst (Lorenz,1969). Furthermore, sin
e the predi
tability is �ow dependent, the value of a fore
astwould be highly enhan
ed if in addition the predi
tability is fore
asted. This 
an be done



2.2. DYNAMICAL DOWNSCALING 9by adding small perturbations to the analysis. By integrating the di�erent initial states,a range of di�erent fore
asts are obtained, and the spread among the fore
asts gives anindi
ation of the predi
tability of the day. ECMWF has routinely employed an ensemblepredi
tion system sin
e 1992, and is using singular ve
tors for generating the ensemblemembers (see Buizza and Palmer, 1995; Molteni et al., 1996). The singular ve
tors are
omputed with the tangent linear model (TLM) and its adjoint with total energy innerprodu
t, thus the perturbation with fastest linear growth over an optimization time of48 hours are 
hosen. The singular ve
tors are targeted to seek the maximum perturba-tions poleward of 30o latitude. The small s
ale initial perturbations whi
h tend to bethe most rapidly growing are taken from the leading singular ve
tors of the �rst 48 hoursin the fore
ast. And to get more slowly growing large s
ale perturbations the evolvedsingular ve
tors from the previous 48 hours are also 
al
ulated. By Gaussian sampling25 perturbations whi
h are then added and subtra
ted to the analysis, 50 perturbed ini-tial 
onditions are obtained. The system now 
onsist of 50 perturbed fore
ast and oneunperturbed fore
ast (the 
ontrol run), and it is denoted 50+1 members. Sin
e the 
al-
ulation of the singular ve
tors is quite 
ostly, they are run with a horizontal resolutionof T42 and 31 verti
al levels and with simpli�ed physi
s, and they are 
omputed sep-arately over the northern and southern hemispheres, as well as over parts of the Tropi
s.The appli
ation of singular ve
tors only a

ount for un
ertainty in the initial 
ondi-tions. But to simulate model errors due to parameterized physi
al pro
esses, the EPSat ECMWF also employs sto
hasti
 physi
s. This is done by adding an extra sto
hasti
for
ing term to the parameterized physi
al pro
esses on all the members, ex
ept the
ontrol run (Buizza et al., 1999).The EPS at ECMWF has sin
e 2006 been run with T399 (50km) and 62 levels, andprovides a fore
ast for up to 10 days. The main purpose with the EPS is to bring ad-ditional value to the deterministi
 fore
ast, fore
ast the predi
tability of the day and inaddition fore
ast the probability of di�erent weather events. The latter is important forextreme weather events, whi
h may 
ause damages and risks to human life and property.Sin
e extreme weather is rare by nature, a probabilisti
 approa
h is more appropriate.2.2 Dynami
al Downs
alingGlobal models have too 
oarse resolution for resolving mesos
ale and �ner features. Tobe able to study sub-synopti
 s
ales over an area of interests, a small domain with highresolution is nested inside a 
oarser global/regional model (e.g. Laprise et al., 2000; Xueet al., 2007; Brankovi¢ et al., 2008). The �ne model is imposed by lateral boundary 
on-ditions and initial 
onditions from the 
oarser model. This nesting approa
h is referredto as dynami
al downs
aling.In this study the dynami
al downs
aling of LAMEPS has been done with the UK MetO�
e Uni�ed Model (UKMO UM) and will be presented in the end of this se
tion. FirstLAMEPS will be des
ribed followed by a 
loser des
ription of UM. The di�erent model
on�gurations des
ribed are taken from the time of the IPY-THORPEX 
ampaign.



10 CHAPTER 2. BACKGROUND2.2.1 LAMEPSSin
e the introdu
tion of the EPS at ECMWF it has shown in
reasingly skill in proba-bilisti
 fore
asting on the synopti
 s
ale1. Nevertheless, the global ensemble predi
tionsystem still employs a too 
oarse grid mesh to represent meso and smaller s
ale features.It is suggested that a �ner model resolution will improve this (e.g. Mass et al., 2002).However, with in
reasing model resolution, there will be a de
rease in error-doublingtime (Lorenz, 1969; Hohenegger and S
här, 2007), and the predi
tability limit will berea
hed earlier in the fore
ast than for the synopti
 s
ale integrations.A short range High Resolution Limited Area Model Ensemble Predi
tion System(LAMEPS) is thought to enhan
e the predi
tion quality on the mesos
ale. At met.noLAMEPS has been run in operationally weather fore
asting sin
e 2005, and shows greatskill in 
apturing di�erent weather situations (Frogner and Iversen, 2002; Frogner et al.,2006; Jensen et al., 2006). It is run with the Norwegian 
on�guration of the quasi -hydrostati
 limited area model HIRLAM version 7.1.42 with a horizontal grid mesh of
0.108o × 0.108o (12 km) and 60 verti
al levels. The 
ontrol run analysis employs the3D-Var 6-hourly data assimilation 
y
ling. The perturbations to 
onstru
t the ensem-ble members are taken from targeted EPS at ECMWF (TEPS) (Frogner and Iversen,2001). TEPS uses the same model version and set up as EPS des
ribed in se
tion 2.1.However, instead of using 25 singular ve
tors (SVs) targeted to the northern hemispherenorth of 30o, only 10 SVs are used, and they are targeted to maximize the total energywithin northern Europe and adja
ent areas at the �nal optimization time of 48 hours(Frogner and Iversen, 2001). Then the perturbation of ea
h TEPS member relative tothe TEPS 
ontrol, are added and subtra
ted to the HIRLAM analysis, and in this way20 perturbed ensemble members are obtained together with the unperturbed HIRLAManalysis. To take into a

ount errors whi
h may propagate and develop from ina

uratelateral boundary 
onditions, both the initial state and the lateral boundary 
onditionsare perturbed (Frogner et al., 2006). To in
lude model un
ertainties, the members inLAMEPS are run with altering 
loud physi
 s
hemes.The systems TEPS and LAMEPS are also 
ombined to form a multimodel EPS, NOR-LAMEPS, whi
h 
onsists of a system with 40+2 members (40 perturbed runs and 2
ontrol runs). This is a feasible method to obtain a new EPS without performing anynew runs, and it is another way of in
luding model un
ertainties. Even though the twosystems are not 
ompletely independent from ea
h other, the ensemble spread is largerthan for both systems alone (Frogner et al., 2006).2.2.2 UMThe Uni�ed Model (UM) was introdu
ed into operational weather fore
asting at UKMet O�
e (UKMO) in 1991 and has sin
e been under 
ontinuously development. In2004 met.no started to routinely employ UM. In this study, version 6.1 of UM has been1See ECMWF veri�
ation s
ores:
http : //www.ecmwf.int/publications/library/ecpublications/_pdf/tm/501 − 600/tm578.pdf2See https : //hirlam.org/trac/wiki/ReleaseNotes7.1.4#ReleasenotesofHIRLAM7.1.4



2.2. DYNAMICAL DOWNSCALING 11used and was 
on�gured with a 4 km horizontal grid spa
ing, 38 levels and an integrationtime step of 100s. These 
on�gurations are the same as used for operational weatherfore
asting at met.no.When utilizing UM for limited area modeling (LAM), the model runs on a rotatedlatitude longitude horizontal grid, where the 
omputational North Pole is moved awayfrom the geographi
al North Pole. This allows the domain to take the advantage ofthe even grid spa
ing over equatorial regions. Here the domains are run with the samerotation used in HIRLAM, where the rotated spheri
al pole is lo
ated over Greenlandwith the 
oordinates 68oN and 320oE.In UM the non-hydrostati
 equations are solved for the motion on a rotated almostspheri
al planet, whi
h takes into a

ount the 
urvature of the earth, and des
ribe thetime evolution of the atmosphere. Sin
e the governing equations are non-hydrostati
,where verti
al a

eleration is allowed, UM is dynami
ally well suited for very high hori-zontal resolution modeling (UK Met O�
e, 2004). In addition, the equations depend onthe deep-atmosphere dynami
s, whi
h requires that deep-
onve
tion is expli
itly resolvedand shallow 
onve
tion parameterized. The de�nition of deep and shallow 
onve
tiondepend on the amount of the 
onve
tive available potential energy (CAPE: an expres-sion for the energy available to form deep 
onve
tion), in ea
h grid box.The variables used in UM are 
omputed every time-step and in ea
h grid point, andthe primary prognosti
 variables in
lude the horizontal wind (u and v), verti
al wind
omponent (w), potential temperature (θ), Exner pressure (Π), density (ρ) and 
ompo-nents of moisture (vapor, 
loud water and 
loud i
e) (UK Met O�
e, 2004). To solvethese equations, a semi-impli
it, semi-Lagrangian, predi
tor-
orre
tor3 s
heme is used.In the horizontal the equations are solved with Arakawa-C grid point s
heme, and in theverti
al the Charney-Philps grid s
heme is used (Staniforth et al., 2002). The Charney-Philps grid s
heme follows the terrain near the surfa
e and turns 
onstant higher up.The 13 �rst levels are below 3 km, where level 1 is approximately at 20 m and level 38is 65 km up in the atmosphere. The grids have a staggered stru
ture in all dire
tions,and the parti
ular grid type has either integral or half integral values, i.e. P or P±1/2,where P is either i, j, k in the models physi
al spa
e. Figure 2.2a shows the horizontalarrangement of the primary variables u, v, and Π on the verti
al level k = K ± 1/2,where u and v are on the same verti
al level as Π, but on di�erent horizontal grid points.Figure 2.2b shows the arrangement of the verti
al grid stru
ture relative to the top andbottom boundaries. The horizontal velo
ity is on the same level as Π, and θ and mois-ture variables are on the same level as verti
al velo
ity.Atmospheri
 pro
esses that operate on a smaller s
ale than the horizontal grid mesh
annot be resolved and are therefore parameterized. These physi
al pro
esses may in-
lude boundary layer turbulen
e, 
onve
tion, large s
ale 
loud s
heme, radiation andsubsurfa
e, surfa
e and layer pro
esses. In UM all of these pro
esses in
lude a 
om-3The predi
tor step approximate the non-linear terms in all pro
esses, and in the end the 
orre
tionstep update the approximated terms to a
hieve most a

urate solutions.
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(a) (b)Figure 2.2: (a) shows the horizontal grid stru
ture, and (b) shows the verti
al gridstru
ture in UM. Figure adapted from Staniforth et al. (2002)prehensive set of parametrization, and they are listed in Appendix A. The standard
on�guration at met.no in
ludes an enhan
ed verti
al mixing in the stable boundarylayer (SBL), as a result of the unresolved heterogeneity (i.e. orography, land use) atthe surfa
e. In this study we wanted to further investigate the sensitivity to the physi
srepresenting the SBL. Therefore additional experiments was performed with less verti
almixing in the stable boundary layer. A 
loser des
ription of the parameterization of theSBL is also found in Appendix A.2.2.3 Downs
aling LAMEPS with UMIn this experiment we have downs
aled LAMEPS with UM. The reason for downs
alingLAMEPS instead of NORLAMEPS is based on the fa
t that it was a too big jump to gofrom T399 (50 km) to 4 km instead of 12 km to 4 km. Ea
h LAMEPS member providedinitial 
onditions and lateral boundary 
onditions to UM, and this gave an ensemble ofUM runs. The LBCs were imposed ea
h hour during the fore
ast. The rim width4 wasset to 8 grid points. This was used as re
ommended from UKMO, and in this study wehave not investigated the sensitivity to the rim width.The downs
aled ensemble system 
onsists of 20 + 1 member (one being the 
ontrolrun), 
alled UM-EPS. For this purpose we have set up two new domains, one with 3004Rim width is the with of the region around the edge of the domain that will undergo a weightedrelaxation ba
k to the values in the LBC �elds. If there is a large rim width, there will be a smoothrelaxation, however, the area of the domain to run free is redu
ed.
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Figure 2.3: The di�erent domains used in the experiments. The outer domain is theHIRLAM domain used in LAMEPS. The two domains inside are the new domains setup for the UM-EPS, one with 390 × 490 grid points, and the other one with 300 ×300 grid points. They are 
alled UM-EPS-big and UM-EPS-small, respe
tively. TheHIRLAM domain has a horizontal grid mesh of 12 km, and the two UM domains bothhave a 4 km horizontal resolution.
× 300 grid points and the other one with 390 × 490 grid points, and the domains areshowed in Figure 2.3. The largest domain is 
alled UM-EPS-big and the smaller oneUM-EPS-small. The lo
ation of the domains was determined by the development of thepolar low from the IPY-THORPEX 
ampaign. The main purpose of performing the fore-
ast on two integration domains was to see how the integration size a�e
t the predi
tion.The fore
asts LAMEPS, UM-EPS-small and big are all initialized 18 UTC 02.03.08and are run for 60 hours. Also, sin
e there was an enhan
ed observation network duringthe IPY-THORPEX 
ampaign, these observations are assimilated into the LAMEPSfore
ast. The extra 
ampaign data 
onsists of the drop sondes from the air
raft, ra-diosondes from the di�erent 
oastguard ships, Bear Island, Novaja Semlja, Murmanskand Franz Josefs.
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hange of the wind dire
tion, an in
rease of the wind strength, and heavy pre
ip-itation 
an be a warning of the approa
h of a polar low. Throughout history many �shingboats have shipwre
ked due to the sudden approa
h of the strong wind, whi
h fore
astshave failed to predi
t. The rapid development over o
eans where the observations aresparse, and their small s
ale render polar lows di�
ult to fore
ast, and therefore life andproperty have been lost. Even though people were aware of these small storms, theywere not known to be a 
ommon phenomenon until the introdu
tion of satellite imagesin the 1960s, where the signi�
ant 
loud stru
ture was dete
ted in the images (Rass-mussen and Turner, 2003). It was realized that these phenomena mainly develop duringthe winter months and over high latitudes. With growing awareness of these weatherphenomena, there has been a great interest in them. This has resulted in various studies.To assess polar lows' temporal and spatial distribution there have been di�erent 
lima-tologi
al studies (e.g. Harold et al., 1999; Noer and Ovhed, 2003; Kolstad, 2006; Zahnand Stor
h, 2008; Ble
hs
hmidt, 2008). To a
hieve better understanding of the di�erentphysi
al stru
tures and for
ing me
hanisms, several 
ase-studies and more theoreti
alstudies have also been performed (e.g. Rasmussen, 1979; Emanuel and Rotunno, 1989;Montgomery and Farrell, 1992; Nordeng and Rasmussen, 1992; Yanase and Niino, 2006).Polar lows tend to develop during 
old air outbreaks. This is when 
old ar
ti
 air�ows from the i
e sheet over the o
ean. Under these 
onditions there are large tem-perature di�eren
es between the warmer o
ean and the 
old over-sweeping air, and thelowest atmospheri
 layer will be destabilized and yield enhan
ed 
onve
tion. The rea-son for the relatively warm o
ean is a Western Boundary Current whi
h brings warm,tropi
al, saline water up to higher latitudes (Hartmann, 1994). In the Northern Hemi-sphere (NH) there are two main 
urrents like these, the North Atlanti
 
urrent (more
ommonly known as the Gulf Stream), and the Kuroshio 
urrent. As a result of these
urrents the sea surfa
e temperatures (SST) in these areas have a higher temperaturewhen 
ompared to other regions at the same latitude throughout the year. Polar lowsare most 
ommonly found in the areas around Svalbard, the Norwegian Sea and in theBarents Sea, but there are frequently observed developments around Greenland andeast of Canada, the Beaufort Sea, the Bering Sea, the Northwest Pa
i�
 and the Sea ofJapan. Polar lows 
an be found in high latitudes of the Southern Hemisphere (SH) aswell, but (possibly due to the 
older o
ean) they are not as intense as the ones found inNH.The study of polar lows is still relatively new and therefore the theoreti
al understand-ing is not 
omplete. But it is realized that there are many di�erent for
ing me
hanismswhi
h trigger polar low developments, giving a �polar low spe
trum�. They may ap-pear as almost purely baro
lini
 or almost purely 
onve
tive systems (Rassmussen andTurner, 2003). However, a 
ombination of these two instabilities is most 
ommonlyseen. A polar low is thought to develop in a baro
lini
 atmosphere through an inter-a
tion between an upper-level positive potential vorti
ity (PV) anomaly whi
h movesover a region of strong temperature gradients. The 
y
lone is growing by 
onvertingpotential energy from the temperature gradients to kineti
 energy through as
ending
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ending 
old air (Rassmussen and Turner, 2003). The 
y
lone may
ontinue developing as a baro
lini
 disturban
e, or it may be intensi�ed through ther-mal instabilities su
h as the Conditional Instability of Se
ond Kind (CISK) me
hanism,or the wind indu
ed surfa
e heat ex
hange (WISHE) theory. The CISK theory is basedon a reservoir of CAPE, and through a 
ooperative feedba
k between deep 
onve
tionand the large s
ale �ow, there may be a slow intensi�
ation of the 
y
lone (Rasmussen,1979; Bratseth, 1985). The WISHE theory (formerly referred to as air sea intera
tion in-stability; ASII) do not require the ambient CAPE to intensify the 
y
lone, but the highwind speeds indu
e sensible and latent heat �uxes from the sea surfa
e whi
h is thentransported upward by turbulent motions and 
onve
tion (Emanuel and Rotunno, 1989).There are di�erent 
loud signatures asso
iated with the di�erent for
ing me
hanisms,where the baro
lini
 systems are 
hara
terized with a 
omma 
loud and the 
onve
tivesystems have a more spiral form shape, often with a 
loud free eye. A baro
lini
 polarlow may develop as reverse shear systems where the horizontal wind speed de
reasedwith height, and the thermal wind is opposite in dire
tion to the mean �ow. Reverseshear 
onditions are thought to be important for many polar low developments (Kolstad,2006). Further, polar lows dissipate very qui
kly after making landfall, as a result ofloosing their energy sour
e. Polar lows are 
hara
terized with their relative small s
ale,and in the Nordi
 Sea areas the horizontal extent is most 
ommonly from 200 - 500 km(Noer and Ovhed, 2003). Polar lows may bring high impa
t weather, where there isheavy pre
ipitation and the winds often ex
eed gale for
e (14 - 17 m/s). Polar lows area wintertime phenomenon, with the high frequen
y season from O
tober to Mar
h.The observed polar low during the IPY-THORPEX 
ampaignThe International Polar Year (IPY, 2009) lasted from Mar
h 2007 to Mar
h 2009 andwas a 
ollaborative s
ienti�
 e�ort among several 
ountries where the fo
us was on theAr
ti
 and the Antar
ti
. It was organized through the International Coun
il for S
i-en
e (ICSU) and the World Meteorologi
al Organization (WMO), and the aim was toimprove the understanding in polar regions through enhan
ed resear
h a
tivity. TheIPY-THORPEX 
ampaign (IPY-THORPEX, 2009) was one of the proje
ts during theIPY, and it lasted 3 weeks in February-Mar
h 2008. It was founded by the NorwegianResear
h Coun
il and the main interest was to improve weather fore
asting of hazardousweather in the ar
ti
 region. During the 
ampaign there were several resear
hers sta-tioned on Andøya, an island in Northern Norway, and together they analyzed weather
harts and satellite images to �nd where polar lows might develop. A spe
ial air
raftequipped with in-situ sensors for basi
 meteorology and turbulen
e measurements, andone water vapor and one wind Lidar system in addition to a drop sonde system, �ew theroutes that the s
ientists planned the day before, and in this way the observation datawere obtained. Along with the measurements from the �ights, there was an enhan
edobservation network during the 
ampaign; where several radiosondes were deployed fromdi�erent 
oastguard ships, the Bear Island and also from Novaja Semlja, Murmansksand Franz Josefs where some Russian s
ientists were also parti
ipating. All of theseextra data were assimilated into the fore
asts aiming to improve them. As a result of
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(a)

(b)

(
)Figure 2.4: Satellite images from 11.37 UTC 03.03.08 (a) 17.21 UTC 03.03.08 (b) and11.28 UTC 04.03.08 (
). The blue squares indi
ates the domains set up for this study.
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(a)

(b)

(
)Figure 2.5: MSLP and Z500 from HIRLAM20 analysis at 12 UTC 03.03.08 (a), 18UTC 03.03.08 and 12 UTC 04.03.08 (
). The blue squares indi
ates the domain setup for this study. The isobar interval is 2hPa and 40m for Z500. The line N-S is thelo
ation of 
ross se
tion used in Chapter 4.
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ampaign, the resear
hers managed to observe and measure a polar low in a waywhi
h has never been done before.From 3 through 4 Mar
h 2008 a polar low developed in the Barents and NorwegianSeas, and there were 3 �ights in 2 days whi
h measured the entire life
y
le, two �ights03.03 and one �ight 04.03. The satellite images from approximately the same time asthe �ights 
an be seen in Figure 2.4, where 2.4a shows the �rst stage of the polar lowasso
iated with the 
old air outbreak (11.37 UTC 03.03.08), 2.4b the early phase ofthe 
y
lone (17.21 UTC 03.03.08), and the se
luded 
y
lone just before it made landfall 
an be seen in 2.4
 (from 11.28 UTC 04.03.08). Figure 2.4 should be seen togetherwith Figure 2.5 whi
h shows the HIRLAM20 (20 km resolution) analysis of MSLP andthe geopotential height at 500 hPa, Z500, from 12 UTC 03.03.08, 18 UTC 03.03.08and 12 UTC 04.03.08, respe
tively. This polar low was asso
iated with a synopti
 low,whi
h was lo
ated o� the west 
oast of Norway a 
ouple of days before the polar lowdevelopment. The synopti
 low triggered the 
old air outbreak, whi
h is evident in Fig2.4a, where the 
old ar
ti
 air �ows over the relative warmer o
ean forming long rows ofstrato
umulus (
loud streets). The frontal zone, whi
h separated the shallow, low-levelAr
ti
 air masses from the warmer, maritime air over the sea, is also seen in the �gure,where it has a north south orientation on the west side of Svalbard. Flight 1 �ew overthe frontal zone and released several drop sondes. From the observation data (not shownhere) a strong low-level, horizontal wind shear a
ross the frontal zone is seen. The windat 925 hPa was observed to be up to 26.2 m/s. The observation data also show verystrong temperature gradients a
ross the frontal zone.The next stage in the development seen in Figures 2.4b and 2.5b shows the early phaseof the polar low. There is still 
old adve
tion in the �ow from the north and now itis starting to bring the 
old air south of the synopti
 low and in its initial phase ofwrapping in the warm air. There are still strong surfa
e winds on the western �ank ofthe synopti
 low, at the same pla
e where the temperature gradients are largest.Around 00 UTC 04.03 (not shown) a mesos
ale vortex 
uts o� the synopti
 low onits west �ank, and 
ontinues to propagate towards the 
oast of Norway. Figure 2.4
 and2.5
 shows the se
luded 
y
lone just before it made land fall. At this time the polar lowhad a diameter of approximately 500 km and the HIRLAM20 analysis shows a 
entralpressure of 996 hPa. The 
loud bands are spiraling around the low 
enter. For this timethe 
ampaign air
raft �ew immediately above the 
ore, and from the observation datait is seen that the low level jet has a wind speed up to 28m/s, and it is evident howthe 
old air has been adve
ted to the north side of the warm 
ore. The polar low madelandfall around 18 UTC and died out as a result of the la
k of energy from the warmo
ean.One of the great paradoxes during this 
ampaign was the use of fore
asts whi
h thes
ientists believed to have bad skill in predi
ting polar low events. They still had touse them to analyze when and where a polar low might develop. Sunday 02.03 theresear
hers realized they missed a polar low whi
h hit the middle of the Norwegian
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oast the same day. Fortunately the same day they predi
ted a polar low to developduring the next day and to hit the middle of Norway on Tuesday morning. The de-terministi
 HIRLAM20 fore
ast initialized 18 UTC 02.03.08 predi
ted the large s
ale�ow with good a

ura
y during the whole fore
ast, but the smaller s
ale, and espe
iallythe observed polar, low was not 
aptured. The �rst fore
ast whi
h had the polar lowwas the HIRLAM20 fore
ast initialized 00 UTC 03.03.08 (Monday), but it predi
tedthe polar low to make landfall a few hours earlier than a
tually o

urred. The skill inpredi
ting the polar low in
reased with initializing time 
loser to the polar low event,and the fore
asts initialized on 12 UTC 03.03.08 and beyond have the right strengthand lo
ation of the observed polar low.
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Chapter 3Veri�
ation Methodology
3.1 Standard MethodologyThe observation data from the 
ampaign used in this study 
onsists of wind speed at925 hPa, in addition to verti
al 
ross se
tions of wind speed and potential temperature.The verti
al 
ross se
tions are interpolated from the observations from the drop sondes.During the three �ights there were several drop sondes released, but for this purpose wehave only 
hosen one 
ross se
tion from �ight 3 to 
ompare with and the geographi
alposition 
an be seen in Figure 2.5
. Regular satellite images (Fig. 2.4) and radarre�e
tivity (Fig. 4.9a and b) will also be used to 
ompare with the fore
asts in additionto the HIRLAM20 analysis shown in Figure 2.5 and QuikSCAT1 (not shown). Thestandard analysis tools at met.no have been used to 
al
ulate the mean sea level pressure(MSLP) ensemble mean and the spread (σ) of the systems, in addition to the di�erentfore
ast probabilities of wind, pre
ipitation and potential temperature. The ensemblemean is given by:

x =
1

n

n
∑

i=1

xi,where n is number of ensemble members (in
luding the 
ontrol) and xi is the grid pointvalue of x for ensemble member i. A measure of the spread between the members isgiven as the root mean square (RMS) deviation from x:
σ =

√

√

√

√

1

n

n
∑

i=1

(xi − x)2.By taking the mean we are �ltering out the unpredi
table parts in the �ow. The smalls
ale is the most unpredi
table part in the �ow where the errors are �rst saturated,therefore with the ensemble mean the small s
ales are �rst �ltered out. As a result ofin
reasing lead time the ensemble mean will gradually be
ome smoother and only retainthe large s
ale whi
h is more predi
table. The ensemble mean is expe
ted to be as goodas the 
ontrol run in the early range of the fore
ast, but be
ome more skillful thereafter.
σ is an indi
ation of the skill of the ensemble mean. When σ is small, it is small spread1QuikSCAT de�nition: High-resolution satellite-derived o
ean surfa
e wind.21



22 CHAPTER 3. VERIFICATION METHODOLOGYbetween the members, and the ensemble mean is expe
ted to be skillful. Large spreadbetween the members is an indi
ation of a less predi
table regime, and the ensemblemean (or the 
ontrol run) is not expe
ted to be skillful (but 
an be lu
ky).The probability thresholds have been 
hosen with respe
t to the observations, and theprobability is given in per
entage, where 100% (0%) means that all the members (none)ex
eeds the threshold. As dis
ussed in se
tion 2.1, the fore
ast probability of di�erentweather events is highly important espe
ially when it 
omes to high impa
t weather.Probabilisti
 fore
asting 
an in
rease the warning ahead of an in
ident to a larger extentthan what a deterministi
 fore
ast is 
apable of. In addition, probabilisti
 fore
astingis a more 
onsistent way of fore
asting than a deterministi
 fore
ast.In this study we have 
hosen 3 veri�
ation times where the model results are 
om-pared against the observations. Sin
e the �ights lasted over several hours, the lead timehas been 
hosen with the goal to be as 
lose as possible to the �ight time. The veri�
a-tion times are listed in Table 3.1.Table 3.1: The veri�
ation times of the model results against the observation data.Flight time Veri�
ation time Lead timeFlight 1: 10.09 - 13.58 UTC → 12 UTC 03.03.08 T+18hFlight 2: 14.56 - 18.26 UTC → 18 UTC 03.03.08 T+24hFlight 3: 10.14 - 13.28 UTC → 12 UTC 04.03.08 T+42hFurthermore, in this experiment two new methods to analyze the fore
asts have beentaken into use; pseudo satellite images and tra
king of polar lows. These two methodswill be des
ribed in the following.3.2 New Methods3.2.1 Pseudo satellite imagesSatellite images of 
loud top temperatures are of great importan
e for visual inspe
tionand understanding of the evolution of weather systems. It is an important analysis tool,espe
ially in data-sparse areas, for short range weather fore
asting, helping to de�ne theinitial 
onditions to initialize numeri
al weather predi
tions models (NWP), and alsomonitoring NWP model performan
e in the early stage of the fore
asts (Bader et al.,1995). Moreover, satellite images are also important for polar low fore
asting, sin
ethese features are easily dete
ted in the images. In addition, many studies related topolar lows have bene�ted from the satellite observations (e.g. Harold et al., 1999; Ble
h-s
hmidt, 2008). Sin
e a satellite imagery gives su
h good understanding of the di�erentparameters and the 3D stru
ture of the weather system, it is desirable to obtain similarimages from model fore
asts. Also, the quality of various model �elds 
an be estimatedby 
omparing with observations, while in data-sparse areas a judgment of the quality
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an only be made on the basis of satellite images (Tijm, 2004). Therefore a 
al
ulatedsatellite image from model fore
asts simpli�es the assessment of the di�erent parame-ters, espe
ially in data-sparse areas.Tijm (2004) proposed a simple and qui
k method that estimates both infrared (IR)and water vapor (WV) pseudo satellite images based on HIRLAM model fore
asts. Theterm pseudo is used to indi
ate that these images are based on model derived �eldsrather than remotely sensed radiation. These pseudo satellite images are analogs to
onventional IR and WV images. The 
onventional IR imagery is derived from ter-restrial radiation emitted in the 10 - 12 µm wavelength band region. WV imagery isderived from the radiation emitted by water vapor at wavelengths in the 6 - 7 µm region(Bader et al., 1995).We have here in this study adapted the method developed by Tijm (2004) su
h thatpseudo satellite images 
an be obtained from UM fore
asts as well as HIRLAM. Wehave mainly been fo
using on the pseudo satellite IR images, therefore only these willbe presented here. In the following �rst a brief presentation of the pseudo satellite im-ages method and asso
iated model variables used in the algorithm will be given. Thesensitivity to some of the parameters have been investigated, and the algorithm hasbeen veri�ed using the 
ontrol run of UM-EPS-big in addition to a UM4 (4 km) op-erational fore
ast from met.no. This was done for two purposes: (1) The method wasdeveloped before all the runs in this study was done, and (2) it gives a larger 
on�den
ein the method if it is veri�ed with more than one 
ase. The operational domain ismainly lo
ated over land in 
ontradi
tion to the experimental domain whi
h is mainlyover o
ean. The fore
ast from the operational domain is initialized 12 UTC 16 Mar
h2009. The initial and lateral boundary 
onditions are taken from HIRLAM8 (8 km)fore
ast. Besides from this, the model 
on�gurations are the same for both domains,and is des
ribed in se
tion 2.2.2.The methodWhereas the satellite retrieved 
loud top temperatures (CTTs) are inverted from theremotely measured upwelling radiation at the top of the atmosphere, the model derivedpseudo satellite images estimate the 
loud top temperature by using temperature, pres-sure and 
loud and i
e water 
ontent (Tijm, 2004). We integrate starting at the surfa
eusing the surfa
e radiation temperature. In 
lear sky 
onditions this temperature 
orre-sponds to the CTT in the pseudo image. In 
loudy 
onditions the radiation temperatureof ea
h model layer is set equal to the asso
iated model temperature. However, its 
on-tribution to CTT is dependent on the amount of 
loud 
ondensate (liquid and i
e) inthe layer. If the amount ex
eeds a 
ertain threshold (see below), the model 
loud layerradiates as a bla
kbody.The 
loud top temperature in the IR wavelength band is 
al
ulated with the equation:
Tcld = Tcld,prev

(

1 − MIN
{

1,
Ql∆P

Qdp

}

)

+ Ta

(

MIN
{

1,
Ql∆P

Qdp

}

)

, (3.1)
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loud top temperature (in K) at the 
urrent model level and Tcld,prev isthe 
loud top temperature at the previous model level. Ql is the sum of the mean gridbox 
loud and i
e water 
ontent at the 
urrent level (kg of 
ondensate per kg of air),
∆P is the pressure di�eren
e between adja
ent model levels (in Pa), i.e. the thi
knessof the model layers, Ta is the model temperature of the 
urrent level and Qdp is theaforementioned threshold value. The threshold Qdp is 
urrently set to 0.5 ( kg

m2 ), same asin Tijm (2004). From the hydrostati
 equation it 
an easily be seen that Ql∆P is pro-portional to the 
loud 
ondensate 
ontent per square meter in the 
olumn with height.Note that this method is derived for HIRLAM, whi
h is a quasi-hydrostati
 model. UMis a non-hydrostati
 model, but by adapting this method even though it is based onhydrostati
 assumptions has not a�e
ted the results (see the following).Starting at the surfa
e and moving upwards, Eq. 3.1 is solved for ea
h layer. If there areno 
loud or i
e water 
ontent in the layer, i.e. Ql=0, the CTT remains the temperatureof the previous 
loud layer. If there are 
loud or i
e water 
ontent present, the CTT isadjusted to the temperature of that level, where the ratio Ql∆P

Qdp
determines how mu
hthe CTT should be adjusted to the temperature of the 
urrent layer. For values largerthan 1, the 
loud layer behaves as a bla
kbody.The grid box mean 
loud and i
e water 
ontent are prognosti
 variables readily avail-able on the full-levels in UM. Potential temperature, from whi
h the temperature usedin Eq. 3.1 is derived, is also given on the full-levels. In order to save disk spa
e andavoid having too large output �les, pressure is 
urrently only ar
hived at the half-levels,and therefore is interpolated to the full levels for both the 
al
ulation of temperatureand pressure di�eren
e in Eq. 3.1.Note that CTT of Eq. 3.1 will most likely depend on the number of verti
al levelsemployed in the model. In this study we have not investigated the sensitivity to thenumber of verti
al levels.ResultsPseudo satellite images are in operational use at met.no for only HIRLAM12 fore
asts,and hen
e only these are used here for 
omparison to the UM4 fore
asts. HIRLAM12has a 12 km horizontal grid mesh and 60 verti
al levels. In addition, satellite images
losest in time are used for veri�
ation.Both the satellite and model derived pseudo satellite images are displayed here usingthe graphi
al visualization tool DIANA. Similar to the 
onventional satellite images,the whiter (darker) area in the pseudo satellite image, the lower (higher) is the CTT.However, the bla
k to white s
aling is dynami
, i.e. the highest (lowest) CTTs withinthe model domain will be displayed darkest (whitest). Sin
e we are mainly interestedin the spatial gradients in CTT, this dynami
 s
aling is su�
ient for di�erentiating be-tween high and low 
louds in the model. However, for a more detailed 
omparison it isdesirable that the pseudo satellite images are tuned to the CTTs of the satellite images.
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(a) (b) (
)Figure 3.1: Pseudo satellite image (a) 
ompared against the UM total 
loud 
over (b)and inverted total 
loud 
over (
). The high 
oluds are seen to the south and north-eastin the domains, and 
loud free regions are found in the middle of the domains. Lowerand middle level 
louds are seen to the north west and west. See text for further details.This will mainly a�e
t the CTTs where there are 
louds, sin
e the CTT over o
ean andland where there are no 
louds and, to some extent, 
oin
ide well with the observeddark 
olor (see the following).Sensitivity testsWe have investigated the sensitivity of some of the parameters used in the algorithm.Sin
e the pressure �eld is interpolated from half to full levels, we wanted to investigatethe sensitivity of this interpolation. The CTT image was 
al
ulated using pressure atboth half and full levels with the 
ontrol run from UM-EPS-big (not shown). Therewere no di�eren
es dete
ted by visual inspe
tions, therefore we 
on
lude that our inter-polation of pressure from half - to full - levels is su�
iently a

urate for the 
al
ulationof CTT in Eq. 3.1.The surfa
e radiation temperature in HIRLAM is the near surfa
e temperature (T2m).In UM there is a diagnosti
 surfa
e temperature, Ts, whi
h is at 0 m and will thereforebetter represent the surfa
e radiation temperature. To see if using T2m instead of Tsgives signi�
ant di�eren
es, we also estimated CTT by using Ts with the operationalUM4 fore
ast (not shown). As expe
ted the sensitivity to the 
hoi
e of lower boundarytemperature (T2m or Ts) is not very large. Hen
e, we de
ided to repla
e T2m with Tsin Eq. 3.1.



26 CHAPTER 3. VERIFICATION METHODOLOGYComparing with the diagnosti
 total 
loud 
over in UMHaving de
ided on using interpolated pressure �elds and Ts in Eq. 3.1, we next 
omparethe pseudo images to the modeled diagnosti
 total 
loud 
over, seen in Figure 3.1. Weuse the operational UM4 fore
ast, same as in the above subse
tion. For the total 
loud
over image (Figure 3.1b), white areas (i.e. areas without any shading) are indi
ativeof 
loud free grid regions, whereas the darker the grid box the larger the 
loud 
over.Obviously, this is opposite to how it is seen in the satellite images, and 
an as a 
on-sequen
e easily be 
onfused. We have therefore also inverted the shading, Figure 3.1
.The advantage of using pseudo satellite images instead of total 
loud 
over is evident.For instan
e, in the pseudo satellite image one 
an distinguish between high and low
louds. Nevertheless, the 
louds in the pseudo satellite image are 
o-lo
ated with thetotal 
loud 
over. Hen
e, we are 
on�dent that Eq. 3.1 is able to dete
t the modeled
louds.Comparing with satellite IR images and HIRLAM pseudo satellite imagesPseudo images are 
al
ulated from the operational UM4 and HIRLAM12 fore
asts ini-tialized at 12 UTC 16 Mar
h 2009. Two fore
ast lead times, T + 6h (afternoon) and T+ 18h (early morning), are shown in Figure 3.2. The 
orresponding satellite IR imagesseen in Figs. 3.2 a and b are used for veri�
ation.First we 
ompare the UM4 images with the satellite IR images. At lead time T +6h, the same features seen in the observed image also appear in the pseudo satelliteimage. The high 
louds south - east and north - east in the UM4 domain, 
orrespondto what is observed. There are more di�eren
es 
omparing these two images west inthe UM4 domain, along the Norwegian 
oast. There are middle level 
louds fore
asted,
onsistent with IR-images. Thus the amount of 
louds fore
asted is less than observed.Both images have 
lear sky 
onditions east in Northern - Norway and Sweden. However,the surfa
e radiation temperature over land where there are no 
louds in UM appearsdarker then to the observed, and this is also the 
ase for the radiation temperature in
loud free areas over o
ean. At lead time T + 18h, the same 
hara
ters in both imagesare still seen. It is striking how well the 
louds in the pseudo satellite image are 
o-lo
ated with the satellite image. Though, there are fewer 
louds in the pseudo satelliteimage than what is observed. But overall the pseudo satellite images in UM 
oin
idewell with the observed satellite images.Having seen that the UM4 pseudo images 
ompare well with the satellite images, wenext 
ompare them to the HIRLAM12 images. Remember that the pseudo methodwas originally developed for HIRLAM (Tijm, 2004). Due to the 
oarse grid mesh inHIRLAM12 the CTT �eld is smoother and the range in the CTT values is not as largeas in the satellite IR image or the UM4 image. Also, UM4 shows more distin
t di�er-en
es between o
ean and land, and more detailed stru
tures appear. This is due both tothe higher horizontal resolution and the fa
t that HIRLAM uses T2m. Generally, pseudosatellite images from UM resemble the observed satellite images more than HIRLAM
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(a) (b)

(
) (d)

(e) (f)Figure 3.2: IR satellite images and pseudo satellite images from UM4 and HIRLAM12.The fore
asts were initialized at 12 UTC on 16 Mar
h 2009. The IR satellite imagesare valid at 1808 UTC 16 Mar
h 2009 (a) and 0600 UTC 17 Mar
h 2009 (b). Pseudosatellite images at lead time T + 6h from UM4 (
) and HIRLAM12 (e), and at T +18h from UM4 (d) and HIRLAM12 (f). For 
onvenien
e the UM4 domain is shown inthe IR and HIRLAM12 pseudo satellite images (the blue squares).



28 CHAPTER 3. VERIFICATION METHODOLOGYpseudo satellite images.The use of pseudo satellite images in this studySin
e 
louds are a produ
t of all pro
esses in the atmosphere, the pseudo satellite imagesgives a good understanding of the 3D stru
ture of the weather systems in the model.In addition, these images give a dire
t judgment of the quality of various model pa-rameters, espe
ially in data - sparse areas. In this study we will 
al
ulate the pseudosatellite images on the outputs from UM-EPS and 
ompare them with satellite images(presented in Chapter 4).3.2.2 Tra
king polar lowsFor polar low fore
asting, as well as dete
ting the �real world� 
y
lones, it is importantto ex
lude falsely identi�ed phenomena in model outputs. Several previous studies haveapplied a tra
king algorithm (e.g. Hodges, 1994, 1995, 1999) on di�erent model �eldsbased on an automated method to identify synopti
 systems and provide statisti
al in-formation about their positions, intensities and the genesis and lysis (the spatial andtemporal distribution of the development and the ending of the 
y
lone) (e.g. Hoskinsand Hodges, 2002; Froude et al., 2007a,b). Note that the term tra
k here refers tothe traje
tory of an individual storm, rather than the average tra
k of many storms(Froude et al., 2007a). The tra
king te
hnique is an essential fore
ast validation tool,and it gives dire
t information about the model's ability to predi
t polar lows (Zahnand Stor
h, 2008).In the same manner as tra
king synopti
 systems it would give valuable information totra
k polar lows. For instan
e, Zahn and Stor
h (2008) have employed a near isotropi
bandpass �lter to extra
t mesos
ale parts of the MSLP �elds from a two year longsimulations with CLM (a 
limate version of the Lo
al Model of the German WeatherServi
e), and a tra
king methodology has been applied on the �elds, aiming to repro-du
e the 
limatology of polar lows over a two year long simulation. After performing thetra
king algorithm, there were too many dete
ted tra
ks. However, introdu
ing severalobje
tive 
riteria, the number of the dete
ted polar lows de
reased.In this study we have employed and modi�ed the tra
king algorithm developed byHodges (1994, 1995, 1999) for tra
king polar lows instead of synopti
 s
ale systems.The model �elds are taken from UM-EPS, aiming to reprodu
e the tra
k of the ob-served polar low that developed during the IPY-THORPEX 
ampaign. Some additional
onstraints have been introdu
ed sin
e this method was originally made for dete
tingsynopti
 systems. First the method TRACK will be presented, and then the modi�-
ations applied will be des
ribed. In addition, further obje
tive 
riteria adapted fromthe study of Zahn and Stor
h (2008) are presented. It should be mentioned that withthe diagnosis from TRACK, broad statisti
al information about the dete
ted tra
ks areobtained, and only a small part is investigated here. To fully utilize this analysis tool,it should be performed on several 
ases.
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king algorithmHistori
ally, there have been two basi
 approa
hes to diagnose storm tra
ks, an Eulerianapproa
h and a Langrangian feature point tra
king. Sin
e the beginning of super 
om-puters the Eulerian approa
h has been the 
onvenient way to 
ompute simple statisti
sfrom NWPs at a set of grid point with a frequen
y band representative of synopti
times
ales (Hodges, 1999; Hoskins and Hodges, 2002; Anderson et al., 2003). The Lan-grangian feature tra
king approa
h has been used sin
e the end of the nineteen 
entury,and the early studies were based on manual analysis using daily synopti
 
harts. Withthe introdu
tion of NWP models the approa
h has been advan
ed further and obje
-tive, automated methods have been adopted. This provides good statisti
al informationthat des
ribes the storm tra
k a
tivity of the synopti
 system (Hodges, 1994; Hoskinsand Hodges, 2002). A feature tra
king algorithm developed by Hodges (1994, 1995,1999) has been used extensively in several studies (e.g. Hoskins and Hodges, 2002, 2005;Froude et al., 2007a,b), aiming to tra
k synopti
 systems, and to 
ompute their statis-ti
al properties and 
limatology and assess fore
ast skill and predi
tability of di�erentmodels. The tra
king algorithm has been adapted into this study to tra
k polar lows,whi
h are of sub-synopti
 s
ales.The basis of the method is to sear
h for maxima or minima in meteorologi
al �elds,and a range of �elds 
an be used; MSLP, geopotential at pressure surfa
e e.g. 500hPa (Z500), meridional wind (v), temperature (T), potential temperature (θ), verti
alvelo
ity (w), relative vorti
ity (ζ) and potential vorti
ity (PV). Most 
ommonly thealgorithm has been performed on the MSLP and vorti
ity �elds, and only these willbe 
onsidered here. The 
hoi
e of the �eld should be done on the basis of what s
aleis to be tra
ked. MSLP is distin
tly in�uen
ed by strong ba
kground �ow, and largespatial s
ales and relative slower moving systems dominate. This yields MSLP �eld abetter 
hoi
e to tra
k larger s
ales. ζ is less in�uen
ed by the strong ba
kground �owand therefore tend to be a better �eld for identifying smaller s
ales. However, there aresome disadvantages with employing MSLP and ζ. In high-resolution data the vorti
ity�eld 
an be very noisy. Sin
e MSLP is an extrapolated �eld, the �eld may be sensitiveto how the extrapolation is performed, and also to the representation of the orographyin the model (Hoskins and Hodges, 2002).Assume we have 
hosen one of the meteorologi
al �elds for tra
king. Before performingthe algorithm, the ba
kground �ow is removed to only retain the mesos
ale part. Thisis done by �rst performing a spe
tral spatial �ltering. The �eld is then represented by aspheri
al harmoni
 expansion and the smallest and large spatial s
ales 
an be removed(Anderson et al., 2003). The result is a �ltered �eld with spatial s
ales representative ofpolar lows. Then the tra
king algorithm is performed on the �ltered �eld. The �rst stepin the algorithm is the determination of feature points, whi
h are the positions of theextrema in the 
hosen �eld. The next step in the method is to determine the 
orrespon-den
e between the feature points, and the aim is to �nd the set of tra
ks that maximizesthe smoothness of the traje
tories. This is done by minimizing a 
ost fun
tion (Hodges,1994, 1995, 1999). The dete
ted feature points are then 
onstrained to have a minimumhorizontal displa
ement distan
e over a given time frame (the lifetime), and in addition
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ity �eld a given threshold needs to be ex
eeded. The feature points thatful�ll the requirements are linked together and give a traje
tory. Now the tra
ks withtheir respe
tive statisti
al information are stored in a re
ord, and it is up to the user tointerpret the tra
k diagnosis. The algorithm makes use of these 
riteria related to theminimum horizontal displa
ement, the lifetime and the vorti
ity threshold and 
an be
hosen. These will be dis
ussed in the following.The tra
king algorithm adopted to this studyThe tra
king algorithm developed by Hodges (1994, 1995, 1999) has been performed onthe fore
asts made by UM-EPS, and the results will be given in Chapter 4. Here thedi�erent aspe
ts investigated before de
iding on the �nal 
riteria to dete
t and tra
kthe polar low des
ribed in se
tion 2.3 will be presented. All the tests have been per-formed on the 
ontrol run of UM-EPS-small. In this study we have mainly 
hosen toperform the tra
king algorithm on the vorti
ity �eld, but a few tests were also doneon the MSLP �eld. A summary is given in Table 3.2. When performing the tra
kingalgorithm, a sear
h of maximum in the vorti
ity �eld and a minimum in the MSLP �eldis done. This will result in too many dete
ted points due to many small s
ale lo
almaximum and minimum. To pi
k out the tra
k of the features representative of polarlows, additional 
onstraints are needed. This is �rst done by a minimum horizontaldispla
ement distan
e (from the �rst dete
ted point to the last dete
ted point) over aminimum lifetime. At �rst the minimum displa
ement was set to 10o (approximately1000 km). Polar lows 
an be stationary or have a very slow southward motion, so this
riterion was swit
hed o�. The minimum lifetime was originally set to 24 hours. This
onstraint is a bit more 
omplex, espe
ially for limited area fore
asting. A polar lowwhi
h already has ex
ised for a while outside the domain and is entering the domain onthe lateral boundaries, will be ex
luded with a too long life time 
onstrain. Polar lowstend to exist for at least 12 hours, therefore we de
ided to set the minimum lifetime to12 hours. All the tests in Table 3.2 have zero minimum horizontal displa
ement and aminimum lifetime of 12 hours. Below is given a presentation of the di�erent testes done.In previous studies when the tra
king algorithm has been used to dete
t synopti
 sys-tems, planetary s
ales with total wave number less than or equal to 5 have been �l-tered out (Froude et al., 2007a; Hoskins and Hodges, 2002, 2005). Sin
e polar lows aremesos
ale features, and 
an have a diameter up to 1000 km, we initially removed s
alesbetween 200 and 1000 km, but this gave too many tra
ks. In the study of Zahn andStor
h (2008) a �ltering of 200 - 600 km was used, and we de
ided to use the same.The removal of the ba
kground state was investigated in Anderson et al. (2003) wherethe sensitivity to the spe
tral spatial �lter was explored. They in
reased the number oftotal wave numbers removed on the MSLP �eld, from 5 to 7 to 10. With the removal of10 wave numbers, the nature of the synopti
 feature started to deteriorate. From Test14 (200 - 1000 km) and 15 (200 - 600 km) in Table 3.2 we see that when de
reasing the�ltering interval on the MSLP �eld there is an in
rease in number of tra
ks, from 6 (200- 1000 km) to 9 (200 - 600 km), whi
h is in agreement with Anderson et al. (2003). The



3.2. NEW METHODS 31Table 3.2: The di�erent test performed on the 
hosen �eld with the tra
king algorithm.All the tests have 0 in minimum horizontal displa
ement and a minimum lifetime of 12h. The dete
ted tra
ks are the tra
ks after the vorti
ity threshold and �ltering interval
onstraint. Test nr Field Threshold Filtering Dete
ted Tra
ks[s−1℄ [km℄1 VOR850 2 × 10−5 200-1000 112 VOR850 1 × 10−5 200-1000 143 VOR850 1 × 10−6 200-1000 144 VOR850 1 × 10−4 200-1000 45 VOR850 1 × 10−4 200-600 36 VOR850 1 × 10−5 200-600 207 VOR850 2 × 10−5 200-600 208 VOR925 2 × 10−5 200-1000 89 VOR925 1 × 10−5 200-1000 1110 VOR925 1 × 10−4 200-1000 611 VOR925 1 × 10−4 200-600 312 VOR925 1 × 10−5 200-600 1613 VOR925 2 × 10−5 200-600 1614 MSLP 200-1000 615 MSLP 200-600 9same is seen for the vorti
ity �eld when there is a low vorti
ity threshold (the vorti
itythreshold will be dis
ussed later). De
reasing the �ltering interval from 200-1000 km(Test 1, 2, 8, 9) to 200 - 600 km (Test 6, 7, 12, 13) the number of tra
ks in
reases. Whenthere is a high vorti
ity threshold, redu
ing the �ltering interval from 200 - 1000 km(Test 4, 10) to 200 - 600 km (Test 5, 11) the number of tra
ks de
reases. This indi
atesthat with a low vorti
ity threshold, the �eld is more in�uen
ed by larger s
ales, and istherefore more sensitive to the �ltering interval. This gives 
on�den
e in 
hoosing thevorti
ity �eld with a high vorti
ity threshold and a narrower �ltering interval to performthe tra
king algorithm on, sin
e it is less sensitive to the removal of the ba
kground stateand also better suited for dete
ting smaller s
ale system than MSLP. Therefore in thisstudy we will perform the spe
tral spatial �ltering on the vorti
ity �eld with a �lteringof 200 - 600 km.Initially, the tra
king was performed on vorti
ity at 850 hPa, whi
h is also used totra
k synopti
 systems. Polar lows have a smaller s
ale than synopti
 lows, and also
ome with very strong surfa
e wind, in addition they do not ne
essarily penetrate ashigh up in the atmosphere. Therefore 925 hPa vorti
ity �eld would be more appropriateto extra
t the polar low tra
k. Tests with both vorti
ity �elds have been done, and they



32 CHAPTER 3. VERIFICATION METHODOLOGYare also listed in Table 3.2. From Table 3.2 we see that there are no large di�eren
esby using vorti
ity at these two levels, e.g. Test 1 (VOR850) gives 11 tra
ks and Test 8(VOR925) gives 8 tra
ks, and Test 5 (VOR850) gives 3 tra
ks and Test 11 (VOR925)also gives 3 tra
ks. However, the vorti
ity at 925hPa tend to pi
k up the tra
ks earlierin the fore
ast, and the tra
ks from vorti
ity at 850hPa tend to end later in the fore
ast(not shown). Overall, we de
ided to employ vorti
ity at 925 hPa.Also, performing the tra
king algorithm on the vorti
ity �eld gives the user the pos-sibility to adjust a vorti
ity threshold, whi
h needs to be ex
eeded of the dete
tedpositions. As seen from Table 3.2 the numbers of dete
ted tra
ks are very sensitive tothis threshold. At �rst in the 
odes of Hodges (1994, 1995, 1999) the dete
ted vorti
ityfeatures had to ex
eed a threshold value of 2×10−5s−1 (Test 1 and 8). By in
reasingthe threshold, the number of dete
ted tra
ks de
reased (e.g. going from Test 1 to Test4 redu
ed the number of tra
ks from 11 to 4). Aiming to extra
t the strongest tra
k,for this parti
ular 
ase we be
ame in the end 
on�dent to set the threshold to 1×10−4s−1.Further obje
tive 
riteriaAfter being 
ontent with the �ltering interval of 200-600 km, zero minimum horizontaldispla
ement, the minimum lifetime of 12 hours and vorti
ity threshold to be 1×10−4s−1,there were still too many tra
ks, and further obje
tive 
riteria were needed. In the studyof Zahn and Stor
h (2008) they introdu
ed a third step after the �ltering and tra
kingalgorithm step; some additional 
onstraints whi
h were inspe
ted along ea
h individualdete
ted tra
k. The 
onstraints used in Zahn and Stor
h (2008) in
lude: A very strong�ltered minimum (in the MSLP �eld), strong surfa
e speed, stati
 stability, a southwarddispla
ement and the tra
k to be lo
ated over o
ean (no land). These new obje
tive
riteria redu
ed the total number of tra
ks substantially. We wanted to adopt some ofthese, aiming to redu
e the number of falsely dete
ted tra
ks. The no land requirementin Zahn and Stor
h (2008) is a ne
essarily 
onstraint to ex
lude false disturban
es overland, and was employed in this experiment. Sin
e polar lows 
omes with surfa
e windsnear or above gale for
e (Rassmussen and Turner, 2003) a new 
riteria would in
lude the10 m wind to ex
eed a given threshold. In addition, polar lows are often asso
iated with
old air outbreak, and this yields high temperature di�eren
es between the sea surfa
eand aloft. Noer and Ovhed (2003) at met.no uses the temperature di�eren
e betweensea surfa
e temperature (SST) and T500 (temperature at 500 hPa) as an indi
ation forpossible polar low developments. Therefore a further 
riterion would require the tem-perature di�eren
e between SST and T500 to ex
eed 43 K.In Zahn and Stor
h (2008) the 10 m wind speed had to ex
eed 13.9 m/s at leas 20%of the positions, and the temperature di�eren
e should be above 43 K at lest on
ealong the tra
k. In the 
odes of Hodges (1994, 1995, 1999) a sear
h of maximum 10m wind speed and temperature di�eren
e within a radius around the dete
ted tra
kswas done, then a per
entage of the positions that ful�lled the 
onstraints was 
al
ulated.In 
ontrasts to Zahn and Stor
h (2008), all of the dete
ted tra
ks ful�lled these two
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riteria at all the positions, so the number of tra
ks were not redu
ed. Originally, wesear
hed for a maximum of the wind speed and temperature di�eren
e within a radiusof 5o (500 km) around the dete
ted positions. 5o sear
h radius is too large, and this didnot redu
e any of the �rst dete
ted tra
ks. In Zahn and Stor
h (2008) a radius of 100km (approximately 1o) was used to look for wind maxima around the feature points,and this was adopted here. But still, very high surfa
e wind speed and temperaturedi�eren
e were found within the 1o sear
h radius, so the numbers of tra
ks were notfurther redu
ed. This indi
ates that the introdu
ed 
riteria (i.e. vorti
ity threshold,lifetime, surfa
e wind speed, verti
ally stability) do not ne
essarily extra
t the polarlows, and still there is need for other 
onstraints.Table 3.3: The �nal 
onstraints used in this study to tra
k polar lows.ConstraintsStep 1 Filtering interval 200-600 kmStep 2 Minimum displa
ement 0Lifetime 12 hVorti
ity threshold 1 × 10−4s−1Step 3 Obje
tive 
riteria(Within a sear
h radius of 1o )10 m wind speed 13.9 m/sSST-T500 43 KOther No landIdeally there should only be one or less tra
k in every member. When performing thetra
king algorithm on all the members from the UM-EPS-small and big with the 
on-straints listed in Table 3.3, we still had too many dete
ted tra
ks in every ensemblemember (see Figure 3.3a). This problem was met by a subje
tive assessment, and thetra
k with the strongest vorti
ity was extra
ted in every member (see Figure 3.3b).This was done by 
al
ulating the mean vorti
ity of every tra
k from all the members.The tra
k with the strongest mean vorti
ity in the 
ontrol run was pi
ked out (i.e.strongest tra
k). Then the mean vorti
ity in every ensemble member was 
ompared tothe strongest tra
k in the 
ontrol run, and the tra
k that ex
eeded the 
ontrol meanvorti
ity the most times was 
hosen. In this way we were only left with the strongesttra
k from every member.We want to use the tra
king algorithm to fore
ast the probability of an polar low tra
kin addition to fore
ast the probability of the position of the polar low. At ECMWF atra
king algorithm is used to tra
k tropi
al 
y
lones (TC) with all the members fromthe EPS (des
ribed in se
tion 2.1), and a probability distribution of the area where thetropi
al 
y
lone most likely will pass is given in a strike probability map. The tra
kingalgorithm used at ECMWF will not be dis
ussed here. It should be mentioned that thetra
king algorithm is only performed if there is at least one observation of the TC ina window of 6 hours around the analysis time (van der Grijn, 2002). This observationpoint of the TC and the steering �ow is used to 
al
ulate the �rst guess of the next
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(a) (b)Figure 3.3: The tra
k from UM-EPS-small. (a) shows all the tra
ks and in (b) thestrongest tra
k from every member is extra
ted.position. The TC is tra
ked for 120h, and statisti
s about the TC at every lead timeis given. A strike probability map shows a horizontal map where the time dimension iseliminated and the tra
k of every member (50 + 1) is plotted, regardless of what timethe member predi
ted the TC. This is based on the fa
t that the fore
aster is mostlyinterested in if there will be a TC and where it will go, rather than at what time theTC will o

ur. For instan
e, if all the members predi
t strong surfa
e wind, but for adi�erent lead time, this yields a low probability of strong wind over a long time frame.With the strike probability map this information di�usion is avoided.A similar approa
h as des
ribed above would be desirable to apply to the polar lowtra
ks. Figure 3.4 shows a Strike probability map analogous to what used at ECMWF.The strongest tra
k in every member is extra
ted, same as seen in Figure 3.3b. Figure 3.4shows the fore
ast probability that a polar low will pass within a square of 48km×48kmduring the next 60 hours. Even though there are many similarities between polar lowsand tropi
al 
y
lones, the same method is not adequate for both. Polar lows tend to havea shorter lifetime than tropi
al 
y
lones, and they do not have the same propagationspeed. As seen in Figure 3.4 an area get very high probability when the 
y
lone almostdo not have any displa
ement. In addition, the tropi
al 
y
lone tra
king algorithm isnot performed without having at least one observation point, whereas here the tra
kingalgorithm is performed on the fore
ast that started approximately 24 hours before thepolar low was dete
ted in the fore
ast.
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Figure 3.4: Strike Probability Map from UM-EPS-small.
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Chapter 4ResultsIn this 
hapter the results from the ensemble fore
ast UM-EPS-small and big will bepresented. The fore
ast data will be 
ompared both with observations and results fromLAMEPS fore
asts. First, the results for MSLP and pseudo satellite images are pre-sented for ea
h ensemble member.The ensemble mean 
ontains the most predi
table parts in the �ow, and is a supplementto the deterministi
 fore
ast. The spread between the members gives an indi
ation ofthe predi
tability of the day. Therefore the ensemble mean and σ, with the purpose toinvestigate the spread between the members, thus the atmospheri
 predi
tability, arepresented.One purpose with ensemble predi
tion systems is to estimate the probabilities for di�er-ent weather events during the fore
ast. This is simply done by 
al
ulating the fra
tionof members whi
h 
at
h the events, e.g. the fore
ast probability of strong wind or heavypre
ipitation. Hen
e, the fore
ast probability of wind speed, a

umulated pre
ipitationand potential temperature are 
ompared with the 
ampaign data.In order to investigate the sensitivity of the results to model parameterization, addi-tional sets of experiments were performed. For this purpose, the parameterization ofthe verti
al mixing of the stable boundary layer was perturbed (see the boundary layers
heme des
ribed in Appendix A). In the end, the statisti
s from the tra
king algorithmare shown.We have mainly been fo
using on 
omparing the fore
asts with �ight 3 (T + 42h)sin
e the observations made at this time gives new information, and also at this timethe polar low was well pla
ed within the small domain. However, a few 
omparisonsagainst �ight 1 and 2 are also shown.4.1 MSLP and pseudo satellite imagesFigures 4.1 and 4.2 show the MSLP for lead time T+42h from UM-EPS-big and small,respe
tively, whi
h is the se
luded phase of the polar low. The satellite image in Figure37
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(a) HIRLAM20 (b) Member 00
(
) Member 01 (d) Member 02 (e) Member 03 (f) Member 04 (g) Member 05
(h) Member 06 (i) Member 07 (j) Member 08 (k) Member 09 (l) Member 10
(m) Member 11 (n) Member 12 (o) Member 13 (p) Member 14 (q) Member 15
(r) Member 16 (s) Member 17 (t) Member 18 (u) Member 19 (v) Member 20Figure 4.1: MSLP of HIRLAM20 analysis from 12 UTC 04.03.08 and UM-EPS-big atT+42h. The 
ontour interval is 1 hPa. Member 00 is the 
ontrol fore
ast.
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(a) HIRLAM20 (b) Member 00
(
) Member 01 (d) Member 02 (e) Member 03 (f) Member 04 (g) Member 05
(h) Member 06 (i) Member 07 (j) Member 08 (k) Member 09 (l) Member 10
(m) Member 11 (n) Member 12 (o) Member 13 (p) Member 14 (q) Member 15
(r) Member 16 (s) Member 17 (t) Member 18 (u) Member 19 (v) Member 20Figure 4.2: MSLP of HIRLAM20 analysis from 12 UTC 04.03.08 and UM-EPS-smallat T+42h. The 
ontour interval is 1 hPa. Member 00 is the 
ontrol fore
ast.
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(a) Satellite IR (b) Member 00
(
) Member 01 (d) Member 02 (e) Member 03 (f) Member 04 (g) Member 05
(h) Member 06 (i) Member 07 (j) Member 08 (k) Member 09 (l) Member 10
(m) Member 11 (n) Member 12 (o) Member 13 (p) Member 14 (q) Member 15
(r) Member 16 (s) Member 17 (t) Member 18 (u) Member 19 (v) Member 20Figure 4.3: Satellite IR image valid at 11.37 UTC 04.03.08 and pseudo satellite imagesfrom UM-EPS-big at T+42h. Member 00 is the 
ontrol fore
ast.
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(a) Satellite IR (b) Member 00
(
) Member 01 (d) Member 02 (e) Member 03 (f) Member 04 (g) Member 05
(h) Member 06 (i) Member 07 (j) Member 08 (k) Member 09 (l) Member 10
(m) Member 11 (n) Member 12 (o) Member 13 (p) Member 14 (q) Member 15
(r) Member 16 (s) Member 17 (t) Member 18 (u) Member 19 (v) Member 20Figure 4.4: Satellite IR image valid at 11.37 UTC 04.03.08 and pseudo satellite imagesfrom UM-EPS-small at T+42h. Member 00 is the 
ontrol fore
ast.
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 and the analysis in Figure 2.5
 are valid at the same time, but for 
onvenien
ethey are repeated here. The 
entral pressure to the polar low from the HIRLAM20analysis was 996 hPa. It 
an bee seen that for both domain every perturbed memberhave developed a di�erent solution, and the spread between the members are largestfor UM-EPS-big. For the big domain there 
an be seen several 
losed 
ontours in everymember. For instan
e, the 
ontrol run has four 
losed 
ontours, and the deepest low has
entral pressure of 986hPa. Several of the members have a large relative vorti
ity justo� the Norwegian 
oast, 
lose to Andøya. The 
ontrol run of UM-EPS-small have two
losed 
ontours, where the deepest 
entral pressure is 989 hPa. Many of the membersin UM-EPS-small also have more than one 
losed isobar, and some of the 
y
lones are
lose to the Norwegian 
oast, but they are not as strong as those in UM-EPS-big. Allthe members in UM-EPS-big and small have one or more 
y
lones in the vi
inity ofwhere the polar low is observed in the satellite image and the analysis.Figure 4.3 and 4.4 show the 
al
ulated 
loud top temperatures from the two domainsfor the same lead time. The CTT images from the big domain all have high 
loudsnorth west of the Norwegian 
oast, whi
h is in good agreement with the high 
loudsasso
iated with the synopti
 low. The di�eren
es between ea
h image are largest in thearea where the individual member have a 
y
loni
 stru
ture. The 
onve
tive 
ells whi
hare asso
iated with the 
old air outbreak are seen west of the observed polar low in thesatellite image. Similar features 
an also be found in all of the members in the westernpart of the domain. For the small domain ea
h member has signatures resembling spiralbands around a 
y
lone, and this is in the same area as the observed polar low. However,this is also the area where there are largest di�eren
es between ea
h member, whi
h is
onsistent with the results for the big domain. Furthermore, the CTT image from thesmall domain all have the 
onve
tive 
ells west in the domain and high 
louds in thetop 
orner, 
onsistent with the observations.The transient evolution for ea
h ensemble member of MSLP and CTT images fromboth systems are diverging with fore
ast lead time (not shown). This is as expe
ted,sin
e the perturbations will grow during the fore
ast. However, it is only after lead timeT + 24 h that the systems are starting to diverge rapidly, whi
h 
oin
ides with the earlyphase of the polar low.4.2 Ensemble mean and spreadThe ensemble mean and spread, as measured by the RMS deviation, σ, of LAMEPS,UM-EPS-small and big for T + 42h 
an be seen in Figure 4.5. The satellite imageand the analysis from the same time are seen in Figure 2.4
 and 2.5
. LAMEPS andUM-EPS-small have a 
losed 
ontour at the same pla
e, west of Andøya, but the lowshave di�erent 
entral MSLP, LAMEPS has 991 hPa and UM-EPS-small has 989 hPa.UM-EPS-big has developed two 
y
lones where one is lo
ated 
lose to Andøya, and theother one is further north-west. Both have a 
entral MSLP of 988 hPa. σ for all thethree systems in
reases with fore
ast lead time (not shown), and the spread is largestin the area 
lose to where the polar low was observed (see Figs. 2.4
 and 2.5
). For the
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lose to the 
oastline where se
ond low is situated. This iseither a result of ea
h member having di�erent 
entral pressure or that they are pla
edin di�erent areas. From Figure 4.1 we see that a 
ombination of these two is a fa
t.The di�eren
e between the MSLP ensemble mean and σ of UM-EPS-small and LAMEPS,UM-EPS-big and LAMEPS and UM-EPS-big and UM-EPS-small are also seen in Fig-ure 4.5. The di�eren
es between UM-EPS-small and LAMEPS (Fig. 4.5d) are small,and as a result of di�erent 
entral pressures the largest di�eren
e in ensemble mean iswhere both systems have a 
losed 
ontour. The di�eren
es between UM-EPS-big andUM-EPS-small (Fig. 4.5b), and UM-EPS-big and LAMEPS (Fig. 4.5f) are on the samepla
e. Where all the three systems have a low, there are di�eren
es in the MSLP en-semble mean due to di�erent 
entral pressures. In the area 
lose to the 
oastline whereonly UM-EPS-big has a se
ond 
y
lone and large spread, there are di�eren
es betweenUM-EPS-big and the two other systems in ensemble mean and σ.The ensemble mean in the three di�erent systems 
apture the large s
ale �ow to agood degree. However, in UM-EPS-small and LAMEPS there is only one 
y
lone whi
his pla
ed between the observed synopti
 low and the polar low. UM-EPS-big has two
y
lones, where one is almost on the same pla
e as for UM-EPS-small and LAMEPS,and the other one is 
loser to the 
oastline. The ensemble mean is expe
ted to be just asskillfull as the 
ontrol run in the early range of the fore
ast, and more skillful thereafter(Palmer et al., 2006). In addition, the ensemble mean �lters out the unpredi
table parts,and 
ontains the most predi
table part of the �ow. This means that the most extremeweather events will not be seen in the ensemble mean. The ensemble means for the twosystems (big and small) are smoother than their respe
tive 
ontrol runs. And for thislong lead time it would not be expe
ted to see a polar low in the ensemble mean, in linewith its de
reasing predi
tability. Thus there is a need to look for the probability of theextreme events.4.3 Fore
ast probability 
ompared with 
ampaign dataPolar lows are asso
iated with strong wind and heavy pre
ipitation. Su
h extremeweather events are rare by nature. Therefore a probabilisti
 fore
ast is needed, to betterreprodu
e the probability distribution of all the di�erent weather events. By showing theprobability of di�erent meteorologi
al parameters, the risk of o

urren
e of the extremeweather events will be fore
asted. In the following we present the estimated probabilityof wind speed, a

umulated pre
ipitation and potential temperature ex
eeding di�erentthresholds. The probability is estimated as the fra
tion of ensemble members ex
eedingthe thresholds.Fore
ast probability of wind speedFigure 4.6 shows the fore
ast probability of wind speed > 20 m/s at 925 hPa at leadtime T + 18h, T + 24h and T + 42h. These estimated probabilities are 
omparedagainst the wind observations from �ight 1, 2 and 3, respe
tively. The strongest wind
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(a) (b)

(
) (d)

(e) (f)Figure 4.5: MSLP ensemble mean and the spread at lead time T + 42h from LAMEPS(a), UM-EPS-small (
) and UM-EPS-big (e). The bla
k 
ontours are the mean with 1hPa 
ontours. The shading is σ. The di�eren
e between ensemble mean and σ of UM-EPS-big and UM-EPS-small (b), UM-EPS-small and LAMEPS (d), and UM-EPS-bigand LAMEPS (e).
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(a) (b) (
)

(d) (e) (f)

(g) (h) (i)Figure 4.6: Fore
ast probability of wind speed at 925 hPa > 20 m/s from LAMEPS (leftpanel), UM-EPS-small (middle panel) and UM-EPS-big (right panel) for the lead times:T + 18h(top row), T + 24h (middle row) and T + 42h (bottom row) 
ompared withobservation data from �ight 1,2 and 3, respe
tively. A half barb on the wind arrows isdenoted 2.5 m/s and a full barb is 5 m/s. A �ag is 25 m/s wind speed.



46 CHAPTER 4. RESULTSobserved was 26.2 m/s (�ight 1), 24.8 m/s (�ight 2) and 28.0 m/s (�ight 3). LAMEPS,UM-EPS-small and big all have 100% estimated probabilities in the area where thestrongest wind speeds were observed for all the three �ights. But UM-EPS-big has ahigher estimated probability over a larger area. It 
an also be seen that there are smalldi�eren
es between LAMEPS and UM-EPS-small. The observation data only 
oversa small area, therefore to verify the results over a larger area the HIRLAM20 (Figure2.5
) analysis and QuikSCAT (not shown) are used. From the analysis and QuikSCATobservations it is seen that the upper tails with high probability found in LAMEPS andUM-EPS-big (the small domain does not 
over the area) for all the three lead times, are
onsistent with the strong wind speed asso
iated with the synopti
 low.Wind up to 28 m/s was observed during �ight 3, therefore the estimated probabil-ity of wind > 25 m/s is shown in Figure 4.7. For this threshold, UM-EPS-big hasa higher probability (up to 100%) over a mu
h larger area than UM-EPS-small andLAMEPS. The small domain has a very small region in the 
enter of the domain whereall the members ex
eeded the threshold at the same pla
e, but this 
annot be seen forLAMEPS. However, the spatial distribution of where there is an estimated probability >0 is the same for UM-EPS-small and LAMEPS. Further, the area where the probabilityof strong wind is lo
ated in the respe
tive ensemble systems, is where the weak windis observed. Thus, all the three ensemble systems have shifted the area of strong windfurther north 
ompared to the observations. Sin
e the fore
ast probability is for leadtime T+42h and the �ights lasted over several hours, we wanted to see in what dire
tionthe area of strong wind was moving, and then maybe the lo
ation of the strong windwould 
oin
ide better with the observations at a di�erent lead time. But the fore
astprobability of wind 6 hours before and after T + 42h showed that the strong wind prop-agated from northwest towards the 
oastline. Additionally, if we 
ompare σ (Fig. 4.5),it 
an be seen that the high σ is on the same pla
e as where the strong wind is predi
tedfor all the three systems.From the drop sondes released during the �ights verti
al 
ross se
tions have also been
al
ulated. In this experiment we have 
hosen one 
ross se
tion whi
h 
rossed the low inits se
luded phase and was well pla
ed within the small domain. The 
ross se
tion N-Sis from �ight 3 (T + 42h) and its geographi
 lo
ation is seen Figure 2.5
. Note that theobserved wind speed (Fig. 4.8a) is interpolated from the drop sonde observations, wherethe bla
k dots indi
ates where they were released. The probability of wind speed > 25m/s from UM-EPS-small and big from the 
ross se
tion at lead time T+42h is seen inFigure 4.8b and 
, respe
tively. The low level jet 
an 
learly be seen, where wind speedup to 30 m/s is observed. The high wind speed in the top right 
orner is the upper leveljet stream. UM-EPS-small and big both predi
ted the low level jet, but it is shifteda bit northward. This is 
onsistent with the horizontal fore
asts probability of wind,where we saw the probability of strong wind to be lo
ated a bit further northeast thanthe observed strongest winds. The only signi�
ant di�eren
e between the two domainsis that UM-EPS-big has a higher probability than the small domain.
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(a)

(b)

(
)Figure 4.7: Fore
ast probability of wind speed at 925 hPa > 25 m/s from LAMEPS (a),UM-EPS-small (b) and UM-EPS-big (
) at lead time T+42h 
ompared with observationdata from �ight 3.
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(a)

(b)

(
)Figure 4.8: Observed wind speed from �ight 3 (a) and probability of wind speed > 25m/sat lead time T + 42h from UM-EPS-small (b) and UM-EPS-big (
). The 
ontour intervalin (a) is 2 m/s.
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(a) (b)

(
) (d) (e)Figure 4.9: Radar re�e
tivity from 06 UTC (a) and 12 UTC (b) 04.03.08 
omparedwith fore
ast probability of a

umulated pre
ipitation > 2.5 mm/6h from LAMEPS (
),UM-EPS-small (d) and UM-EPS-big (e) for lead time T + 42h.Fore
ast probability of a

umulated pre
ipitationThe radar re�e
tivity for 06 UTC and 12 UTC 04.03.08 
an be seen in Figure 4.9. Un-fortunately at the time of the 
ampaign, the radar at Andøya was in its initial stage,therefore the radar re�e
tivity was not 
onverted to a

umulated pre
ipitation. Hen
e,the re�e
tivity instead of a

umulated pre
ipitation, is 
ompared with the fore
ast prob-ability. It is not 
lear whether the observed pre
ipitation seen in Figure 4.9a and b isasso
iated with the polar low or is a result of other weather phenomena. But anyhow,we want to see the e�e
t of the downs
aling, and then espe
ially if the skill in fore
asting
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ipitation is being improved. Obviously, we 
an only verify the pre
ipitation fore
astswithin observation radius of the radars, i.e. the 
oast region. From Andøya and downto Trøndelag there is high re�e
tivity at 06 UTC (Fig. 4.9a), whi
h means there is asigni�
ant amount of pre
ipitation. At 12 UTC (Fig. 4.9b) there is some pre
ipitationoutside Troms, but most pre
ipitation is seen further south, o� the 
oast in Trøndelag.Figure 4.9 also shows the fore
ast probability of a

umulated pre
ipitation > 2.5 mm/6hfrom LAMEPS (
), UM-EPS-small (d) and big (e) for the lead time T + 42h. All thethree systems have estimated probability > 0 in a large area outside the Norwegian 
oast.UM-EPS-big has 100% over a large region, mainly in the same pla
e as the strong windis predi
ted (Fig. 4.7), and also 
onsistent with observed pre
ipitation (outside Smøla).The small domain has 100% only over a very small area, but the area of lower estimatedprobability 
overs a large region. For LAMEPS there is 100% probability over land inthe Møre and Romsdal 
ounty, and a few grid points outside the 
oast of Nordland.Generally, LAMEPS has lower probability of a

umulated pre
ipitation > 2.5mm/6hover a smaller area than UM-EPS-small and big, but for all the systems the probabilityis lo
ated on the same pla
e. All the systems have some estimated probability outsideAndøya, but UM-EPS-big has the highest probability, up to 50%.Fore
ast probability of potential temperatureAs a result of the �ight 
ampaign, observations of several meteorologi
al parameterswere obtained. Next, we 
ompare the fore
ast probability of potential temperature withthe same 
ross se
tion as for wind speed. Figure 4.10a shows the verti
al 
ross se
tion ofobserved potential temperature from �ight 3. The warm 
ore of the polar low is evident,where the 
ontours are dipping down to the ground. Also as des
ribed in se
tion 2.3 wesee that the 
old air is found to the south and north of the 
ore. There were not anydi�eren
es between UM-EPS-small and big, therefore only the results from UM-EPS-bigare shown. Figure 4.10b and 
 shows the fore
ast probability of potential temperature> 280 K and 270 K, respe
tively. Going from south to north the 280 K 
ontour inthe observation 
ross se
tion starts at around 550 hPa and drops down to about 600hPa and end at 500 hPa. There is some spread between the ensemble members aroundsouthern boundary of the 
ross se
tion where we �nd the 280 K 
ontour, Figure 5.10b,but above about 550 hPa the estimated probability is 100%. The area of probabilityis dipping down, as for the 280 K 
ontour, but it does not go ba
k up again. Thisindi
ates that UM manages to reprodu
e the 
old air to the south, but it is too warmto the north. Furthermore, to see if the model 
aptured the very 
old air south of the
ore, the probability of potential temperature > 270 K is shown in Fig. 4.10
 (Theobserved 270 K 
ontour is found in the southern 
orner in Fig. 4.10a). There is somespread between the ensemble members where the 270 K 
ontour starts. Also, some ofthe members do not 
apture the very 
old air to the south, sin
e there are estimatedprobability > 0 of potential temperature >270 K.



4.3. FORECAST PROBABILITY COMPARED WITH CAMPAIGN DATA 51

(a)

(b)

(
)Figure 4.10: Cross se
tion of observed potential temperature from �ight 3 (a) and prob-ability of potential temperature > 280 K (b) and > 270 K (
) from UM-EPS-big at leadtime T + 42h. The 
ontour interval in (a) is 1 K.
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(a) (b)

(
) (d)Figure 4.11: MSLP ensemble mean and the spread of UM-EPS-small-lessverti
al (a)and UM-EPS-big-lessverti
al (
) at lead time T + 42h. The bla
k 
ontours are theensemble mean with 1 hPa 
ontours and the shading is the σ The di�eren
e of MSLPensemble mean and σ between UM-EPS-small and UM-EPS-small-lessverti
al (b) andUM-EPS-big and UM-EPS-big-lessveri
al (d).4.4 Perturbing the physi
s in the stable boundary layerThe operational 
on�guration of UM at met.no in
ludes a stability fun
tion whi
h al-lows for an enhan
ed verti
al mixing in the stable boundary layer. This is due to the
omplex orography over Norway, where the unresolved s
ales for
e more verti
al mixing.
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(a) (b)Figure 4.12: Fore
ast probabilities for Um-EPS-big-lessverti
al, where (a) shows proba-bility of wind speed > 25 m/s and (b) the probability of a

umulated pre
ipitation >2.5mm/6h.In Appendix A the boundary layer turbulen
e s
heme is des
ribed. The two domainsset up for this study are mainly over o
ean, and therefore additional experiments withUM-EPS-small and big have been performed with a stability fun
tion that yields lessverti
al mixing in the stable boundary layer (see Appendix A). These two new exper-iments will be referred to as UM-EPS-small-lessverti
al and UM-EPS-big-lessverti
al,respe
tively. It needs to be emphasized that the perturbation only a�e
ts the physi
sof the stable boundary layer.Perturbing the physi
s in UM-EPS-small had no e�e
t on the results. Figure 4.11ashows the ensemble mean and σ of MSLP for UM-EPS-small-lessverti
al, and Figure4.11b shows the di�eren
e between MSLP ensemble mean and σ of UM-EPS-small andUM-EPS-small-lessverti
al. From Figure 4.11b we see that there are not any large di�er-en
es between the two runs. This is also 
onsistent for the di�erent fore
ast probabilities(not shown).On the other hand, for UM-EPS-big the verti
al mixing had an impa
t on the fore-
asts. The ensemble mean and σ of MSLP from UM-EPS-big-lessverti
al are seen inFigure 4.11
, and Figure 4.11d shows the di�eren
e between UM-EPS-big and UM-EPS-big-lessverti
al. In Figure 4.11
 we see that in the experiment with less verti
al mixing,there is only one 
y
lone with a 
entral pressure of 988 hPa whi
h is a bit further souththan the 
y
lone in the original run. The di�eren
es between the two experiments arelargest 
lose to the 
oastline where the se
ond 
y
lone and the high σ was lo
ated in
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lose to where the polar low is observed is foundin both experiments. For the fore
ast probabilities there were some di�eren
es betweenUM-EPS-big and big-lessverti
al. The original run has larger area of high probabilitythan the perturbed run, and this is 
onsistent for all of the di�erent parameters. Figure4.12 shows the fore
ast probability of wind speed > 25 m/s (Fig. 4.12a) and a

umu-lated pre
ipitation > 2.5 mm/6h (Fig 4.12b) from UM-EPS-big-lessverti
al, 
omparedwith the original run, Figures 4.7
 and 4.9e, respe
tively, it 
an 
learly be seen that thearea of probability is in the same pla
e, but the region of high probability is larger forthe original run than the perturbed run.4.5 Tra
king Polar lowsIn this study the tra
king algorithm of Hodges (1994, 1995, 1998) has also been ex-plored. Its implementation and modi�
ation in order to tra
k polar lows was des
ribedin se
tion 3.2.2. Figure 4.13 shows all the tra
ks from every member (left panels) andthe strongest tra
k from ea
h member (right panels) from the four experiments pre-sented in this study. First looking at the left panels, we see that the runs done withthe small domain have fewer tra
ks than the runs from the big domain and also thatthey 
over a smaller geographi
al area. The former is 
onsistent with the MSLP poststamp images, where we saw that UM-EPS-big tend to have more 
losed 
ontours thanUM-EPS-small. The latter is just a result of a smaller domain. However, the tra
ksfrom the two di�erent ensemble systems are mainly pla
ed in the same area. Moreover,there are no signi�
ant di�eren
es in the lo
ation of the tra
ks between the perturbedphysi
s runs and unperturbed runs.The lo
ation of the tra
ks between the two systems 
hanges when only the strongesttra
k is sele
ted. First looking at UM-EPS-big and big-lessverti
al, we see that the for-mer have more tra
ks 
loser to the 
oastline outside Andøya than the latter. In addition,it is more spread between the tra
ks in the original run 
ompared to the perturbed run.For UM-EPS-small and small-lessverti
al there is also a 
hange in the lo
ation of thetra
ks. There are more tra
ks further west in the domain for UM-EPS-small than foundin the perturbed run. This is in 
ontradi
tion to the results from MSLP ensemble mean,
σ and di�erent fore
ast probabilities where there were no signi�
ant di�eren
es betweenthe two experiments. Comparing the tra
ks with the observations, Figs. 2.4 and 2.5,the lo
ation of the strongest tra
ks for all the systems are 
lose to the area where theobserved polar low propagated.In addition, se
tion 3.2 presented a method to fore
ast the probability of polar lowsand their tra
ks analogous to the strike probability map at ECMWF. The results 
anbe seen in Figure 4.14. From Figure 4.14 it 
an 
learly be seen that ea
h system hasthe strongest tra
ks in di�erent positions. UM-EPS-big has a higher probability of apolar low 
lose to the 
oast outside Andøya, and the same is seen for UM-EPS-smalllessverti
al. UM-EPS-small have more tra
ks further west in the domain. Comparingall the four runs, it seems as though UM-EPS-big-lessverti
al has the smallest spreadbetween the members.
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(a) UM-EPS-big (b) UM-EPS-big

(
) UM-EPS-big-lessverti
al (d) UM-EPS-big-lessverti
al

(e) UM-EPS-small (f) UM-EPS-small

(g) UM-EPS-small-lessverti
al (h) UM-EPS-small-lessverti
alFigure 4.13: Results from the tra
king algorithm. Left panel shows all the tra
ks fromall the members from all the four runs done, and in right panel the strongest tra
k inevery member is extra
ted.
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(a) UM-EPS-big (b) UM-EPS-big-lessverti
al

(
) UM-EPS-small (d) UM-EPS-small-lessverti
alFigure 4.14: Fore
ast probability of polar lows and the position within a square of 48 km
× 48 km during the next 60 hours.



Chapter 5Summary and Dis
ussionsIn this experiment LAMEPS has been downs
aled with the non-hydrostati
 model UM,and two new domains have been set up with the purpose to see how the integrationsize a�e
t the predi
tion. LAMEPS is run with the quasi-hydrostati
 model HIRLAMwhere it employs 12 km grid spa
ing and 60 levels. The two UM domains both havea horizontal grid mesh of 4 km and 38 levels. The predi
tability of extreme weatherhave been investigated related to a polar low event that was extensively observed duringthe IPY-THORPEX 
ampaign (IPY-THORPEX, 2009). Regular observation data andobservation data from the 
ampaign have been 
ompared with the ensemble mean andthe spread between the members in addition to the probability of di�erent parameters.Further, two new methods to analyze the model outputs have been 
arried out: Pseudosatellite images and a tra
king algorithm to tra
k polar lows path. The following is asummary of the main �ndings:� The MSLP of UM-EPS-small and big diverge with lead time. Stamps imagesshow, to a great extent, large spread between ea
h member for both systems atlead time T + 42h, but the spread is larger for UM-EPS-big. There are severalvorti
es in every member for both systems, however, the members in UM-EPS-bigtend to have more 
losed 
ontours than UM-EPS-small.� The pseudo satellite images show for both systems 
onve
tive 
louds west in thedomains as a result of the 
old air outbreak. However, for both systems there islargest spread between ea
h member in the area where there is a 
y
loni
 stru
ture.� The di�eren
es between the members in UM-EPS-small and big for MSLP andpseudo satellite images are largest in the area of the observed polar low.� In the early range of the fore
ast the ensemble mean and the 
ontrol run for UM-EPS-small and big have a similar solution, and thus with in
reasing lead time theygradually diverge. At lead time T+42h, the ensemble mean from UM-EPS-smalllooks very similar to LAMEPS, whereas UM-EPS-big looks more dissimilar. UM-EPS-big has developed two 
y
lones, 
ompared to only one in UM-EPS-small andLAMEPS. σ also in
reases with lead time for the three systems, and at T+42h itis largest in the area of the observed polar low and also where the strong wind ispredi
ted. 57



58 CHAPTER 5. SUMMARY AND DISCUSSIONS� The estimated fore
ast probability of wind for LAMEPS, UM-EPS-small and bighave high probability of strong wind for the lead times T + 18h, T + 24h and T+ 42h, 
onsistent with the observed wind from the �ights. However, UM-EPS-bighas a larger area of high probability than LAMEPS and UM-EPS-small. Wind upto 28 m/s was observed for lead time T+42h, and for the threshold wind speed>25 m/s, LAMEPS had no area where all of the members predi
ted wind with thisstrength, UM-EPS-small had only a small region and UM-EPS-big had the largestregion with high estimated probability. The verti
al 
ross se
tion of probability ofwind also shows that more members in UM-EPS-big than UM-EPS-small predi
tsstronger wind.� The estimated fore
ast probability of a

umulated pre
ipitation shows there is agreat advantage in
reasing the horizontal grid resolution in addition to using anon-hydrostati
 model. The three systems (LAMEPS, UM-EPS-small and big)have the region of estimated probability > 0 at the same pla
e, but LAMEPS hasthe lowest estimated probability and UM-EPS-big has highest estimated proba-bility. The only pla
e to verify the model results against observations is alongthe Norwegian 
oast. In the area where there is observed pre
ipitation, an es-timated probability > 0 of pre
ipitation is fore
asted for all three systems, andUM-EPS-big has the highest estimated probability.� There were small di�eren
es between UM-EPS-small and big for estimated proba-bility of potential temperature. The potential temperature probability shows thatUM tends to have some di�
ulty in reprodu
ing the warm and 
old adve
tion atthe surfa
e. At lead time T+42h, the model reprodu
es the 
old air to the souththat has been adve
ted from the north. However, some of the members tend tohave di�
ulties in produ
ing the very 
old air (270K). Also, the 
old air that hasbeen adve
ted all the way to the north of the 
ore is not seen in the model results.In this region, the model is warmer than observed.� When looking at the ensemble mean and fore
ast probabilities, perturbing thephysi
s in the stable boundary layer only led to di�eren
es in UM-EPS-big, wherethe se
ond 
y
lone found in the ensemble mean of the original run was removedfrom the perturbed run. Also, the area of high probability of strong wind and heavypre
ipitation was redu
ed for UM-EPS-big-lessverti
al 
ompared to the originalrun.� The tra
king algorithm showed that UM-EPS-small and big (perturbed and un-perturbed) lo
ated the di�erent ensemble tra
ks mainly in the same region. How-ever, when extra
ting the strongest tra
k, there was a 
hange in the lo
ation ofthe tra
ks for the four di�erent experiments. This means that the strength andlo
ation of the vorti
ities is very sensitive to the domain size and the physi
alparameterization.The new information added by UM-EPS-big is highly improved, espe
ially for a longerlead time. The di�eren
es between UM-EPS-big and LAMEPS are smaller in the earlyrange of the fore
ast and for a lower probability threshold (see Fig. 4.6) than for lead



59time T+42h, where there is a higher probability of extreme weather (e.g. strong wind;Fig. 4.7 and heavy pre
ipitation; Fig. 4.9). The small domain seems to be too smalland therefore is more restri
ted by LAMEPS than the big domain. However, there issome improved predi
tability for UM-EPS-small 
ompared to LAMEPS for longer leadtime, but the amount of new information added is not as enhan
ed as for UM-EPS-big.The improvements in the fore
ast seen in Fig. 4.7 and 4.9 for UM-EPS-small and bigare evident, but with limitations of solutions asso
iated with a smaller domain.In addition to the sensitivity of the domain size, the results show that the physi
alparameterization also a�e
ts the fore
ast. The perturbation of the SBL had the largeste�e
t on the big domain, where the de
rease in verti
al mixing in the SBL redu
edthe area of high probability for strong wind and pre
ipitation and removed the se
ond
y
lone in the original run. Interesting results were also found when the tra
king algo-rithm was performed on the outputs from the di�erent runs. The perturbation a�e
tedthe lo
ation of the strongest tra
ks in every member. There were more tra
ks 
loserto the 
oastline and a larger spread between the tra
ks in the original set up than theperturbed run for the big domain. The warm air se
tion is found 
lose to the 
oastlinein the early range of the fore
ast. When the atmosphere is warmer than the ground(here the o
ean), the air be
omes more stable, and this is why the e�e
t of perturbingthe SBL parameterization is largest in this region, when 
ompared to where there is a
old air outbreak and more unstable air masses.For the small domain there was also a 
hange in the lo
ations of the strongest tra
ksbetween the perturbed and unperturbed experiments, whi
h is parti
ularly interestingsin
e there were no large di�eren
es in the ensemble mean and fore
ast probabilities.This emphasizes the fa
t that when downs
aling, the domain is very sensitive to thesize and lo
ation as well as the physi
al representation. The sensitivity of the strengthof the vorti
ity is 
learly seen in Figure 4.14, whi
h shows the fore
ast probability of apolar low and the positions within a square of 48km × 48km during the next 60 hours.All four experiments have the strongest tra
ks in a di�erent region. Note that there aresome dissimilarities between Figure 4.14 and the strike probability map at ECMWF.For instan
e, if a polar low does not propagate far enough within the next time frame,there will be high probability in that area.UM-EPS shows improvements in produ
ing pre
ipitation 
ompared to LAMEPS (seeFig. 4.9) However, 4 km horizontal grid spa
ing is still too 
oarse to adequately representdeep 
onve
tion. UM run with 4 km resolution has the 
onve
tion partly parameterizedand partly 
al
ulated expli
itly (see the 
onve
tion s
heme des
ribed in Appendix A).This is done on the basis that the 
onve
tion 
annot be expli
itly resolved at 4 kmsin
e the 
onve
tive updraft may o

ur on a smaller s
ale, and the assumption for theparameterization is not valid with 4 km grid spa
ing (Deng and Stau�er, 2006). Thisyields 
onve
tive rainfall di�
ult to predi
t in 4 km models. Previous studies performedwith UM shows that a 4 km model do not have the same level of performan
e in pre-di
ting pre
ipitation as a 1 km model, where the 
onve
tion is only 
al
ulated expli
itly(Roberts and Lean, 2007; Lean et al., 2008).



60 CHAPTER 5. SUMMARY AND DISCUSSIONSThe results presented here are 
onsistent with Xue et al. (2007) whi
h suggests thatfor dynami
al downs
aling, there may be an optimal domain size under 
ertain 
limate
onditions. However, these results also show that there is a large spread between theensemble members in all the systems. The spread between the members was largestin the area where the observed polar low developed. This emphasizes the relation be-tween unpredi
tability and physi
al-dynami
al instability. This is why a probabilisti
approa
h is superior to a single deterministi
 method when fore
asting polar lows andother fast developing systems.



Chapter 6Con
lusions and ideas for further workThe main �ndings in this study indi
ate that the predi
tability in a limited area fore
astof a polar low is highly sensitive to resolution, domain size and physi
al des
riptions inthe model. By in
reasing the resolution from 12km to 4km, UM-EPS shows improve-ments in the results 
ompared to LAMEPS. However, the improvements are 
ru
iallydependent on the domain size. A larger domain provides more information it the fore-
ast. In addition, the model results are sensitive to the physi
al representation of thestable boundary layer. The fore
ast from the big domain has highest sensitivity.The e�e
t of the downs
aling is largest for extreme weather in the late phase of thefore
ast, when the results from the big domain agree the most with the observations.This shows that the time of warning of a high impa
t weather event 
an be in
reased byemploying a very high resolution, limited area ensemble predi
tion system. Neverthe-less, it is evident that results from the small domain are more 
onstrained by LAMEPSthan those of the big domain. This indi
ates that when setting up a new limited areadomain for downs
aling, a 
areful 
onsideration of the size and lo
ation of the domain isneeded. It is not given that a smaller domain yields a better fore
ast even with higherresolution. A 
ombination of the domain size and the information enhan
ements needsto be 
onsidered, along with the 
ost of running very high resolution models.In this study, two new methods to verify the model results against observation datahave been 
arried out. These two methods have great potential and need to be fur-ther explored. The pseudo satellite images show promising results, and 
ompared toHIRLAM pseudo satellite images, the advantage of in
reasing the horizontal resolutionis evident. In the near future it is planned to utilize the pseudo satellite images methodfor UM outputs in operational weather fore
asting in the same manner as HIRLAMpseudo satellite images are used today. For the tra
king algorithm, only a small partof the valuable information obtained was explored here. The spatial and temporal dis-tributions of the genesis or lysis of the 
y
lones was not investigated, neither was thedi�erent strengths of the tra
ks. As des
ribed in se
tion 3.2.2, the additional 
onstraintsintrodu
ed by Zahn and Stor
h (2008) did not redu
e the number of dete
ted tra
ks.If even further additional 
onstraints along ea
h individual tra
k were introdu
ed, thenumber of tra
ks 
ould be redu
ed. New 
onstraints may in
lude requiring the featurepoints to have a strong verti
al velo
ity within a sear
h radius, or demanding a reversed61



62 CHAPTER 6. CONCLUSIONS AND IDEAS FOR FURTHER WORKwind shear to be present. These two 
riteria are typi
ally 
hara
teristi
 of polar lows,and in this manner the falsely identi�ed vorti
es 
ould be ex
luded.The e�e
t of the improved initial 
onditions has not been investigated in detail in thisstudy. However, preliminary results (from di�erent studies, not presented here) showthat targeting observations 
an either improve the fore
asts or damage the fore
asts. Inorder to investigate whether the improved initial 
onditions have enhan
ed or worsenedthe results, ensemble systems should be run and analyzed. It is not su�
ient to run adeterministi
 fore
ast, for one 
annot know whether the results agreeing with observa-tions are a result of skill or lu
k. It would be interesting to do this experiment with aninitial time 24 hours later, i.e. 18 UTC 03.03.08. At this time the observed polar lowwas in the analysis.To des
ribe deep 
onve
tion adequately with a NWP model, a horizontal resolutionon the order of 1-2 km is ne
essary. Therefore further experiment may in
lude perform-ing this 
ase study with UM run on 1 km horizontal grid mesh. Also, sin
e UM is runwith only 38 verti
al levels 
ompared to 60 in HIRLAM, it would be interesting to runUM with 70 verti
al levels, whi
h is the number of levels in the most re
ent version ofUM. Also, for future work, it 
ould be interesting to only downs
ale the members thatspan the most spread, instead of all the members. This will redu
e the 
ost of runningall the ensemble members. In addition, by 
ombining the members from the experimentswith the original setup and the perturbed run (lessverti
al), a new ensemble system with40+2 members will be obtained. In this way model un
ertainty would be in
luded.These results indi
ate that the limited area fore
asts are sensitive to domain size andphysi
al des
riptions. However, we have only performed the ensemble fore
asts on one
ase. Several 
ases should be performed to a
hieve 
on�den
e in the results.



Appendix AParameterization s
hemes in UMBoundary layer turbulen
e:Boundary layer turbulen
e is parameterized with the s
heme of Lo
k et al. (2000).The s
heme des
ribes the �uxes above the surfa
e and it is parameterized over 13 modellayers. The boundary layer 
an be stable, unstable or neutral depending on the di-re
tion of the heat-�ux between the ground and the atmosphere. Its 
onditions aredependent on the diurnal 
y
le as well as the weather 
onditions. The turbulent �uxes
an be 
al
ulated for momentum or the s
alars of heat, and it is parameterized with theequation:
w′x′ = −Kx

dx

dz
, (A.1)where Kx is the verti
al eddy di�usivity for x (i.e. heat, momentum), w is the verti
alvelo
ity and z is the height above the surfa
e. Kx is parameterized with respe
t on thestate of the boundary layer. The primes on w

′ and x
′ signi�es eddy deviations due toturbulen
e, and the Reynolds averaging is denoted with an overbar.The unstable boundary layer is 
hara
terized by strong verti
al ex
hange and there-fore the layer is well mixed and the eddy di�usivity parameter is then 
al
ulated froma shape fun
tion whi
h spans the depth of the boundary later.In the stable boundary layer, the verti
al ex
hange is suppressed and this allows thelayer to be more strati�ed and shallower than under unstable 
onditions. With thePrandtl number, Pt, the eddy di�usivity for the momentum (Km) and heat (Kh) isrelated, i.e. Pt = Km/Kh. In UM the set-up assumes Pt = 1, whi
h yields Km = Kh.The di�usivity for momentum and heat are then expressed as:

Kx = λ2Sf(Ri), (A.2)where S is the verti
al wind shear, λ is a mixing length, and f is a stability fun
tionwhi
h de
ays with in
reasing Ri
hardson number (Ri). Ri is a fun
tion des
ribing thestability and the verti
al wind shear in the atmosphere (Ri = static−stability

(wind−shear)2
). M
Cabe andBrown (2007) did a study where they investigated the e�e
t of the surfa
e heterogeneityon the verti
al mixing in the stable boundary layer. They suggested that areas with63



64 APPENDIX A. PARAMETERIZATION SCHEMES IN UMlittle orographi
 variability indu
e less verti
al mixing in the SBL than areas with more
omplex topography. The verti
al mixing in UM 
an be set by 
hoosing between twostability fun
tions, the long tail fun
tion and the sharp tail fun
tion. They are bothdependent on Ri and des
ribe the verti
al mixing in the layer. The long tail fun
tion isgiven by:
flong−tails(Ri) =

1

1 + 10Ri
(A.3)And the sharp fun
tion of King et al. (2001) is

fsharp(Ri) =







(1 − 5Ri)2 0 ≤ Ri < 0.1,
(

1
20Ri

)2

Ri ≥ 0.1.
(A.4)Sin
e the long tail fun
tion de
ays more slowly than the sharp tail fun
tion with in
reas-ing Ri, the long tail fun
tion yields more mixing in the stable boundary layer. ThereforeUM in operational use at met.no is run with the long tail fun
tion whi
h yields enhan
edverti
al mixing in SBL. This is due to the 
omplex topography in Norway. The two do-mains used in this study are mainly over o
ean, therefore the sharp tail fun
tion shouldbetter represent the stable boundary layer. For this reason we have performed an extraset of experiments, where the sharp fun
tion is 
hosen.The 
onve
tion s
heme:The 
onve
tion s
heme in UM represent the transport of heat, moisture and momentumasso
iated with 
umulus 
onve
tion within a grid box and it is based on the 
onve
tions
heme of Gregory and Rowntree (1990). The 
onve
tion is parameterized with a CAPE(Conve
tive Available Potential Energy) based buoyan
y 
losure s
heme, where 
onve
-tive momentum transport is in
luded, and a radiative representation of anvil 
louds. Thes
heme is modi�ed by Roberts (2003) where the mass �ux at the 
loud base is limited.This is done on the basis where 4-km models tend to have a di�erent behavior a

ordingto whether or not the 
onve
tive parameterization is in
luded (Lean et al., 2008). Whenthere is no 
onve
tion parameterized, the model organizes the pre
ipitation in a goodway, but tends to delay the 
onve
tive initiation and then produ
e too few showers.This results in too heavy showers and too mu
h pre
ipitation is produ
ed. Also, expli
it
onve
tion may not produ
e pre
ipitation when only small showers are expe
ted. Withthe standard 
onve
tion parameterization in
luded, the showers are not always expli
-itly represented sin
e the instability required is removed by the parameterization. Thisyields poor organization and underestimation of the showers. The s
heme modi�ed byRoberts (2003) allows the large showers in the model to be generated expli
itly, butstill the weaker 
onve
tive 
louds are represented. In the study of Lean et al. (2008)these di�erent ways to represent the 
onve
tion were investigated, and when 
omparedwith observation data, the modi�ed 
onve
tion s
heme had, to some extent, a delay inthe initiation of pre
ipitation due to spin up e�e
t, but aside from that it showed anapparent advantage.



65The large s
ale 
loud s
heme and large s
ale pre
ipitation s
heme:UM uses the 
loud s
heme of Smith (1990), whi
h is based on a statisti
al parameteri-zation method. The growth or de
ay of a 
loud droplet radius 
hanges instantaneouslyin water vapor or saturation, and the �u
tuations about the grid-box mean vapor andliquid water 
ontent are parameterized with a symmetri
 triangular probability densityfun
tion (PDF). In addition there is a pres
ribed 
riti
al value of relative humidity,
RHcrit, whi
h RH needs to ex
eed before 
louds 
an form. The 
loud s
heme of Smith(1990) has also been modi�ed to in
lude i
e 
loud 
onsistent with the Wilson and Ballard(1999) mi
rophysi
s s
heme (also 
alled the large s
ale pre
ipitation s
heme). This in-volves a method whi
h represents the mixed phase 
loud 
over mi
rophysi
s, and in thisway; vapor, 
loud water, i
e and rain are treated as prognosti
 variables, and des
ribesthe moisture in the atmosphere. The mi
rophysi
al pro
esses are treated as transferterms between water vapor, 
loud water, rain and i
e and in this manner the large s
alepre
ipitation s
heme des
ribes the downward transfer of water in the atmosphere.The radiation s
heme:The radiation s
heme des
ribed by Ingram et al. (2004) in
ludes short (SW) and long(LW) wave radiation. In the atmosphere SW and LW are to a high extent s
attered, andit is very expensive to 
al
ulate all the dire
tions of the radiation. By making approx-imations about the angular distribution of the radiation, the SW and LW are treatedas downward and upward �ux, respe
tively. The radiation s
heme also in
ludes 
loudmi
rophysi
s.Sub surfa
e, surfa
e and layer pro
esses:Sub-surfa
e, surfa
e and layer pro
esses are parameterized with the MOSES 2.2 s
hemewhi
h des
ribes the �uxes of heat, momentum, moisture and 
arbon at the surfa
e andit is based on the s
heme of Essery et al (2001). The s
heme in
ludes nine di�erentsurfa
e types over 4 subsurfa
e levels, and the surfa
e energy balan
e is 
al
ulated atea
h grid point, respe
tively for ea
h surfa
e type. The surfa
e temperature (T0m) is
al
ulated from the surfa
e energy balan
e.Other pro
esses:In addition in UM there is a gravity wave s
heme, whi
h in
ludes �ow blo
king andorographi
 drag. Aerosol modeling is not in
luded in the setup used here.
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