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Abstract

Background: The role played by microRNAs in the deregulation of protein expression in breast cancer is only
partly understood. To gain insight, the combined effect of microRNA and mRNA expression on protein expression
was investigated in three independent data sets.

Methods: Protein expression was modeled as a multilinear function of powers of mRNA and microRNA expression.
The model was first applied to mRNA and protein expression for 105 selected cancer-associated genes and to
genome-wide microRNA expression from 283 breast tumors. The model considered both the effect of one
microRNA at a time and all microRNAs combined. In the latter case the Lasso penalized regression method was
applied to detect the simultaneous effect of multiple microRNAs.

Results: An interactome map for breast cancer representing all direct and indirect associations between the
expression of microRNAs and proteins was derived. A pattern of extensive coordination between microRNA and
protein expression in breast cancer emerges, with multiple clusters of microRNAs being associated with multiple
clusters of proteins. Results were subsequently validated in two independent breast cancer data sets. A number of
the microRNA-protein associations were functionally validated in a breast cancer cell line.

Conclusions: A comprehensive map is derived for the co-expression in breast cancer of microRNAs and 105 proteins
with known roles in cancer, after filtering out the in-cis effect of mRNA expression. The analysis suggests that group
action by several microRNAs to deregulate the expression of proteins is a common modus operandi in breast cancer.
Background
Since the initial discovery of microRNAs (miRNAs)
as post-trancriptional regulators of gene expression, a
complex network of coordinate regulatory interactions
between miRNAs and mRNAs has been unravelled (see,
for example, [1]). Causal links between miRNA dysregu-
lation and tumor development have been established in
breast cancer and other types of cancer. In breast cancer,
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the expression of some miRNAs is related to the mo-
lecular subtypes as defined by mRNA expression [2,3],
while other miRNAs appear to be expressed independ-
ently of gene expression-based subtypes. The two main
mechanisms by which miRNAs directly regulate protein
expression are through mRNA degradation and transla-
tional inhibition [4]. Some studies suggest that miRNAs
can upregulate the expression of a subset of proteins in
a given RNA sequence context and under certain cellu-
lar conditions, such as quiescence, or even induce
expression by binding to complementary promoter ele-
ments [5]; however, the predominant effect of direct
miRNA regulation is a decrease of mRNA target levels
[6]. The molecular signature of miRNA regulation
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depends on the mode of regulatory action, as illustrated
in Additional file 1. In particular, miRNA destabilization
of an mRNA affects the mRNA level, while the mRNA-
protein response curve remains the same. On the other
hand, miRNA repression of protein translation does not
affect the mRNA level per se, but the slope and poten-
tially the shape of the protein response curve will
change.
Indirect effects of miRNAs on protein expression are

likely to be abundant. For example, interventions by
miRNAs can, in principle, occur at any stage of a signal-
ing pathway [7] and may include the involvement of
miRNAs in feedback loops and feedforward cascades
with transcription factors and signaling molecules [8].
Network focused studies have emphasized the interplay
between miRNAs and transcription factors and have
revealed how miRNAs play pivotal regulatory roles in
disease-specific subnetworks such as those found in
breast cancer [9]. Direct and indirect effects of miRNAs
can involve joint regulation of multiple genes by a single
miRNA species and joint regulation of a single gene by
multiple miRNAs. The importance of mapping such re-
lationships is suggested by studies showing that miRNAs
can have a relatively weak regulatory effect on individual
proteins [10,11], and at the same time a strong effect on
the pathway activation level by coordinately targeting
multiple genes in the same pathway [12].
The main goal of this study was to examine the global

pattern of association between whole-genome miRNA
expression and the expression of selected proteins in
breast cancer. An association in this context translates
to a mode of variation in miRNA expression that is
reflected in a corresponding mode of variation in protein
expression. While causality cannot be inferred from such
associations, the totality of associations reflects the de-
gree of coordination between the miRNAs and the pro-
teins and represents an upper bound on the number of
strong causal direct and indirect links between miRNAs
and proteins. Adjusting for mRNA expression when
assessing the relationship between protein expression
and miRNA expression (thus considering three different
molecular levels at the same time) is an important fea-
ture of the proposed approach. Failure to account for
the commonly strong effect of mRNA expression on
protein expression may lead to serious overestimation of
the effect of miRNAs on protein expression in cases
where the miRNA expression correlates with mRNA ex-
pression. By including mRNA expression in the model,
this potential confounder effect is accounted for, and as
a result the risk of reporting false positive associations
between miRNAs and proteins is reduced. Whole-
genome miRNA expression profiles were analyzed with
respect to the mRNA/protein levels of 105 genes
with known relevance in cancer. To detect effects of
individual miRNAs on protein expression, the often
strong and potentially correlated effects of in-cis mRNA
expression on protein expression were separated out by
modeling protein expression as a joint function of in-cis
mRNA and whole-genome miRNA expression. The ef-
fect of individual miRNAs, as well as multiple miRNAs
simultaneously, was assessed.

Methods
An outline of the approach for assessing the effect of
miRNAs on protein expression is shown in Additional
file 2. Tumors from 283 primary breast cancer patients
belonging to the Oslo2 cohort were profiled for
genome-wide miRNA and mRNA expression using
Agilent microarrays (Agilent Technologies, Santa Clara,
CA, USA), as well as for protein expression using
reverse-phase protein arrays (RPPA) [13] for a selected
panel of 105 cancer-related proteins. The Oslo2 study is
a consecutive study collecting material from breast can-
cer patients with primary operable disease (cT1 to cT2)
in several hospitals in south-eastern Norway. Inclusion
of patients started in 2006 and is still ongoing. The study
was approved by the Norwegian Regional Committee for
Medical Research Ethics (approval number 1.2006.1607,
amendment 1.2007.1125), and patients have given
written consent for the use of material for research pur-
poses. All experimental methods performed are in com-
pliance with the Helsinki Declaration. All computational
analyses were performed in R [14] unless otherwise spe-
cified. See Additional file 3 for details about the miRNA,
mRNA and protein expression profiling and in silico
miRNA target predictions. The miRNA and mRNA ex-
pression data have been submitted to the Gene Expression
Omnibus (GEO) database as a SuperSeries record with
accession number GSE58215. The protein expression data
can be found in Additional file 4.
Two independent breast cancer data sets with miRNA,

mRNA and protein expression data available were
used for model validation. The Danish Breast Cancer
Cooperative Group (DBCG) cohort [15] had available
data from these three levels for 128 primary breast
tumors. The mRNA expression (Applied Biosystems,
Foster City, CA, USA) and protein expression (RPPA) data
were published in [16], and the miRNA expression data
(Agilent Technologies) were published in [17]. For The
Cancer Genome Atlas (TCGA) data, miRNA and mRNA
sequencing data (Illumina, San Diego, CA, USA) and
RPPA expression data published in [18] were downloaded
from Broad GDAC Firehose (accessed 15 January 2014).
Molecular data for all three levels were available for 395
primary breast tumors. Altogether, 348 miRNAs and 34
proteins overlapped the Oslo2, DBCG and TCGA data
sets, and these overlapping miRNAs and proteins were
considered when comparing the data sets.
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Modeling the relationship between miRNA, mRNA and
protein expression
In order to make results comparable across mRNAs,
miRNAs and proteins, all expression values were stan-
dardized to the same range after and in addition to or-
dinary normalization (Additional file 3). If X1, X2, … , Xn

are the expression values (not log2-transformed) for a
miRNA, mRNA or protein, then standardized values are
defined as:

X�
i ¼ Xi−min Xið Þð Þ= max Xið Þ−min Xið Þð Þ þ δ0

where δ0 > 0 is a small constant ensuring that the resulting
values are positive and thus eligible to log-transformation
(we used δ0 = 0.1).
In order to model protein expression as a function of

mRNA expression (disregarding for the moment all
other factors that may influence protein expression), a
decision has to be made regarding the form of the func-
tional relationship. Here, we first derive mathematically
a linear model for this relationship under very simplistic
conditions (to be outlined), and this model is subse-
quently generalized to encompass a large and more
realistic range of relationships. At any time, a propor-
tion of mRNA is translated into protein and a propor-
tion of protein degrades. Mathematically, this can be
modeled as:

P′ tð Þ ¼ aE tð Þ − bP tð Þ
where P(t) and E(t) denote protein and mRNA expres-
sion levels, respectively, at time t. Here, P’(t) denotes the
derivative of P(t), and a > 0 and b > 0 are gene/protein-
specific rates of translation and degradation, respectively.
We assume that gene expression is relatively constant,
that is, E(t) = E, over the short time interval required for
the protein expression to fixate, leading to a first-order
linear differential equation with constant coefficients
and with solution (see, for example, [19]):

P tð Þ ¼ a=bð ÞE þ C exp −btð Þ
It follows that the protein expression equals P = (a/b) ⋅ E

after fixation. This important relationship implies that the
protein expression will be proportional to the mRNA ex-
pression, with a constant of proportionality depending only
on the ratio of the rates of translation and degradation.
This ratio will be allowed in the present study to depend
on the expression of miRNAs. Considering first the de-
pendency on one miRNA, a flexible and convenient model
encompassing the above relationship is:

P ¼ C⋅Mβ⋅Eγ ð1Þ
where M denotes the expression of the miRNA and β and
γ are coefficients to be estimated. For example, β = −1 and
γ = 1 implies that the protein level is proportional to the
mRNA level and inversely proportional to the miRNA level
(consistent with, for example, an inhibitory effect on
translation). Other combinations of parameter values per-
mit the model to adapt to other functional relationships.
The model for dependency on multiple independently
acting miRNAs is:

P ¼ C⋅Mβ1
1 ⋅⋅⋅⋅⋅Mβ421

421 ⋅E
γ ð2Þ

Here, M1, …, M421 denote the expressions of the miR-
NAs, and the coefficients β1, …, β421 are the effects of
the miRNAs (with βk = 0 implying no effect of the kth

miRNA). The above equation may be interpreted as
follows: the quantity Eγ reflects the net amount of tran-

scripts, and the quantity Mβ421
421 is the effect on protein

expression caused by the 421st miRNA and so forth.
Finally, the constant C reflects underlying properties of
the gene that might influence the rate of translation/
degradation.

Model fitting
To fit the above models to the data, it is more conveni-
ent to consider log-transformed equations. For model 1
this becomes:

logP ¼ αþ β logMk þ γ logE þ ε ð3Þ
Here, the index k denotes a specific miRNA and the

error term ε emphasizes the statistical nature of the rela-
tionship. For each combination of a protein and a
miRNA, we fit the model above to the samples using

linear regression and obtain estimates α̂ij; β̂ij; γ̂ ij and

corresponding P-values for the i’th protein and the j’th

miRNA. Considering all N estimated miRNA effects β̂ij

on protein expression, we calculate for any given P-value
threshold P* the number S of significant effects. An esti-
mate of the corresponding false discovery rate (FDR)
can be found by dividing the expected number of false
positives by the number of actual positives. The most
conservative estimate for the FDR is found by assuming
that the tests are independent and that all the N null hy-
potheses are true, in which case the expected number of
false positives is the number of tests times the chosen
level of significance. This leads to the estimate FDR =
(NP*)/S. The P-value threshold was chosen to ensure
FDR ≤0.01.
For the multivariate model involving all miRNAs, the

log-transformed equations become:

logP ¼ αþ
X421

j¼1

βj logMj þ γ logE þ ε ð4Þ

and we fit the model for each protein to obtain estimates

α̂i; β̂ij; γ̂ i . A mild restriction was enforced on the model
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by constraining regression coefficients found to be nom-
inally nonsignificant (P > 0.01 with no correction for
multiple comparisons) in the univariate model to be
zero. A penalized least squares regression scheme was
then used to accommodate the large number of coeffi-
cients to be estimated. Several methods exist for this
purpose; here, the Lasso was chosen (as implemented
in the R package GLMnet [20]) because this method
also implicitly performs variable selection. The Lasso im-
poses a penalty on the parameters during likelihood
optimization, essentially constraining the magnitude of
the sum of the absolute values of the parameter values
to be small [20]. The trade-off between goodness-of-fit to
the data and low penalty is determined by a penalty par-
ameter; the value of this parameter was determined using
cross-validation. The variables selected by the Lasso are
informally analogous to the significant coefficients in the
univariate model. For brevity, the non-zero coefficients in
the multivariate model were denoted significant effects.

Detection of coordinated effects of miRNAs
Let B denote the 105 × 421 table of miRNA coefficients
found in Oslo2 with either the univariate or the multi-
variate model described above. Assuming that rows and
columns in the table are ordered appropriately, coordi-
nated effects of multiple miRNAs on a group of proteins
are detectable as a block of significant miRNA coeffi-
cients of the same sign. To visualize this, we used a
heatmap to display the miRNA coefficients listed in
Additional file 4C, ordering rows and columns with hier-
archical clustering based on Pearson correlation and
complete linkage. Clusters were then identified with the
Partitioning Algorithm using Recursive Thresholding
(PART) method available in the package clusterGenomics
in the Comprehensive R Archive Network (CRAN). For
more details, see [21].

miRNA library screen by RPPA
The MDA-MB-231 cell line was received from the
Characterized Cell Line Core Facility at the MD Anderson
Cancer Center. This cell line was authenticated on 10
April 2014 by the short tandem repeat method, which was
performed in the Characterized Cell Line Core Facility,
and the results demonstrated perfect match to the NCI
public database.
The miRIDIAN 13.1 miRNA library was designed

and synthesized by Dharmacon (Lafayette, CO, USA).
MDA-MB-231 cells (5,000 cells/well) were transfected
with miRNA mimics (50 nM) in 96-well plates using
DharmaFECT transfection reagent (Dharmacon), accord-
ing to the manufacturer’s instructions. For RPPA analysis,
cells were lysed 72 h after transfection and cellular proteins
were denatured by 1% SDS (with beta-mercaptoethanol)
and diluted in five two-fold serial dilutions in dilution
buffer (lysis buffer containing 1% SDS). Serial diluted ly-
sates were arrayed on nitrocellulose-coated slides (Grace
Biolab, Bend, Oregon, USA) by Aushon 2470 Arrayer
(Aushon BioSystems, Billerica, MA, USA). A total of 5,808
array spots were arranged on each slide, including the
spots corresponding to positive and negative controls pre-
pared from mixed cell lysates or dilution buffer, respect-
ively. Each slide was probed with a validated primary
antibody plus a biotin-conjugated secondary antibody.
Only antibodies with a Pearson correlation coefficient be-
tween RPPA and western blotting of greater than 0.7 were
used in the RPPA study. The signal was obtained and the
slides scanned, analyzed and quantified as described under
the ‘Protein expression profiling’ paragraph in Additional
file 3. The RPPA data were normalized to the controls,
log2-transformed and converted into standard scores by
subtracting the mean of the whole screen (for a given anti-
body) and dividing by the standard deviation of the whole
screen (for a given antibody). Values ±2 × standard devi-
ation were considered statistically significant, which corre-
sponded to a threshold of ±1.96.

Results
The mRNA-protein relationship
The correlation between mRNA expression and protein
expression in the primary Oslo2 data set ranged
from −0.19 (KRAS) to 0.87 (ERBB2, ESR1, PGR, and AR)
(Table 1). The correlations followed a right-skewed distri-
bution with a median value of 0.32 and a standard devi-
ation of 0.36 (Additional file 5). Examples of low- and
high-correlation relationships and dependence between
protein expression and expression subtype for some
breast cancer-associated proteins are shown in Figure 1,
while the scatterplots of all 105 mRNA-protein relation-
ships are given in Additional file 6. These relations (when
present) were observed to be often fairly linear when
both mRNA and protein expression are represented on a
log-transformed scale (see Methods for a theoretical ar-
gument supporting this observation). On the other hand,
the mRNA-protein relationships are generally quite
noisy, suggesting that predictions of protein expression
may be improved by taking into account additional fac-
tors, such as miRNAs.

The combined effect of mRNA and miRNA on protein
expression
The correlation analysis of the relationship between
mRNA and protein expression presented above ignores
any additional factors that may leverage how efficiently
mRNA is translated into protein or how fast protein is
degraded. Here, this was accomplished by allowing the
intercept of the above linear model to depend on the ex-
pression of one or more miRNAs. Considering first the
effect of one miRNA at a time, model 3 (see Methods)



Table 1 The protein panel

Gene symbol Protein mRNA-protein
Pearson correlation

Correlation
P-value

ACACA ACC1 0.67 0.00

AKT1 Akt1 0.34 0.00

AKT2 Akt2 0.05 0.42

AKT3 Akt3 0.00 0.94

ANXA1 Annexin I 0.60 0.00

AR AR 0.87 0.00

BAK1 Bak 0.30 0.00

BAX Bax 0.29 0.00

BCL2 Bcl-2 0.85 0.00

BCL2L1 Bcl-X 0.27 0.00

BCL2L11 Bim 0.43 0.00

BECN1 Beclin 0.07 0.22

BID Bid 0.12 0.05

BIRC2 cIAP 0.14 0.01

BRAF B-Raf 0.29 0.00

CASP8 Caspase-8 0.14 0.02

CAV1 Caveolin-1 0.53 0.00

CCNB1 Cyclin B1 0.78 0.00

CCND1 Cyclin D1 0.59 0.00

CCNE1 Cyclin E1 0.74 0.00

CDH1 E-cadherin 0.65 0.00

CDH2 N-cadherin −0.02 0.69

CDH3 P-cadherin 0.40 0.00

CDK1 CDK1 0.21 0.00

CDKN1B p27 0.66 0.00

CHEK1 Chk1 0.11 0.06

CHEK2 Chk2 0.69 0.00

CLDN7 Claudin 7 0.47 0.00

COL6A1 Collagen VI −0.03 0.67

CTNNA1 alpha-Catenin 0.27 0.00

CTNNB1 beta-Catenin 0.04 0.53

DIABLO Smac 0.27 0.00

DVL3 Dvl3 0.26 0.00

EEF2 eEF2 −0.10 0.10

EEF2K eEF2K 0.55 0.00

EGFR EGFR 0.39 0.00

EIF4E eIF4E 0.25 0.00

EIF4EBP1 4EBP1 0.68 0.00

ERBB2 HER2 0.87 0.00

ERBB3 HER3 0.46 0.00

ERCC1 ERCC1 −0.07 0.21

ERRFI1 MIG-6 0.13 0.03

ESR1 ER-alpha 0.87 0.00

Table 1 The protein panel (Continued)

FN1 Fibronectin 0.68 0.00

FOXO3 FOXO3a 0.32 0.00

GAB2 GAB2 0.78 0.00

GATA3 GATA3 0.84 0.00

GSK3A GSK3-alpha 0.29 0.00

GSK3B GSK3-beta 0.20 0.00

IGF1R IGF-1R-beta 0.83 0.00

IGFBP2 IGFBP2 0.76 0.00

INPP4B INPP4B 0.86 0.00

IRS1 IRS1 0.63 0.00

KDR VEGFR2 −0.02 0.75

KIT c-Kit 0.76 0.00

KRAS K-Ras −0.19 0.00

MAP2K1 MEK1 −0.08 0.20

MAPK14 p38 MAPK 0.12 0.04

MAPK9 JNK2 0.44 0.00

MAPT Tau 0.13 0.04

MET c-Met 0.18 0.00

MRE11A Mre11 0.08 0.16

MSH2 MSH2 0.53 0.00

MSH6 MSH6 0.53 0.00

MYC c-Myc 0.18 0.00

NCOA3 AIB1 0.34 0.00

NF2 NF2 0.31 0.00

NOTCH1 Notch1 0.39 0.00

NOTCH3 Notch3 0.40 0.00

PARK7 DJ-1 0.53 0.00

PCNA PCNA 0.47 0.00

PECAM1 CD31 0.21 0.00

PGR PR 0.87 0.00

PIK3CA PI3K-p110-alpha 0.24 0.00

PIK3R1 PI3 kinase, p85 0.27 0.00

PRKCA PKC-alpha 0.56 0.00

PRKAA1 AMPK alpha 0.37 0.00

PTCH1 PTCH 0.21 0.00

PTEN PTEN 0.17 0.00

PTGS2 COX-2 0.28 0.00

PTK2 FAK 0.05 0.39

PXN Paxilin 0.33 0.00

RAB25 Rab25 0.17 0.00

RAD50 Rad50 0.26 0.00

RAD51 Rad51 0.14 0.02

RAF1 C-Raf 0.32 0.00

RB1 Rb 0.11 0.07

RPS6KB1 p70S6K 0.70 0.00
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Table 1 The protein panel (Continued)

SMAD1 Smad1 0.57 0.00

SMAD3 Smad3 0.57 0.00

SMAD4 Smad4 0.05 0.42

SNAI1 Snail 0.03 0.58

SRC Src 0.54 0.00

STAT5A STAT5-alpha 0.54 0.00

STMN1 Stathmin −0.01 0.83

SYK Syk 0.49 0.00

TP53 p53 0.11 0.07

TP53BP1 53BP1 0.49 0.00

TSC2 Tuberin 0.25 0.00

VASP VASP 0.40 0.00

XIAP XIAP 0.27 0.00

XRCC1 XRCC1 0.35 0.00

YAP1 YAP 0.47 0.00

YBX1 YB-1 0.14 0.02

YWHAE 14-3-3 epsilon −0.03 0.60
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was fitted to the Oslo2 data for each combination of
protein and miRNA, resulting in a total of 105 × 421
regression models (see Additional file 4A-F for coeffi-
cient estimates and P-values). Almost all significant
(FDR <0.01) mRNA coefficients were positive, while the
significant miRNA coefficients followed a bimodal distri-
bution (Figure 2A-D). Among all the tested miRNA-
protein associations, there were 3,687 (8.3%) significant
ones, of which 1,882 were negative and 1,805 were posi-
tive (Additional file 4G). The overall structure of signifi-
cant associations was confirmed by similar analysis
performed in two additional data sets (see the ‘Replica-
tion in two independent data sets’ section below). For
most miRNAs and proteins, the significant associations
were a mixture of positive and negative effects (see Fig-
ure 2E-F for an overview and Figure 2G-H for specific
examples). The proteins with the highest number of
associations with miRNAs were B-Raf (n = 168), YB-1
(n = 145), Collagen VI (n = 106), cIAP (n = 103) and
Syk (n = 102). Of the 105 studied proteins, 98 had at
least one significant association with a miRNA (Additional
file 4H). The number of significant connections to
miRNAs was not associated with process, cellular lo-
cation, functional type of protein or network centrality as
quantified by a protein-protein interaction score [22,23]
(Additional files 4I and 7). The miRNAs with the highest
number of protein associations were miR-139-5p (n = 39),
miR-497 (n = 38), miR-720 (n = 38) and miR-125b (n = 37),
and 365 miRNAs (87%) had at least one significant associ-
ation with a protein (Additional file 4J).
Two-way hierarchical clustering of all estimated miRNA

coefficients, henceforth referred to as the interactome
map, revealed groups of proteins with similar pattern of
connectivity to miRNAs, and groups of miRNAs with
similar pattern of connectivity to proteins (Figure 3). A
subsequent cluster identification with PART [21] indicated
the existence of four protein and 23 miRNA clusters
(given in Additional file 4I-J). According to TargetScan
[24], all miRNAs studied here (n = 421) have at least one
representative of a total of 268 families; of these, 13 fam-
ilies have three or more representatives. There was a ten-
dency for miRNAs in the same family to fall in the same
cluster, most notably for the let-7, miR-17, miR-34 and
miR-320 families (Additional file 4K).

Direct interactions between miRNAs and mRNAs
An approximate estimate for the number of direct
miRNA-mRNA interaction pairs among the negative
and significant associations may be obtained by consid-
ering the number of in silico predicted targets among
these associations. Among the 1,882 negative and signifi-
cant associations, 290 were predicted by miRanda [25],
59 by TargetScan [24] and 19 by PicTar [26], and 50 as-
sociations were predicted by at least two of the three
algorithms, including 29 unique proteins and 38 unique
miRNAs (Additional file 8). Five of these have been
functionally validated in previous studies; miR-19a tar-
geting CCND1, miR-125b targeting ERBB3, miR-141
targeting YAP1, miR-222 targeting BCL2L11 and miR-
497 targeting MAP2K1 (Additional file 4M).

Combined effect of multiple miRNAs
So far the investigation has sought to explain protein
expression in terms of the expression of mRNA and a
single miRNA at a time. We may also consider the
simultaneous effect of multiple miRNAs, which leads
to the multivariate model 4 (see Methods). The coeffi-
cients obtained by fitting model 4 for each protein sep-
arately, in each case considering only the significant
miRNAs from the univariate analysis, are found in
Additional file 4N-P. Comparison of the results from
the univariate and multivariate analyses was in overall
agreement but also revealed differences (Additional
file 9), consistent with the presence of groups of miR-
NAs connected in a similar manner to the proteins
in the panel. In such cases, the multivariate model
will tend to select only a few representative miRNAs
to obtain the best possible predictions and avoid
overfitting, while the univariate models produce esti-
mates that are optimal when information about other
miRNAs is ignored.

Association with clinical parameters
For each patient and each protein, a score based on the
observed miRNA levels in a patient can be computed
that reflects the total effect of all miRNAs on protein



Figure 1 Relationships between mRNA and protein for selected genes. Each dot represents a patient and the colors indicate PAM50
expression subtype (red, basal-like; pink, HER2-enriched; green, normal-like; dark blue, luminal A; light blue, luminal B). Pearson correlation
between mRNA and protein expression is indicated above each plot.
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expression. The resulting table of scores (one for each
combination of protein and patient) is visualized as a
heatmap in Figure 4. Noteworthy, using these scores one
can recapitulate a cluster consisting primarily of estro-
gen receptor (ER)-negative samples of high grade, classi-
fied as basal-like subtype by both PAM50 [27] and RPPA
[18], suggesting distinct miRNA effects on protein in
this type of breast cancer. Luminal A and luminal B tu-
mors clustered quite separately from each other, with
one luminal A cluster containing most of the luminal tu-
mors from the RPPA subtype classification. The correl-
ation between HER2 status and cluster assignment was
not significant.

Replication in two independent data sets
To further investigate the robustness of the model and
the estimated parameters of the primary data set
(Oslo2), similar analyses were performed on two add-
itional breast cancer data sets. The first (TCGA) has a
similar distribution of ER-status, HER2-status and PAM50
subtypes as the Oslo2 data set, while the second (DBCG)
has a higher fraction of ER-negative and HER2-positive
tumors of the basal-like and HER2-enriched subtypes ac-
cording to the mRNA expression-based PAM50 classifica-
tion (Additional file 10). Altogether, 348 miRNAs and 34
proteins were present in all three data sets. An overall
comparison of the effects of individual miRNAs and corre-
sponding P-values showed consistency across the data sets
(Additional file 11). A comparison of all miRNA coeffi-
cients obtained (using the univariate model) for each
of the three data sets and for each protein individually
(Additional files 12 and 13) revealed a large degree of
consistency between pairs of data sets, with some ex-
ceptions: ERBB2 and PIK3CA had negative correlation
between Oslo2 and DBCG coefficients, and seven add-
itional genes (BCL2, CCNE1, ESR1, MAP2K1, MAPK14,
PECAM1 and SRC) had negative correlation between
Oslo2 and TCGA coefficients.



Figure 2 Effect of mRNA and miRNA on protein expression. (A) The effect of mRNA on protein for all significant mRNA coefficients (‘gamma’).
(B) Volcano plot showing all estimated mRNA coefficients (‘gamma’) plotted against corresponding P-values. Significant and negative associations
are shown in blue and significant and positive associations are shown in red. (C) The effect of miRNA on protein for all significant miRNA coefficients
(‘beta’). (D) Volcano plot showing all estimated miRNA coefficients (‘beta’) plotted against corresponding P-values. Coloring as in (B). (E) Number of
miRNAs per protein. The horizontal axis represents the negative and positive number of associations with miRNAs, and the vertical axis represents the
105 proteins in descending order. (F) Number of proteins per miRNA. The horizontal axis represents the negative and positive number of associations
with proteins, and the vertical axis represents the 421 miRNAs in descending order. (G) Example of a negative association between miRNA expression
and protein expression. The horizontal axis represents BRAF mRNA expression and the vertical axis B-Raf protein expression (both on log2-scale). Each
point represents a patient, and the color indicates whether the expression of miR-638 is above the median (red) or below the median (black). Solid lines
represent smoothing splines fitted to the data. The dotted line represents a linear regression fit to the data. For any fixed level of mRNA expression,
high expression of miR-638 is associated with decreased protein expression of B-Raf. (H) Example of a positive association between miRNA expression
and protein expression. The horizontal and vertical axes are the same as in (G), but here each patient point is color-coded according to miR-107
expression (red, miR-107 expression above median; black, miR-107 expression below median). For any fixed level of mRNA expression, high expression
of miR-107 is associated with increased B-Raf protein expression.
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Figure 3 The miRNA-mRNA-protein interactome. The clustered heatmap represents all miRNA coefficients from the univariate model 3 with
the 421 miRNAs shown as columns and the 105 gene/protein pairs shown as rows. Pearson correlation distance and complete linkage was used
in the hierarchical clustering. The colors of the dendrograms represent the different clusters found by the PART algorithm [21]. The miRNAs
form 23 unique clusters and the gene-protein pairs form four clusters. Genes/proteins residing in each cluster are indicated to the right in
alphabetical order.
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As a final step of validation, the multivariate model 4
was fitted to the Oslo2 data set and the estimated coeffi-
cients were used to predict protein expression for indi-
vidual patients in the DBCG and TCGA data sets, using
mRNA and miRNA expression values from the respect-
ive patients as predictors. Only proteins and significant
miRNAs from the multivariate analysis present in all
three data sets were considered in this analysis. It
was found that for 19 of the 34 proteins considered
(56%), the correlation between predicted and actual
protein expression was significant (P < 0.05) in both
data sets (Additional files 14 and 15). The genes for
which the predicted and measured protein levels
were most strongly correlated included ESR1, CCNB1,
CCNE1, PGR, RPS6KB1 and KIT (all with Pearson corre-
lations >0.60). A complete list of miRNAs associated with
the expression of these proteins is provided in Additional
file 4O.

Functional validation in vitro
To functionally assess the miRNA-protein associations
in vitro, single miRNAs were overexpressed in the
MDA-MB-231 breast cancer cell line and the effect on
protein expression was investigated. Cell line experimental
data were available for 416 miRNAs and 76 proteins
(Additional file 4L). In all, 47 miRNA-protein associa-
tions found in Oslo2 were significantly and consistently
functionally validated in the breast cancer cell line
(Figure 5), 21 representing positive associations be-
tween miRNA and protein and 26 representing negative
associations. Proteins sharing miRNAs in the same dir-
ection among the functionally validated miRNA-protein
associations were in most cases found to be clustering
together in the interactome heatmap (Figure 3).

Consistently strong miRNA-protein associations across
three data sets
To identify consistently strong positive or negative
miRNA-protein associations across all three data sets, all
associations with a coefficient value exceeding 0.15 in
absolute value were selected (Figure 6A,B). This resulted
in 41 miRNA-protein relationships, representing 8
unique proteins and 26 unique miRNAs (Figure 6C-E).
The highest number of high concurrence associations
was found for CCNB1 with 12 miRNA-protein asso-
ciations, of which 2 were negative and 10 positive



Figure 4 Patient-specific predicted effects of miRNA on protein. Rows represent the 105 genes/proteins and columns represent the 283
patients. The color bars under the dendrogram represent PAM50 and RPPA molecular subtypes (mRNA and protein based, respectively),
histological grade, human epidermal growth factor receptor 2 (HER2) status, and estrogen receptor (ER) status. The colors in the heatmap
represent the patient-specific effects of miRNA on protein and are numerical values obtained by multiplying each miRNA coefficient (from the
multivariate analysis) with the corresponding miRNA expression, in a given patient, for a given protein. The clustering of the proteins and patients
was performed using Euclidean distance and complete linkage. Na, not available.
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(Figure 6C). Among the positive associations, seven
miRNAs (miR-18a, miR-18b, miR-19a, miR-19b, miR-
25, miR-92a and miR-93) involved the oncogenic
miR-17 family [29]. The gene CDH1, which encodes
the E-cadherin protein, shared two miRNA associations
with GSK3B across all three data sets: a positive associ-
ation with miR-200a and a negative association with
miR-134 (Figure 6D). These proteins are negatively
associated with the oncogenic process of epithelial-
mesenchymal transition (EMT) [30], suggesting a coord-
inate miRNA effect on a single cellular process. COL6A1
and MAPK14 were associated with miR-204 in the op-
posite direction across all three data sets, and COL6A1
was additionally associated with miR-139-5p and miR-210
(Figure 6E).
Discussion
A comprehensive map of associations between miRNAs
and proteins
A map has been derived describing the individual contri-
butions of in-cis mRNA expression and whole-genome
miRNA expression in predicting protein expression in
breast cancer. The analysis is based on a novel integra-
tive model derived from first principles: any change in
protein expression level must derive from an influx of
protein proportional to the mRNA expression level
and an outflux (degradation) of protein proportional
to the protein expression level. The model was found
to be in reasonable agreement with the actual observa-
tions of mRNA-protein relationships. The ratio of the
two proportionality factors defines the slope of the



Figure 5 miRNA-protein associations validated by cell line functional assessment. Individual miRNAs were overexpressed in the MDA-MB-231
breast cancer cell line and the effect on protein expression was assessed. Shown are miRNA-protein associations that were both estimated based on
the Oslo2 patient data and confirmed with the in vitro cell line experiment. The numbers in the white boxes represent protein cluster number in cases
where several proteins share miRNA associations. Red lines indicate positive associations and blue lines negative associations. Yellow nodes represent
miRNAs and blue nodes represent genes/proteins. The figure was made using Cytoscape version 2.8.3 [28].
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mRNA-protein response curve and is modeled as a
function of one or more miRNAs. The univariate
model 1 (which should strictly be called bivariate,
since it involves two covariates) is used to assess the
strength of association between a protein and one
miRNA at a time, adjusting for the effect of in-cis
mRNA expression. It is essential to correct P-values
for the fact that 105 × 421 = 44,205 tests are performed
in parallel, and in this study a rather strict criterion of
FDR <0.01 was used. A total of 3,687 significant asso-
ciations between individual miRNAs and proteins were
found in the analysis of the Oslo2 data, and no more
than 37 of these are expected to be false positives at the
chosen level of significance. After proper adjustment of
P-values, there is still a risk that clinical composition and
other specifics of the patient material influence the ana-
lysis. To further assess the validity of the associations,
similar analyses were therefore performed on two
additional breast cancer data sets (DBCG and TCGA)
for the proteins and miRNAs that were present in all
three data sets. This analysis largely confirmed the validity
of the interactome found on the basis of Oslo2.

Two models for two different purposes
The univariate model is appropriate for studying the
association between individual miRNAs and protein
(ignoring the effect of all other miRNAs), and was
therefore used to infer the miRNA-protein interac-
tome in Oslo2, which was subsequently confirmed in
the two validation data sets.
The multivariate model 2 is more appropriate for con-

struction of a predictive model for protein expression, as
it considers the combined effect of all miRNAs and thus
weighs the contributions of the individual miRNAs to
obtain optimal prediction. Fitting the multivariate model
to one data set (Oslo2) and subsequently predicting



Figure 6 Comparison of miRNA-protein associations in three independent data sets. (A) Scatterplot representing the miRNA coefficients in
model 3 estimated in the Oslo2 and DBCG data sets. (B) Scatterplot representing the beta values estimated in the Oslo2 and TCGA data sets. In
(A) and (B), red points indicate miRNA-protein associations with a miRNA coefficient above 0.15 across all three data sets and blue points indicate
miRNA-protein associations which have a miRNA coefficient below −0.15 across all three data sets. (C-E) miRNA-protein associations with miRNA
coefficients exceeding 0.15 in absolute value in all three data sets. Red lines indicate positive associations and blue lines negative associations.
Yellow nodes represent miRNAs and blue nodes represent proteins. Panels (C-E) were made using Cytoscape version 2.8.3 [28].
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protein expression in the two other data sets, more than
half of the proteins that were present in all data sets
resulted in significant predictions. It should be noted
that prediction in this context is nontrivial since not all
miRNAs that were used to derive the coefficients for
Oslo2 are present in the two other data sets, and the
three data sets have different clinical compositions. In
addition, although the analysis performed in this study
determines the statistical relationships among variables,
miRNA regulation is ultimately a stoichiometric event
where the absolute target-to-miRNA ratio matters [31].
Thus, functional experiments are essential to separate
direct (or indirect) molecular interactions from other
forms of coordination that may involve other regulatory
mechanisms. In this study, the main focus has been to
capture the general pattern of all forms of coordination.

Associations reflect multiple mechanisms
Significant associations between miRNAs and proteins
were almost evenly distributed between positive and
negative values. Taking into account the strict signifi-
cance criteria used and the reproducibility across three
independent data sets, this suggests that direct inhibitory
action of miRNAs on protein translation constitutes only
a small part of all present associations. The low overlap
found in a comparison with in silico predicted targets
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using three different target prediction algorithms sup-
ports this contention. Alternatively, this may reflect
challenges in the ability of current algorithms to accur-
ately predict miRNA and mRNA interactions. Significant
associations may reflect direct and indirect contributions
of miRNAs to protein expression, effects in the opposite
direction (that is, from protein to miRNA), as well as
coordinated expression attributable to factors not
accounted for in the analysis and not involving a direct
causal link between miRNA and protein. It is not pos-
sible in general to distinguish these mechanisms from
each other on the basis of a single snapshot of the
miRNA-mRNA-protein state of the cell, except in cases
where additional evidence is available to confirm or
strengthen specific hypotheses. It should be emphasized,
however, that the overall association pattern was recapit-
ulated across data sets, suggesting that they are robust
and potentially mechanistic.

Direct and indirect effects of miRNAs on proteins
Focusing on the direct and indirect effects of miRNAs
on protein, the former involves physical binding of
miRNA to mRNA, while the latter may represent pro-
teins that are downstream of the direct target of the
miRNA, where, for example, feedforward and feedback
regulatory loops could be involved. Positive associations
then reflect relations where increasing miRNA expres-
sion is coupled to increasing protein levels (and decreas-
ing miRNA expression with decreasing protein levels).
This could be exemplified by a feedforward loop where a
miRNA downregulates the repressor of a protein. On the
other hand, the identified negative associations represent
inverse relations between miRNA expression and protein
output. Such relations could be direct miRNA-mRNA tar-
get interactions, or, for example, negative feedback loops.
The involvement of miRNAs in feedback and feedforward
loops have received attention in the literature [32,33].

In silico and in vitro model validation
The significant negative associations were matched with
in silico target predictions to identify putative direct
miRNA-mRNA interactions. Due to the limited accuracy
of such predictions [34], at least two out of three algo-
rithms were required to predict a target. Some of the
candidates for direct interaction have been previously
validated. Furthermore, a subset of the estimated
miRNA-protein associations was functionally validated
in the MDA-MB-231 cell line, including four associa-
tions that were in silico predicted. The fact that only
a small subset of all associations were functionally
validated may partly be explained by the difficulty of
capturing indirect effects in an in vitro cell line experi-
ment due to, for example, context dependence, here ex-
emplified by a triple-negative cell line. The small number
of functionally validated associations may also suggest that
many estimated associations represent extensive coordin-
ation between miRNAs and proteins, but that the direct
causal effect of miRNAs on proteins is limited compared
with the total number of associations. Further experimen-
tal testing where groups of miRNAs are combined is
needed to further investigate this.

Protein predictions in individual patients may have
clinical impact
The interactome map showing the effect of miRNA on
protein output is a map delineating possible associations
between miRNAs and proteins, and was discovered by
integration of three different data levels. The exploit-
ation of these connections, however, is patient specific.
Interestingly, the ER-negative patients with high grade
breast cancer disease clustered together, suggesting that
differences in miRNA expression affect protein levels
and ultimately breast cancer phenotype. Alternatively,
the intrinsic miRNA expression pattern may vary be-
tween different types of breast cancer, resulting in differing
activation of various signaling networks. In agreement with
this, ER-positive and ER-negative patients have previously
been shown to have differential miRNA expression signa-
tures [2], and differential expression of miRNAs between
tumors of different subtype and grade has also been re-
ported [2,17,35].

miRNA-protein associations are consistent across three
data sets
Comparison of results from different data sets involving
different measurement platforms is potentially challen-
ging [36,37]. While platform-specific bias is (in the ideal
case) reduced by proper pre-normalization of the data,
one would expect some differences between studies per-
formed on different platforms to remain. Nevertheless,
consistency between the three data sets was overall high.
The differences that were found may partly be ascribed
to the differences in clinical composition as the balance
between HER2- and ER-positive/negative status was dif-
ferent between the data sets, and expression of these
proteins is directly associated with these clinical markers
(for example, PIK3CA is often mutated in ER-positive
tumors [18,38]). The inconsistencies of miRNA coeffi-
cients found between Oslo2 and DBCG for miRNA species
associated with key proteins such as HER2 and PIK3CA
may be caused by the higher fraction of HER2-positive and
ER-negative tumors in DBCG compared with Oslo2. TP53
and CCNB1 were among the most highly correlated genes
across the data sets, highlighting these predictions of
miRNA-protein correlations as the most robust.
One of the miRNA-protein association networks that

was consistently found across all three data sets has
c-Myc as a potential underlying common denominator;
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c-Myc is a transcription factor for both CCNB1 [39] and
the miR-17 family of miRNAs [40], which may explain this
positive association and may suggest an oncogenic func-
tional link between CCNB1, the miR-17 family and
increased proliferation. This observation exemplifies an-
other reason why the frequency of positive associations
between miRNA and protein may be more frequent than
expected in that it could represent co-regulation of the
miRNA and the protein rather than regulation of transla-
tion of the protein by the miRNA. In addition, TP53,
which was positively associated with three miR-17 family
members, namely miR-18a, miR-19a and miR-19b, has
been shown to be a transcriptionally activated target gene
of c-Myc [39]. Interestingly, c-Myc has been shown to be
a transcriptional repressor of CAV1 and CCND1 [39], and
these two genes were here shown to be negatively associ-
ated to several of the miR-17 family miRNAs, including
miR-17, miR-18a, miR-18b, miR-19a, miR-19b and miR-
106b (Figure 6C). One of these negative associations,
CCND1 with miR-19a, was among the in silico predicted
interactions (Additional file 8), and CCND1 has previously
been functionally validated as a target gene of both miR-
19a [41] and miR-19b [42].
CDH1 and GSK3B are negatively associated with the

tumorigenic EMT process [30]. GSK3B is known to be a
transcriptional inhibitor of the E-cadherin transcrip-
tional repressor Snail [43]. The miR-200 family can also
revert EMT by targeting two other E-cadherin transcrip-
tional repressors, namely ZEB1 and ZEB2 [44]. Thus,
the shared associations between CDH1 and GSK3B with
miR-200a, in addition to the association of CDH1 with
miR-200b (Figure 6D), likely reflect an EMT-associated
network. The two other miRNAs that CDH1 was posi-
tively associated with, let-7 g and miR-29b, have previ-
ously been shown to target extracellular matrix proteins
such as collagens [45,46]. Furthermore, the negative as-
sociations between miR-134 and CDH1 and GSK3B are
both in silico predicted by the miRanda algorithm [25].
Thus, miR-134 may potentially directly bind to CDH1
and GSK3B mRNA and downregulate expression. Fur-
ther experimental studies are needed to confirm this,
but if true, this would be an example of how miRNAs
may effectively target several genes in the same pathway.
Interestingly, overexpression of miR-134 was previously
found to promote EMT while knockdown inhibited
EMT [47], which further strengthen this potential func-
tional relationship.

Conclusions
We have provided a genome-wide description of the
associations between miRNA expression and protein ex-
pression for a selected panel of 105 cancer-associated
proteins. This landscape of interaction between miRNAs
and proteins reveals several intriguing relationships,
including the fact that groups of miRNAs coordinately
interact with groups of proteins, hence suggesting ‘block
interaction’ as a mode of modulation of protein modules in
breast cancer. Studies of the effects of miRNAs on protein
expression, through mRNA regulation, increase our under-
standing of the role of miRNAs in breast cancer. Our
model predicted both previously demonstrated miRNA-
protein associations and new candidate miRNA targets,
and showed overall consistent miRNA-protein associations
across three independent data sets. Furthermore, it allows
a more accurate description of the actual phenotypic ef-
fects of miRNAs as it is comprehensively capturing both
direct and indirect effects. This may prove important to
elucidate the biological role of miRNAs, in particular when
considering the role of miRNAs at the network level.

Additional files

Additional file 1: Two mechanisms for miRNA regulation of protein
expression. The top panel depicts the relation between mRNA expression
and protein expression (i.e. the mRNA-protein response curve) when
the miRNA is not expressed. The lower left panel shows the effect of mRNA
destabilization: the resulting loss in mRNA expression leads to reduced
protein expression, while the mRNA-protein response curve remains the
same. The lower right panel shows the effect of translation repression: in this
case the mRNA expression remains unaffected, but the change in the
mRNA-protein response curve leads to reduced protein expression.

Additional file 2: A schematic outline of the approach used to
assess the effect of miRNAs on protein expression.

Additional file 3: Supplementary Methods.

Additional file 4: Supplementary Data: Coefficient estimates, P-values,
significant miRNA-protein associations, annotation of proteins and
miRNAs, cell line functional data, in silico predictions and RPPA data.
A, estimated mRNA coefficients (univariate analysis). B, P-values for estimated
mRNA coefficients (univariate analysis). C, estimated miRNA coefficients
(univariate analysis). D, P-values for estimated miRNA coefficients (univariate
analysis). E, estimated constants (univariate analysis). F, P-values for estimated
constants (univariate analysis). G, significant miRNA-protein pairs. H, number
of miRNAs per protein. I, annotation of proteins. J, number of proteins per
miRNA. K, location of miRNA family members in respect to miRNA clusters.
L, standard scores from miRNA library screen by RPPA of the MDA-MB-231
cell line. M, significant and negative miRNA-protein associations in silico
predicted in 2 out of 3 algorithms tested. N, estimated mRNA coefficients
(multivariate analysis). O, estimated miRNA coefficients (multivariate analysis).
P, estimated constants (multivariate analysis). Q, log2-transformed and
median centered RPPA (protein) data for the Oslo2 cohort.

Additional file 5: Distribution of mRNA-protein correlations for the
105 proteins in Oslo2. The dashed line shows the fit found with a
kernel density estimator with Gaussian kernel.

Additional file 6: Scatterplots of mRNA and protein expression for
all 105 proteins. Each dot represents a patient and the colors indicate
PAM50 molecular subtype (red: basal-like; pink: HER2-enriched; green:
normal-like; dark blue: luminal A; light blue: luminal B).

Additional file 7: Number of associated miRNAs in relation to
protein type. A, boxplots showing the distribution of the number of
miRNAs per protein associated process group. The number in parentheses
shows the number of proteins in each group. TF: Transcription factor; ECM:
extracellular matrix. B, boxplots showing the distribution of the number of
miRNAs when proteins are divided into cellular location. C, boxplots showing
the distribution of the number of miRNAs when proteins are divided into
functional type. D, protein-protein interaction (ppi) degree (score) versus
number of associated miRNAs per protein. The line indicates the least squares
fit to the data. See Additional file 4I for details on the protein annotation.
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http://genomemedicine.com/content/supplementary/s13073-015-0135-5-s5.pdf
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Additional file 8: Potential direct miRNA-mRNA target interactions
identified from the univariate model. The depicted interactions
represent significant, negative associations identified from the univariate
model that were also in silico predicted. Yellow nodes represent miRNAs
and blue nodes represent proteins. Three miRNA target algorithms were
used to assess potential direct interactions; TargetScan [24], miRanda [25]
and PicTar [26]. The full edges indicate previously validated interactions
(see Additional file 4 M), and dashed edges indicate potential direct
interactions. Black edges represent interactions predicted by at least two
out of three algorithms, and purple edges represent interactions predicted
by all three algorithms. The thickness of the edges represents relative beta
values. The figure was made using Cytoscape version 2.8.3 [28].

Additional file 9: Multivariate versus univariate miRNA coefficients.
The plot shows the univariate miRNA regression coefficients (“beta”) on
the x-axis and the multivariate coefficients on the y-axis. Only those
coefficients are shown that are significant in the univariate analysis
(FDR < 0.01) and 0 in the multivariate analysis.

Additional file 10: Clinical composition of the Oslo2, DBCG and
TCGA breast cancer data sets. The histograms are comparing ER and
HER2 status together with molecular subtypes derived using the PAM50
calling. Neg: negative; pos: positive; LumA: Luminal A; LumB: Luminal B.

Additional file 11: Comparison of estimated values across three
data sets. (i) Comparison of estimated beta values between the Oslo2 and
DBCG cohort, and (ii) between the Oslo2 and TCGA cohort. (iii) Comparison
of Z-score transformed P-values between the Oslo2 and DBCG cohort,
(iv) and between the Oslo2 and TCGA cohort. Z-scores were obtained
by applying the inverse cumulative normal distribution function to the
P-values, and they follow a standard normal distribution under the null
hypothesis of no effects of miRNA on protein expression. The grey lines
indicate the first principal component curve of the data.

Additional file 12: Comparison of estimated beta values across
data sets. The x-axis represents the Pearson correlation of beta values
per protein between the Oslo2 and DBCG cohort and the y-axis represents
the Pearson correlation of beta values per protein between the Oslo2 and
TCGA cohort.

Additional file 13: Scatterplots comparing estimated beta values
from Oslo2 vs. DBCG and Oslo2 vs. TCGA. Each dot represents a
miRNA and the x-axes represent estimated beta values for the Oslo2
cohort from the univariate analysis. The y-axes represent estimated beta
values for the DBCG and TCGA data sets, respectively, from the univariate
analysis. The dashed lines indicate the least squares fit to the data and
the red line indicates the first principal component curve of the data.
Pearson correlation is indicated in the corner of each plot.

Additional file 14: Comparison of predicted versus measured
protein in the DBCG and TCGA data sets. To calculate predicted
protein expression, the estimated mRNA and miRNA coefficients from the
Oslo2 cohort were fitted into equation (4) using the actual miRNA and
mRNA expression data of the DBCG and TCGA data sets, respectively.
Then the predicted and the measured protein expression were compared
using correlation. The x- and y-axis represent Pearson correlation.

Additional file 15: Measured versus predicted protein in the DBCG
and TCGA data sets. The multivariate model was fitted to the Oslo2
data set and used to predict protein expression for individual patients in
the DBCG and TCGA data sets, using mRNA and miRNA expression values
from the respective patients as predictors. The table shows an overview
of the correlation between the predicted and the measured protein
expression including correlation P-values for the 34 proteins overlapping
all three cohorts. The following scatterplots shows the predicted versus
the measured protein expression in the DBCG and the TCGA data sets.
Solid lines represent a smoothing spline fitted to the data. The Pearson
correlation between the predicted versus the measured protein expression is
indicated above each plot.
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