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Abstract 
Dryas octopetala L. is an arctic-alpine plant that belongs to a genus where the number 

and delimitation of species are not fully resolved. The plant is unusual, compared with 

most other arctic-alpine plants in its diploid, dwarf-shrub habit with slow generation 

turnover. In this study, ten newly developed microsatellite markers have been tested 

and used to infer both phylogeography and population structure in 471 individuals of 

D. octopetala sampled from seven main localities in the North Atlantic area. In 

addition, the microsatellite markers were used to investigate whether there is genetic 

support for assigning three morphotypes of D. octopetala on Svalbard to taxa, as 

previously proposed by Russian scientists. 

Nine of the ten microsatellites were analysed in this study, and provided a 

resolution high enough to distinguish between individuals. At a phylogeographic 

scale, the analysed material grouped into three main groups, a southern group, an 

intermediate group and a northernmost group. It is likely that there have been two 

main colonization routes following the glacial retreat in the North Atlantic region, one 

southern and one eastern. This study supports a colonization route from the south for 

the southern Norwegian populations, while an eastern immigration route probably has 

colonized Greenland, northern Norway and Svalbard.    

 At a smaller, population scale, the microsatellites separated between different 

genets of D. octopetala. The local D. octopetala populations were mainly in Hardy-

Weinberg equilibrium and no latitudinal trend was found regarding the proportion of 

ramets in the sampled populations or for heterozygote deficiency. 

No evidence for the assigning the three morphotypes occurring on Svalbard to 

taxa was found, and thus this study concludes that there is only one Dryas species on 

Svalbard, i.e., D. octopetala.  
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“Hvorledes er nu denne merkelige koloni av fjeldplanter kommet til Langesundsfjorden?” 

Joh. Dyring - 1911 

 

Introduction 

The genetic variation of plant species is shaped in time and space and is influenced by 

both present and past migration histories, life history traits, mutation, selection and 

drift (Loveless and Hamrick, 1984; Hewitt and Butlin, 1997; Thiel-Egenter et al., 

2009). Present and past migration histories are important first of all at the larger 

(phylogeographic) scale (Hewitt and Butlin, 1997), whilst life history traits and 

ecological factors are important first of all at the smaller (population) scale (Loveless 

and Hamrick, 1984).  

An increasing amplitude in the Earth’s climatic oscillations throughout the 

Tertiary lead to the series of major ice ages of the Quaternary (2.4 million years to the 

present; Hewitt, 2000). In Northern Europe, the severe fluctuations between the long 

glacial and the relatively short interglacial episodes produced great changes in species 

distributions by habitat fragmentation and expansion, and have had a huge impact on 

the genetic structure of current species (Hewitt, 1999; Hewitt, 2000). Since the 

introduction of phylogeography as a discipline (Avise et al., 1987), a large amount of 

phylogeographic studies on various organisms have revealed some general trends 

concerning the glacial history of species. High level of genetic diversity is typically 

found in refugia that have been inhabited for the longest periods, whereas populations 

that have been subjected to repeated bottlenecks during leading edge phases of 

colonization following the glaciations are characterised by a loss of genetic diversity. 

Contact zones where migrants from different refugia meet, on the other hand, tend to 

have a higher diversity (Hewitt, 1996; Ibrahim et al., 1996; Comes and Kadereit, 

1998; Hewitt, 1999; Widmer and Lexer, 2001).  

 At the population scale, life history traits and ecological factors affecting 

reproduction and dispersal in plants are likely to be of particular importance in 

determining genetic structure (Loveless and Hamrick, 1984). In the study by Loveless 

and Hamrick (1984), life form, geographic range, breeding system and taxonomic 

status were found to have significant effects on the partitioning of genetic diversity 

within and among plant populations. In a recent comparative study by Thiel-Egenter 
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et al. (2009), wind pollination and wind dispersal were found to be associated with 

high genetic diversity in high-mountain plants. 

 

 
Figure 1. Dryas octopetala populations sampled for this study. The distribution of Dryas 
(dotted line and hatched) is redrawn from Hultén and Fries (1986) 

 

Dryas L. (Rosaceae) is one of the hardiest of all woody plants and, in comparison to 

most other arctic-alpine plants, unusual in its diploid, dwarf-shrub habit with slow 

generation turnover within populations (Max et al., 1999). Evolution in Dryas might 

therefore be slower than in herbaceous arctic-alpine plants, which to a high degree 

display allopolyploidy (Brochmann et al., 2004). Dryas octopetala is a mainly 

outcrossing species (Elkington, 1971; McGraw, 1987; Molau, 1993). The flower is 

insect pollinated, the seeds are wind dispersed and the plant has the potential to spread 

lateral by vegetative ramets (Wookey et al., 1995).  

6 

Dryas octopetala L. is circumpolar and distributed from the boreal to the 

arctic zone where it is an important component of the vegetation carpet of tundra and 

calcareous alpine heaths (Fig. 1; Walker et al., 1994). The species belongs to a 

circumpolar genus where the number and delimitation of species have not been fully 

resolved (Elkington, 1965; McGraw, 1987; Yurtsev, 1997; Nordal et al., 1999; 

Siegismund and Philipp, 1999; Philipp and Siegismund, 2003). Dryas has a 
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geographically structured morphological variation that can be divided into several 

species, and the species frequently hybridize (Hultén, 1968). Historically, there are 

two main approaches to the taxonomy of the genus, the Russian approach; with 

fifteen species recognized globally (Yurtsev, 1997) and the Hultén approach, 

accepting only three species and some subspecies worldwide (Hultén, 1968; Elven et 

al., 2008). The major difference between the Hultén and the Russian approaches lies 

in the circumscription of D. octopetala. Hultén’s D. octopetala s. lat. with six sub-

species was considered as three subsections with nine species and seven additional 

subspecies by Yurtsev (1997). Russian botanists and a few North American botanists 

have mainly followed the Russian approach, whilst most botanists in North America, 

Greenland and non-Russian Europe have followed the Hultén approach for the last 30 

years (Elven et al., 2008). The Hultén approach recognises only one species (D. 

octopetala) on Svalbard (Elven and Elvebakk, 1996; Siegismund and Philipp, 1999) 

whereas the Russian botanists, represented by Yurtsev (1997), have recognized three 

taxa: D. octopetala subsp. subincisa Jurtz., D. punctata Juz. subsp. punctata and their 

hybrid, D. x vagans Juz. Dryas punctata is distinguished morphologically from D. 

octopetala by having stipitate, yellowish, brown or purple glands, and the hybrid D. x 

vagans in having glands but at a much lower density (Yurtsev, 1997). Nordal et al. 

(1999) considered the gland character as an intraspecific polymorphism within D. 

octopetala. 

Skrede et al. (2006) investigated the phylogeography of D. octopetala in 

Eurasia using amplified fragment length polymorphisms (AFLPs; Vos et al., 1995). 

They found that the Eurasian plants were separated into two main groups that 

probably reflect isolation in and expansion from two major glacial refugia, located 

south and east of the North European ice sheets. Their results indicated that virtually 

all of northwestern Europe as well as East Greenland have been colonized by the 

Southern lineage, while northwestern Russia, the Tatra Mountains and Svalbard have 

been colonized by the Eastern linage. Plants from East Greenland clustered together 

with Beringian populations of Dryas. 

AFLPs have frequently been used in plant phylogeography (Eriksen and 

Topel, 2006; Alsos et al., 2007; Eidesen et al., 2007). However, AFLPs are dominant 

and anonymous, and co-migrating fragments are not necessarily homologous (Skrede 

et al., 2008), and to this date, no ideal marker has been developed for 

phylogeographic inference in plants. Microsatellite markers have in the later years 
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emerged as one of the most popular choices for studies at population level, including 

migration rates, population size, bottlenecks and kinships (Selkoe and Toonen, 2006). 

Microsatellites are co-dominant, simple sequence repeats of one to six nucleotides 

that are present in the genome of most taxa. They mutate frequently by slippage and 

proofreading errors during DNA replication, causing a change in the number of 

repeats and thus the length of the repeat string (Eisen, 1999). Hence, the 

polymorphisms of microsatellites derive from variability in length rather than in point 

mutations (Ellegren, 2004). However, the rapid evolution of microsatellites may cause 

homoplasy, which again may blur genetic structure at a larger phylogeographic scale. 

For this study, ten microsatellite primer pairs have been developed to infer 

phylogeographic patterns and genetic structure of Dryas octopetala populations 

within the North Atlantic region. The microsatellite results will be compared to the 

results from the AFLP study by Skrede et al. (2006) on the phylogeography of D. 

octopetala. The population structure at different spatial scale will be related to 

reproductive biology, growth habit and other life history traits of D. octopetala. In 

addition, the molecular data will be used to discuss the recognition of one or more 

Dryas taxa on Svalbard. 
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Material and Methods 

Sampling 

Leaves from 461 plants of Dryas octopetala were collected from five main localities 

situated in mainland Norway and Svalbard (Fig. 1; Table 1). At each main locality 

plants were sampled from three 6 x 6 m sub-localities separated by approximately one 

kilometre. At each sub-locality one plant was sampled in each square of the 6 x 6-

meter grid, when possible. If fewer than 30 individuals were found inside the grid, the 

grid was extended by additional squares to meet this requirement. At the 

geographically restricted Langesund locality, plants were collected only from one 

sub-locality. Green leaves were collected on silica to quickly dry the organic material 

to preserve the DNA for the later extraction. On Svalbard the presence or absence and 

the density of glands on the leaves were recorded for all collected plants. In addition, 

five plants from each sub-locality were pressed as voucher specimens, and deposited 

at the Natural History Museum in Oslo (O). DNA material previously obtained from 

three Greenlandic and five Russian locations (Skrede et al., 2006) were also included 

(Fig. 1; Table 1). Ten to eleven individuals were sampled from each of these 

localities. 

 

DNA extraction 

DNA was isolated from silica-dried leaves from between 24 and 40 individuals from 

each sub-locality (Table 1) following a slightly modified version of the acidic DNA 

extraction protocol by Ziegenhagen (1993). The modification included an extra 

purification step; before the pellet was air-dried, 1 mL 70% ethanol was added, and 

the samples were centrifuged for 2 min at 13,000 rpm. The DNA concentrations were 

measured with a spectrophotometer (NanoDrop, ND-1000, Thermo Fisher Scientific, 

Wilmington) and diluted 100 times to obtain an approximate concentration of 5ng/L.  

 

Microsatellite analysis 

For this study, ten D. octopetala microsatellite markers (Table 2) were developed by 

the firm ecogenics GmbH (Zürich) using the following protocol. An enriched library 

was made from size selected genomic DNA ligated into SAULA/SAULB-linker 

(Armour et al., 1994) and enriched by magnetic bead selection with biotinlabelled 

(CT)13, (GT)13, (GTAT)7, and (GATA)7 oligonucleotide repeats (Gautschi et al., 
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2000a; Gautschi et al., 2000b). Of 378 recombinant colonies screened, 81 gave a 

positive signal after hybridization. Plasmids from 63 positive clones were sequenced 

and primers were designed for 21 microsatellite inserts, 20 of which were tested for 

polymorphism. Out of these, ten microsatellite markers were found to have a suitable 

amount of polymorphism. 

The sampled plant material was screened for microsatellite variation using the 

M13 tailing approach by Schuelke (2000). Each microsatellite was amplified 

separately in 20 L reaction volumes including 2.0 µL 10x CoralLoad PCR Buffer 

(Qiagen, Hilden), 2.0 µL 10 mM dNTP, 0.4 µL 10 µM forward primer, 1.6 µL 10 µM 

reverse primer, 1.6 µL 10 µM fluorescent-labelled M13 primers (Table 2), 0.1 µL 

HotstarTaq Plus DNA polymerase (Qiagen), 8.3 µL mqH2O and 4 µL diluted DNA. 

The following PCR conditions were used: an initial denaturation step at 95C for 5 

min, followed by 30 cycles consisting of a denaturation step at 95°C for 30 s, an 

annealing step with temperatures specified for each marker (Table 2) for 45 s and an 

extension step at 72°C for 45 s. This was again followed by 8 cycles with a 

denaturation step at 95°C for 30 s, an annealing step at 53°C for 45 s and an extension 

step at 72°C for 45 s. The PCR program ended with an extension step at 72°C for 30 

min. 

Electrophoresis of the microsatellites was done on an ABI 3730 (Applied 

Biosystems, Foster City) sequencer. Five non-overlapping microsatellites labelled 

with different colours (4.0 µL of 6-FAM, and 2.0 µL of each of PET, NED and VIC, 

see Table 2) were prepared to be co-loaded in each electrophoresis run by mixing and 

diluting ten times before 1 µL of this mix was applied together with 0.2 µL GeneScan 

500 (-250) LIZ (Applied Biosystems) size standard and 8.8 µL HiDi formamide 

(Applied Biosystems). During PCR and electrophoresis, each 96 well plate included 

two positive internal controls and one negative control. Four samples were included 

on all plates, as a control between the different runs.  



 

 

 

Table 1. Overview of the collected material of Dryas octopetala. N is the number of plant individuals collected from each population. Latitude and longitude are 
given in degrees, positive and negative values indicate west and east respectively. Voucher specimens are deposited at the Natural History Museum, Oslo 
(O). Percentage of linked loci were only calculated for the populations that were sampled in the standardized way (see text).   

 
Population name 
(abbreviation) 

Country Locality Sublocality  N Year Collector* Latitude Longitude % linked 
loci 

Langesund (L-1) Norway Langesund Langøya  39 2006 AKB, UV, IN 59.0023   9.7563 14.81 % 
Finse (F-1) Norway Finse Kvannjolsnut  31 2006 AKB, UV 60.6076   7.5499 4.94 % 
Finse (F-2) Norway Finse Sanddalsnut  34 2006 AKB, UV 60.6149   7.5201 13.58 % 
Finse (F-3) Norway Finse Jomfrunut  31 2006 AKB, UV 60.6045   7.5189 9.88 % 
Troms (T-1) Norway Troms Fløifjellet  36 2007 UV, MFMB 69.6222  19.0038 6.17 % 
Troms (T-2) Norway Troms Lyngsalpene  30 2007 UV, MFMB 69.6941  20.7775 13.58 % 
Troms (T-3) Norway Troms Lyngsalpene  30 2007 UV, MFMB 69.7516  20.7386 11.11 % 
Longyearbyen (S-1) Norway Longyearbyen Endalen  30 2006 AKB, UV, IN 78.1897  15.7812 3.70 % 
Longyearbyen (S-2) Norway Longyearbyen Longyeardalen  24 2006 UV, IN 78.2005  15.5861 12.35 % 
Longyearbyen (S-3) Norway Longyearbyen Bjørndalen  31 2006 UV, IN 78.2313  15.3333 8.64 % 
Ny-Ålesund (N-1) Norway Ny-Ålesund Below Zeppelinfjellet  34 2006 AKB, HK 78.9130  11.9235 12.35 % 
Ny-Ålesund (N-2) Norway Ny-Ålesund Brøggerhalvøya  33 2006 AKB, HK 78.9340  11.8353 11.11 % 
Ny-Ålesund (N-3) Norway Ny-Ålesund Brøggerhalvøya  40 2006 AKB, HK 78.9394  11.8020 14.81 % 
Greenland (AK-1071) Greenland Mestervig Mestervig  10 2003 OG 72.2425 -23.8975 - 
Greenland (AK-112) Greenland Dronning Margrethe II Land Ardencaple Fjord  10 2003 MKH 75.3000 -20.8500 - 
Greenland (AK-359) Greenland Jameson Land Constable Point  10 2002 IS, LL 70.7456 -22.6898 - 
Russia (AK-144) Russia Yamalo-Nenetskiy AO South Yamal  10 2002 MK 68.2000  68.9000 - 

Russia (AK-3713) Russia Nenetskiy AO Nenetskaya Gryada  11 2004 DE 68.3360  53.3000 - 

Russia (AK-3508) Russia Taymyrskiy AO Ary-Mas nature reserve  11 2004 AT, PS 72.4644 101.8636 - 

Russia  (AK-4436) Russia  Komi Republic Balbanyu  11 2004 AT, ES, IGA 65.3410  60.7120 - 

Russia (AK-4484) Russia Yamalo-Nenetskiy AO Chernaya mountain  11 2004 MK 66.8410  65.5000 - 

*AKB: A.K. Brysting, AT:  A. Tribsch, DE:  D. Ehrich, ES: E. Shobnitsina, HK: H. Kauserund, IGA: I.G. Alsos, IN: I. Nordal, IS: I. Skrede, LL: L. Lund, MFMB: M.F.M. Bjorbækmo, MK: M. Kapralov,    
MKH: M.K. Holte, OG: O. Gilg, PS: P. Schönswetter, UV: U. Vik. 
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Table 2. Characterization of the ten Dryas octopetala microsatellite markers developed for this study. F gives the 
forward 5´-3 primer and R the reverse 5´-3´ primer. Repeat types were observed in sequenced clones. TA gives 
annealing temperatures. Number of alleles is based on the 471 individuals in this study. Mix A and B represent the 
markers which were co-loaded on the ABI-sequencer. Scoring error was calculated from two independent scorings of 
the dataset, and the allelic dropout was calculated from replicate runs. Marker D20 was left out of the analysis, and 
number of alleles, scoring error and allelic dropout thus not calculated.  

Locus Primer sequences 5´- 3´ Repeat types 
M13 
lable 

TA 
Size range 
(bp) 

MIX 
No. of 
alleles 

Scoring 
error 

Allelic 
dropout 

D3 F: TTTGCAAAACAACAAACAGTTG 
R: GTGTGGCAAGACTCGAGAGC (GTAT)9 PET 60 144-198 A 22 0.37% 2.17% 

D5 F: AGCGTGCCTTAATTGCATTC 
R: TCTGTGGTTCCACAAAGTGC (GATA)6 NED 56 194-213 A  8 0.18% 0.86% 

D8 F: CTTGCTGCGACCAGATTTTC 
R: TAGGGCGCTCTAAGAACCAC (TC)28 NED 56 166-241 B 39 1.84% 4.16% 

D10 F: AAGGCTACGGAAAAGCTTGC 
R: CACAGCAATGATATATGTTGAGAGG (CT)7 GTCA (CT)5 (CA)12 FAM 56 222-314 A 43 1.48% 2.05% 

D11 F: GCGATTCCGAATTTTACAGG 
R: TCCCGAAGAACTCTTCCTAGC (CT)20 PET 56 169-209 B 19 0.59% 7.80% 

D13 F: ACCTGAATGGTCTTCCCAAG 
R: ATGCCGTTTTATGCTTCGTG (GTAT)7 FAM 56 90-192 B 39 0.39% 1.95% 

D14 F: GTTAGGCATCACCACAATGC 
R: CAAACTGTTGTTGCAAAGATGG (CT)21 FAM 56 172-230 B 10 0.78% 4.23% 

D17 F: CAGCAGCATGAGCTGAAAAG 
R: AAGCACTTAAAAGCATGTGTGC (AT)4(GT)13 VIC 56 144-174 B 11 0.00% 0.00% 

D20 F: TTTTTGGTTACTGTTATCTGCATC 
R: AATCCCGTACCAGGAAAACC (AT)5 (GTAT)9 (GT)11 FAM 56 144-168 A - - - 

D21 F: CCGGAAAGCACCATTAGTTG 
R: TCATGTGGGACTAAGGGATTC (TACA)6 VIC 50 155-246 A 23 0.20% 0.00% 

 

 

Statistical analysis 

The microsatellite markers were scored using the program GENEMAPPER version 3.7 

(Applied Biosystems). One marker (D20) was left out from the following analyses 

because it was too difficult to score. Individuals where more than two peaks were 

detected for a single locus and more than three of the nine microsatellite loci failed to 

amplify were removed from the dataset. To calculate a scoring error, the entire dataset 

was scored twice and the ratio between observed number of allelic differences and 

total number of allelic comparisons obtained. The last scored dataset was used further 

in all analyses. Calculation of the ratio between observed number of allelic 

differences and the total number of allelic comparisons was also performed on 

replicates and on negative controls to estimate the error between and within runs and 

to detect null alleles (allelic dropout).  

NTSYSPC version 2.1 (Rohlf, 2000) was used to visualize genetic structure in 

the data by running a principal coordinates analysis (PCO) on an allelic 

presence/absence dataset with simple matching similarity.  

The dataset was clone-corrected by removing all individuals from the same 

sub-localities with identical multi-locus genotypes, and converted into ARLEQUIN 
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(Excoffier et al., 2006) and STRUCTURE (Pritchard et al., 2000) input format using the 

program CONVERT (Glaubitz, 2004).  

STRUCTURE version 2.2 is a model-based clustering method for multi-locus 

genotype data for inferring population structure and assigning individuals to 

populations, developed by Pritchard et al. (2000). A number of potential clusters (K) 

between one and eighteen were tested, with simulations that were run for 106 

iterations following a burn-in length of 105 iterations using the freely available 

Bioportal computer service (University of Oslo, http://www.bioportal.uio.no). For 

each K, ten rounds were run. STRUCTURE was set up to use an admixture ancestry 

model and run twice on the data, the first time using a correlated allele frequency 

model (Falush et al., 2003), where the frequencies in the different populations are 

likely to be similar, and the second time using an independent allele frequency model, 

where the model assumes that the allele frequencies in each populations are 

independent. A hierarchical structure analysis was run on all groups detected after the 

first run to identify further sub-structure within these groups, using the same 

parameters as for the first runs, but restricting K to nine and only using a correlated 

allele frequency model. The statistical package R version 2.8.0 (http://cran.r-

project.org/) was used to summarize outputs of STRUCTURE using a collection of R 

functions, STRUCTURE-SUM (Ehrich, 2006). 

 ARELQUIN version 3.1 was used to infer various population genetic statistics. 

A standard analysis of molecular variance (AMOVA) was used to analyze at which 

level the genetic variation was distributed, i.e., within populations, between 

populations, or between regions. The significance of covariance components 

associated with the different possible levels of genetic structure was tested using non-

parametric permutation procedures (Excoffier et al., 1992). To compute the 

dissimilarities between the populations, pairwise FST values were calculated for all 

pairs of populations. Expected heterozygosity and the number of alleles were 

computed as standard diversity indices for each locus, as well as a mean for the 

populations. To test the hypothesis that the observed diploid genotypes are product of 

a random union of gametes, observed and expected heterozygosity with associated P-

vaules were calculated for each marker in each sub-population from Troms, Finse, 

Langesund, Longyearbyen and Ny-Ålesund, where the populations were sampled in a 

standardized fashion, using a clone-corrected dataset. The calculations were 

performed by an exact locus by locus test of Hardy-Weinberg equilibrium using 105 
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steps in the Markov chain and 103 dememorization steps. A likelihood ratio test of 

linkage disequilibrium was performed for the sub-populations using 104 permutations 

and ten initial conditions (Excoffier and Slatkin, 1998). 

To address the taxonomical issue of Dryas on Svalbard, i.e. whether the three 

morphotypes of Dryas (octopetala, punctata and x vagans) can be assigned to three 

taxa, a PCO analysis was conducted on a clone-corrected dataset consisting of the 178 

Svalbard individuals in NTSYSPC version 2.1 with simple matching similarity. An 

AMOVA was performed using ARELQUIN version 3.1 to investigate whether the 

genetic variation was distributed among or within the three morphotypes. 
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Results 

A total of 471 individual plants were successfully scored for six or more of the 

nine microsatellite markers, and 214 different alleles were detected. Among the 

471 plants, the scoring error varied from 0.0 % (D17) to 1.8 % (D8), and the 

allelic dropout varied from 0.0 % (D17, D21) to 7.8 % (D11; Table 2). Ninety 

plants shared the same multi-locus genotype with another plant and were removed 

in the clone-corrected dataset. Noteworthy, 95.2 % of the plants that shared multi-

locus genotype came from the same sub-locality. Six plants from different sub-

localities but within the same main locality (Troms) shared multi-locus genotypes, 

while no plants from different main localities had a similar multi-locus genotype. 

 

Phylogeography 

The PCO analysis of the total dataset structured the plants largely according to 

their geographic origin (Fig. 2). Plants from Svalbard and mainland Norway 

appeared at the extremes of component axis one (explaining 12.0 % of the 

variation) with plants from Russia and Greenland grouping in between. The  

Figure 2. Principal coordinate analysis of 471 Dryas octopetala individuals based on 
the allelic presence/absence dataset of the nine microsatellites and using simple 
matching similarity.  

second axis, explaining 5.6 % of the variation, separated plants from mainland 

Norway into two more or less distinct groups, one including plants from 

 15
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Langesund and Finse (both South Norway) and the other including plants from the 

Troms population (North Norway). 

The STRUCTURE analysis, run on the clone-corrected dataset (391 plants), 

grouped the analysed material into three clusters, both when analyzed with 

independent and correlated allele frequency models (Fig. 3a-b, Fig. 4a-b). One 

cluster included plants from the Greenland, Troms and Russian populations, a 

second cluster included plants from Langesund and Finse (southern Norway 

cluster), and a third cluster included the plants from Longyearbyen and Ny-

Ålesund (Svalbard cluster). Some individuals in each cluster were not allocated 

unambiguously. This was especially prominent in the analysis using the 

independent allele frequency model (Fig. 3b, Fig. 4b), where some individuals 

from the Greenland, Troms and Russian populations were more closely related to 

individuals from the southern Norwegian cluster. 

 
Figure 3. Summary plot of cluster estimates identified from the STRUCTURE analysis based on the 
clone-corrected dataset consisting of 391 individuals of Dryas octopetala. Each individual is 
represented by a single vertical line broken into K colored segments, with lengths proportional to each 
of the K inferred clusters. Structure clusters are based on a) correlated allele frequency model, b) 
independent allele frequency model and c) from hierarchical structure with correlated allele frequency 
model.  
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The hierarchical structure analyses further divided the identified clusters into 

smaller sub-clusters, where plants from each main locality constituted separate 

sub-clusters (Fig. 3c, Fig. 4 c-e). Noteworthy, the Longyearbyen and Ny-Ålesund 
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sub-clusters (both Svalbard) had higher proportions of plants allocating to each 

other compared to any of the other sub-clusters (Fig. 3c). 
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Figure 4. Plot of estimated similarity coefficients for the STRUCTURE clusters of 391 
individuals of Dryas octopetala. Both the correlated run (a) and the independent run (b) 
identified three clusters, while the hierarchical structure run on individuals from Greenland, 
Troms and Russia identified three sub-clusters (c), the hierarchical structure run on 
individuals from Finse and Langesund identified two sub-clusters (d), and the hierarchical 
structure run on individuals from Svalbard identified two sub-clusters (e).  

 

The AMOVA of the three main groups identified in the STRUCTURE analysis using 

correlated allele frequencies resulted in 12.89 % variation among groups, 11.37 % 

among populations within groups and 75.74 % within populations (Table 3). When 

no grouping of populations was inferred, 22.10 % of the variation was among 

populations, and 77.90 % within populations. Separate AMOVAs of the different 

groups were also conducted. In the group including Greenland, Troms and Russia, 

15.13 % of the variation was among populations and 84.81 % within populations. 

The southern Norway group had 15.19 % variation among populations and 84.81 

% within populations, and for the Svalbard group, the AMOVA resulted in 7.77 % 

variation among populations and 92.23 % within populations.  
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Table 3. Analysis of molecular variance (AMOVA) of Dryas octopetala based on nine 
microsatellite markers for the whole dataset (a), the clusters detected in STRUCTURE (b-e) and 
the three morphotypes (i.e., octopetala, punctata and x vagans) on Svalbard (f).  

 
Source of variation  d.f. 

  Sum of   
squares 

      Variance 
components 

Percentage 
of variation 

a) All populations Among populations 6   537.481 0.79166 22.10 

 Within populations 775 2162.530 2.79036 77.90 

      

b) Three clusters Among groups 2   354.337 0.47486 12.89 

 Among populations within groups 4   183.144 0.41886 11.37 

 Within populations 775 2162.530 2.79036 75.74 

      

c) Greenland, Troms   Among populations 2   99.181 0.52669 15.13 

    and Russia cluster Within populations 283  836.193 2.95474 84.87 

      

d) Southern Norway   Among populations 1   51.809 0.53912 15.19 

    cluster Within populations 208  626.215 3.01065 84.81 

      

e) Svalbard  Among populations 1   32.154 0.20762 7.77 

    cluster Within populations 284  700.122 2.46522 92.23 
      

f) Morphotypes on  Among taxa 2 13.669 0.08280 3.09 

   Svalbard Within taxa 303 787.252 2.59819 96.91 

 

Pairwise FST values were calculated among all populations and ranged from 

0.078 between Longyearbyen and Ny-Ålesund, to 0.379 between Ny-Ålesund and 

Langesund (Table 4), indicating that Ny-Ålesund and Longyearbyen are the least 

genetic separated populations, whilst Ny-Ålesund and Langesund are the most 

genetically differentiated populations.  

Out of the standard diversity indices calculated for the different 

populations (Table 5), Greenland (the three Greenland populations treated as one 

population) had the highest expected heterozygosity with 0.7740, whilst the lowest 

expected heterozygosity was found for Ny-Ålesund and for Langesund (0.5425 

and 0.5482, respectively). Out of the populations sampled in the same 

standardized way using 6 x 6 m grids (i.e. Langesund, Finse, Troms, 

Longyearbyen and Ny-Ålesund), Finse had the highest heterozygosity (0.7401), 

whilst Langesund and Ny-Ålesund had the least. The highest mean number of 

alleles was found for the Russian population (the five Russian populations treated 

as one population) with 13.2 alleles and the lowest for Langesund with 4.78 

alleles.  
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Table 4. Pairwise FST values calculated for the Dryas octopetala populations. All 
populations were significantly differentiated from each other (p<0.05).  

 Greenland Russia Troms Finse Langesund Ny-Ålesund 

Russia 0.136 0.000   
Troms 0.179 0.145 0.000   

Finse 0.116 0.158 0.149 0.000   

Langesund 0.246 0.256 0.279 0.152 0.000  

Ny-Ålesund 0.265 0.215 0.331 0.268 0.379 0.000 

Longyearbyen 0.217 0.165 0.281 0.231 0.339 0.078 

 

Table 5. Standard diversity indicies: Expected heterozygosity (HE) 
and mean number of alleles for the Dryas octopetala populations. 
Population HE mean + s.d. # of alleles + s.d 

Greenland 0.7740 ± 0.1081 6.889 ± 2.892 
Russia 0.7322 ± 0.2052 13.222 ± 8.182

Finse 0.7401 ± 0.1051 10.667 ± 4.472

Langesund 0.5482 ± 0.2276 4.778 ± 2.279

Ny-Ålesund 0.5425 ± 0.2693 8.000 ± 5.292

Longyearbyen 0.5770 ± 0.3001 8.444 ± 6.803

Troms 0.6010 ± 0.2556 9.444 ± 6.064

 

Population structure 

In the analyses of plant population structure, only plants from the southern 

Norwegian, Troms and Svalbard populations, where plants had been sampled in a 

grid fashion, were included. The 13 different sub-populations were analysed 

separately. Plants within sub-populations with identical multi-locus genotypes 

(presumably representing the same genet) were mapped onto the grid in order to 

visualize the distribution of genets (Fig. 5). In general, plants sharing the same 

multi-locus genotype occurred adjacent in the grid. As can be observed in Fig. 5, 

the proportion of ramets in each grid varied among the sub-populations but there 

was apparently no systematic trend across populations.  

 

 Table 6. Results from tests of deviations from Hardy-Weinberg expectations (P-values) for the 13 sub-
populations. Numbers in bold indicate significant deviations from the expected genotype frequencies. 
Heterozygote excesses are indicated with plus, and deficits with a minus sign. Loci that were monomorphic 
in a population are indicated with “-“.  
Locus F-1 F-2 F-3 L-1 T-1 T-2 T-3 S-1 S-2 S-3 N-1 N-2 N-3 

D3 + 0.235 - 0.088 + 0.618 + 0.129 + 0.807 - 0.162 + 0.623 - 0.552 + 0.957 - 0.336 - 0.002 + 0.155 + 0.652
D5 + 0.663 + 0.970 -  0.587 + 1.000 - 0.528 + 1.000 - 1.000 + 1.000 + 1.000 + 0.128 + 1.000 + 0.671 + 1.000

D8 + 0.584 + 0.966 + 0.739 + 0.853 - 0.051 + 0.412 + 0.168 - 0.177 - 0.496 - 0.029 + 0.504 + 0.802 - 0.090 

D10 -  0.390 - 0.106 -  0.346 - 0.190 - 0.004 - 0.000 + 0.642 - 0.122 - 0.000 - 0.001 + 0.248 - 0.000 + 0.326

D11 -  0.000 - 0.209 -  0.026 - 0.002 - 0.044 + 0.368 + 0.488 - 0.002 - 0.001 + 0.261 - 0.001 - 0.134 + 0.245

D13 -  0.457 - 0.283 + 0.027 - 0.003 + 0.353 - 0.385 - 0.032 - 0.343 + 0.480 - 0.053 + 0.631 + 0.132 - 0.210 

D14 + 0.495 + 0.761 -  0.195 + 1.000 - 0.018 - 0.001 + 0.736 - - 1.000 + 1.000 + 1.000 + 1.000

D17 -  0.612 + 0.364 + 0.591 - 1.000 - - - + 1.000 - 0.540 - 0.099 - 0.205 + 1.000 - 

D21 + 0.640 - 0.090 + 0.111 - 0.510 - 0.067 - 0.483 - - 0.693 + 0.051 + 0.454 + 0.764 + 0.185 + 0.004
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Figure 5. Distribution of 124 Dryas octopetala genets mapped onto the grid of each sub-
population. Uncoloured squares represent samples with unique multi-locus genotype. 
Coloured and numbered squares represent samples with identical multi-locus genotype. 
Different shades of blue represent the distribution of clones in the Finse population (a), 
green in the Troms population (b), purple in the Ny-Ålesund population (c), red in the 
Longyearbyen population (d) and yellow in the Langesund population (e). Hatched squares 
are those where D. octopetala was not growing and thus not sampled, or represent 
samples that were not included in the analyses.   
 

In general, the allele frequencies at the nine loci were in accordance with Hardy-

Weinberg expectations across all sub-populations with a few deviations (Table 6). 

Both significant heterozygote excesses (1.7 % of the loci across all populations) 

and deficits (14.5 % of the loci across all populations) occurred.  
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The likelihood ratio test of linkage disequilibrium between all 

combinations of loci within sub-populations, revealed that in average 10.54 % of 

the combinations were in linkage disequilibrium, ranging from 3.70 % in the S-1 

(Longyearbyen) sub-population to 14.81 % in the L-1 (Langesund) and N-3 (Ny-

Ålesund) sub-populations (Table 1).  

 

Taxonomy 

In a PCO analysis of the three morphotypes found on Svalbard (i.e., octopetala, 

punctata and x vagans), six individuals were removed as they had missing data for 

the D11 marker, and consequently grouped as outliers. One of the removed 

individuals was of punctata type, whilst the others were of octopetala type. The 

two Svalbard populations (Longyearbyen and Ny-Ålesund) were separated along 

component axis one, which explained 10.27 % of the variation (Fig. 6a). 

Component axis two explained 7.99 % of the variation. Individuals of punctata 

and x vagans type mainly occurred within the Longyearbyen group, but were here 

intermingled with individuals of octopetala type, and no structuring relating to 

morphotypes was observed (Fig. 6b). The AMOVA of the three morphotypes 

resulted in 3.09 % variation among the morphotypes, and 96.91 % variation within 

the morphotypes (Table 3f).   

 

 

 

 

 

 

 

 

 
      a)           b) 

 

Figure 6. Principal coordinate analyses of the 178 Dryas octopetala individuals sampled from Svalbard 
using an allelic presence/absence dataset of the nine microsatellites and simple matching similarity 
coefficient. Information on a) geographic origin of the samples (i.e., Longyearbyen and Ny-Ålesund) and 
b) the three morphotypes (i.e., octopetala, punctata and x vagans) is mapped on to the PCO plot. 



Discussion 
___________________________________________________________ 

 22

Discussion 

New microsatellite markers for Dryas octopetala 

In this study ten newly developed microsatellite markers for D. octopetala have 

been tested and evaluated. Of the ten markers developed, nine were used in the 

analyses and found to be polymorphic, including from eight to 43 alleles per loci 

analysed. In six of the nine Troms and Svalbard sub-populations, one or two 

markers were fixated and thus did not contribute with any genetic information. 

Overall, the microsatellites seemingly provided a resolution that was high enough 

to distinguish between individuals (see below), as well as providing a genetic 

pattern at a larger geographic scale. Whereas phylogeographic studies of animals 

often are based on microsatellites (e.g., Adams et al., 2006; Goropashnaya et al., 

2007; Nittinger et al., 2007; Rossiter et al., 2007), plant studies are often based on 

AFLPs, except for studies of plants closely related to the genome sequenced 

Arabidopsis thaliana (L.) Heynh (e.g., Carlsen et al. 2007; Jørgensen et al., 2008). 

Few microsatellite makers have been developed for plants in general, and 

especially for arctic-alpine plants. The polyploidy of many arctic-alpine plants 

causes most microsatellite loci to be multi-allelic, making it difficult to analyse the 

information generated with existing software. However, microsatellites have been 

developed for some diploid arctic-alpine plants (e.g., Mariette et al., 2001; Skrede 

et al., In press). The microsatellites developed for this study provide a useful tool 

for further studies of D. octopetala, and perhaps close relatives, both at a larger, 

phylogeograpic scale, and at a smaller population scale where standard population 

genetics can be applied.  

 

Phylogeography in North Europe as revealed by microsatellite 

markers 

The STRUCTURE analyses group the D. octopetala material into three main groups 

related to latitude; one southern group, one intermediate group and one 

northernmost group. At a smaller scale, the hierarchical STRUCTURE analyses 

showed that all the sampled regions (i.e., Greenland and Russia) and populations 

were genetically differentiated. Only a very small proportion of the individuals 

allocated to other clusters than the cluster containing the population they were 

sampled from. However, in spite of this differentiation, most of the genetic 
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variation occurred within populations/regions. As judged from the microsatellite 

markers, Greenland is the genetically most variable group, followed by the Finse 

population and Russia. However, even though they were treated as one group in 

several of the analyses, individuals from Greenland and Russia were sampled from 

much broader geographic regions and in another manner than the other 

populations, making direct comparisons of genetic diversity difficult.  

 At the last glacial maximum, the European ice sheet extended south to 52° 

N and permafrost south to 47° N. As the ice melted, species from the tundra, cool 

temperate and warm temperate habitats migrated northwards. Most temperate 

species in North Europe had their last glacial maximum refugia in the south of 

Europe, and the colonization northwards was rapid (Hewitt, 1999). In addition, an 

eastern refugium has been suggested for several organisms (e.g., Taberlet et al., 

1998; Skrede et al., 2006). As noted by Taberlet et al. (1998), the combination of 

intraspecific polymorphism and fossil data makes it possible to identify postglacial 

immigration routes. The past distribution of Dryas in Europe has long been 

particularly well known because of its abundant occurrence as a macrofossil in 

Quaternary deposits in northern and central continental European lowlands 

(Tralau, 1963). This past distribution in the lowlands contrasts strongly with its 

modern distribution in Europe, where it is restricted to mountain areas (Birks, 

2008). When Dryas populations were isolated in refugia during glacial periods 

probably only minor differentiation took place due to the long generation time and 

thereby slow evolution, and when the distribution area expanded during warmer 

periods, plants from different refugia met and could still freely exchange genes. 

Low level of interpopulational isozyme variation (Max et al., 1999; Philipp and 

Siegismund, 2003) and the high level of shared microsatellite variation across 

populations observed in this study support this scenario. 

The restricted sampling of this study with regard to number of populations, 

especially when it comes to potential refugium areas in central, southern and 

eastern Europe (Skrede et al., 2006), limits the inference of possible immigration 

routes of D. octopetala to the North Atlantic area. Nevertheless, two main 

scenarios may be suggested from the observed microsatellite patterns. The high 

level of shared microsatellite variation between populations, the existence of three 

main groups related to latitude and generally lower diversity in the north (i.e., on 

Svalbard) than further south could support a scenario of a stepwise immigration on 
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a broad front from the south. However, the results could also point towards two or 

possibly three main immigration routes following the glacial retreat. Major 

expansions of D. octopetala from the south as well as from the east are likely 

immigration scenarios for the southern and the intermediate group, respectively. 

It seems likely that the two southern Norwegain populations, Finse and 

Langesund, share an immigration route from the south closely following the ice-

edge as it withdrew. The Langesund population occurs today in a small isolated 

coastal area within the potential forest zone as a relict population from when the 

ice retreated (Dyring, 1911; Lid, 1958), which is reflected in the low genetic 

diversity found in this population. 

The close link between individuals from Greenland, Troms and Russia 

supports a shared immigration route, probably from a refugium in the east. 

However, in the STRUCTURE analysis using an independent allele frequency model, 

some individuals from Greenland allocated to the southern Norwegian cluster, 

suggesting that there might have been several dispersal events to Greenland, both 

from the east and from the south. A contact zone between immigrants from east 

and south could be part of the explanation why high genetic diversity is found in 

Greenland. However, opposed to the clustering from the STRUCTURE analysis, the 

PCO analysis groups the three mainland Norway populations together, suggesting 

a close genetic relationship and a possible shared immigration route from the 

south.  

Possible in-situ survival during the last glacial maximum cannot be ruled-

out for the northernmost group (Svalbard), based on generally high pairwise FST 

values as well as the distinct grouping in the STRUCTURE analyses. However, a 

possible colonization route from the east seems more likely, based on the fact that 

the Svalbard individuals group close to Russia in the PCO, that the pairwise FST 

values are lower between Longyearbyen and Russia than between any other 

region/population (except Ny-Ålesund), and that a small proportion of Svalbard 

individuals allocates to the intermediate group (Greenland, Troms and Russia) in 

the STRUCTURE analyses.  

Several other studies have investigated the phylogeography and 

immigration routes of D. octopetala in the North Atlantic area. Based on leaf 

morphology, Elkington (1965) proposed that D. octopetala had immigrated to East 

Greenland from Svalbard. This was supported by Philipp and Siegismund (2003), 



Discussion 
___________________________________________________________ 

 25

who used a combination of morphological and genetic characters for their 

interpretation, and noted that the high genetic diversity in East Greenland could be 

the result of immigration from Svalbard combined with possible hybridization 

with the North American D. integrifolia M.Vahl. Chlebicki et al. (2005) used 

observations of microfungi growing on D. integrifolia and D. octopetala as a 

method to explain the immigration routes of the two species to Greenland. They 

suggested that the similarity of the Greenland and the Ural Mountains mycobiota 

could indicate a migrational model of colonization of D. octopetala to Northeast 

Greenland from Ural by wind, driftwood, and migratory birds. 

 Skrede et al. (2006) studied the phylogeography of D. octopetala in 

Eurasia using AFLPs. Their results indicated two main immigration routes for the 

North Atlantic plants. One group, referred to as the European group, probably 

survived in a major southern refugium between the Scandinavian Ice Sheet and the 

Alps during the last glaciation, and expanded northwards as the ice retreated and 

colonized northwestern Europe, Iceland and East Greenland. A second group, 

referred to as the Eastern group, probably survived the last glaciation in a major 

refugium in northern Russia/eastern Europe. Their data provided strong evidence 

of repeated colonization of Svalbard by this eastern linage. The predominant 

source area was also found to be northwestern Russia for several other plant 

species occurring on Svalbard, whereas colonization from Scandinavia to Svalbard 

seemed to be rare (Alsos et al., 2007). Although in-situ glacial survival of D. 

octopetala on Svalbard could not be excluded, Skrede et al. (2006) concluded that 

it did not provide a reasonable explanation for the high diversity they observed for 

this area. Tremblay and Schoen (1999) investigated the phylogeography of the 

closely related D. integrifolia in North America, and suggested that this species 

survived in glacial refugia south of the American ice sheets as well as in the 

Canadian Arctic.  

The results from this study are congruent with the hypothesis of several 

immigration routes of D. octopetala into the North Atlantic region, as suggested 

by Skrede et al. (2006). However, the main patterns revealed by microsatellites 

and AFLPs differed in several aspects, first of all with regard to populations from 

Svalbard and Greenland. The microsatellite patterns did not show the same strong 

support for an eastern immigration route to Svalbard or for a mainly southern 

immigration route to Greenland, as was suggested by Skrede et al. (2006). The 
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close association between Greenland and especially Russia, which was indicated 

by microsatellite patterns, was contradicted by AFPLs, which grouped Greenland 

together with North American populations. However, it cannot be ruled out that 

the Greenland populations would have clustered differently if North American 

samples had been included in the present study.  

  The fact that the phylogeographic structure obtained in this study differs 

somewhat from that observed by Skrede et al. (2006) might of course be related to 

the different sampling of the two studies, but it might also be due to the different 

markers used. As Gaudeul et al. (2004) noted, two extreme strategies can be 

adopted when choosing a molecular technique for genetic diversity assessment; 

sampling numerous poorly informative markers (AFLPs) or sampling few highly 

informative markers (microsatellites). Several studies have compared AFLPs and 

microsatellites at smaller, regional scales (Mariette et al., 2001; Gaudeul et al., 

2004; Woodhead et al., 2005; Sønstebø et al., 2007). However, at larger 

geographic scales, fewer studies have inferred a direct comparison of the two 

marker systems. Skrede et al. (2008) compared genetic structuring and diversity in 

three circumpolar species of Draba L. using 160 AFLP markers and 10 

microsatellite loci. They found more distinct genetic clustering in the three Draba 

species using AFLP markers than microsatellite loci, and suggested that AFLPs 

are better suited for large-scale phylogeographic studies than microsatellites, as 

microsatellites may evolve too fast and homoplasy may blur the main structure. 

They also found that intrapopulation genetic diversity measures based on AFLPs 

and microsatellites were not correlated. Quite different rarity measures were also 

obtained for the two types of markers. Owing to the intrinsic differences in 

mutation rates between the two marker systems, within population diversity 

estimated with microsatellites should according to Gaudeul et al. (2004) be higher 

than with AFLPs. In Skrede et al. (2006), where AFLPs were used to infer the 

phylogeography of D. octopetala, AMOVA generally revealed a higher percentage 

variation among populations compared to the present study based on microsatellite 

variation. However, this may also be related to the fact that more geographically 

distinct populations from North America and Central Asia were included in Skrede 

et al. (2006). 
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Population structure of Dryas octopetala populations 

The results show that the nine microsatellite markers to a large extent are able to 

separate between different genets of D. octopetala; 95.2 % of the plants with 

similar multi-locus genotypes belonged to the same sub-localities and these plants 

were in most cases sampled adjacent in the grid system. No plants from different 

main localities shared similar multi-locus genotype. However, between two sub-

localities in Troms, T-1 and T-2, six individuals shared the same multi-locus 

genotype, indicating that the markers did not give a high enough resolution to 

distinguish between individuals in all cases. One of the markers was fixed in the 

Troms population, making it more likely that different genets obtain similar multi-

locus genotypes in this population.  

In general, the results indicate that on a very local scale (i.e. within the 

sampled 6 x 6 m grids), most plants represent different genets. However, D. 

octopetala individuals can locally also reach a larger spatial distribution by 

vegetative growth and spread by lateral ramets. For example, one individual in one 

of the Troms sub-localities covered at least 11 m2 (T-3). Wookey et al. (1995) 

suggested that clonal growth of D. octopetala enables individuals to persist and 

grow in an extreme environment where sexual proliferation often is unsuccessful, 

but no systematic latitudinal trend was found in this study concerning the 

proportion of genets and ramets in the grids. 

  The population genetic analyses revealed that genotype frequencies of the 

local D. octopetala populations were mainly in Hardy-Weinberg equilibrium, 

indicating that the Hardy-Weinberg expectations in general were met. However, 

most of the loci that deviated significantly from the expected genotype frequency 

distributions, showed a deficiency of heterozygotes, indicating a small extent of 

inbreeding or genetic drift. There was no latitudinal trend concerning the 

heterozygote deficiency; the northernmost populations from Longyearbyen and 

Ny-Ålesund were, as the other populations, mainly in accordance with Hardy-

Weinberg expectations. Furthermore, most of the genetic variation detected in this 

study occurred within populations, rather than between populations. The obtained 

results correspond with the fact that D. octopetala is a sexual reproducing, 

predominantly outcrossing, wind-dispersed, long-lived species, which occurs in a 

late successional stage and consists of large and stable populations (Elkington, 

1971; McGraw, 1987; Molau, 1993; Wookey et al., 1995); all factors that 
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promotes a high genetic variation within groups and corresponding low genetic 

divergence between populations. Small amounts of gene-flow as the result of long-

distance migration by seeds or even by pollen can prevent divergence between 

populations and thus reduce the genetic structure among populations. The long-

lived habit of Dryas may also reduce effects of drift and increase chances of 

migration and thus also hinder divergence among populations (Loveless and 

Hamrick, 1984).  

 

Only one Dryas species occur on Svalbard    

A higher proportion of genetic variation was found between the two sampled 

Svalbard populations (i.e., Longyearbyen and Ny-Ålesund) than between the three 

morphotypes based on glands on the leaves. Thus, no support is found for the 

existence of three Dryas taxa on Svalbard as proposed by Yurtsev (1997). This is 

in accordance with a study by Siegismund and Philipp (1999), where 

morphological and isozyme characters were investigated for the morphotypes 

octopetala and punctata in four populations on Svalbard. As in the present study, 

they found a larger genetic divergence between geographic populations than 

between the two groups recorded as octopetala and punctata, and concluded that 

there is only one species on Svalbard, i.e., D. octopetala. Also the analyses by 

Skrede (2004) indicate a strictly geographic structuring of the genetic variation in 

D. octopetala on Svalbard. The recognition of only one Dryas species on Svalbard 

is in agreement with the latest version of the Panarctic Flora Checklist (Elven et 

al., 2008). Here, D. punctata is recognised as a species in a more restricted sense 

than done by Yurtsev (1997), with its distribution limited to North Siberia.  
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