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Abstract 

Patterns in time series are observational records of past ecological processes, and 

identifying these processes remains a major challenge to population ecologists. Until 

recently, analysis of time series has concentrated on statistical description of density 

dependent structure of patterns, while the ecological factors that underlie the structure 

remain to a large part unknown. In this thesis, mechanistic properties of a model building 

on existing statistical framework are explored and discussed. By incorporating a two 

species trophic interaction and seasonality, the model may allow for direct ecological 

interpretation of density dependence. General model dynamics are explored and the 

biologically relevant parameter space identified. It is further shown that the relative 

length of summer/winter can have profound consequences for model dynamics, and very 

possibly force populations between regions of stable, cyclic and unstable dynamics. 

Supposing that the model can adequately describe the outcome of biological interactions, 

it is fitted to a large set of time series of voles from Hokkaido, Japan. From qualitative 

properties of six independent estimates of model coefficients, inferences are done about 

the parameter aggregates that constitute these coefficients. Inferences from two different 

ecological scenarios; predator-prey and grazer-vegetation, are then compared with the 

parameter space found appropriate from when studying the general model dynamics. 

Under specified assumptions, support is found for that signals in the time series are a 

result of an interaction between vole and its food resource.  
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Introduction 

After almost a century of research, population ecologists have still not resolved 

what is frequently termed as the ‘enigma of cyclic populations’. Cyclic is here shorthand 

for multiannual periodic fluctuations in abundance, seen in classical examples such as 

e.g. small rodent cycles (Elton 1924) and the Canadian lynx cycle (Elton and Nicholson 

1942). The enigma may be separated loosely into two parts. First, we have the (lack of) 

identification of mechanisms underlying the cycles on a local scale. These mechanisms 

can be of both exogenous (arising from outside the community) and endogenous origin 

(resulting from biological interactions), and when identified they must explain why some 

populations are cyclic and others are not, how populations may lose their cyclic 

behaviour, and of course the regularity and length of the cycle period. The second part 

refers to the synchrony occurring between seemingly distinct populations across large 

geographical areas (recently reviewed in Liebhold et al. 2004). Both exogenous and 

endogenous factors may play a role also here (Huitu et al. 2005), and again identified 

causes must explain how and why the synchrony arises or not. 

Three more or less distinct research strategies have been used when studying 

population cycles: (i) experimental and observational studies that look directly at 

processes that might cause cycles, (ii) studying mathematical models that are explicitly 

biological and that contain the mechanisms or processes that are believed to generate the 

cycles, and (iii) time series analyses by statistical means with an emphasis on identifying 

density dependent structure. Although experimental/observational studies supply 

biological plausible causes of cycles, and is indeed the only way to test the hypotheses 

regarding these, the approach taken here will be a mixture of the two latter strategies. The 

idea is to take into account factors that are believed to be important in generating and 

synchronising cycles and model them within a statistical framework. These factors 

include self-limitation, a trophic interaction and alternation between seasons of varying 

length. This is, as far as I am aware of, the first attempt of deriving mechanistic 

properties from a model that connects directly to the statistical procedures used to study 

the patterns in time series. Once the model structure is given, its dynamical properties 

will obviously depend entirely on the values of parameters (or aggregates of these), 
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which in turn can be estimated statistically by fitting the model to data. Whenever 

estimated parameters give unrealistic model properties, we may question the 

appropriateness of the model and/or the factors that enter into it. Following several earlier 

studies (Bjørnstad et al. 1995; Stenseth et al. 1998b), the choice of framework here is an 

autoregressive (AR) model where interactions are assumed to be linear on a logarithmic 

scale. This sets limits to the structural complexity of the model and therefore also to the 

degree of biological realism, but has the advantage of being a widely used and well 

understood framework. Mechanistic interpretation of a model will then give explicit 

ecological interpretations of the statistically determined coefficients that result from 

fitting the model to data. In the following sections I discuss the limits to building a 

biological model within the framework, before presenting the full model. From there I 

will go on to investigate the general dynamics of the model with the aim of limiting the 

parameter space to a set appropriate for the model. Finally, I will confront statistical 

estimates of model coefficients (from real data) with predictions arising from this limited 

parameter space.  
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The Model 

The Framework 

 Many single species models are available, but the one typically fitted to single 

species time series is an AR(p) model, i.e. of the form: 

0 1 1 2 2t t t p tN N N N p tα α α α− − −= + + + + +L ε , 

where Nt is the (often transformed) value of the observation at time t, the αi are 

coefficients that are estimated from the time series, and εt is a white noise term. The 

number of lags (the order; here p) included in the model is determined on the basis of the 

partial autocorrelation function (Royama 1992; Chatfield 1999), or the partial rate 

autocorrelation function (Berryman and Turchin 2001). In biological literature the 

coefficient of the first lag (α1) enters into what is often termed as (direct) density 

dependence (DD). DD is then equivalent to [α1-1], and thereby reflects the dependency of 

growth on abundance. DD has previously been associated with processes such as intra- 

and interspecific competition (e.g. Stenseth et al. 1996a; Hansen et al. 1999) and 

generalist predation (e.g. Bjørnstad et al. 1995). The coefficients of larger lags are a 

direct measure of delayed density dependence (DDD); the effect of past time densities on 

current growth. DDD is necessary for a linear difference equation to display cyclic 

dynamics with a period larger than two (Royama 1992), and indeed, significant 

coefficients for larger lags have been found for many time series (Moran 1953a; Turchin 

1990; Bjørnstad et al. 1995; Stenseth et al. 1996b; Murúa et al. 2003). For annual time 

series it is usually sufficient with two lags (Moran 1953a; Royama 1992; Bjørnstad et al. 

1995; Stenseth et al. 1996b; Murúa et al. 2003) to describe the observed pattern, 

producing a second order model that is the foundation for the model to be presented. 

Of all factors that are thought of as influencing population dynamics, three are 

explicit in the model to be presented. The first is self-limitation within the species, widely 

accepted as an important part of an organism’s ecology, and has the effect of reducing 

population growth as density increases. This is an instantaneous process, meaning that its 

influence will affect the dynamics within a relatively short period of time, and with an 

AR model this is equivalent to a first order model. The second factor, and the one likely 

to produce the delay necessary for generating multiannual cycles, is a trophic interaction 
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(Stenseth 1986; Turchin 2003). This has effects working on both short and longer time 

scales, where the former is due to the direct action involved, and the latter through 

delayed feedback effects channelled though the other species. All populations are to some 

degree influenced by what it consumes and by what consume it, and these two levels of 

trophic interaction have both been suggested as the driving force behind cycles (e.g. 

Turchin et al. 2000; Hanski et al. 2001). Incorporating two trophic levels that both 

influence the growth of each other into one model gives a pair of coupled first order 

equations. These can then be reduced to the single species second order model needed to 

describe multiannual cycles. This will be shown in a later section. The third factor is 

seasonality, envisaged here as winter and summer. Although the species’ growth function 

is structurally identical throughout the year, the parameters that enter it are season 

specific, and the time span (season length) over which each parameter set operates will 

affect the dynamics of the whole system. Different relative lengths of season may thereby 

put one of two, otherwise identical populations, into a cyclic region of dynamics and the 

other into a stable region. A trophic model consisting of two coupled first order equations 

is thereby extended to one of four equations, one for each trophic level for each season. 

Seasonality will as mentioned affect the populations on a local scale, but it is also related 

to the second part of the enigma by being a potential synchronising agent of 

geographically distant populations. The populations can then be thought of as connected 

through a correlation in an exogenous factor (similar season length) perhaps leading to a 

synchronisation of otherwise asynchronous populations. Such an effect has been shown 

to be true for additive correlated exogenous factors (Moran 1953b). This effect will not 

be addressed in this work, but it is worth noting that the extension is readily available 

within this framework. 

Biology within the framework  

The restriction of linearity on a logarithmic scale is decisive of how factors are 

incorporated into the model. Self-limitation in a single-species AR(1) model for log-

abundances produces a discrete version of the model of Gompertz (1825). It may be 

expressed as 0 1
1

a a
t t tN N e N −
+⎡ =⎣ ⎤⎦  (May et al. 1974, my notation), or rearranged on the 

logarithmic scale as [ ]1 0 1(1 )tn a a n+ = + − t , exposing the AR(1) structure. Nt is species 
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abundance, nt = ln(Nt) and a0 and a1 is the maximum per capita rate of increase and the 

strength of self-limitation, respectively (Throughout the thesis uppercase letters will 

denote untransformed variables and lower case log-transformed variables). 

t
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t
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t
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Figure 1: Some properties of the Gompertz growth function [ 0 11
1

a a
tN e Nt

−
+ = ] (solid line) compared to the 

discrete logistic growth function [ 0 (1 )
1

ta N K
t tN N e −
+ = ] (broken line). a) Population growth through time, b) 

Per-capita growth rate as a function of population size, and c) Population growth as a function of 
population size.  Parameter values are chosen to facilitate comparison; a0 = 0.09, a1 = 0.035, 0 1a aK e= . 
 

This model has previously been used to test for density dependent mortality (Morris 

1959; Varley and Gradwell 1970), and stability conditions have been discussed by (May 

et al. 1974). I must emphasize that this self-limitation (through e.g. behaviour) is not due 

to interactions with the other species explicitly modelled, and will therefore have slightly 
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different ecological interpretations for the consumer and the resource (for the latter the 

self-limitation will include all resource competition). A summary of some properties of 

Gompertz growth is given in figure 1. In the single species situation, per-capita growth 

declines as a power function of density, i.e. growth is a decreasing, convex function of 

density (fig. 1b). This expresses more severe self-limitation at low densities than the 

traditional logistic models (e.g. the Ricker model (Ricker 1954)), and a more gradual 

decline in growth as saturation level is approached. Good empirical descriptions of 

growth versus density for experimentally manipulated populations are surprisingly rare in 

the literature, but convexly decreasing growth has been observed for voles (Turchin 

1999; Aars and Ims 2002, their figure 2). Another conspicuous feature of the growth 

function is the unbounded per-capita growth as densities approach zero, indicating a lack 

of realistic descriptive properties at very low densities (Reddingius 1968; Hassell 1975). 

This feature will not necessarily seriously affect the population growth when the strength 

of self-limitation is sufficiently low (fig. 1c), but the biological soundness of the model 

will be sensitive to low values (N → 0) in a data set.  

 The addition of the trophic interaction onto the Gompertz growth equation is done 

in a straightforward manner, which exemplified by the resource turns the growth function 

into 0 1 2
1

a a a
t t t tN N e N P− −
+⎡ =⎣ ⎤⎦ , or with the log-linear AR structure: 

[ ]1 0 1 2(1 )t tn a a n a p+ = + − − t . Pt is consumer abundance, pt = ln(Pt), and a2 is a positive 

parameter controlling the strength of the trophic interaction. A similar model will apply 

for the consumer, but the sign in front of the trophic interaction parameter changes to 

positive as the resource will have positive effect on the consumer.  Modelling 

consumption in this manner makes it hard to isolate the effect of a given number of 

consumers on the resource (and vice versa) due to the interaction with self-limitation. 

However, if we imagine populations that are not subject to self-limitation (a1 = 0) and 

ignore growth, we may illustrate a consumer functional and numerical response. Figure 

2a shows the former as the amount of resource that would be removed by different 

consumer densities between two time steps and the latter (fig. 2b) by means of resource 

density’s effect on consumer per-capita growth. From the steady increasing linear 

functional response it is obvious that beyond some large resource density consumption 

will be exaggerated. In effect the model proposes that a given amount of consumers will 
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remove a given proportion of the resource irrespective of initial resource availability. 

This exaggeration may to some degree be counter balanced by noticing that individual 

consumers become less efficient as they become more abundant, i.e. per-capita 

consumption levels off as consumer density increases. The biological interpretation of 

this predator dependent response would be that consumption is not restricted by resource 

handling time, as in a ‘type 2’ functional response (see e.g. Begon et al. 1996), but by 

consumer interference or a response in the resource affecting its catchability (Abrams and 

Ginzburg 2000). Although consumer numerical response continues to increase for all 

resource densities, thereby giving no upper limit to consumer population growth 

potential, it quickly levels off, i.e. the additional gain to consumer growth at higher 

resource densities becomes smaller. Biological inconsistent model behaviour for very low 

abundances is also evident in the trophic interactions: the consumer will have a positive 

effect on resource (when P < 1), and the resource will have a negative effect on consumer 

growth (when N < 1).  

 From this assessment of the model’s ability to describe biology, it is clear that 

there is an inherent lack of realism for abundances close to zero. Disregarding this, the 

qualitative features of a consumer-resource interaction seem to be in place. 
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Figure 2: Model properties concerning the trophic interaction when self limitation and reproduction is 
taken out. a) The consumer functional response for different consumer densities (number in brackets), 
evaluated from [ ], b) The consumer numeric response, evaluated from [2

1
a

t t tN N P−
+ = 2

1
b

t t tP P N+ = ]. 
Parameter values are chosen so as to emphasize function properties; a2 = 0.2, b2 = 0.02. 
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The full model 

Consider a year consisting of summer and winter, and let N and P be the 

abundances of the resource and the consumer respectively, at the transitions between the 

two seasons. The model may be presented as: 

 

 

{ }
{ }

{ }

, , 0 1 , 2 , ,

, , 0 1 , 2 , ,

, , 1 0 1 , 1 2 , 1 ,

, , 1 0 1 , 1 2

exp ln( ) ln( )

exp ln( ) ln( )

exp ln( ) ln( ) (1 )

exp ln( ) ln(

n
f t s t s s s t s s t s t

p
f t s t s s s t s s t s t

n
s t f t w w f t w f t w t

s t f t w w f t w f

N N a a N a P

P P b b P b N

N N a a N a P

P P b b P b N

ε τ

ε τ

ε τ− − −

− −

⎡ ⎤= − − +⎣ ⎦

⎡ ⎤= − + +⎣ ⎦

⎡ ⎤= − − +⎣ ⎦

= − +{ }, 1 ,) (1 )p
t w tε τ−⎡ ⎤+ −⎣ ⎦

−

Figure  3: Diagram of an iteration through a full year (one winter and one summer) of inter- and 
intraspecific interactions included in the model (1). Noise terms and maximum rates of increase are not 
shown. Circles and rectangles represent consumer and resource respectively. See text for full information. 

                    (1)             

 

The first pair of equations describe the abundance of each of the interacting species at the 

end of the summer season (subscript f for fall) in year t, as the abundances at the start of 

summer of the same year (subscript s for spring) multiplied with the subsequent growth 

in summer (the exponential function). Likewise the second pair of equations describe 

abundances at the end of winter as a function of abundances in the preceding fall  

(year t-1). All the parameters in the equations are thereby season and species specific 

(aij affects resource growth, bij affects consumer growth, i ∈ {s (summer), w (winter)}, 

j ∈ {0, 1, 2}). A diagram showing the relationships between the seasonal abundances and 

the parameters governing them is given in figure 3, and a table summarising all notation 

is included in Appendix A. 

 

-bw1 -bs1

-aw2 

bs2
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 For summer (and similarly for winter) their interpretation is as follows: as0 is the 

maximum rate of increase of the resource, as1 is the strength of self-limitation 

ation 

f summer 

atural 

so as 

ters 

(intraspecific effects) including all competition, and as2 is the strength of the regul

by the consumer (trophic effect). Combined with the abundances at the onset o

these parameters determine growth rate during summer. The proportion of the year that 

this growth rate is working (i.e. proportionate length of summer) is controlled by τ which 

takes a value from 0 (winter all year) to 1 (summer all year). Each season is also 

associated with an additive, species specific white noise term ε (note that superscript of 

each ε is only meant to identify the trophic level to which the noise belongs). 

Interpretation of consumer parameters is slightly different to that of the resource as its 

resource is explicitly incorporated into the model: bs0 is the maximum rate of n

increase when benefits due to the modelled resource are discarded, bs1 is the degree of 

self-limitation that is not due to availability of the modelled resource, and bs2 is, as 

before, the strength of the trophic interaction. Interpretations and meaning of winter 

parameters are as for summer. The signs in front of all parameters in (1) are chosen 

to reflect the nature of the interaction between and within the species, and all parame

are therefore positive by definition. Throughout the paper I will refer to the aij and bij as 

the parameters of the model, τ as the season length, and for the different parameter 

aggregates introduced I will use the term coefficient. 
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General model dynamics 

Logarithmic transformation of observed abundances is often done on time series 

to facilitate analysis and informative plots (Williamson 1972; Royama 1992; Chatfield 

1999). The justification of this being that population growth is a multiplicative process, 

and if variance of per-capita number of offspring is constant it will increase with the 

mean. A log-transformation will then stabilize the variance (Chatfield 1999). Doing this 

on both sides of (1) gives four linear equations that fit straight into a multivariate AR(1) 

framework: 

 

( )
( )

( )
( )

, , 0 1 , 2 , ,

, , 0 1 , 2 , ,

, , 1 0 1 , 1 2 , 1 ,

, , 1 0 1 , 1 2 , 1 ,

(1 )

(1 ) .

n
f t s t s s s t s s t s t

p
f t s t s s s t s s t s t

n
s t f t w w f t w f t w t

p
s t f t w w f t w f t w t

n n a a n a p

p p b b p b n

n n a a n a p

p p b b p b n

ε τ

ε τ

ε τ

ε τ

− − −

− − −

= + − − +

= + − + +

= + − − + −

= + − + + −

                                       (2)  

 

Taking the logarithm of abundances excludes the possibility of zero-value observations, 

but this is in practice solved by adding a small constant to all observations (Framstad et 

al. 1997; Stenseth et al. 1998a), and is therefore not a problem in this context. The main 

challenge here is the amount of parameters present in the model. 

Univariate second order annual model 

Sadly, very few, if any, sufficiently long biannual time series of two tightly 

connected species from different trophic levels exist. On the contrary, time series often 

consist of annual observations of the one focal species. By solving (2) for one of the 

species in one of the seasons we get a model that can be fitted to such data, and the 

presumption of a second order AR process is made apparent. This is exemplified here by 

fall abundances of the resource (fig. 4): 

 

, 0 1 , 1 2 , 2 ,f t f t f tn n n f tZα α α− −= + + +                                                                         (3) 
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α2 

ft-1 ft ft-2 

N:

st-1 st 

            
Figure  4: Diagram of one iteration of the second order univariate autoregressive model (3), showing how 
the density in one year depends on the densities the two preceding years. As in the text the fall resource 
densities are used as an example. Noise terms and constants are not shown. See text for full information. 
 

Fitting this model to data will give estimates of the coefficients for which we now have 

expressions that incorporate ecological interactions:  

 

( )( ) ( )( )

( )( )( ) ( )( )( )

1 1 1 1 1 2 2 2

2 2
2 1 1 2 2 1 1 2

1 1 (1 ) 1 1 (1 ) (1 ) (1 )

1 1 1 (1 ) 1 (1 ) (1 )

s w s w w s s

s s s s w w w w

a a b b a b a

a b a b a b a b

α τ τ τ τ τ τ τ τ

α τ τ τ τ τ τ

= − − − + − − − − − − −

= − − − + − − − − + −

2

2    .

wb
 

 

From these expressions it is clear that there are potentially a lot of factors involved in the 

seemingly simple terms DD (α1-1) and DDD (α2). Not only does consumption and 

intraspecific self-limitation enter DD, but also the self-limitation in the other species and 

various pair-wise interactions between parameters. The expression for DDD involves 

even more intricate parameter interactions, and α0, also a large expression, involves all 

interactions involving the maximum growth rates (see Appendix B). Although α0 is 

decisive of absolute species abundance, it does not affect the dynamics of (3) (Royama 

1992) and can be considered a constant. Zf,t is a noise term incorporating noise terms in 

(2) and the interactions between these and the model parameters (see Appendix C). It 

includes lags from both seasons and both species and strictly speaking (3) therefore 

contains moving average (MA) components (Chatfield 1999) in addition to the two 

autoregressive terms. The noise term is influential on model dynamics and is necessary 

for sustained cyclic dynamics (Stenseth 1999), but it can not tell us much about the 

parameters in the model, and will not be dealt with here. The above equation (3) could 

obviously be expressed in resource spring abundances or consumer spring/fall 
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abundances, but this will not affect the coefficient expressions as dynamics of the system 

remain the same (but it will affect the constant (α0) and the noise term). 

 The dynamics of the deterministic version of (3) (i.e. ignoring the noise term) are 

determined solely by the coefficients of the two lags, and will according to these, be able 

to display a wide variety of patterns (Royama 1992; Bjørnstad et al. 1995). By ruling out 

types of patterns that are not observed in nature, and therefore should not be displayed by 

the model for any appropriate parameter combination, we will limit the parameter space. 

The most obvious requirement for the model with a given set of parameters, and a 

condition for most of the theory concerning time series analysis, is that of stationarity 

(the existence of a stable equilibrium). Biologically speaking this is the same as requiring 

long term persistence of bounded population sizes for both species. The boundaries for 

stationarity of (3) and qualitative dynamics within these are derived in Appendix D and 

shown in figure 5 (see also Royama 1992). These boundaries then define the widest set of 

parameter combinations that can enter the coefficients. 
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Figure  5: The figure shows the coefficient space of a second order autoregressive model and regions 
within this defining different dynamics. Within the triangle the model is stationary, and the bold lines 
thereby define the appropriate set of parameter combinations that enter into the coefficients. When 
coefficients are from the left side of the triangle, above the parabola, (region I) the model will show 
dampened two point cycles towards equilibrium. To the right (region II) a steady convergence towards 
equilibrium and below the parabola (region III) we have converging cycles with continuously increasing 
period as we move towards the right. Contour lines (dotted) define the borders for periods of length 
corresponding to the given number. See Appendix C for derivation and text for model details. 
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 Examining the expressions for α1 and α2 reveals that they are second and fourth 

order polynomials in τ, respectively, and it is obvious that varying the season length 

variable will result in a change of the value of the coefficients (fig. 6). This can 

subsequently lead to a shift of the dynamics of a system with a given set of parameters, as 

the coefficients move within or across the borders defining stationarity (fig. 6c). In the 

α1-direction, variation of season length will give a path that tracks some part of the 

parabolic segment defined by α1 for ( )0,1τ ∈ . The path will have at the most one turning 

point and the nature of this turning point, i.e. whether it is a maximum or minimum point, 

will follow from the sign of ( )2 2
1d dτ α⎡⎣ ⎤⎦ . The motion in α2-direction is more 

complicated as this follows some segment of a fourth order polynomial, having up to 

three turning points.  
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Figure  6: Changes in values taken by the coefficients of the second order model with change in season 
length. a) The parabolic change of α1 with τ, in a case where the turning point is a maximum, b) The 
change in α2 in a case where it increases for the whole interval ( )0,1τ ∈ , c) The path resulting from the 
combined change in coefficients with season length overlain on the borders defining model dynamics (see 
fig. 5). We see that the deterministic system passes through all major types of qualitative dynamics as τ 
increases. Model parameters are the same in the three figures, and values were chosen so as to emphasize 
function properties. 
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Tracking the coefficients in the deterministic model as they alter with season length and 

predicting the changes in dynamics would be unproblematic if we had reliable estimates 

of the model parameters. Going the other way, we could attempt to study a specific 

change in dynamics (pathway in α1α2-coordinates) with a given change in season length, 

and search for parameter combinations that could result in that specific pattern. 

Unfortunately the amount of parameters, their interactions, and the interdependencies of 

the coefficients through the parameters make this approach close to, if not impossible. 

Bivariate first order annual model 

By eliminating the consumer in the preceding section some detail of information 

was lost, and as annual data from both trophic levels would require the model to be 

expressed accordingly, I bring them back into the model. Again, a bit of algebra can 

change the appearance of (2), this time into a pair of coupled, first order bivariate 

equations (fig. 7): 
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where the coefficients of the lagged abundances are: 

( )( )
( ) (( )

( ) ( )
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11 1 1 2 2
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21 2 1 2 1

22 1 1 2 2

1 1 (1 ) (1 )

(1 ) 1 1 (1 )
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Figure  7: Diagram of one iteration of the first order bivariate autoregressive model (4), showing how the 
density of both species in one year depend on densities the preceding year. As in the text the fall densities 
are used as an example. Noise terms and constants are not shown. See text for full information. 
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Again, β10 and β20 are constants (Appendix B) that do not affect dynamics, and the noise 

terms consist of noise from both seasons and species (Appendix C), but the focus will 

still be on the coefficients of the lags. By solving (4) for one of the species it can easily 

be shown that the connection between the coefficients of (3) and (4) is: 

 

1 11 22

2 11 22 12 2( )1 ,
α β β
α β β β β

= +
= − −

  

 

and the stability boundaries that apply to (3), with respect to α1 and α2, must therefore 

apply to the respective combinations of the coefficients of (4). Due to the nature of a 

trophic interaction, we can additionally state that [ ]012 <β  and [ ]021 >β   (the consumer 

has negative impact on resource and vice versa), and by this we put further restrictions on 

suitable parameter combinations. We see for example that if [ ]1 1sbτ >  and [ ]1(1 ) 1waτ− >  

we have a contradiction of [ ]021 >β , giving an upper bound for the combination of 

parameters governing the strength of self-limitation in the two species.  

 Having a model with equations for both resource and consumer also allows us to 

study the zero growth isoclines (ZGI) predicted by the model. These describe the 

abundances at which each of the populations are stable, i.e. ,

, 1

1f t

f t

N
N −

=  and ,

, 1

1f t

f t

P
P −

= . On 

the logarithmic scale the ZGI are straight lines. For the consumer we can very reasonably 

require that the size at which the population is stable will increase with increasing 

resource availability, i.e. ZGIP increases with resource abundance (subscript indicating 

trophic level). Similarly, for the resource we may require that the fewer consumers 

present, the larger the stable population size, i.e. ZGIN decreases with increasing 

consumer abundance. For these requirements to be met by the coefficients we need 

[ ]122 <β  and [ ]111 <β  (see Appendix E for derivation). We may further define a required 

shape of the ZGI, although this information is partly concealed by the straight lines 

within logarithmic axes (fig. 8). In the case of the consumer it may be argued that at 

increasingly high resource densities, a given amount of additional resources will have 

less affect on the size of the stable consumer population. Accepting that negative 

crowding effects must take place within the consumer population would see to such an 
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effect, i.e. we can require a concave ZGIP . In Appendix E the consequences of this 

requirement is shown to imply the criterion [ ]12221 <+ ββ . Similar reasoning for the 

resource isocline will not supply any new criteria, as the curvature is given when the 

constraint of negative slope is established.  

log[N]

lo
g[

P
]

N
P

 

a) b) 

Figure 8: The zero growth isoclines (ZGI) of the resource (N, solid line), and the consumer (P, broken 
lines). a) On a logarithmic scale we see the decreasing nature of ZGIN and the increasing nature of ZGIP.  
b) The same ZGI in normal axes. Information on curvature is obscured in the former as can be seen by 
comparing the two ZGIP in the two plots; a sufficient increase in slope will also alter the curvature of  ZGIP 
from concave to convex. The dashed line applies for 21 22 1β β+ <⎡ ⎤⎣ ⎦ , and the dash-dot line for . 21 22 1β β+ >⎡ ⎤⎣ ⎦

 

To summarise findings from studying the model as expressed in (4), we have an 

appropriate model if: 

[ ]12 0β < , [ ]21 0β >  [ ]11 1β < , [ ]22 1β < , [ ]21 22 1β β+ < . 

These conditions combined with the general conditions for stationarity can be illustrated 

as the boundaries within cross sections of the four dimensional coefficient space of (4) 

shown in figure 9. 

As with the univariate second order model (3), this bivariate model may also be 

expressed in spring densities, this time leading to slightly different parameter 

combinations in the coefficients of the lags. Indexed in the same manner as in (4) we get:  
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Arguments, identical to those used above, regarding the nature of a consumer-resource 

interaction and biological reasonable ZGI, will have to apply for these coefficients too, 

giving: 

[ ]012 <γ , [ ]021 >γ , [ ]111 <γ , [ ]122 <γ , [ ]12221 <+ γγ . 
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Figure 9: Boundaries that together define the appropriate coefficient space for the consumer resource 
model. a) The general conditions for stationarity found when studying the second order univariate model 
(see fig. 5). b, c, d, e) Additional conditions found by studying the first order bivariate model. Notice that 
in figure e) for sufficiently small β21, β12 is unbounded to the left. The same boundaries apply for the model 
coefficients when expressed in spring abundances (γij, see text). For derivations of the boundaries see 
Appendix E. 
 

 

Together with the criteria for stationarity found in the preceding section, the criteria 

concerning the βij and γij then give necessary conditions for the parameter combinations 

to give a biological feasible consumer-resource model. After fitting (4) to data presumed 

to be connected by a trophic interaction, it should be checked whether the estimated 

values for coefficients comply with these conditions. 

The second and fourth order polynomials (in τ) constituting the coefficients of (3) 

have in (4) been split up into combinations of respectively two and four second order 

polynomials (the expressions of the βij or γij). The different coefficients will respond 
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differently to a change in τ, depending on the parameters that enter into them. It may then 

be pictured that a change in season length that leads to change in dynamics is channelled 

mainly through a change in one of these coefficients, and with more exact knowledge 

about parameter values this could be predicted.  
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Model with estimates from data 

With the limits of the parameter space found in the above section, the model will 

now be fitted to data. The data used is part of an extensive collection of time series on the 

vole Clethrionomys rufocanus, from Hokkaido; an island in northern Japan (see Stenseth 

et al. 1996b, for a detailed description of geography and sampling). The time series 

exhibit varying dynamics, including periodic cycles and seemingly random fluctuations. 

A total of 84 of these time series, covering 30 years of spring and autumn observations of 

vole densities, were grouped into six groups according to topographic characteristics (see 

Stenseth et al. 2003, for description of groups). The grouping gives six independent 

estimates of the coefficients, but has no additional significance in this thesis. Although 

the timing of observations does not necessarily coincide with the exact timing of the 

winter-summer/summer-winter transitions, I assume that the data points adequately 

represent the transition densities. At the same time I assume that the difference in season 

length between the groups is negligible (season length for all groups was estimated to lie 

in the interval 0.382-0.421 by Stenseth et al. 2003). With these data at hand the model 

was expressed as a bivariate second order model of one species; bivariate in the sense 

that spring and fall densities are expressed separately and second order because 

abundance relies on the densities in two preceding time steps.  

 

0 1 2 1 ,

0 1 1 2 1 ,

(1 )
(1 )    .

t t t x t

t t t

x s s y s x Z
y w w x w y Z

−

− −

= + + + +

= + + + + y t

1

            (5) 

 

x and y now denote the log-abundance of the same species (consumer or resource) in fall 

and spring, respectively. A schematic presentation of the model is given in figure 10. The 

link between the coefficients in (5) and the coefficients in (3) is 

[ 1 2 1 2 1 11 s s w w s w α+ + + + + = ] and [ 2 2 2s w α− = ], as can easily be seen by solving the 

first equation for y and substituting into the second. The exact combination of parameters 

that enter into the coefficients will depend on whether the model is solved for consumers 

or resource. Although the noise terms in (5) incorporate noise from both voles and 

mustelids, and dates several time steps back (Appendix C), they were treated as white 
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noise when fitting the model.        
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Figure  10: Diagram of one iteration of the seasonal autoregressive model (5), showing how the density of 
a species (consumer or resource) in one season depends on densities in the preceding two seasons. Noise 
terms and constants are not shown. See text for full information.  
 

The model coefficients were estimated within a Bayesian framework (H. Viljugrein, 

unpubl. results; see Stenseth et al. 2003, for description of methods), and the results are 

presented in table 1. Again, the model constants are not focused on, but full expressions 

are included in Appendix B. The general pattern seen in table 1 is that negative DD in the 

winter is larger than that in summer, while DDD is small and in several instances not 

significant. It is also noteworthy that the model does not place any of the groups in a 

cyclic regime, although a direct fitting of a second order univariate model would do so 

for groups 2 and 5 (Stenseth et al. 2003). In an attempt to avoid erroneous conclusions 

when using these results, I focus on qualitative rather than quantitative properties, in the 

following discussion of parameter values. 

 
Table 1: Estimates of coefficients of the seasonal model (H. Viljugrein, unpubl. results). Numbering of 
groups follow Stenseth et al. (2003), and number in brackets specifies number of time series within each 
group. σi is the mean standard deviation of the noise for each season within each group. The coefficient 
values of the univariate annual model are calculated by using the link between the two models’ coefficients 
(see text). Only the signs in the last column are used for the inferences done in this thesis.  
 

Winter w 1 -0.81 -0.89 ** -0.85 -0.75 -0.65 -0.87 -0.79 -
w 2 0.125 * 0.16 0.09 * 0.00 * -0.12 * 0.19 0.17 +
σ w 0.76 0.75 0.93 0.81 0.95 1.03 0.87

Summer s 1 -0.25 -0.47 -0.24 -0.24 -0.23 -0.30 -0.29 -
s 2 -0.04 * 0.18 -0.12 -0.20 -0.06 * -0.09 * -0.05 nc
σ s 0.91 0.92 1.13 1.09 1.19 1.02 1.04

Annual α 1 0.23 0.39 0.09 -0.01 0.09 0.19
α 2 0.01 -0.03 0.01 0.00 -0.01 0.02

* = not sign. from 0, ** = not sign. from (-1), *** = only sign. estimates included, nc = not conclusive

GroupSeason Coefficient Mean*** Sign
1S (15) 1N (15) 2S (14) 2N (16) 5S (12) 5N (12)
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Until now the model has been treated as a general consumer-resource model, and 

applying it on a specific system may allow for specific assumptions concerning some of 

parameters. As we presumably do not know whether the dynamics of the system are due 

to the vole interacting with its environment as a consumer or as a resource we have to 

envision two scenarios, and these are treated separately in the following sections. 

 

The vole as a resource 

The specialist predation hypothesis is perhaps the most studied and most popular 

hypothesis sought to explain the observed multi-annual cycles in small mammals (Hanski 

et al. 1991; Hanski et al. 1993; Korpimäki and Norrdahl 1998; Klemola et al. 2000; Gilg 

et al. 2003; Klemola et al. 2003). More specifically, it is thought that a delayed numerical 

response by the resident predator imposes a delayed density dependent increase in 

mortality of the resource species. With respect to rodent systems in the boreal and arctic 

regions, mustelid predators have been pointed out as a potential mediator of this delayed 

density dependent mortality (Korpimäki et al. 1991; Hanski et al. 1993; Korpimäki 

1993), three of which are present and considered important predators of small rodents in 

Hokkaido (Kaneko et al. 1998).  So, in this setting the voles in Hokkaido are a resource 

for a resident specialist mustelid predator.  

 Before I go on to make inferences about the various parameters that constitute the 

coefficients, I will make two simplifying assumptions. First, I will assume that effects of 

intraspecific effects on the vole population growth (self-limitation) is working in winter 

only, and that during summer they are negligible, i.e. [ 1 0sa = ]. Limitation of food in 

winter, when primary production is low, is in agreement with earlier studies on small 

rodents (Hansson 2002; Aars and Ims 2002; Huitu et al. 2003). Limited available space 

due to snow cover may further add to self-limitation through increased intraspecific 

interference. Setting summer self-limitation to zero is then justified by the large increase 

in space and food supply, the latter supported by the small amount of available plant 

material removed my voles (Krebs and Myers 1974). Second, I assume that the mustelids 

are specialists in winter only, and that abundance of voles in spring has a negligible effect 

on mustelid abundance in fall, i.e. [ 2 0sb = ]. The rationale being that during summer 
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alternative prey become available (Järvinen 1985; Korpimäki et al. 1991), causing a 

decoupling of the tight relationship with voles that exists during winter. With these 

assumptions we get the following expressions for the coefficients: 
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Viewing the coefficients as functions of τ and using information from the estimates, we 

may check what predictions they make about parameters in the expressions. Starting with 

the wi, we see that when summed they give a direct prediction for the strength of self-

regulation of voles in winter, i.e. 1 1 2
1 ( )

(1 )wa w w
τ

1
⎡ ⎤

= − + ≈⎢ ⎥−⎣ ⎦
. A positive w2 

implies 1
1

sb
τ

⎡ >⎢⎣ ⎦
⎤
⎥ , which also guarantees a negative w1, in accordance with its estimate. 

This indicates that self-limitation working within the mustelid population in summer is 

considerably larger than that working on the voles in winter. The negative estimate of s1 

points to considerable self-limitation in the mustelids in winter too, as the sign can only 

be obtained if 1
1

(1 )wb
τ

⎡
>⎢ −⎣ ⎦

⎤
⎥ . The complexity and the ambiguous estimate of s2 make it 

hard to infer any predictions concerning parameters in it. The next step is then to take 

these predictions and assumptions and confront them with the criteria found from 

studying the general dynamics of the model. If we accept the assumptions done above 

regarding the parameters and the qualitative results from fitting the model to the data, any 

inconsistencies would suggest that the dynamics may not be a result of a predator-prey 

interaction. And indeed, we have a contradiction of [ ]021 >β . Under the given 

assumptions the expression for this coefficient is ( )21 2 1(1 ) 1wbβ τ τ sb⎡ ⎤= − −⎣ ⎦ , and clearly 
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this becomes negative with the lower limit inferred for 1sb , implying that the voles have a 

negative impact on the predator. This result then suggests that the summer self-limitation 

parameter for predators that is consistent with the empirical estimate is too great for a 

model consistent with a predator-prey interaction.  

The vole as a consumer 

The other hypothesis compatible with the model presented here is that an 

interaction between the voles and the vegetation is the main factor driving dynamics. The 

recovery time of the plants serving as food source for the voles then creates the time lag 

necessary for cyclic dynamics (Agrell et al. 1995). This recovery may be in terms of 

quantity and/or quality of food for the voles. The grey sided vole is a folivorous species, 

and in Hokkaido the diet is dominated by leaves and shoots of bamboo grass (Sasa 

spp.)(Kaneko et al. 1998; Saitoh et al. 1999). In winter density independent (climatic) 

factors limit growth of bamboo, and although competition for light and/or nutrients may 

affect individual bamboo stands in summer, I assume that this does not have population 

level effects. This is consistent with the 'Law of Constant Yield', stating that productivity 

in terms of biomass is independent of plant density (see e.g. Begon et al. 1996). This 

allows for simplification of coefficient expressions by setting [ 1 0sa = , ], and no 

assumptions concerning vole parameters are done. The expressions for the estimated 

coefficients are then: 

1 0wa =
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Proceeding as before, we see from w1 that 2
1

2

1 w
w

s

bb
bτ

⎡ ⎤
>⎢ ⎥

⎣ ⎦
, indicating either strong vole 

self-limitation in winter, or strong impact of food availability in summer compared to 
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winter. The limitation of food in winter seen in earlier studies (Hansson 2002; Huitu et al. 

2003) would suggest the former. Strong self-limitation in summer must be the case, as a 

positive estimate of w2 can only be achieved if 1 2
1

s sb a bτ
τ 2s

⎡ ⎤> +⎢ ⎥⎣ ⎦
. s1 sets demands to the 

same parameter by 2
1

2

1
(1 )

s
s

w

bb
bτ

⎡ ⎤
>⎢ −⎣ ⎦

⎥ . None of these predictions contradict the criteria 

set when considering the general dynamics of the model, and a conclusion would then be 

that the dynamics, as captured by the bivariate seasonal model, indicate that we are 

dealing with a system driven in large by herbivore-plant interactions.  
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Discussion 

 The preliminary conclusion reached when comparing the coefficients from the 

statistical analysis with the results from analysis of dynamics, is that support is found for 

that a vole-vegetation interaction is dominating the vole dynamics. The specialist 

predation hypothesis is, in contrast, contradicted by an analogous comparison where 

statistical estimates implied predator self-limitation too great for it to benefit from the 

voles.  

 The predator-prey inconsistency, however, rests entirely on the assumption that 

the predator has no benefit of the explicitly modelled prey during summer, which of 

course is not strictly true, and only a slight benefit would prevent the contradiction. 

Discarding the possibility of predator-prey interactions driving the observed dynamics on 

this basis would be an overstatement and a mistake. On the other hand, no inconsistencies 

were found in the grazer-plant scenario, which certainly emphasises that this is a possible 

alternative. This is valid even if the assumption of no effect of competition on plant 

biomass is false. The focus in the thesis though, has been to assess the possibility of 

drawing conclusions about ecology from time series data. It is shown that if we construct 

hypotheses regarding the system in question (e.g. important predators), we can 

incorporate them into AR models that can be fitted to data. The connection between 

ecology and the statistical coefficients follow directly from the interactions included in 

the model. Including other interactions (such as adding a trophic level) will not only give 

coefficients with different ecological interpretations, but may also give a different 

number of predicted lags. By combining models encompassing different ecological 

scenarios (hypotheses) with available experimental and observational knowledge 

regarding their interactions (i.e. information on parameters), and comparing model 

predictions from each of the scenarios with statistical estimates, one may get an 

indication of which of the scenarios is the most likely. This is true also when time series 

exist only for one of the species in the model. 

 A crucial feature that has only briefly been mentioned so far is the noise structure 

of the model. At the starting point, noise terms are assumed to be white and additive on a 

logarithmic scale, and to result from factors that are not affected by the species’ 
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abundances. As we reduce the model for it to be applicable to the type of data usually at 

hand (one species and/or one season), we see that the originally white noise accumulates 

into aggregates of noise terms that no longer can be viewed as time-independent (see 

Appendix C for full expressions for all noise terms presented). The full model therefore 

predicts a mixed ARMA process, while the model that was fitted to the data was (out of 

simplicity) a pure AR model. It has previously been demonstrated that when AR models 

are fitted to ARMA processes this may cause erroneous conclusions regarding the density 

dependent structure of the process (Williams and Liebhold 1995). Although general 

statements concerning the effects of ignoring correlated noise are difficult to make, there 

is all reason to believe that not including the MA components when fitting the model will 

give erroneous estimates of the AR coefficients. The fact that the second order 

coefficients from the annual model listed in table 1, deviate from previous direct 

estimates (Stenseth et al. 2003), may result from ignoring the different MA components 

in each case. Another noise related indication that the model fitted to the data may not be 

the appropriate one, is the relatively large standard deviation of the noise (prediction 

errors, see table 1). Several factors could contribute to this. The model may include the 

wrong type or the wrong number of lags, the former discussed above and the latter a 

possibility supported by the finding of up to four significant lags by Stenseth et al. (2003) 

in the same data. Also, the ability of the model to pick up relevant signals in the data will 

at least partly rely on the how the supposed processes behind the signals are incorporated 

into the statistical model. Fitting linear models to data from non-linear processes and 

vice-versa could very well increase noise. This underlines the importance of at least 

qualitative knowledge of the ecological processes going on. Questions that need to be 

answered in the scenarios studied here are: can per-capita growth as a function of density 

be described with a convex curve for the density range of the data? Can functional 

response be assumed to be linear for the data range? The questions may be answered 

through an experimental/observational approach, and probably the necessary data already 

exist. I have, however, not succeeded in finding studies that empirically evaluate other 

functional forms than those traditional to ecological theory (e.g. logistic growth, ‘type 2’ 

response etc.). 

 The difficulties in evaluating the exact dynamical effects of varying season length 

are entirely due to the uncertainties regarding parameter values. If reliable values were at 
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hand this could be done through analysis of the first and second derivatives of the 

coefficient expressions. It is generally shown here that the effects can be substantial, and 

considering the entirely different conditions that seasons provide for species in areas with 

boreal and temperate climate, it would seem reasonable that the relative length of seasons 

would affect dynamics. Relevance of this aspect is especially highlighted by the current 

debate on climate change. 

Concluding remarks 

An ecological interpretation of the signals picked up by time series analysis was 

facilitated by deriving a well-known statistical model from a mechanistic basis. Under 

certain assumptions, inconsistencies where found when confronting a mustelid-vole 

scenario with output from statistical analysis, while no inconsistencies were found for the 

vole-vegetation scenario. Any clear conclusion of which of the factors engage in driving 

vole dynamics; vegetation or predators, was not achieved here due to sensitivity to the 

simplifying assumptions done in the mustelid-vole scenario. Still, if we accept the model 

(1) as an ecological model it is shown that certain expectations can be set to statistical 

estimates. By confronting expectations resulting from alternative hypotheses with such 

estimates one may get an indication of which is the most likely. More knowledge about 

how biological accurate/inaccurate the simple functional forms in the model actually are, 

would contribute to the confidence in the model predictions. Paying more attention to the 

predicted noise structure when fitting the model, would perhaps increase the accuracy of 

coefficient estimates. The relative length of seasons has a potential large effect on 

dynamics, and uncovering the sensitivity of dynamics to a change in season length is 

crucial when trying to unravel the consequences of climate change. For the time being the 

enigma of cyclic vole dynamics remains unresolved. 
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Appendix 

A. Notation 

The table summarises all notation used for variables, parameters and coefficients 

that are discussed in the thesis, and gives a short description of their interpretations. The 

number in brackets included in the first column refers to numbers given to model 

expressions in the text. 

 

N f,t , N s,t resource abundance at time t  in fall and spring, respectively

 n f,t  , n s,t ln(N f,t ) , ln(N s,t )

P f,t , P s,t consumer abundance at time t  in fall and spring

 p f,t , p s,t ln(P f,t ) , ln(P s,t )

a s 0 , a w 0 resource maximum rate of increase in summer and winter, respectively

a s 1 , a w 1 controls resource self limitation in summer and winter

a s 2 , a w 2 controls detrimental effect of consumer on resource in summer and winter

b s 0 , b w 0
consumer maximum rate of increase in summer and winter in absence of the modelled 
resource

b s 1 , b w 1 controls consumer self limitation in summer and winter

b s 2 , b w 2 controls benefit of resource to consumer  in summer and winter

τ proportionate length of summer , 

white noise terms with season and species specific variance

α 0 constant affecting mean abundance of focal species

α 1 direct annual density dependence of focal species

α 2 delayed annual density dependence of focal species

β 10 , γ 10 constants affecting  mean fall and spring abundances of  resource, respectively

β 11 , γ 11 annual effect of resource on own fall and spring abundances

β 12 , γ 12 annual effect of consumer on resource fall and spring abundances

β 20 , γ 20 constants affecting mean fall and spring abundances of  consumer

β 21 , γ 21 annual effect of resource on consumer fall and spring abundances 

β 22 , γ 22 annual effect of consumer on own fall and spring abundances

x t fall abundance of focal species

y t spring abundance of focal species

s 0 , w 0 constants affecting mean abundances in fall and spring, respectively

s 1 , s 2 respective effect of abundances in spring and previous fall on summer growth

w 1 , w 2 respective effect of abundances in fall and previous spring on winter growth

Description

Bivariate first 
order model 

(4)

Bivariate 
second order 

model (5)

Variable,
Parameter

or Coefficient
Model

Full model     
(1)(2)

Univariate 
second order 

model (3)

, , , ,, , ,n n p p
s t w t s t w tε ε ε ε

( )0,1∈
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B. Model constants 

The following are the full expressions for all the model constants referred to in the 

text. The number in parenthesis corresponds to numbers given to the models when 

presented in the in the text.  

 

Univariate second order annual model of resource fall abundance (3): 

( )( )
( ) ( )( )

( )( ) (( )

2
0 2 0 2 1 0 1 0

0 0 1 1 1

2 1 0 2 0 0

(1 ) (1 ) (1 ) (1 )

(1 ) (1 ) 1 1 (1 ) (1 )

1 (1 ) (1 ) (1 ) 1 (1 )

w s s s w s s

s w s w s

s w w s s w

a a b a b b b

a a a b b

a b a b b b a

α τ τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ τ τ

= − − − − − +

+ + − − − − − −

− − − − + + − + − )2 2w sb

 

 

Bivariate first order annual model of fall abundance (4): 

10 0 0 1 2 0

20 0 0 1 0 2

(1 ) (1 ) (1 )
(1 ) (1 ) (1 )

s w s s w

s w s w

a a a a
b b b a s

b
b

β τ τ τ τ τ
β τ τ τ τ τ

= + − − − −
= + − − + −

 

 

Bivariate second order seasonal model (5): 

Resource: 

( )2
0 0 2 0 0 1

2

2
0 0 2 0 0 1

2

(1 ) 1 (1 )

(1 ) (1 )

s
s s w w

w

w
w w s s s

s

as a a b a b
a

aw a a b a b
a

τ τ τ

τ τ τ

⎛ ⎞
= − − − − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − − − −⎜ ⎟
⎝ ⎠

w

 

Consumer: 

( )2
0 0 0 2 0 1

2

2
0 0 0 2 0 1

2

(1 ) 1 (1 )

(1 ) (1 )

s
s w s w

w

w
w s w s s

s

bs b a b b a
b

bw b a b b a
b

τ τ τ

τ τ τ

⎛ ⎞
= − − − − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + − −⎜ ⎟
⎝ ⎠

w
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C. Noise terms 

The following includes full expressions for all noise terms referred to in the text. 

The number in parenthesis corresponds to numbers given to the models when they were 

presented.   

 

Univariate second order annual model of resource (3): 

( )( ) ( )

( )
( )
( )

, ,

2
1 1 1 2 2

2
2 1 1 2 2 2 ,

1 1 2 2 , 1

2 1 2

(1 ) (1 ) 1 1 (1 ) (1 ) 1 (1 )

(1 ) (1 ) (1 )(1 )

2 1 (1 ) (1 ) (1 )

1 (1 ) (1 ) (1

n
f t s t

n
1 ,s w s s s w

p
w s s s s s w t

n
w s w s s t

s w w

Z

a b b a b b

a a b a b a

b b a b

a b a

τε

w tτ τ τ τ τ τ

τ τ τ τ τ τ ε

τ τ τ τ τ ε

τ τ τ τ

−

=

⎡ ⎤+ − − − − − − − − −⎣ ⎦
⎡ ⎤− − − − − + +⎣ ⎦

⎡ ⎤+ − − − − + −⎣ ⎦
− − − + − − 1 , 1) p

s s taτ ε −⎡ ⎤⎣ ⎦

ε

,

,

p

 

 

Bivariate first order annual model of fall abundance (4): 

, , 1 , 2

, , 2 , 1

(1 )(1 ) (1 )

(1 ) (1 )(1 )

n n n
f t s t s w t s

p p n

w t

p
f t s t s w t s w

Z a

Z b t

a

b

τε τ τ ε τ τ ε

τε τ τ ε τ τ

= + − − − −

= + − + − − ε
 

 

Bivariate second order seasonal model (5): 

Resource: 

( )

( )

2
, , 1 , 2 ,

2

2
, , 1 , 1

2

1 (1 ) (1 )

(1 ) (1 ) 1 (1 )

n ns
x t s t w w t s w t

w

n nw
y t w t s s t w s t

s

aZ b a
a

aZ b
a

τε τ τ ε τ τ ε

2 , 1

p

paτ ε τ τ ε τ τ ε− −

= − − − − −

= − − − − − −
 

Consumer: 

( )

( )

2
, , 1 , 2 ,

2

2
, , 1 , 1 2

2

1 (1 ) (1 )

(1 ) (1 ) 1 (1 )

p ps
x t s t w w t s w t

w

p pw
y t w t s s t w s t

s

bZ a b
b

bZ a
b

τε τ τ ε τ τ ε

, 1

n

nbτ ε τ τ ε τ τ ε− −

= − − − + −

= − − − − + −
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D. Stability conditions 

The solution to the deterministic part of (3) is equivalent to the solution of the linear 

homogenous second order difference equation (the constant α0 does not affect dynamics 

and is therefore put to zero): 

2 1 1 2 0t t tn n nα α+ +− − =            (A1) 

Supposing the solution is of the form λt, where λ may be a complex number, and 

substituting into (A1) we obtain the characteristic equation (or auxiliary equation): 
2

1 2 0λ α λ α− − = ,  

whose two roots are 
2

1 1 2
1

4
2

α α α
λ

+ +
= , 

2
1 1 2

2

4
2

α α α
λ

− +
= . 

These are the characteristic roots and give the general solution to (A1) (Elaydi 1996). 

There are two relevant cases: 
2

1 24 0α α+ > ⇒  Real distinct roots: 1 1 2 2
t t

tn C Cλ λ= + ,  
2

1 24 0α α+ < ⇒  Complex conjugated roots, (in polar coordinates):  

        1 2cos( )t
tn C r t Cθ= − , 

where 
( )

2
22

1 21
2

4

2 2
r

α ααλ α
⎛ ⎞− +⎛ ⎞ ⎜ ⎟≡ = + = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, 
( )2

1 21

1

4
tan

α α
θ

α
−
⎛ ⎞− +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, and C1 

and C2 are constants that depend on initial conditions.  

It follows from the general solutions in both cases that they are stable for t  iff →∞

1λ <  for both roots, i.e. they both fall within the unit circle. This condition is fulfilled 

when: 

( ) ( )

2
1 1 2 2

1 2 1

2 22
1 2 1

1 2

4
( ) 1 4 2

2

4 2

1

i
α α α

α α α

α α α

α α

± +
< ⇒ + < −

⇒ + < −

⇒ < −

 

and 

 2 2( ) 1 1ii α α− < ⇒ > −  
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Combining (i) and (ii) provides the triangle in figure 5: 
2 1 1

2 1 1

2

1 ,
1 ,

1 1

α α α
α α α

α

0
0

< − ∀⎧
⎪

>
< + ∀⎨

⎪− < <⎩

<  

  

The border between regions of real and complex roots is defined by: 
2

2 1
1 2 24 0

4
αα α α ⎛ ⎞

+ = ⇒ = −⎜ ⎟
⎝ ⎠

.  

 

With the general solutions to (A1) given above, it is clear that the qualitative dynamics 

are also given by the characteristic roots. 

In the case of real roots, the root that is largest in magnitude will dominate. 

For 1 0α >  (region II), 1λ  will be dominant and positive, and nt will steadily approach 

equilibrium as t . The number of time steps needed to reach some close proximity to 

the equilibrium will depend on the actual magnitude of the root; for dominant roots closer 

to 1 the more time steps are needed and convergence is slower. The  magnitude increases 

as we approach the outer boundary, and decreases towards the centre and the complex 

border. 

→∞

For 1 0α <  (region I), 2λ  will be dominant and negative, and 2
tλ  will alternate between 

positive and negative values for even and odd t, respectively. This will give a dampened 

two point cycle towards the equilibrium, and both the number of time steps needed and 

the amplitude of the cycle, increase as we approach the outer boundary, and decrease 

towards the centre. 

When roots are complex conjugated (region III), the rate of convergence is also 

dependent on the (now equal) magnitude (r) of the roots, giving slower convergence and 

larger amplitude as we approach the base of the triangle, where 1r = ; resulting in stable 

limit cycles. As we see from the general solution, the period depends on θ. The cosine 

function has a cycle length of 2π, and the number of time steps needed to complete one 

cycle (i.e. the period) is given by 22t t πθ π
θ

= ⇒ = . The period increases with 

decreasing θ, and solving for different t gives the period contour lines in figure 5. With 

the following properties of the (multivalued) inverse tangent function: 
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1 1tan (0 ) , tan ( ) , tan (0 ) 0
2

1ππ− − − − += ∞ = = ,  

we see that as we move (below the parabola and within the triangle) from left to right, θ 

decreases from π for 1 22 ( period 2)α α= − − ⇒ = ,  through 
2
π for 

1 0 ( period 4)α = ⇒ = , and towards 0 for 1 22 ( period )α α= − ⇒ = ∞ .  

E. Zero growth isoclines 

The following is solved with equations in untransformed variables (anti-log 

transformation of (4)) due to information of curvature (see ‘Bivariate first order annual 

model’). Ignoring constants (as they become positive) and noise, the ZGI are then 

described by the conditions: 

ZGIN: ( ) ( )11 121,
, 1 , 1

, 1

1 1f t
f t f t

f t

N
N P

N
β β−

− −
−

= ⇒ =  

ZGIP: ( ) ( )21 22 1,
, 1 , 1

, 1

1 1f t
f t f t

f t

P
N P

P
β β −

− −
−

= ⇒ = . 

Dropping subscripts and solving these equations for P we get both ZGI as functions of N: 

ZGIN: ( )
11

12

1

P N
β
β
−

=   and  ZGIP: ( )
21

221P N
β
β−= .      (Since { }, 0N P > ) 

 

For ZGIN we have required a decrease with increasing P, equivalent to a decrease of P 

with increasing N, giving: 

  ( ) ( )
11

12

1
111 11

12 12

1 1ZGI 0 0 0N N
N

β
β

β β
β β

−
−⎛ ⎞ ⎛ ⎞− −∂

< ⇒ < ⇒ <⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
,  

and knowing [ ]012 <β , this is true iff [ ]111 <β . 

 

An increasing ZGIP is equivalent to 

( ) ( )
21

22
121 211

22 22

ZGI 0 0 0
1 1P N

N

β
β

β β
β β

−
−

⎛ ⎞ ⎛ ⎞∂
> ⇒ > ⇒ >⎜ ⎟ ⎜ ⎟∂ −⎝ ⎠ ⎝ ⎠−

,  

and with [ ]21 0β > , this is true only iff [ ]22 1β < . 
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The curvature is given by the sign of the second derivatives: 

For the resource we have: 

( ) ( )
11

12

2 1
2

11 11
,2

12 12

1 1ZGI 1N N
N

β
ββ β

β β

−

f t

−⎛ ⎞⎛ ⎞− −∂
= −⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

, which with the above conditions is 

always positive, guaranteeing a convex ZGIN.  

For the resource we have: 

( ) ( )
21

22

2
2

21 21 1
,2

22 22

ZGI 1
1 1P N

N

β
ββ β

β β f t

−
−

⎛ ⎞⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂ − −⎝ ⎠⎝ ⎠

, which with the above conditions is 

negative and thereby concave iff 21 21
21 22

22 22

1 0 1
1 1
β β β β
β β

⎛ ⎞
1− < ⇒ < ⇒ + <⎜ ⎟− −⎝ ⎠

. 

F. Coefficient boundaries 

Following is the derivation of coefficient boundaries depicted in figure 9. This is done by 

combining the conditions found when studying the general model dynamics. The 

alphabetical listing corresponds to the indexing in figure 9. 

 

a) follows directly from the stability criteria (fig. 5 and Appendix D) and the link between 

the coefficients. 

b) follows from combining [ ]111 <β , [ ]22 1β < , and the lower boundary in 

[ ]11 222 β β− < + < 2 . This implies[ ]113 β− < , [ ]223 β− < , and[ ]11 223 1β β− < < . 

c) follows from [ ]21 0β > , [ ]21 22 1β β+ < , and implication from b):[ ]223 β− < .  

This implies[ ]210 4β< < . 

d) follows from[ ]21 12 21 120 0 0 ( )11 22 11 221 1β β β ββ β β β> ∨ < ⇒ < , ⎡ ⎤− < − < ⎦ ,  ⎣

and implication from b):[ ]11 223 β β− < <1 . This implies[ ]21 124 0β β− < < . 

e) follows from [ 012 < ]β  combined with implications from c):[ ]210 4β< < , 

and d):[ ]21 124 0β β− < < . 
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