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Abstract
We assess how reliable the Eddy-Covariance (EC) method is in estimating surface fluxes under the difficult con-
ditions that occur in the high Arctic. Emphasis is placed on stable stratification and the breakdown of EC assump-
tions that may occur in such a regime.

To investigate these difficulties we developed an EC processing module from scratch, providing an extensive and
transparent overview of the EC method. Raw data was obtained from an open path EC system located in the
Bayelva catchment near Ny Ålesund (79◦N), Svalbard, Norway.

Our flux estimates are in reasonable agreement with those found from the standardized EC package TK2. Strong
relative non-stationarity represents the greatest hindrance to data quality at Bayelva, occurring for 11% of the data
period. Overall, average relative flux uncertainties were found to be 20% for both the sensible (SH) and latent
heat (LH) flux. Under stable stratification these uncertainties were considerably higher, 27% on average. Through
Ogive classification we found that the traditional 30 minute SH and LH fluxes converged (resolved the turbulent
cospectrum) 70% of the time. Here too the stable regime stands out, with low convergence fractions of 41% and
48% for LH and SH, respectively. To our knowledge it is the first time such an analysis has been carried out in the
Arctic.

Concluding, while usually successful for neutral and unstable conditions, the traditional 30 minute flux averaging
period is, more often than not, poorly suited for the stable regime. We attribute this to the observed and predicted
shift in cospectral peaks towards lower periods under stable stratification, along with an erosion of the cospectral
gap. An apparently simple fix of reducing the averaging period is not generally a valid solution. The required
reduction could introduce unacceptable levels of flux uncertainty.
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Chapter 1

Introduction

1.1 Prelude

The ensuing work presents an extensive and transpar-
ent analysis of raw high frequency data from a surface
energy balance measurement campaign. Located in the
Bayelva catchment near Ny Ålesund in the Svalbard
archipelago, this campaign along with a complete de-
scription of the site is detailed in Westermann (2010).
Our work is motivated by three widely recognized and
related problems outlined in Section 1.3: the shortcom-
ings of Monin-Obukhov Similarity Theory (MOST) in
stable stratification (Mahrt, 1999), underestimation of
nocturnal CO2 respiration (Aubinet et al., 2012) and the
lack of surface energy balance closure (Foken, 2008a).
Common to all these problems is that they have been
identified through observations in the turbulent atmo-
spheric surface layer (ASL). Therefore, our focus is on
the estimation of surface exchange based on turbulent
fluxes in the ASL, particularly under difficult conditions
that may occur under stable stratification (Mahrt, 1999).

Our attention is restricted to the Eddy-Covariance (EC)
method, which with the onset of rapid response instru-
mentation has matured into the most widely used tech-
nique (Lee et al., 2006) for direct estimation of the ex-
change of constituents1 between the atmosphere and the
Earth’s surface. The method is employed both continu-
ously in long term global monitoring networks such as
FLUXNET (Baldocchi et al., 2001) and as part of short
term campaigns such as EBEX-2000 (Oncley et al.,
2007). Direct estimates of surface exchange provided
by the EC method are valuable beyond diagnosing local
budgets for the exchange of water, carbon or energy.
Estimates from FLUXNET are widely used by land
surface schemes in climate models for: validation, con-
straining model output and developing parametrizations
(Leuning et al., 2012). In addition, results from shorter
EC campaigns have have been used to increase our un-
derstanding of the turbulent atmospheric surface layer,
as in e.g. Kaimal et al. (1972), and provide evidence

of the success of MOST (Monin and Obukhov, 1954)
through the recovery of universal functions (Högström,
1996). These in turn provide first-order closure (Stull,
1988) such as the flux-profile relationships used in a
variety of different models.

To date several well documented and widely used pack-
ages for processing eddy covariance data are available
online. Some examples are TK2 (Mauder and Foken,
2004), as used by Westermann et al. (2009), the updated
TK3 (Mauder and Foken, 2011), as used by Lüers et al.
(2014), ECPACK (Van Dijk et al., 2004) and EddyPro
package (Burba, 2013). These packages are typically
developed and revised as ’in-house’ tools at various in-
stitutions by micrometeorologists for research purposes
(Mauder et al., 2013). In later years, however, due to
many of these packages becoming open-access, it is in-
creasingly non-micrometeorologists that have begun to
employ the packages in conjunction with measurements
as tools in process oriented studies. The canonical ex-
ample of such studies has perhaps become the diagnosis
of the net ecosystem exchange of CO2 as described in
e.g. Lee (1998). This is the case for a recent, albeit mi-
crometeorological, publication concerning the Bayelva
site found in Lüers et al. (2014).

Since our interest lies in the EC method itself we wish
to have all the data handling open to us and minimize
the use of any so-called black boxes2, so as to ensure
transparency. Moreover, the unusual location of the
Bayelva site prompts a revision of a few of the typical
approaches to EC data processing. Hence we opted for
creating our own EC-processing package in the form
of a module. This, in turn, allowed great freedom in
customizing which steps to include in the data pro-
cessing and analysis. In fact, which steps to include
in processing varies significantly between investigators
and poses a serious problem for intercomparisons in

1Be it momentum, energy, water vapor, or carbon dioxide (or other trace gases).
2A black box is a system which provides (not necessarily correct) output given user input, but what occurs in-between, inside the ’box’, is

hidden to the user.
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CHAPTER 1. INTRODUCTION 2

the field of micrometeorology (see e.g. Mauder et al.
(2008) and Fratini and Mauder (2014)). Accordingly
particular weight is given to our Method; all the steps
employed in our EC module are described and moti-
vated in detail. For the most part we try to build on
well-established routines for processing EC data as out-
lined in e.g. Aubinet et al. (2012). In addition, we
take some unusual steps such as: estimating the uncer-
tainty in flux estimates, calculating autostatistics and
applying extensive cospectral analysis. Many of these
steps are not included in other packages such as TK2.
Furthermore, an extensive quality control procedure is
implemented so as to be able to identify difficult condi-
tions in which the EC method is strictly not applicable
to the measurement of surface exchange (Foken and
Wichura, 1996).

It will be shown that our particular study site provides
both a challenge and an opportunity with regards to
its location; due to the latitude, topography and land
surface type. Moreover, the occurrence of very sta-

ble stratification during the polar night means that the
winter half of the data set is of particular interest. Mea-
surements in such a regime are few and far between;
whether it be in the high Arctic or anywhere else for
that matter. Applying the EC method in such a regime
proves to be particularly difficult as many of the under-
lying assumptions may be violated (Mahrt, 2010). Our
aim is to implement a methodology that allows us to
identify such instances and the mechansisms that lead
to their occurence.

Before proceeding with the method in Chapter 2 we in-
troduce the theory on which the EC method is built. We
also provide a brief overview of the Bayelva site and the
instrumentation employed in the EC system. Further-
more, we introduce the three outstanding problems that
provide the motivation for our work. The theory, and in
particular the assumptions therein, provides the fuel for
much of the discussion that follows in the remainder of
this thesis.

1.2 Eddy Covariance

1.2.1 Theory
Fundamental Equation of Eddy Covariance

Figure 1.1: An idealized rectangular control volume Vc = 4LDH centered about a mast on which a leveled eddy covariance system is
mounted at a height z = H above flat ground, with the sonic anemometer facing into the mean wind U . Normal components of the velocity
vector are depicted at arbitrary positions on each aerial face of the control volume.

A natural way of introducing the EC method is in the
context of a generalized scalar conservation equation
(cf. Fuehrer and Friehe (2002), Lee et al. (2006), Fo-

ken (2008b) and Aubinet et al. (2012))

∂ξ

∂t
+

∂

∂xj
(vjξ) = Σξ + νξ

∂2ξ

∂x2
j

(1.1)

where ξ is the scalar in question, vj is the wind vec-
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tor, Σξ is the net source term (sum of sources minus
sinks) and νξ is the molecular diffusivity (viscosity for
momentum) coefficient which we take to be a constant.
In (1.1) we have adopted indicial notation, also known
as summation notation (Stull, 1988), which we clarify,
for those unfamiliar wih the concept, in Appendix A.1.
The presented conservation equation is generalized in
that with only slight adjustments, accounting for rele-
vant sources and sinks, it can be applied to any scalar
quantity such as absolute humidity or enthalpy. The
same can even be said in the case of a vector quantity
such as momentum. In essence the equation states that
a scalar is conserved under advection in the absence of
sources/sinks and molecular diffusion.
In the subsequent derivation where our aim is to ar-
rive at an equation for the surface exchange budget of
the scalar ξ we begin by constructing a control volume
about the local patch of surface that is of interest. For
simplicity, as in Finnigan et al. (2003), we construct
a rectangular control volume, Vc, in a Cartesian coor-
dinate system as depicted in Figure 1.1. As shown in
Finnigan (2004) the simplified derivation with a flat sur-
face and rectangular control volume is readily extended
to more realistic control volumes where the topography
and surface type are typically heterogeneous to some
degree.

Next we introduce the concept of the block time aver-
age: for any continuous series, ξ(t), them-th block time
average is defined as

ξ
(m)

=
1

τA

∫ tm+τA

tm

ξ(t) dt ,

where τA is the duration of the block (the averaging pe-
riod). The superscript (m) is usually omitted and made
implicit. That is, when refering to block averages it is
understood that the average of an instantaneous vari-
able is equal for all instances within a given block, that
is for t ∈ [tm, tm + τA], but not (necessarily) for in-
stances in adjacent blocks. Moreover, any instantaneous
value in the series within a block can be decomposed
into the sum of the block average and a deviation, i.e.
ξ(t) = ξ + ξ′(t). Further, we note that the high pass
filtering operation involving the mean removal of the
block average satisfies all of Reynolds averaging rules
(these are outlined in e.g. Stull (1988)). For example,

ξ′ =
1

τA

∫ tm+τA

tm

ξ(t) dt− ξ

τA

∫ tm+τA

tm

dt = ξ−ξ = 0 ,

the block average of the fluctuation about the block
average is always zero. Now consider what happens
upon introducing the complimentary variable χ when
we consider the block average of the product of the fluc-

tuations

ξ′χ′ =
1

τA

∫ tm+τA

tm

(
ξ(t)− ξ

)
(χ(t)− χ) dt

=
1

τA

∫ tm+τA

tm

ξ(t)χ(t) dt+
ξ χ

τA

∫ tm+τA

tm

dt

(1.2)

− χ

τA

∫ tm+τA

tm

ξ(t) dt− ξ

τA

∫ tm+τA

tm

χ(t) dt

= ξχ+ ξ χ− ξ χ− ξ χ = ξχ− ξ χ (1.3)

clearly this is generally not zero; even if ξ = χ. We
refer to ξ′χ′ as the (block) eddy covariance between ξ
and χ, whereas ξ′2 is the (block) eddy variance of ξ.
We emphasize that we are working with discrete block
averages and subseqent mean removal when defining
fluctuations. We do so because other filtering opera-
tions do not satisfy the traditional Reynolds averaging
rules as demonstrated in Lee et al. (2006). The former
authors show that this is even the case for the still rel-
atively simple linear detrend where each block in the
series is decomposed into a linear trend and fluctua-
tions about the trend. So working with mean removal is
simplest not only in its implementation but also in the
fact that Reynolds averaging rules are obeyed making
the subsequent derivation much clearer. It is straight-
forwards to recover the total covariance ξχ provided
that the eddy covariance ξ′χ′ along with the respective
means are stored using (1.3).

Before continuing with the block average of (1.1) we
digress to clarify some concepts and terminology. The
term vjξ is the kinematic advective flux density of the
scalar ξ in direction ı̂j . To understand what we mean
by kinematic flux density it is easiest to first consider
what we mean by dynamic flux density by following
the discussion in Stull (1988). A dynamic flux den-
sity has dynamic units (e.g. energy, mass or momen-
tum) per unit area (hence the term density) per unit
time (hence the term flux). So, for example, ρuw is
the amount of horizontal momentum passing a unit
horizontal surface area3 (to which w is the surface
normal velocity component) per unit time with cor-
responding units

[
Nm−2

]
=
[
kg m s−1

] [
m−2s−1

]
.

Unfortunately ρu (ρ in particular) is a difficult quan-
tity to measure, hence why it is practical to oper-
ate with the kinematic momentum flux density uw
with units of momentum per unit mass times velocity[
ms−1

]2
=
[
kg m s−1

] [
m s−1kg−1

]
. So converting

from kinematic to dynamic units is ’simply’ a matter
of multiplication by air density. As a corollary then w
is the vertical kinematic advective mass flux density,
since ρw with units [kg][m−2s−1] is clearly the vertical
dynamic advective mass flux density. This ’multiply

3Due to the symmetry inherent in this term it can equally be interpreted as (ρw)u the amount of vertical momentum passing a unit vertical
area (to which u is the surface normal velocity component) per unit time.
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by ρ’ rule holds provided that the kinematic flux has
the right units. For example, as outlined in Businger
(1982) kinematic sensible heat flux should be expressed
in terms of enthalpy cpT , not temperature alone, for
multiplication by ρ to yield the correct dynamic units[
Wm−2

]
= [J]

[
s−1m−2

]
. Understandably, and as

is the convention4, we will abreviate flux densities as
fluxes and omitt the prefix kinematic/dynamic as these
are implicit in the units of the flux. The context should
always make it clear if we are really refering to the net
flux out of the boudning surfaces of some control vol-
ume or the flux density.

Next we express the diffusive term in (1.1) as a flux
divergence by expanding the Laplacian operator (recall
that νξ is assumed constant),

−νξ
∂2ξ

∂x2
j

=
∂

∂xj

(
−νξ

∂ξ

∂xj

)
.

Where the term in the brackets is the (kinematic) diffu-
sive flux (density) of the scalar ξ. Note that the diffu-
sive flux runs against (down) the scalar gradient. So we
could just as well have expressed (1.1) in the following
form

∂ξ

∂t
= − ∂

∂xj

(
vjξ − νξ

∂ξ

∂xj

)
+ Σξ . (1.4)

This corresponds to the ’flux form’ of (1.1) with the
term in the brackets representing the total (sum of ad-
vective and diffusive) flux of ξ.

As a thought experiment to familiarize ourselves with
the concepts of diffusive and advective flux let us for
simplicity restrict ourselves to the case of a one dimen-
sional flow and scalar profile as depicted in Figure 1.2.
Assuming that there are no sources or sinks of the scalar
then (1.4) reads

∂ξ

∂t
= − ∂

∂x

(
uξ − νξ

∂ξ

∂x

)
. (1.5)

The respective flux vectors appearing inside the bracket
are depicted in Figure 1.2 at 5 points in the case of a
semi-circular scalar profile. The advective flux is posi-
tive, flowing in the postive x-direction, at each point. It
takes its maximum magnitude where the magnitude of
the scalar is at its maximum. Conversely the diffusive
flux flows in the negative (positive) x-direction where
the scalar gradient is positive (negative) consistent with
down-gradient diffusion. It takes its maxmimum abso-
lute value where the scalar gradient is at its maximum.
Crucially the tendency of the scalar profile, as dictated
by (1.5), is determined not by the fluxes themselves but
by their convergence. That is to say the scalar will in-
crease (decrease) at a point if the sum of the fluxes con-
verges (diverges) at that point.

Figure 1.2: Snapshot of an idealized one dimensional scalar pro-
file ξ(x) (blue line) superimposed on a steady and homogeneous wind
field u(x, t) = U > 0 (light blue arrow). The colored arrows repre-
sent the advective (red) and diffusive (green) flux vectors at 5 points
centered about the point x = L where the scalar is at its maximum.

It is natural make a conjecture as to what the future fate
of the scalar ξ in Figure 1.2 will be. Well to the right of
x = L the advective flux is converging, whereas to the
left it is diverging. Actually in this simple example in
the absence of diffusion the scalar profile would simply
be advected along in the x direction at a velocity u all
the while conserving its shape with a peak at x = L+ut
where t is the time since the snapshot in Figure 1.2. The
diffusive flux in Figure 1.2, however, is diverging every-
where (except where the scalar is zero). Of the points
considered the divergence is greatest at x = L±bwhere
the slope of the diffusive flux is large. At the discon-
tinuity in the scalar gradient where the scalar goes to
zero, however, the diffusive flux is converging. As such
in this case diffusion will reduce the magnitude of the
scalar where it is non-zero whilst increasing the scalar
magnitude where it was previously zero (more gener-
ally where the flux is convering). The result of this
diffusive, yet non-dissipative, process is that over time
the spatial variance of the scalar is reduced whilst con-
serving the spatial integral (

∫
ξ dx) of the scalar profile

as outlined in detail in Røed (2013). When we com-
bine advection and diffusion the relative importance of
the two processes is generally determined by the wind
field, the advective flux is zero if the isotachs are par-
allel to the scalar isolines, as well as the magnitude
of the molecular diffusivity νξ. For orientation if the
scalar is temperature then the molecular diffusivity νT
is typically on the order 2 × 105

[
m2s−1

]
in air (Stull,

1988). Thus, advection is typically the dominant trans-
port mechanism (above the micro-layer). Now despite
the simplicity of this thought experiment it is instructive
in that the same principles are readily applied without
loss of generality to the more realistic case of three di-
mensional flow. In such a case, however, the velocity
components are unlikely to be homogeneous in space
such that their gradients also play an important role for
the evolution of the scalar.

Having clarified some terminology we are ready to pro-
ceed with the derivation. In the context of surface ex-

4See for example the AMS glossary: http://glossary.ametsoc.org/wiki/Flux.

http://glossary.ametsoc.org/wiki/Flux
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change it is the value of the source term Σξ that we are
interested in diagnosing, specifically near the surface it-
self (see extensive discussion in Sun et al. (1995)). The
instantaneous values are in themselves not very mean-
ingful (Lenschow et al., 1994) representing only a part
of the ensemble average flux. So it is more instructive
to arrive at a block averaged equation, making the er-
godic hypothesis that time and ensemble averages are
equivalent (Lee et al., 2006), expressed with respect to
the scalar source term

Σξ =
∂ξ

∂t
+

∂

∂xj

(
vjξ
)
− νξ

∂2ξ

∂x2
j

. (1.6)

We also define the following shorthand notation:

∮
VC

dV =
∫H

0

∫D
−D
∫ L
−L dx dy dz as the closed integral

over the control volume as well as∫∫
Ax

dA =
∫H

0

∫D
−D dy dz,

∫∫
Ay

dA =
∫H

0

∫ L
−L dx dz

and∫∫
Az

dA =
∫D
−D
∫ L
−L dx dy as the area integrals over

the faces of the control volume where x,y and z re-
spectively are held constant. We are now ready to in-
tegrate over our control volume. In doing so we expand
the advective flux divergence term into its spatial com-
ponents and use (1.3) on the mean of the products (the
total covariance). The subsequent volume integral of
(1.6), upon applying Reynolds averaging rules, reads

Bulk source︷ ︸︸ ︷∮
Vc

Σξ dV =

Vertical advective flux︷ ︸︸ ︷∫∫
Az

[(
wξ
) ∣∣
z=H

−
(
wξ
) ∣∣
z=0

]
dA+

Vertical eddy flux︷ ︸︸ ︷∫∫
Az

[(
w′ξ′

) ∣∣
z=H

−
(
w′ξ′

) ∣∣
z=0

]
dA

+

Horizontal advective flux︷ ︸︸ ︷∫∫
Ax

[(
uξ
) ∣∣
x=L
−
(
uξ
) ∣∣
x=−L

]
dA+

∫∫
Ay

[(
vξ
) ∣∣
y=D
−
(
vξ
) ∣∣
y=−D

]
dA

+

Horizontal eddy flux︷ ︸︸ ︷∫∫
Ax

[(
u′ξ′

) ∣∣
x=L
−
(
u′ξ′

) ∣∣
x=−L

]
dA+

∫∫
Ay

[(
v′ξ′
) ∣∣
y=D
−
(
v′ξ′
) ∣∣
y=−D

]
dA

+

Storage︷ ︸︸ ︷∮
Vc

∂ξ

∂t
dV +

Vertical diffusive flux︷ ︸︸ ︷∫∫
Az

([
−νξ

∂ξ

∂z

∣∣
z=H

]
−
[
−νξ

∂ξ

∂z

∣∣
z=0

])
dA

+

∫∫
Ax

([
−νξ

∂ξ

∂x

∣∣
x=L

]
−
[
−νξ

∂ξ

∂x

∣∣
x=−L

])
dA+

∫∫
Ay

([
−νξ

∂ξ

∂y

∣∣
y=D

]
−
[
−νξ

∂ξ

∂y

∣∣
y=−D

])
dA

︸ ︷︷ ︸
Horizontal diffusive flux

. (1.7)

The above represents, without approximation, the time
averaged budget for the scalar ξ in our idealized control
volume. It is considered to be the fundamental equation
of eddy covariance. Often presented in different forms,
compare (1.7) to that in Gu et al. (2012) or Lee and
Massman (2011), the physics (see braces) behind each
term appearing in the equation remains the same. We
use the term bulk source to emphasize that the (point)
source term is integrated over the entire control volume.
Gauss’ theorem is used to express the volume integral
of the advective and diffusive flux divergences as the
sums of the advective and diffusive fluxes out of each
face of the volume.

Observant readers will perhaps wonder why we have
dubbed the integrals of the vjξ terms the ’advective’
fluxes whereas we denote the v′jξ

′ integrals ’eddy’
fluxes when both terms are in fact advective processes.
This is just a convention in micrometeorology where
advection is usually associated with the larger scale
mean flow and eddy (turbulent) transport is associated
with the smaller scale fluctuations. Such a conven-
tion is adpoted because the ’advective’ terms can be
treated deterministically in models whilst the ’eddy’
terms are usually unresolved (subgrid scale) and must
be parametrized (Stull, 1988).
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Traditional Approach

Traditionally a set of assumptions are made to simplify
the analysis. That is to say the fields being measured
are assumed to approximately satisfy a rather long and
stringent list of criteria. These are (see e.g. Foken and
Wichura (1996) and Finnigan et al. (2003))

1. Statistical stationarity whereby the mean storage
term is zero, i.e. ∂ξ∂t = 0.

2. Horizontal homogeneity of first and second order
statistics, in other words no horizontal advective
or eddy flux.

3. No mean subsidence, that is w = 0.

4. The point source term is negligible except at the
surface, so in the surface exchange budget we
may replace it with Σξ(x, y, 0)δ(z) where δ(z)
is the Dirac delta function (Finnigan et al., 2003).

Complimenting the above assumptions we make use of
two convenient conditions. Frist in line is the diffusive
term, whos the treatment varies between investigators.
For example, in Lee (1998) the term is explicitly ig-
nored without justification, while in Finnigan et al.
(2003), Kowalski and Serrano-Ortiz (2007) and Gu
et al. (2012) (amongst others) it is proposed that the
term should act as a resistance in the source term near
the surface. As our first condition we follow the latter
approach in taking molecular diffusion to be negligible
in the budget except in the so-called micro-layer, the
lowest few millimeters above the surface (Stull, 1988),
where we absorb it into the source term. Further, as
our second condition we enforce a lower kinematic
boundary condition which dictates that there can be no
through-flow at the solid boundary represented by the
surface, i.e. w|z=0 = 0.

For clarity we will apply the assumptions and compli-
mentary conditions on a term by term basis. We will
also, following Finnigan et al. (2003), divide through
by the area of the surface patch Az to yield units of
flux density. First we introduce the surface exchange
term (surface flux), denoted S0, which we define as the
sum of the bulk source minus the integrated diffusive
flux. Applying the conditions of horizontal homogene-
ity, sources/sinks restricted to the surface and negligible
diffusive flux outside the microlayer, then upon integra-
tion this term becomes

S0 =< Σξ
∣∣
z=0

>Az −
∂ξ

∂z

∣∣
z=0

.

By definition this term corresponds to the horizontally
averaged (<>Az operator) block time averaged source
strength of constituent ξ across the surface patch with

area Az plus the diffusive flux at the surface. Thereby
S0 represents the average exchange of ξ between the
surface and the atmosphere which is ultimately what
we are interested in diagnosing.

Next we consider the total vertical covariance as the
sum of the vertical advective flux and the eddy covari-
ance, i.e. wξ = wξ + w′ξ′. Due to the no mean
subsidence approximation w = 0 the vertical advec-
tive flux term conveniently falls out and we are left with
wξ = w′ξ′. So using the former, horizontal homogene-
ity and the bottom boundary condition the total (mean
advective+eddy) vertical advective flux term becomes
the vertical eddy flux at the measurement height, i.e.

1

Az

∫∫
Az

[
wξ
]H
0
dA = w′ξ′|z=H .

As for the net horizontal advective flux density terms,
by virtue of the horizontal homogeneity assumption
these are both zero. That is

∂uξ

∂x
= 0←→ uξ|z=L − uξz=−L = 0 ,

and

∂vξ

∂y
= 0←→ vξ|z=D − vξz=−D = 0 .

Subsequently the total horizontal advective flux terms
make no contribution to the surface exchange budget.
The storage term is next in line which on account of the
stationarity assumption is taken to be zero. As such we
are left with the following surface exchange budget

S0 = w′ξ′
∣∣
z=H

, (1.8)

where the eddy covariance term on the right hand side
is readily measured using fast-response instrumentation
such as a sonic anemometer paired with an open-path
gas analyzer, which is the case for our study. Hence,
provided the assumptions hold, it is possible to diag-
nose the surface exchange terms (surface fluxes) by
sampling the eddy covariance at some height within the
surface layer.

Equation represents the essence of the traditional eddy
covariance method5. This leads to a first order defini-
tion of the dynamic surface fluxes (Fuehrer and Friehe,
2002). Considering two familiar examples: for sensible
heat flux the first order definition is simply Stull (1988)

QH = cpρ T ′w′ , (1.9)
5A word of caution is in order. As pointed out by Foken (2008b) the terms eddy covariance and eddy correlation are often used inter-

changeably, but this will invariably lead to confusion as the indirect (based on flux variance similarity) eddy correlation method is distinct
from the eddy covariance method discussed here.
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where T is temperature (units K), cp the specifc heat at
constant pressure (units JK−1kg−1) and ρ the air den-
sity (units kgm−3). For latent heat flux the first order
definition is (Stull, 1988)

QE = λvρ′vw
′ , (1.10)

where ρv is absolute humidity (units kgm−3) and λv
is the specific heat of evaporation (units Jkg−1). The
operative word in these definitions is first order; there
is no guarantee that these provide accurate estimates of
the corresponding surface fluxes (Fuehrer and Friehe,
2002).

Modern Approach

The modern approach, as outlined in for example Aubi-
net et al. (2012) and Mauder et al. (2013), provides
more accurate second order estimates of the surface
exchange. The complimentary conditions, zero ver-
tical velocity at the surface and negligible molecular
diffusion above the micro-layer, remain in the modern
method as these are based on sound underlying physical
assumptions (Finnigan et al., 2003). We will discuss the
modern approach as implemented for a single EC mea-
surement system, in the absence of vertical or horizontal
profiles, which is the setup for many of the FLUXNET
sites (Baldocchi et al., 2001); including the site we are
studying.

Three of assumptions in the traditional approach are
unavoidable also in the modern approach. These are:
1. Stationarity , 2. Horizontal homogeneity and 4.
Sources/sinks restricted to the surface. It is, however,
possible to verify if the underlying assumptions are
clearly violated through careful application of despik-
ing and quality control procedures, introduced by Foken
and Wichura (1996) and Vickers and Mahrt (1997).

It is widely considered that not implementing the as-
sumption of zero block average subsidence, w = 0,
marked the transition from the traditional to the modern
EC methodology (Lee and Massman, 2011). It turns
out that although block averaged vertical velocities are
often too small to be measured acurately (Fuehrer and
Friehe, 2002) they are by no means negligible and may

have a significant impact, on the surface exchange. To
alleviate this the block averaged vertical velocity is di-
agnosed through the ’WPL’ terms (after Webb et al.
(1980)) based on the permise of zero dry air mass flux
and the fluxes are consequently corrected. The for-
mer is far from the only flux correction in the modern
methodology. Additionaly, cospectral attenuation is
compensated for through methods pioneered by Moore
(1986). The sonic heat flux measured by the EC sys-
tem is converted to the sensible heat flux through the
’SND’ correction (after Schotanus et al. (1983)). The
effects of sensor separation, gas analyzers being some
distance away from velocity sensors, are corrected for
by considering cross-correlations (Nordbo et al., 2012).
In addition the effects of tilt, arguably the largest source
of systematic error (Mahrt, 2010), are corrected for
by rotating the horizontal measurement frame into a
longterm ensemble streamline plane using the planar
fit method proposed by Wilczak et al. (2001). Finally
the magnitude of flux sampling uncertainty is quanti-
fied using methods such as that of Finkelstein and Sims
(2001).

At this stage the brief overview may not be very insight-
ful, but we will explain all of the mentioned steps and
how we implemented these in Chapter 2. It is worth
keeping in mind that the overall goal of the modern EC
method is to provide more accurate estimates of the sur-
face exchange by improving on the deficiencies of the
traditional approach (Mahrt, 2010).

Monin-Obukhov Stability Parameter

Being a widely used concept in the EC method
the Monin-Obukhov (M-O) stability parameter (after
Monin and Obukhov (1954)), denoted ζ, deserves a
brief description . It is defined as ζ = z/L∗ where
L∗ is the Obukhov length first presented in6 Obukhov
(1971) and z is the height in the surface layer at which
L∗ is evaluated. The Obukhov length in turn is defined
as (Foken, 2008b)

L∗ = − u3
∗

κ g

θv
θ′vw

′
,

where u∗ ≥ 0 is the friction velocity, κ = 0.4 is the von
Karman constant and θv is the virtual potential tempera-
ture and θ′vw′ is the buoyancy flux. In the context of EC
campaigns it is usually assumed that the measured sonic

temperature, Ts, is approximately equal to θv (Kaimal
and Finnigan, 1994). According to Stull (1988) L∗ can
be interpreted physically as being proportional to the
height where buoyancy effects begin to dominate over
wind shear in the turbulent kinetic energy budget (see
(1.16)). Thereby for stable stratification where buoy-
ancy inhibits turbulence (θ′vw′ < 0) L∗ is positive and
tends to zero as the stability increases. Converesely
under unstable stratification where buoyancy produces
turbulence (θ′vw′ > 0) L∗ is negative tending to zero
as stratification becomes more unstable. In perfectly
neutral conditions L tends to ±∞ in that the buoyancy
flux is by definiton zero. From the discussion of L∗ it
is clear that for unstable stratification ζ < 0, for stable
stratification ζ > 0 and for neutral stratification ζ = 0.

6Our reference is a translation to English of the original Russian version which was published in 1946 (Foken, 2006)
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1.2.2 Study Site

Figure 1.3: Overview of the sites (indicated by white triangles) that form FLUXNET; a component of the NASA Oak Ridge National
Laboratory (ORNL) Distributed Active Archive Center for Biogeochemical Dynamics (DAAC). The Bayelva site is circled in red. Source:
http://fluxnet.ornl.gov/maps-graphics

In the following we provide an overview of what we
consider to be the salient points concerning the mea-
surement site. More details can be found in Wester-
mann (2010) where a complete description (on which
this overview is based) of the site and the annual surface
energy budget in the context of permafrost temperature
is given for the period 03.15.2008-03.15.2009. The
EC system from which our raw data was sourced is
run and owned by the Alfred Wegener Institute (AWI)
and is part of the greater FLUXNET global network of
EC sites as shown in Figure 1.37. The instrumentation
employed, a sonic anemometer and an infrared gas an-
alyzer, will be surveyed in Section 1.2.3.

The EC system is mounted on a mast on the north
western slope (inclination of γ < 5◦) of the Leirhaugen
hill at 78◦55′15”N, 11◦49′53”E in the Bayelva river
catchment about 2 km south west from Ny Ålesund.
The researc settlement that is Ny Ålesund lies on the
southern shore of Kongsfjorden on the Brøgger penin-

sula on the island of Spitsbergen in the north west of
the Svalbard archipelago as depicted in the left panels of
Figure 1.4. Lierhaugen hill peaks at 25 m ASL and lies
at the foot of two large glaciers: Vestre Brøggerbreen
to the west-south west and Austre Brøggerbreen to the
south. Other significant topographical features include
Zeppelinfjellet (566 m ASL) 1.9 km to the south east,
Scheteligtoppen (719 m ASL) 3.5 km to the west-north
west and Brøggerfjellet (653 m ASL) 3.35 km to the
south west separating the two glaciers. Kongsfjorden
lies 1.5 km to the north-east. The fjord runs along a
north-west (outer) to south-east (inner) axis and was
almost entirely free of ice during the entire study period
(see Westermann et al. (2009) and references therein).
Positions, horizontal distances and peak elevations are
based on the free interactive online topographical re-
source TopoSvalbard (TopoSvalbard, 2015) produced
by the Norwegian Polar Institute (NPI) where aerial,
satellite and ’3D’ images of the Brøgger peninsula are
also available.

7Details at http://fluxnet.ornl.gov/site/4115

http://fluxnet.ornl.gov/maps-graphics
http://fluxnet.ornl.gov/site/4115
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Figure 1.4: Location of the Eddy Covariance system with a cumulative flux footprint (orange contours) depicted in the right panel. Leirhau-
gen hill is shown by the closed height contour intercepting the Bayelva climate station in the small left panel. Figure from Lüers et al. (2014)
where it was adapted from the original Figure in Westermann et al. (2009).

A footprint analysis based on the model of Schmid
(1994) was carried out in Westermann et al. (2009) for
the snow free period July-September 2008 to determine
the average flux source area, i.e. the fetch of the instru-
ments. This analysis, depicted by the orange contours
in the right panel of Figure 1.4, indicates that the fetch
of the EC system is practically unobstructed by man-
made structures8. If we take the Bayelva climate station
as an example we see that it falls well outside the 90%
cumulative footprint contour. Most of the contributing
surface flux originates from the tundra along the main
wind directions. According to this analysis these main
wind directions, that is where the footprint contours are
stretched, are east-south easterly (from the inner part
of Kongsfjorden), southerly (from the Austre Brøgger-
breen glacier) and north-westerly (from the outer part of
Kongsfjorden). Note that these directions are somewhat
in agreement with our own analysis presented later in
the form of a wind rose (Figure 2.5). There is nonethe-
less a slight discrepancy; in our analysis by far the most
frequent wind direction is south westerly whereas there
is a relatively small contribution directly from the south.
We surmise that this south-westerly contribution could
be wind that is channeled by Brøggerfjellet as it enters
the catchment from either the Vestre or Austre Brøgger-
breen. Since the instruments are mounted on the north
western slope of a hill the south westerly direction is not
as blocked as wind from the south. The discrepancy can
also be explained by the fact that we base our analysis
on observations from a longer period to what was done
in the footprint model. The model of Schmid (1994) is
based on an estimate of the field of view, or surface area
of influence, of the fast responding sensors. This is in
turn dependent on the local highly transient pattern of
turbulent transport. Of course, there is no reason to ex-

pect that the statistics of the turbulence in the two pe-
riods are identical. Yet, the remaining wind directions
with significant occurrence that we identify, east-south
easterly and north-westerly, are consistent with the foot-
print analysis. Therefore, we consider the footprint con-
tours to be a useful representation of the fetch of the
instruments, at least to a first order, in our study pe-
riod. At the very least we can safely make the assump-
tion that the footprint area is undisturbed by man-made
structures.

Figure 1.5: View of the Bayelva EC system, mounted on Leirhau-
gen hill, when facing east. For orientation the northern ridge of Zep-
pelinfjellet is glimpsed to the far right of the image. Photograph taken
downwind of the system on the 23.03.2015 courtesy of Nathalie Gren-
zhaeuser.

At Leirhaugen the ground is permafrost with a max-
imum active layer depth, the maximum depth of the
0◦C isotherm below the surface, reported as ∼ 1.5 m in
2008. The permafrost is relatively warm with a mean
annual temperature of −2.5◦ at 1.5m as reported by

8Apart from the tower structure on which the instruments are mounted.
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continuous measurements at the Bayelva climate sta-
tion (since 1998). The soil content is rich in minerals
and has a low organic content. A distinctive feature of
the seasonal freeze-thaw pattern of the periglacial land-
scape is the occurrence mud boils which are non-sorted
circles9 characterized by a trough covered with vege-
tation in the form of low plants, moss and lichens and
a bare mineral soil center with a diameter on the order
of 1 m as seen in the bottom of panel C of Figure 1.6.
These mud boils, which are surveyed in detail in Boike
et al. (2008), introduce micro-scale surface heterogene-
ity in the sense that the vegetation acts as a buffer both
to water and CO2, while the bare center of the boils
are exposed to fluxes of significant magnitude. Due to
the small scale, however, these discontinuities in sur-
face exchange are smoothed out by turbulent mixing in
a typical flux averaging period. The vegetation cover is
estimated to be 60% (Lüers et al., 2014), but as the veg-
etation is low the surface is quite smooth with a rough-
ness length z0 ' 7 mm in the absence of snow. We
are spared from forest canopies and roughness sublay-
ers that occur within them; a fascinating but complicat-
ing feature of many EC sites at lower latitudes (see e.g.
Lee et al. (2006)).

Figure 1.6: Panel B: Aerial photograph of the area to the south-
east of Ny-Ålesund with Leirhaugen hill indicated by the arrow. Panel
C: View from the top of Leirhaugen hill looking south (August 1998).
Adapted from Boike et al. (2008).

We do, however, have to contend with changing patterns
in the surface type (compare Figures 1.6 and 1.5) as a
result of snow-fall/freeze/drift/thaw/melt and rare rain-
on-snow events. Locally the latter events are very sig-
nificant as they mark a rapid shift in surface albedo, sur-
face roughness as well as measurement height. More-

over these events have become noticeably more fre-
quent in the so-called ’shoulder’ months (spring and
fall) (Nowak and Hodson, 2013). In fact, the former
authors show that in May,September and October rain
has become the dominant form of precipitation in the
Bayelva catchment over the course of the last decade.
More generally the ’snow cycle’ is key in modulating
the surface energy balance. Take the effect of changing
surface albedo on the net radiation budget as an exam-
ple. At this latitude the incoming shortwave radiation
is largely determined by the annual transition between
polar night and day, along with cloud cover, but the
portion that is reflected is modulated by the whiteness
of the surface. As noted in Westermann et al. (2009)
there is a fascinating interplay between the properties
of the surface and the seasons that determines the sur-
face radiation budget. On the one hand the timing of
snow-melt, with the snow disappearing typically some-
where between the end of May to the beginning of July
(Winther et al., 2002), marks a significant drop in the
albedo and coincides with the period in which the in-
coming shortwave radiation is at its maximum. On the
other hand the timing of the first seasonal snow fall and
subsequent snow formation is not as significant; even
if it marks a significant increase in the albedo the sun
is already low on the horizon at this time, usually late
September (Winther et al., 2002), so the effect on net
radiation is limited compared to that during the onset of
the snow-melt.

The varying snow cover also poses a problem in terms
of changing the height of the instruments in relation
to the surface. The height varies from as low as 1 m
above the snow covered surface (March-May 2008) to
2.75 m in the absence of snow. This poses a chal-
lenge for the tilt correction algorithm described in sec-
tion 2.3.2 as the method requires that the instruments
are stationary relative to the surface; whereas at our site
over a long enough time scale (months or more) the
surface moves significantly from the instruments’ per-
spective (as shown in Figure 2.10). Moreover the M-
O stability parameter ζ = z/L∗ requires an accurate
measurement of the height AGL, z, of the instruments.
Fortunately we had access to data from the Campbell
SR50 sonic ranging sensor (SR50, 2007) used to de-
tect changes in the surface below the sonic anemome-
ter which we complimented with snow depth measure-
ments from the nearby Bayelva Climate station as out-
lined in Section 2.4.2. As such we were able to track
changes in measurement height leading to a fairly accu-
rate estimation of the M-O stability parameter.

9As opposed to sorted-circles characteristically bordered by rocks.



CHAPTER 1. INTRODUCTION 11

Figure 1.7: Ocean currents in the Nordic seas. Currents near Sval-
bard: EGC=East Greenland Current, ESC=East Spitsbergen Cur-
rent, WSC=West Spitsbergen Current, RAC=Return Atlantic Current
and NAC=North Atlantic Current Blue (red/orange) colors represent
cold (warm) currents. Figure adopted from Rudels et al. (2005)

For the sake of context we also provide a short descrip-
tion of the climatology of the Ny Ålesund area which
has a solid permanent record of both air temperature
and precipitation stretching back to 1969 (Førland and
Hanssen-Bauer, 2000). The climate of Svalbard can be
classified as ET-Polar Tundra (Figure 1.3), following
the Köppen-Geiger Climate Classification (Peel et al.,
2007) as the climatological average of the warmest
month is in the range 0◦C < T < 10◦C. This criterion
is later shown to be satisfied locally for the Ny Ålesund
area in Figure 2.2. The (1981-2010) average annual
temperature is −5.2◦C, with average winter air temper-
atures of −12◦C and average summer air temperatures
of 3.8◦C (Førland et al., 2012). Temperatures which
are relatively mild given the latitude; for comparison
in Alert, Nunavut, Canada (82◦30′00′′N, 62◦19′59′′W)
the average annual air temperature is more than ten de-

grees lower at −18.1◦C (Smith et al., 2005). In fact
such a zonal temperature asymmetry is also present
on the scale of the Spitsbergen island itself. On the
west coast, where Ny-Ålesund is situated, the relatively
warm West-Spitsbergen Current is the major source of
both heat and moisture (Esau et al., 2012) while on
the east coast the colder East-Spitsbergen current brings
colder polar water masses as well as sea ice in from the
north as depicted in Figure 1.7. The (1981-2010) aver-
age annual precipitation is 427 mm yr−1 (Førland et al.,
2012), where on average most (almost twice as much)
falls in autumn and winter when compared to spring and
summer. Typically only 25% of the precipitation falls
as rain with the remainder as snow, or sleet or a com-
bination of all the former. Precipitation can fall as both
rain and snow in any given month of the year. As noted
in Førland and Hanssen-Bauer (2000) the precipitation
is considerably higher over the glaciers as a result of
orographic enhancement. This in turn could lead to sig-
nificant differences between the annual precipitation lo-
cally at Leirhaugen hill when compared to Ny Ålesund
due to the proximity to the Brøgger glaciers. A point
to bear in mind later as both of the instruments are of
limited use when precipitation occurs. Increases in both
annual precipitation and annual average air temperature
have been reported in Ny Ålesund. Annual precipitation
has increased by 5% per decade and average annual air
temperature has increased by 0.73◦C per decade with a
particularly alarming increase of 1.36◦C per decade in
average winter time temperatures. Both these decadal
temperature trends are based on data from 1975-2011
as detailed in Førland et al. (2012). The former authors
note that this warming trend recognized at various sites
in the Svalbard region are consistent with the large-scale
warming observed in the Arctic over the last decades
(see Hartmann et al. (2013)).

1.2.3 Instrumentation

Figure 1.8: Close up view (facing north) of the Bayelva EC system
mounted on Leirhaugen hill with the sonic in the center and the IRGA
on the left side of the image. Photograph adopted from Westermann
(2010).

In the following section we will briefly review the in-
strumentation employed in the Bayelva EC system: a
CSAT3 (CSAT3, 2014) sonic anemometer (sonic for
short) and a LI-7500 (LI-7500, 2001) open path infrared
gas analyzer (abbreviated IRGA). These are mounted
on a mast at a height of 2.75m above snowfree ground
on the northwestern slope of Leirhaugen hill. Con-
cerns about the orientation of the sonic, the separation
between the IRGA and the sonic as well as the fre-
quency response of the instruments will be adressed in
the method (Chapter 2). Herein for the respective in-
struments particular attention is directed to the basic op-
erating procedure, the resolution as well as any known
issues not adressed elsewhere. More details are avaiable
in the respective manuals CSAT3 (2014) and LI-7500
(2001).
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CSTA3 Sonic Anemometer

Figure 1.9: Schematic of the nonorthogonal geometry of a CSAT3
sonic anemometer head. There are six seperate transducers each
with a diameter of 0.64 cm; when paired these transducers form three
acoustic paths. Adopted from (CSAT3, 2014)

The CSAT3 is a three dimensional nonorthogonal sonic
anemometer used to measure the local three dimen-
sional wind vector and sonic temperature both sampled
at the same high frequency (CSAT3, 2014). From Fig-
ure 1.9 it is evident why this sonic is nonorthogonal:
each of the three acoustic paths, the paths separating any
two facing transducers, are tilted 30◦ from the instru-
ments vertical axis. So the path vectors have a mutually
parallel component, namely this vertical axis. Such a
geometry is very different from the earlier orthogonal
sonic models (cf. Kaimal and Businger (1963)) which
have three orthogonal acoustic paths including the in-
strument’s vertical axis. Crucially, the nonorthogonal
geometry of the CSAT3 minimizes the effects of flow
distortion that results from transducer shadowing of the
wind field (CSAT3, 2014). Even so, the basic operating
procedure is much the same as the earlier orthogonal
sonics.

Along each of the three acoustic paths, henceforth sonic
axes denoted with the subscript10 a ∈ 1(1)3, two ul-
trasonic waves are transmitted in opposite directions.
Following the discussion in CSAT3 (2014) for a given
sonic axis a the flight time of the outgoing ultrasonic
wave, ta,1, here defined for a given transducer pair as
the wave transmitted from the lower to the upper trans-
ducer is given by

ta,1 =
d

cs,a + ua
, (1.11)

and the flight time of the incoming wave, from the upper
to to the lower transducer, ta,2, is given by

ta,2 =
d

cs,a − ua
. (1.12)

In (1.11) and (1.12) d is the constant path length ('
0.115 m for the CSAT3), cs,a is the speed of sound
along the axis and ua is the component of the wind vec-
tor blowing along sonic axis a defined as positive if the
wind is blowing from the lower to the upper transducer.
Combining (1.11) and (1.12) we have that ua is given
by

ua =
d

2

[
1

ta,1
− 1

ta,2

]
.

This allows the CSAT3 to calculate ua internally for
each axis based on the measured flight times. The three
non-orthogonal wind components are then rotated into
an orthogonal frame internally in the CSAT3 firmware.
As such, near instantaneous samples of three orthogonal
velocity components are calculated and stored. These
samples are the x, y and z components of the velocity
vector in the instrument frame (cf. Figure 1.9) denoted
as u, v and w respectively.

In addition to the three dimensional wind vector, the
CSAT3 also diagnoses the speed of sound along each
of the three sonic axes. Once more this is achieved by
combining (1.12) and (1.11) to arrive at (CSAT3, 2014)

cs,a =
d

2

[
1

ta,1
+

1

ta,2

]
. (1.13)

At this stage a correction is made ’online’ (internally)
in the CSAT3 firmware to account for the influences of
crosswind (see Liu et al. (2001)) on the measured speed
of sound along each acoustic path (CSAT3, 2014). Sub-
sequently the measured speed of sound is averaged over
the three axes via cs = 1

3

∑3
a=1 cs,a. Having sampled

and computed the axes averaged speed of sound cs, the
sonic temperature Ts is calculated through the follow-
ing expression (see e.g. Kaimal and Gaynor (1991))

Ts =
c2s

γdRd
.

In the above, Rd = 287.04 JK−1kg−1 is the gas con-
stant for dry air and γd = cp,d/cv,d is the ratio of the
specific heats of dry air at constant pressure (cp,d) and
constant volume (cv,d). The sonic temperature is practi-
cally equivalent to the virtual temperature which is de-
fined as the temperature required for a hypothetical dry
air parcel to attain the same density, at the same pres-
sure, as the given moist air parcel (e.g. Stull (1988)).
In micrometeorology the distinction between sonic and
virtual temperature, pursued in Appendix A.2, between
the two is usualy kept (Kaimal and Gaynor, 1991) and
so we will also keep the two distinct herein.

The CSAT3 returns the synchronized diagnosed veloc-
ities u, v, w (in ms−1) and sonic temperature (in ◦C)
at a sampling frequency, fs, specified by the user;

10We will use this notation throughout, we take a ∈ 1(1)3 to mean that index a runs from 1 to 3 with the increment of 1 given in the
brackets.
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typically either fs = 10 or fs = 20 Hz (CSAT3,
2014). At Bayelva the CSAT3 is set to return sam-
ples at fs = 20 Hz, that is twenty times per second
corresponding to a response time (discrete timestep)
∆t = 1/fs = 0.05 s. There is inherently some noise in
the measured signals and consequently the CSAT3 has
a measurement resolution, standard deviation with re-
spect to a constant signal, of 1×10−3 ms−1 for u and v,
5× 10−4 for w and 2× 10−3 ◦C for Ts (CSAT3, 2014).
Despite its relatively old age, the CSAT3 is classed in
the top tier of the sonic anemometers currently available
on the market in terms of overall data quality (Mauder
et al., 2006).

There are some issues with the CSAT3 and sonic
anemometers in general that are worth highlighting.
First of all the CSAT3 measurements are averages over
the CSAT3 axes as opposed to strictly point values

the implications of which we will return to in Sec-
tion (2.5.2). Secondly, depending on the wind direc-
tion, the somewhat bulky CSAT3 structure may per-
turb the local wind field considerably causing unde-
sired flow distortion (Aubinet et al., 2012), which we
will adress in Section 2.3.1. In addition, if the acoustic
paths of the CSAT3 are blocked in any way, for exam-
ple as a result of heavy precipitation or frozen transduc-
ers, the sonic anemometer measurement principle fails
completely (CSAT3, 2014). Events where the acous-
tic paths are blocked can usually be identified and re-
moved via despiking routines such as those outlined in
Section 2.2. Luckily for the case of Ny Ålesund the lo-
cal climate is quite dry (Førland et al., 2012) so severe
blockage events should be relatively infrequent. Still,
as discussed there is a risk of orographically enhanced
precipitation events at the Bayelva site.

LI-7500 Infrared Gas Analyzer

Figure 1.10: Schematic of the LI-7500 open path infrared gas an-
alyzer and its various components. Adopted from (LI-7500, 2005)

The LI-7500 is a robust fast responding open path in-
frared gas analyzer that samples the densities, either as
number density (mol m−3) or as mass density (g m−3),
of CO2 and water vapor in its measurement path (LI-
7500, 2001). Here the term open path stems from the
fact that the 12.5 cm long infrared path, between the
two windows in Figure 1.10, is open to the atmosphere.
Herein we are primarily concerned with water vapor as
opposed to CO2 and so we will only discuss how the
LI-7500 measures the absolute humidity ρv (i.e. water
vapor mass density). Yet, the basic operating princi-
ple is much the same for CO2 mass density (LI-7500,
2001).

Following LI-7500 (2005) we review the basic operat-
ing principle of the LI-7500. As shown in Figure 1.10
the infrared source emits an infrared radiation beam of

a given intensity through a chopper filter wheel which is
then focused by a lens before passing through a window
and entering the open path. Having traveled across the
open infrared path the infrared radiation passes through
another window after which it is refocused by another
lens and directed onto the detector which detects the at-
tenuation (due to scattering and absorption) of the in-
frared beam across the open path. The rotating (9000
rpm) chopper filter wheel ensures that the peak inten-
sity of the infrared beam alternates between four cen-
tral wavelength bands (LI-7500, 2005): the reference
band for CO2 centered on 3.95µm, the reference band
for water vapor centered on 2.4µm, the CO2 absorp-
tion band centered on 4.26µm and the water vapor ab-
sorption band centered on 2.59µm. By comparing the
measured transmisivity of corresponding reference and
absorption bands the effects of secondary beam attenua-
tion11, i.e. scatering and absorption from other sources,
are accounted for so that the absorptivity, αi, of the gas
species in question is recovered. The correction for sec-
ondary attenuation sources also accounts for the cross
sensitivity between the CO2 and water vapor absorption
bands. Having estimated the water vapor absorptivity,
αv , in the open path the absolute humidity is calculated
internally in the LI-7500 firmware through (LI-7500,
2001)

ρv = MvPfv (αvsv/P ) . (1.14)

In the above Mv = 18.02 [g mol−1] is the molar mass
of water vapor, P is the air pressure, sv is a span adjust-
ment term and fv is a third order polynomial calibration
function with unique coefficients for a given LI-7500
instrument provided by the manufacturer. More details
on the origins of the function fv are provided in the
manual (LI-7500, 2001). The absolute humidity is sam-

11It is assumed that other particles responsible for scattering or absorption (e.g. dust or precipitation) are stationary with respect to the
optical path for one rotation period of the chopper filter wheel (LI-7500, 2001). It is also assumed that due to their proximity the effects of
secondary beam attenuation are the same for corresponding reference and absorption bands.
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pled at a frequency set by the users of the EC system,
for the case of Bayelva this was the same as for the
CSAT3 namely fs = 20 Hz.

Being the most widely used open path IRGA model
worldwide for the measurement of the turbulent fluxes
of CO2 and water vapor (Burba, 2013) the advantages
and limitations of the LI-7500 are well known. In terms
of advantages the design of the LI-7500 minimizes flow
distortion through its small size and relatively smooth
shape. In addition, contrary to closed path gas ana-
lyzers, an open path IRGA such as this is well suited
for remote long term monitoring sites in that there is
less need for maintenance (Leuning and Judd, 1996).
Furthermore, the corrections for spectral attenuation
of turbulent fluxes due to path length averaging are
less extreme than for closed path gas analyzers (Lee
et al., 2006) and so an open path EC system is well
suited for the simpler analytical attenuation corrections
of Massman (2000) which we cover in Section 2.5.2.
The LI-7500 also functions well in conjunction with a
CSAT3; at Bayelva the CSAT 3000 data logger provides
synchronized, albeit not colocated (see Section 2.5.1),
measurements from the two instruments.

There are a range of issues with the LI-7500 that are
worth considering. First of all, as with the CSAT3, the
measurement principle works poorly in the case of se-
vere blockages of the measurement path, due to e.g.
heavy precipitation. In such instances multiple assump-
tions in the LI-7500 beam attenuation correction break-
down and the samples are prone to spike. This effect

is particularly severe in the case that dirt, droplets or
frost covers the windows of the instrument over longer
periods. Secondly, the zero reference levels of LI-7500
measurements are prone to drift over extended periods
with large changes in the ambient temperature without
maintenance (LI-7500, 2001). Both path blockage and
zero drift lead to unphysical measurement values, which
we will adress in Section 2.2. In that all open path an-
alyzers effectively measure the density of gas species
it is also necessary to apply a correction for the effects
of fluctuating dry air density on the mean vertical wind
speed (Webb et al., 1980) adressed in Section 2.5.4. The
last concern is that the LI-7500 is not a truly passive in-
strument; it alters the properties of the air that is sam-
pled as a result of the absorption of infrared radiation
and subsequent heating. Thereby the LI-7500 is itself a
source of convection and fluctuating densities, an effect
that may be particularly severe in cold and stable con-
ditions (Lüers et al., 2014). The correction proposed
by Burba et al. (2008) may potentially alleviate this un-
desired heating effect. We will not pursue this correc-
tion since Lüers et al. (2014) found that the resulting
correction yielded unphysically large flux values at the
Bayelva site. It is worth pointing out that by tilting the
LI-7500 45◦ from the vertical, as is done at Bayelva (cf.
Figure 1.5), the effects of infrared path blockage and in-
strument generated convection are reduced (Lüers et al.,
2014). The LI-7500 should not be tilted much more
than this otherwise the flow distortion induced by the
instrument, both on its own path and that of the CSAT3,
becomes increasingly severe.

1.3 Motivation

The motivation behind our study are three problems
that have been recognized through shorter term EC
measurement campaigns (e.g. FINTUREX Sode-
mann and Foken (2005), EBEX-2000 Oncley et al.
(2007),LIFTASS-2003 Mauder et al. (2006), and ARC-
TEX Lüers and Bareiss (2011)) as well as the long term
global flux monitoring network FLUXNET (Baldocchi
et al., 2001). The problems are: 1) The underestima-
tion of nocturnal CO2 respiration (Finnigan, 2008), 2)
A failure to close the surface energy balance (Foken,
2008a) and 3) The shortcomings of MOST under sta-
ble stratification (Mahrt, 1999). These problems have
potentially severe consequences for the universal appli-
cability of the EC method in long term global networks
for monitoring surface exchange (Finnigan, 2008).

More generally the problems are symptomatic of an

oversimplifified treatment of the atmospheric boundary
layer, particularly the stable boundary layer which is
relatively prevalent in the Arctic, with many of the is-
sues extending into the domain of modeling. This is the
case for both large scale numerical weather prediction
and climate models (Holtslag et al., 2013), as well as
more regional models (e.g. Aas et al. (2015)) and local
turbulence resolving models such as Large Eddy Simu-
lations (LES) (e.g. Beare et al. (2006)). Land surface
schemes in all the former examples build heavily on the
accumulated knoweledge from EC campaigns (Leuning
et al., 2012). All of these ’schools’ of models rely on
observationally constrained boundary conditions and/or
the validity of MOST. In the following we will outline
the 3 problems presented above complimented with the-
ory as well as proposed mechanisms leading to their oc-
curence.
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1.3.1 Shortcomings of Monin Obukhov Similarity Theory

We will introduce some observed defficiencies of
Monin-Obukhov Similarity Theory, MOST, (after
Monin and Obukhov (1954)), in the stably stratified
surface layer following the discussion in Mahrt (1999).
Before doing so it is worth demonstrating why MOST
is an extremely attractive and widely employed con-
cept. To do so we will consider only the turbulent
kinetic energy (TKE) budget, however near identical
arguments apply to the budgets of scalar variance (see
e.g. Högström (1996)). It is woth keeping in mind that
MOST in its most general form only applies to the sur-
face layer, or constant flux layer, where vertical fluxes
deviate by less than 10% from their surface value (Wyn-
gaard, 2010).

For a horizontally homogeneous and statistically sta-
tionary surface layer, required for the application of
MOST (Högström, 1996), with no subsidence and u
aligned with the mean horizontal wind, the TKE bud-
get becomes (Stull, 1988)

0 =
g

θv
θ′vw

′−u′w′ ∂u
∂z
− ∂w

′e

∂z
− 1

ρ

∂p′w′

∂z
−ε , (1.15)

where e = 1
2v
′2
i is the TKE per unit mass. From

left to right the terms are the: buoyant production of
TKE, mechanical production of TKE through the mean
wind shear, turbulent transport of TKE, pressure trans-
port of TKE and finally the viscuous dissipation of TKE
into heat. Here it is assumed for friction velocity that
u2
∗ = −u′w′ = |u′w′|, i.e. that the wind stress is

aligned with the mean wind, which is very nearly sat-
isfied over land (Wyngaard, 2010). Next, to recover
the M-O stability parameter, ζ, we multiply (1.15) by
κz/u3

∗, keeping the terms in the same order, yielding
(Stull, 1988)

0 = −ζ +
κz

u∗

∂u

∂z
− κz

u3
∗

∂w′e

∂z
− κz

u3
∗ ρ

∂p′w′

∂z
− κz

u3
∗
ε ,

(1.16)
or more compactly (Högström, 1996)

0 = −ζ + φm(ζ)− φtt(ζ)− φpt(ζ)− φε(ζ) . (1.17)

When MOST is satisfied all the nondimensional φ terms
are universal functions of ζ. As for practical implica-
tions this means that, with MOST satisfied and the
universal functional forms known, we can diagnose
the entire TKE budget using a single EC system. In
fact only a sonic anemometer is necessary under the
assumptions that: Ts ' θv and the φpt ' 0. It is im-
portant to point out that these forms are not given by
MOST itself, they must be determined by fast respond-
ing measurements; including vertical gradients (Kaimal

and Finnigan, 1994). Previously, and still now to some
extent, finding these universal functional forms was (is)
the main concern of EC measurement campaigns (Fo-
ken, 2006). An extensive review of proposed universal
forms is given in Högström (1996).

The value of MOST extends beyond diagnosing the
TKE budget from EC measurements. If we focus on
one term, φm, the nondimensional mean wind shear12

which is defined as (cf. (1.17) and (1.16))

φm(ζ) =
κz

u∗

∂u

∂z
. (1.18)

Similarly, for a generic scalar ξ, for which the associ-
ated surface layer scale is ξ∗ = −ξ′w′/u∗, the defini-
tion of the nondimensional vertical gradient is (Wyn-
gaard, 2010)

φξ(ζ) =
κz

ξ∗

∂ξ

∂z
.

The above relationships are invaluable provided that 1)
the universal form is known and 2) either the surface
layer scale or the vertical profile are known. Typically
in a model, given a known univeral form, either the
surface layer scale (being simply related to the surface
flux) is given by a boundary condition or the vertical
profile is sufficiently well resolved. In the case that
the surface layer scale is known this makes it possible
to solve, via integration, for the vertical profile below
the lowest grid point, provided that this point is in the
surface layer. From the point of view of weather fore-
casting this is invaluable in that the first model grid
level is often at several 10s (or even 100s) of meters
above the ground and one may wish to obtain a reli-
able estimate of 2 meter air temperature or wind speed.
Conversely, if the vertical profile is well resolved, it is
straightforwards to combine this with the univeral form
of the nondimensional gradient to solve for the surface
layer scale and thus retrieve the surface flux.

These so called flux-profile relationships that we have
just described are among the most widely used ver-
sions of first order closure (Stull, 1988) in modeling.
The term first order refers to the fact that the relation-
ships provide the means to parametrize second order
terms (e.g. u′w′) that are usually not solved for by
the prognostic equations in models, but are nonetheless
needed by the prognostic equations of the first order
terms (Wyngaard, 2010). Additionaly, these flux profile
relationships can be used in measurement campaigns to
indirectly estimate the surface flux using slower mea-
surements provided that both the horizontal wind speed
and scalar(s) in question are measured as vertical pro-
files, at least two near lying levels, in the surface layer

12Including the von Karman constant κ in the definition of φm is due both to tradition and for convenience (Högström, 1996). For neutral
conditions φm(ζ = 0) = 1 and the classic ’law of the wall’ formula u(z) = u∗

κ
ln
(
z
z0

)
is recovered where z0 is the roughness length at

which u(z0) = 0 by defintion (Stull, 1988).
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(Foken, 2008b). Since we do not have access to any
vertical profiles we can not control the universal func-
tional forms proposed in e.g. Högström (1996). The
exception is the nondimensional dissipation φε in that
ε may be estimated in the inertial subrange identified
through spectral methods or structure functions. MOST
also extends beyond flux-profile relationships. We can
and will investigate other variants of MOST namely
flux variance similarity (Section 2.6.5) (Wyngaard et al.
(1971) and Tillman (1972)) as well as spectral and
cospectral similarity theory (Kaimal et al. (1972) and
Wyngaard and Coté (1972)).

Figure 1.11: Universal functional forms for nondimensional mean
wind shear, φm(ζ), in the stability domain ζ = z/L ∈ [−1, 1]
proposed by various investigators (references in the legend). Figure
adopted from Foken (2006).

Having demonsrated the appeal and widespread use of
MOST we are now prepared to deal with its observed
shortcomings under stable stratification. Evidence of
problems in stable stratification is provided through the
large scatter between the many proposed universal func-
tional forms in this regime (Högström (1996), Mahrt
(1999), Klipp and Mahrt (2004) and Foken (2006)).
An example of such scatter is shown for φm(ζ) in
Figure 1.11 where on the unstable side (ζ < 0) the
proposed forms for φm(ζ) are all in good agreement
collapsing into a single curve whereas on the stable side
(ζ > 0) there is considerable disagremeent. Further-
more, from this Figure it is clear that the disagreement
becomes increasingly severe as ζ approaches very sta-
ble stratification (ζ > 1).

This begs the question: why is there such disagreement
in the proposed universal functions in stable, and par-
ticularly very stable, stratification? Essentially the dis-
agremeent boils down to the underlying assumptions
in the MOST formulation often being invalid in stable
regimes. The three violations along with example phys-
ical mechanisms can be summarized as follows:

• Surface layer turbulence can be highly intermit-
tent (i.e. nonstationary) (Andreas et al., 2008).
For example long calm periods may be inter-
rupted by sporadic downwards bursts of turbu-
lence from aloft after mean wind shear builds

up during the formation of a low level jet (Stull,
1988).

• Flows in the surface layer may become horizon-
tally heterogeneous due to for example: grav-
ity wave propogation (Mahrt, 2010) and drainage
flows (Aubinet, 2008).

• The surface layer may become so shallow that it
exists well below the observation level. Thereby
there is signifcant vertical flux divergence at
the observation level and the MOST formulation
breaksdown. Frequently a shrinking of the sur-
face layer occurs through longwave radiative flux
divergence (Mahrt, 1999).

Several more mechanisms leading to these violations
are discussed in Mahrt (1999).

Still, MOST can be applied succesfuly to the stable
surface layer so long as the above mechanisms are ab-
sent. Care must be taken interpreting results, however,
as MOST can appear to be succesful due to the self-
correlation inherent in its formulation as discussed in
Mahrt (1999) and Klipp and Mahrt (2004). To elaborate
we continue with the nondimensional shear φm as our
example. From its definition in (1.18) we note that it is
inversely proportional to the friction velocity u∗. Now
as ζ, which φm is a function of when MOST is satisfied,
has u3

∗ in its denominator this presents somewhat of a
problem. The problem lies in the fact that even in the
case where ∂u

∂z and the heat flux (in the nominator of
ζ) share no physical correlation, as we might expect in
very stable conditions with weak turbulent mixing, φm
and ζ will still be correlated due to the occurence of
u∗ as a common divisor. As shown in Klipp and Mahrt
(2004) accounting for this self correlation, and remov-
ing instances where the physical (residual) correlation
is small, reduces the scatter in flux-profile relationships
for the stable surface layer considerably. Nonetheless,
this means that periods when turbulence is weak or
highly intermittent which were traditionally included
in the formulation of MOST universal forms, leading
to apparent success in the stable regime, must now be
removed.

The fact that MOST demands an idealized horizontally
homogeneous and statistically stationary surface layer
turns out to be an advantage for us in that we can use de-
viations from MOST predictions to identify departures
from this idealization. Since such a departure means
that using the EC method to diagnose surface layer
fluxes is strictly not possible, this becomes a valuable
quality control tool (Foken and Wichura, 1996). It is
nonethelesss somewhat alarming that most models still,
for lack of a better alternative, use MOST formulations
in the very stable surface layer where it may not be valid
(Mahrt, 1999). As will be shown, departures from this
idealized surface layer will be a recurring theme in our
motivation.
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1.3.2 Nocturnal CO2 respiration

One of the primary goals of FLUXNET is to provide
a global database containing reliable estimates of the
exchange of CO2 between the biosphere and the atmo-
sphere at the ecosystem scale across a range of different
ecosystems (Baldocchi et al., 2001). A fairly general
form (cf. Lee and Massman (2011) and Gu et al. (2012))
of the block average CO2 budget for the air column be-
tween the surface and a fixed measurement height H is
given by

%cw
∣∣
z=H

+

∫ H

0

∂%c
∂t

+∇H · (%cu) dz =

∫ H

0

Sc
Mc

dz .

(1.19)
WhereMc = 0.044 kgmol−1 is the molar mass of CO2,
%c (units mol m−3) is the molar density of CO2 related
to the CO2 mass density ρc via %c = ρc/Mc, Sc (units
kgm−3s−1) is the point source strength of CO2 and
∇H · (%cu) is the horizontal advective flux divergence
of CO2. The vertical integral on the right hand side is
the so-called Net Ecosystem Exchange (NEE) (Aubinet
et al., 2012) of CO2 with units of molar flux density
(mol m−2s−1). Effectively the NEE is a measure of
the ecosystem balance between the CO2 that is released
through respiration and taken up by photosynthesis be-
low the measurement height. If the NEE is positive
there is a net release of CO2 by the biosphere (including
the soil) to the atmosphere and vice versa if the NEE is
negative. Typically (e.g. Lüers et al. (2014)) the block
averaged NEEs are considered over the course of a year
which, when gaps in the data are filled, are combined to
yield an annual NEE estimate (units molm−2yr−1).

In line with our discussion in Section 1.2.1 we note
that in the special case of a horizontally homogeneous
and statistically stationary surface layer (1.3.2) becomes
simply

%c w
∣∣
z=H

+ %′cw
′
∣∣
z=H

=

∫ H

0

Sc
Mc

dz . (1.20)

Crucially in such a case it is possible to diagnose the
NEE based on measurements from a single EC system.
In the case that vertical profiles of the CO2 density are
also available, statistical stationarity is no longer re-
quired in that it is possible to estimate the change in
CO2 storage in the column, i.e. the

∫H
0

∂%c
∂t dz term in

(1.3.2). Nonetheless, from a single EC tower the hori-
zontal advection term,

∫H
0
∇H · (%cu) dz in (1.3.2), is

immeasurable (Lee and Massman, 2011).

Since most FLUXNET sites (cf. Baldocchi et al.
(2001)), including Bayelva, consist of measurements
from a single tower structure the immeasurability of
the horizontal advection term poses a serious prob-
lem. In particular at sites located on sloping terrain
where strong horizontal advection may occur through
drainage flows (Aubinet, 2008). Moreover many sites

do not have vertical profile measurements of %c avail-
able and so diagnosing the change in the CO2 storage is
not possible. It turns out that both horizontal advection
and the change in storage become particuarly important
in the persence of stable stratification, typically occur-
ing at night, where turbulent mixing is weak (Massman
and Lee (2002) and Finnigan (2008)). In such a regime
it becomes impossible to arrive at a reliable estimate of
the block averaged NEE via single tower EC measure-
ments as the dominant terms in the NEE balance are
not accounted for. This leads to an underestimation of
the nighttime CO2 respiration and is one of the greatest
obstacles in using the EC method to arrive at long term
estimates of NEE (Aubinet et al., 2012).

As an example consider the case of a stably stratified
night at a vegetated site with positive NEE at the foot
of a mountain with weak turbulent mixing and initially
no horizontal advection. Over the course of the night
CO2 will accumulate in the column below the measure-
ment complex. If at some point a katabatic wind forms,
accelerating down the mountain, the CO2 accumulated
in the column below the measurement height would be
advected downwind. In such a case any NEE estimated
through (1.20) would be zero even if the true NEE given
by may be considerable. Note that this is just one of a
myriad of examples that can be constructed to high-
light the problem with (1.20) under stable stratification.
As pointed out in Aubinet et al. (2012), if a horizon-
tal advection event never occurs during the night then
as soon as we transition into a more unstable daytime
regime and turbulence becomes more developed the ac-
cumulated CO2 in the column below would rapidly mix
upwards. In such a case the diurnal NEE would not be
significantly underestimated.

It is not advisable to simply assume that no advection
occurs during stable nocturnal regimes (Aubinet, 2008).
A common but criticized workaround (e.g. Finnigan
(2008)) is to combine a filter that discards periods with
low turbulent mixing. Typically low values of the fric-

tion velocity, u∗ =
(
u′w′

2
+ v′w′

2
)1/4

, are used to
identify such periods. NEE estimates are then dis-
carded for blocks where u∗ falls below some minimum
threshold. Subsequently gaps in the block averaged
NEE estimates are filled by selecting an appropriate
gap filling procedure (see Aubinet et al. (2012)). Such a
method is nonetheless prone to bias the estimates since
the u∗-filter may fail to isolate periods with strong hor-
izontal advection (Finnigan, 2008), the u∗ threshold is
highly site specific (Massman and Lee, 2002) and gap
filling will at best provide a reasonable approximation
of the true nighttime NEE evolution.

Finishing off this section it is worth underlining that
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the nocturnal CO2 flux problem is not our primary con-
cern. Yet the mechanisms involved, the nonstationar-
ity and horizontal heterogeneity of surface layer flows
in stable stratification, also lead to problems closing
the surface energy balance (Foken, 2008a) and these is-
sues are our primary focus. For example Wilson et al.

(2002) found, across a range of sites, that the noctur-
nal CO2 respiration estimated via the EC method was
signifcantly smaller the larger the surface energy im-
balance discussed in the next section. As such, much of
our methodology and findings may also be applicable to
the nighttime CO2 respiration problem.

1.3.3 Closure of the Surface Energy Balance

As of yet FLUXNET does not, to our knowledge, in-
clude any seaborne towers (cf. Figure 1.3) so we will re-
strict our attention to the surface energy balance (SEB)
over land. To start off we consider the energy bal-
ance of a thin ground layer of thickness δz that extends
from below the surface z = −δz to the surface13 itself
(z = 0), which reads as follows (e.g. Stull (1988), Fo-
ken (2008b))

Q∗R = QG +QE +QH + ∆QS +QA . (1.21)

Each term in (1.21) has units of energy flux (Wm−2)
and all terms, except ∆QS , represent a flux of energy
across one of the vertical boundaries of our layer δz.
Q∗R is the global (or net downward) radiative flux at
the surface defined as the difference between the net
downward shortwave radiation, S↓net, and the net up-
ward longwave radiation, L↑net, i.e.

Q∗R = S↓net − L
↑
net = S↓ + L↓ − S↑ − L↑ . (1.22)

In particular: S↑ and S↓ are the upward (reflected) and
downward shortwave (solar) radiative fluxes at the sur-
face, while L↓ and L↑ are, respectively, the downward
longwave flux emitted from the atmosphere to the sur-
face and the upward longwave radiative flux emitted by
the surface. QE and QH are the latent and sensible heat
fluxes at the surface z = 0 where latent (’hidden’) heat
is associated with phase changes of water in the pro-
cesses of evaporation/condensation/freezing/melting/-
sublimation/deposition occuring at the surface, while
sensible (’felt’) heat is associated with the molecular
conduction of heat from (or to) the surface (see (Sun
et al., 1995)). Moreover, QG is the ground (be it soil,
snow or permafrost) heat flux at z = −δz related to
the conduction of heat in the ground from above or be-
low (Westermann et al., 2009). With the exception of
the global radiation, all the heat fluxes are defined as
positive when the flux is directed away from the layer
δz. So QE and QH are positive when these transport
heat from the surface to the atmosphere and QG when
it transports heat further down into the ground.

The storage term ∆QS is principally associated with
heating or cooling of the ground layer (Oncley et al.,
2007) as well as the air (and canopy if present) when
the layer is extended into the atmosphere. If the sur-

face is vegetated then the radiative energy that is ex-
pended through photosynthesis or the heat that is re-
leased through respiration is often included in the stor-
age term (Leuning et al., 2012). The QA term accounts
for additional usually minor sources/sinks of energy
unaccounted for by the other fluxes or the storage term.
Some examples are anthropogegenic heat fluxes QF
from buildings (Nordbo et al., 2012) or instruments
(Burba et al., 2008), warming/cooling of the surface by
precipitation QP , warming/cooling of the layer through
the runoff (Aas et al., 2015) of water QW as well as
energy expended in melting snow QM (Westermann
et al., 2009). The snow melt can have a considerable
influence on the surface energy balance in the melting
season. During the snowmelt in June 2008 at Bayelva
Westermann et al. (2009) estimated that the energy
expenditure was the equivalent of an average flux of
27 Wm−2 away from the ground layer in the same pe-
riod.

It is worth emphasizing that the SEB (1.21) is a re-
formulation of the first law of thermodynamics (Wilson
et al., 2002). In particular the SEB is aquired via vertical
integration (from z = −δz to z = 0) of the thermody-
namic energy equation with all horizontal heat transport
terms in the layer neglected. A detailed derivation is
given in Sun et al. (1995); albeit for a layer from the
surface z = 0 to a height z = δz in the ASL for which
several more terms must be included. In words (1.21) is
simply an expression for the conservation of energy in
the ground layer: if there is a net convergence of energy
into the layer (Q∗R − QG − QE − QH − QA > 0)
energy must be stored in the layer (∆Qs > 0), whereas
if there is a net divergence of energy out of the layer
(Q∗R − QG − QE − QH − QA < 0) then energy must
be released by the layer (∆Qs < 0).

Often (e.g. Stull (1988)) the SEB is also presented con-
ceptually for a layer that is infinitisemally thin (δz →
0), resulting in a near zero heat capacity and, conse-
quently, a storage term that is negligible ∆QS ' 0. For
such a layer the SEB becomes, upon ignoring additional
sources/sinks of heat (QA = 0), simply

Q∗R = QG +QE +QH . (1.23)

Unfortunately the representation in (1.23) is not very
13To dispell any doubt we consider the surface to be the point above which we transition to the atmosphere from a mainly solid or liquid

medium (or vice versa).
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useful in that all the terms on the right hand side are not
directly measurable. As are both the surface latent heat
and sensible heat fluxes as well as the ground heat flux
in (1.21) unless several simplifying assumptions are sat-
isfied.

Figure 1.12: A typical SEB measurement complex consisting of
an EC system to measure the turbulent fluxes of sensible heat QH
and latent heat QE in the surface layer, a ground heat flux plate to
measure QG below the surface and a radiation sensor to measure
global radion Q∗R (denoted Q∗S in the figure) below the EC system.
The footprints of the EC system and the upwards radiation are shown
by the leftmost horizontal bars and the thick rightmost horizontal bar
respectively. Figure adapted from Foken (2008b).

In practice the components of the SEB are measured
by sensors removed from the surface (Figure 1.12). For
radiation this is rarely a problem in that, in the absence
of fog, the thin (typically 0.5 m) layer between the ra-
diometer and the surface should be practically transpar-
ent to both shortwave and longwave radiation. Thereby
the measured global radiation is, in the absence of large
measurement errors, for all practical purposes equal to
Q∗R in (1.21) or (1.23) (Foken, 2008a).

For the ground heat flux the temperature gradient in the
ground is calculated either via a heat flux plate (Fig-
ure 1.12) or a vertically displaced array of temperature
sensors (Westermann et al., 2009) below the surface.
The thermal properties of the ground are assumed to
be constant in time and space such that Fourier’s law of
heat conduction, with the vertical profile of ground tem-
perature, can be solved numerically to calculate QG at
the uppermost ground temperature measurement level
(see Appendix A in Westermann et al. (2009) for de-
tails). As underlined in both Wilson et al. (2002) and
Westermann et al. (2009), the thermal properties of the
ground do vary in both time and space due to changes
in the ground temperature, soil moisture and properties
of snow. Nevertheless Westermann et al. (2009) points
out that for the March 2008-March 2009 campaign at
Bayelva the contribution of the error in ground heat
flux estimation towards the total error in the SEB es-
timation is small relative to other terms as a result of
the generally small magnitude of this flux. It is worth
emphasizing that the uppermost ground temperature
measurement is not the surface itself and consequently
there will be a storage component in the ground above
(Westermann et al., 2009). Therefore, a direct applica-
tion of (1.23) is questionable particularly on time scales

of less than a day when ground heat storage can be large
(Leuning et al., 2012).

The estimation of the fluxes of sensible and latent heat
at the surface via measurements is arguably the most
complicating factor in diagnosing the SEB in (1.21)
or (1.23) (cf. Wilson et al. (2002), Foken (2008a) and
Leuning et al. (2012)). In practice these fluxes are
estimated through the EC method via fast respond-
ing measurements in the surface layer that diagnose
their ’turbulent’ counterparts. In particular for a sin-
gle EC measurement system, as is the most frequent
setup in FLUXNET (Wilson et al., 2002) and the case
at Bayelva, after a series of corrections the fluxes of
sensible and latent heat at the measurement level are
directly equated to those at the surface. Recall that this
is done by assuming an idealized ’constant flux’ surface
layer that is both statistically stationary and horizontally
homogeneous (Foken and Wichura, 1996). Due to the
underlying assumptions on surface layer turbulece (Le-
uning et al., 2012), limitations of the instruments (van
Dijk, 2002), complexity of corrections (Mahrt, 2010)
and changes in the flux footprint (Schmid, 1994) errors,
both random and systematic, are present (Finkelstein
and Sims, 2001). These exist not only in raw data but
are introduced and propogated through EC data pro-
cessing before the final flux estimates are produced
(Billesbach, 2011).

As a result of the many difficulties and assumptions in-
volved in estimating the components of (1.21) there is
almost always (Wilson et al., 2002) a residual in local
SEB budgets derived from measurements. Thereby, in
the context of an experimentally estimated SEB bud-
get with each component determined at a measurement
height removed from the surface (1.21), ignoring ad-
ditional sources/sinks, should instead be expressed as
(Foken, 2008a)

Res+QH +QE = Q∗R −QG −∆QS , (1.24)

where Res is the SEB residual that is required to close
the measured SEB budget. From the point of view of
a turbulent surface layer one interpretation of (1.24) is
that the left hand side of the equation, less the residual,
represents the realized energy while the right hand side
represents the available energy (Leuning et al., 2012).
So ideally, in the case of a balanced measured surface
energy budget, the sum of the turbulent fluxes should
equal the available energy. Conversely if a residual is
present then either the available energy is overestimated
or the realized energy is underestimated. Typically the
relative magnitude of the SEB residual is by no means
negligible. On average at FLUXNET sites the energy
imbalance, defined as the residual normalized by the
available energy, is on the order of 20% (Wilson et al.,
2002). As will be shown (Left panel Figure 1.14) for
Bayelva we find that the imbalance is above 50% on av-
erage for hourly fluxes from March 2008-March 2009.
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The widespread existence of an energy imbalance, the
so-called SEB closure problem (Foken, 2008a), is ar-
guably the most long-standing problem in the field
of micrometeorology (Foken (2008a), Leuning et al.
(2012), Foken et al. (2011) and Stephens et al. (2012)).
A variety of mechanisms explaining such an imbalance
have been proposed. Following the reviews in Leuning
et al. (2012) and Foken (2008a) the main mechanisms
proposed in explaining the lack of SEB closure in a typ-
ical 30 minute flux averaging period are:

1. Errors in the global radiation measurements (Fo-
ken, 2008a).

2. Lacking or erroneous diagnosis of the storage
terms and the ground heat flux (Leuning et al.,
2012).

3. Deviations from the statistically stationary ASL
that is assumed when employing the EC method
for an isolated measurement complex (Foken and
Wichura, 1996).

4. Significant horizontal advection that is immeasur-
able from a single EC system (Aubinet (2008)
and Paw et al. (2000)).

5. Low frequency, i.e. large eddy, contributions to
the turbulent transport that may not be captured
in a typical flux averaging period (Lenschow et al.
(1994), Finnigan et al. (2003) and Charuchittipan
et al. (2014)).

6. Loss of flux through cospectral attenuation
(Moore (1986), Horst (1997) and Massman
(2000)).

7. A reference frame that is poorly suited for diag-
nosing surface exchange (Wilczak et al. (2001),
Finnigan (2004) and Mahrt (2010)).

8. Incosistent measurement footprints. As shown in
1.12 the footprint of each of the measured flux
components in the SEB may not only be differ-
ent in scale and position but also vary in time
(Schmid, 1994).

Mechanisms 1. and 2. are related to measurement
problems concerning the SEB components that are not
estimated via the EC method and it is acknoweldged
(Foken, 2008a) that generally these mechanisms are too
small to explain the energy imbalance. As noted in
Leuning et al. (2012) this especially the case when the
averaging time is extended from the typical half hourly
scale to the diurnal scale. Mechanisms 3., 4. and 5. re-
volve around the meteorology of the turbulent ASL not
satisfying the basic assumptions allowing for the use of
the EC method from single towers in particular the as-
sumption of ergodicity (Lee et al., 2006). Mechanisms
6. and 7. are arguably the largest potential sources,

even in ideal conditions, of systematic error when using
the EC method to diagnose local surface exchange (Le-
uning et al., 2012). The final mechanism (8.) related to
the footprint of measurements is a significant barrier in
evaluating a local SEB budget. Nonetheless, given that
horizontal homogeneity, a regime under which a near
uniform footprint is assured, is required for horizontal
advection to be negligible the origin of mechanisms 4.
and 8. are closely related (Foken, 2008a). Herein we
are primarily concerned with mechanisms 3. through
7. (and 8. indirectly) as it is these that we can identify,
and at times rectify, via careful application of the EC
method. On account of the above discusion in general
it is widely held (Foken (2008a) and Leuning et al.
(2012)) that as opposed to the magnitude of the avail-
able energy being overestimated it is the magnitude of
the turbulent fluxes that are underestiamted. Identifying
the reasons for such an underestimation is one of the
main concerns of the ensuing work.

As a starting point we analyzed the results of West-
ermann et al. (2009) in an attempt to diagnose the
SEB closure at Bayelva for the period March 2008-
March 2009. These results are based on hourly fluxes
of: latent heat and sensible heat computed through the
TK2 package (Mauder and Foken, 2004), global ra-
diation from the nearby Ny Ålesund Baseline Surface
Radiation Network (BSRN) site (Ohmura et al., 1998)
and ground heat computed through either the bulk or
conduction method (see Westermann et al. (2009) for
details). The storeage term ∆QS was not measured
directly in this campaign, neither were any additional
sources/sinks QA. However, as previously mentioned
Westermann et al. (2009) estimated that the energy
expenditure in melting snow amounted to an average
flux QM = 27 Wm−2 in the month of June. Conse-
quently in our analysis we combined the residual with
the unresolved storeage term and ignored any additional
sources apart from the snow melt term. In line with
typical presentations of SEB regimes we calculated
the diurnal SEB averaged over four seasons consist-
ing of the three months of December-January-February
(DJF), March-April-May (MAM), June-July-August
(JJA) and September-October-November (SON) re-
spectively. The result of this preliminary analysis of
these four ’seasons’ is displayed in the respective pan-
els of Figure 1.13. It is worth emphasizing that this
definition of seasons may not be particuarly relevant to
this high Arctic site; six different seasonal regimes are
presented in Westermann et al. (2009) and these are also
employed in Aas et al. (2015). Even so, we felt that a
more traditional presentation of the seasons would aid
the reader in attaining a grasp of the regimes of the SEB
at Bayelva when compared to lower latitudes.

From the upper left panel in Figure 1.13 we note that
the polar night (DJF) SEB is dominated by a longwave
radiative cooling of the surface, with L↑net < 0 and
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S↓net = 0, which is mainly compensated by a nega-
tive sensible heat flux, QH < 0, in conjunction with a
weaker negative ground heat flux heating the surface.
On account of the low temperatures during the polar
night the air is necessarily very dry and the latent heat
contribution towards the SEB is (on average) negligi-
ble. The polar night regime is predominately stably or
neutraly stratified, on account of QH < 0 −→ ζ > 0,
and a diurnal cycle is practically nonexistant.

With the onset of spring (MAM) shown in the up-
per right panel of Figure 1.13 a diurnal cycle becomes

clear with the shortwave radiative heating of the surace,
S↓net, being the dominant component near noon local
time. This heating is offset by longwave radiative cool-
ing throughout the day. Conversely throughout the day
the sensible heat flux heats the surface, compensating
for longwave cooling during the night. Moreover the
ground heat flux compensates for the global radiation
throughout the diurnal cycle: cooling the surface dur-
ing sunlight hours and warming the surface during the
night. The latent heat flux is still negligible. During
these spring months the stability is on average either
stable or near neutral throughout the day.
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Figure 1.13: Diurnal SEB regimes in the four traditional seasons at Bayelva from March 2008-March 2009. The panels display the hourly
fluxes (in Coordinated Universal Time: UTC) for the course of a day averaged over all available hours in the months: DJF (top left), MAM
(top right), JJA (bottom left) and SON (bottom right). Color coding given in the legend with symbols as defined in the main text.

Once summer (JJA), or polar day, along with snowmelt
arrives the diurnal cycle is even more visible as seen in
the lower left panel of Figure 1.13 with an even larger
peak in the net downwards shortwave radiation. By
definition during polar day the sun never sets. Thus,
at Bayelva the global radiation is on average positive
throughout the polar day. During this regime the non-
radiative fluxes are all (nearly) positive throughout the
24 hour period, compensating for the radiative heat-

ing of the surface, with these three fluxes attaining a
maximum early in the afternoon after the global ra-
diation has attained its maximum. Clearly there is a
slight lag in the response of the nonradiative fluxes
to the global radiation. The stratification is, on aver-
age, either unstable or neutral throughout the polar day
(QH ≥ 0) and uniquely during this season the Bowen
ratio Bo = QH/QE (e.g. Stull (1988)) is near unity.
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Finally with the arrival of autumn (SON) depicted in
the lower right panel of Figure 1.13 the diurnal cycle
is no longer as pronounced and the global radiation
is, on average, negative throughout a full day. Long-
wave radiative cooling and a positive latent heat flux
make up for shortwave radiative and sensible heating
of the surace during daylight hours while the sensible
heat flux and ground heat flux heat the surface compen-
sating for longwave cooling during the night. Already
during autumn (SON) snow begins to accumulate which
continues through winter (DJF) usually reaching a max-
imum during the spring months (MAM) (Winther et al.,
2002). As with the polar night and spring the stratifi-
cation is, on average, stable or neutral throughout a 24
hour cycle in autumn.

We have purposely not yet discussed the black curve de-
picting the sum of the SEB residual and storeage term,
Res+∆QS , for any of the panels in Figure 1.13. By in-
spection this residual storage term is far from negligible,
on average, in any of the seasons. Following the phase

lag conjecture in Leuning et al. (2012) that any energy
stored in the soil layer during the day should be released
by late afternoon then if the residual were near zero we
would in the presence of phase lag expect the sum of
the residual storage term to be zero over the course of a
full day. By inspection of Figure 1.13 we see that this
is indeed the case during spring (MAM) so here we can
perhaps attribute the energy imbalance, with the store-
age term unresolved, to this phase lag mechanism. Dur-
ing the remaining months, however, the residual stor-
age term is practically single signed throughout the day,
negative in DJF and SON but positive in JJA, so such a
mechanism, with the storeage term unresolved, does not
provide a compelling explanation for the energy imbal-
ance in these seasons. We propose that the unseemliness
of a phase lag explanation at our site can be directly at-
tributed, in particular during autumn and winter, to the
unusual prevelance of stable stratification at Bayelva on
top of a weak diurnal cycle during the polar night and
its shoulder months.

Q$
R !QG [Wm!2]

-100 0 100 200 300

Q
E

+
Q

H
[W

m
!

2
]

-100

-50

0

50

100

150

200

250

300

350
EBR(Q$

R > 20) =0.53 , EBR(Q$
R 5 20) =0.56

y =0.45x!1.59 , R2 =0.53

Q$
R !QG [Wm!2]

-50 0 50 100

Q
E

+
Q

H
[W

m
!

2
]

-60

-40

-20

0

20

40

60

80

100

120

140
Diurnal average .ux EBR =0.74

y =0.63x!0.36 , R2 =0.84

Figure 1.14: Scatter plots of net turbulent flux, QE + QH , versus available energy, Q∗R − QG, both in units of Wm−2 for the period
March 2008-March 2009 at Bayelva. Left Panel: Hourly averaged fluxes: 6156 hourly averages in total . Right panel: Diurnal average of the
hourly averaged fluxes: only days with at least 20 hourly averaged fluxes are included amounting to a total of 81 diurnal averages. In both
panels the dots represent the individual flux values with reds indicating a high density of dots and blues a scarce density, the dashed black line
is the 1 : 1 line corresponding to zero residual and zero storage, the green solid line is the linear best fit. The results of the linear regressions,
the equation for the linear best fit (slope and intercept) as well as the correlation factor, are displayed in the legends.

Diving a bit deeper into an analysis of the local SEB
closure at Bayelva we followed the approach of Wilson
et al. (2002) in applying a linear regression to the results
of Westermann et al. (2009) as displayed in Figure 1.14.
Through the regression we calculate how much of the
turbulent flux can be described as a linear function of
the available energy, less the unresolved storage, of the
form y = mx + c where m is the slope and c is the
intercept of the turbulent flux as a least squares fit to the
available energy. For the case of a closed SEB, ignoring
the storage term, the form is y = x; i.e. a slope of one
with zero intercept (Wilson et al., 2002). In addition

we calculate the correlation coefficient, R, to diagnose
how linear the relationship between the sum of the real-
ized energy (sum of turbulent fluxes) and the available
energy is. In the case R2 = 1 the two share a perfect
linear relationship (Stull, 1988) in this case we expect
R → 1, i.e. a strong positive linear correlation, for a
closed SEB.

As in Wilson et al. (2002) we also calculate the energy
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balance ratio (EBR) defined as

EBR =

∑I
i=1 (QE +QH)i∑I
i=1 (Q∗R −QG)i

where I is the number of flux estimates considered. So
the EBR is simply the ratio of the accumulated real-
ized energy to the accumulated available energy where
in our case we ignore the unresolved storeage. In par-
ticular, the absolute deviation of the EBR from unity
serves as a good estimate for the overall systematic
error at a given site in terms of SEB closure (Mauder
et al., 2013). Following the suggestion of Mauder et al.
(2013) for hourly averaged fluxes we separate theEBR
into one ’nocturnal’ (Q∗R ≤ 20) and one ’daylight’
(Q∗R > 20) value. The purpose of this seperation is
to eliminate, on the premise that the realized energy is
underestiamted, the inadvertent cancelation of realized
energy biases occuring when adding together the nega-
tive biases during the day and the positive biases during
the night. To clarify, if the nocturnal and daytime biases
are near equal in magnitude but opposite in sign, as may
be the case, the returned EBR would falsely be near
unity when we are actually far off reliable estimates at
the hourly resolution. When calculating the EBR we
also subtracted the average flux of energy expended by
melting snow, QM , as estimated by Westermann et al.
(2009) from each entry in June.

From the left panel in Figure 1.14 we note that although
the intercept is near zero the slope of the least squares
fit (green line) indicates that for (6156) hourly averaged
fluxes the realized energy is typically less than half the
available energy. Though this may seem an extereme
underestimation it is well within the bounds observed
at other FLUXNET sites (Wilson et al., 2002). More-
over, both from the overall scatter and the value of the
square correlation coefficient we note that the two are
far from being perfectly correlated, at times the realized
energy greatly exceeds the available energy. Still, the
positive correlation is considerable indicating that there
is a systematic underestimation of the magnitude of the
turbulent fluxes with regards to the available energy at
Bayelva. An underestimation is coroborated by the fact
that, even when the snow melt is accounted for, both
the nocturnal and daytime EBRs are only on the order
of 50%.

Pursuing the phase lag conjecture of Leuning et al.
(2012), we considered diurnal averages of the hourly
fluxes as shown in the right panel in Figure 1.14. It is
worth emphasizing that in an attempt to calculate repre-
sentative diurnally averaged fluxes we only considered
days in which at least 20 hourly flux estimates were
available. Enforcing this constraint we had a total of
only 81 diurnal averages, as opposed to (roughly) 250

estimates we would get without the constraint. As such,
the resultant regression is by no means representative
of an entire year at Bayelva. By default the days with
few flux estimates, due to quality issues in the data,
where we would expect a poor SEB closure are not
shown in Figure 1.14. So the regression presented is
somewhat optimistic. Nonetheless we note that, at least
for the days with enough hourly flux values, the ef-
fect of considering the diurnally averaged SEB greatly
improves the closure compared to that for hourly aver-
aged fluxes. Not only is there signifcantly less scatter,
with a square linear correlation R2 = 0.84, the slope
of the least squares fit has increased from 0.45 to 0.63
while the intercept is still near zero. Furthermore, the
diurnally averaged EBR is on the order of 70% so we
are undoubtedly nearer a closed SEB when fluxes are
diurnally averaged consistent with the results of Leun-
ing et al. (2012). So perhaps the phase lag mechanism
can lend an explanation for the large SEB residual ob-
served at Bayelva. Even so, a relatively large residual
still remains for the diurnally averaged fluxes so the
phase lag is only a partial explanation: there must be
other mechanisms at work. It is also worth reempha-
sizing that the diurnally averaged fluxes presented in
Figure 1.14 do not represent an entire year of flux data
and that we probably mask some of the residual when
calculating the EBR of diurnally averaged fluxes due to
a cancelation of night and daytime biases in the diurnal
averaging procedure.

Closing off this section then it is worth keeping in
mind that most of the mechanisms proposed in explain-
ing the SEB closure problem are related to the EC
flux methodology itself. These mechanisms introduce
the widely acknowledged uncertainties (e.g. Hartmann
et al. (2013)) in the quantification of the non radiative
components of the global energy budget at the Earths
surface. As pointed out in Stephens et al. (2012) it is
particularly worrying that the uncertainty in the global
net surface energy balance is on the order of 17 Wm−2

which is one order of magnitude larger than change in
the net surface fluxes as a result of warming associated
with the increasing concentrations of greenhouse gases
in the atmosphere. Thereby, accurately attributing mea-
sured changes in the global SEB to anthropogenically
induced climate change is at present far from trivial.
Unfortunately this will continue to be the case so long
as large residuals are present in experimentally deter-
mined SEB budgets. On the flip side, upon reducing the
uncertainty in SEB estimates, through an improved and
consistent EC methodology (as presented in Mauder
et al. (2013)), it may be possible to add changes in ob-
served SEB budgets to the many observationally based
symptoms attributed to anthropogenically induced cli-
mate change (Hartmann et al., 2013).



Chapter 2

Method

In the ensuing chapter we will describe the steps taken
towards providing a consistent EC methodology as out-
lined in e.g. Mauder et al. (2013). At the same time
we account for the peculiarities of the Bayelva EC site.
Since most of our work involved coding up an EC pack-
age from scratch, which required a thorough review of
the underlying concepts, we devote the majority of this
thesis to describing our methodology. First of all the
number of points in time at our disposal was on the or-
der of 3×108 samples per variable due to the high tem-
poral resolution, twenty samples per second, and the 6
month duration of the complete data set. Processing the
raw time series of the 5 variables of interest (u,v,w,Ts
and ρv) to yield useful results is thus a relatively exhaus-
tive effort. As such, the module was coded in Fortran
90 in an attempt to keep computational time to a min-

imum. Due to the length of the module (> 7000 lines
of code) it is not included as an appendix, but it is of
course available upon request. In the coming sections
we cover the sequential steps undertaken in the mod-
ule to process and quality control the data. These steps
involve how the module succesively: 1) Despikes data
using a three step approach; 2) Applies various rota-
tions to the measured velocities; 3) Obtains and calcu-
lates complimentary variables not measured by the EC
system; 4) Applies a series of flux corrections; 5) Im-
plements an extensive quality control procedure where
blocks are quality flagged and flux uncertanties are es-
timated; 6) Calculates 30 minute block averaged fluxes;
7) Produces turbulence cospectra. For clarity we will
also supplement the methodology with both examples
and underlying theory where applicable.

2.1 Input

An excerpt of the input files is included as a reference
in Figure 2.1. These files were produced with by a
CSAT3000 data-logger which synchronized the mea-

surements from the LI-7500 open path IRGA and the
CSAT3 sonic anemometer and were kindly provided by
S. Westermann through AWI.

Excerpt

"TOA5","1549","CR3000","1549","CR3000.Std.04","CPU:AWI EC V1_4.CR3","15620","ts_data"
"TIMESTAMP","RECORD","Ux","Uy","Uz","Ts","co2_mm_m3","h2o"
"TS","RN","m/s","m/s","m/s","C","","g/m^3"
"","","Smp","Smp","Smp","Smp","Smp","Smp"
"2007-06-12 12:12:56.6",126881922,-0.67075,2.44925,0.14175,1.2,16.82,4.57
"2007-06-12 12:12:56.65",126881923,-0.76775,2.41175,0.06500001,1.167,16.83,4.6
"2007-06-12 12:12:56.7",126881924,-0.775,2.31275,0.09900001,1.096,16.83,4.613
"2007-06-12 12:12:56.75",126881925,-0.7582501,2.47475,0.03375,1.093,16.83,4.625

Figure 2.1: Excerpt from one of the ASCII-formatted raw data files, TOA5_070601_070703_0002.dat, showing the standard four
header lines and the first four (out of 107) lines of raw data in the file.

The module reads in and processes the raw data on a
file-by-file basis. In these files (cf. Figure 2.1) the vari-
ables of interest are the longitudinal velocity u ("Ux"),
the lateral velocity v ("Uy"), the vertical velocity w
("Uz"), the sonic temperature Ts ("Ts") and the ab-

solute humidity ρv ("h2o"), as well as the associated
timestamp t ("TIMESTAMP"). Here it is worth em-
phasizing that the timestamp is in Coordinated Uni-
versal Time (UTC) as opposed to local time (UTC
+1/+2 winter/summer). Any missing records are la-

24
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beled as "NaN" in the file and these are simply set to
a placeholder missing value which is conveniently set
to −1000 in the module. This value is used throughout
the module to indicate missing or faulty data as none of
the variables should ever take such a value.

At our disposal we had a total of 20 files of raw data
provided in two batches. The first batch, consisting
of 18 files, spanned the period from 02.04.2007 to
14.09.2007, that is early spring to early autumn. There
were some significant gaps, most notably we have no

data from the period 02.05.2007 - 18.05.2007. The sec-
ond batch, consisting of 2 files, spanned the early winter
period from 09.12.2008 to 17.01.2009 with a gap of 3.5
hours between the files on the 28.12.2008. The shortest
file in the two batches spanned 20 hours (1.5×106 lines
of data) while the longest spanned 3.4 weeks (41.2×106

lines of data). Only files with a length corresponding to
5 days or longer were used in the data analysis due to the
requirements of the planar fit rotation to be explained in
more detail in Section 2.3.2.

2.2 Despiking

Once the variables are read into the module the first step
in data processing involves screening data for spikes
mainly due to instrument malfunction. This is done us-
ing a three step approach. First, the data is confined
to lie within a physically reasonable range of values.
Next, a median absolute deviation (MAD) despiking al-
gorithm, following Mauder et al. (2013), is employed to
flag and remove remaining instantaneous spikes in the
data that would otherwise contaminate the turbulenct
statistics. Last, nondimensional higher moments char-
acterising the shape of turbulent probability distribu-
tions are tested against empirical thresholds (following
Vickers and Mahrt (1997)) and blocks are flagged ac-

corindlgy. Flagged spikes will be dealt with later in the
Quality Control (Section 2.6). Screening data for spikes
is a very delicate procedure (Vickers and Mahrt, 1997)
and so we were as lenient as possible in all the steps in-
volved. This because it is often extreme, yet completely
physical, situations that are of interest to investigators
and these can unwittingly fall under the definition of
"spikes" in automated screening routines. As such, it
was prudent to also visually inspect periods with a high
frequency of spike occurrence. Upon such an inspec-
tion the spike detection was tuned accordingly. None of
the files considered contained a fraction of spikes above
10%.

2.2.1 Plausibility Limits

In setting the upper and lower limits of physical plausi-
bility for each of the measured variables it is of course
necessary to keep in mind the location of the site and
the local climatology. This is especially the case for
the sonic temperature where we set the limits using
monthly statistics for (2 m) air temperature from the
nearby (78◦55′28′′N,11◦55′42′′E) Ny Ålesund auto-
matic weather station (AWS) provided through eKlima
(2014). The limits are based on the monthly extreme
(minimum and maximum) temperatures as measured in
the period January 1984 to December 2013. We chose
a 30 year period as this meets the somewhat arbitrary
(see Arguez and Vose (2011)) yet classical definition of
a climate normal period set by the World Meteorolog-
ical Organization. We could have chosen synchronous
temperature measurements, that is from exactly the pe-
riod we are studying, but in choosing a longer period
we hope to make up for the fact that the EC system
is not colocated with the AWS. Moreover these limits
could be applied to periods not studied here. The lim-
its along with the associated 30 year average monthly
temperature statistics are depicted in Figure 2.2. We set

the monthly upper (lower) limit to the 30 year maxi-
mum (minimum) monthly maximum (minimum) tem-
perature plus (minus) the 30 year standard deviation of
the monthly maximum (minimum) temperature for each
month. To clarify, symbolically we compute the dis-
crete monthly upper limits for temperature as follows

Txx,i = maxj (Tx,i,j) + σ
(j)
Tx,i,j

, (2.1)

and similarly for the monthly lower limits for tempera-
ture

Tnn,i = minj (Tn,i,j)− σ(j)
Tn,i,j

, (2.2)

where i ∈ 1(1)12 is the month index and j ∈ 1(1)30
is the year index. The respective standard deviations
hopefully account for the possible occurrence of differ-
ent maxima/minima in the sonic temperature measure-
ments due to the faster responding instrumentation and
the difference in location. The discrepancy owing to
the CSAT3 measuring sonic temperature and the limits
being based on absolute temperature should be of lit-
tle consequence due to the small difference between the
two temperature measures.
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Figure 2.2: 30 year (1984-2013) monthly surface air temperature statistics for Ny Ålesund based on data from eKlima (2014). T is the
monthly mean, Tx the monthly maximum and Tn the monthly minimum while 〈〉 denotes a 30 year average. The vertical lines span two
standard deviations and are centered on the respective 30 year averages. The upper (lower) monthly temperature limits used in the module
are depicted with red (blue) triangles.

For the absolute humidity ρv = 0 [kgm−3] is a natu-
rally defined lower limit. It is worth noting that mea-
sured values may be (falsely) negative, as they indeed
were at times due to a drift in the zero reference value
of the open path IRGA. Such a drift is expected af-
ter long measurement periods without maintenance and
proper calibration (LI-7500, 2001). Attempting to cali-
brate periods where negative values are recorded using
synchronous humidity measurements from another in-
strument would be the ideal solution, however, we had
no such luxury. In the absence of another instrument
we noted based on a visual inspection that periods with
ρv < 0 usually coincided with measurements exceeding
the upper limit and are as such associated with general
instrument malfunction, likely due to precipitation re-

maining in the path of (or on) the IRGA. Moreover, we
note that a slow long-term drift in the zero value should
have little effect on the turbulence statistics which we
base on fluctuations about means taken over local block
periods which are short by comparison. The upper lim-
its for ρv were set simply as the estimated saturated ab-
solute humidity, ρ∗v , at the upper limit for temperature
in the given month based on Tetens’ equation (see e.g.
Foken (2008b))

ρv,xx,i = ρ∗v (Txx,i) =
d1

Txx,i
exp

{
d2 (Txx,i − d3)

Txx,i − d4

}
,

(2.3)
where the constants are d1 = 1.2933

[
kg m−3K

]
, d2 =

17.6294, d3 = 273.16 [K] and d4 = 35.86 [K] with the
monthly upper limit for temperature Txx,i in Kelvin.

Measured variables Lower limit Upper limit Units (SI) Instrument

Sonic temperature: Ts Tnn,i see (2.2) Txx,i see (2.1) K CSAT3

Absolute humidity: ρv 0 ρv,xx,i see (2.3) kgm−3 LI-7500

Horizontal velocities: u,v -32.768 32.768 ms−1 CSAT3

Vertical velocity: w -5 5 ms−1 CSAT3

Table 2.1: Physical plausibility limits for the measured variables as set in the module. The values are based on monthly extremes for Ny
Ålesund from eKlima (2014) as well as thresholds outlined in CSAT3 (2014) and Aubinet et al. (2012).
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The horizontal velocity limits are set to those outlined
in CSAT3 (2014) for the high resolution wind mode (as
opposed to full scale wind). This corresponds to hur-
ricane force horizontal winds as the limit for u and v.
The vertical velocity limit is set to ±5ms−1 in accor-
dance with common practice (Aubinet et al., 2012). All
the limits are outlined in Table 2.1 above. Any measure-

ment not satisfying the limits dictated by the table above
was flagged as a spike and set to the "NaN" placeholder
value of −1000 as was done with the missing records
when reading in the file. We reiterate that both the tem-
perature limits as well as the upper limit on absolute
humidity are assigned1 on a monthly basis, but are in-
dependent of the year of the EC measurements.

2.2.2 Median Absolute Deviation Test

Ultimately the act of confining the measurements to
obey a set of physical limits will (should) only isolate
the extreme cases of instrument malfunction. Most
spikes occur within the range of physically plausible
values. These occur simply as a result of glitches in
the electronics, instrument vibration and from meteoro-
logical factors such as hydrometeors (rain or snow) in
the measurement path of, or deposited on, either of the
two instruments (Aubinet et al., 2012). Such pikes will
typically manifest as instantaneous high amplitude de-
viations from neighboring points, hence the term spike.
Of course, the signals we are recording are turbulent
in nature and are as such composed of a multitude of
’spikes’ of varying amplitude. Since turbulence itself
manifests as perturbations about a local mean it also
contributes directly to the variance of the signal. In
fact it is precisely the variance we use to quantify the
intensity of turbulence. Subsequently it is somewhat of
a challenge to disentangle and isolate spikes related to
instrument malfunction from physical turbulence.

Luckily the amplitude of spikes is usually large relative
to the standard deviation (square root of variance), σ, of
the signal in a given segment. As such many automated
despiking algorithms, for example the one in Vickers
and Mahrt (1997), define spikes as absolute deviations
about the mean which exceed a threshold factor of σ in
a segment. The segment defining σ is either defined for
a block interval, introducing arbitrariness as to where
to place each interval, or in terms of segments centered
on each point (i.e. a running σ) which is more rigorous
but introduces a heavier computational burden. Both
methods suffer from a considerable sensitivity to the
length of the segment itself and of course to the value
that is chosen as the threshold factor. Perhaps of great-
est detriment to both methods is that the spikes have
a significant influence on the value of σ, which is it-
self defined with respect to deviations about the mean.
That is: the largest spikes lead to a high σ value such
that smaller spikes may fall below the threshold. Hence
even if one spike is identified multiple iterations may be
required to remove all spikes present in a given segment.

Due to the above, Mauder et al. (2013) propose a more
robust method, according to Fratini and Mauder (2014),

which is both less sensitive to the choice of segment
length and less affected by the choice of threshold fac-
tors as spikes have less influence on the threshold pa-
rameter. As an added bonus the method is relatively
cheap computationally and uses simple block segments.
The method uses the so-called median absolute devia-
tion (MAD) as the threshold parameter; it is this pa-
rameter we adopt in the module with simple 30 minute
block segments. For a given measured variable ξ, we
define ξi,m as the i-th element of the m-th block seg-
ment of our time series length N = M · I , where I
is the number of samples per block and M is the num-
ber of blocks in the series. Denoting the block median
with {}m the median absolute deviation of block m is
defined as

MADk = {|ξi,m − {ξ}m|}m , (2.4)

or in words as the median of the absolute values of the
deviations about the median for a given block. A great
advantage of the above statistic compared to the stan-
dard deviation is that it does not rely on the mean. As
such the thresholds are relatively insensitive to the mag-
nitude and frequency of spikes. We use the MAD to test
each sample within a block against the criterion

|ξi,m − {ξ}m| ≤ T ·MADm , (2.5)

where T is a threshold factor which, through trial and
error on sample data, we set to 10 in close concurrence
with Mauder et al. (2013). Any entry not passing the
MAD test, i.e. not satisfying the crieterion in (2.5), was
flagged as a spike and set to −1000; the placeholder
value used for erroneous or missing data in the mod-
ule. Moreover the MAD routine also spread spikes:
if any variable was flagged as a spike at an instant in
time all other variables were flagged as spikes for the
same instant even if they passed the MAD test and the
plausibility test. This was done because a spike in one
variable is symptomatic of instrument or meteorologi-
cal problems which can affect other variables. As an
added bonus the cross-covariant and cross-spectral cal-
culations which follow become a lot easier to imple-
ment. An overview of the number of points flagged as
spikes is given in Section 3.1.

1A text file containing the monthly temperature limits is read into the module.
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2.2.3 Skewness & Kurtosis Test

In the final step of the despiking routine we diagnose
the shape of the block probability distributions in an
attempt to screen for problems not identified by the
previous two procedures. We do so by considering the
values of normalized higher moments, the skewness
and the kurtosis, with regards to thresholds outlined in
Vickers and Mahrt (1997).

To estimate these normalized moments from samples
within a given block a linear detrend (LDT) is employed
internally in this routine as the first step. Such a de-
trend is used to eliminate the potential contributions
of trends to the sensitive higher moments (Vickers and
Mahrt, 1997). Trends are associated with unwanted de-
patures from stationary conditions which are later iden-
tified and flagged in Section 2.6. Now to be able to
apply a LDT we first need to compute the linear trend,
ignoring flagged spikes, within a given block. We do
so by adapting2 the simple least squares algorithm pro-
posed in Gash and Culf (1996) to not weight flagged
entries. Having found the trend the block time series
for a given variable ξ is readily detrended via simple
subtraction of the trend component, i.e.

ξ′′(t) = ξ(t)− ξ(t) , (2.6)

where ξ is the time dependent trend component and
ξ′′ is the instantaneous deviation from the trend com-
ponent. Note that in the special case of a block with
no trend the LDT is identical to the mean removal of a
block average; in such a case ξ = ξ. More generally, as
with mean removal, the block average of the deviation
ξ′′ is zero. In the following it is the shape of the distri-
bution of ξ′′, i.e. of the LDT samples, that we seek to
diagnose.

Next, following Graf et al. (2010) two normalized mo-
ments, the skewness and the kurtosis, are found from
the estimated sampled third and fourth moments of ξ′′

upon normalization by the standard deviation σξ′′ to the
corresponding power. So the skewness of the ξ′′ sam-
ple, Sξ′′ , is given by

Sξ′′ =

(
ξ′′ − ξ′′

)3
σ3
ξ′′

=
(ξ′′)

3

σ3
ξ′′

, (2.7)

and the kurtosis of the ξ′′ sample, Kξ′′ , is given by

Kξ′′ =

(
ξ′′ − ξ′′

)4
σ4
ξ′′

=
(ξ′′)

4

σ4
ξ′′

. (2.8)

Note that in both (2.7) and (2.8) we have chosen to
emphasize the fact that in this particular case of a LDT
sample time series the mean of the detrended sample is

zero, ξ′′ = 0. As a result the programatic implementa-
tion of both calculations in the module is somewhat less
cumbersome then what it would be in the absence of a
LDT.

These normalized moments are invaluable for quan-
titatively classifying the shape of a given probability
distribution. First we note that relative to the variance
(the second moment) the skewness and the kurtosis
give considerably more weight to the extreme fluctua-
tions due to the increase in the value of the exponent.
Moreover we note that the kurtosis is positive definite
whereas the skewness is not. The skewness quantifies
the asymmetry, the ’tilt’ about ξ′′ = 0, of the distribu-
tion (Graf et al., 2010). The more positive the skewness
the more the peak of the distribution tilts towards neg-
ative deviations (ξ′′ < 0) and the positive tail is rela-
tively more pronounced. Conversely the tilt is towards
increasingly poisitive deviations (ξ′′ > 0) with a rela-
tively more pronounced negative tail the more negative
the skewness. The kurtosis quantifies the ’peakedness’
of the distribution (Graf et al., 2010): if the kurtosis is
large, as in the red distribution in the top left panel of
Figure 2.3, the peak is sharp and the wings are long,
conversely if it is small the peak is broader and the
wings are short.

Here we use the descriptive terms such as ’large’ and
’small’ with respect to the Gaussian distribution which
has zero skewness and a kurtosis of 3. We will use
the Gaussian distribution as a reference throughout; not
because it is especially applicable but because it is a
distribution which many are familiar with. Graf et al.
(2010) point out that in the turbulent statistics of the
surface layer the Gaussian distribution is found to be
’the exception rather than the rule’. Based on sample
data for Bayelva in a 20 day period, we find on the
grounds of a Kolmogorov-Smirnov test that the null-
hypothesis that the distributions were Gaussian was re-
jected for over 99% of the blocks at the 5% significance
level (p ≤ 0.05) for both sonic temperature and instru-
ment vertical velocity corrobarating the claim of Graf
et al. (2010). This is seen in the lower panel of Fig-
ure 2.3 where the fraction N(p ≤ 0.05) > 0.99 for
both w′′ and T ′′s . As can be noted from the description
of skewness and kurtosis the two moments are some-
what related: large absolute skewness and large kurtosis
both lead to the elongation of the wings of the distribu-
tion; although for skewness only one of the wings is
elongated due to the asymmetry. Thus, it is often seen
(Graf et al., 2010) in S − K plots that kurtosis has a
square dependence on the kurtosis. We verified this us-
ing example data from Bayelva, as shown in the bot-
tom panel of Figure 2.3, where the actual kurtosis and

2A detailed description of a more involved least squares method that we also employed will follow in Section 2.3.2.
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the parametrized (best fit square dependence on skew-
ness) kurtosis are shown to have a considerable linear
correlation (R > 0.5) for both the variables we investi-
gated. Nonetheless our square linear correlation values
are appreciably lower than to those found in Table 2 of
Graf et al. (2010). As of yet it is unclear exactly as to

why this would be, but it is possible to stipulate that
Graf et al. (2010) testing two conserved scalars, water
vapor mixing ratio and potential temperature, whereas
we tested the sonic temperature (not a conserved scalar)
and vertical velocity could explain the discrepancy.
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Figure 2.3: Top panels: Two examples (Left:10.12.2008 18:30-19:00, Right: 27.12.2008 09:00-09:30) of block probability density for LDT
nondimensionalized sonic temperature (red), T ′′s /σT ′′s , and LDT nondimensionalized sonic vertical velocity (green), w′′/σw′′ . S-K values
and the p-values from a Kolmogorov-Smirnov test are included at the top of each panel. Bottom panel: S-K plot for all 30 minute blocks in
the example file (time interval: 09.12.2008-28.12.2008). Diagnosed values are given by red/green dots for sonic temperature/vertical velocity.
Parametrized kurtosis values, K̃, are shown as lines with the corresponding color but in a darker shade. Values for the square correlations,
R2
KK̃

, and the fractions N(p ≤ 0.05) are included at the top of the panel (see text for details). Blocks that were not hard flagged, i.e. within
the thresholds −2 ≤ S ≤ 2 and 1 ≤ K ≤ 8, lie within bounding box depicted by the dashed black lines.

In terms of the turbulent surface layer it has been found
(e.g. Tillman (1972) and Graf et al. (2010)) for both
vertical velocity and scalar distributions that under un-
stable stratification (ζ < 0) the skewness is positive and
conversely under stable stratification (ζ > 0) the skew-
ness is typically negative. Physically Tillman (1972)
attributed the positive skewness of the temperature dis-
tribution in unstable stratification to downwards advec-
tion of cold well mixed air (nearly uniform temperature)
from the mixed layer aloft truncating the cold end of
the distribution combined with sporadic plumes bring-

ing much warmer parcels up from the surface resulting
in an elongation of the warm tail of the distribution.
One could, to a certain extent, turn this argument on its
head to explain the occurence of negative skewness in
the stable regime. As for kurtosis large values are as-
sociated either with instrument related problems, such
as condensation remaining on the sensors (Vickers and
Mahrt, 1997), or significant horizontal heterogeneity
(Graf et al., 2010). Low kurtosis on the other hand is
usually associated with the distribution splitting into
two distinct peaks due to nonstationarity in the form
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of sudden transition in the block; often indicative of
the passage of a front (Graf et al., 2010). So both
high and low kurtosis values are symptomatic of prob-
lems with the application of the EC method; either due
to invalid underlying assumptions or instrument prob-
lems. Nonetheless, neither skewness nor kurtosis have
the clear cut dependence on ζ that variance does (Sec-
tion 2.6.5); as is evident in the relatively large scatter
of the results of both Tillman (1972) and Graf et al.
(2010). This scatter is in large part attributed to the ex-
ponential increase in statistical error (Graf et al., 2010)
involved in the estimation of these normalized third and
fourth moments based on samples with a finite (block)
duration; with the error being largest for the kurtosis.

We should keep these errors in mind when setting
thresholds for these higher moments by giving consid-
erable leeway to account for the possible apparent in-
crease in the values of the moments. Furthermore, as

the expectation is not a Gaussian distribution we should
of course not set the thresholds on the moments as if it
were (Gaussian). We found the non-Gaussian, yet ad-
mitedly empirical thresholds, outlined in Vickers and
Mahrt (1997) satisfactory for our purposes. Symboli-
cally the block skewness-kurtosis flag, fSK , is in accor-
dance with the procedures in Section 2.6 defined as an
integer value from 0 (high quality flag) to 2 (hard flag:
discard) equal to the maximum value of the integer kur-
tosis (fK,ξ′′ ) and integer skewness (fS,ξ′′ ) flags for both
the LDT sonic temperature (ξ′′ = T ′′s ) and the LDT
vertical velocity (ξ′′ = w′′) as follows

fSK = max
([

fST ′′s , fSw′′ , fKT ′′s , fKw′′
])

, (2.9)

where the skewness and the kurtosis flags are set ac-
cording to the thresholds suggested in Vickers and
Mahrt (1997) and namely

fSξ′′ =


0 if |Sξ′′ | ≤ 1

1 if 1 < |Sξ′′ | ≤ 2

2 otherwise
, fKξ′′ =


0 if 2 ≤ Kξ′′ ≤ 5

1 if 1 ≤ Kξ′′ < 2 or 5 < Kξ′′ ≤ 8

2 otherwise
. (2.10)

Recall that the block kurtosis and block skewness are
computed through (2.8) and (2.7) respectively after the
block trend is found using the method of Gash and Culf
(1996) and the block LDT given by (2.6) has been ap-
plied. The thresholds were empirically judged to repre-
sent ’normal physical expectations’ (Vickers and Mahrt,
1997) and were purposely set to be lenient: account-
ing for both statistical error and rare, yet completely
physical, phenomena that occur towards their outer lim-
its. For economy we only considered the block kurto-
sis and skewness of despiked (through the plausibility
and MAD tests) LDT sonic temperature and LDT in-
strument vertical velocity when assigning these flags.
This because the result did not change considerably in
the sample data when more of the measured variables

were included, also problematic blocks were most read-
ily identified through these two variables. For the ex-
ample period in the lower panel of Figure 2.3 only 1%
of blocks were hard flagged (fSK = 2) soley3 on the
grounds of either the skewness or the kurtosis exceed-
ing the thresholds of Vickers and Mahrt (1997); these
are the points that lie outside the dashed bounding box.
In summary, each block was flagged if the kurtosis or
the skewness exceeded the accepted ranges for either
the sonic temperature or the vertical velocity. If a block
was hard flagged by (2.9) then all variables in that block
are set to −1000 and discarded from further analysis.
The value of the skewness-kurtosis flag for each block
is stored for bookkeeping, which we will return to in
Section 3.1.

3That is blocks that were not also hard flagged by the tests in Section 2.6.
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2.3 Rotations

In the following we describe three separate rotation pro-
cedures undertaken in the module. Each procedure has
distinct objectives. The first two procedures both aid
in dealing with sources of systematic error; the orien-
tation procedure enables the identification of problem-
atic wind directions prone to flow distortion whereas the
planar fit of Wilczak et al. (2001) minimizes tilt errors.

The final procedure, a rotation into the natural ensemble
streamline frame (NESF), is used both for convenience
and to bring results into a frame which is close to (but
not the same as) the natural wind frame employed in
classical micrometeorological experiments (e.g. Hau-
gen et al. (1971)).

2.3.1 Orientation

The CSAT3 sonic anemometer was leveled using the
instruments’ internal leveling mechanism such that the
sonic head lay nearly level in a plane of constant geopo-
tential as opposed to the plane defined by the local
surface. In other words, the vertical coordinate of the
CSAT3 is very close to truly vertical. As such a simple
rotation about the vertical axis, approximately parallel
to local gravity, will bring the frame into a geographi-
cally referenced so-called ’seemingly local earth coor-
dinate’ or SLEC for short (Sun, 2007). By determining
the orientation of the CSAT3 wind axes relative to the
geographically referenced SLEC frame the identifica-
tion of wind directions influenced by significant flow
distortion becomes possible, an important step in the
quality control process. Moreover, we can easily test if
the system is properly mounted: the sonic anemome-
ter should be facing into the most frequently occurring
wind direction if possible.

According to Aubinet et al. (2012), and perhaps not
surprisingly, any EC system should be intentionally set
up in an attempt to face it into the long-term predomi-
nant wind direction if such a direction exists at a given
site. The aim of such an orientation is to reduce the ef-
fects of flow distortion in the ’closed sector’ (Li et al.,
2012) caused partly by the boom and tower structure
on which the instruments are mounted, but mainly by
the head of the CSAT3 being upwind of the CSAT3
measurement path. In so doing, unfavorable wind di-
rections rarely occur and the fraction of raw data that
must be discarded due to flow distortion is consider-
ably reduced. Hoping to achieve such an optimal setup
the CSAT3 was pointed 215◦ clockwise from north and
the LI-7500 245◦ clockwise from north (S. Westermann
personal communication). The orientation is sketched
schematically in Figure 2.4. To clarify, this means that
a measured wind v = ux̂ with u > 0, where x̂ is the
unit vector defining the main sonic axis, corresponds to
a wind direction of 215◦. On the other hand, a mea-
sured wind v = vŷ with v > 0, where ŷ is the unit
vector defining the cross sonic axis, corresponds to a
wind direction of 125◦.

Figure 2.4: The orientation of the instruments relative to the hori-

zontal SLEC frame. The CSAT3 x-axis and y-axis as well as the SLEC

(geographic) north axis are included for reference. The red bar rep-

resents the boom attached to the tower on which the instruments are

mounted and the red cone represents the wind directions for which to

expect significant flow distortion from the boom as well as the head of

the CSAT3.

When computing the corresponding wind directions
based on the despiked ’horizontal’ wind components
our module rotates the coordinate system into SLEC in
a few straight forwards steps. Defining Uc as the zonal
velocity component and Vc as the meridional velocity
component it is readily shown that Uc = u cos(α) −
v sin(α) and Vc = u sin(α) + v cos(α), where α is the
angle between due east and the sonic x-axis. α is com-
puted based on the CSAT3 bearing; once computed it
is stored in the module for use in subsequent process-
ing steps. The wind direction (bearing) is then com-
puted as ϕ = arctan

(
−Uc
−Vc

)
. Note the sign reversal

in the expression, as is the convention in meteorology
we define wind direction as where the wind is blowing
from as opposed to where it is blowing to. Subsequently
the mean wind direction and speed are computed us-
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ing mean wind vectors defined for blocks with lengths
corresponding to the averaging period set by the user;
which in our runs was 30 minutes. As such, both the
wind direction and wind speed are synchronized with
later calculated block averaged statistics.

Figure 2.5: Wind rose displaying mean wind statistics at Bayelva
in the periods 02.04.2007-14.09.2007 and 09.12.2008-17.01.2009.
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The steps described above enables simple flagging of
periods where the (mean) wind direction is in the un-
favorable closed sector. For the Bayelva site this cor-

responds to wind directions in the range 15◦ to 55◦,
red arrow in Figure 2.4, in such cases the boom struc-
ture and the sonic head are directly upwind of the sonic
anemometer measurement path and thus cause signif-
icant flow distortion. That is to say the man made
obstacle causes synthetic turbulence which contributes
to calculated variances and covariances, hence spoiling
the estimation of the true surface exchange. Note that
the user may specify more than one wind direction bin
to exclude, if required by the instrument configuration.
Blocks with unfavorable (mean) wind directions are
flagged and removed in the quality control routine as
discussed in Section 2.6.

At Bayelva, Westermann et al. (2009) noted that the
mean wind directions in the closed sector occurred in
only 1.5% of the flux averaging blocks in the period
15.03.2008-15.03.2009. An analysis of the two batches
of data we considered corroborates the fact that these
directions are unusual, as visualized in Figure 2.5. By
far the most common wind direction for this period was
in the range 195◦ − 225◦, from Vestre Brøggerbreen,
which occurred 37% of the time. For comparison, the
unfavorable wind direction occurred only 1.7% of the
time in the same period. As such we conclude that the
orientation of the instruments was indeed optimized for
this particular study site as recommended in Aubinet
et al. (2012).

2.3.2 The Planar Fit

To be able to arrive at eddy fluxes that are truly rep-
resentative of the local surface it is imperative that tilt
errors be dealt with early on in the processing steps.
As pointed out in e.g. Lee et al. (2006) there are two
types of tilt error that we must be wary of: sensor tilt
and slope tilt. Sensor tilt involves the fact that, despite
manual leveling of a sonic anemometer using its inter-
nal leveling mechanism, we can at best hope that the
instruments horizontal plane (x, y) is on the order of
a degree from the true (geopotential) horizontal plane.
Slope tilt accounts for the fact that the local terrain has
a slope, which we will denote with the angle γ, relative
to the true horizontal plane. As such, the normal to
the surface patch that represents the fetch of the sonic
will not be parallel to the geopotential gradient or the
sonic vertical axis (z). Recall that it is the flux along
a representative4 surface normal that we are interested
in measuring. The problem is depicted schematically in
Figure 2.6.

Both types of tilt error are present in the raw data
for Bayelva. Westermann et al. (2009) point out that
the instruments are mounted on the slightly inclined,

γ < 5◦, slope of the Leirhaugen hill; this slope tilt is
by far the largest source of tilt error. Secondly the sonic
is closely, but still only approximately leveled relative
to the true horizontal as previously explained. So, we
need a method that can simultaneously correct for these
two types of tilt error, otherwise we risk that any com-
puted eddy fluxes are contaminated by the much larger
magnitudes of the along (and cross) slope components
of the flow leading to significant bias. In Wilczak et al.
(2001) MOST is used to show that the contamination
is most severe for the Reynolds stress, u′w′, which is
not surprising in that this stress contains the products of
velocity components. In the unstable case the fractional
tilt error in the stress is found to be as much as 64%
in the case of ζ = −1 with a tilt of only 1◦ relative to
the surface. Nonetheless the error is still shown to be
significant for scalar fluxes. For example, the heat flux
fractional error is approximately 9% per degree of tilt
in neutral stratification (ζ ' 0).

Before proceeding we follow Lee et al. (2006) in mak-
ing the important distinction between a coordinate sys-
tem, which is a global property of the flow, and a unit

4The surface normal is likely to be a function of space, and even time (due to the snow cycle), for the surface patch within the footprint of
the sonic anemometer.
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vector basis that is generally a local property of the flow.
The distinction is necessary in that we are making single
point measurements of the wind field and can only use
these to define a local unit vector basis. In the course
of this section we define a set of ’ensemble’ stream-
line planes based on the unit vector k̂ that is normal to
these planes. These should not be confused with actual
streamline surfaces as we can only hope to define the
normal locally. So bear in mind that when we are refer-
ring to frames we mean frames dictated by a local set
of unit vectors. The only meaningful coordinate system
we can define with information from one local point in
the flow is a Cartesian coordinate system. So the frame
we arrive at is not a curvlinear streamline coordinate.
MIn anticipation of possible confusion with regards to
the use of the term ’ensemble’: exclusively in the cur-
rent section of the thesis, Section 2.3, the term ensemble
is a reference to the block ensemble (to be defined) and
not the ’true’ ensemble average.

Figure 2.6: A sonic anemometer set on a slope which is tilted an
exaggerated angle γ relative to the horizontal. The instrument frame,
[x̂, ŷ, ẑ], is approximately leveled relative to the horizontal. The pla-

nar frame
[
ı̂, ̂, k̂

]
defines the ensemble streamline plane such that

the ’ensemble’ of the block averaged wind 〈v〉, with vertical offset
taken into account, lies in the plane spanned by ı̂ and ̂.

Now we are prepared to describe in full the steps taken
in the module to rotate the wind components into an en-
semble streamline frame through a planar fit algorithm.
We do so in considerable depth because this particular
procedure is one of the key steps in the module to ensure
that the measured eddy covariance flux properly repre-
sents the surface exchange. As opposed to Wilczak et al.
(2001), our planar fit method excludes the explicit use
of rotation angles, but still yields the same result. We
follow a method similar to that outlined in Appendix B
in Chapter 3 of Lee et al. (2006) using relatively sim-
ple and easy to follow unit vector operations. Defin-

ing the two orthogonal sets of triplets of unit vectors
[x̂, ŷ, ẑ] and

[
ı̂, ̂, k̂

]
where the first set defines the in-

strument (sonic) frame and the second the planar frame
to be determined. We may work entirely in the instru-
ment frame in this derivation, expressing vectors in the
planar frame in terms of the instrument basis. So, for
example, we may express the planar normal vector as
k̂ = kxx̂ + kyŷ + kz ẑ in the instrument basis. We note
based on the above that the block averaged wind vec-
tor can be expressed in both frames as follows (Wilczak
et al., 2001)

v ≡ usx̂ + vsŷ + (ws − b0) ẑ = upı̂ + vp̂ + wpk̂ .
(2.11)

Where we have let the subscript s symbolize the instru-
ment frame and the subscript p the planar frame. Here
b0 is the instrument offset which is a result of possible
biases in the measured vertical wind speed related to ze-
roing issues with the sonic anemometer5. Of course, an
offset may also be present in the horizontal velocities,
but as demonstrated by Wilczak et al. (2001) the effect
is negligible as these velocities are typically orders of
magnitude larger than the vertical velocity. Hence we
only consider the possible influence of a vertical offset.

Subsequently, we isolate the k̂-component of (2.11), us-
ing that wp = k̂ · v, to yield the following expression
for the planar vertical velocity

wp = kxu+ kyv + kz (w − b0) ,

where we have dropped the s subscript for economy.
Rearranging the expression in terms of the sonic verti-
cal velocity the expression reads

w = b0 + b1u+ b2v +
wp
kz

, (2.12)

where we have defined the ratios b1 = −kx/kz and
b2 = −ky/kz . To proceed we define the ensemble
block average, as in Finnigan et al. (2003), but here
specifically as the average over all theM block averages
in the time series. That is the ensemble block average
of the u velocity in the sonic frame is defined as

〈u〉 =
1

M

M∑
m=1

um ,

with analogous definitions for 〈v〉, 〈w〉 and 〈wp〉. For
clarity we have now also made the block subscript m
explicit. As in Paw et al. (2000) we make the ansatz that
the planar vertical velocity in (2.11), which according
to Lee (1998) represents ’random-noise’, should go to
zero when averaged over a sufficient number of blocks,
i.e. 〈wp〉 → 0 as M → ∞. The maximum measuring
height for the EC system at Bayelva is 2.75 m AGL;
this corresponds to the height of the sonic anemometer
in the absence of the snow. So we may safely assume
that we are measuring within the surface layer; at least
if we ignore the cases of extremely stable stratification

5The offset is assumed constant for each planar fit.
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discussed in (Mahrt, 1999). Hence the ansatz is well
grounded as within the surface layer there should ex-
ist a long term streamline plane that is approximately
aligned with the local surface (Sun, 2007). So pro-
vided that a sufficient number of blocks M are included
allowing a proper identification of an ensemble stream-
line plane, (Mauder and Foken, 2004) suggest M cor-
responding to at least 5 days, the ansatz is physically
reasonable.

It is the plane in which this ansatz is satisfied that de-
fines the ensemble streamline plane and hence the pla-
nar frame. Or stated explicitly: the ensemble streamline
plane is defined as the plane surface whose ensemble
average surface normal velocity is zero. So taking the
block ensemble average of (2.12) rearranging in terms
of 〈wp〉 and applying the planar fit ansatz we seek coef-
ficients b0, b1 and b2 such that

0 =
1

M

M∑
m=1

(wm − b0 − b1um − b2vm) , (2.13)

is satisfied. Note that it is not the trivial and unphys-
ical6 solution with offset b0 = M〈w〉 and remaining
coefficients b1 = b2 = 0 that we seek. Nor is the naive
approach where we ignore offset and calculate the en-
semble averaged wind 〈v〉 helpful. Even if the latter
approach, upon normalization, determines one unit vec-
tor which lies in the ensemble streamline plane we need
one more unit vector that lies in the same plane with
a component orthogonal to 〈v〉 to be able to find the
surface normal to the plane; or vice-versa we need the
surface normal to be able to find the unit vector pair
spanning the plane. So we need the surface normal to be
able to uniquely define the plane. This surface normal,
in turn, is uniquely determined by the coefficients that
satisfy (2.13). In seeking non-zero coefficients b0, b1
and b2 that satisfy (2.13), which is underspecified, we
first decompose the above into M equations (one for
each block). In matrix form such a system reads

 r1

...
rM

 =

 w1

...
wM

−
1 u1 v1

...
...

...
1 uM vM


b0b1
b2

 , (2.14)

where we have introduced the block residual terms
rm = wp,m/kz in the vector R = [r1, . . . , rM ]. Note
that (2.13) and (2.14) are equivalent if the sum of the
residuals is zero. Now assuming that R is a random er-
ror vector with no preferred sign as in Lee (1998), then
minimizing the sum of the residuals can be achieved
through a reduction of the magnitude of the vector R
by optimizing the choice of non-zero coefficients bi. As
pointed out by Wilczak et al. (2001) this is tantamount

to minimizing the function

S =

M∑
m=1

(wm − b0 − b1um − b2vm)
2
,

in the least squares sense where S = |R|2. That is
we seek coefficients satisfying ∂S

∂b0
= ∂S

∂b1
= ∂S

∂b2
=

0. Performing the derivatives, rearranging and divid-
ing through by a factor 2 yields three normal equa-
tions. These can be expressed compactly in matrix
form, Ab = c, as M

∑
um

∑
vm∑

um
∑

u2
m

∑
umvm∑

vm
∑

umvm
∑

v2m


︸ ︷︷ ︸

A

b0b1
b2


︸ ︷︷ ︸

b

=

 ∑
wm∑

umwm∑
vmwm


︸ ︷︷ ︸

c

,

(2.15)
where the summation range m ∈ 1(1)M is implied.

The above system is readily solved for the unknown
coefficients b = {b0, b1, b2}. The first step is com-
puting the inverse of the matrix A, if it exists, to get
an expression for the vector of unknowns b. Since the
matrix A is symmetric (A = AT ) with large positive
diagonal entries we suspect that it is always positive
definite. This is a useful property in that all positive
definite matrices are invertible. Recall that given a real
non-zero column vector q a matrix is positive definite
if and only if the condition qTAq > 0 holds for any
choice of q; that is if its quadratic form is always pos-
itive (Lay, 2010). Carrying out the calculation of the
quadratic form of the matrix in (2.15) the condition
reads

0 <
(
q2
1M + q2

2

∑
u2
m + q2

3

∑
v2
m

)
+ 2

(
q1q2

∑
um + q1q3

∑
vm + q2q3

∑
umvm

)
.

(2.16)

In the above expression the terms in the first bracket are
all positive definite. In particular the terms in the sum-
mations involve the squares of block averaged compo-
nents of the measured wind speeds which will always
be positive. Conversely, the terms in the summations
in the second bracket can take either sign in that the
block averaged horizontal wind can blow in any direc-
tion. Moreover, for the last term we do not expect any
significant correlation in the horizontal wind compo-
nents so this too should be low. Hence the terms in the
second bracket should be small relative to the first re-
gardless of q. As such, we expect A to be positive def-
inite and hence invertible provided that we have a suffi-
cient number of averaging periods M . To demonstrate
positive definiteness more rigorously we consider the
conditions under which a Cholesky decomposition (see
e.g. Brezinski and Tournès (2014)), and hence positive
definiteness, of the scaled matrix G = 1

MA is satisfied.
Using the definition of the ensemble block average and
that the decomposition takes the form G = LLT where

6Unless the ensemble block averaged measured vertical velocity is identically zero, in which case the planar frame is already defined, this
solution results in an instrument offset that is unreasonably large.
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L is a lower triangular matrix, we find the following as
the only possible analytical solution for L

L =

 1 0 0

〈u〉
√
〈u′2〉 0

〈v〉 〈u′v′〉√
〈u′2〉

√
〈v′2〉 − 〈u

′v′〉2
〈u′2〉

 . (2.17)

Here we have used Reynolds averaging rules along
with the ensemble notation presented in Finnigan et al.
(2003) to write u′m = um−〈um〉 as the deviation of the
block average of block m from the ensemble average7

to arrive at the simplified form 〈u′2〉 = 〈u2〉− 〈u〉2 and
similarly for the 〈v′2〉 and 〈u′v′〉 terms. Now L only
provides a valid decomposition so long as the entries
are real and the diagonals are non-zero. So we require
that all the radicands in (2.17) be positive. For the non-
negative ensemble variances 〈u′2〉 and 〈v′2〉 this is sat-
isfied unless these are zero, which is improbable as this
would imply a completely steady block averaged wind
field over the entire ensemble. Thus, it is the sign of the
radicand involving the ensemble covariance, 〈u′v′〉, that
determines if G has a Cholesky decomposition which in
turn would imply that it is positive definite and hence
invertible. In requiring this radicand to be positive the
necessary condition for G to be positive definite boils
down to

〈u′2〉〈v′2〉 > 〈u′v′〉2 . (2.18)

We explained earlier that no significant correlation be-
tween the horizontal wind components is to be expected
over a long period. So the ensemble covariance term is
likely to be small relative to the product of the ensem-
ble variances. Hence the necessary condition is likely
to always be satisfied for G. Furthermore, as G is just a
scaled version of A this implies that A is also positive
definite and hence invertible.

Having found the inverse, A−1, (which we are now
fairly sure exists) we can simply apply (left) matrix
multiplication of the inverse to both sides of (2.15) to
get the expression b = A−1c; by virtue of the defini-
tion of the matrix inverse. In the module the inverse is
found using a lower-upper Doolittle factorization algo-
rithm also described in Brezinski and Tournès (2014).
After the computation we control that the result is the
inverse by checking that the product of the matrix out-
put by the algorithm and the matrix A is the identity
matrix. If this is not the case the module stops and re-
turns an error message8. As no such errors occurred for
any of our runs we conclude that the algorithm worked
properly and the matrix was always found to be invert-
ible implying that the necessary condition for positive
definiteness (2.18) was always satisfied.

Once b is computed since b1 = −kx/kz , b2 = −ky/kz
and |k̂| = 1 we can easily find the elements of the pla-
nar unit vector k̂ as defined in the system frame. For
completeness, upon solving the simultaneous equations
for kz we get

kz =
(
b21 + b22 + 1

)−1/2
,

from which kx and ky are readily found by insertion
of kz into the definitions of the now known coefficients
b1 and b2. Having computed k̂ the ensemble stream-
line plane is now defined, but the unit vectors ı̂ and ̂
must also be determined to set the planar frame. Recall-
ing that α, the angle between due east and the sonic x-
axis, has already been computed in the orientation rou-
tine we may conveniently incorporate this angle when
defining an intermediate geographically referenced pla-
nar frame. We do so by noting that the unit vector
Ê = cos(α)x̂ − sin(α)ŷ points due east in the sys-
tem frame and hence define a (right-handed) orthonor-
mal basis, the planar frame, by letting

̂ =
k̂ × Ê

|k̂ × Ê|
, (2.19)

and
ı̂ = ̂× k̂ .

Note the normalization required in (2.19) as a conse-
quence of k̂ typically not9 being orthogonal to due east.
Now that the unit vectors that set the planar frame are
defined in the system basis we can easily rotate our ve-
locities into the planar frame from the instrument frame
by using the dot product to pick out the velocity com-
ponents, i.e.

up = ı̂ · v = ixu+ iyv + iz (w − b0) ,

vp = ̂ · v = jxu+ jyv + jz (w − b0) ,

wp = k̂ · v = kxu+ kyv + kz (w − b0) . (2.20)

Having computed and performed the controls and steps
from (2.11) to (2.20) the module has effectively im-
plemented a planar fit, rotating the instantaneously
measured velocities into an ensemble streamline frame
without the need for any rotation angle (apart from α).

To summarize, we have now successfully defined a pla-
nar frame using a least squares plane regression. In
our new frame the principal normal k̂ is perpendicular
to the mean streamline plane in which the ensemble
averaged plane normal velocity is minimized (approx-
imately zero). It is this plane normal velocity that we
adopt as our new vertical velocity, where we have si-
multaneously accounted for surface tilt, sensor tilt and
sensor offset in the regression. Moreover, the pair of

7Not to be confused with u′ = 0: the block averaged deviation from the block average in a given block is always identically zero.
8The error message was verified by temporarily settingA to the zero matrix which is singular.
9In the rare case that it is (orthogonal to east) the instrument frame and the planar frame actually coincide and the above calculations are

unnecessary apart from as a control.
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plane unit vectors, ı̂ and ̂, are mutually orthogonal to
each other and k̂ such that the pair lie in the ensemble
streamline plane with components parallel to due east
and due north respectively. We highlight the fact that
here, as with all remaining processing, any instant with
velocities flagged as spikes and/or winds with the tower
and boom structure upstream were excluded from the
planar fit to avoid skewing what is intended to be the
ensemble streamline plane. In fact, any block consisting
of > 10% faulty data is ignored (not weighted) in the
planar fit as the block is considered suspect and is later
discarded from any subsequent analysis. Henceforth
we drop the subscript p for the planar frame, making
it implicit unless otherwise specified. Furthermore,
when referring to horizontal or plane in the observa-
tional context we no longer allude to a plane of constant
geopotential, but rather the ensemble streamline plane.

We finish off the section by demonstrating the effects

of applying the planar fit algorithm to eddy covariance
data. Figure 2.7 clearly demonstrates a strong nega-
tive correlation, square correlation factors R2

Uw
are dis-

played in the figure, between the block averaged hor-
izontal velocity component in the downslope facing
direction10 and the vertical velocity in the instrument
frame. This is as expected in that the leveled sonic
anemometer is facing upslope as previously depicted in
Figure 2.6. The corresponding correlation is eliminated
by rotation into the planar frame. In addition, both the
composite ensemble average 〈w〉 and variance σ2

w of the
block averaged vertical velocity are reduced by over an
order of magnitude in the planar frame. The reason the
composite ensemble average is not exactly zero in the
planar frame is that the planar fits are implemented be-
fore the quality controls (QC) in which entire blocks
are eliminated based on a set of quality flags outlined
in section 2.6. Before the QC each ensemble average
vertical velocity is identically zero as can be verified in
the log files for each run.
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Figure 2.7: Block averaged vertical velocity, w, as a function of the downslope, wind direction (blowing from) ϕD = 173.5◦, components
of the horizontal block averaged wind, Ud, in the planar frames (PF) and the instrument frame (IF). A composite of 11 planar fits with a total
of 6067 blocks, each with a length of 30 minutes, of processed EC data from the Bayelva site. The red/green lines represent the IF/PF linear
best fit.

10The downslope direction (bearing) is computed based on the average (over all 11 planar fits) of the normalized plane downslope vectors
D̂ = −∇η/|∇η| where η = −xkx/kz − yky/kzy + H is the parametric equation for a given ensemble streamline plane with H as the
height of the sonic anemometer above ground.
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Figure 2.8: Visualization of the 11 planar fits on which the composite in Figure 2.7 is based with the same axes and labels but on a file by
file (fit by fit) basis with the time interval of each fit included as a reference.

The results indicate that we have indeed identified well
defined ensemble streamline planes in the local sur-
face layer appropriate for diagnosing eddy covariance
fluxes representative of the local surface. We empha-
size planes in that the composite scatter in Figure 2.7
based on data from multiple files. Each file with a dis-
tinct planar fit (distinct k̂) as depicted in Figure 2.8,
where only files spanning at least 5 days were included
following the recommendation of Mauder and Foken
(2004). Despite being distinct, due to differences in the
distributions of the measured wind fields in each file,
the planes share the common characteristic that they all
mainly follow the slope of the local terrain. That is none
of the planes are far off the span of [̂ı, ̂] previously de-
picted in the idealized Figure 2.6. Recall that for the
Bayelva site γ < 5◦ (Westermann et al., 2009). For
comparison, the mean slope angle, the angle between
slope and the true geopotential horizontal, of the planes
in Figure 2.8 is γ = 8◦ with a standard deviation of
1◦. The discrepancy between the actual surface slope
and the plane slope is likely due to several factors: 1)
the instrument itself being slightly off-level (order of
one degree), 2) the planes are defined at a (maximum)

height of 2.75 m AGL above a surface which is not
completely smooth and changing in time and 3) differ-
ences in synoptic scale forcing in each run. Similarly
we can attribute the standard deviation in the plane
slope angles to factors 2) and 3).

Finally, we reiterate that we have opted for perform-
ing the planar fit on a file by file basis both due to ease
of implementation, that is files can be read in and pro-
cessed individually, and due to the location of our study
site. Specifically due to the possibility of snowfall (or
snow-melt) changing the slope of the local surface on
which the planar frame is based. If we instead were
to opt for periods longer than those in each file, the
maximum raw data file lengths are of the order of three
weeks, we would stand the risk of introducing signif-
icant changes in the measurement height. A prerequi-
site for using the planar fit method is that the instru-
ments not move (or be moved) relative to the local sur-
face (Wilczak et al., 2001). Ideally a so-called sectorial
planar fit would have been implemented as in Siebicke
et al. (2012) where the planar fit is applied for individual
(block averaged) wind direction bins. Such a sectorial
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planar fit provides a means of investigating the effects of
flow distortion in the so-called ’closed sector’ (Li et al.,
2012) for non-omnidirectional sonic anemometers like
the CSAT3 that was used for this study. This proved
difficult for our study site for the same reason that fits
over longer periods were risky. Moreover, if we chose
to do a sectorial planar fit on a file by file basis where
we can assume that changes in measurement height are

small we would end up with too few measurements in
many of the wind direction bins to create the representa-
tive ensembles suggested in Mauder and Foken (2004).
As such, we did not weight any of the blocks where
the wind blew from the ’closed sector’ where the sonic
head and mast were upwind of the measurement area.
We will pick up on how these wind directions are iden-
tified in Section 2.6.

2.3.3 Natural Ensemble Streamline Frame

Figure 2.9: Schematic of the geographically referenced planar

frame
[
ı̂, ̂, k̂

]
and the streamwise planar frame

[
ŝ, n̂, k̂

]
where ŝ

is the streamwise unit vector pointing along the segment plane mean
wind U.

A final rotation is available in which the plane unit vec-
tors are rotated such that the first, the streamwise unit
vector, points along the segment plane mean wind and
the second, the cross-stream unit vector, points along
the segment plane cross-wind. At first glance such a
rotation seems identical to the more traditional natural
wind frame. The classical micrometeorological natu-
ral wind frame, a so-called ’double rotation’, detailed
in McMillen (1988) rotates the frame into the segment
mean wind. Here, on the other hand, we are rotating
into the segment plane11 mean wind. The difference is
subtle but crucial. The final rotation brings us into a nat-
ural ensemble streamline frame (NESF), where v = 0,
not the classical natural frame, where v = w = 0 for
each block. As discussed at length in Finnigan (2004),
the classical natural wind coordinate is poorly suited for
long term (months or more) studies in sloping terrain.
In part due to the risks of the unphysical overrotation
that occurs when forcing w to zero in each block, but
also due to the difficulty in calculating consistent long
term ensemble statistics when the orientation of the
’vertical’ changes for each block. In our case the long-
term fit to an ensemble streamline plane eliminates the
risk of over rotation. We have included the final rotation
in a separate routine. This due to the fact that segment
sizes used in the subsequent analysis tends to vary. For
example, block statistics are typically produced for 30

minute blocks while spectra are produced for 3 hour
segments. In both the example outputs the final rotation
can be used, but it is meaningless for spectra if the rota-
tion is based on half hour means or for block statistics if
the rotation is based on 3 hour mean winds. Hence the
segment length on which the rotation is based is output
dependent and thus not an intrinsic part of the planar fit
algorithm. Instead it can be used in the various output
routines.

For completeness we document how the final rotation is
carried out analytically. Let

Um =
√
u2
m + v2

m ,

denote the segment plane mean wind speed, i.e. the
magnitude of U in Figure 2.9, for the m-th segment.
Then the streamwise unit vector for a given segment is
given by

ŝm =
um
Um

ı̂ +
vm
Um

̂ , (2.21)

and the cross-stream, or bi-normal, unit vector for a
given segment is given by

n̂m = k̂ × ŝm . (2.22)

Having computed the streamwise and cross stream
unit vectors for a given segment we can easily rotate
the plane instantaneous velocities into streamwise and
cross-stream components as follows

un = ŝm · v and vn = n̂m · v ,

where we have let the subscript n denote the plane ve-
locity components in the natural ensemble streamline
frame. Note the explicit use of the subscript m on the
natural unit vectors. This is to remind us that the stream-
wise direction changes for each segment (block or win-
dow) in line with the plane mean wind changing be-
tween segments, that is the direction of U in Figure
2.9 is not constant in time. The geographically refer-
enced planar frame

[
ı̂, ̂, k̂

]
, in contrast, is fixed for all

segments in a given series. Which of these two frames
to use is more or less a matter of taste. In the present
study the results from the data analysis will be displayed
in the natural as opposed to the geographically refer-
enced planar frame unless otherwise specified as this

11The plane to which k̂ is the principal normal: the ensemble streamline plane.
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is the common approach (Lee et al., 2006), which will
aid in a consistent comparison of our results with those
from other campaigns. Before closing the discussion on
the final rotation we wish to highlight that the natural
frame has one major drawback: the ’streamwise’ direc-
tion is not always well defined. That is mathematically,
provided Um 6= 0, we can always use (2.21) and (2.22)

to define a natural frame. Physically, however, it does
not always make sense to refer to directions as ’stream-
wise’ and ’cross-stream’ within a given segment. This
particularly in the case of segments where the instanta-
neous plane winds are rapidly veering and/or have low
magnitudes. We will come back to these considerations
in section 2.6.

2.4 Ancillary Variables

In addition to the variables measured by the EC sys-
tem, the module employs a set of ancillary (supporting)
variables when computing fluxes and the M-O stability
parameter. Of these variables the measurement height
zm and the air pressure P are obtained directly from
secondary measurement sources; that is not from the
EC system itself. Conversely, the absolute temperature

T , the virtual temperature Tv , the air density ρ and the
specific humidity q are diagnosed from the measured
variables through simple considerations of the ideal gas
law and the definition of sonic temperature. In the fol-
lowing we briefly descibe the source, implementation
and diagnosis of the complete set of ancillary variables
employed in the module.

2.4.1 Pressure

No fast responding pressure measurements were avail-
able from the EC system at Bayelva and, consequently,
a calculation of the fluctuating pressure p′ was not pos-
sible. This is somewhat unfortunate as strictly speaking
an estimate of the turbulent vertical pressure flux p′w′
is required when applying the WPL correction (Sec-
tion 2.5.4). The lack of fast pressure measurements is
not surprising as these are notoriously difficult (Wyn-
gaard, 2010) and by no means a standard component
in EC systems. As noted by Wilczak and Bedard Jr
(2004) the difficulty is in large part due to the fluctua-
tions being on the order of one part in 105 of the mean
requiring highly sensitive instrumentation. For com-
parison, the resolution of the CSAT3 is one part in 104

for horizontal wind fluctuations with respect to their
mean12 (CSAT3, 2014) which is more than adequate
when estimating typical velocity fluctuations which are
on the order of one part in 102 of the mean. Now de-
spite being difficult fast responding barometery is pos-
sible with microbarometers discussed in e.g. Wilczak
and Bedard Jr (2004) and Zhang et al. (2011), however,
these microbarometers require high maintenance and
are thus not ideal for a largely autonomous EC system
like that at Bayelva.

In the absence of a microbarometer we turned to the
next best thing namely slow pressure measurements
from a nearby source. A suitable source of slow pres-
sure was, as with the monthly temperature climatology
(Section 2.2.1), the Ny Ålesund AWS. Thereby, through
eKlima (2014) we downloaded station level pressure
from the AWS for the period 01.01.2007-31.12.2010.
The AWS reports 1-minute average pressure four times

a day; at 00:00, 06:00, 12:00 and 18:00 UTC. To facil-
itate allocation of the slow pressure in the module we
converted the text file provided through eKlima (2014)
into a NetCDF file via a seperate Fortran routine. Sub-
sequently the entire slow pressure series along with the
associated timestamps could be read into the module
quickly after which the pressure series was synchro-
nized (discarding superfluous data) with the period un-
der consideration for EC calculations. The synchroniza-
tion was carried out by assigning the sampled slow pres-
sure to all data blocks within +/− 3 hours of the sample
time. In the following we will denote the slow pressure
P to differentiate it from instantaneous pressure p. We
will also assume that the (30 minute) block averaged
pressure p is approximately equal to the slow pressure
P in the corresponding 6 hour interval. We do so on
the grounds of the relative proximity between the AWS
and the EC system ( 2 km apart), the claim in Wilczak
and Bedard Jr (2004) that pressure fluctuations are typi-
cally on the order 1 [Pa] within a typical block averaging
period and also under the assumption that the block av-
eraged pressure field varies slowly. The latter assump-
tion does not hold in general; nonetheless since near sta-
tistical stationarity is a prerequisite for the EC method
(e.g. Foken and Wichura (1996)) then if the assumption
is clearly violated the applicability of the EC method
is in itself questionable. At a later stage (Section 2.6)
we quantify the stationarity of the fast responding vari-
ables, which are all coupled with pressure, and discard
instances that are clearly non-stationary. Thereby, at
least for the data that passes the quality control, the as-
sumption of a slowly varying mean pressure field is well
grounded.

12Given a mean wind speed of 10 [ms−1] and the resolution of 10−3 [ms−1] listed in CSAT3 (2014)
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2.4.2 Measurement Height
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Figure 2.10: Measurement height above ground (snow) level for
the two batches of data (left panel: 02.04.2007-14.09.2007, right
panel: 09.12.2008 to 17.01.2009). Measurements are displayed from
both the SR50 (black dots) and the BCS (grey dots). The dashed lines
are the result of diurnal interpolation using MATLAB’s Piecewise Cu-
bic Hermite Interpolating Polynomial (the pchip() function) abbre-
viated DIP for the SR50 data (green) and the BCS data (blue).

The measurement height, zm, of the EC system was
tracked using a Campbell SR50 (SR50, 2007) sonic
ranging sensor. Having access to hourly averaged data
from the SR50 we were able to read in and allocate the
zm values to the module allowing for a proper estima-
tion of the M-O stability parameter ζ = zm/L∗ at the
appropriate height. For the sake of convenience before
reading in the heights these were low pass filtered in a
seperate MATLAB routine through the application of a
diurnal interpolation (DIP) such that the module only
had to contend with one z value per day as opposed to
one value per hour (see Figure 2.10) . This DIP proce-
dure also enabled us to estimate the measurement height
in the periods where data from the SR50 was missing.
Of course such an estimation is not ideal; when inter-
polating we assume that the accumulation (or melting
of snow) is linear as opposed to a sudden increase or
decrease that is more often the case in reality. Nonethe-
less, the interpolated values, where data was previously
missing, hopefully provide a better estimate for zm than
a wild guess or a constant value.

Unfortunately the SR50 was not working properly dur-
ing most of the second batch of data (see right panel in
Figure 2.10), reporting a constant measurement height
of zero meters above ground level. If this really were the
measurement height then both the CSAT3 and the LI-
7500 would be covered by snow. As such, the measure-
ment paths would be blocked and the respective output
raw data would be completely bogus. Instead both these
instruments reported perfectly valid aerial data during
the period; so the measurement height was clearly not
zero. Fortunately we found a secondary source for
the measurement height during this period namely the
nearby Bayelva climate station (BCS)13 where the lo-
cal snow depth, ds, was recorded. Using the snow
depth ds the measurement height was estimated through
zm = zr − ds where zr = 2.75m is the measurement
height of the CSAT3 in the absence of snow. This height
was also low pass filtered using the DIP as shown in the
right panel of Figure 2.10. Of course this height will
only be an estimate in that we do not expect the local
snow depth to be the same at BCS as it is below the EC
system. After all as displayed in Figure 1.4 the BCS is
situated on flat ground on top of Leirhaugen hill approx-
imately 100 meters to the south-south west of the EC
system which we recall is mounted on the northwestern
slope of the same hill. As such there may at times be
a significant difference in the accumulation of snow at
the two locations as governed in part by the wind field
and subsequent snow drift. This is examplified by the
difference between the BCS estimate and the SR50 es-
timate in the early stages of the second batch of data in
Figure 2.10 where the snow is 0.4 m deeper below the
EC system. We did not ’correct’ for this difference as
we are unsure how much to trust the SR50 data in this
period considering that it suddenly drops out (to zero)
soon after. Still, it is encouraging from a rough eyeball
of the start of the two curves in Figure 2.10 that the two
snow depth measurements are correlated to a certain ex-
tent. Furhtermore, the use of the BCS snowdepth to es-
timate zm is a better option than either having to discard
almost the entire second batch, which we would have to
do if the measurement height really were zero, or alter-
nately employing a constant measurement height.

2.4.3 Diagnosed Variables

The sequential diagnosis of ancillary variables required
in the subsequent processing steps is completed in the
presented order and relies soley on the measured vari-
ables at our disposal. For brevity we will simply present
the equations and refer to Appendix A.2 for a detailed
derivation and a discussion of the underlying assump-

tions. First the instantaneous nondimensional specific
humidity (q) is estimated via

q =

(
P

RdρvTs
− 0.1

)−1

. (2.23)

where Rd = 287 [JK−1kg−1] is the specific gas con-
13Data recovered from the url:http://doi.pangaea.de/10.1594/PANGAEA.805533 where it was uploaded as a supplement to

Westermann (2010).

http://doi.pangaea.de/10.1594/PANGAEA.805533
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stant for dry air. Having found q using (2.23) the in-
stantaneous air density (ρ) is readily diagnosed through
ρ = ρv/q. Next by adapting the relation in Kaimal and
Businger (1963) the instantaneous absolute temperature
is calculated as

T =
Ts

1 + 0.51q
. (2.24)

Subsequently, following Kaimal and Gaynor
(1991) the instantaneous virtual temperature (Tv) is
found from Kaimal and Gaynor (1991)

Tv = T [1 + 0.61q] . (2.25)

In accordance with the remaining procedures in the
module wherever the measaured variables are flagged as

spikes we also flag all the ancillary variables as spikes
and set these to −1000 accordingly. Finishing the sec-
tion we point out that after being diagnosed only two
of these variables (T and ρ) are used in the remaidner
of the module. These are only used in their block av-
eraged form in the flux corrections. Nonetheless, all
four of the diagnosed ancillary variables are part of the
module output and have been verified to satisfy phys-
ical expectations. For example, virtual temperature is
found to always be higher than the corresponding ab-
solute temperature as expected from the discussion in
Appendix A.2. Now the stage is set to perform the nec-
essary flux corrections, an extensive quality control of
the results, cross-spectral analysis and cross-statistical
analysis.

2.5 Flux Corrections

Before the module can produce reliable estimates of dy-
namic fluxes in relation to, for example, the surface en-
ergy budget a series of flux corrections need to be ap-
plied. These corrections account for the effects of sen-
sor separation (Vickers and Mahrt (1997); Eugster et al.
(1997)), high and low frequency cospectral attenuation
of the measured signals (Moore (1986); Horst (1997);
Massman (2000)), sonic thermometry through the so-
called’SND’ correction (Schotanus et al. (1983); Liu
et al. (2001)) and density fluctuations through the so-
called ’WPL’ correction (Webb et al. (1980); Lee and
Massman (2011)). Due to the interdepdence of many of

these corrections it is standard practice14 to apply these
iteratively (e.g. Mauder and Foken (2004); Nordbo
et al. (2012); Burba (2013)). In the following subsec-
tions we will briefly explain the underlying theory, mo-
tivation and application of each correction after which
the procedure in our modules’ combined flux correction
approach is laid out. Before the blockwise flux correc-
tions are undertaken the instantaneous plane winds u, v
are rotated for convenience, via the routine described
in Section 2.3.3, so that u points along the block plane
mean wind.

2.5.1 Sensor separation

As discussed in section 1.2.3 the EC system was setup
such that the CSAT3 and the LI-7500 were separated
a horizontal distance of approximately d = 0.22 m
(S.Westermann personal communication). Now this
separation poses somewhat of a problem for the wa-
ter vapor flux (ρ′vw′) as the theory assumes that the
measurements are colocated in space and synchronized
in time. If we were to simply accept ρ′vw′ in its sep-
arated form, that is with synchronzied measurements
but at different points in space, we would undoubtedly
underestimate the magnitude of this flux. The reason
being that when turbulence is well developed the fluc-
tuations of a scalar and the velocity are usually nearly
in (or completely out) of phase at a given point in space
and time (Stull, 1988). This effect will be more pro-
nounced for small eddies (with a length scale ` << d)
when compared to the large integral scale eddies (length
scale `0). As such the relative effect, with respect to a
colocated measurement, is small but certainly not neg-
ligible especially in stable stratification, as is relatively

common at Bayelva, when the integral length scale
is shifted towards smaller wavelengths (Kaimal and
Finnigan, 1994). This is in fact the main and logical
conclusion reached by Kristensen et al. (1997): the loss
of vertical flux due to sensor separation depends mainly
on the ratio d/`0; the smaller the ratio the smaller the
loss. So how do we account for the flux loss due to
sensor separation?

To our knowledge, as noted in Massman (2000), there
is to date no straight forwards way to correct for the
vertical separation between the sensors. Yet, the for-
mer author emphasizes the recommendations from the
model study of Kristensen et al. (1997) who find that
a minimization of scalar flux loss is achieved if the
scalar sensor (LI-7500 in this case) is placed just below
the velocity sensor (CSAT3). A compelling example
is provided in Kristensen et al. (1997) where a vertical
separation of D = 0.2 m is shown to lead to a flux loss
of as much as 18% if the scalar sensor is placed above

14The exact form of the corrections often differs between processing packages (cf. Van Dijk et al. (2004) and Mauder and Foken (2004));
although the order is usually the same as that presented here.
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the velocity sensor, whereas with a corresponding sepa-
ration the flux loss is only 2% if the scalar sensor is the
lower sensor. Fortuitously, the EC system employed in
our study was setup with this recommendation in mind.
So, with the LI-7500 below the CSAT3, the effects of
vertical separation on flux loss are likely to be neglible
with respect to other loss factors.

What remains then is to account for the flux loss intro-
duced by the horizontal separation of the sensors. One
way of doing this is by calculating the cross-covariance
between the absolute humidity and the vertical velocity
within each averaging period by moving the two series
against eachother (Nordbo et al., 2012); that is lagging
one series with respect to the other by a consant lag
factor. With the previous claim in mind, that in the case
of developed turbulence the fluctuations of a scalar and
vertical velocity are typically either in phase or com-
pletely out of phase, we should be able to estimate the
’true’ flux by finding the lag that maximizes the square
of the cross-correlation. In doing so we are also mak-
ing the implicit assumption that Taylors’ Hypothesis
(Taylor, 1938) holds, i.e. that small scale turbulence is
’frozen’ (conserved) under advection by the mean wind.
To the degree that this assumption holds we should be
able to recover the flux loss due to sensor separation by
finding the lag at which we would effectively be sam-
pling the turbulent signals at the same point in time and
space. This is the idea behind the so-called maximum
cross-correlation method proposed in the context of EC
measurements by Vickers and Mahrt (1997) and Eug-
ster et al. (1997).

To proceed with this method in a computationally
economical fashion we first need to make use of
some geometry. We recall that the boom on which
the LI-7500 was mounted pointed into a bearing of
ϕL = 245◦ while the CSAT3 was pointed into a
bearing of ϕC = 215◦; where both bearings are de-
fined clockwise from North in the SLEC horizontal
frame. Using these angles it is straightforwards to com-
pute a separation unit vector d̂ that points from the
CSAT3 to the LI-7500. This is done by taking the
bearing of the midpoint between these two bearings
ϕMP = ϕC + (ϕL − ϕC) /2, rotating the midpoint
bearing by a further 90◦, i.e. ϕd = ϕMP + 90◦.
Next the resultant bearing is converted into a polar
angle in the SLEC frame via a simple transforma-
tion ϕd → α from which the unit vector is defined
d̂ = cos (α) Ê + sin (α) N̂ where Ê and N̂ are the unit
vectors pointing due east and due north respectively in
the SLEC frame. This calculation need only be done
once within the orientation routine (section 2.3.1) from
which d̂ can be passed at leisure to this flux correction
routine on a block-by-block basis. To compliment this
unit vector the normalized block averaged horizontal
wind vector û, henceforth wind unit vector, as defined
in the SLEC frame using the wind direction ϕ is calcu-

lated for each block.

The purpose of having these two unit vectors is to de-
termine to what degree the block averaged wind blows
from one instrument to the other, and crucially to deter-
mine which of the two instruments (if any) is downwind
of the other. By definition if û · d̂ > 0 then, on average
in the given block, the IRGA is (to a certain degree)
downwind of the CSAT3 and vice versa if û · d̂ < 0.
Nonetheless, in the case that |û · d̂| < 0.5 the compo-
nent of the mean wind vector that blows between the
two instruments is less than half the magnitude of the
component that blows across the separation path. Geo-
metrically this corresponds to cases where the smallest
angle φ = arccos(|û · d̂|) between the axis that spans
the separation vector and the axis that spans the wind
unit vector exceeds 60◦. Due to horizontal gradients
in turbulent velcoties it does not make sense to apply
any separation correction in such cases since the small
scale ’frozen’ turbulence is not advected from one in-
strument to the other. Instead it is mainly advected
across the path that is separating the instrument and
so the small scale turbulence measured at one instru-
ment will not be cross-correlated with that measured
at the other instrument. We have chosen the thresh-
old of φ ≤ 60◦ based on sensitivity tests on example
data where we noticed that for angles much higher than
the threshold the cross-correlation rarely showed a dis-
tinct maximum. Conversely, if it was much lower we
would underestimate the flux in many instances where
a distinct non-zero lag cross-correlation maximum was
present. Unavoidably the exact threshold is somewhat
arbitrary, but the order of magnitude is physically justi-
fiable. To summarize then the ensuing correction only
deals with instances where the mean wind has a con-
siderable component paralell to the path separating the
instruments.

Now some definitions are needed to clarify the previous
allusions to cross-statistics and to enable an algorithmic
presentation of the correction. As a first step a LDT is
applied to the block segments of both w and ρv . The
reason for the LDT is that cross-statistics are, as men-
tioned in Finkelstein and Sims (2001), highly sensitive
to low frequency trends. Thereby it is advisable to re-
move these (Mauder et al., 2013) via a high pass filter
such as a LDT. As usual the LDT is internal to this rou-
tine. Next, with similar notation as in Fuller (1996) we
define the block cross-covariance between the LDT two
variables of interest (w′′ and ρ′′v ), denoted γwρv , as

γwρv (τL) = w′′(t)ρ′′v(t+ τL) .

In the above the averaging operator is the block average
as usual with primed quantities as the instantaneous de-
viations from the block averages while τL is the lag time
which we define positive when the LI-7500 samples are
lagged with respect to (considered at later times than)
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the CSAT3 samples. When normalized by the product
of block standard deviations we obtain the block cross-
correlation

Rwρv (τL) =
γwρv (τL)

σwσρv
.

As indicated both the cross-correlation and cross-
covariance are functions of the lag time τL. In par-

ticular, the block covariance and block correlation are
recovered in the case that the lag time is zero. In our
case of a discreteley sampled time series the cross-
covariance is computed, as in Finkelstein and Sims
(2001), for a given 30 minute block with I total sam-
ples,NF faulty (spike) samples and N = I−NF clean
samples through the weighted block average:

γwρv,j =

{
1
N

∑I−j
i=1 w

′′
i ρ
′′
v,i+jδiδi+j if j ≥ 0

1
N

∑I+j
i=1 w

′′
i−jρ

′′
v,iδi−jδi if j < 0

, (2.26)

where the index j (can be negative) is related to the dis-
crete lag time τL,j = j∆t where ∆t = 1/fs = 0.05 s is
the sampling time (inverse sampling frequency). The
indexed weights δk are defined such that they are
zero if the measurement with the corresponding in-
dex k is faulty (−1000) and one otherwise. We note
also how (2.26) is consistent in both cases it con-
verges to the block covarance as j → 0. Moreover,
from (2.26) it can also be seen that, contrary to the
autocovariance, the crosscovariance is not an even
function i.e. γwρv (τL) 6= γwρv (−τL) (nor is it odd
γwρv (τL) 6= −γwρv (−τL)). So the crosscovariance is
not symmetric about zero lag.

Due to this asymmetry the choice of the sign of τL,
i.e. which instrument to lag with respect to the other,
is key in determining whether or not we are likely to
find a maximum in the crosscovariance with a one-way
lag (single signed τL). One-way lag is advantageous in
the module as it will cut the number of computations
in half. Fortunately we know from the sign of the dot-
product û · d̂ which instrument is upwind of the other
and can thus safely set the sign of τL accordingly as
positive if û · d̂ ≥ 0.5 (LI-7500 downwind) and nega-
tive if û · d̂ ≤ −0.5 (LI-7500 upwind). Furthermore,
the magnitude of the dot product can be combined with
the block plane mean wind speed u (as defined in Sec-
tion 2.3.3) to estimate the travel time between the block
averaged horizontal travel-time, τtr, between the two
sensors as

τtr =
d

|û · d̂|u
. (2.27)

Inserting a typical value of u = 5 ms−1 when the hori-
zontal wind is blowing along the separation path yields
τtr ' 0.05 s which is very close to the sampling time
∆t. When u & 0.2 ms−1 we are near the calm wind
threshold (elaborated in section 2.6) and τtr is on the
order of one second. So it is clear that a lag time larger
than a second or two is not necessary when determining
the maximum crosscorrelation. To set an upper limit on
the lag time in each block the module rounds τtr up to
the nearest integer (usually one second) and multiplies
by two as well as the sampling frequency fs to get the
corresponding upper limit on the absolute value of lag
index j in (2.26). The factor two is included to check

that a distinct maximum is identified in the square cross-
correlation. Maxima are discared if the square cross-
correlation continues to increase for increasing lag time
when |τL| > τtr, in such cases the cross-correlation
technique is not well defined (Nordbo et al., 2012). If
on the other hand a distinct maximum is found (as is
typically the case) the lag index of this maximum, jm,
for the given block is passed to the module. In such a
way the corresponding flux correction factor accounting
for sensor separation is readily computed as

CFs =
γwρv,jm
γwρv,0

,

from which the non LDT flux, ρ′vw
′, is corrected

through (
ρ′vw

′
)
C

= CFsρ′vw
′ .

The separation correction factor is passed on a block
by block basis to the module output to help track the
magnitudes of these corrections.

To finish off we provide an example of this correction
by including a cross-correlation analysis for one of the
input files as depicted in Figure 2.11. Aiding in a vi-
sual understanding of the concept in this particular case
a two-way lag has been carried out; while in the module
only a one way-lag is needed with û · d̂ known. This
is clearly seen by the fact that in all cases the cross cor-
relation maxima occur on the side of the zero lag line
dictated by the sign of û · d̂ (see figure text for details).
For this example the correction resulted in a 4% median
increase in flux for the case with negative lag flux max-
ima while for the positive lag maxima we had a 2% me-
dian increase in flux. It is somewhat encouraging that
these flux correction factors are on the order of magni-
tude of those found in Nordbo et al. (2012) using a LI-
7500 at a site in similarly heterogeneous (albeit urban)
terrain. Furthermore, the median absolute lag for the
cross-correlation maximum was only ∆t (the sampling
time) in both cases as is expected for a fast-responding
open path IRGA (Leuning and Judd, 1996), but there
are multiple weak-wind blocks (U & 0.2 ms−1) with
|τL,jm | exceeding 5∆t in both panels. The latter exam-
plifies the need for a varying the upper limit on jm in
accordance with variations in τtr.
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Figure 2.11: Example of a two-way lag cross-correlation analysis for the period 03.07.2007-24.07.2007. Block cross-covariances γwρv
normalized by maximum in each block (dark grey) as functions of lag time τL normalized by sampling time ∆t, the thick turqouise line is the
median normalized block cross-covariance. In the left panel û · d̂ ≥ 0.5 implying that the LI-7500 is downwind of the CSAT3 so all maxima
occur with τL > 0 whereas in the right panel û · d̂ ≤ −0.5 so the reverse is true. In both panels the zero lag line (black) is included as a
reference.

2.5.2 Cospectral Attenuation

Next in line are the cospectral attenuation corrections
which account for the undesired attenuation (damp-
ing) of the measured flux at high and low frequen-
cies in spectral space. These methods were pionereed
by Moore (1986) and later revised and simplified by
(among others) Horst (1997) and Massman (2000). Af-
ter introducing the concept we will follow the approach
of the latter due to its relative simplicity, ease of im-
plementation and relevance for open path EC-systems
(Lee et al., 2006).

The factors contributing to cospectral attenuation can be
split into a high and low frequency component. For the
high frequency component the major factors are path
length averaging and sensor separation15. Conversely,
for the low frequency component the attenuation fac-
tors are not related to instrumentation but rather the flux
sampling in data processing (Kaimal et al., 1989) re-
lated to any detrending employed be it in the form of a
linear detrend or mean removal. In summary, as noted
by Lee et al. (2006), the instruments typically act as low
pass filters limiting the resolution of small eddies (right
of peak in Figure 2.12) whereas the flux sampling ap-
proaches in processing act as high pass filters limiting
the resolution of the larger eddies (left of peak in Fig-
ure 2.12).

Figure 2.12: Idealization of the normalized true (solid line) and
attenuated measured cospectra (dash-dotted line) as functions of fre-
quency normalized by peak frequency. Figure adopted from Chapter
4 in Lee et al. (2006).

As in the previous section we will attempt to clarify the
above with a brief discussion of the underlying theory.
We begin as in Massman (2000) by noting that by defi-
nition the true (ensemble averaged) flux can be defined
with respect to the integral

ξ′w′ =

∫ ∞
0

Coξw(f) df , (2.28)

where Coξw(f) is the true one sided (folded) cospec-
trum as a function of natural frequency f [Hz]. For now
we will not dwell on the definition or physical interpre-
tation of cospectra (or spectra) any further than noting

15Which we have already dealt with using a more direct method in the separation correction.
16Once more a word of caution. As pointed out in Stull (1988) the cospectrum is not the spectrum of the product of ξ′ and u′.
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that the cospectral density is a measure of the contri-
bution to the flux (covariance) at a given frequency16.
So the relationship between cospectral density and tur-
bulent flux is, for example, analogous to the relation-
ship between monochromatic (spectral) irradiance and
total irradiance in radiative transfer17. We will denote
the measured flux

(
ξ′w′

)
a

to emphasize (subscript a)
the cospectral attenuation at high and low frequencies.
Following Moore (1986), the measured flux may be ex-
pressed it in terms of the true cospecturm as

(
ξ′w′

)
a

=

∫ ∞
0

H(f)Coξw(f) df , (2.29)

where H(f) is the transfer function of the system used
to measure ξ and w, henceforth system transfer func-
tion, consisting of the product of the combined high and
low pass transfer functions. That is H = HLFHHF

where HLF = ΠjHLF,j is the product of all high pass
transfer functions attenuating cospectral density at low
frequencies and HHF = ΠjHHF,j is the product of
all low pass transfer functions attenuating flux at high
frequencies. As implied by the above we assume that
the system response is such that there is negligible at-
tenuation in the (logarithmic) mid-frequency range i.e.
where the frequency is close to that of the frequency
of the cospectral peak (see Figure 2.13). The use of
transfer functions comes naturally from the previously
alluded to fact that the high/low frequency cospectral at-
tenuation factors act as low/high pass filters. That is to
say measured cospectra at frequencies where the trans-
fer function magnitude is unity experience no attenu-
ation wheareas complete attenuation is the case where
the transfer function is zero. Using (2.28) and (2.29)
we define the flux attenuation factor following Moore
(1986)

a =

(
ξ′w′

)
a

ξ′w′
=

∫∞
0
Hξw(f)Coξw(f) df∫∞
0
Coξw(f) df

, (2.30)

such that a is the inverse of the correction factor for
flux attenuation: CFa = a−1. From which it follows
that the measured (attenuated) flux can be corrected for
cospectral attenuation through the seemingly simple re-
lation

ξ′w′ =

(
ξ′w′

)
a

a
. (2.31)

Here the crux of the problem lies in the fact that the
exact form of Hξw(f) and Coξw(f) are not generally
known. Of course if Coξw(f) were known a priori the
entire exercise of eddy covariance measurements would
be redundant. So the question remains: how do we
estimate the cospectral attenuation so as to attempt to
recover the true flux?

There are in fact many related approaches to this prob-
lem each with varying degrees of complexity. Accord-
ing to Massman (2000) the methods can be divided
into two schools: experimental and theoretical. For an
extensive review of different cospectral attenuation cor-
rection methods we refer the reader to Clement (2005).
Our focus will be on the theoretical methods which
all employ transfer functions in some form or another.
Now, all the theoretical methods assume some form of
spectral similarity; in fact so do most of the experimen-
tal methods. Spectral similarity theory, as presented in
Kaimal et al. (1972) and Wyngaard and Coté (1972),
assumes that properly nondimensionalized spectra col-
lapse into universal functions of non-dimensional fre-
quency18 n = zf/u and the M-O stability parameter
ζ = z/L∗. In the case of cospectra the appropriate
choice of nondimensionalization factor is the associ-
ated flux (integrated cospectrum) normalized by natural
frequency. As such, according to spectral similarity we
have that the properly nondimensionalized cospectrum
satisfies the universal functional relationship

fCoξw(f)

ξ′w′
= ψξw (ζ, n) (2.32)

where ψξw is the universal functional form of the nondi-
mensional ξw cospectrum.

Figure 2.13: The ’Kaimal model’ nondimensional cospectra of the
vertical fluxes of heat, wθ (Tsw in our notation), and momentum,
uw, as a function of nondimensional frequency, n, for various stabil-
ities ζ (numbers to the left of each line). Both axes are logarithmic.
Adopted from Kaimal and Finnigan (1994).

Now, to introduce the most popular cospectral model
as used in Moore (1986), Horst (1997) and Massman
(2000); namely the flat-terrain Kaimal model cospec-
tra19(Kaimal et al., 1972). Here (for brevity) we only
consider one numerical example namely ξ = Ts in the
case of unstable stratification (ζ < 0) where a good ap-
proximation for the universal form proposed by Kaimal
et al. (1972) given in Kaimal and Finnigan (1994) is

fCoTsw(f)

T ′sw
′

=

{
11n

(1+13.3n)7/4
for n ≤ 1.0

4n
(1+3.8n)7/3

for n ≥ 1.0
.

(2.33)
17As defined in e.g. Wallace and Hobbs (2006)
18z is measurement height and u average horizontal wind.
19Based on the now famous Kansas 1968 experiment detailed in Haugen et al. (1971).
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We note from (2.33) and Figure 2.13, as shown on
dimensional grounds in Wyngaard and Coté (1972),
that cospectra for the vertical flux of heat (as well as
momentum) have a −7/3 power law dependence on
frequency in the inertial subrange as opposed to the
−5/3 dependence found in the intertial subrange of
temperature and velocity spectra. Recall that this is
the range nd >> n >> nx where nx is the nondi-
mensional frequency at which the cospectrum attains
its peak, i.e. the frequency of the main flux containing
eddies, and nd is the nondimensional frequency of the
dissipative eddies near or just above the nondimensional
sampling frequency of the instruments’ (Foken, 2008b).
Moreover, (2.33) implies that the nondimensional heat
flux cospectrum is independent of the magnitude of ζ
in the unstable case. This can be seen in Figure 2.13
where the nondimensional cospectra in unstable stratifi-
cation (hatched area) all "crowd into a narrow band that
straddles the neutral cospectrum" (Kaimal and Finni-
gan, 1994); these are all randomly yet only marginally
scattered about the 0+ (Horst, 1997) line which is the
neutral limit approached from the stable side (ζ & 0).
Hence, for convenience, Kaimal and Finnigan (1994)
parametrize all unstable cospectra according to this 0+
line; which corresponds to (2.33) for the nondimen-
sional vertical heat flux cospectrum. Conversely, in
stable stratification there is a systematic dependence
on the magnitude of ζ with the cospectral peaks shift-
ing towards higher frequencies with increasingly stable
stratification in accordance with the strengthening of
the bouyant destruction of turbulence . As an aside in
Kaimal and Finnigan (1994) it is also pointed out that
heat flux cospectra peaking at higher frequencies than
momentum flux cospectra at the same stability high-
lights the need for faster responding instruments when
seeking heat fluxes (and scalar fluxes in general) as op-
posed to momentum fluxes alone.

Having familiarized ourselves with spectral similarity
theory and a cospectral model we can proceed with the
implementation of the theoretical method. Rearranging
(2.32) to obtain an expression for the true cospectrum
Coξw(f) and inserting into (2.30), using that the true
flux is independent of frequency, yields

a =

∫∞
0
H(f)ψξw(ζ, n)f−1 df∫∞
0
ψξw(ζ, n)f−1 df

=

∫ ∞
0

H(f)ψξw(ζ, n)f−1 df . (2.34)

where we have used that by definition (cf. (2.28) and
(2.32))

∫∞
0
ψξwf

−1 df = 1
ξ′w′

∫∞
0
Coξw df = 1. With

the integral method of Moore (1986) (2.34) would be
solved numerically using an estimated form of the sys-
tem transfer function and a cospectral model such as
(2.33). The integration method becomes a relatively

expensive computation overall given that the frequency
range of the model cospectra span multiple, typicaly
≥ 4, decades (powers of ten) and that within a block
each flux must be corrected individually as both the
model cospectrum and system transfer function will
vary depending on the type of flux considered. Contrar-
ily, the analytical approach of Horst (1997) and Mass-
man (2000) has the advantage of being cheap compu-
tationally with negligible difference in the corrections
when compared to the more extensive method of Moore
(1986) in the case of an open path system (Lee et al.,
2006).

The analyical approach is based on a simplification of
the Kaimal cospectral model and the system transfer
function that allows for an analytical solution of (2.34).
Horst (1997) used the fact that n/nx = f/fx where
fx and nx are the natural and nondimensional frequen-
cies of the cospectral peak, henceforth peak frequen-
cies, to propose the following simple approximation of
the cospectral model

ψξw(ζ, f, u, z) =
fCoξw(f)

ξ′w′
=

2

π

f/fx
1 + (f/fx)2

,

(2.35)
The natural peak frequencies are recovered from the re-
lation fx = nxu/z, where the nondimensional peak
frequency dependence on stability is parametrized. For
the nondimensional vertical momentum flux20 cospec-
tra the nondimensional frequency peaks, nx,u2

∗
, are

parametrized as in Massman (2000)

nx,u2
∗

=

{
0.079 for ζ ≤ 0

0.079 (1 + 7.9ζ)
3/4 for ζ ≥ 0

. (2.36)

The nondimensional vertical scalar flux cospectra are
all assumed identical to the nondimensional heat
flux cospectrum (Moore, 1986) . Accordingly these
non dimensional frequency peaks, nx,s′w′ , are all
parametrized following Horst (1997)

nx,s′w′ =

{
0.085 for ζ ≤ 0

2.0− 1.915/ (1 + 0.5ζ) for ζ ≥ 0
.

(2.37)
Subsequently the peak frequency relations (2.36) and
(2.37) can be used in conjunction with (2.35) to model
all relevant cospectra across the physical range of stabil-
ities. An analytical solution to (2.34) will be possible,
but first the form of the system transfer function must
be determined.

For the form of the system transfer function in the orig-
inal analytical approach of Horst (1997) only the low
pass (high frequency) transfer functions were consid-
ered. In this approach it is assumed that any low pass

20We will use the subscript u2∗ =

√
u′w′

2
+ v′w′

2
for kinematic momentum flux as opposed to τ/ρ to avoid confusion with the remaining

time constant notation.
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transfer function, HHF,j , can be reasonably well ap-
proximated by H̃HF,j which takes the form

H̃HF,j(f) =
1

1 + (2πfτj)
2 , (2.38)

where τj is the first order time constant of the given
transfer function which is set such that the half
power point, f1/2, of the approximated transfer func-
tion matches that of the true transfer function (Mass-
man, 2000). That is f1/2 is found from the fre-
quency satisfying HHF,j(f1/2) = 0.5 and in requir-
ing H̃HF,j(f1/2) = 0.5, we consequently set τj =

1/
(
2πf1/2

)
. Massman (2000) approximated the prod-

uct of all low pass transfer functions yet further by bak-
ing the effect of all the approximated low pass trans-
fer functions into a single combined transfer function
H̃HF (f) of the same form as (2.38). This was done by
making use of a combined equivalent first order time
constant, τe, for which the most adequate form21 was
found to be

τe =

√√√√ J∑
j=1

τ2
j . (2.39)

So in summary of the above the product of all low pass
transfer functions is approximated as

HHF (f) ' ΠJ
j=1

[
1

1 + (2πfτj)
2

]
' 1

1 + (2πfτe)
2 ,

(2.40)
where the final approximation corresponds to the
H̃HF (f) term with τe given by (2.39).

Appropriate forms for the first order time constants τj
relevant to each flux, dependent on the instrumentation,
are outlined in Table 1 of Massman (2000) based on the
results of references therein. In our case separation is
already dealt with so we only have to contend with the
effects of sensor path length averaging. Attenuation due
to sensor path length averaging is associated with the
fact that the sampled variables are not exact point val-
ues, but averages over a finite path (Burba, 2013), which
acts as a low pass filter such that the contribution of very
small eddies to the cospectrum is damped. Kaimal et al.
(1968) provided a rough rule of thumb for the onset of
significant cospectral attenuation due to averaging over
a path length d as the streamwise wavenumber κ1, re-
lated to f through Taylors’ hyptohesis κ1 = 2πf/u,
where κ1d = 1 with increasing attenuation for larger
streamwise wavenumbers (Kaimal and Finnigan, 1994).
Inserting a weak wind value of u = 2 ms−1 and a path
length of d = 0.1 m the onset of attenuation occurs at
f ' u/(2πd) = 3.2 Hz. This is well below the Nyquist
frequency of 10 Hz so we can expect a small yet signifi-
cant attenuation of the measured cospectrum (and hence
the measured flux) as a result of path length averaging.

Note that path length averaging affects both the instru-
ments (CSAT3 and LI-7500) employed in this study;
both output signals are based on the behavior of waves
(acoustic and infrared) transmitted over finite paths. As
path length averaging is the only high frequency cospec-
tral attenuation factor we have to concern ourselves with
then for each flux only two low pass first order time
constants, one for each path averaged component of the
flux, are required to form the equivalent first order time
constant. For the sake of transparency we will outline
the time constants as employed in the module. These
are based on those given in Massman (2000), Clement
(2005) as well as our own values based on the results
of van Dijk (2002) adapted to the instrumentation used
in the Bayelva EC system. In the case of the kinematic
heat flux, T ′sw′, we used the discrete values of the nu-
merically computed scalar flux cospectral transfer func-
tion for the CSAT322 given in Table 1 of van Dijk (2002)
to approximate the exact half power point and arrive at
an equivalent first order time constant given by

τe,T ′sw′
=

lV
6.9u

,

where lV = 0.1 m is the vertical acoustic path length
of the CSAT3 (CSAT3, 2014). To clarify; we arrived
at κ1/2 = 6.9/lV , the half-power point wavenumber,
through linear interpolation of the cospectral transfer
function of van Dijk (2002). The half power point
wavenumber was then related to the half-power point
frequency through the relation f1/2 = κ1/2u/(2π)
from which the first order time constant is given by
τe = 1/(2πf1/2), so we have the simple relation τe =
1/(κ1/2u). This was somewhat of a special case since
we had an exact (numerical) form of the cospectral
transfer function related to path length averaging of the
same instrument employed at Bayelva, which explains
why the equivalent first order time constant is given by
the above equation as opposed to a combination of two
first order time constants. Now in the case of kinematic
water vapor flux, ρ′vw′, the equivalent first order time
constant is given by

τe,ρ′vw′
=

√[
lL

4.0u

]2

+

[
lV

6.9u

]2

,

where the term in the first brackets is the time constant
for the LI-7500 scalar path length averaging of ρv with
lL = 0.12 m being the path length of the LI-7500 (LI-
7500, 2001). The term in the second brackets is the
time constant for the CSAT3 path length averaging for
scalar flux as previously used for the heat flux. For the

kinematic momentum flux, u2
∗ =

√
u′w′

2
+ v′w′

2
, the

equivalent first order time constant is given by

τe,u2
∗

=

√[
lH

2.8u

]2

+

[
lV

5.7u

]2

,

21That is for H̃HF (f) to best approximate ΠJj=1 H̃HF,j(f)
22Recall that there are three acoustic paths, each an angle of 30◦ from the vertical axis (CSAT3, 2014).
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where the term in the first bracket is the time constant
for the CSAT3 path length averaging of u for momen-
tum flux with lSH = 0.058 m being the horizontal path
length of the CSAT3 (see CSAT3 (2014)) and the term
in the second bracket is the time constant for the CSAT3
path length averaging of w for momentum flux. Note
that the time constants for the CSAT3 sonic anemome-
ter are based on on the work of Kaimal et al. (1968) and
Kristensen and Fitzjarrald (1984) in which scalar and
momentum flux cospectral transfer functions for or-
thogonal sonic anemometers with one axis aligned with
the vertical were derived. van Dijk (2002) extended this
work to nonorthogonal sonic anemometers, including
the CSAT3, with no axes aligned with the vertical by
deriving the associated cospectral transfer function for
scalar fluxes and showed that the effects of path length
averaging on high frequency cospectral attenuation was

slightly more severe for these newer non-orthogonal
type sonic anemometers. We adapted this transfer func-
tion for the nonorthogonal sonic path length averaging
transfer function to the analytical method in the case
of both the heat flux and the water vapor flux. For the
path length averaging related to momentum flux we had
to base the equivalent time constant based on the trans-
fer functions of orthogonal sonic anemometers; so the
approximation will not be as accurate. Nonetheless,
we do not expect this discrepancy to be significant for
the flux correction especially considering that, as pre-
viously discussed, cospectra follow f−7/3 in the iner-
tial subrange and path length averaging usually only be-
comes evident well into this range. As such the portion
of the true flux contained in these frequencies is small
relative to the peak of the cospectrum.
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Figure 2.14: Visualization of the natural frequency (f in Hz) dependence of the cospectral attenuation affecting sonic heat flux Tsw′
measured with a CSAT3 sonic anemometer when u = 5 [ms−1] and z = 2.75 m in the unstable-neutral case (ζ ≤ 0). Left panel: Forms of
the high and low pass transfer functions considered. The low pass transfer functions for path length averaging of scalar flux for nonorthogonal
anemometers with three contributing acoustic paths at 30◦ from the vertical (such as the CSAT3), HHF (3P ), (turquoise dashed line) and
one contributing acoustic path (included as a reference), HHF (1P ), (yellow dashed line) are based on the work of van Dijk (2002) The high
pass transfer function associated with block averaging, HHF , (green dotted line) after Kaimal et al. (1989). Approximated transfer functions
using the half-power point method of Horst (1997) and Massman (2000) for high frequency attenuation, H̃HF , (blue dashed line) which
approximates HHF (3P ) and for low frequency attenuation, H̃LF , (red dotted line) which approximates HLF . Right Panel: System transfer

function,H = HHF (3P )HLF ,(green dotted line) the approximate system transfer function, H̃ = H̃HF H̃LF , (red dotted line), the unstable-
neutral model nondimensional cospectrum, ψTsw , (blue dashed line) as given by (2.35), the attenuated model nondimensional cospectrum
HψTsw (green dashed line) and the approximate attenuated model nondimensional cospectrum H̃ψTsw (red dashed line). Finally the Nyquist
frequency of the system, fny = 10 Hz, as well as the inverse of the 30 minute block averaging period τ−1

A = 5.56× 10−4 [Hz] are included
as dashed black lines in both panels for orientation.

The form of the combined high pass transfer function
also needs to be determined. In our case there is only
one such high pass transfer function as only one high
pass filter is employed in the flux sampling namely that
associated with the removal of the block average. In this
case the precise form of the associated high pass filter,
HLF , in spectral space, as shown in the Left Panel of

Figure 2.14, is given by (Kaimal et al., 1989)

HLF (f) = 1−
[

sin (πfτA)

πfτA

]2

where τA is the averaging period. Using a similar to ap-
proach to that which Horst (1997) used for low pass fil-
ters Massman (2000) extended the analytical approach
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by including the effects of high pass filters whos form
was approximated through the relation

H̃LF,j(f) = 1− 1

1 + (2πfτj)2
,

where τj is the first order time constant associated with
high pass filter j found in the same way as the low
pass filter time constants. For the block averaging high
pass filter the corresponding first order time constant is
τb = τA/2.8 (Massman, 2000). As a control it is readily
verified that f1/2 = 1/(2πτb) satisfiesHb(f1/2) = 0.50
rounded to the second significant figure. So with block
averaging being the only high pass filter employed we
approximate the high pass filter function through (also
shown in Figure 2.14)

H̃LF = 1− 1

1 + (2πfτb)2
. (2.41)

Examples of the spectral form of both the (near) exact
and approximated high and low pass transfer functions

considered in the module in the case of heat flux are dis-
played in Figure 2.14 as a reference. Note that the high
pass transfer functions (both exact and approximate)
are the same for all the fluxes considered, whereas the
low pass transfer functions depend on the instrumen-
tation employed to calculate the corresponding fluxes.
Furthermore, in Figure 2.14 for all three displayed high
frequency tansfer functions u = 5 ms−1 is used in the
conversion from κ to f (Taylors Hypothesis). The po-
sition and magnitude of these three example high pass
filters relative to each other is independent of u, but the
position of the half power point for all three functions
will shift towards higher frequencies with increasing u
and vice versa for decreasing u since f ∝ κu.

Now we finally have the approximate form of the sys-
tem transfer function given by the product of (2.41) and
(2.40) where as discussed the equivalent first order time
constant depends on the flux considered. We also have
a model for true cospectrum (2.35) as a function of sta-
bility through the parametrization of the peak frequency
fx for each flux. Inserting these approximations into
(2.34) yields

a ' 2

π

∫ ∞
0

[
1− 1

1 + (2πfτb)2

][
1

1 + (2πfτe)
2

] [
1/fx

1 + (f/fx)2

]
df . (2.42)

The solution to (2.42) is found and discussed in depth in
both (Massman, 2000) and (Massman, 2001). Nonethe-
less, the form of our solution is not exactly the same
as that of Massman. We re-emphasize that we have ex-
tended the scalar flux cospectral path-length averaging
transfer functions taking into account the 3D nature of
the CSAT3 based on the work of van Dijk (2002). As
such the form of the first order time constants for scalar
flux employed in our module are different and more ac-
curate to that of Table 1 in Massman (2000), while the
momentum flux first order time constants are the same.
To the point in our case, where the only high pass filter
used is associated with the block average, the relevant
general solution is given by equation (6) in Massman
(2001) namely

a =

[
bα

bα + 1

] [
bα

bα + pα

] [
1

pα + 1

]
. (2.43)

where p = 2πfxτe and b = 2πfxτb. Here the exponent
α accounts for the shape of the cospectra (Massman,
2000): for the stable cospectra (ζ > 0) where the peak
is relatively sharp and narrow α = 1, whereas in the
neutral and unstable range (ζ ≤ 0) where the cospectra
are broader α = 0.925 (cf. Figure 2.13). This exponent
was orginally employed by Horst (1997) to improve the
simplified cospectral model(2.35) after which it was re-
vised in Massman (2000) upon the inclusion of low fre-
quency cospectral attenuation. Finally we may now use
α along with the relevant form of the equivalent first or-
der time constant, τe, for each flux in conjunction with

the cospectral peak frequency ((2.36) for momentum
and (2.37) for scalar fluxes) for each stability to arrive at
a close approximation for the cospectral attenuation fac-
tor on a block by block basis. After this factor is com-
puted the respective fluxes are readily corrected. Note
that the relevant calculations each involve only one sim-
ple computation (with some conditionals) as opposed
to integrals over multiple frequency decades. So the
analytical approach is clearly invaluable for long term
analysis. This especially considering many of the trans-
fer functions are even more accurate than in the orig-
inal approach of Moore (1986) (Massman, 2000). We
finish off this somewhat involved yet vital correction
with respect to proper estimation of fluxes by includ-
ing a visualization of the typical magnitudes of the as-
sociated flux correction factors across various stabilities
and block average wind speeds. These are dispalyed in
Figure 2.15 from which it is clear that the correction for
cospectral attenuation not only always results in an in-
crease in flux but is also approaching the order of mag-
nitude of typical surface energy balance residuals out-
lined in Foken (2008a). The correction is largest for the
combination of slow wind speeds and small heights z
(height is constant in Figure 2.15) for all ζ as in such
a case the peak natural frequency shifts towards higher
values exarcebating the effects of path length averag-
ing. As with the separation correction the correspond-
ing correction factor (here for each flux) is passed on a
block by block basis to the module output to track the
magnitude of each correction.



CHAPTER 2. METHOD 50

Figure 2.15: Cospectral attenuation correction factors, CFa, as functions of the M-O stability parameter and block plane mean wind
u at a height z = 2.75m for the vertical turbulent fluxes of momentum u2∗ (Left Panel), water vapor ρ′vw′ (Middle Panel) and sonic heat
T ′sw

′ (Right Panel). Correction factors span from near no correction CFa = 1 (blues) to nearly an 11% correction CFa = 1.11 (reds) with
the same color code applying to all three panels. The horizontal white lines mark ζ = 0 at which there is a transition in the peak frequency
parametrization.

2.5.3 SND

The so-called (Aubinet et al., 2012) ’SND’ correc-
tion originally proposed by Schotanus, Nieuwstadt and
De Bruin (hence the abbreviation) in Schotanus et al.
(1983) converts the sonic heat flux, T ′sw′, measured by
a sonic anemometer into the sensible heat flux, T ′w′.
Of course the sensible heat flux is the more desireable
quantity in that it is a component of the surface energy
balance (Foken, 2008a) justifying the application of this
correction.

Now the original SND correction was revised by Liu
et al. (2001) to account for modern sonic aneometer ge-
ometry, such as that of the CSAT3, where sonic tem-
perature is obtained from the average value over three
off-vertical acoustic paths. This in contrast to the origi-
nal correction of Schotanus et al. (1983) which was de-
veloped for the earlier types of sonics where the sonic
temperature was obtained from a single vertical acous-
tic path. The revised correction is as follows (Liu et al.,
2001)

T ′w′ = T ′sw
′−0.51q′w′ T+

2T

c2
(
u′w′uA+ v′w′vB

)
.

where q = ρv/ρ is the specific humidity (with ρ the
air density), c is the speed of sound. A and B are
combined (instrument dependent) constant factors (Liu

et al., 2001) that appropriately scale the effects of cross-
wind on sonic temperature according to the sonic geom-
etry (particulary the angle between the acoustic paths
and the vertical axis). For the CSAT3 A = B =
7/8, however, as pointed out in both Mauder and Fo-
ken (2011) and CSAT3 (2014) the crosswind correc-
tion is already applied ’online’ internally in the CSAT3
firmware. As such, correcting for crosswind effects
offline in processing would result in an unwarranted
double correction and significant error in the computed
fluxes (CSAT3, 2014). So in our case the remaining
SND correction that must be applied is

T ′w′ = T ′sw
′ − 0.51q′w′ T . (2.44)

We adapted (2.44) further into a form that was more
tractable both to the measurements at our disposal and
the required iterations of the flux corrections. The form
we arrived at is

T ′w′ = T ′sw
′
(

1− 0.51Rdρv T

P

)
−0.51RdTs T

P
ρ′vw

′ .

(2.45)
A complete derivation of (2.45) (as well as (2.44)) is
provided in Appendix A.3. At first glance the imple-
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mentation of this adapted correction could seem more
demanding than the original form of Schotanus et al.
(1983) due to the expansion of the specific humidity
flux. Of course this is far from the case in fact all the
terms on the right hand side of (2.45) are already stored
in the module at this point with all the relevant previ-
ous flux corrections applied. After the correction is per-
formed for a given block then, as with all the flux cor-
rections, the corresponding block flux correction factor,
CFSND, is calculated through the relation

CFSND =
T ′w′

T ′sw
′
, (2.46)

after which it is passed on a block by block basis to the
module output to track the magnitude of this correction.

Now that we have demonstrated the SND correction
one may legitimately wonder why we don’t just com-
pute T ′w′ directly based on the diagnosed instantaneous
absolute temperature and vertical velocity values. The
main reason we instead go the usual way (e.g. Mauder

and Foken (2011)) of the SND correction is that when
accounting for cospectral attenuation in Section 2.5.2
it is the sonic heat flux that is corrected. As such we
do not know the exact cospectral attenuation factor for
the sensible heat flux T ′w′. We correct the sonic heat
flux for cospectral attenuation since it is more accurate
to consider approximate high frequency transfer func-
tions from a single instrument23, especially when (as is
the case) these are based on the detailed work of van
Dijk (2002) for the very same instrument. Moreover,
the scalar model cospectrum of Kaimal and Finnigan
(1994) is based on the sonic heat flux cospectrum so
we avoid the additional assumption24 that the nondi-
mensional sensible heat flux cospectrum is equivalent
to the nondimensional sonic heat flux cospectrum. So if
we want the most reliable analytical cospectral attenua-
tion correction for heat flux it is the sonic heat flux that
must be considered. Hence as the next step after Sec-
tion 2.5.2) in the flux corrections it is necessary, as we
do, to apply the SND correction to this flux and arrive
at the sensible heat flux, which will consequently also
have been corrected for cospectral attenuation.

2.5.4 WPL

A fundamental concern and long lasting problem with
EC measurements is the fact that the block averaged
vertical velocity, w, is typically so small (on the or-
der 10−4 [ms−1]) that it is immeasurable (Webb et al.
(1980), Lee and Massman (2011)). The CSAT3 that we
employ, for example, can only resolve vertical veloc-
ities on the order 10−3 ms−1 (CSAT3, 2014). To see
exactly why this is a problem consider the total vertical
flux, Fξ, of a generic scalar quantity ξ; we recall from
Section 1.2.1 that in the surface layer where diffusion
(or viscosity depending on the choice of ξ) is negligi-
ble the block averaged vertical flux at the measurement
height is given by the average of the instantaneous flux

Fξ = ξw = ξ w + ξ′w′ . (2.47)

From the above, the total flux is only equal to the eddy
flux if w = 0. Early on this problem was ’solved’ by
forcing w to zero in each block via rotation procedures
such as that described in McMillen (1988). This is a
prime example of why the planar fit of Wilczak et al.
(2001) is to be prefered over double or triple rotation
procedures that force w to zero; physically there is no
reason to expect the ’vertical’ velocity to be zero on av-
erage in a given block. In fact when the vertical velocity
is normal to the surface patch of interest the block aver-
aged vertical velocity is typically small yet rarely zero
(Mauder et al., 2013). Thereby, the product of means
term in (2.47) can be just as large (and of opposite sign)

to the eddy flux (Fuehrer and Friehe, 2002) in that for
scalars in particular ξ >> |ξ′|. The problem with the
mean vertical velocity was long recognized in the EC
community and from what we can gather appropriate
solutions started appearing in the late 1970s (see re-
views in Fuehrer and Friehe (2002) and Lee and Mass-
man (2011)). Of these the widely accepted solution
(e.g. Mauder and Foken (2004),Van Dijk et al. (2004)
and Burba (2013)) was provided by Webb, Pearman and
Leuning in Webb et al. (1980). This ’WPL’ correction,
to be discussed, is considered to be the cornerstone or
’principle underpinning’ of modern EC theory (Lee and
Massman, 2011) . Ita has propelled the EC method
beyond research into the structure of surface layer tur-
bulence (such as Kaimal et al. (1972)) towards what is
now perhaps its primary concern, namely diagnosing
long-term exchange of energy and mass, of trace gases
in particular, across the surface-atmosphere interface
(e.g. Baldocchi et al. (2001)).

To solve the problem, Webb et al. (1980) introduced a
governing constraint without which the averaged verti-
cal velocity,w, and thereby vertical fluxes in general are
indeterminate. To arrive at this constraint and its impli-
cations we begin following Fuehrer and Friehe (2002)
by noting that the block averaged equation for the con-
servation of mass for dry air in the absence of sources

23In the case of the buoyancy flux both components of the flux are meaured by the sonic anemometer; whereas for the sensible heat flux we
need to also make use of the instanteneous absolute humidity measurements from the gas analyzer as well as (slow) pressure to diagnose the
instantaneous absolute temperature.

24This assumption is unavoidable for the water vapor flux for which a specific model cospectrum is not available.
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or sinks (as emphasized in Leuning (2007)) reads

∂ρd
∂t

= − ∂

∂xj

(
ρdw − νρd

∂ρd
∂xj

)
, (2.48)

where νd is the diffusivity of dry air (units s−1), which
we assume to be constant without loss of generality. In
a statistically stationary and horizontally homogeneous
flow, as required for the point EC method, then

d

dz

(
ρdw − νρd

dρd
dz

)
= 0 , (2.49)

where we have now included the diffusive flux in the
the total flux so as to extend the definition to the thin
micro-layer that is just below the surface layer and adja-
cent to the surface. Contrary to the surface layer, in the
micro-layer the diffusive flux is the dominant term in
the total flux (Stull, 1988). Now in words (2.49) states
that, in the absence of sources or sinks, the total flux
of dry air is constant with height in the surface layer as
well as the micro layer. Note that this claim also holds
both for the total mass flux and the water vapor (or any
other constiuent) mass flux under the same conditions
(Fuehrer and Friehe, 2002), which is why the surface
layer is sometimes called the ’constant flux layer’. As
of yet it may not be clear how this is helpful in deter-
mining w, however, upon integration of (2.49) from the
surface (z = 0) to the measurement height (z = zm)
abbreviating the total dry air mass flux in the brackets
as Fρd it follows that

Fρd(zm) = Fρd(0) . (2.50)

Once more this holds in general for the mass flux of
any other constituent, including the total mass flux, pro-
vided the same conditions hold between z = 0 and
z = zm. Now the governing constraint of Webb et al.
(1980) is that the total dry air mass flux is zero at the
surface. More recently Leuning (2007) emphasized that
properly stated the constraint of Webb et al. (1980) is
the assumption of no sources or sinks of dry air below
the measurement height zm including the surface itself.
As noted in Lee and Massman (2011) this constraint
was arrived at through the process of deduction in that,
outside of the small contribution of biogenic photosyn-
thesis and respiration at the surface, we do not expect
there to be any sources of dry air mass flux at the sur-
face; at least if we neglect the occurence of dramatic
events such as sinkholes. Now this constraint dictates
that Fρd(0) = 0 whereby from (2.50) Fρd(zm) = 0.
As such, provided that zm is in the surface layer where
molecular diffusion is negligible then the constraint re-
duces to that given in Webb et al. (1980) namely

ρdw = 0 ⇐⇒ w = −
ρ′dw

′

ρd
. (2.51)

As demonstrated in Appendix A.4 through manipula-
tion (2.51) the following expression for w can be recov-
ered:

w = (1 + µσ)

[
T ′w′

T
− p′w′

p

]
+ µσ

ρ′vw
′

ρv
, (2.52)

where following the notation of Webb et al. (1980)
µ = Md/Mv = 1.61 is the ratio of the molar mass of
dry air to that of water vapor and σ = ρv/ρd. Thereby
the total vertical flux of a generic scalar quantity ξ may
be expressed as

ξw = ξ

[
(1 + µσ)

[
T ′w′

T
− p′w′

p

]
+ µσ

ρ′vw
′

ρv

]
+ξ′w′ .

(2.53)
By inspection of (2.53) the term involving the turbu-
lent flux of pressure, p′w′, is problematic in that p′ is
not measured at Bayelva (Section 2.4). This is the case
for most EC systems and a variety of workarounds have
been proposed. For example, in Van Dijk et al. (2004)
Bernoulli’s law, which is strictly not applicable to the
viscuous flows in the atmospheric boundary layer, is
used to approximate the fluctuations in pressure and in
Zhang et al. (2011) a MOST parametrization of p′w′ is
proposed based on a year long EC campaign in China.
Hoping to avoid such parametrizations we noted that
upon application of the ideal gas law, in terms of virtual
temperature, and Reynolds averaging then p′w′ may be
expressed as

w′p′ ' Rd Tv ρ′w′ +Rd ρ T ′vw
′ . (2.54)

If the flow is near incompressible, as is often the case
in the boundary layer (see e.g. Mahrt (1986)), we ex-
pect not only a coincident eddy flux of warm (cold) air
and light (heavy) air, but a near cancelation of the two
terms on the right hand side of (2.54). With this car-
rying over to absolute temperature T then the pressure
covariance term in (2.53) should be relatively small, al-
beit not generally neglible, with respect to remaining
terms. As such we can approximate, for lack of a better
option, (2.53) through

ξw = ξ

[
(1 + µσ)

T ′w′

T
+ µσ

ρ′vw
′

ρv

]
+ξ′w′ . (2.55)

Note that this is the expression given for w in Webb
et al. (1980) that is consequently employed in most
EC processing software such as TK2 (Mauder and Fo-
ken, 2004) as well as our module. It turns out that the
WPL correction has implications mainly for the sur-
face exchange of trace constitutents such as water va-
por and CO2; as shown at great length in Van Dijk et al.
(2004),Sun et al. (1995) and Fuehrer and Friehe (2002)
the mean vertical velocity does not affect the sensible
heat flux. Therefore, in the context of the surface energy
balance we need only consider the WPL correction for
the vertical flux of water vapor which takes the form

ρvw ' (1 + µσ)

[
ρ′vw

′ +
ρv

T
T ′w′

]
. (2.56)

This is the only WPL correction applied in our mod-
ule as we do not presently investigate fluxes of CO2
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where the WPL correction is also important (Lee and
Massman, 2011). As with the remaining flux correc-
tions the corresponding correction factor, for the water

vapor flux, computed via

CFWPL =
ρvw

ρ′vw
′
,

is stored for bookkeeping.

2.5.5 Iterations

First off we note from (2.26) that the sensor separa-
tion correction is independent of the other corrections.
As such it should be applied first, and then only once,
to colocate and sychronize the vertical velocity and
water vapor fluctuations. Furthermore, by comparing
the cospectral attenuation correction (2.31) (where a
is found from (2.43)), the SND correction (2.45) and
the WPL correction (2.56) these corrections are clearly
codependent. That is to say, the WPL correction de-
pends on both the SND and the cospectral attenuation
correction; while the SND correction depends on the
cospectral attenuation correction. Moreover the cospec-
tral attenuation correction relies on itself; in that it cor-
rects ζ, which is in turn used to estimate the true cospec-
tra in the very same correction. As such, these correc-
tions need to be applied iteratively as noted in Mauder
and Foken (2004), Nordbo et al. (2012), Mauder et al.
(2013) and Burba (2013); though exactly how to per-

form such a procedure was not made clear. Nonetheless,
from the previously noted codependence we surmised
that for each iteration the corrections should be applied
in the order of: the attenuation correction, followed by
the SND correction and finally the WPL correction. So
in the iterative flux corrections we performed the cor-
rections in the presented order for each iteration and the
only value that was updated based on the previous iter-
ation was the M-O stability parameter ζ to improve the
accuracy of the cospectral attenuation correction. For
each iteration the raw (uncorrected) fluxes were cor-
rected in the presented order and only the result of the
correction for the previous and current iteration were
stored. The module jumped out of the iterations as soon
as the fluxes converged; which we defined to be the case
when the corrected fluxes varied by less than 0.1% from
one iteration to the next.

2.6 Quality Control

In the previous sections we have shown how the raw
data must be despiked, rotated, supplemented and cor-
rected for us to be able to calculate representative tur-
bulent statistics as well as dynamic fluxes. All these
steps are crucial in quality assuring the output data, but
a final step in quality assesment (QA) is needed before
the data can be critically analyzed with respect to the
underlying assumptions of EC theory. This final step is
the quality control (QC) routine which checks the qual-
ity of the block averaged statistics. Our routine builds
heavily on the tests of Foken and Wichura (1996) and
Vickers and Mahrt (1997) which are still recongnized
as the QC benchmarks or ’state of the art’ in the field of
EC according to the QA strategies outlined in Mauder
et al. (2013).

The routine is based on a sequence of tests that as-
sign quality flags to the block statistics according to a
set of flagging rules. These culimnate in the combined
block quality flag, described in Section 2.6.6, where
each block in the time series is assigned an overall

quality flag ranging from 0 to 2 with f = 0 high quality,
f = 1 medium quality (’soft flag’) and f = 2 poor qual-
ity (’hard flag’) similar to what is done in TK2 (Mauder
and Foken, 2004). Any block that is hard flagged as
being of poor quality (f = 2) is discarded from subse-
quent analysis. This combined flag is assigned after the
block undergoes tests for the: fraction of faulty data,
degree of flow distortion, deviation from stationarity
and so-called integral turbulence characteristiscs. For
each of these four tests individual quality flags are as-
signed so as to help track the origins of quality issues in
the data. In the following we describe in detail each of
the block quality flags as well as the combined quality
flag. As with the despiking routine we should be weary
of not being overly strict in our QC as we do, after all,
want to end up with as much useable data as possi-
ble. Before any flags are implemented in this routine
the plane velocities (u,v) are rotated such that u points
into the longitudinal (block averaged plane) wind direc-
tion and v the lateral wind direction using the routine
described in section 2.3.3.
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2.6.1 Faulty

The simplest of the individual flags we employ is the
faulty block flag which we will denote fF . Here we fol-
low the suggestion in Mauder et al. (2013) and apply
a hard flag, that is set fF = 2, to any averaging block
where the number of spikes exceeds 10% of the block
length. Recall that instantaneous measurements are set
to our placeholder faulty data value of −1000 if these
are flagged as "NaN" internally by the instrument, ex-
ceed the physical plausibility limits or are diagnosed as
spikes in the MAD routine. The skewness-kurtosis test
(Section 2.2.3) has already hard flagged entire blocks
that do not satisfy the given thresholds proposed by
Vickers and Mahrt (1997) and the fSK flag is stored for
bookkeeping. Thereby, if the block consists entirely of
spikes it is of course faulty but we do not flag it with
this faulty flag; this enables us to track the exact origin
of quality issues in a given block. So for a given block
m with i ∈ 1(1)I entries the faulty flag is set according
to the criterion

fF =

{
2 if 0.1 < NF

I < 1

0 otherwise
, (2.57)

where NF is the number of faulty entries for any of the
despiked instantaneous variables in block m. We reiter-
ate thatNF is the same for all variables in a given block
as a result of the spike spreading in the MAD routine
(see section 2.2). As such it is only neccessary for the
module to scan one of the despiked variables to test the
> 10% criterion which greatly reduces the computa-
tional cost of this flag routine. Of course the threshold
of 10% is arbitrary. As noted in Westermann (2010) and
as will become clear such arbitrary thresholds are typi-
cal in EC QC. More often than not these thresholds are
determined by the investigators that first proposed them
and remain unchanged as a tradition as opposed to be-
ing based on underlying physics as one might hope. As
a result the thresholds should, when necessary, take into
consideration the specifics of the site and instruments
employed. Here at least we agree subjectively with the
judgement of Mauder et al. (2013) in that 10% is a rea-
sonable compromise for a spike limit. If the tolerance
were much higher the effective averaging period would
often be too low to resolve all the turbulent scales when
computing fluxes and conversely if it were much lower
we would risk having to discard larger amounts of data.

2.6.2 Flow Distortion

Next in line is the flow distortion flag fD where we
hard flag, that is set fD = 2, blocks where the block
average wind direction is in the ’closed sector’ where
the sonic head is upwind of the measurement path of
the sonic anemometer. In passing it is worth mention-
ing explicitly that in the module when block averaged
wind direction is computed (Section 2.3.1) an exception
is raised when the vector averaged (horizontal) wind
speed is calm; that is when |u| < 0.2. In concurence
with this calm wind threshold outlined in WMO (2008)
we do not consider wind direction to be well defined
in calm conditions and accordingly set ϕ = −1000 in
such cases. Note that in the special case of wind di-
rection −1000 corresponds to ’undefined’ as opposed
to a spike or missing value. Moreover the value au-
tomatically falls outside the closed sector so instances
with an undefined wind direction are not hard flagged.
Having accounted for calm conditions implementing
the distortion flag should just be a matter of excluding
blocks where the average wind direction falls in the bin
15◦ ≤ ϕ ≤ 55◦ (the closed sector).

So at this point the distortion flag seems as simple to im-
plement as the faulty block flag, but only if we accept
the computed wind directions without further reflection.
As previously alluded to in the planar fit discussion it

does not always make sense to talk about a streamwise
(mean) wind direction for a given block as the wind di-
rection can be far from steady over a block averaging
period. A useful metric to identify the steadiness of the
wind direction is the so-called constancy ratio discussed
in Mahrt (1999)25. The constancy ratio for a given block
with i ∈ 1(1)I entries is defined as

CR =
|u|
|u|

=

√(∑I
i=1 ui

)2

+
(∑I

i=1 vi

)2

∑I
i=1

√
u2
i + v2

i

,

or in words as the ratio of the vector averaged wind
speed to the averaged wind speed. As put rather elo-
quently in Mahrt (1999); conceptually the ratio can be
thought of as a measure of the ’flip-flop’ of the wind
vector in a given period. In the typical case of a nearly
steady wind direction the value of the ratio is near its
maximum value of unity. Conversely, when the wind
is veering or backing excessively26 in an averaging pe-
riod the ratio tends to zero. Now that we are armed
with this new metric we can identify and exclude cases
where the mean wind direction alone would be prob-
lematic but where the wind direction is so unsteady as to
not warrant discarding the block due to flow distortion.
Of course this in turn means we need to set a threshold
constancy ratio that is low enough for the wind direc-

25In which it is used in a different context: as an indicator of mesoscale motions such as drainge flows or gravity waves that can occur in
stably stratified boundary layers

26In this discussion we refer to backing (veering) as a counterclockwise (clockwise) turning of the wind vector with time as opposed to with
height.
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tion to be classified as ’unsteady enough’. As opposed
to the thresholds set for the third flag first proposed by
Foken and Wichura (1996) we do not have the luxury
of justifying our thresholds based on ’long-term experi-
ences’. Instead we base the threshold CR value on the
fact that the majority of the time, for our 30 minute av-
eraging periods, CR > 0.9 and in an idealized unsteady
backing scenario where the wind vector has constant
magnitude but is rotated (at constant angular velocity)
counter-clockwise from easterly to westerly the value is
CR = 0.64. So it would make sense to put the threshold
for unsteady wind near the 180◦ backing scenario as it
is precisely these strongly backing/veering scenarios we
wish to ignore when flagging for flow distortion. When
we allow the magnitude of the wind vector to vary from
one quadrant to the other, a slightly more realistic sce-
nario, we find CR = 0.75 to be a reasonable limit for
unsteady wind direction. This corresponds to a simi-
lar backing scenario only that the wind vector is halved

in magnitude with a step-like function when the wind
vector enters the second quadrant. Now that we have
derived a threshold for the constancy ratio that corre-
sponds to an ’unsteady enough’ wind direction we may
apply the flow distortion flag to each flag. Blocks are
hard flagged if the wind direction falls within the flow
distoriton range and the constancy ratio is above the un-
steady limit. That is

fD =

{
2 if 15◦ ≤ ϕ ≤ 55◦ and CR > 0.75

0 otherwise
,

so in words a block is hard flagged if the wind is such
that the sonic head is on average upwind of the sonic
path and the wind direction is sufficiently steady in
time. As a final note on this flag we mention that for
consistency the same constancy ratio requirement is im-
plemented in the planar fit where blocks are ignored
(not weighted) if they are flagged for flow distortion.

2.6.3 Vertical Velocity

After having applied the planar fit of Wilczak et al.
(2001) (Section 2.3.2) the residual block averaged
vertical velocity term w should be small and typi-
cally near the instrument resolution of the CSAT3, i.e.
|w| ∼ 10−3 ms−1. As discussed in Section 2.5.4 such
a block averaged vertical velocity is usually so small
that it is immeasurable and so we apply the correction
of Webb et al. (1980) to correct for its influence on the
total mass flux by considering the physics of a surface
layer with zero dry air mass flux. Nonetheless, at times
w turns out to be far from small and perfectly measur-
able.

Ironically, as with immeasurability of low |w|, mea-
surements of relatively high |w| poses a problem for
the EC method. To demonstrate this we consider a
near incompressible surface layer, a reasonable ap-
proximation discussed at great length in Mahrt (1986),
such that the block averaged velocity field is approx-
imately divergenceless. Following Lee (1998) we use
no-through flow kinematic boundary condition at the
surface, w(z = 0) = 0, and assume a linear vertical
velocity profile such that

∂w

∂z
' 1

zm
w
∣∣
z=zm

⇐⇒ w(z) ' z

zm
w
∣∣
z=zm

,

to arrive at the following expression for the vertically
integrated divergence of the horizontal velocity field∫ zm

0

∇H · u dz ' −w
∣∣
z=zm

(2.58)

where ∇H is the horizontal gradient operator and u is
the block averaged horizontal velocity vector. From
(2.58) it is clear that if the block averaged vertical ve-
locity is relatively large then the wind field below the

sensor is far from horiontally homogeneous. Anticipat-
ing that horizontal inhomogeneity of the wind field is
symptomatic of horizontal advection of not only mo-
mentum, but also mass and energy it is prudent to be
wary of blocks where the absolute block averaged verti-
cal velocity is large even after application of the planar
fit. Recall that for the point EC method to be able to
diagnose surface exchange an underlying assumption is
statistical (i.e. block averaged) horizontal homogeneity
of both the wind and scalar fields. As such Foken and
Wichura (1996) as well as Mauder et al. (2013) pro-
pose a flaging procedure if the residual absolute block
averaged vertical wind, after the application of the pla-
nar fit, is abnormally high. Following the recommenda-
tions of Mauder et al. (2013) we assigned a block aver-
age vertical velocity flag, fV , according to the following
thresholds on absolute block averaged vertical velocity
|w| (units ms−1)

fV =


0 if |w| ≤ 0.1

1 if 0.1 < |w| ≤ 0.15

2 otherwise
. (2.59)

It is worth emphasizing that this particular flag can be
considered as a second iteration of the limits of physical
plausibility (Section 2.2.1). This because upon the ap-
plication of the planar fit within the atmospheric surface
layer, blocks where |w| > 0.15 ms−1 become a highly
unusual occurence. As such only extreme cases of verti-
cal advection or subsidence will be hard flagged by this
test. For the remaining cases we assume that the WPL
correction accurately gauges the block averaged verti-
cal velocity along with its contribution to the total flux
and that any departure from the underlying assumption
of horizontal homogeneity can be neglected.
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2.6.4 Stationarity

The next flag we employ is a stationarity flag which is
a measure of the stationarity (or lack thereof) of the
respective (vertical) eddy covariances within a given
block averaging period. We flag based on a relative non-
stationarity factor, henceforth abreviated RNF, derived
from the steady-state test proposed for EC QC by Fo-
ken and Wichura (1996). This factor considers the ab-
solute value of the normalized difference between the
block covariance and the mean of subsegment covari-
ances. The idea is that if the block is statistically sta-
tionary then the block covariance should not differ sub-
stantially from the covariances of subsegments in the
same block. Symbolically the RNF, denoted RNξw, for
the eddy covariance between some variable ξ and the
vertical velocity w for a given block with I = J × K
entries where J is the number of subsegments with K
entries is defined as follows

RNξw =

∣∣∣∣∣ξ′w′ − ξ′w′j
j

ξ′w′

∣∣∣∣∣ (2.60)

where ξ′w′ is the covariance between ξ and w for the

entire block while ξ′w′j
j

is the mean over the co-
variances in J non-overlaping subsegments with equal
length into which the block is divided. To clarify
the possibly confusing notation and wording ξ′w′j is
the covariance of a given subsegment j in the block

while ξ′w′j
j

is the average of over all the J non-
overlaping subsegments that together make up the
block. Note from (2.60) the RNF is a positive definite
quantity. Subsequently, we apply the stationarity flag to
the eddy covariances of longitudinal wind, sonic tem-
perature and absolute humidity (i.e. ξ = u, Ts, ρv) ac-
cording to the following stationarity factor thresholds:

fS,ξ =


2 if RNξw > 1

1 if 0.3 < RNξw ≤ 1

0 if RNξw ≤ 0.3

. (2.61)

As previously alluded to these thresholds are defined
by Foken and Wichura (1996) and justified in the TK2
documentation (Mauder and Foken, 2004) as being the
result of long term experiences in the field. We can not
boast the same experience and thus trust the judgement
of the former authors. In using the same thresholds as
TK2 for this particular test a comparison between the
results of our module and TK2 becomes more straight-
forwards. Moreover, we set J = 6 which with a block

averaging period of τA = 30 minutes means that the
test is based on 5 minute subsegments as was done in
the TK2 runs of Westermann et al. (2009).

Having duely noted that these thresholds are arbitrary
we also mention that they, along with the choice of
J and τA, can easily be tuned as desired. Nonethe-
less, applying the hard flag (fS,ξ = 2) for instances
where RNξw > 1 is a reasonable choice of thresh-
old for non-stationary blocks as in such instances the
mean of subsegment covariances is either twice the
block covariance or completely negligible relative to
the block covariance. In either case the mean of subseg-
ment covariances differs substantially from the block
covariance which is indicative of a highly transient
vertical flux of quantity ξ. Recall that such unwanted
transience can be due to a number of factors such as
trends introduced by diurnal variation, a passing front,
varying cloud cover (Andreas et al., 2008), mesoscale
variability such as a changing land-sea breeze pattern
(for Kongsfjorden see Esau and Repina (2012)) or inter-
mittent (’patchy’) turbulence caused by sub-mesoscale
gravity wave-turbulence interactions (Mahrt, 2010) in
stable conditions. Likewise the soft flag (fS,ξ = 1)
for instances where RNξw is in the intermediate range
is indicative of conditions that are still transient, but
stationary enough for the block statistics to be consid-
ered for the purposes of diagnosing surface exchange
budgets. Soft flagged blocks should not be used in ’fun-
damental research’ (Foken and Wichura, 1996) such as
testing similarity hypotheses based on stationary and
horizontally homogeneous conditions. The category
that remains unflagged (fS,ξ = 0) where RNξw < 0.3
can be considered to be quasi-stationary and thus in-
valuable for all the purposes of this study.

The stationarity flags for the kinematic vertical fluxes
of longitudinal-momentum (fS,u), buoyancy (fS,Ts ) and
water vapor (fS,ρv ) are combined into an overall block
stationarity flag fS by taking the median value (operator
{}) of the respective stationarity factors, i.e.

{RN} = {[RNuw , RNTsw , RNρvw]} , (2.62)

and subjecting the median RNF, {RN}, to the same
thresholds as the individual relative nonstationarity fac-
tors. So for a given block at least two of the RNFs have
to be hard flagged (fS,ξ = 2) for the block itself to be
hard flagged and discared due to transient conditions.
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Figure 2.16: Binned occurences (number of blocks n) of relative nonstationarity factors with corresponding color coded flags as indicated
in the legends with the (rounded) fraction of blocks flagged in brackets. The 8082 blocks that were not hard flagged by the previous three flag
categories (faulty,distortion and vertical velocity flag) are included in each panel. The last bin includes all relative nonstationarity factors
> 1 hence the jump in n. Symbols as defined in the text.

Again this choice is somewhat arbitrary and we could
have instead taken the mean or the maximum of the
three RNFs; but we take the median in hope of dis-
carding as little data as possible whilst still identifying
periods that clearly defy the underlying assumption of
stationary block statistics. We note from Figure 2.16
that only 8% of the blocks are discarded on the sole
grounds of this steady-state test, which still leaves an
ample 7355 30-minute blocks for analysis. Our val-
ues for the individual stationarity flags are largely in
agreement with other eddy-covariance campaigns in the
area. For example Lüers and Bareiss (2011) report
the highest-quality flag (fS = 0) occured 92% of the
time for the momentum flux and 73% of the time for
the buoyancy flux during the short ARCTEX campaign

(May 7th-May 19th 2006) closer to Ny Ålesund. For the
Bayelva site over a longer period (March 2008 -March
2009) Westermann et al. (2009) report that about 15%
of the values for both the buoyancy and vapor fluxes had
to be discarded due to hard flagging. It is interesting
to note that in a more recent analysis of the same pe-
riod, at the same site and with the same software (TK2)
Lüers et al. (2014) report that the water vapor flux was
only hard flagged in 10% of the time. The main differ-
ence between the two analyses was that in Lüers et al.
(2014), as with our analysis, the planar fit method was
employed for the rotation wheareas in Westermann et al.
(2009) the classic natural wind frame (double rotation
method) was used.

2.6.5 Integral Turbulence Characteristics

Use of so-called integral turbulence characteristics (af-
ter Tillman (1972)), henceforth ITCs, was proposed in
the context of EC QC by Foken and Wichura (1996).
These ITCs are based on an offspring of MOST, namely

flux-variance similarity theory (see Tillman (1972) and
Wyngaard et al. (1971)). According to flux-variance
similarity in the surface layer the variance of a quan-
tity ξ, σ2

ξ = ξ′2, when properly nondimensionalzied
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becomes a univeral function of an appropriate dimen-
sionless scaling factor, π̃,

σξ
ξ∗

= ψσξ (π̃) . (2.63)

In the above ψσξ is the universal function and the nor-
malization factor ξ∗ is the surface layer scale for the
vertical turbulent flux associated with ξ and σξ is the
standard deviation (square root of the variance) of ξ.
The surface layer scale is friction velocity u∗ for veloc-
ities and the dynamic temperature T∗ = −T ′sw′/u∗ for
sonic temperature (e.g. Wyngaard et al. (1971)). It is
worth emphasizing that flux variance similarity is ap-
plicable beyond QC of EC data. From (2.63) it is clear
that if the variance of ξ and the value of the dimen-
sionless number π̃ is known then ξ∗ can be diagnosed
from which the turbulent flux of ξ is readily estimated
indirectly. This is the essence of the so-called Eddy
Correlation method (Foken, 2008b) which has an ad-
vantage over the EC method in that it may potentially
require fewer measurements. However, in being indi-
rect relying on the fullfilment of flux variance similarity
it is not universally applicable for diagnosing turbulent
fluxes. The EC method, on the other hand, is univer-
sally applicable in this regard as turbulent fluxes can be
measured directly.

Recall that whether or not these turbulent fluxes are
simply related to the surface exchange depends on the
approximate fullfilment of the underlying assumptions
including the ideal horiontally homogeneous and statis-
tically stationary surface layer (Section 1.2.1). It was
precisely with these assumptions in mind that Foken
and Wichura (1996) proposed ITCs as a quality control
for EC data. That is, flux-variance theory is based on
MOST, which in turn requires statistical stationarity and
horizontally homogeneous conditions (e.g. Högström
(1996)). As such, the more the measured ITC deviates
from the ’universal’ functions given by (2.63), the fur-
ther we depart from the ideal surface layer in which
Foken and Wichura (1996) refer to turbulent conditions
as ’well-developed’. An updated list of proposed ITCs
for ξ = u, T, w across a range of stabilites are given in
table 1 of Thomas and Foken (2002) based on the results
from a number of field experiments. For the most part
these are campaigns conducted at lower latitudes. e.g.
EBEX-2000 (Oncley et al., 2007) in the San Joaquin
Valley (California, USA), with one campaign at a sim-
ilar (absolute) latitude as Bayelva, namely FINTUREX
(Sodemann and Foken, 2005) conducted in the austral
summer of 1994 at the Neumayer Station (70◦40′S) on
Antarctica.

Now one would assume that in well-developed turbu-
lent conditions the constants in the universal functions
given by Thomas and Foken (2002) are indeed univer-
sally applicable, however, as shown in the review of
Högström (1996) there is considerable scatter in the

universal constants given by various investigations into
MOST. A prime example is the controversy surrounding
the Von Karman ’constant’, κ, which has been reported
to have values covering the range 0.32 − 0.65; though
the widely accepted value is κ = 0.4 (Högström, 1996).
For κ, Högström (1996) concludes that these variations
stem soley from experimental uncertainty and that κ is
probably a true constant. Nonetheless, we felt it prudent
to consider the fact that the scatter in constants could
also be due to permanent local effects such as the dis-
tribution of obstacles as briefly mentioned in Thomas
and Foken (2002), and so we tuned the constants in ITC
parametrizations accordingly while keeping the func-
tional form the same. The role of such local effects
is also discussed in Foken and Wichura (1996) where
it is proposed that systematic deviations in the mea-
sured ITCs from the parametrized ITCs could be used
to detect mechanical turbulence generated by the in-
struments, mast or other obstacles. As we did not want
to discard large chunks of data on account of a sys-
tematic deviation from parametrized ITCs we revised
these by tuning the constants to account for local effects
whilst keeping the functional form and in particular the
asymptotic slopes on which there is greater agreement
in the literature.

We ended up only considered ITCs for the (planar) ver-
tical velocity w in that we were uncomfortable with
the scatter in both the proposed and revised ITCs for
u and Ts. For the unstable range −3 ≤ ζ < −0.2
the parametrized ITC employed was that originally pro-
posed by Panofsky et al. (1977), where π̃ = ζ, which
takes the form(

σw
u∗

)
P

= 1.3 (1 + cU |ζ|)1/3 (2.64)

where we have used, and will continute to use, the sub-
script P to emphasize parametrized ITCs as opposed
to the measured ITCs. The parametrization in (2.64) is
constrained by the conditions that σwu∗ → 1.3 in the neu-
tral limit (as ζ → 0) and that σwu∗ varies as |ζ|1/3 in the
free convection limit (ζ → −∞) as predicted by Priest-
ley (1954) and later verified by field campaigns (e.g.
Wyngaard et al. (1971). The constant cU on the other
hand is reviseable with cU = 2 proposed in Thomas
and Foken (2002) compared to the originally proposed
cU = 3 in Panofsky et al. (1977). For the near neutral
range −0.2 ≤ ζ ≤ 0.4 the form of the paramtrized ITC
for the vertical velocity variance follows that proposed
in Thomas and Foken (2002), with π̃ = ln

(
1/Ro+

∗
)
,

namely(
σw
u∗

)
P

= cN1 ln
(
1/Ro+

∗
)

+ cN2 . (2.65)

In the above cn1 and cn2 are constants and Ro+
∗ =

u∗/fcz
+ is a height independent surface layer Rossby

number where z+ = 1 m is defined for dimensional
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convenience (Thomas and Foken, 2002) and fc is the
Coriolis parameter. This parametrization is based on
the work of Högström (1990) in which it was found that
a revised similarity formulation employing the surface
layer Rossby number Ro∗ = u∗/zf in the scaling fac-
tor ln (1/Ro∗) was more appropriate than ζ in the near
neutral surface layer. Thomas and Foken (2002) found
less scatter when using a fixed value z+ = 1 m instead
of the measurement height; we verified that this was
also the case for the provided data from the Bayelva EC
system. The values of the constants for the slope and
the intercept of the scaling factor in the neutral range
proposed by Thomas and Foken (2002) are cN1 = 0.21
and cN2 = 3.1 respectively.

As briefly mentioned we revised the constants cU , cN1

and cN2 to account for local effects at Bayelva. This
was achieved in MATLAB by iteratively fitting the scal-
ing factors in the proposed functional form, that is
(2.64) and (2.65) with the c’s as free parameters, to all
the high quality measured block ITCs based on mod-
ule output in the corresponding stability range via least
squares regression. In such a way we arrive at revised
ITC parametrizations by only considering blocks that
were not hard or soft flagged by any of the previously
discussed QC routines as such high quality data should
satisfy the underlying assumptions of MOST. After
each iteration we only considered blocks where the nor-
malized absolute deviation between the measured ITC
and the least squares fit was less than 0.3 for the least
squares fits in subsequent iterations. We did this for
100 iterations in the two stability ranges considered. In
both ranges the fits converged rapidly to the revised ITC
parametrizations that we then employed in the ITC test
in the Fortran 90 module. In the near neutral range
the result was cN1 = 0.24 and cN2 = 2.9 as the revised
constants in (2.65), whereas in the unstable range the
result was cU = 1.9 as the revised constant in (2.64).

Having arrived at the revised parametrizations for the
ITCs adapted to the Bayelva data we calculated the
normalized absolute deviation, δITCσw , from these
parametrizations in each block, provided that it fell
within either the given unstable or neutral stability
range, following Foken and Wichura (1996)

δITCσw =

∣∣∣∣∣∣
σw
u∗
−
(
σw
u∗

)
P(

σw
u∗

)
P

∣∣∣∣∣∣ .

Subsequently the block is flagged for the deviation in
the w-ITCs according to the admitedly somewhat arbi-
trary thresholds, based on long term experience, given
in Mauder and Foken (2004) and Mauder and Foken

(2011)

fITCσw =


2 if δITCσw > 0.75

1 if 0.3 ≤ δITCσw ≤ 0.75

0 otherwise
. (2.66)

As with the other QC routines these flags were passed
to the module to form a combined block quality flag and
to track the result of the individual flagging procedues.
The form of the proposed and revised ITC parametriza-
tions with respect to the measured ITCs in both stability
ranges is visualized in Figure 2.17, from which it is
clear that the revision is considerable especially in the
near neutral range (in the top panel). We have used
the coefficient of variation, CV , calculated as the root
mean square deviation of the revised ITC parametriza-
tions from the measured ITCs normalized by the mean
of the measured ITCs, to quantify scatter. This was
done both for the w-ITCs shown (panel headers in Fig-
ure 2.17) and considered in the module, as well as for
u and Ts-ITCs which we chose not to include in the
module QC. Relatively speaking the CV , and hence the
scatter, was quite small (< 0.2) for the w-ITCs in both
stability ranges, hence their inclusion, when compared
to u and Ts where the CV exceeded 0.5 in the unstable
regime for the u-ITCs and 0.4 in the neutral regime for
the Ts-ITCs. Furthermore, the correlation coefficient R
between paramtrized and measured ITCs was consid-
erably lower for the latter ITCs when compared to the
w-ITCs where R > 0.5 (panel headers in Figure 2.17)
in both the near neutral and unstable regimes. As a
result if we were to employ these other ITCs as a QC
we would end up discarding on the order of 10% of the
high quality data that passed the remaining QC tests,
compared to less than 1% for the w-ITCs.

The fact that there is a large scatter in the u-
ITC parametrizations proposed by Thomas and Foken
(2002) and references therein is not unexpected in the
unstable regime. According to both Stull (1988) and
Kaimal and Finnigan (1994), the variance of u in the
surface layer under unstable stratification scales with
the mixed layer height zi, the height of the capping in-
version (i.e. of the convective boundary layer), and not
ζ as proposed in Thomas and Foken (2002). There is no
way of determining zi directly from EC measurements
alone so it is not surprising that ITCs do not employ
zi as a scaling factor. As for the calculated Ts-ITCs
(not shown) these reproduced the expected hyperbolic
cotangent ζ dependence given by the form in Thomas
and Foken (2002) and identified by Jocher et al. (2014)
in a short field campaign in Ny Ålesund. Nonethe-
less, we found considerably more scatter particularly
in the near neutral and stable ranges. In fact it was
largely due to the fact that no specific parametrizations
for ITCs are available in the stable regime, as acknowl-
edged in Mauder and Foken (2004)27, that Westermann

27Where the unstable parametrizations are used for lack of a better option in the stable regime.
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et al. (2009) steered entirely clear of the use of ITCs in
their QC procedure. In line with this we did not try to
adopt ITCs parametrizations and flagging in the stable
regime, finding considerable scatter in measured ITCs.
Even so, at least in the neutral and unstable regimes the

w-ITC parametrizations (green lines) displayed in Fig-
ure 2.17 show relatively little scatter and overall agree-
ment with previous investigations (blue lines) and are as
such useful indicators of the well developed turbulent
conditions alluded to in Foken and Wichura (1996).
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Figure 2.17: The measured block ITCs σw/u∗ (dots) as well as proposed (blue lines) and revised (green lines) parametrizations for the
ITCs σw/u∗ as functions of the scaling factors in the two stability ranges considered. Flags for the measured ITCs are color coded according
to the flag in (2.66) with hard flags in red, soft flags in dark gray and high quality flags in light gray. Upper panel: The near neutral range
(−0.2 ≤ ζ ≤ 0.4) where the proposed parametrization of Thomas and Foken (2002) is given by (2.65) with cN1 = 0.21 and cN2 = 3.1
while the revised ITC is also given by (2.65) but with cN1 = 0.24 and cN2 = 2.9 as employed in the module. Lower panel: The unstable
range (−3 ≤ ζ < −0.2) here the proposed parametrization of Panofsky et al. (1977) is given by (2.64) with cU = 3 while the revised ITC
is also given by (2.64) but with cU = 1.9 as employed in the module. The value of the correlation coefficient and coefficient of variation
between the revised and measured ITCs as well as the fraction of blocks under consideration that were hard flagged are displayed at the top
of respective panels. Only blocks with high quality flags from remaining QC routines (f = 0) are displayed.

2.6.6 Combined Block Quality Flag

Finally, all the quality flag categories are united into an
overall combined block quality flag. Such a synthesis
of the quality control procedures provides a simple tool
that enables one to diagnose the general ’health’ of a
block of data and whether or not to include this block
in subsequent analysis. Denoting the combined block
quality flag as fB we define it simply as the maximum
value of all the quality flags for the given block, i.e.

fB = max
([

fSK , fF , fD, fV , fS , fITCσw

])
,

where the skewness-kurtosis flag fSK is set by (2.9),
the faulty flag is set by (2.57), the flow distortion flag
fD is set by (2.6.2), the vertical velocity flag fV is set by
(2.59), the stationarity flag fS is set by subjecting (2.62)
to the thresholds in (2.61) and the vertical velocity inte-
gral turbulence characteristics flag is set by (2.66). The
idea behind using the maximum value of all the block
quality flag categories is that if any one flag indicates
that the block is of poor quality (hard flagged) with re-
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gards to either violation of the underlying assumptions
in the point EC method, such as departures from sta-
tistical stationarity, or instrument related issues, such
as flow distortion then the entire block should be ig-
nored when estimating the surface exchange. Similarly
if the block is not hard flagged by any of the categories
but at least one flag is a soft flag (medium quality) then

the block can still be included in the estimation of sur-
face exchange but it should be excluded from investi-
gations into the flux variance similarity (integral turbu-
lence characteristics). To summarize, we reiterate that
if a block is hard flagged by the combined block quality
flag (i.e. fB = 2) then all samples in the block are set to
−1000 and discarded from further analysis.

2.6.7 Estimating Flux Sampling Uncertainty

Figure 2.18: The dartboard analogy. Imagine that we are playing
darts and the true average is represented by the bullseye in the cen-
ter of each dartboard. For each dartboard the crosses represent hits
by thrown darts corresponding to our samples. In the corresponding
texts for each board the bias is the systematic error and the (ran-
dom) variance is the mean square random error. Figure adopted from
Domingos (2012).

In the final QC step we are interested in quantifying the
uncertainty in our final block averaged flux estimates.
The smaller (larger) the uncertainty relative to the es-
timated flux the more (less) confident we can be in the
accuracy of our estimate (Aubinet et al., 2012). So,
regardless of its magnitude relative to the estimated flux
value, the flux sampling uncertainty is always a valu-
able diagnostic. As pointed out in both Finkelstein and
Sims (2001) and Billesbach (2011) it is unfortunately
not yet standard practice to include uncertainties when
reporting fluxes produced through the EC method. For
example no uncertainty procedure is included in the
TK2 package (Mauder and Foken, 2004).

Uncertainties in our estimates, not just for fluxes but
for any statistic, arise as a result of both systematic and
random errors. Following the insightful discussion in
Aubinet et al. (2012) (Chapter 7), we will distinguish
between these two error sources for estimates within a
given block of EC data. We may express some instanta-
neous EC estimate, obtained after processing raw data,
ξ with respect to its (generally unknown) true value ξ̂ as

ξ = ξ̂ + δξ + εξ , (2.67)

where δξ and εξ are the systematic and random error
respectively. From (2.67) the instantaneous error is the
sum of these two error components, that is ξ − ξ̂ =
δξ + εξ. These are both depicted conceptually in Fig-
ure 2.18. In the context of a block average the sys-
tematic error is defined as the bias, the block averaged
error, that is δξ = ξ − ξ̂ (cf. Figure 2.18). Thereby
it follows from (2.67) that the random error is the de-
viation in the instantaneous error from the bias, i.e.
εξ = ξ − ξ̂ −

(
ξ − ξ̂

)
. So, remembering Reynolds

averaging rules, it is clear that the block average ran-
dom error is by definition zero. It is worth emphasizing
for random error that, despite being zero on average, it
influences other statistics such as variances and covari-
ances signifcantly, while the systematic error does not.
For example the relation between the true and estimated
variance of ξ becomes

ξ̂′2 = ξ′2 − 2 ξ′εξ + ε2ξ , (2.68)

where the term ε2ξ is equivalent to the variance of the
random error depicted in Figure 2.18.

With the previous discussion hopefully having provided
an introduction to uncertainty, there is one outstanding
issue. When employing the EC method we usually have
no idea what the true value, of a flux or any other statis-
tic, is. Measurements with higher accuracy (Finkelstein
and Sims, 2001) are typically absent in the field and so
calibration is not possible. With this in mind what are
the sources of random and systematic error in the EC
method? Adressing and describing all of these sources
is beyond the scope of this work. As such, we are satis-
fied with presenting a summary following Aubinet et al.
(2012) and Mauder et al. (2013). In the former refer-
ences random error is attributed to the following three
factors:

1. Turbulence being inherently stochastic (’ran-
dom’).

2. Noise attributed to the instruments.

3. A changing flux footprint.

Whereas systematic error is attributed to the following
three factors:
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1. Departures from the underlying assumptions in
the EC method. For example a transient and/or
horizontally heterogeneous surface layer.

2. Problems with instrument calibration.

3. Mistakes in EC data processing, in particular in
the flux corrections and coordinate rotations.

Now the magnitude of the bias in our estimates is gener-
ally unknown. Nonetheless, we assume that the various
steps in our EC processing module has sufficiently re-
duced the bias; in that this is their primary goal (Billes-
bach, 2011). So under this assumption we only have
to contend with random error. Moreover, in line with
Aubinet et al. (2012), we assume that the contribution
towards random error of instrumental noise is negligible
with respect to the stochastic error. In addition we as-
sume that for the case of Bayelva a signifcant change in
the flux footprint within an averaging period is unlikely
in line with results of Westermann et al. (2009) based
on the model of Schmid (1994). Note that these as-
sumptions do not mean that we are overestimating the
stochastic error, instead we are probably underestimat-
ing other error sources.

So what remains is to estimate the uncertainty in flux
estimates associated with the stochasticity of turbulence
(Mauder et al., 2013). Essentially this error is related
to the inadequate sampling of the larger integral scale
eddies that provide the greatest contribution to the true
ensemble averaged flux (Lenschow et al., 1994). Conse-
quently this random error is often refered to as sampling
error (e.g. Finkelstein and Sims (2001)). The obvious
solution to such an error would be to extend our aver-
aging period to ensure adequate sampling, however, the
catch is that the longer this period, the more likely we
are to depart from statistical stationarity in our estimate
(Lee et al., 2006). So, as the lesser of two evils, we are
forced to contend with a certain degree of random error
in our flux estimates; what remains is quantifying the
uncertainty introduced.

A plethora of methods have been introduced to estimate
the random, or sampling, error in flux estimates. Vari-

ous examples are given in Lenschow et al. (1994) and
Kaimal and Finnigan (1994). However, the problem
with these methods is that they rely on estimating a
parameter through relatively arbitrary means. This pa-
rameter is usually the integral time scale, discussed in
Section 2.7.2. The issue with such a parameter is that
its magnitude varies considerably with the method used
in its estimation (see e.g. Finkelstein and Sims (2001)
and Billesbach (2011)).

Consequently, we adopted the rigorous method of
Finkelstein and Sims (2001), which requries no such
arbitrary parameter (Billesbach, 2011), when estimat-
ing the flux sampling uncertainty as the variance of
the flux (Appendix A.5). Such a calculation first de-
mands a LDT of the sample time series in question be-
cause both the auto and crosscovariances are ill defined
in the presence of a trend (cf. Finkelstein and Sims
(2001) and Mauder et al. (2013)). Such a LDT, inter-
nal to this routine, should not distort the data consider-
ably since we have already discarded blocks where the
flux estimates depart significantly from statistical sta-
tionarity (Section 2.6.4). Subsequently we accounted
for the effects of the propogation of uncertainty, follow-
ing Billesbach (2011), in our particular EC processing
module as outlined in Appendix A.6. As such we could
diagnose the absolute uncertainty in our kinematic heat
flux estimates using sensible and latent heat flux esti-
mates. This was done via (A.46) for the kinematic sen-
sible heat flux uncertainty, denoted σFT , and (A.47) for
the kinematic latent heat flux uncertainty, denoted σFρv ,
using (A.42) to estimate the variances of covariances. It
is instructive to express the uncertanties relative to the
magnitude of the flux. Due to the dynamic flux conver-
sion factors canceling out, the dynamic relative flux un-
certanties equal their kinematic counterparts such that
for the sensible heat flux

σQH/|QH | = σFT /|FT | , (2.69)

and for the latent heat flux

σQE/|QE | = σFρv /|Fρv | . (2.70)

2.7 Output

After having undergone all the processing steps that is:
despiking, rotations, corrections and quality control the
module produces a range of different arrays that are
written to an output file. Each output file is in NetCDF
format with the same name as the corresponding input
file, but with a .cdf as opposed to .dat filename exten-
sion. The advantage of using the NetCDF format is that
a good compromise is reached between file size, smaller
than ASCII format but larger than binary, and the sim-

plicity and speed of reading in individual arrays for vi-
sualization in an environment such as MATLAB. Herein
we will briefly outline two of the three main categories
of variables output by our module: 1. Block averaged
statistics including fluxes and 2. Autostatistics. The fi-
nal and third category, the turbulence (co)spectra and
in particular how these are produced, has not yet been
fully described and is thus outlined in a separate section
(Section 2.8).



CHAPTER 2. METHOD 63

2.7.1 Block statistics

Our module outputs a wide range of block averaged
statistics. Here we will simply list these unless undis-
cussed steps are used in their calculation. In line with
typical EC practice (e.g. Lee et al. (2006)), the output
block statistics are all based on the 30 minute non over-
lapping block averages28. To compliment the ensuing
outputs a 3 dimensional array containing the timestamp
t for the begining and end of each block is also pro-
duced in year, month, day, hour, minute, second format.

In that many symbols are previously defined we will
present most of the block averaged outputs symboli-
cally. All the ensuing symbols are output as 1 dimen-
sional arrays. First in line are the output block averages
of single variables these are: u, v, w, T s, T v, T , ρv
and q. In additon, the 6-hour pressure P and the diur-
nal measurement height zm are also output as arrays
with the same dimension and corresponding times-
tamps. Next in line are the variances: u′2, v′2, w′2, T ′2s
and ρ′2v . The following covariances (turbulent fluxes)
are also written to the output file: u′w′, v′w′, T ′sw

′

and ρ′vw′. All the block quality flags outlined in Sec-
tion 2.6 as well as the flux fractional sampling errors
(Section 2.6.7) and the correction factiors discussed in
Section 2.5 are also returned as output by the module.

Additonaly after processing, in particular flux correc-
tions, the following variables are calculated on a block
by block basis. First off the friction velocity is given by
(Stull, 1988)

u∗ =
(
u′w′

2
+ v′w′

2
)1/4

next in line is the block M-O stability parameter

(Kaimal and Finnigan, 1994)

ζ = zm/L∗ −
zmκgT ′sw

′

T s u3
∗

.

Finally the dynamic (energy) fluxes of sensible heat
and latent heat (units Wm−2), components in the SEB,
are computeted. First off the block averaged sensi-
ble heat flux is computed through (cf. Fuehrer and
Friehe (2002), Van Dijk et al. (2004), Mauder and Fo-
ken (2011) and Aubinet et al. (2012))

QH = ρ cp T ′w′ , (2.71)

where cp = cp,d (1 + 0.84 q) (Mauder and Foken,
2011) is the secific heat at constant pressure of moist
air in which cp,d = 1004 JK−1kg−1 is the specific heat
at constant pressure of dry air. Secondly the latent heat
flux is computed via (Mauder and Foken, 2011)

QE = λv ρvw , (2.72)

where λv = 2.501 × 106 − 2360
(
T − 273.15

)
is the

latent heat of vaporization (Foken, 2008b) with units of
Jkg−1 (with T in Kelvin). Note that the latent heat flux
involves the total mass flux of water vapor whereas the
specific heat flux only involves the turbulent flux. For
an explanation of this apparent discrepancy we refer the
reader to the extensive discussion Van Dijk et al. (2004).
Both the second order dynamic fluxes in (2.71) and
(2.72) look almost the same as their first order equiv-
alents, i.e. (1.9) and (1.10). This is far from the case,
remember that both the planar fitting and the numer-
ous flux corrections are implicit in these second order
fluxes, see Appendix A.6 for their full kinematic form.

2.7.2 Autostatistics

The next category in line for discussion are the auto-
statistics. These are output based on both an averaging
time and a lag increment specified by the user of the
module; in our runs we set these parameters to 30 min-
utes and ∆τL = ∆t (0.05 seconds) respectively. Be-
fore proceeding with calculating these autostatistics it
is common practice (e.g. Kaimal and Finnigan (1994))
to apply a high pass filter such as a LDT to each sta-
tistical window. Such filters are needed in that these
measures are highly sensitive to the presence of any
low frequency trends in the data. Recall that as a re-
sult of Section 2.6 highly transient periods are already
flagged and discarded so the application of a LDT is not
a major intrusion but nonetheless needed to ensure that
the autostatistics are well defined. In this section we
will let ξ′′i represent a generic linearly detrended vari-

able with zero mean in a given segmement (averaging
period) with I discrete entries (i.e. i ∈ 1(1)I).

We begin with the autocorrelation for a lag time τL,
which when ξ′′ is continuous, is given by (Stull, 1988)

Rξ′′ξ′′(τL) =
ξ′′(t)ξ′′(t+ τL)

ξ′′2
, (2.73)

By definition for τL = 0 the autocorrealtion is simply
the correlation of ξ′′(t) with itself which will always be
1 (Stull, 1988). so for a discrete time series, as is the
case for EC measurements, over the set averaging pe-
riod for a given discreteme lag time τL,j = j∆τL the

28The duration of the block average can be specified by the user of the module, but we will only discuss the traditional 30 minute block
average.
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autocorrelation is (cf. Section 2.5.1)

Rξ′′ξ′′ (τL,j) =
1
I

∑I−j
i=1 ξ

′′
i ξ
′′
i+j

ξ′′2
.

The autocorrelation is primarily used to calculate the
(Eulerian) integral time scale of ξ′′ which we denote
Tξ′′ strictly defined as (Wyngaard, 2010)

Tξ′′ =

∫ ∞
0

Rξ′′ξ′′(τL)dτL .

Thereby Tξ′′ represents the timescale overwhich ξ′′

’remembers’ (is correlated with) itself (Andreas et al.,
2008). Effectively we have to truncate the integration
range somewhere in that our segments are not infinitely
long. So, in practice Tξ′′ is estimated from the discrete
autocorrelation through a variety of means. Two com-
mon examples are 1) Setting Tξ′′ξ′′ as the e-folding time
scale of the autocorrelation function (Kaimal and Finni-
gan, 1994) having assumed thatRξ′′ξ′′(τL) ' e−τL/Tξ′′
and 2) By truncating the integral whereRξ′′ξ′′ reaches a
small near constant value (Finkelstein and Sims, 2001).
Each method may yield a completely different Tξ′′ esti-
mate in that Rξ′′ξ′′ does not always take such a simple
exponential form (Finkelstein and Sims, 2001). This is
somewhat problematic as the integral time scale is often
used in to find an appropriate averaging time for flux es-
timates (Kaimal and Finnigan, 1994) and in diagnosing
sampling errors in the flux estimates (Lenschow et al.,
1994). Thus, by calculating the autocovariance we can
in turn estimate the integral time scale and compare
’traditional’ sampling error estimates (e.g. Lenschow
et al. (1994)) with the flux sampling errors obtained
using the method of Finkelstein and Sims (2001).

Next in line are the structure functions. Most generally
the n-th order structure function in time of a continuous

variable ξ′′ for a time lag τL is given by (Mahrt, 1989)

Dn,ξ′′(τL) = [ξ′′(t+ τL)− ξ′′(t)]n

As such, we define the second order discrete structure
function in time as (Mahrt, 1989)

D2,ξ′′ (τL,j) =
1

I

I−j∑
i=1

(
ξ′′i+j − ξ′′i

)2
Note that all structure functions are identically zero for
zero lag; so we do not need to calculate this value in
that it is known beforehand and not helpful in the typ-
ical log-log representation used for structure functions
(Stull, 1988). It is somewhat unusual to calculate struc-
ture functions in time, as opposed to space, however, by
making use of Taylor’s Hypothesis then the time lag is
related to spatial separation r along the mean wind di-
rection u through τL = r/u. So if turbulence is ’frozen’
at a given scale the structure functions in time and space
are merely scaled versions of one another. This is very
useful in that Kolmogorov (1941) originally made the
prediction of an inertial subrange based on the second
order structure function in space. Thereby we should
be able to identify inertial subranges as regions where a
τ

2/3
L power law in time (r2/3 in space) is satisfied.

Before closing the section we point out that all the dis-
crete autostatistics are in practice only computed for
j << I that is τL ≤ τA/2. This is done following
a reccomendation in Stull (1988). The former points
out that in shifting the segment by more than half the
length of the segment itself the autostatistics at the given
lag would no longer be statistically representative being
based on too few samples. In the module the autostatis-
tics are output for all LDT samples measured by the EC
system that is ξ′′ = u′′, v′′, w′′, T ′′s , ρ

′′
v . We will leave

LDTs implicit, removing the clumsy ξ′′ notation, when
presenting and discussing the results.

2.8 Producing Turbulence (Co)Spectra

In the following we we will describe how estimates
for various turbulence (co)spectra are produced in our
Fortran 90 module and what these estimates repre-
sent. The estimates are arrived at through a method that
performs the following sequence of procedures:

• Conditioning of data via gap filling, applying a
linear detrend (Gash and Culf, 1996) and taper-
ing (Kaimal and Kristensen, 1991).

• Estimating forwards Discrete Fourier Trans-
forms (DFTs) of the conditioned data using a
Fast-Fourier Transfrom (FFT) algorithm via the
DFFTPACK (Pumphrey and Swarztrauber, 1985)
library.

• Calculating estimates for the resolved discrete

(co)spectral intensities, densities and Ogives
from the forwards DFTs (Stull, 1988).

• Dealiasing (Kaimal and Finnigan, 1994) the
(co)spectral estimates using a suitable transfer
function (Gobbi et al., 2006).

• Smoothing the (co)spectral estimates by ap-
plying a smoothing window (Konno and
Ohmachi, 1998) corresponding to a logarithmi-
cally weighted mean.

Such a method could also readily be adapted to an im-
plementation in e.g. MATLAB. As excellent reviews of
the underlying theory and procedures are presented in
both Stull (1988) and Kaimal and Finnigan (1994), on
which our method is based, the ensuing description will
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be kept as brief as possible with the overall aim of pro-
viding a means for the reproduction of our estimates.
As usual, the first step in the process is to rotate the
wind into the NESF (as described in Section 2.3.3). It is
worth emphasizing already at this stage that all the en-
suing conditioning of data is internal to the (co)spectral
analysis routines and does not affect the already cal-
culated block averaged quantities (e.g. fluxes). Herein
our indexing will be in line with Fortran 90 (and
Matlab) array indexing such that all indices start at 1
as opposed to the zero indexing that as is used in many
textbooks (e.g. Stull (1988)).

Before proceeding the resolution of the spectral analysis
must be determined by the user by setting the duration
of each segment (data window) to be analyzed. Through
trial and error we found that the optimal segment du-
ration was, upon accounting for subsequent condition-
ing (Stull, 1988) of the segments, 3 hours. This duration

can of course be tuned as desired depending on what is
being investigated. In our case we found that 3 hours
was, in most cases, both sufficiently long so as to re-
solve the large energy containing eddies (Kaimal et al.,
1989) and at the same time short enough to avoid depar-
tures from stationarity introduced by diurnal variation.
In particular a choice of 3 hours allows for a study of
what occurs at frequencies just beyond the correspond-
ing standard block averaging period of 30 minutes. Now
we may already allocate our discrete frequency array as
fj = (j − 1)∆f where ∆f = fs/NT is the frequency
increment, j ∈ 1(1)NT , fs = 20 [Hz] is the sampling
frequency of the EC system andNT = 2.16×105 is the
total number of points in a 3 hour segment. The lowest
eddy frequency, the first harmonic, we resolve is given
by f2 = ∆f = fs/NT = 9.26× 10−5 [Hz]. As will be
shown, at f1 = 0 [Hz] estimates correspond to the mean
values of the conditioned series (which are zero).

2.8.1 Conditioning

The sampled time series within each segment must also
be conditioned for the subsequent Fourier analysis to be
instructive. First off we only include segments where
at most 10% of the data is faulty (spikes) to ensure that
the estimates are as close to the true 3 hour (co)spectra
as possible. So if any of the 30 minute blocks within
the segment have been hard flagged, in which case the
faulty portion would be ≥ 16%, the 3 hour segment is
excluded from spectral analysis. Moreover, with each
block in the segment having passed the QC (Section 2.6)
we can be confident that the segments are near statisti-
cally stationary. As Fourier analysis does not allow for
any gaps (e.g. discarded spikes) in the data we must
also fill any gaps present. To do so we replace the faulty
entries by values found via simple linear interpolation29

of the two nearest valid data samples; with spikes con-
stituting at most 10% of the segment this procedure is
not as invasive as it may sound.

A LDT is performed on each of the gap filled time se-
ries in the segment. As in Section 2.2.3 we use the least
squares method of Gash and Culf (1996) to find the
linear trends and subsequently subtract the time depen-
dent trend component from the corresponding entry in
the time series. The purpose of the detrend is to high
pass filter the segments by removing any unresolved
low frequency components that would otherwise ’leak’
into the low frequency end of the estimated spectra
(Kaimal and Finnigan, 1994). In the absence of a de-
trend many of our estimates would be contaminated by
so-called30 ’red noise’ (Stull, 1988) which manifests
as a ficticious increase of the (co)variance contained
in the low frequency end of the spectrum. Once more

we emphasize that as a result of the QC (Section 2.6)
nonstationary blocks where a large trend is typically
present have been discarded from subsequent analysis.
Hence the LDT procedure does not distort the original
series considerably. Nonetheless, it is a necessary pro-
cedure in order to provide a faithful representation of
the low frequency end of the turbulent (co)spectra. It is
worth reemphasizing (see Section 2.2.3) that the mean
of a LDT series is zero.

A final procedure in the conditioning of the sample se-
ries within each segment is needed before the FFT is
applied. This procedure makes up for the leakage in-
troduced by the sharp edges of the segment as a re-
sult of the implicit assumption in Fourier analysis that
the segment under consideration is infinitely periodic
(Stull, 1988). The LDT also helps in this regard, but
spectral leakage may still occur from a residual jump
(sharp edge) between when the segment ends and be-
gins again periodically. The widely-used solution to
the effect of finite sampling introduced by our choice
of segment is to multiply by a window, a so-called ta-
per, which reduces the sharp edges at the boundaries re-
moving the corresponding discontinuity in the infinitely
periodic extension of the segment (Kaimal and Kris-
tensen, 1991). In Stull (1988) the so-called Bell-taper
is presented as the only example. For a segment with
k ∈ 1(1)K evenly spaced discrete samples in time this
Bell taper, W (B)

k , is defined

W
(B)
k =

{
1 if 0.1K < k < 0.9K

sin2
(

5π
[
k−1
K−1

])
otherwise

.

29If we have gaps at the end points of the segment we simply apply a linear extrapolation backwards (start of segment) or forwards (end of
segment) in time.

30An analogy to the visible portion of the electromagnetic spectrum where red light is found at the lower frequencies.
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Kaimal and Kristensen (1991) tested a variety of com-
monly used tapers on spectra of short (order of one
minute) segments and found that the Bell-taper did not
perform well. A so-called Hamming window performed
best with regards to eliminating the distortion of spec-
tra and the former authors recommended its use even
for spectra of longer segments as is our case. The dis-
tortion resulting from finite sampling was found to be
particularly severe in the intertial subrange as predicted
in Kaimal et al. (1989). As one of our goals is to
identify the presence and extent of inertial subranges in
our (co)spectral analysis it is prudent to follow the rec-
comendation of Kaimal and Kristensen (1991), which

is reiterated in Kaimal and Finnigan (1994), and instead
apply the Hamming window as our choice of tapering
function. This Hamming window, W (H)

k is defined

W
(H)
k = 0.54− 0.46 cos

(
2π

[
k − 1

K − 1

])
.

Now the application of any taper will both damp the
variance and introduce a residual mean in the LDT time
series (Kaimal and Finnigan, 1994). As such we also
need to apply a compensation factor such that the vari-
ance of the LDT time series is recovered, and remove
any residual mean introduced.

Figure 2.19: Steps in the conditioning of a synthetic 3 hour time series ξ(t). Top left panel: Unconditioned deviation from the block
average ξ′(t) (blue sold line) with the linear trend component ξ′(t) (green dashed line). Top right panel: Deviation from the block average
after applying a LDT ξ′′(t) (blue solid line) with the subsequent zero trend component ξ′′(t) (green dashed line). Bottom panels: Hamming
(right) and Bell (left) tapered LDT deviation from the block average ξ?(t) (blue solid line) with the red dashed lines as the corresponding
taper functions W (B) (left) and W (H) (right); both the conditioned series have been compensated for variance loss and the residual mean
has been removed.
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With the above in mind the combined LDT and tapering
operation for a given discrete and evenly spaced sam-
ple time series ξk with k ∈ 1(1)K entries (in our case
K = NT ) is applied as follows in the time domain

ξ?k = CWk (ξ′′k )− CWkξ′′k = C (Wkξ
′′
k )
′
,

where ξ?k is the tapered and LDT sample, ξ′′k is the LDT
sample31, C is the compensation factor and Wk is the

taper. In the case of the Hamming window the compen-
sation factor given by Kaimal and Kristensen (1991) is
C(H) =

√
2.52, while for the Bell taper we found

C(B) =
√

1.16 to be the appropriate choice based on
sample data. We include the Bell taper since the choice
of tape in our module (including no taper at all) is up
to the user. However, due to the previous discussion
we exclusively employ and recommend the Hamming

31As mentioned ξ′′k = ξk − ξk = ξ′k − ξ
′
k i.e. the LDT sample series is equal to the LDT deviation from the average of the sample series.



CHAPTER 2. METHOD 67

window when tapering time series prior to spectral anal-
ysis. The transformation of a 3 hour long synthetic time
series as a result of both the LDT and the application
of the tapers is shown in Figure 2.19. We verified that
the variance was indeed conserved upon application of

either of the two tapers and the corresponding compen-
sation factor with σ2

ξ? = σ2
ξ′′ = 0.51 for the synthetic

example in Figure 2.19.

2.8.2 DFTs

Now we are prepared to apply the Fourier transform
(FT). Henceforth we will simply denote ξ? as ξ leaving
the conditioning (LDT, tapering, variance compensation
and residual mean removal) of the series as implicit to
avoid (even more) cumbersome notation. First we re-
view the basic concept of the discrete Fourier transform
(DFT); given a conditioned series in time32 ξk with NT
entries that are evenly separated by the increment ∆t,
then the forwards DFT Fξ,j at the discrete frequency
fj = (j − 1)fs/NT is given in by (e.g. Stull (1988))

Fξ,j =
1

NT

NT∑
k=1

ξkω
−(j−1)(k−1) , (2.74)

where ω = exp {i2π/NT } is the NT th root of unity and
i =

√
−1 is the imaginary unit. The inverse (’back-

wards’) DFT has a similar definition (see e.g. Stull
(1988)), but as we are not concerned with inverse trans-
formations typically used in solving differential equa-
tions we will omitt a discussion of these here. From
(2.74) it is readily seen that, with this definition, in the
case of j = 1 (fj = 0) the forwards DFT simply yields
the mean of the ξk time series, which as a result of con-
ditioning will always be zero. Moreover we note that,
as opposed to ξ, Fξ is complex.

Now having conditioned the processed EC data we
compute the forwards DFT for multiple 3 hour seg-
ments time serie of the following samples ξ =
u, v, w, Ts, ρv all sampled at fs = 20 [Hz]. As men-

tioned this is done via a FFT routine in DFFTPACK
(Pumphrey and Swarztrauber, 1985), where the FFT
is essentially a DFT that has been optimized in terms
of speed taking advantage of binary computer archi-
tecture (Stull, 1988). We will not dwell on the details
in the FFT as we are only concerned with the output;
namely the estimated forwards DFT. What is worth
mentioning is that the forwards DFT output by DFFT-
PACK is not normalized, so a subsequent division by
NT is required. Moreover, for efficiency the DFFT-
PACK simply transforms the input array containing ξk
into an array containing Fξ,j of the same length (NT
points) with only real entries overwriting the input array
(an INTENT(INOUT) argument in Fortran 90)33.
In the returned array the first entry is the mean entry
(i.e. Fξ(f1)), the second entry is the real component
of the first harmonic (Re {Fξ(f = f2)}) the third en-
try is the imaginary component of the first harmonic
(Im {Fξ(f = f2)}) and so on for the ensuing higher
harmonics (see source code in Pumphrey and Swarz-
trauber (1985) for details and exceptions). For numer-
ical convenience we mapped the entries of this array
into a complex array containing the mean (strictly real)
component along with the paired real and imaginary
components of the respective harmonics. Note that
both these arrays in effect only contain N = NT /2 + 1
(as opposed to NT ) complex forwards DFFTs. As will
be shown, this is not a problem.

2.8.3 (Co)Spectral estimates

Although it may not be immediately clear from (2.74),
when ξk is real, as is our case, there is an inherent sym-
metry in Fξ,j . It turns out that for 2 ≤ j < N where
N = NT /2 + 1 the following holds equality holds (e.g.
Stull (1988)):

Fξ,j = F∗ξ,j+ ,

where

F∗ξ,j+ = Re
{
Fξ,j+

}
− i Im

{
Fξ,j+

}
,

is the complex conjugate of Fξ,j+ . The operators
Re {} and Im {} pick out the real and imaginary com-
ponents respectively. Here j+ = NT + 2 − j such

that |N − j| = |N − j+|; or in terms of frequency
|fN−fj | = |fN−fj+ |. So for any two frequency bands
that are equidistant from, but on opposite sides of, the
fN band the forwards DFT at these bands are simply
complex conjugates of one another. As a consequence

Fξ,jF∗ξ,j = F∗ξ,j+Fξ,j+ ,

that is the absolute values of the forwards DFT which
corresponds to the spectral intensity34, a measure of
the contribution towards the variance, are identical at
the two frequencies. As such, as shown in the right
panel of Figure 2.20, when the spectral intensity is plot-
ted against (linear) frequency it is symmetric about fN .

32Although not directly applicable in the case of point EC data a DFT is equaly valid for a spatial distribution
33That is the time series stored in the array ξk is lost upon calling the forwards transform. So it is prudent to use a cloned version of ξk to

avoid loosing ξk in the analysis steps.
34The same is true for the cospectral inensity soon to be defined.



CHAPTER 2. METHOD 68

Thereby no new information on the spectral intensity
is contained in frequencies f > fN so effectively the
highest frequency we can resolve is the Nyquist (fold-
ing) frequency fN = (N − 1)fs/NT = fs/2. Inserting
for fs = 1/∆t the Nyquist frequency can be stated al-
ternatively as fN = 1/2∆t; meaning that the fastest os-
cillations we can resolve via Fourier analysis have half
a period per sampling interval ∆t (Kaimal and Finni-
gan, 1994). Spectral intensities that include fj+ > fN
are refered to as unfolded and the reflection about fN
is always evident in such a representation. It is more
instructive to consider the folded spectra, where the es-
timates at fj+ > fN are folded back via doubling of the
estimates at the corresponding fj . In the folded spec-

tral intensity the complete contribution to the variance
at each frequency band fj ≤ fN is recovered. Note that
in our case N = NT /2 + 1 is an integer in that NT is
even so the frequency fN is an entry in fj . The esti-
mate at the Nyquist frequency itself, where the fold oc-
curs, is not subject to such a doubling. A visualization
of a folded spectral intensity (right panel) and its un-
folded counterpart (left panel) is shown in Figure 2.20
where the spectral intensity scale is logarithmic. In both
cases the sum over all spectral intensities yields the vari-
ance, however, with the unfolded representation contri-
butions to the variance are unphysical being located at
unresolved frequencies.

Figure 2.20: Unfolded and folded spectral intensities in a log-linear representation. Left Panel: The unfolded discrete spectral intensity
Fξ,jF∗ξ,j normalized by the variance σξ2 (blue bars) for NT − 2 discrete frequency bins of width ∆f centered on fj = (j − 1)fs/(NT )

with j ∈ 2(1)NT − 1 normalized by the Nyquist frequency fN . Right panel: The folded discrete spectral intensity Ŝξ,j (green bars), as
given by equation (2.75), normalized by the variance σ2

ξ defined for N − 1 = NT /2 discrete frequency bins of width ∆f centered on
fj = (j − 1)fs/N for j ∈ 2(1)N . The intensities in the right panel are double those at the correponding fj in the left panel everywhere
except at fN . In both panels the position of this Nyquist (folding) frequency fN = fs/2 is marked by the red dashed line about which the
unfolded discrete spectral intensity is symmetric. Also in this example ξ is the synthetic and conditioned sample time series displayed in the
bottom right panel of Figure 2.19.

Now as the mean (at f1 = 0) contribution to the spec-
tral intensity is always zero in that Fξ,1 = ξ = 0 we
do not have to concern ourselves with this entry. So we
will consequently ignore the mean frequences (f1 = 0)
and all entries j > N (in accordance with the output
of DFFTPACK). As such, to simplify the notation in
the following we will henceforth let N = NT /2 with
j ∈ 1(1)N and fj = jfs/NT with f1 now represent-
ing the first harmonic and fN = fs/2 (the Nyquist
frequency) representing the highest resolved frequency.
From the forwards DFT the folded discrete spectral in-
tensity, Ŝξ,j , of the frequency band with width ∆f cen-
tered about fj is given by (Stull, 1988)

Ŝξ,j = (2− δjN )Fξ,jF∗ξ,j ,

where δjN is 1 if j = N and 0 otherwise while F∗ξ,j is

the complex conjugate of Fξ,j . Thereby, the above can
be expressed equivalently in the following numerically
convenient form

Ŝξ,j = (2− δjN ) Re {Fξ,j}2

+ (2− δjN ) Im {Fξ,j}2 . (2.75)

The spectral intensity for frequency band fj is, as
briefly mentioned, the contribution to the variance con-
tained in the given frequency band (Stull, 1988). As
such the variance of the conditioned sample time series
is simply given by the sum

ξ′2 =

N∑
j=1

Ŝξ,j .
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Similarly if we consider a complimentary conditioned
sample time series χk, having computed Fχ,j , then the
folded discrete cospectral intensity, Ĉoξχ,j of frequency
band fj is given by 198default

Ĉoξχ,j = (2− δjN ) Re
{
Fξ,jF∗χ,j

}
,

which analogously to (2.75) may be expressed equiva-
lently in a form that is simple to implement numerically

Ĉoξχ,j = (2− δjN ) Re {Fξ,j}Re {Fχ,j}
+ (2− δjN ) Im {Fξ,j} Im {Fχ,j} . (2.76)

Not surprisingly the cospectral intensity for a given fre-
quency band fj is the contribution to the covariance
contained in the given frequency band (Stull, 1988); as
such the covariance of the two conditioned sample time
series is

ξ′χ′ =

N∑
j=1

Ĉoξχ,j . (2.77)

Now upon comparing (2.75) and (2.76) the spectral in-
tensity is a special case of the more general cospectral
intensity in that Ĉoξξ,j = Ŝξ,j , but as with variance and
covariance we will keep the distinction (also in the no-
tation) in line with convention in micrometeorological
literature (e.g. Kaimal and Finnigan (1994)). Hence-
forth we will leave the term folded as implicit in that
all of the subsequent discussion pretains only to folded
(co)spectra.

A representation of (co)spectral intensity is in itself not
very useful in that these represent (co)variance contri-
butions for discrete frequency bands as opposed to the
continuous (co)spectrum of turbulence (Taylor, 1938)
to which the concepts of (co)spectral similarity (Kaimal
et al. (1972) and Wyngaard and Coté (1972)) and the
intertial subrange (Kolmogorov, 1941) can be properly
attributed. Thereby following Stull (1988), noting that
the spectral intensity of the band f ∈ [fj −∆f/2, fj +
∆f/2] is the total contribution of all eddies in this band
towards the variance then the discrete spectral inten-
sity Ŝξ,j is related to the continuous spectral density Sξ
through

Ŝξ,j =

∫ fj+∆f/2

fj−∆f/2

Sξ(f) df , (2.78)

so we approximate the spectral density at fj , Sξ,j , as

Sξ,j '
Ŝξ,j
∆f

. (2.79)

Comparing (2.78) and (2.79) it is clear that the esti-
mated spectral density Sξ,j is simply the average of
continuous spectral density in the band f ∈ [fj −
∆f/2, fj + ∆f/2]. Moreover, we note that spectral
density has units of variance per unit frequency as op-
posed to spectral intensity which has units of variance.

Thereby, the continuous spectral density is related to the
segment variance through

ξ′2 =

∫ fn

f1

Sξ(f) df . (2.80)

The above reasoning also holds for the cospectral den-
sity, Coξχ, where we estimate the cospectral density at
frequency fj through

Coξχ,j '
Ĉoξχ,j

∆f
, (2.81)

with the continuous cospectral density being related to
the segment covariance through

ξ′χ′ =

∫ fn

f1

Coξχ(f) df . (2.82)

The cospectral density and its relation to the covariance
leads naturaly to the Ogive (Desjardins et al. (1989) and
Foken and Wichura (1996)), Ogξχ, which is defined as
follows for a given frequency fg ≤ fN

Ogξχ(fg) =

∫ fn

fg

Coξχ(f) df . (2.83)

Comparing (2.82) and (2.83) we note in particular that
for fg = f1 then Ogξχ(f1) = ξ′χ′. In words the Ogive
is a measure of the cumulative cospectral intensity in all
resolved frequencies f ≥ fg . Recalling that the period
of an eddy is the inverse of its frequency then Ogξχ(fg)
an equally be interpreted as the covariance contained
in all periods f−1 ≤ f−1

g . Thus, the Ogive is typi-
cally used with χ = w to measure the convergence (or
lackthereof) of a vertical turbulent flux within a given
averaging period. For numerical convenience we com-
pute the Ogive using the sum over cospectral intensities
starting at fg in that this is equivalent to the numerical
integral over cospectral density estimates starting at fg
(cf. (2.77),(2.81),(2.82)). Moreover, for economy we
do this by iteratively picking fg as the nearest fj to one
of the frequencies fC,i that are evenly spaced on a log-
arithmic scale starting at f1 and ending at fN as given
by (2.88), where i ∈ 1(1)90. That is for a given fC,i the
discrete Ogive, Ogξχ,i is approximated by

Ogξχ,i =

N∑
j=l

Ĉoξχ,j , (2.84)

where, for a given fC,i, the index l is the value of j
that minimizes the expression |fj − fC,i|. The sum in
(2.84) is carried out cumulatively for i ∈ 1(1)90 to yield
the approximate Ogive distribution for the frequency ar-
ray fC,i. Note that with the ogive distribution being
essentialy the cumulative sum over cospectral intensi-
ties we do not loose any of the covariance contributions
with 90 (as opposed to N ) entries since we retain the
total bandwidth fN . In particular it is obviously much
cheaper to compute cumulative the sum in (2.84) for
i ∈ 1(1)90 then for i ∈ 1(1)N (since N = 1.08×105).
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Contrary to the cospectral density estimates, no smooth-
ing or dealiasing is undertaken in the Ogive calcula-
tion since the aliased and unsmoothed cospectra con-
tains all the covariance contained in the signal (Stull,
1988). The Ogive of the spectra, Ogξξ,i, which cor-
responds the cumulative distribution of the spectral in-

tensity, is also computed by replacing Ĉoξχ,j in (2.84)
with Ŝξ,j . In the module Ogives of the cospectra are
computed for the conditioned samples ξ = u, v, Ts, ρv
with χ = w and Ogives for the spectra are computed
for ξ = u, v, w, Ts, ρv .

2.8.4 Dealiasing

Figure 2.21: A schemating representation of the effects of aliasing
with f0 = fN being the Nyquist frequency. The visualization is a
log-log plot of the true spectral density (thin solid line) and the re-
solved and aliased spectral density (thick solid line) against natural
frequency f . The variance contained in the true spectrum at f > f0,
hatched area to the right of the vertical line, is folded back in the re-
solved aliased spectrum falsely raising the spectral density at f < f0
as indicated by the hatched area to the left of the veritcal line. Figure
adopted from Kaimal and Finnigan (1994).

Having computed all the Ogives we need to deal with
what turns out to be mainly a cosmetic issue, namely
alisasing. Aliasing is related to the previously described
folding of the (co)spectra (Figure 2.20) and the fact that
we expect some portion of the true (co)variance to exist
in the unresolved frequencies f > fN (Stull, 1988)
as shown by the thin solid line in Figure 2.21. The
true (co)spectral density in these unresolved higher fre-
quencies fj+ is folded back into corresponding lower
frequencies fj creating an aliased spectrum as shown
by the thick solid line in Figure 2.21. So although the
total (co)variance is resolved by the (co)spectrum, the
estimated (co)spectral density in the resolved frequen-
cies fj is overestimated as an unknown portion of these
estimates actually belongs to the corresponding unre-
solved frequencies fj+ . Note, however, that aliasing is
not a problem if we know a priori that there is a well
defined cut off frequency above which there is zero (or
negligible) (co)spectral density and that this frequency
is resolved (Kaimal and Finnigan, 1994). That is if it is
less than or equal to the folding (Nyquist) frequency.

In our case such an ideal cutoff is nearly satisfied in
that we are sampling at fs = 20 Hz so our folding
frequency fN = 10 Hz is typically far into where we

expect to find the inertial subrange. Recall that in the
inertial subrange spectral density (cospectral density)
is proportional to f−5/3 (f−7/3) and so a rapid drop
off in the contribution towards the (co)variance is ex-
pected. Consequently, as noted in Kaimal and Finnigan
(1994), the aliasing of unresolved (co)variance is rarely
evident at frequencies lower than fN/2. Nonetheless
particularly in (co)spectra that are smoothed (using an
averaging procedure) aliasing is usually evident near
and at the Nyquist frequency where spectral density is
typically raised by a factor of two as shown schemat-
ically in Figure 2.21. As such, the effects of aliasing
often manifest as a sudden cesation of the inertial sub-
range as is clear from the red curves in Figure 2.22. It
is worth emphasizing that aliasing would be a problem
even if we did not fold our spectra; the (co)spectral den-
sity is always unresolved for f > fN and our unfolded
(co)spectral estimates would just be the mirror image
form of the folded (co)spectral estimates as shown in
Figure 2.20. In fact in the unfolded representation, with
falsely large estimates at f > fN , we are even fur-
ther from the true form of the (co)spectrum then in the
folded case.

To deal with aliasing we simply apply a transfer func-
tion, effectively a dealiasing filter, to our (co)spectral
density estimates that damps these at f . fN . An ex-
ample of a traditional dealiasing filter is given by the
transfer function (Gobbi et al., 2006)

Hr,j =

(
1− e−∆t/τr

)2
1 + e2∆t/τr − 2e∆t/τr cos (2πfj∆t)

, (2.85)

where τr is the time constant of the recursive filter. This
is the transfer function corresponding to the classic ap-
proach of applying a low pass digital recursive filter in
the time domain through to eliminate aliasing prior to
Fourier analysis (e.g. Moore (1986))

ξ̃k =

(
1− ∆t

τr

)
ξ̃k−1 +

∆t

τr
ξk (2.86)

for k ∈ 2(1)NT where ξ̃k is the low pass filtered version
of ξk. A frequent choice is τr satisfying ∆t/τr = 0.8
(Gobbi et al., 2006); this is a good compromise between
not damping (co)spectral densities at frequencies unaf-
fected by aliasing f ≤ 0.5fN (Kaimal and Finnigan,
1994) whilst still sufficiently damping estimates at fre-
quencies that are significantly aliased (f . fN ). Al-
though such a filter performs reasonably well, whether
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it is applied in the time domain through (2.86) or di-
rectly in the spectral domain by explicitly using the
transfer function in (2.85), it still damps the estimates
at f . fN too much (see both Gobbi et al. (2006) and
Figure 7.8 in Kaimal and Finnigan (1994)). As a conse-
quence Gobbi et al. (2006) developed a dealisaing filter
with all the desireable qualities of the recursive filter
but without the excessive damping at f . fN . Such a
filter can be applied directly to the (co)spectral density
estimates through application of the dealiasing transfer
function (Gobbi et al., 2006)

HD,j =
[1 + cos (πfj∆t)]

2

4
,

through the operations

C̃oξχ,j = HD,jCoξχ,j , S̃ξ,j = HD,jSξ,j , (2.87)

for j ∈ 1(1)N . In our module the (co)spectral esti-
mates are dealiased through (2.87) the result of which
is shown (after smoothing) by the green curves in Fig-
ure 2.22. Note that after dealiasing the integral over
resolved (co)spectral densities no longer yields the en-
tire segment (co)variance having shifted a small por-
tion of the (co)spectral intensity to the higher unre-
solved frequencies. This is why the Ogives are not cal-
culated from t he dealiased (co)spectra. Nonteheless,
after dealiasing the resolved (co)spectral densities are
closer to the true (co)spectral densities for the same fre-
quency range (f ∈ [f1, fN ]) providing a more realistic
representation of the high frequency extent of the iner-
tial subrange. To summarize, the dealisaing procedure
is mainly cosmetic in providing a more accurate rep-
resentation of (co)spectra for f . fN where the true
(co)spectral density is quite small being well into the
intertial subrange (Figure 2.22).

2.8.5 Smoothing

The last step is to smoothe the spectral estimates be-
fore these are writen to the output file. The purpose
of smoothing is two-fold in that not only is the re-
sult easier to interpret visually (Kaimal and Finnigan,
1994), unsmoothed spectra being inherently noisy (gray
curves in Figure 2.22), but we also reduce the dimen-
sion of the output arrays by several orders of magni-
tude easing the burden on storeage capacity. As op-
posed to the commonly used splicing method proposed
in e.g. Kaimal and Finnigan (1994), where spectra
of high and low pass filtered segments are combined,
the method we adopt is more direct and consequently
alot simpler to implement. It is worth emphasizing this
method, adopted from the seismology literature (Konno
and Ohmachi, 1998), is a novel and convenient ap-
proach to spectral smoothing. To our knowledge in
the field of micrometeorology we are the first to apply
this particular smoothing method. First we define a fre-
quency domain that is evenly spaced on a logarithmic
scale with the same total bandwidth as our current fre-
quency domain. We will denote these discrete frequen-
cies as fC,i and subsequently define the i ∈ 1(1)NC
entries (N.B. index i should not be confused with the
imaginary unit i) as follows

fC,i = f110(i−1)∆f , (2.88)

where

∆f = log10

(
fC,i+1

fC,i

)
=

1

NC − 1
log10

(
fN
f1

)
,

is the logarithmically constant frequency increment. It
is readily seen that fC,1 = f1 and fC,NC = fN by
definition; so we do not loose any resolution as the
total bandwidth remains the same (up to the Nyquist
frequency fN ). The logarithmic spacing also helps
the visual interpretation as spectra are typically dis-
played in log-log plots allowing for easy identification

of any power law behavior (Stull, 1988). Next we de-
fine a smoothing window, W (KO)

ij , based on the work of
Konno and Ohmachi (1998) as follows for i ∈ 1(1)NC
and j ∈ 1(1)N

W
(KO)
ij =


1 if βij = 0

[sin (βij) /βij ]
8 otherwise

, (2.89)

where βij = b log10 (fj/fC,i) and b is a positive
smoothing parameter producing smoother spectra for
lower b values.We subsequently normalize this window
through

W̃
(KO)
ij =

W
(KO)
ij∑J

j=1W
(KO)
ij

,

then smoothe the spectrum S̃ξ, (or cospectrum C̃oξw)
via left multiplication by the matrix W̃ (KO)

ij :

S̃ξ,i =

N∑
j=1

W̃
(KO)
ij S̃ξ,j .

Essentialy this smoothing operation, for a given fC,i,
corresponds to a weighted mean of spectral estimates at
frequencies logarithmically centered on the frequency
fC,i; with increasing weight for unsmoothed spectral
estimates at frequencies fj close to fC,i on a logarith-
mic scale. Through trial and error we found b = 10,
which corresponds to the actual total bandwidth, to
be the best choice for the smoothing parameter when
NC = 90 central frequency bands fC,i are used. Note
that in (2.89) we modified the exponent from its origi-
nal value of 4 (as given in Konno and Ohmachi (1998))
to 8 in order to provide narrower lobes in the smoothing
window, a logarithmically weighted mean, for a given
fC,i accounting for the expected rapid dropoff in the in-
tertial subrange such that estimates at frequencies over a
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decade away have negligible influence on the smoothed
mean estimate. For the direct result of smoothing, in
the absence of a dealiasing filter, the reader is free to

compare the gray and red curves for each panel in Fig-
ure 2.22.
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Figure 2.22: Log-log representation of various normalized estimated cospectra and spectra as functions of natural frequency f [Hz] based
on conditioned sampled time series in the 3 hour segment on the 13.08.2007 under unstable stratification. In each panel the grey lines are the
unsmoothed and aliased estimates, the red lines are the smoothed aliased estimates, the blue lines the smoothed and dealiased (after Kaimal
and Finnigan (1994)) estimates and the green lines are the smoothed and dealised (after Gobbi et al. (2006)) estimates as output by the module.
The expected slope of the inertial subrange in each panel, −2/3 for normalized spectra and −4/3 for normalized cospectra, is represented
by the dashed black line is included for orientation.

Before finishing of the section it is worth emphasiz-
ing the (co) spectral estimates output by the module.
We will drop the clumsy ˜ notation leaving smooth-
ing and dealising implicit wherever it is applied. The
outputs are for the domain dictated by the logarithim-
ically evenly spaced array fC,i with i ∈ 1(1)90 as
given by (2.88). All the (co)spectral estimates are
computed for conditioned overlapping 3 hour seg-
ments advanced one block average (30 minutes) at a
time where only segments with ≤ 10% spikes, along
with associated timestamps, are included in the out-
put. In total 3 × 103 different active 3 hour seg-
ments are output by the module based on the avail-
able raw data that pass the QC. The output Ogive
distributions are Ogρvw, OgTsw, Oguw, Ogvw based on
the cumulative sum over cospectral intensities and
Ogρvρv , OgTsTs , Oguu, Ogvv, Ogww based on the cu-

mulative sum over spectral intensities. The output spec-
tral densities are the dealiased and smoothed esti-
mates Su, Sv, Sw, STs and Sρv . Finally, the output
cospectral densities are the dealised and smoothed esti-
mates Couw, Covw, CoTsw and Coρvw. Example spec-
tra and cospectra produced by the module are shown
by the green curves in Figure 2.22 along with their
smoothed aliased counerparts (blue curves) and un-
smoothed aliased counterparts (gray curves). Uilti-
mately (co)spectra allow us to identify important fea-
tures of turbulence that are invisible from a time series,
such as the scale of the eddies that contribute the most
towards the (co)variance and the location and extent of
inertial subranges (Kaimal and Finnigan, 1994). In ad-
dition through Ogive analysis (Section 3.4) it is possible
to verify whether or not fluxes converge within the stan-
dard 30 minute averaging period (Foken et al., 2006).



Chapter 3

Results & Discussion

In the ensuing chapter we will present some of the
results obtained after processing the Bayelva EC data
through our module. The complete module output is not
presented for two reasons. Firstly, around 100 different
variable arrays are output by the module, and we sim-
ply do not have the space or time to discuss all of these.
Secondly, we wish to focus on on as of yet undiscussed
results and not restate the findings of Westermann et al.

(2009) and Lüers et al. (2014). These novel results in-
volve: 1) Block quality flags; 2) Flux uncertainties; 3)
An intercomparison of the fluxes produced by our mod-
ule and TK2; 4) Ogive analysis; 5) Validating model
cospectra against observed cospectra. These results will
be discussed in unison with their presentation as we find
such an approach to be the most natural.

3.1 Quality Flags

Fraction of Blocks Flagged
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Figure 3.1: Blocks flagged, as a fraction of 7888 which is the to-
tal number of 30-minute averaging blocks available, by the various
flagging categories in the QC. Each category is displayed as a red-
blue-green bar triplet. For each triplet there is one bar for the frac-
tion of each integer quality flag: Highest quality flag (f = 0) fractions
in green, medium quality (’soft’) flag (f = 1) fractions in blue and
finally poor quality (’hard’) flag (f = 2) fractions in red. The flagging
categories represented by each triplet are all defined in Section 2.6.

Herein we will present and discuss the results of the ex-
tensive QC flagging procedure outlined in Section 2.6.
The result of the entire procedure is summarized graph-
ically in Figure 3.1. Recall that the combined (30
minute) block quality flag, fB , takes the maximum

value of all the individual flagging categories for a
given block and is ultimately what we use to hard flag
and discard blocks from further analysis. Thereby, it is
encouraging that the sum of the category hard flagged
fractions exceeds the combined block quality hard flag
fraction by 0.08 indicating that there is considerable
overlap in the category hard flags. This is not surpris-
ing, for example, both the w-ITC flag, being based on
MOST, and the stationarity flag are likely to hard flag
many of the same highly transient blocks.

It is also clear from Figure 3.1 that the stationarity
flag is by far the strictest category operating across all
stabilities (as opposed to the ITC flag) and hard flag-
ging 11% of the blocks. For comparison the category
with the closest hard flag fraction, the faulty flag, only
flagged around half this number of blocks. Despite this
the fraction of blocks hard flagged based on the rela-
tive nonstationarity test is, as previously discussed, in
general agreement with other investigations at Bayelva
(Westermann et al. (2009) and Lüers et al. (2014)).

On the other side of the scale is the skewness-kurtosis
flag which is the least severe in terms of its hard flag
fraction, and is not included in the TK2 (or TK3) QC
procedures. Nonetheless, it was through a late imple-
mentation of this flag that we were able to system-
atically hard flag clearly unphysical fluxes (absolute
sensible heat fluxes in excess of 600Wm−2) that passed
the remaining quality controls. Furthermore the flow
distortion hard flag, occurring when the wind direction
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is in the closed sector, occurred for ' 3% of the blocks
for our batch of data which is in good agreement with
the results of Westermann et al. (2009) based on a dif-
ferent period (March 2008-March 2009). The vertical
velocity hard flag, blocks where |w| ≥ 0.15, also oc-
curred for ' 3% of the blocks. Such an infrequent
occurrence is to be expected after having successfully
applied the planar fit of Wilczak et al. (2001). As with
the skewness-kurtosis flag, the vertical velocity flag is
crucial in isolating abnormal periods, in this case with
strong advection, that are potentially not picked up by
the remaining categories.

Finally the faulty flag, being based on the plausibility
and MAD tests identifying spikes, hard flagged around

6% of the blocks. Most of these instances were flagged
for implausibility due to the absolute humidity reported
by the LI-7500 drifting to unphysical negative values.
For the remainder the MAD test proved an invaluable
tool for identifying isolated spikes amongst all the mea-
sured variables, allowing these to be ignored both in
the block averaged statistics and the (co)spectral anal-
ysis. As for the portion of blocks flagged by the com-
bined block quality flag: 19% were discarded having
been hard flagged as poor quality, 38% received a soft
flag as medium quality and the remaining 43% were of
high quality. This is in general agreement with the flag-
ging portions outlined in other EC investigations such
as Nordbo et al. (2012) and Mauder et al. (2013).

3.2 Relative Flux Uncertainties

In the following we will present the result of the flux
sampling uncertainty analysis for the highest quality
(fB = 0) sensible and latent heat fluxes produced by
the module. Recall that both the fluxes and their rel-
ative uncertainties are 30 minute block averages. As
outlined in Section 2.6.7, we arrive at the relative flux
sampling uncertainties through (2.69) and (2.70) using
a two step approach. The method of Finkelstein and
Sims (2001) is used to estimate the variances of co-
variances (Appendix A.5) and subsequently we follow
Billesbach (2011) by accounting for the propagation of
uncertainty (Appendix A.6) through flux corrections.
We re-emphasize that the uncertainty is considered to
be solely due to the random stochastic error associated
with the inadequate sampling of the flux within an av-
eraging period discussed in Lenschow et al. (1994) and
Mauder et al. (2013). So other sources of error, includ-
ing systematic error, are not estimated.

It is also worthwhile discussing the following: 1) Are
the relative uncertainties considerable? 2) Does the rel-
ative uncertainty depend on the magnitude of the flux
itself? 3) Is there a dependence on stability? To ques-
tions 2) and 3) Finkelstein and Sims (2001) concluded
that the answer was no, although the former acknowl-
edged that only relatively large fluxes with magnitudes
in excess of 10 Wm−2 were considered. We will see if
our results support the conclusions of the former.

In Figure 3.2 the estimated block relative uncertainties
for the respective fluxes are plotted as functions both of
flux magnitude (upper panels) and stability (lower pan-
els). Not included in the Figure are blocks with relative
uncertainties of at least unity. For the latent/sensible
heat flux such blocks occurred only 5%/7% of the time;
the average of the absolute fluxes for these blocks was
2 Wm−2/2 Wm−2 compared to 12 Wm−2/19 Wm−2 for

all blocks. Thereby, blocks with relative uncertainties
in excess of unity are generally associated with low ab-
solute flux values. Mahrt (2010) points out that in low
flux conditions where only a few sporadic events typi-
cally contribute to the flux, the estimation of uncertainty
based on the variance of the covariance is itself quite
uncertain. So, uncertainties for low flux values should
be interpreted with this in mind, even if estimating the
uncertainty of the uncertainty is beyond the scope of
this work. To avoid possible confusion by a statement
such as ’the uncertainty of the uncertainty is large’ we
do not mean that the uncertainty itself has a large value,
but rather that its estimated value is in itself uncertain.
In the upper panels of Figure 3.2 this ’uncertainty of the
uncertainty’ is evident from the relatively large scatter,
as shown by the binned standard deviations, in the rel-
ative uncertainty for low absolute fluxes. Conversely
for the uncertainties in larger absolute fluxes the binned
standard deviation is nearly cut in half. As opposed
to Finkelstein and Sims (2001) we still include uncer-
tainty estimates for absolute fluxes down to 1 Wm−2

in the hope that these estimates still provide reasonable
approximations of the actual uncertainty.

Continuing we still focus our attention to the upper
panels of Figure 3.2 when discussing the question of
whether or not the relative uncertainties are dependent
on the magnitude of the flux. As noted, Finkelstein
and Sims (2001) found that the absolute uncertainty was
proportional to the absolute flux implying that the rela-
tive uncertainty is independent of the absolute flux mag-
nitude. It can be seen that for both fluxes the bin aver-
aged relative uncertainties are near constant, on the or-
der 0.1, for absolute fluxes in excess of 20 Wm−2. So,
at least for the larger flux estimates our results are in
agreement with those of Finkelstein and Sims (2001).
If we instead start at the lowest absolute flux, then for

1A straight line with negative slope in a linear-logarithmic representation is the equivalent of logarithmic decay.
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both latent and sensible heat flux the bin averaged rel-
ative uncertainty decays logarithmically1 for increasing
absolute flux values up to around 20 Wm−2. Thus, for

low absolute fluxes the relative flux uncertainty is appar-
ently not independent of the magnitude of the flux, al-
though as mentioned the scatter is considerably greater.

Figure 3.2: Relative flux uncertainties for the latent heat flux (σQE/|QE |, left panels) and sensible heat flux (σQH /|QH |, right panels).
Only fluxes with the high quality combined block flag (fB = 0) are considered. The relative flux uncertainties are displayed as functions of
the logarithmically scaled absolute value of the corresponding heat flux (top panels) and the M-O stability parameter ζ (bottom panels) on
a linear scale. Pinks indicate the highest density of points whereas reds are the scarcest densities. The black ’error bars’ show the mean
(diamond) plus minus one standard deviation (horizontal bars) of relative flux uncertainty for 10 evenly spaced (logarithmically top panels,
linearly bottom panels) bins of absolute flux (top panels) and ζ (bottom panels). For visualization purposes only relative flux uncertainties for
absolute fluxes ≥ 1 Wm−2 and stabilities |ζ| < 2 are included.

Next, we home in on the lower panels in Figure 3.2 that
show the dependence of relative uncertainty on stability,
ζ, for the respective fluxes. As in the upper panels there
is considerable scatter in the uncertainty estimates. Us-
ing the binned standard deviations as a guide there does
not seem to be a systematic dependence of scatter on
stability, although the scatter appears to be somewhat
smaller overall for unstable stratification when com-
pared to neutral and stable stratification. Large scatter
for neutral stratification is expected as here the mag-
nitude of fluxes is typically small, by definition the
perfectly neutral surface layer has zero buoyancy heat
flux (Stull, 1988), and as discussed there is considerable

uncertainty in the relative uncertainty estimates for low
fluxes.

What is striking is that the relative uncertainty is not
symmetric about ζ = 0. On the unstable side in both
panels starting at near neutral stratification and mov-
ing towards increasingly unstable stratification there ap-
pears to be, if we ignore the most unstable bin, a decay
towards a constant value of the bin averaged relative un-
certainty. Conversely on the stable side in both pan-
els, starting at near neutral stratification and moving to-
wards increasingly stable stratification, the bin averaged
relative uncertainty initially increases and then levels
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off and decreases again for ζ > 1. The asymmetry is
especially clear for |ζ| < 1 in both panels where the
bin averaged relative uncertainty increases as we transi-
tion from the unstable to the stable side reaching around
double the moderately unstable value at moderately sta-
ble stratification. This is in contrast to the results of
Finkelstein and Sims (2001) where no clear stability
dependence was found. We are somewhat cautious in
claiming that Figure 3.2 provides direct evidence of the
relative flux uncertainty having a stability dependence

due to the large scatter. Nonetheless, Finkelstein and
Sims (2001) note that small nocturnal fluxes in stable
stratification where the contributing eddies are sampled
infrequently undoubtedly lead to a large relative flux un-
certainty. Moreover the former point out that the exclu-
sion of small fluxes in their analysis probably leads to
a negative bias (underestimation) of their average rela-
tive flux uncertainty estimates which could explain why
they found no stability dependence.

σQH/|QH |
Stability Mean Standard Deviation CV Number of Blocks Fraction < 0.25
Neutral |ζ| ≤ 0.1 0.173 0.177 1.023 2542 0.80
Unstable ζ < −0.1 0.138 0.125 0.906 1493 0.92
Stable ζ > 0.1 0.272 0.190 0.700 1853 0.56
All 0.195 0.178 0.913 5888 0.76

σQE/|QE |
Stability Mean Standard Deviation CV Number of Blocks Fraction < 0.25
Neutral |ζ| ≤ 0.1 0.168 0.155 0.923 2427 0.82
Unstable ζ < −0.1 0.146 0.121 0.829 1457 0.90
Stable ζ > 0.1 0.275 0.177 0.644 1219 0.54
All 0.187 0.160 0.856 5103 0.78

Table 3.1: Simple statistics for the relative uncertainties of the sensible heat flux (σQH /|QH |, top panel) and the latent heat flux
(σQE/|QE |, bottom panel) for four stability categories at Bayelva. In order (left to right) the columns represent the category mean, stan-
dard deviation, coefficient of variation (CV), number of blocks and the fraction of blocks within the category where the relative uncertainty is
< 0.25. These statistics are based on the results presented in Figure 3.2.

One question remains to be discussed, namely: 1) Are
the relative flux uncertainties considerable? To answer
this question in a simple manner we split the relative
uncertainties into four stability categories and consider
simple statistics for each of these. The result is pre-
sented in Table 3.2 from which it is evident that for
the respective categories the relative uncertainties are
quite similar for the sensible and latent heat flux. For
both fluxes the mean relative uncertainty is largest in
the stable category, smaller in the neutral category and
smaller still in the unstable category at just over half the
stable value. The same is true for the standard devia-
tion in the relative uncertainty, although the difference
between the stable and the unstable categories is not as
large. Subsequently the same holds for the coefficient
of variation (ratio of standard deviation to the mean)
which is a measure of the relative scatter of the relative
uncertainties in each category. The CV is large across
the board being near or above unity. It is somewhat en-
couraging that the lowest, albeit still large, CV occurs
for stable stratification; indicating that the stable uncer-
tainties are less scattered than the other two categories.
As for the number of blocks in each category, which are
different for the two fluxes due to the exclusion of abso-
lute fluxes that are less than unity, the neutral category
is the most frequent, while there is a near even split

between the number of blocks in the unstable and stable
categories. Finally for the fraction of blocks where the
relative uncertainty is below 0.25, for both fluxes this
fraction is largest for unstable stratification followed by
neutral stratification and finally stable stratification.

Overall we have that the relative flux uncertainties es-
timated for Bayelva are on average around 0.2 for both
sensible (0.195) and latent heat flux (0.187). This is
in line with (give or take 0.1) the averaged results of
Finkelstein and Sims (2001) and Mauder et al. (2013)
in which multiple EC sites were considered as well
as Billesbach (2011) and Nordbo et al. (2012) both of
which considered single EC sites. We find such an
agreement encouraging in that we expect the long term
average relative flux uncertainties to be around the same
magnitude regardless of the location of an EC site. This
is because the positive definite block flux uncertainty es-
timates related to stochastic error should ’average out’
to a constant value over a long enough period (e.g. one
year). As pointed out in Mauder et al. (2013), flux sam-
pling uncertainty estimates are useful in that these pro-
vide modelers with quantitative estimates of the preci-
sion of observed parameters used in data assimilation.
To our knowledge no analysis such as ours, in partic-
ular accounting for uncertainty propagation, has previ-
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ously been undertaken for an Arctic EC site. Thereby
we hope that the results in Table 3.1 can provide a use-
ful reference to anyone wishing to assimilate EC data
from similar sites into a model, particularly coupled
land-atmosphere models. Moreover the uncertainty es-
timates could be useful when comparing the modeled

and observed surface energy balance as is done in e.g.
Aas et al. (2015). To finish off the section, whether or
not the relative uncertainties are considerable will de-
pend on the context in which the fluxes are used and the
desired precision.

3.3 Module & TK2 Intercomparison
Primarily as a sanity check for our module output, we compared our flux estimates to those produced by the TK2
package (Mauder and Foken, 2004). The results of TK2 were available to us both for the period presented in
Westermann et al. (2009), discussed in Section 1.3.3, as well as a pilot run with the same settings for the earlier
period of 02.04.2007 to 14.09.2007 that we are studying. For the comparison it is of course the pilot run, with
flux estimates that are synchronized with ours, that is relevant. As is typical for EC software intercomparisons,
e.g. Mauder et al. (2008) and Fratini and Mauder (2014), we present the result in the form of a linear regression
as depicted in Figure 3.3.

Figure 3.3: Synchronous 30 minute block averaged flux estimates produced by TK2 (abscissa) and by our module (ordinate) in the period
02.04.2007 to 14.09.2007 at Bayelva. Individual flux estimates are displayed as colored points where pinks (reds) indicate the densest (spars-
est) concentration of points. In each panel the dashed black line is the one to one line while the thick solid black line is the result of a linear
regression, with the equation and linear correlation in the corresponding panel title. Only fluxes with the highest quality flag in both packages
are included: 1315 latent heat fluxes (QE ) in the left panel and 1567 sensible heat fluxes (QH ) estimates in the right panel.

We recall from Section 1.3.3 that the TK2 runs when
combined with available energy (global radiation less
the ground heat flux) measurements resulted in an aver-
age surface energy imbalance in excess of 50% and an
energy balance ratio on the same order for hourly fluxes
in the period March 2008 - March 2009. It is unlikely
that the available energy estimates were significantly
overestimated (Foken, 2008a), even with storage unac-
counted for. We can make such a claim because even
the diurnal average flux estimates still had a low (cf.
Wilson et al. (2002)) energy balance ratio (74%). This
corroborates the widely held view (e.g. Foken (2008a)
and Leuning et al. (2012)) that the EC method tends to
underestimate the magnitude of turbulent fluxes.

Why are we repeating ourselves? Well, the above

discussion implies that our module would outperform
TK2 in the case that our flux estimates are greater
in magnitude. Clearly, from the linear regression in
Figure 3.3 this is not the case, on average our mod-
ule has somewhat lower absolute flux estimates than
TK2. Even so, the estimates from TK2 and our module
share a relatively high linear correlation, R = 0.88 and
R = 0.96 for the latent and sensible heat flux, respec-
tively, which is encouraging. Furthermore, our sensi-
ble heat flux estimates are on average quite close to the
TK2 estimates, underestimating these by only 7%. In
fact, the small difference in sensible heat flux estimates
and high correlation are comparable to those found in
other EC package intercomparissons for open path sys-
tems such as Fratini and Mauder (2014). For the latent
heat flux, the agreement is not as good with our module
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on average underestimating the TK2 estimates by 24%.
With such a high linear correlation, albeit lower than
for the sensible heat flux, this implies that the disagree-
ment is fairly systematic. We will get back to possible
explanations for this discrepancy. It was somewhat un-
fortunate that available energy measurements were not
available for the majority of the period we considered in
our study. Despite this, the performance of the module
relative to TK2 provides an indication of how well we

closed the surface energy balance. In that we underesti-
mated the fluxes relative to TK2, the average energy in
imbalance in our estimates is likely to also be in excess
of 50%. Of course, it was not our goal to close the en-
ergy balance or reproduce TK2 estimated. Instead we
wished to go beyond standard EC output and investi-
gate the reasons for a lack of closure associated with
deficiencies in the EC method under difficult conditions
that can arise under stable stratification.

Processing Step TK2 Module

Despiking
• Standard deviation test
(Vickers and Mahrt, 1997).

• Median absolute deviation test
(Mauder et al., 2013).
• Skewness-Kurtosis test
(Vickers and Mahrt, 1997).

Rotations

• Double rotation
(Kaimal and Finnigan, 1994)
(w = v = 0).

• Planar fit (Wilczak et al., 2001)
(< w >= 0).
• Natural ensemble streamline
frame (v = 0, w 6= 0).

Flux Corrections
• Integral cospectral
attenuation (Moore, 1986).

• Analytical cospectral
attenuation (Massman, 2000).

Quality Controls

• Integral turbulence characteristics
test for w (Thomas and Foken, 2002).
• Estimation of flux uncertainty
(Billesbach, 2011).

Table 3.2: The differences in the EC processing steps between the TK2 package (Mauder and Foken, 2004), as run by Westermann et al.
(2009), and our module runs. Any step not listed was employed in both the TK2 runs and our module runs.

To isolate the reason for the systematic underestima-
tion of latent heat flux in our module when compared
to TK2, it is instructive to contrast the two processing
packages. All the differences between the two are listed
in Table 3.2. Although there are quite a few, some of
these have negligible effect on the flux. Most of those
that do affect the latent heat flux should have the same
effect on the sensible heat flux on which there is better
agreement between the two packages. This leads us to
the conclusion that the discrepancy in latent heat flux
is due to the cospectral attenuation corrections. The
reason being that this is the only processing step that
is both performed differently in the two packages and
corrects the latent and sensible heat flux separately us-
ing unique system transfer functions (cf. Section 2.5.2).
Even though the attenuation correction factor for latent
heat flux that we calculate through the method of Mass-
man (2000) is larger than that for sensible heat flux (Fig-
ure 2.15), it is probable that we are still underestimat-
ing the attenuation of the latent heat flux. Visual ev-

idence of the relatively strong high frequency cospec-
tral attenuation suffered by the latent heat flux is pro-
vided in Figure 3.6, and it is unlikely that correction is
large enough to systematically account for this. In TK2
the integral method of Moore (1986) is applied when
correcting for attenuation, in which the lateral sensor
separation is accounted for. Both our module and TK2
reconcile attenuation due to longitudinal separation, i.e.
the component of the separation vector in the direc-
tion of the mean wind, through the maximum cross-
correlation technique (Section 2.5.1). Therefore, it is
possible that the attenuation resulting from lateral sen-
sor separation, due to eddies moving across the mean
wind direction, could play a more important role then
we originally thought. Applying a lateral separation
transfer function in the method of Massman (2000) is
a possible solution, but unfortunately we did not have
the time to implement and test its effect. Another rea-
son that the method of Moore (1986) could provide a
greater correction is that more realistic cospectral mod-
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els are considered (see Mauder and Foken (2004)) than
the simplified form proposed by Horst (1997) that we
used in Section 2.5.2. We emphasize that despite our
apparent underestimation of cospectral attenuation, the
effect on relative flux uncertainties is negligible, while

there is no effect at all on the observed cospectra (and
Ogives) that are produced by our module. In particular,
the produced cospectra are not in any way corrected for
attenuation as it is the instantaneous values, as opposed
to corrected fluxes, that are used in their calculation.

3.4 Ogive Analysis

In the following we will investigate whether or not our
fluxes converge within the traditional 30 minute aver-
aging period used in our module. This is the averaging
period typically employed in EC campaigns (Lee et al.,
2006); including the work of both Westermann et al.
(2009) and Lüers et al. (2014). Such an investigation
is possible through Ogive analysis first applied to EC
studies by Desjardins et al. (1989). Our method for pro-
ducing Ogives is outlined in Section 2.8. As previously
discussed the Ogive, the cumulative cospectrum, is a

measure of the cumulative covariance (flux) contained
within frequencies (periods) greater than (lower than)
the frequency (period) of the Ogive. Only the turbulent
fluxes involved in the SEB are considered herein. Ogive
analysis, despite traditionally not being a standard part
of the EC method, has recently been applied success-
fully in a range of EC studies, e.g. Foken et al. (2006),
Nordbo et al. (2012), Charuchittipan et al. (2014) and
Sievers et al. (2015).

Figure 3.4: Schematic relationship between the Ogive (cumulative cospectrum) as a function of frequency (lin-log) in the lower panels
(B,D,F) and the cospectral density as a function of frequency (log-log) in the corresponding upper panels (A,C,E). Non turbulent low frequency
flux contributions (e.g. drainage flows or gravity waves) and high frequency instrumental noise (vibrations) and dampening (attenuation) flux
contributions are shown in blue while true turbulent flux contributions are shown in red. Left panels (A,B): The ideal case with a clear
spectral gap separating surface layer turbulence from low frequency influence, with ideal instrumental response. Middle panels (C,D):
Typical case with a less distinct cospectral gap and some instrumental problems. Right panels (E,F): Relatively strong non turbulent low
frequency contribution and some instrumental problems. Note that the low frequency contribution can be of opposite sign to the turbulent flux
contribution. In each panel dashed vertical lines correspond to a 30 minute averaging time (left line) and a Nyquist frequency of 10 Hz (right
line). Figure adopted from (Sievers et al., 2015).

Ogive analysis allows us to verify if our fluxes converge
to an asymptote within our averaging period (Charu-
chittipan et al., 2014). If the flux does converge at a fre-
quency whose inverse is our averaging period (left panel
in Figure 3.4) then this is evidence of a clearly defined
cospectral gap (Sievers et al., 2015). The cospectral gap
represents a minimum in the cospectrum that marks a
clear separation between turbulent contributions to the
flux from non turbulent low frequency (NTLF) con-
tributions such as advection (Stull, 1988). Moreover,
convergence implies not only that such a gap exists but

that the high pass filtering operation of removing the
block average successfully attenuates all low frequency
influences beyond this gap and provides a faithful rep-
resentation of the ’true’ ensemble averaged turbulent
flux (Wyngaard, 2010). Crucially, Ogive analysis is a
powerful tool for identifying departures from the ’ide-
alized’ surface layer assumed by the EC method and
required for estimating the SEB, NEE as well as pro-
viding universal forms for MOST (Section 1.3). As
noted in Foken (2008a) the low frequency contributions
that lead to an Ogive diverging at lower frequencies
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(bottom right panel in Figure 3.4) may not only be due
to non turbulent mechanisms such as drainage flows
and gravity waves, but also unresolved slowly moving
larger scale turbulence in the form of ’organized turbu-
lent structures’. Thereby, the cospectral gap may not
be as well defined as in the classical theory presented
in e.g. Stull (1988); there is typically a considerable
overlap between ’turbulent’ and ’non-turbulent’ contri-
butions to the Ogive (Sievers et al., 2015). So, although
the Ogive can tell us if our flux converges in an averag-
ing period, if the Ogive does not converge there exists
no accepted method for separating the unresolved low
frequency turbulent and non turbulent contributions to
the flux from one another (Sievers et al., 2015). Hence
the Ogive is useful for identifying periods where the EC
method works, but correcting the flux in the case that
the Ogive does not converge may be far from trivial.
Nonetheless, in the case that the Ogive clearly con-
verges at lower frequencies then it is possible to correct
the flux value by simply setting it to the Ogive (cu-
mulative flux) at these low frequencies (Charuchittipan
et al., 2014). Here our goal is not to correct the flux but
to present a classification of the 2790 Ogives, for both
sensible and latent heat flux, that we calculated for the
Bayelva site. In particular we are interested in address-
ing the question of: How often do the fluxes converge
within 30 minutes and is there a clear stability depen-
dence on the fractional rate of Ogive convergence?

Before proceeding we define our normalized Ogives,
denoted Ôgξw, as the Ogive normalized by its maxi-
mum or minimum, whichever is greater in magnitude,
i.e.

Ôgξw(f) =
Ogξw(f)

SAM
. (3.1)

Where the expression2

SAM = sgn {max(Ogξw) + min(Ogξw)}max (|Ogξw|) ,
(3.2)

returns the sign of the Ogive at the frequency where
the absolute value of the Ogive corresponds to its max-
imum absolute value. So, at the frequency where the
Ogive peaks (in the absolute sense) the value of the
normalized Ogive is unity. At the same time the nor-
malized Ogive can take either sign away from its peak
just like the Ogive itself. This is a more instructive (al-
beit cumbersome) definition for our purposes then that
in Foken et al. (2006) where a single signed normalized
Ogive is defined as the absolute Ogive normalized by its
maximum. Such a definition will lead to confusion and
missidentification of the Ogive cases to be described.
For example (cf. Figure 3.4), in the presence of a SAM
the mid frequency range combined with a relatively
strong but oppositely signed NTLF the Ogive may take
a maximum in the mid frequency range and then change
sign and approach the same magnitude at the low fre-
quency end. With our definition it is possible to identify

such instances. Conversely, with the definition of Foken
et al. (2006) these instances may unwittingly be classed
as convergent Ogives even though there is relatively
strong (and oppositely signed) NTLF influence. Siev-
ers et al. (2015) point out that the occurrence of such
’reversal’ cases can apparently not be explained by any
existing theory. In particular these cases challenge the
idea that the significant contributions towards the flux
are always of the same sign regardless of eddy size.

As noted Secion 2.8 we verified that the values of all
of our calculated 3 hour Ogives at the first harmonic
(frequency whose inverse is 3 hours) matched the cor-
responding (conditioned) 3 hour segment covariances
(or variances depending on the Ogive). Thereby, thanks
to this control, we are fairly confident that no error was
made in the Ogive calculation as the calculated value
corresponds to that given by definition at the first har-
monic (Stull, 1988). Subsequently we truncated our 3
hour calculated Ogives by removing frequencies corre-
sponding to periods beyond 1 hour. We do so because
these longer periods have few cycles within our 3 hour
segments and are (apart from the first harmonic) too
poorly resolved to be representative (Kaimal and Finni-
gan, 1994). Furthermore it is the Ogive value at 1 hour
that we compared to that at our averaging period of
30 minutes to see if the Ogive converges. Hence the
truncation is not problematic as we are only interested
in frequencies f−1 ≤ 1 hour. So, when referring to
Ogives, as well as their SAM, from here on it is under-
stood that these only include periods up to 1 hour.

Next, in part following Foken et al. (2006), we split the
behavior of the Ogive into one of four cases: 1) Conver-
gent, 2) Extremum, 3) Divergent and 4) Reversed. We
begin with fourth case, not considered in Foken et al.
(2006), this is the reversed Ogive that we classify as
any Ogive that satisfies

Ôgξw(f) ≤ −0.1 .

So a reversed Ogive is one for which there exists a fre-
quency at which the Ogive value is in magnitude more
than one tenth of the SAM (see (3.2)), but of the op-
posite sign. It is this relatively rare but important case
that we use to identify segments with relatively strong,
but oppositely signed, low frequency contributions (cf.
Figure 3.4 with respect to the turbulent contribution (or
vice versa). As mentioned without defining the nor-
malized Ogive through (3.2) we would not be able to
identify these cases and as a worst case risk them being
falsely diagnosed as convergent Ogives. We use the
term ’reversed’ because these Ogives are classified as
those that undergo a relatively large sign reversal. The
threshold value of −0.1 as opposed to a value closer to
0 was chosen to avoid attributing Ogives where some
high frequency instrument noise (due to e.g. vibrations)
is present, unrelated to low frequency sign changes

2sgn is the signum function that returns +1 if its argument is positive, −1 if its argument is negative and 0 if its argument is zero.
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characteristic of the ’reversal’ case.

Now, the ensuing cases 1)-3) only apply to Ogives that
have not been classified as case 4) (reversal). Case 1),
the ideal case in Figure 3.4, is the convergent Ogive
which we classify as any Ogive that satisfies

Ôgξw
(
f−1 = 60 mins

)
> 0.9 ,

and
Ôgξw

(
f−1 = 30 mins

)
> 0.9 .

So in words for an Ogive to be convergent its value at
both half an hour and one hour be within 10% of both its
SAM. Case 2), shown by the lower blue Ogive curves
in the bottom left panel of Figure 3.4, is the ’extremum’
Ogive with a high frequency (low period) SAM that sat-
isfies

Ôgξw
(
f−1 = 60−1 mins

)
≤ 0.9 .

Which is indicative of a relatively large SAM occur-
ring at a higher frequencies. Finally case 3), shown by
the upper blue Ogive curves in the bottom left panel of
Figure 3.4, is the divergent Ogive which classify as an
Ogive satisfies

Ôgξw
(
f−1 = 60 mins

)
> 0.9 ,

and
Ôgξw(f−1 = 30 mins) ≤ 0.9 .

Thus for the divergent Ogive the hourly value is greater
than a factor 0.9 of the SAM (with the same sign)
whereas the half hourly value is less than such a factor
of the SAM. Indicating that beyond the half hourly time
scale, which we are block averaging over, the flux con-
tinues to increase significantly in magnitude.

We performed the classification of the Ogive cases for
a number of generalized stability categories: all stabil-
ities (any ζ value), neutral stability (|ζ| ≤ 0.1), unsta-
ble stratification (ζ < −0.1), and stable stratification
(ζ > 0.1). These stability categories are instructive in
their simplicity, although they do not capture variations
within a regime such as the transition from moder-
ately to very stable stratification (Mahrt, 1999). In Fig-
ure 3.5 the Ogives of the sensible and latent heat fluxes,
across all stabilities, are classified as case 1), 2) and 3)
each shown in separate panels. Case 4) is not included
owing to its relatively infrequent occurrence. Due to

the large number of Ogives (gray curves) the shape of
individual normalized Ogives is not clear in Figure 3.5,
although the size of the gray area provides an indication
of the overall spread within the Ogive cases. Moreover,
the blue curves show the median, thus providing a visu-
alization of the typical normalized Ogive shape for each
case.

Since we have considered thousands of Ogives it is
more instructive to present the result of the analysis in
terms of case-wise fractions for each stability category.
We provide such a presentation in Table 3.3 which is a
convenient reference for the typical performance of a 30
minute averaging period across the stability categories
at Bayelva. Furthermore, the results given in this Table
are also applicable to other locations in the high Arctic,
as well as similar tundra regions worldwide. Overall
the classical 30 minute averaging period performs quite
well for both the sensible heat flux and the latent heat
flux with both Ogives converging ∼ 70% of the time.
The only other high Arctic Ogive analysis that we know
of was conducted by Sievers et al. (2015) for a site on
Greenland, however, the aim of their analysis was dif-
ferent from ours and no case fractions were given. So,
to put our results in perspective we make due with one
example campaign at lower latitude, namely LIFTASS-
2003 (Mauder et al., 2006). Based on May-June data
from a single site included in LIFTASS-2003 campaign
Foken et al. (2006) calculated ∼ 100 latent and sensi-
ble heat flux Ogives each based on a 4 hour segment and
found that these converged 83% of the time. Foken et al.
(2006) defined convergence as any normalized absolute
Ogive that was within 0.9 of its absolute maximum at
150 minutes and at 30 minutes, as discussed this is sim-
ilar but not the same as our definition. Charuchittipan
et al. (2014) recently extended the analysis of Foken
et al. (2006) by including 6 of the LIFTASS-2003 sites,
each with different surface type, for the same May-June
period. Considering only the unforested sites (being
more comparable with Bayelva), with the same con-
vergence threshold (0.9) and excluding the site inves-
tigated by Foken et al. (2006) then Charuchittipan et al.
(2014) found minimum convergence fractions of 88%
and 90% for the sensible and latent heat flux Ogives re-
spectively. As such, the Ogive convergence fractions
at Bayelva are considerably lower than those found for
LIFTASS-2003.
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Figure 3.5: A total of 2790 normalized Ogives (gray lines) of respectively sensible (ÔgTsw , top panels) and latent (Ôgρvw , bottom panels)
heat flux as functions of natural frequency f (in Hz) where the frequency axis is reversed (from high to low) and logarithmic. For both the top
and bottom panels: left, middle and right panel correspond to the convergent, extremum and divergent Ogive cases respectively. In each panel
the case median normalized Ogive at each frequency is shown by the solid blue line, while the dashed blue lines depict the 10th (lower) and
90th (upper) percentiles. The vertical red solid line indicates the frequency whose inverse yields a period of 30 minutes and the inverse of the
final (minimum) frequency yields a period of 1 hour.

OgTsw
Ogive Case Neutral |ζ| ≤ 0.1 Unstable ζ < −0.1 Stable ζ > 0.1 All Stabilities
Case 1: Convergent 0.684 0.890 0.486 0.710
Case 2: Extremum 0.169 0.019 0.236 0.134
Case 3: Divergent 0.105 0.083 0.272 0.133
Case 4: Reversed 0.042 0.008 0.005 0.023
Ogρvw
Ogive Case Neutral |ζ| ≤ 0.1 Unstable ζ < −0.1 Stable ζ > 0.1 All Stabilities
Case 1: Convergent 0.718 0.864 0.408 0.700
Case 2: Extremum 0.135 0.064 0.256 0.138
Case 3: Divergent 0.128 0.063 0.277 0.138
Case 4: Reversed 0.019 0.009 0.058 0.024

Table 3.3: classification fractions of the Ogives (cumulative cospectra) for sensible (OgTsw , upper panel) and latent heat flux (Ogρvw ,
lower panel) at Bayelva. Each row corresponds to one of three Ogive cases: convergent, extremum, divergent or reversed. Four stability
categories are considered, one for each column. The numbers are the fraction of Ogives in a given category (column) that fall under the given
classification (row). So the sum of the entries in a column is always 1. Each panel is based on a total of 2790 Ogives.

Case stability fractions were not given in Foken et al.
(2006) or Charuchittipan et al. (2014). As such we can
only speculate as to the reasons, apart from the obvious

difference in surface type, for the discrepancy between
our convergence fractions and those of the former au-
thors. Foken (2008a) noted that during the period they
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considered the stability varied between a minimum of
ζ = −0.5 during the day up to a maximum of ζ = 0.5
during the night. So, their Ogives likely include all the
stability regimes we considered albeit no cases of very
stable or very unstable stratification. Furthermore, as
the period of LIFTASS-2003 considered by the former
authors was during the early summer, which is the light-
est part of the year for the sites considered, it is probable
that unstable conditions occurred more frequently than
stable ones. Our Bayelva data, on the other hand, con-
tains a relatively large fraction of stably stratified Ogive
segments. By inspection of Table 3.3 we note that for
both the heat flux Ogives the convergent case was con-
siderably less frequent only occurring 41% (for latent
heat flux) and 49% (for sensible heat flux). Conversely
during unstable stratification the Bayelva convergence
fractions were high: 86% and 89% for, respectively,
the latent and sensible heat flux Ogives. For neutral
stratification the convergence fractions ( 70%) fell be-
tween the stable and unstable convergence fractions for
both Ogives. As such, one possible reason for the dis-
crepancy between our Ogive convergence fractions and
those reported for LIFTASS-2003 is the fact that stable
conditions, with low convergence fractions, were more
prevalent in the Bayelva data.

In addressing why stable conditions have the lowest
Ogive convergence fractions it is worth considering
that stable cospectra peak at higher frequencies than
their unstable and neutral counterparts (Kaimal et al.,
1972). As mentioned in Section 2.5.2, the reason for
the cospectral peaks shifting towards higher frequencies
(lower periods) with increasingly stable stratification is,
by definition of ζ, due to the increasing buoyant destruc-
tion of turbulence relative to the production from mean
wind shear. In such a regime the large eddies present in
unstable stratification can not exist (Wyngaard, 2010).
Thereby, the cospectral gap also shifts towards higher
frequencies. So, at least in theory, evaluating fluxes in
stable conditions and ensuring convergence requires a
shorter averaging period in that the integral time scale
(inverse cospectral peak frequency) is much smaller
than in unstable stratification (Kaimal and Finnigan,
1994). Moreover as noted in Sievers et al. (2015), the
observed NTLF contributions towards the flux also in-
creases. Recall that various mechanisms, outlined in
Mahrt (1999), may lead to nonstationarity and hori-
zontal heterogeneity of the flow in stable stratification.
This departure from the idealized surface layer in turn
expalins to increasing NTLF contributions towards the
flux in stable stratification. Thus, by decreasing the av-
eraging period we may also avoid some of these NTLF
contributions. It turns out, however, that decreasing the
averaging period in stable stratification is not generally
a valid solution. This is because the significant decrease
in averaging period needed to remove NTLF decreases
the number of independent samples of turbulent flux
contributions and leads to a large random error. In other

words the averaging period would no longer be much
greater than the integral time scale of the true turbulent
cospectrum (Kaimal and Finnigan, 1994). In fact, as
noted in Mahrt (2010) the estimates of uncertainty due
to random error in cases with poorly sampled turbulent
contributions are in themselves highly uncertain.

Finally we arrive at a major ’catch’ with the EC method,
noted in e.g. Foken and Wichura (1996) and Vickers
and Mahrt (1997), namely that the averaging time must
at the same time be: long enough to sufficiently sample
the largest turbulent eddies and short enough to avoid
nonstationary conditions that occur due to NTLF contri-
butions (Sievers et al., 2015). So, if there is significant
overlap in the cospectrum between the contributions
from NTLFs and the large eddies we need to sample
sufficiently, it is impossible to fulfill such a requirement
on the averaging period. Note that this ’catch’ can be
problematic in any stability regime. Under unstable
stratification the divergent Ogives are usually associ-
ated with instances where the largest eddies are not
sufficiently sampled. In such cases extending the aver-
aging period is not guaranteed to alleviate the problem
as this may instead introduce significant nonstationarity
in the form NTLF contributions. Conversely in stable
stratification, as discussed, the problem is often that the
NTLF contribution is very large relative to the turbulent
contribution requiring a much shorter averaging time. If
the averaging period is reduced accordingly, however,
the true turbulent flux becomes inadequately sampled.
In essence the problems with this ’catch’ are related
to the lack of a clearly defined spectral gap separating
NTLF and turbulent contributions to the measured flux
(Sievers et al., 2015). We conclude, based on conver-
gence fractions in Table 3.3, that problems with this
’catch’ can occur across all stabilities, but are most fre-
quent in stable stratification.

An unanswered question, after having inspected Fig-
ure 3.5 and Table 3.3, is whether or not the cases of
the Ogives of latent and sensible heat flux coincide
(overlap) for the segments considered. Playing devils
advocate, even if these two fluxes both converge 70%
of the time, it could be that the total turbulent heat flux
Ogive converged much less frequently leading to prob-
lems with (for example) SEB closure. With this in mind
we also investigated whether or not there is a consider-
able coincidence of Ogive cases between the sensible
and latent heat fluxes. For 58.75% of the 2790 total
number of 3-hour Ogive segments both the sensible and
latent heat fluxes converged. As such, c.f. Table 3.3,
only for ∼ 12% of the segments did the sensible heat
flux ogive converge when the latent heat flux did not. So
overall, when the latent heat flux Ogive converged then
∼ 82% of the time the sensible heat flux Ogive case
also converged. Similarly for 4.6%, 5.2% and 0.2%
of the segments both the sensible Ogives were respec-
tively of the case: extremum, divergent and reversed.
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With the exception of the reversed case these percent-
ages are relatively close to those given by the individual
case fractions in the final column of Table 3.3. So more
often than not, especially considering the convergent
case is the most typical, the Ogive case for the sensible
heat and latent heat flux Ogives in a given segment do
coincide.

Why are emphasizing Ogive case coincidence? Well
this presents evidence that, to a first order, scalar
cospectral similarity (Wyngaard and Coté, 1972) where
the shape of the properly nondimensionalized scalar
flux cospectra collapse into a universal curve, is more
often than not (∼ 69% of the time) satisfied at Bayelva.
This in turn provides support for the use of the sim-
ple analytical cospectral attenuation model of Massman
(2000) (and also the integral method of Moore (1986)).
The model assumes that such a scalar cospectral sim-

ilarity exists and that the universal curve is the same
for the two scalar fluxes. Perhaps most importantly, the
high fraction of coincidence of Ogive cases makes it
straightforwards to not only identify problems related
to low frequency influences on the surface energy bal-
ance but also how often these occur at Bayelva. The fact
that both the Ogives converge 58% of the time implies
that 42% of the time at least one of the Ogives does not
converge. So, depending on the relative magnitude of
the Ogive, this may have a considerable influence on
the surface energy balance as well as nocturnal CO2

NEE estimates and the applicability of MOST. This be-
cause the divergent/extremum/reversed Ogive provides
evidence of low frequency contamination of the turbu-
lent flux due to e.g. mesoscale circulations, drainage
flows, gravity waves or transition periods (dawn/dusk)
in the boundary layer (Mahrt, 2010) all of which make
the underlying assumptions of the EC method invalid.

3.5 Cospectral Similarity

Here we pursue the claim, from Section 3.4, that the
nondimensional scalar flux cospectra collapse into the
same universal curves. We do so by calculating the
nondimensional cospectra for the sensible and latent
heat flux and dividing these into stability bins. Only the
cospectra, truncated at inverse frequencies of 30 min-
utes, where the corresponding Ogives converged are
considered as it is these that we expect to exhibit sim-
ilar behavior. This corresponds to 1942 cospectra for
the latent heat flux and 1938 cospectra for the sensible
heat flux (cf. Table 3.3). Recall that the basic relation
for cospectral similarity, proposed by Wyngaard and
Coté (1972), was given by (2.32). Specifically, we need
to express the nondimensional cospectra as functions
of the nondimensional frequency n = fz/u, where u
is the segment average plane mean wind, to verify if
(2.32) is satisfied and if the form is the same for both
heat fluxes.

The result, in the form of an ensemble of nondimen-
sional cosepctral densities and their dependence on
nondimensional frequency, is shown through a log-
log representation in Figure 3.6. We chose to con-
sider two contrasting stability ranges to highlight differ-
ences, these were the moderate to strongly stable range
0.25 < ζ < 2 in the right panels and the moderate to
strongly unstable case −2 < ζ < −0.25 in the left
panels. Multiple narrower stability ranges could have
been chosen, yet our choice gets several points across
in fewer panels. First of all, the agreement between the
peaks of the ensemble median nondimensional cospec-
tra (EMNC), the solid black lines in each panel, of the
sensible and latent heat flux is remarkable in both sta-
bility ranges. For both the latent and sensible heat flux
the EMNC peak at n = 0.03 in the unstable category,

while the EMNC for the heat fluxes in the same order
peak at n = 0.25 and n = 0.29 for the stable cate-
gory. The neutral EMNC (not shown) for both fluxes
were found to peak at the intermediate frequency of
n = 0.09. So, the location of the EMNC peaks are
more or less the same for the two fluxes in each stabil-
ity range. Moreover, the claim of Kaimal and Finnigan
(1994) that cospectra peak at higher frequencies the
higher the stability is clearly demonstrated by both the
stable EMNC peaking at a frequency that is nearly a
decade higher than that for their unstable counterparts.

A clear difference, for both stabilities, is that the sen-
sible heat flux nondimensional cospectra mainly fol-
low the expected (e.g. (Kaimal and Finnigan, 1994))
−4/3 inertial subrange slope (in log-log representation)
at high frequencies. Contrarily, most of the latent heat
flux nondimensional cospectra drop off more steeply
then expected at high frequency. The steeper drop-off
provides evidence of more severe cospectral attenuation
in the case of the latent heat flux; which is to be ex-
pected as w and ρv are not measured by collocated in-
struments (Section 2.5.1). As discussed in Section 3.3,
the degree of latent heat flux high frequency cospec-
tral attenuation is likely much larger than that which we
correct for through the analytical approach of Massman
(2000). At the same time, the high frequency cospectral
attenuation in the heat flux appears to be quite negli-
gible. If we disregard the high frequency attenuation
the nondimensional cospectra are remarkably similar
for the two fluxes. So it is likely that their unattenu-
ated forms would be near identical as is assumed when
correcting for cospectral attenuation either through the
analytical method of Massman (2000) or the integral
method of Moore (1986).
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Figure 3.6: Log-log representation of nondimensional 30 minute cospectra for the sensible heat flux (fCoTsw/T ′sw′, upper panels)
and latent heat flux (fCoρvw/ρ′vw′, lower panels) as functions of the nondimensional frequency n = fz/u. Only cospectra where the
corresponding Ogive (from which the 30 minute covariance used in normalization is obtained) converged are considered. In the left panels
nondimensional cospectral densities in the stability range −2 < ζ < −0.25 are presented based on 436 cospectra for both the sensible and
latent heat flux. In the right panels nondimensional cospectral densities in the stability range 0.25 < ζ < 2 are presented based on 110 latent
heat flux cospectra and 137 sensible heat flux cospectra. Pinks indicate the highest density of points whereas reds are the scarcest densities.
in each panel the solid black curves represent the median nondimensional cospectrum, while the dashed blue lines depict the 10th (lower) and
90th (upper) percentiles. For orientation the expected −4/3 inertial subrange slope is indicated by the dotted black lines.

There is a final feature that is worth highlighting in Fig-
ure 3.6 which circles back to the discussion in Sec-
tion 3.4. This revolves around the difference in the
low frequency behavior of both the flux EMNC in the
two stability cases. The drop in the value of the EM-
NCs from the peak moving towards lower frequencies
is much more pronounced in the unstable case. In fact,
at the lowest frequencies the EMNC in the stable case
has around the same value as the 90th percentile (up-
per dashed black line) in the unstable case, for both
fluxes. Furthermore, the value of the 90th percentile
of the stable nondimensional cospectra at the lowest
frequencies are nearly equal to the stable and unstable
EMNC peak values. This seemingly contradicts the no-
tion of Massman (2000) that the cospectrum should be
broader in the unstable case, and the stable EMNC bear

little resemblance to the model cosepctra of Kaimal and
Finnigan (1994) (cf. Figure 2.13). The apparent lack
of agreement is a possible manifestation of significant
NTLF influence on the stable cospectra, even in these
cases where the corresponding Ogives converged. So,
the lack of a strong low frequency drop off in the stable
EMNC is likely not a feature of the turbulent cospec-
trum alone, but instead a manifestation of other influ-
ences on the measured cospectra such as gravity waves
or drainage flows (Mahrt, 1999). Arguably, the right
panels in Figure 3.6 epitomize the problem with resolv-
ing the turbulent cospectrum in the stable case, as it
is not at all clear how one would go about disentan-
gling the NTLF contributions from the turbulent low
frequency contributions to the flux (Sievers et al., 2015).



Chapter 4

Summary & Conclusions

An extensive and transparent implementation of the EC
method has been achieved in the form of the module,
developed from scratch in Fortran 90, described in
Chapter 2. All relevant procedures involved in mod-
ern EC data processing, as outlined in Aubinet et al.
(2012) and Mauder et al. (2013), were included. A de-
velopment from scratch was necessary in that a vari-
ety of new procedures, requiring access to the raw high
frequency data streams, were introduced. These pro-
cedures, not contained in many of the standardized EC
packages such as TK2 (Mauder and Foken, 2004), in-
clude the following:

1. The estimation of flux uncertainties using the
variance of the covariance (Finkelstein and Sims,
2001) and subsequently accounting for the pro-
pogation of uncertainty through flux corrections
(Billesbach, 2011).

2. Calculating second order structure functions
(Mahrt, 1989) that allow for a simple identifica-
tion of the inertial subrange and a diagnosis of
dissipation (Högström, 1996).

3. Producing spectra, cospectra and Ogives of tur-
bulent quantities (Kaimal and Finnigan, 1994).
A new (to boundary layer meteorology) spec-
tral smoothing window (Konno and Ohmachi,
1998) was applied for both cosmetic and practical
(storage) reasons.

These are all output by the module, in addition to the
standard output (e.g. fluxes). Furthermore, various
novel approaches to traditional procedures (cf. Mauder
and Foken (2004)) were introduced, these include:

1. Despiking using a median absolute deviation test
(Mauder et al., 2013).

2. Planar fitting through unit vector operations (Lee
et al., 2006) as opposed to rotation angles.

3. Using the analytical cospectral attenuation cor-
rection of Massman (2000) with revised time con-
stants based on an exact scalar flux high fre-
quency transfer function for the CSAT3 sonic
anemometer presented by van Dijk (2002).

4. Adapting the ’SND’ correction (Schotanus et al.,
1983) such that all fluctuating quantities involved
are measured directly through an open path EC
system.

5. Revising the coefficients, proposed by Thomas
and Foken (2002), in the flux-variance similarity
relations (ITC) for vertical velocity by accounting
for local effects at Bayelva.

Through such a customized development the goal was
to construct a module that was tailor made for analyz-
ing raw data from the Bayelva EC system. We achieved
this by taking into account the specific conditions of
the study site outlined in Westermann et al. (2009):
instrument separation, flow distortion, cold tempera-
tures, multiple phases of precipitation occuring, slop-
ing terrain, extreme seasonal variations in the surface
type, changes in the measurement height and, crucially,
the prevalence of stable stratification during the Arctic
night. Particularly the despiking routines and the qual-
ity control procedures needed to be tuned according
to these local conditions. In addition, the novel pro-
cedures introduced allowed us to investigate problems
that occur under stable stratification by comparing the
behavior of module output in the stable regime to that
in the neutral and unstable case.

The aim of our investigation was to assess to what
degree the EC method can be relied on to accurately
estimate surface exchange in the difficult conditions
imposed by our high Arctic study site. As the north-
ernmost member of a global network (FLUXNET) that
includes hunderds of permanent flux tower sites across
a vast array of terrestrial ecosystems (Baldocchi et al.,
2001), our results have implications beyond the Arc-
tic and the EC method. Bayelva, and more generally
Svalbard, is an ideal ’laboratory’ for studying problems
with the EC method that occur in stable stratification.
The reason is two fold. Firstly, we are spared from
some overlapping complex features that exist in many
of the lower latitude sites (e.g. forest canopies (Lee
et al., 2006)). Secondly, the stable regime may per-
sist longer during the Arctic night (Westermann et al.,

86
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2009) than it does in a conventional diurnal cycle (Stull,
1988). Therefore, it is possible to study, practically in
isolation, the effects of stable stratification on the EC
method over extended periods. Nonetheless, the results
extend to the typically nocturnal stable regime at lower
latitudes in which various phenomena (see e.g. Aubi-
net (2008)) cause problems for many of the FLUXNET
sites. In fact, a serious concern with FLUXNET data is
that the EC methodology often fails in low flux stable
conditions (Finnigan, 2008). Consequently, longterm
budgets of energy, water and carbon exchange are in-
variably biased, even when gap filled, as most of the
available flux estimates are from the unstable and neu-
tral regimes (Aubinet et al., 2012). Even more alarm-
ing is the fact that the ’products’ from flux towers are
widely used by the modeling community: be it in the
development of parametrizations (Högström, 1996), for
validation (Aas et al., 2015) or to constrain model out-
put through data assimilation (Leuning et al., 2012). So,
if these products are accepted at face value, the error in
these, both random and systematic, will invariably pro-
pogate through the desired development, validation or
constraint into the model in question.

Despite the fact that the stable stratification may put the
EC method in dire straits, a comprehensive set of tools
(Mauder et al., 2013) are available to identify prob-
lematic periods. The underlying assumption of the EC
method is that measurements are conducted in a sur-
face layer that is simultaneously statistically stationary
and horizontally homogeneous (Foken and Wichura,
1996). Thereby, the set of tools revolve around flagging
periods where this assumption is clearly violated. We
implemented these tools in a two-pronged approach.
Initially the raw data was despiked as outlined in Sec-
tion 2.2. Subsequently, after having undergone further
processing, each 30 minute block of data was subjected
to the extensive quality control procedure outlined in
Section 2.6. In not being directly related to the identifi-
cation of problems with the underlying assumption, the
intermediate processing steps, rotations (Section 2.3)
and flux corrections (Section 2.5), still play an impor-
tant role in reducing the systematic error in flux esti-
mates (Lee et al., 2006).

Overall, despite differences in the methods, we found
satisfactory agreement for the high quality fluxes pro-
duced by our module and TK2 as shown through linear
regression in Figure 3.3. The sensible heat flux showed
particularly good agreement; on average our estimates
were a factor 0.93 of those in TK2 with a correla-
tion of R = 0.96, which is comparable to other EC
software package intercomparisons for open path sys-
tems (Fratini and Mauder, 2014). For the latent heat
flux the agreement was not as good; on average our
estimates were a factor 0.76 of those in TK2 with a
correlation of R = 0.88. Since the underestimation
of latent heat flux is systematic (high correlation) it

is likely due to a difference in the cospectral attenua-
tion corrections used; for example we did not consider
high frequency attenuation resulting from lateral sensor
separation when implementing the analytical method of
Massman (2000). Unfortunately, no radiation or ground
heat flux measurements were available for the major-
ity of the period we considered (see Section 2.1) so an
evaluation of the SEB closure for our estimates was not
possible. Nonetheless, as our estimates are somewhat in
an agreement with those of TK2, it is probable that the
energy imbalance in our estimates is comparable to that
of TK2 shown in Figure 1.14. Thus we can assume that
our energy imbalance is equally large, in excess of 50%
for hourly fluxes. This comparison with TK2 merely
provided a sanity check of the produced fluxes, we had
to go beyond the standard TK2 output to investigate the
reliability of the EC method under difficult conditions.

As for the identification of problems, one feature clearly
stood out, namely departures from statistical station-
arity. Of the individual quality flags considered in
the QC (Section 2.6), this was by far the most fre-
quently occuring hard flag as shown in Figure 3.1. In
line with other investigations at Bayelva (Westermann
et al. (2009) and Lüers et al. (2014)), 11% of the 7888
non-overlapping 30 minute blocks considered had to
be discarded due to significant non-stationarity. Non-
stationarity is symptomatic of a number of mechanisms,
outlined in Andreas et al. (2008), although a strong con-
tender at Bayelva is the weak intermittent turbulence
disccused in Mahrt (1999) that may manifest in the sta-
ble boundary layer. As discussed in Section 3.1, despite
not hard flagging as frequently, the remaining flag cat-
egories are still important in that each of these has the
potential to identify problems that would otherwise be
overlooked. Overall 43% of the blocks were flagged
as being of high quality, 38% received a soft flag in-
dicating medium quality and the remaining 19% were
discarded being hard flagged as poor quality blocks.
Discarding almost one fifth of the data may seem ex-
treme, but it is in line with typical hard flag fractions
(e.g. Mauder et al. (2013)). If such blocks were not
discarded it would be detrimental to the estimated long
term surface exchange budgets through the inclusion of
clearly unphysical turbulent fluxes some of which have
magnitudes in excess of 1000 Wm−2.

All the processing steps helped in reducing (or discard-
ing) systematic errors in the estimated surface fluxes.
These fluxes are also subject to considerable uncer-
tainty due to the random error associated with insuffi-
cient sampling of integral scale (i.e. main flux contain-
ing) eddies within an averaging period (Finkelstein and
Sims, 2001). It is not yet standard practice to include
estimates of the flux uncertainties in EC packages such
as TK2 (Billesbach, 2011). This is unfortunate as the
flux uncertainty is an invaluable product for modelers
with regards to, for example, the data assimilation of
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observed fluxes (Mauder et al., 2013). As such, we cal-
culated the relative uncertainty in our sensible and latent
heat flux estimates as outlined in Section 2.6.7. For both
fluxes the relative uncertainty for small (absolute) fluxes
is found to be larger the lower the absolute flux value of
the flux. Still, at larger flux magnitudes, i.e. in excess
of 20 Wm−2, the relative uncertainty becomes nearly
independent of the flux magnitude in agreement with
Finkelstein and Sims (2001). As a function of stability
the relative uncertainty in both fluxes nearly doubles in
the passage from moderately unstable (ζ = −0.5) to
moderately stable stratification (ζ = 0.5), which is at
odds with the findings of Finkelstein and Sims (2001)
where no clear stabiliy dependence was observed in
the uncertainty. Overall, the mean relative uncertainty
in the latent and sensible heat fluxes was found to be
18.7% and 19.5%, respectively. For stable stratifica-
tion (ζ > 0.1) the mean relative uncertainty was con-
siderably higher, being on the order of 27% for both
fluxes. All the averaged relative uncertanties shown in
Table 3.1 are in general agreement with estimates from
lower latitudes (e.g. Mauder et al. (2013)), but repre-
sents the only such analysis (to our knowledge) that has
been carried out in the Arctic.

By means of the Ogive analysis presented in Section 3.4
we were able to verify how often the fluxes of sensible
and latent heat converged within the traditional aver-
aging period of thirty minutes. Flux convergence in
turn indicates that we have resolved the entire turbu-
lent cospectrum and captured a reliable estimate of the
turbulent flux (Foken et al., 2006). The results of the
analysis, in the form of Ogive classification, is sum-
marized in Table 3.3. We found that overall the latent
and sensible heat flux Ogives converged for respec-
tively 70% and 71% of the segments considered, while
their convergence coincided for 59% of the segments
considered. Such a large degree of coincidence, com-
bined with the results of Section 3.5, implies that the
two nondimensional scalar cospectra are often nearly
identical (cf. Figure 3.6), providing evidence of the
scalar cospectral similarity (Wyngaard and Coté, 1972)
that is assumed in cospectral attenuation corrections
(e.g. Massman (2000)). Once again (to our knowledge)
we are the first to apply such an analysis to an Arctic
EC site. The convergence fractions were considerably
lower than those found at lower latitudes, an indica-
tion of the problems caused by the relatively frequent
occurence of stable stratification at Bayelva. In fact,
the heat flux Ogives, in the same order, converged for
only 41% and 48% of the stably stratified segments.
We found, through Figure 3.6, that the reason for this
lack of convergence in stable stratification can be at-
tributed to an expected (Kaimal and Finnigan, 1994)
shift of the cospectral peak towards higher frequencies
in the stable regime compared to its unstable and neutral
counterparts. That is to say, to resolve such a turbulent
cospectrum while avoiding non-turbulent low frequency
contributions, a much shorter averaging period is re-

quired. Shortening the averaging period the required
amount, on the other hand, may lead to an inadequate
number of samples of the cospectral peak which in turn
leads to unacceptable levels of uncertainty. In conclu-
sion, the traditional 30 minute averaging period is more
often than not poorly suited for stable stratification. A
standardization of novel methods, such as the numerical
Ogive optimzation presented in Sievers et al. (2015), is
needed if we are to resolve the lack of flux convergence
in stable stratification. In so doing the bias introduced
in longterm surface exchange budgets could be greatly
reduced.

To anyone intending to make use of the EC method in
any capacity we highly recommend making good use
of the current state of the art in processing procedures
given in e.g. Aubinet et al. (2012). The despiking
and quality control procedures developed by Vickers
and Mahrt (1997) and Foken and Wichura (1996) are
mandatory. Respectively, these allow for the identifica-
tion instrument related problems and violations of the
underlying assumption that measurements are occuring
within an idealized surface layer. As discussed in Sec-
tion 1.3 three widely acknowledged problems outlined
in Mahrt (1999), Finnigan (2008) and Foken (2008a)
are symptomatic of frequent departures from this ide-
alization, particularly under stable stratification (Mahrt,
1999). Moreover, regardless of the intended purpose of
the EC investigation it should become standard practice
to evaluate and report the uncertainty in flux estimates
using one of the many methods presented in Aubinet
et al. (2012). If possible we also recommend calculat-
ing cospectra, following e.g. Stull (1988) and Kaimal
and Finnigan (1994), so as to perform Ogive analysis
and investigate flux convergence within an averaging
period (Foken et al., 2006).

Finishing off with a short outlook we would like to point
out that in focusing on micrometeorology we have only
scratched the surface of the wider field that is boundary
layer meteorology. As an extension the current work
it would be natural to compare some of the additional
methods used to calculate flux uncertanties and estimate
cospectral attenuation. Moreover, conducting a simi-
lar analysis for the flux of CO2, also available from
the Bayelva instrumentation, could confirm our suspi-
cion that our findings in the Ogive analysis are the re-
sult of the physics of a stable boundary layer and ap-
ply to any scalar flux. In a wider context, running a
high resolution Large Eddy Simulation in stable con-
ditions for the Brøgger peninsula could yield insights
into the flux footprint (Aubinet et al., 2012) and the
three-dimensional structure of the local boundary layer
(Westermann et al., 2009). Finally, working on a con-
sistent way of assimilating flux measurements, with un-
certainty, into models could go a long way towards re-
placing the current use of flux-profile relationships, at
least where observations are available.



Appendix A

A.1 Indicial Notation

Following the tradition in the literature of boundary
layer meteorology (e.g Monin and Obukhov (1954) and
Stull (1988)) we make use of indicial notation1. Work-
ing within a purely Cartesian framework the transition
from the more familiar vector notation to indicial nota-
tion is quite seemless. The benefit of applying indicial
notation lies in the simplification of many vector op-
erations common in vector calculus as well as in its
(subjective) elegance.

To introduce the indicial framework we consider a fa-
miliar and intuitive starting point to be the wind vector
v. We may decompose this vector at a given point in
space and time into three orthogonal components in our
chosen Cartesian coordinate system, using a triplet of
orthonormal unit vectors

[
ı̂, ̂, k̂

]
as follows

v = uı̂ + v̂ + wk̂ .

From vector analysis the magnitude of this vector, |v|,
corresponds to the wind speed while the vector normal-
ized by its magnitude is the wind direction v̂ = v/|v|.
So an equivalent expression for the given wind vector
would be v = |v|v̂. Reminding us that a vector, as
opposed to a scalar, is a physical quantity with both
magnitue and direction.

Notice that if we were to set ı̂1 = ı̂, ı̂2 = ̂, ı̂3 =
k̂ as the unit vectors of the orthogonal directions
x1 = x, x2 = y, x3 = z and accordingly define
v1 = u, v2 = v, v3 = w then the vector may be
expressed compactly as a sum of components. Namely

v =

3∑
i=1

viı̂i .

As specified in the above expression the index i runs
over i ∈ 1(1)3 in that the vector is three-dimensional.
Let us instead write the vector as

v = viı̂i ,

where we have applied the summation convention: if an
index occurs twice in any one term in an expression it is
always to be summed, unless the contrary is expressly
stated. So we adopt an implicit summation over repated
or ’dummy’ indices appearing in any given term. Con-
versely indices that only appear once for any given term
are refered to as ’free’ indices in which case summa-
tion is not implied. When expressing vector equations
unit vectors are typically omitted such that, as will be
shown, an expression can be quickly decomposed to a
given index by insertion of i = 1, 2 or 3 and hence to
any direction x1 = x, y1 = y or z1 = z.

The number of free indices for a given term determines
the order of the term. That is to say s (order zero) is a
scalar quantity, ai (order one) is a vector component, bij
(order two) is a matrix entry while cijk is a third-order
tensor element. As in linear algebra the order of the
respective terms appearing as sums in an equation must
always be equal. For example ai+ai and ai+ bijaj are
defined while ai + bij is not. To ensure clarity we re-
quire that the free indices appearing in respective terms
must be the same. Furthermore with the aim of con-
sistency we apply a convention of setting our first free
index to i and dummy indices as the first available, i.e.
not a free index, in the alphabetic sequence j, k, l,m, n.

Recalling the definition of the ∇ operator in Cartesian
coordinates we translate this powerful tool into our new
notation as follows

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z
= ı̂i

∂

∂xi
.

It is worth emphasizing that as with all terms appearing
in indicial notation the summation convention applies to
∇ as well, and of course that the standard rules of dif-
ferentiation still hold. Summarizing the subsection we
express different operations in both vector and indicial
notation for comparisson using the wind vector

1Alternative names are Einstein notation, summation notation or suffix notation.
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1

2
v · v =

1

2
vjvj , vv = vivj ı̂iı̂j , ∇k = ı̂i

∂k

∂xi
, ∇ · v =

∂vj
∂xj

, ∇v = ı̂iı̂j
∂vi
∂xj

.

the terms from left to right express the kinetic energy
(per unit mass) k = 1

2v
2
j as a dot product, the advective

flux as an outer product, the gradient of kinetic energy,
the divergence of the windfield and finally the gradi-
ent of the windfield (a dyadic product). In the same
order these terms represent a scalar, a matrix, a vec-

tor, a scalar and finally a matrix. Note the inclusion of
unit vectors for the matrix and vector quantities, with-
out these the equalities would not hold as the indicial
form would express a single element as i and j would
be free. Nonetheless for ease of presentation these unit
vectors are often made implicit.

A.2 Diagnostics

A derivation of the equations used in the sequential
diagnosis (Section 2.4.3) is provided herein. Most of
these manipulations are fairly simple with details avail-
able in numerous atmospheric physics (e.g. Wallace
and Hobbs (2006)) and boundary layer meteorology
(e.g. Stull (1988) and Foken (2008b)) textbooks. We
will nonetheless take the time to elaborate whenever
unusual steps are taken.

First of all recall that in our considerations of moist air
we restrict our attention soley to an ideal gas mixture
consisting of water vapor and dry air constitutents. The
effect of trace gasses other than water vapor (e.g. CO2

and O3) on the density of the mixture is assumed to be
negigible. Moreover the possible occurence of water in
its liquid and solid phase is ignored both for simplicity
(as in e.g. Fuehrer and Friehe (2002)) and due to the
effects it has on the response of both the CSAT3 and the
LI-7500 (Section 1.2.3). We anticipate that all instances
where the presence of these other phases is significant
will have been flagged and discarded in the despiking
routine (Section 2.2). To start off we express the ideal
gas law in two equivalent ways (e.g. Stull (1988))

P = ρRT = ρRdTv (A.1)

whereR is the specific gas constant for moist air andRd
the (known) specific gas constant for dry air; both with
units JK−1kg−1. From the above virtual temperature2,
Tv , is defined as the temperature required for a hypo-
thetical dry air parcel to have the same density, ρ, as the
given sample of moist air with temperature, T , at the
same pressure P . It is a convenient quantity to employ
for two reasons. Not only are we spared from having
to keep track on the changes in the value of the specific
gas constantR for moist air (Wallace and Hobbs, 2006).
We also benefit from the fact that Tv is closely related
to the sonic temperature, Ts, that we are measuring di-
rectly (Kaimal and Gaynor, 1991). For (A.1) to hold
then based on some straightforwards manipulations in-

volving partial pressures and densities (e.g. Wallace and
Hobbs (2006)) the virtual temperature is related to ab-
solute temperature through

Tv =
T

1− pv
P (1− µ−1)

' T
[
1 +

pv
P

(
1− µ−1

)]
,

(A.2)
where pv is the water vapor pressure3 and µ−1 =
Mv/Md = 0.622 is the ratio of the molar mass of
vapor (Mv = 0.01802 [kg mol−1]) to that of dry air
(Md = 0.02897 [kg mol−1]). For the approxima-
tion in (A.2) we have used a first order Taylor series
expansion on f(x) = (1 − x)−1 ’forwards’ from
x = 0 to simplify the relation for Tv making use of
the fact that 0 ≤ pv << P so the forward step is
small: ∆x = pv

P

(
1− µ−1

)
<< 1. Note that the

error in the approximation of f(∆x) is on the order
∆x2 << ∆x << 1 which is negiligible for our pur-
poses and we will drop the ’'’ henceforth. From (A.2)
it is clear that the virtual temperature is always greater
than the absolute temperature for moist air. As a corol-
lary moist air is less dense than dry air (Stull, 1988) on
account of having to isobarically increase the tempera-
ture of the hypothetical dry air parcel for its density to
match that of the moist air parcel.

Next we consider an alternate relation for (dimension-
less) specific humidity, q, following Wallace and Hobbs
(2006) once more considering partial pressures, partial
densities and employing the ideal gas law

q =
ρv

ρd + ρv
= µ−1 pv

P
[
1− pv

P (1− µ−1)
] . (A.3)

In the above we used the following relation for the spe-
cific gas constant for water vaporRv = R/Mv and sim-
ilarly for that of dry air Rd = R/Md, where R is the
universal gas constant (units JK−1mol−1) when insert-
ing for µ−1 = Mv/Md = Rd/Rv . Now using the same
Taylor series expansion as in (A.2) then (A.3) is readily

2Here the subscript in Tv is short for ’virtual’ not water vapor.
3Often given the symbol e which we circumvent here to avoid confusion with the turbulent kinetic energy.
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simplified to

q = µ−1 pv
P

[
1 +

pv
P

(
1− µ−1

)]
. (A.4)

Now if we insert for δ = µ−1pv/P << 1 in (A.4) then
using that µ− 1 ' µ−1

q = δ + (µ− 1) δ2 ' δ + µ−1δ2 , (A.5)

then since δ >> δ2 we have to a first order that

q ' δ = µ−1 pv
P
. (A.6)

When we consider the Ny Ålesund temperature ranges
(Figure 2.2) it turns out that the approxiation made is
marginal. Taking a ’worst case’ scenario (maximizing
q) where we estimate, using Teten’s equation as given
in Foken (2008b), the saturation vapor pressure, p∗v , at
T = 21◦C at a pressure of P = 950 hPa we find that
the relative error in the saturated specific humidity com-
puted with (A.6) as opposed to (A.5) is only on the order
of 1%. So as a good approximation we may use (A.6) in
(A.2) and arrive at the following expression for Tv (as
given directly in Kaimal and Gaynor (1991))

Tv ' T
[
1 + µq

(
1− µ−1

)]
= T [1 + 0.61q] . (A.7)

Furthermore we can use (A.6) to approximate the re-
lation given in Kaimal and Businger (1963) for sonic
temperature in terms of absolute temperature4

Ts = T

(
1 + 0.32

pv
p

)
' T (1 + 0.51q) . (A.8)

Subsequently we wish to relate sonic temperature to vir-
tual temperature which would enable us to diagnose q
directly through the ideal gas law. To do so we once
more use a Taylor series expansion in (A.8), neglecting
higher order terms using the same reasoning as previ-
ously, to arrive at the first order approximation

T =
Ts

1 + 0.51q
' Ts (1− 0.51q) . (A.9)

Further we combine (A.9) with (A.7) to arrive at

Tv = Ts
(
1 + 0.1q − 0.31q2

)
' Ts (1 + 0.1q) .

(A.10)
where we have used q << 1 to justify dropping the q2

term. Finally using (A.1) and (A.10) and inserting for
ρ = qρv with some rearrangement we arrive at the fol-
lowing diagnostic equation for specific humidity where
involving only known (measured) variables

q =

(
P

RdρvTs
− 0.1

)−1

. (A.11)

So (A.11) is the diagnostic equation employed for the
estimation of q in the module from which ρ is estimated
through the relation ρ = ρv/q. Subsequently (A.9) and
(A.7) are used to estimate T and Tv respectively.

A.3 SND adaptation

No derivation of the SND corrections are given in either
Schotanus et al. (1983) or Liu et al. (2001); instead the
corrections are merely presented. So before proceeding
with how we adapted the SND correction for the sen-
sible heat flux we feel it is instructive to first present
a quick derivation of the heat flux correction given in
Schotanus et al. (1983) as many of the same procedures
are used in the adaptation. To start off we note that the
relation between instantaneous sonic and absolute tem-
perature given by (A.8) is only valid if crosswind cor-
rections have been applied (Liu et al., 2001). Thank-
fully this is the case for the CSAT3 instrument that we
employ (see CSAT3 (2014)). Next applying a removal
of the block average from Ts and using (A.8) we note
that the fluctuating sonic temperature can be written as

T ′s = Ts − T = T (1 + 0.51q)− T (1 + 0.51q) .
(A.12)

So the block average of the product T ′sw
′

T ′sw
′ =

[
T (1 + 0.51q)− T (1 + 0.51q)

]
w′ (A.13)

where, once more noticing that multiple terms are zero
upon Reynolds averaging (χ ξ′ = 0), we are left with

T ′sw
′ = T (1 + 0.51q)w′ , (A.14)

Reynolds averaging once again by first expanding and
expressing quantities as the sum of their mean and fluc-
tuating components yields

T ′sw
′ = T ′w′+0.51q′T ′w′+0.51q T ′w′+0.51T q′w′ .

(A.15)
Under the assumption that the scalar5 fluctuations are
small compared to the block averages (i.e. q >> |q′|
and T >> |T ′|) combined with the fact that |q′| <<
1 (not the case for |T ′|) then the triple correlation
term, 0.1q′T ′w′, is negligible with respect to remaining
terms. Moreover since T s >> 1 >> q we can safely
assume that all but the first two remaining terms on the
right hand side are negligible and we are left with the
approximate relation

T ′sw
′ ' T ′w′ + 0.51q T ′w′ + 0.51T q′w′ . (A.16)

4The relation is only valid when crosswind has been corrected for (Schotanus et al., 1983); but as noted in Section 2.5.3 the crosswind
correction is applied internally in the CSAT3 firmware.

5An assumption that does not hold for the vertical velocity since w is near zero whereas |w′| can be very large in comparisson.
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Which expressed in terms of the quantity we seek, T ′w′,
reads

T ′w′ ' w′T ′s − 0.51Tq′w′

1 + 0.51q
. (A.17)

Finally noting that q << 1 then as a good approxima-
tion

T ′w′ ' w′T ′s − 0.51T q′w′ , (A.18)

which is the form given directly in Schotanus et al.
(1983) and Liu et al. (2001) when crosswind correc-
tions are already applied.

Next we adapted (A.18) so as to be more tractable in
an iterative procedure with two other flux corrections
(spectral attenuation and WPL). To start we expressed
the specific humidity as q = αρv where α = ρ−1 is the
instantaneous specific volume. Further we noted that α
is approximately given through the ideal gas law by

α =
RdTv
P
' RdTs

P
, (A.19)

where we used that to a first order Tv ' Ts based on
(A.10) and the fact that q << 1. Next with the aid of
mean removal and Reynolds averaging rules the fluctu-
ating specific humidity can be exanded as

q′ = (αρv)
′

= αρv − αρv = αρv − αρv − α′ρ′v .
(A.20)

As such the product block average of the product q′w′

in (A.18) can be expressed as

q′w′ =
(
αρv − αρv − α′ρ′v

)
w′ , (A.21)

which, when Reynolds averaging rules are invoked (i.e.
αρv w′ = α′ρ′v w

′ = 0) ,becomes

q′w′ = αρvw′ = (α+ α′) (ρv + ρ′v)w
′ , (A.22)

subsequently expanding the brackets and invoking
Reynolds averaging rules once more we are left with

q′w′ = αρ′vw
′ + ρv α′w′ + α′ρ′vw

′ . (A.23)

For the same reason as in (A.16) the magnitude of the
triple correlation term, α′ρ′vw′, is assumed to be negli-
gible with respect to the other terms so to a first order

q′w′ ' αρ′vw′ + ρv α′w′ . (A.24)

Subsequently we insert for the specific volume in (A.24)
making use of the approximation in (A.19) where in our
case the sonic temperature is the only fast responding
variable whereby

q′w′ ' Rd
P

(
Ts ρ′vw

′ + ρv T ′sw
′
)
. (A.25)

Finally by insertion of (A.25) into (A.18) we have our
revised SND correction for sensible heat flux as em-
ployed in the module, namely

T ′w′ ' T ′sw′
(

1− 0.51Rdρv T

P

)
−0.51RdTs T

P
ρ′vw

′ ,

(A.26)
where all the fluctuating quantities are measured di-
rectly by the EC system.

A.4 Origin of the WPL terms

Under the governing constraint of zero dry air mass flux
proposed by Webb et al. (1980) the mean vertical veloc-
ity in a statistically stationary and horizontally homoge-
neous surface layer is given by

w = −
ρ′dw

′

ρd
. (A.27)

To arrive at a tractable form of the above we need a
measurable expression for the turbulent mass flux of
dry air ρ′dw′. To start off we take the usual route (c.f.
Webb et al. (1980),Fuehrer and Friehe (2002) and Lee
and Massman (2011)) of seeking an expression for the
dry air density ρd. Based on Daltons law of partial pres-
sures p = pd+pv = ρdRdT+ρvRvT (e.g. Wallace and
Hobbs (2006)) upon rearrangement the dry air density
may be expressed as

ρd =
p

RdT
− µρv , (A.28)

where we now use p (as opposed toP ) to emphasize that
strictly speaking we are dealing with the instantaneous

pressure. Next following Fuehrer and Friehe (2002) we
note that

1

T
=

1

T + T ′
=

1

T

[
1

1 + T ′

T

]
, (A.29)

whereby upon Taylor series expanding the term in the
brackets as in (A.9) we have to a first order that

1

T
' 1

T

[
1− T ′

T

]
, (A.30)

where the truncation error is marginal on accout of
1 >> |T

′

T
| and we once more drop the ’'’. So insert-

ing (A.30) into (A.28) and expanding the instantaneous
pressure into the sum of its mean and fluctuating com-
ponents it follows that

ρd =
(p+ p′)

Rd T
− (p+ p′) T ′

Rd T
2 −µ (ρv + ρ′v) . (A.31)

If we now consider that the turbulent vertical dry air
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mass flux can be expressed equivalently as

ρ′dw
′ = (ρd + ρd)w′ = ρdw′ , (A.32)

then upon inserting (A.31) into (A.32) with Reynolds
averaging rules in mind as usual then

ρ′dw
′ =

p′w′

Rd T
− p T ′w′

Rd T
2 −

p′T ′w′

Rd T
2 − µρ′vw′ . (A.33)

Now taking the average of (A.31) we note upon rear-
rangement that

p

Rd T
= ρd + µρv . (A.34)

where we have ignored the p′T ′

Rd T
2 term on account of

|p′T ′| << pT . Subsequently inserting (A.34) in (A.33)
then

ρ′dw
′ = (ρd + µρv)

[
p′w′

p
− T ′w′

T

]
− µρ′vw′ .

(A.35)
Subsequently inserting (A.35) in (A.27), ignoring the
relatively small triple correlation term and following
Webb et al. (1980) in defining the shorthand σ = ρv/ρd
yields the following expression for the mean vertical ve-
locity

w = (1 + µσ)

[
T ′w′

T
− p′w′

p

]
+ µσ

ρ′vw
′

ρv
. (A.36)

It is this expression for mean vertical velocity that is the
source of the terms in the WPL correction presented in
Section 2.5.4,

A.5 Estimating the Variance of a Covariance

In the following where our aim is to arrive at an estimate
for the variance of a covariance we begin by highlight-
ing some symmetries laid out in Finkelstein and Sims
(2001). We consider block segments of two LDT vari-
ables ξ′′ and χ′′; the block averages of which are zero
on account of the LDT. The symmetry present depends
on which series is lagged/advanced with respect to the
other by a constant time shift ±τL. For the crosscovari-
ances the following holds within a block segment

γξχ(τL) = γχξ(−τL) = ξ′′(t)χ′′(t+ τL) , (A.37)

and

γχξ(τL) = γξχ(−τL) = χ′′(t)ξ′′(t+ τL) . (A.38)

It is worth emphasizing that by definition of a block av-
erage the points in time can not extend beyond the block
itself. So these points, be it t, t + τL or t − τL, always
lie in the range [tm, tm + τA] where tm is the times-
tamp for the start of the block and τA is the averaging
time. Furthermore we will make use of the fact that the
autocovariance is an even function:

γξξ(τL) = γξξ(−τL) = ξ′′(t)ξ′′(t+ τL) , (A.39)

for any choice of ξ′′. As in Section 2.5.1 we will use the
following shorthand γξχ,j = γξχ(τL,j) for the cross-
covariance with χ′′ lagged in time by the discrete lag
τL,j = j∆t with respect to ξ′′. Analogously γχξ,j =
γχξ(τL,j) is the crosscovariance with ξ′′ lagged in time
by the discrete lag τL,j = j∆t. Finally it is worth re-
minding the reader that for a given discrete lag j∆t the
crosscovariance is computed through

γξχ,j =
1

I

I−j∑
i=1

ξ′′i χ
′′
i+j ,

in the case that χ′′ is lagged in time by j∆t with respect
to ξ′′, and through

γχξ,j =
1

I

I−j∑
i=1

χ′′i ξ
′′
i+j , (A.40)

in the case that ξ′′ is lagged in time by j∆t with re-
spect to χ′′. Recall that in our case I = 3.6 × 104 for
the 30 minute block average sampled at 20 Hz. Thus
it is worth bearing in mind that the act of computing
the crosscovariance (or autocovariance) for a single lag
involves summing over a large amount of terms.

Now the method of Finkelstein and Sims (2001) in-
volves estimating the variance of a covariance, σ2

ξ′w′
,

based on the following mathematically rigorous expres-
sion from Fuller (1996). For the two discrete blocks
segments, ξ′′ and χ′′, each with I entries the expression
reads

σ2
ξ′w′
' 1

I

J∑
j=−J

(γξξ,jγχχ,j + γξχ,jγχξ,j) . (A.41)

Strictly speaking the summation in (A.41) should run
from −I to I but the expense of such a calculation is
detrimental. Consider the following, there are: thou-
sands of blocks that we need to apply (A.41) to, each
of these 30 minute block consists of I = 3.6 × 104

points in time and for each j calculating the auto/cross-
covariances implies summing over I − j terms. In fact
with J = I the expense would be on the order 1012

computations per 103 blocks. So in practice J is set to
be several order of magnitudes lower than I on the as-
sumption that the autocovariance and crosscovariances
are negligbile at large lag. Based on our own sensitivity
tests as well as those of Finkelstein and Sims (2001)
and Billesbach (2011) it was found that increasing J
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much beyond 400 has negligible effect on the variance
of the covariance. Even with J = 400, however, (A.41)
is still an expensive procedure (1010 computations for
103 blocks).

Here we can exploit the previously discussed symme-
try in the crosscovariances and autocovariances. Us-
ing (A.37), (A.38) and (A.39) in (A.41) the variance of
the covariance can be expressed equivalently as follows
(with J = 400)

σ2
ξ′w′
' 1

I

ξ′2 χ′2 + ξ′χ′
2

+ 2

J∑
j=1

(γξξ,jγχχ,j + γξχ,jγχξ,j)

 . (A.42)

Where the number computations are practically cut in
half compared to (A.41) with the same choice of J .
This because we no longer have to consider negative
indices in the summation range. Note that in our pre-
sentation of (A.42) we have chosen to re-emphasize that
for j = 0 the crosscovariances and the autocavariances
correspond to the respective covariances and variances.

It is (A.42) that we employ in the module when estimat-
ing the variance of the vertical turbulent fluxes of sonic
heat and water vapor. These are then used to estimate
the flux uncertainty of the sensible and latent heat flux
in Section 2.6.7, where we account for the propogation
of uncertanties through the flux corrections as outlined
in Appendix A.6.

A.6 Propogation of Flux Uncertainty

The final sensible and latent heat flux estimates are
produced after the raw data has undergone extensive
processing, which includes multiple corrections. As
such the uncertainty in the turbulent flux estimates can
not simply be equated to those of the final dynamic
flux estimates. Uncertainty will invaraibly propogate
through the processing steps and in particular the flux
corrections (Section 2.5). As noted in Billesbach (2011)
accounting for the uncertainty propogation is not sim-
ply a matter of adding together uncertainty estimates.

In general denoting the vertical flux of some quantity
ξ as Fξ where the flux in question is typically a func-
tion of I independent parameters, Xi with i ∈ 1(1)I .
Thereby we may write Fξ = Fξ (X1, . . . , XI) such that
the uncertainty in the flux estimate is given by (Billes-

bach, 2011)

σ2
Fξ

=

I∑
i=1

(
∂Fξ
∂Xi

)2

σ2
Xi (A.43)

in which σ2
Xi

is the random uncertainty (variance) in
the estimate of parameter Xi.

We will consider the uncertainty propogation for the
corrected kinematic sensible heat flux and latent heat
flux, which we will denote FT and Fρv respectively.
That is Fρv = (ρvw)C and FT =

(
T ′w′

)
C

where the
index C symbolized that the relevant sequence of flux
corrections have been implemented. These corrected
fluxes can be expressed with respect to the uncorrected
(but planar fitted) turbulent fluxes:

FT = CFa,H

(
1− 0.51Rdρv T

P

)
T ′sw

′ − 0.51CFs CFa,E
Rd T s T

P
ρ′vw

′ , (A.44)

and

Fρv = (1 + µσ)

[
CFs CFa,E

(
1− 0.51Rd T s ρv

P

)
ρ′vw

′ + CFa,H
ρv

T

(
1− 0.51Rdρv T

P

)
T ′sw

′
]
. (A.45)

In the above CFs is the previously defined (Sec-
tion 2.5.1) correction factor for sensor separation. Fur-
thermore CFa,H and CFa,E , in which subscript H is
a shorthand for T ′sw′ and subscript E is a shorthand
for ρ′vw′, are the previously defined (Section 2.5.2) cor-
rection factors for cospectral attenuation of the vertical
turbulent fluxes of sonic temperature and water vapor
respectively.

When calculating the error propogation we assume that
the only independent parameters for which the contribu-
tion to the uncertainty is signifcant are the covariances
ρ′vw

′ and T ′sw′. There is undoubtedly some uncertainty
in the estimation of the means as well, but we antici-
pate that terms involving the uncertainty of a mean will
be small in comparisson. This because these uncer-
tanties are weighted by small covariances as opposed
to the relatively large means and the uncertainty in the
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means is generally smaller than that of the covariance
(Kaimal and Finnigan, 1994). Consider the example
term, G = T T ′sw

′, which is present in both (A.45)
and (A.44), then from (A.43) total uncertainty in our G
estimate would be σ2

G = T ′sw
′2 σ2

T
+ T

2
σ2
T ′sw

′ . On

account of |Ts| >> |T ′sw′| and σT << σT ′sw′
then

the uncertainty is to a very close approximation given

by σ2
G = T

2
σ2
T ′sw

′ . For simplicity we also assume
that there is no appreciable uncertainty in the correc-
tion factors (CFa, CFs). With the above considera-
tions in mind then upon applying (A.43) to (A.44) and
(A.45) the total uncertainties, now expressed as stan-
dard deviations with units of flux, in the kinematic sen-
sible and latent heat flux are given by

σFT =

([
CFa,H

(
1− 0.51Rdρv T

P

)]2

σ2
T ′sw

′ +

[
0.51CFs CFa,E

Rd T s T

P

]2

σ2
ρ′vw

′

)1/2

, (A.46)

and

σFρv = (1 + µσ)

([
CFs CFa,E

(
1− 0.51Rd T s ρv

P

)]2

σ2
ρ′vw

′ +

[
CFa,H

ρv

T

(
1− 0.51Rdρv T

P

)]2

σ2
T ′sw

′

)1/2

.

(A.47)

Recall that σ2
ρ′vw

′ and σ2
T ′sw

′ have already been com-
puted using the method of Finkelstein and Sims (2001)
through (A.42). So diagnosing (A.46) and (A.47)
on a block-by-block basis in the module is relatively
straightforwards. As pointed out in Billesbach (2011)
although the expressions are seemingly both daunting
and tedious, once these are coded up and checked the

calculation is automatic. Moreover taking into account
the propogation of uncertainty does not impose a heavy
computational burden. In fact when compared to di-
agnosing the uncertainty of the uncorrected turbulent
fluxes via the crosscovariance method (which is expen-
sive) the additional computing power required by the
propogation estimation is completely negligible.
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