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SUMMARY 

Since the late 1960’s the green sea urchin Strongylocentrotus droebachiensis (O.F. Müller) 

has grazed down large areas of kelp forest from the county of Trøndelag to the Russian 

border. This comprises a coastal area of more than 2000 km2 with a large proportion of barren 

areas which are characterized by bare rock, gravel and other earthen material and sparse or no 

vegetation present. Recent investigations indicate that in the southern areas the kelp forest is 

returning. This means that the numbers of urchins are likely declining (such as in Vega). On 

the other hand, the grazing is unaffected in the more northern part of Norway (such as in 

Hammerfest).  

The main goal of this project was to study the size, age, growth and mortality of sea urchins in 

a region where the population is declining (Vega) and compare this with a region with no 

evident population reduction (Hammerfest).  

Urchins were sampled from three barren stations and three kelp forest stations (200 

individuals from each station) in the heavily grazed northern part of the barren ground area 

(Hammerfest at 71ºN), and from three barren ground stations from the southern part of the 

barren ground area (Vega 65ºN). In the Vega area, no sea urchins were found inside kelp 

forests. These samples were shipped alive to the laboratory where size and age (growth rings) 

of the sea urchins were determined. Further analyses were performed to determine growth and 

mortality.  

The results indicated that the populations on kelp beds reached larger sizes, were younger and 

had a higher rate of growth than on the barren habitats within Hammerfest. There was also 

found that between barren grounds S. droebachiensis in Hammerfest reached larger sizes, 

were younger and had a higher rate of growth than on the barren habitats in Vega. However, 

there was no evidence for mortality to be different between habitats and areas. It was 

concluded that: 1) size and growth for different populations varied significantly between 

stations in Hammerfest, 2) age structure was similar between stations in Hammerfest but was 

significantly different within barren grounds in Hammerfest and Vega, 3) no differences in 

mortality were observed between habitats and areas. 
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1. INTRODUCTION 

1.1. Overgrazing on kelp forests 

Kelp forests are structurally complex and diverse ecosystems and serve as habitats for diverse 

flora (Marstein 1997) and fauna (Christie et al. 2003; Christie et al. 2009). They dominate 

large areas of shallow rocky coasts of the world’s temperate marine habitats, between 40–60° 

latitude in both hemispheres (Steneck et al. 2002).  

The total coverage of kelp forests worldwide is known to fluctuate. These fluctuations can 

result from diseases, physiological stress, herbivore overgrazing or interactions among those 

processes (Steneck et al. 2002). Sea urchins usually occur in low densities, but may have a 

significant impact on the community structure when the population density increases by 

overgrazing the kelp (Lawrence 1975; Harrold and Pearse 1987). The worldwide overgrazing 

effect on kelp forests occurs mainly due to blooms in sea urchin populations in areas where 

human harvesting impacts have been minimal (Steneck et al. 2002). Blooms in sea urchin 

densities creates fronts that graze all macroalgae and form barren grounds as a result 

(Sivertsen 2006) (Figure 1.1). 

 

Figure 1.1 Image of Norwegian kelp forest (left) vs. barren ground habitat (right). 
Photos: Stein Fredriksen. 
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Several hypotheses on what triggers the dramatic increase in sea urchin densities have been 

proposed. Some of these hypotheses include: 1) low predation on the sea urchin population 

(Sivertsen 2006) or 2) high recruitment of sea urchin larvae combined with favourable 

hydrographical conditions (Foreman 1977; Ebert 1983; Hart and Scheibling 1988; Wing et al. 

1995). 

 

1.1.1. Overgrazing phenomenon in the Norwegian coasts 

Local overgrazing events have been reported in the literature since before 1970 (Mortensen 

1943; Vasseur 1952). However, the most extensive and long-lasting over-grazing event 

reported in the NE Atlantic occurred along from the Trøndelag area and north to the Russian 

border in the beginning of the 1970s (Norderhaug and Christie 2009). Approximately 2000 

km2 of Laminaria hyperborea Gunnerus (Foslie) kelp forest were reported to disappear due to 

grazing by the green sea urchin Strongylocentrotus droebachiensis (O.F. Müller). This event 

was first reported by fishermen on the Norwegian coast but later documented by a number of 

studies (e.g. Propp 1977; Hagen 1983; Skadsheim et al. 1995; Sivertsen 1997a; Sivertsen 

1997b; Sivertsen 2006). The sea urchin dominated barren ground stage has until now, with a 

few small-scale exceptions, dominated the Norwegian waters for almost 40 years (Christie et 

al. 1998; Levin et al. 1998). In addition to this extensive event, small-scale local overgrazing 

on macrophytes have also been reported from the entire NE Atlantic (Norderhaug and Christie 

2009). 

This overgrazing activity leads to a partial, or complete, deforestation of the kelp bed 

resulting in barren grounds that may be dominated by sea urchins for decades (Elner and 

Vadas 1990). This does not only affect the local area but also the surrounding marine and 

terrestrial habitats (Steneck et al. 2002). Compared to kelp forests, the new barren ground 

state is structurally simple with low productivity (Chapman 1981) and low biological 

diversity (Norderhaug and Christie 2009). 

Sea urchins from the genus Strongylocentrotus have been involved in most reported cases of 

kelp bed overgrazing (Paine and Vadas 1969; Harrold and Pearse 1987). Species in this genus 

are capable of surviving starvation periods up to four weeks after the kelp bed is overgrazed 

without showing apparent harm (Garnick 1978). Once the barrens are formed, sea urchin 
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populations must rely on drift algae and newly settled organisms as a source of food 

(Chapman 1981), which can prevent the reestablishment of new macroalgal vegetation 

(Christie and Leinaas Unpublished data). 

On a regional scale, re-vegetation of kelp beds in barren areas after the reduction of sea urchin 

densities is occurring in mid-Norway and was first observed in the late 1980s (Norderhaug 

and Christie 2009). This event continued northwards along the border between barren grounds 

and kelp forests from 1990 to 1995, as reported by Skadsheim et al. (1995). However, as 

documented by Hagen (1987) and Christie et al. (1995), the re-grown areas can experience 

new grazing events leading to new barren areas. 

Re-growth of kelp forests has occurred in several areas around the world (e.g. California, 

Nova Scotia and Vega Island (Hawkins and Hartnoll 1983; Scheibling and Hennigar 1997, 

Norderhaugh and Christie 2009 (Figure 1.2) respectively). In order to allow a shift from the 

persistent barren ground state back to a new kelp forest state, some sort of perturbation is 

necessary (Norderhaug and Christie 2009). This perturbation is frequently a mass mortality 

that reduces the local sea urchin density (Hagen 1987; Christie et al. 1995). Mass mortality 

can be caused by changes in environmental factors that may affect survival, by an increased 

presence and/or activity of predators, or by increased frequency of diseases and/or parasites 

(Norderhaug and Christie 2009). However, once the sea urchins density is decimated in the 

barren area, the substrate is rapidly re-colonized by seaweeds (Mann 1973).  
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Figure 1.2 Movement of the border between kelp-dominated areas and barren ground in mid-
Norway from 1980 until 2007. Barren grounds areas have been reduced northwards. Source: 
Norderhaug and Christie 2009. 
 

1.2. The green sea urchin Strongylocentrotus droebachiensis 

The green sea urchin Strongylocentrotus droebachiensis (Figure 1.3), is an echinoderm 

belonging to the class Echinoidea, and is the most widely distributed member of the family 

Strongylocentrotidae (Mortensen 1943). This species has a broad arctic-boreal distribution ( 

Mortensen 1943; Jensen 1974) and is found over a considerable range of latitudes (Munk 

1992). S. droebachiensis’ distribution and its associated biota are influenced by a set of 

geographic and environmental factors and parasite prevalence in the urchins (Sivertsen 

1997b). In the Northeast Atlantic, it extends across Iceland, the Shetland Islands and northern 

Scotland, Norway, Denmark, and the west coast of Sweden, occurring also in the Barents Sea, 

the White Sea, and the Kara Sea (Scheibling and Hatcher 2001). S. droebachiensis is 

commonly present on rocky sublittoral substrata (Himmelman and Steele 1971) such as 

bedrock outcrops, boulders, and cobbles (Himmelman 1986; Scheibling and Raymond 1990), 
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ranging from 0 to 300 m in depth, but is most commonly present in the shallow subtidal area 

from 0 to 50 m (Jensen 1974). 

 

Figure 1.3 Photo of the green sea urchin Strongylocentrotus droebachiensis.  
Photo: Stein Fredriksen. 

 

S. droebachiensis has the ability to adjust its metabolism and activity level to compensate for 

seasonal variations in sea temperature (Percy 1972) which can vary from -1 to 20ºC during 

the year (Scheibling and Henningar 1997). However, above 10ºC this species is not able to 

develop normally and this temperature represents an upper limit for larval development 

(Stephens 1972). 

The green sea urchin is an omnivore with food preferences strongly influenced by natural 

environmental factors such as temperature, seabed topography, wave action, competition and 

predation (Himmelman and Nedelec 1990; Vadas 1990; Scheibling 1996; Scheibling and 

Hatcher 2001). Keats et al. (1984) reported that Strongylocentrotus spp. showed a marked 

preference for large, dominating kelps species such as Saccharina longicruris (Bachelot de la 

Pylaie) Kuntze and Laminaria digitata (Hudson) J.V. Lamouroux, but avoided Agarum 

cribrosum (Bory de Saint-Vicent). When available, S. droebachiensis may also ingest animal 

tissue (Himmelman and Steele 1971; Duggins 1981; Scheibling and Hatcher 2001). 



 

14 

 

Sea urchins of different age groups use different type of habitats. Juveniles up to 2 years old 

utilize cryptic behaviour, often dwelling predominantly under a crust of calcareous algae or 

rock crevices (Propp 1977; Himmelman 1986). In order to maintain high growth rates, these 

individuals either need adequate supplies of benthic macroalgae or receive enough of the 

periodically abundant drift algae (Munk 1992) such as kelps from the adjacent kelp beds 

(Himmelman and Steele 1971; Meidel and Scheibling 1998a). Once they shift their cryptic 

behaviour to a mobile behaviour and become exposed to predators, they are able to obtain 

more food (Himmelman 1986) by using chemodetection (Sloan and Campbell 1982; Mann et 

al. 1984). In addition, as mobility increases with increased size, large adults are able to cover 

larger distances, up to five meters a day in their search for favourable resources (Dumont et 

al. 2004; Dumont et al. 2006). 

It is this high mobility, together with its preference for kelps, which allows this species to 

have a marked influence on the distribution and abundance of benthic macroalgae, 

particularly laminarian kelps (Chapman and Johnson 1990). 

S. droebachiensis has one major breeding period in the spring (Miller and Mann 1973) with 

spawning observed to occur from March through July, usually correlated with the spring 

phytoplankton bloom period (Himmelman 1975), or up to 6-8 weeks after such a bloom 

(Munk 1992). According to Hinegardner (1969), the settlement of sea urchins involves both 

the attachment of a planktonic larva to a suitable substrate and the metamorphosis into a 

benthic juvenile. Recruitment has been reported to be variable between years and areas (Ebert 

1983). For example, other authors (McNaught 1999; Balch and Scheibling 2000) observed 

annual settlement and recruitment of S. droebachiensis in both barren grounds and kelp site 

populations. The recruitment rate is usually affected by physical factors such as wind driven 

currents and upwelling (Shanks 1995) and larval supply and mortality (Cameron and 

Schroeter 1980). In order to increase survival, larvae are able to delay metamorphosis until a 

suitable substrate is found (Strathman 1978). Once metamorphosis occurs, juveniles increase 

their diameter by 5 to 17 mm annually (Grieg 1928). However, if juvenile urchin populations 

are very dense they only grow 1 to 2 mm annually (Himmelman et al. 1983a). 

Growth characteristics differ between barren and kelp areas and from one year to another 

(Pearse and Pearse 1975). These differences have been attributed to food availability (Swan 

1961; Himmelman 1986). However, populations of S. droebachiensis do not starve and die, or 



 

15 

 

migrate after kelp bed destruction, at least within the first 4 years (Lang and Mann 1976). The 

populations found in barren grounds are highly dense and consist mainly of smaller sized 

individuals with low growth rates and high mortality rates (Lang and Mann 1976; 

Himmelman 1978; Wharton and Mann 1981; Himmelman 1986; Munk 1992; Sivertsen and 

Hopkins 1995). The persistence of high population densities at barren areas is thought to be 

maintained by regular recruitment to the adult sea urchin population to compensate for the 

high mortality (Christie and Leinaas Unpublished data). Conversely, stable sea urchin 

populations present in kelp forests often consist of larger individuals (Wharton and Mann 

1981) and show higher growth rates (10 to 20 mm annually in adults according to Swan 1961) 

and steady recruitment and mortality (Lang and Mann 1976). Reliable age information for 

size classes for kelp and barren habitats, however, is lacking (Himmelman 1986), as growth 

lines are often difficult interpret (Breen and Adkins 1976) and particularly difficult to 

recognize for slow-growing juveniles (Himmelman 1986). 

During the last three decades sea urchins have been harvested because of their highly valuable 

gonads (Sivertsen et al. 2008). The extensive harvesting has lead to overexploitation in some 

areas of the world, (Keesing and Hall 1998; Botsford et al. 2004). In order to protect the 

decimated populations, a large effort has been devoted to manage sea urchin aquaculture with 

complete life cycles (Robinson 2004). In Norway, only small scale fisheries has taken place 

on S. droebachiensis (Sivertsen et al. 2008).  

 

1.3. Kelp Forests 

Kelps in the order Laminariales are the primary species forming the canopy, which provide a 

three dimensional habitat in the sublittoral (Harrold and Pearse 1987). According to Mann 

(1973), zonation of kelps seems to be determined by both environmental factors (e.g. light, 

temperature and wave action) and competitive interactions (e.g. grazing of sea urchins). 

Along the Norwegian coast the most dominant species is Laminaria hyperborea which forms 

beds distributed from the low tide level down to depths of about 20 m. (Rinde et al. 1998).  

Kelps have a major impact on local ecology, as they are able to absorb wave action, provide 

new physical habitat for organisms living above the benthic boundary layer (Steneck et al. 

2002) and concentrate and magnify secondary production, supporting complex food webs in 
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coastal zones (Duggins et al. 1989; Christie et al. 2003). These forests are among the most 

productive biotic assemblages, either marine or terrestrial (Mann 1973) and have rapid growth 

even at high densities (Mann 1982; Abdullah and Fredriksen 2004). Kelp bed productivity in 

many coastal areas equals or even exceeds phytoplankton production, supporting diverse 

benthic communities (Dunton et al. 1982). A large part of this production may be transferred 

to other ecosystems such as beaches (Harrold and Pearse 1987) or deeper water areas (Vetter 

1998). However, this enormous production also supports many of the animals within the 

forest as well, providing the forest with a trophic structure within which different consumers 

can be found (Harrold and Pearse 1987; Norderhaug et al. 2003). Therefore, kelp forests are 

considered ecologically valuable systems for providing many species with a refuge from 

predators, a nursery area for juveniles and as a feeding grounds (Keats et al. 1987). They are 

also economically important, as they are harvested worldwide as a source of alginate 

(Lorentsen et al. 2010). Laminaria hyperborea has a high economical value in Norway and 

160,000 tons (fresh weight/year) are harvested by trawlers as a source of alginate (Fosså and 

Sjøtun 1993). 

 

1.4. The object of this investigation 

This study focus on the size, age, growth and mortality of green urchin populations 

(Strongylocentrotus droebachiensis) in kelp forests and on barren grounds in the southern part 

of the barren area (Vega) where sea urchins are retreating and kelp forests are recovering and 

in the northern part of the barren ground area (Hammerfest) where no kelp recovery has been 

observed. The object of this project was to determine whether there are differences in size, 

age, growth, and mortality between the green urchin populations in the different stations in 

kelp and barren habitats in Hammerfest, and in barren habitats in Hammerfest and Vega. 

This was done by analyzing the size, age, growth and mortality of the sea urchins at both 

studied areas and habitats and comparing the results obtained to previous published studies. 
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2. MATERIALS AND METHODS 

2.1. Location 

Two areas, Vega and Hammerfest, on the Norwegian coast were selected for this investigation 

(Figure 2.1). Vega is one of the areas where the overgrazing phenomenon was first observed 

(Christie and Leinaas Unpublished data). However, currently this region is characterized by a 

reduced sea urchin population and a re-establishment of kelp forests (Christie et al. 1995). 

Hammerfest, alternatively, is located in the northernmost part of Norway. In this region the 

sea urchin populations are dense and no re-establishment of kelp forests has been observed so 

far.  

 

Table 2.1 Date and location of the different sampling stations. 

Area Location Habitat Station Sampling 
month 

Coordinates 
(WGS 1984) 

Densities 
(ind/m2) * 

Hammerfest Molvik kelp Molvik kelp May 2010 70°39'10.82"N  
23°38'10.69"E 

50 

  barren Molvik barren May 2010 70°39'04.12"N  
23°38'25.36"E 

25.2 

 Rypklubbskjæret kelp Rypklubbskjæret 
kelp 

May 2010 70°37'58.29"N  
23°35'49.43"E 

22 

  barren Rypklubbskjæret 
barren 

May 2010 70°37'52.51"N  
23°35'37.72"E 

58 

 Finnøy kelp Finnøy kelp May 2010 70°37'37.19"N  
23°37'51.42"E 

2.4 

  barren Finnøy barren May 2010 70°37'39.14"N  
23°38'19.38"E 

45.6 

Vega 1 barren Vega 1 May 2010 65°430'7.66"N  
11°51'11.02"E 

17.2 

 2 barren Vega 2 May 2010 65°44'42.39"N  
11°43'24.17"E 

11.2 

 3 barren Vega 3 October 
2009 

65°45'57.79"N  
11°41'46.26"E 

4.8 

* Densities obtained for May 2008. 
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Figure 2.1 Map showing the stations in Hammerfest (right) and Vega (left). Image: Google 
Maps.  
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2.2. Sampling and data collection 

In total, 12 stations (3 in kelp forests and 3 in barren grounds in Hammerfest and in Vega) 

were sampled between the 3rd and 6th of May 2010, with the exception of Vega 3 which was 

sampled in October 2009 (Table 2.1). However, no sea urchins were found at the 3 kelp 

stations in Vega and thus data from those stations were not included in this study.  

At least 200 individuals were collected in each station by scuba diving using frames of 50 cm 

x 50 cm (0.25 m2). In order to sample a representative part of the population, the frames were 

dropped randomly on the bottom and all urchins inside the frame were collected. This 

procedure was repeated until a total of at least 200 individuals were obtained in each station, 

and all sea urchins were collected in the last frame. All individuals were put in polystyrene 

boxes and transported alive to the laboratory where the measurement and cleaning process 

took place. 

 

2.3. Size measurement, age, growth and mortality determination 

In the laboratory, the diameter of each urchin was measured using vernier calipers to the 

nearest 1 mm. Age determination was performed by counting growth zones in the 

interambulacral plates, according to the methodology described by Jensen (1969, with some 

modification). The individuals were cut in half with pruning shears. One half was cleaned to 

remove as much organic matter as possible using forceps and brush followed by rinsing with 

alcohol. The cleaned halves were heated in an oven at 60º for at least 24 hours, and then a 

small amount of vegetable oil was added in order to make the growth rings visible. Growth 

zones in the interambulacral plates were observed under a magnifying microscope using 

reflected light. The growth rings obtained by this method have been described as annual rings 

(Jensen 1969). As described by Pearse and Pearse (1975) under conditions of reflected light, 

alternating dark (translucent, representing slower summer growth) and light (opaque, 

representing faster winter growth) zones can be seen (Figure 2.2). In addition, some plates 

also exhibited weakly pigmented lines, probably representing periods of food deprivation, but 

only the clearly detectable bands were recorded for growth analysis. This method is quite 

reliable for Strongylocentrotus droebachiensis between 20 and 50 mm in diameter (Meidel 
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and Scheibling 1998b; Vadas et al. 2002), whereas in larger individuals it may lead to an 

under estimation of their age (Russell and Meredith 2000).  

Not all of the sea urchins collected from stations in Hammerfest and Vega showed such 

natural growth lines in their interambulacral and ambulacral plates.  Individuals with growth 

zones that were not sufficiently visible were considered unsuitable for usage in age 

determination and discarded in growth distribution. 

 

 

Figure 2.2 A photo of a sea urchins’ interambulacral plate. The alternating growth bands 
(opaque and translucent) can be seen. Numbers indicate translucent bands (7 years old). 

 

Growth curves were obtained by fitting the data of each population to asymptotic (Gompertz) 

growth curves. The curves were calculated from the Gompertz equation (Winsor 1932), 

 

where L∞ is the upper asymptote, k is the lower asymptote, x is the growth rate of the 

population and t is the age of the individuals. The parameters a, b and c were estimated by 

using SOLVER in EXCEL. The growth rates were calculated from linear regression of 

individuals between 1 and 5 years old, as those age classes showed linear growth in the fitted 

Gompertz growth curves. 
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To calculate mortality rates, catch curves based on distribution among age classes were used. 

The annual instantaneous mortality rate (Z) is the slope of the line by linear regression of ln n. 

 

2.4. Statistical analyses 

Statistical analyses were performed with SPSS software. Nested Analysis of Variance tests 

(Nested ANOVA, or Hierarchical ANOVA) were used to test differences in size and age 

structure and upper asymptotes (individuals ≥ 6 years) for individuals between localities and 

habitats. This statistical analysis was chosen because this experiment has one random factor 

(“habitat” when comparing stations within Hammerfest, or “area” when comparing barren 

grounds between Hammerfest and Vega) at the top of the hierarchy and a second one nested 

within it (“location”). The interaction term; habitat * location (when comparing Hammerfest 

stations) and area * location (when comparing stations with barren habitats), is referred as 

“station”. 

As Nested Analysis of Covariance (Nested ANCOVA) is a method based on linear regression, 

this was the analysis chosen to test differences in growth (individuals between 1 to 5 years 

old) and mortality rates (performing analyses on ln at age data for individuals ≥ 1 year) 

between stations and habitats. When analyzing growth, size was chosen as the response factor 

and age as the covariant. When analyzing the mortality rate, ln of the number of individuals 

was chosen as the response factor and age as the covariant.  

Tukey’s tests were performed following all ANOVA and ANCOVA analyses to identify 

individual differences among stations. 
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3. RESULTS 

In total 1888 sea urchins were sampled (Table 3.1). The size (measured as the diameter in 

mm) was measured on all individuals. Selecting the interambulacral plates with visible rings 

reduced the data to 800 individuals that could be aged and thus used for establishing the 

growth curve and mortality rates. The number of individuals being aged varied between 104 

and 168 at the nine stations. 

Table 3.1 Statistical parameters for sizes at the different stations. 

Station N Mean 
(mm) 

95%CL 
(mm) 

Median 
(mm) Variance SD 

(mm) 
Min 

(mm) 
Max 
(mm) 

Range 
(mm) 

Molvik kelp 214 22.50 1.49 20.00 122.03 11.05 7 72 65 

Molvik barren 238 30.87    1.41 30.59 121.53 11.02 4 61 57 

Rypklubbskjæret 

kelp 
204 40.52 2.48 46.00 321.33 17.93 8 73 65 

Rypklubbskjæret 

barren 
178 43.29 2.59 48.00 305.96 17.43 7 70 63 

Finnøy kelp 221 31.05 1.95 30.00 215.49 14.68 6 73 67 

Finnøy barren 210 40.67 1.90 39.00 191.53 13.84 8 71 63 

Vega 1  205 36.32 1.03 37.00 55.88 7.47 13 54 41 

Vega 2 201 32.99 1.28 33.00 83.47 9.13 15 59 44 

Vega 3 217 33.44 2.35 29.00 306.69 17.51 9 70 61 

Hammerfest kelp 639 31.21 1.28 27.00 270.48 16.45 6 73 67 

Hammerfest 

barren 
626 37.68 1.18 37.00 226.38 15.05 4 71 67 

Vega barren 623 34.24 0.98 34.00 153.83 12.40 9 70 61 

Total  1888         

 

3.1. Size structure 

The main difference in size structure was observed between stations (e.g. similarity between 

Rypklubbskjæret kelp and Rypklubbskjæret barren and Finnøy kelp and Finnøy barren) rather 

than between habitats (e.g. Molvik kelp and Molvik barren). Maximum sea urchin sizes (73 

mm) were obtained for Rypklubbskjæret kelp and Finnøy kelp. In Hammerfest, the size range 
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was between 6 and 73 mm at kelp stations and from 4 to 71 mm in barren stations. A similar 

range was observed in the barren habitats of Vega. 

Figure 3.1 shows the size-frequencies. At all stations, large size ranges were observed (± 60 

mm) with the exception of Vega 1 and Vega 2 that only exhibited a range of ± 40 mm. In 

Hammerfest, the stations at Molvik and Finnøy had a unimodal distribution (Figure 3.1). 

However, while the barren stations were more or less symmetric, the kelp stations were 

skewed to the left. This means that small individuals are more frequent in kelp habitats. On 

the other hand, both stations in Rypklubbskjæret presented a similar bimodal and symmetrical 

distribution. Notable differences were also found between the stations in Vega. While Vega 1 

and 2 had a unimodal distribution, Vega 3 was bimodal. Further, Vega 2 and 3 had a 

symmetric distribution, whereas Vega 1 was slightly skewed to the left.  

When pooling the data for the different habitats in the 2 areas, it was observed that small 

individuals (less than 10 mm) were more frequent at the barren habitats in Hammerfest. For 

the larger individuals (over 10 mm) similar distribution was observed for the barren habitats 

in Hammerfest and Vega. Those areas were dominated by medium-sized individuals (between 

25 and 50 mm). However, kelp habitats in Hammerfest had a different distribution as they 

were dominated by smaller individuals (between 10 and 25 mm). 

There was a clear difference in the mean sizes when comparing all stations (Table 3.2.a). 

Nested ANOVAs indicated no significant effects of type of habitat and location for size 

distribution within Hammerfest; however, the station (interaction) term indicated significant 

differences (ANOVAF= 6.355, df = 1259, P < 0.01). 95% C.L. plots (Figure 3.2.a) showed that 

stations formed three significant different groups: Molvik kelp had the smallest average size, 

Molvik barren and Finnøy kelp formed an intermediate group and the largest average sizes 

were found in Rypklubbskjæret kelp, Rypklubbskjæret barren and Finnøy barren. This was 

confirmed by multiple comparisons Tukey’s tests (Table 7.2).  

Significantly larger sizes were also found for the station term for Strongylocentrotus 

droebachiensis in barren habitats in Hammerfest and the ones in Vega (ANOVAF= 41.940, df = 

1243, P < 0.01; Table 3.2.b). 95% C.L. plots (Figure 3.2.b) and multiple comparison Tukey’s 

test (Table 7.3) showed that Molvik barren was significant smaller that Rypklubbskjæret 

barren, Finnøy barren and Vega 1. 
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Figure 3.1 Histograms showing size-frequency distributions for all 9 stations in 
Hammerfest and Vega and for the pooled data in kelp and barren habitats in 
Hammerfest and barren habitats in Vega. 
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Figure 3.2 Mean size-diameter of sea urchins S. droebachiensis for a) all stations at 
Hammerfest and b) all barren stations in Hammerfest and Vega, plotted with a 95% CL 
of the mean.  
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Table 3.2 One-way nested ANOVA test results for size for a) all stations at Hammerfest 
and b) all barren stations in Hammerfest and Vega. 
 Source Type III SS df MS F Sig. 
a) Hammerfest 
kelp vs barren 

Habitat Hypothesis 14997,106 1 14997,106 11,383 ,078
Error 2637,254 2,002 1317,515b   

Location Hypothesis 49171,849 2 24585,924 18,619 ,051
Error 2640,979 2 1320,489c   

Stationb Hypothesis 2640,979 2 1320,489 6,355 ,002a

Error 261618,578 1259 207,799d   
b) Barrens in 

Vega vs barrens 
in Hammerfest 

Area Hypothesis 5007,559 1 5007,559 ,684 ,495
 Error 14634,325 2,000 7316,360b   
Location Hypothesis 4709,707 2 2354,854 ,321 ,757

 Error 14665,563 2 7332,781c   
Stationc Hypothesis 14665,563 2 7332,781 41,940 ,000a

 Error 217326,826 1243 174,841d   

 

3.2.  Age structure 

Differences in age structure were observed between local areas (e.g. Molvik kelp and 

Finnøy kelp and between Molvik barren and Finnøy barren) and between the type of 

habitat (e.g. Finnøy kelp and Finnøy barren) (Table 3.3). 

The age of the sea urchins in this investigation varied between 0 and 14 years, and the 

age distribution varied among the stations. For all the stations except Rypklubbskjæret 

barren, the age-frequencies were unimodal (Figure 3.3), and skewed to the left 

indicating dominance of young year classes. On the other hand, Rypklubbskjæret barren 

did not contain particular dominant year classes during recent years. Half of the 

individuals (i.e. the median) were less than 4 years among all the aged individuals. At 

Rypklubbskjæret barren the median was 6, but dropped to 2 at Molvik kelp.  Also the 

maximum age varied among the stations (Table 3.3). A maximum age of 14 years was 

observed in Rypklubbskjæret barren and Finnøy barren, whereas the lowest maximum 

age was found in Vega 2 (7 years). Although not very frequent, juvenile individuals (< 2 

years) were found at all stations. 

When pooling the data for the different areas, it is interesting to note that, although the 

type of habitat was different, the general population structure and density were very 

a indicates significance at α = 0.05. 
b Station refers to Habitat * Location interaction 
c Station refers to Area * Location interaction 
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similar. There was a notable dominance in the year classes between 2 and 6 years and a 

low frequency of older year classes (> 6 years).  

Table 3.3 Statistical parameters for age at the different stations. 

Station N Mean 
(mm) 

95%CL 
(mm) 

Median 
(mm) Variance SD 

(mm) 
Min 

(mm) 
Max 
(mm) 

Range 
(mm) 

Molvik kelp  104 2.42 0.28 2.00 2.05 1.43 0 12 12 

Molvik barren 164 3.27 0.20 3.00 1.82 1.35 1 9 8 

Rypklubbskjæret 

kelp 
168 4.01 0.38 4.00 6.13 2.47 1 12 11 

Rypklubbskjæret 

barren 
137 5.69 0.59 6.00 12.18 3.49 1 14 13 

Finnøy kelp 147 3.07 0.27 3.00 2.85 1.69 0 10 10 

Finnøy barren 134 4.71 0.37 4.00 4.60 2.14 1 14 13 

Vega 1  157 4.16 0.25 4.00 2.43 1.56 1 9 8 

Vega 2 153 3.22 0.21 3.00 1.78 1.33 1 7 6 

Vega 3 133 5.20 0.58 4.00 11.47 3.39 1 13 13 

Hammerfest kelp 419 3.29 0.20 3.00 4.36 2.09 0 12 12 

Hammerfest 

barren 
435 4.48 0.25 4.00 6.94 2.63 1 14 13 

Vega barren 443 4.15 0.22 4.00 5.52 2.35 1 13 12 

Total  1297         

 

Table 3.4 Nested ANOVA test results for age for a) all stations at Hammerfest and b) 
all barren stations in Hammerfest and Vega. 
 Source Type III SS df MS F Sig. 
a) Hammerfest 
kelp vs barren 

Habitat Hypothesis 553.262 2 276.631 18.954 .050   
Error 29.190 2 14.595   

Area Hypothesis 402.804 1 402.804 27.643 .034a

Error 29.192 2.003 14.571   
Stationb Hypothesis 29.190 2 14.595 2.936 .054 

Error 4215.981 848 4.972   
b) Barren 
grounds Vega 
vs Hammerfest 

Area  Hypothesis 28.901 1 28.901 .117 .765 
 Error 493.777 2.000 246.858   
Location Hypothesis 229.924 2 114.962 .464 .683 

 Error 495.067 2 247.534   
Stationc Hypothesis 495.067 2 247.534 45.649 .000a

 Error 4728.408 872 5.422   
a indicates significance at α = 0.05. 
b Station refers to Habitat * Location interaction. 
c Station refers to Area * Location interaction. 
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Figure 3.3 Histograms showing age-frequency distributions for all 9 stations in 
Hammerfest and Vega and for the pooled data in kelps and barren habitats in 
Hammerfest and barren habitats in Vega. 
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Figure 3.4 Mean age of sea urchins S. droebachiensis for a) all stations at Hammerfest 
and b) all barren stations in Hammerfest and Vega, plotted with a 95% CL of the mean. 
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Table 3.5 Nested ANOVA test results for size at three different year classes (3, 4 and 5) 
for a) all stations at Hammerfest and b) all barren stations in Hammerfest and Vega. 

a) Hammerfest kelp vs barren 

Age class  Source Type III SS df MS  F Sig. 

3  Habitat Hypothesis 36.994 1 36.994  1.075 .489 
Error 34.427 1 34.427    

Area Hypothesis 90.429 2 45.214  .995 .612 
Error 34.850 .767 45.423    

Stationb Hypothesis 34.427 1 34.427  2.710 .101 
Error 2337.919 184 12.706    

4  Habitat Hypothesis 289.434 1 289.434  1.308 .370 
 Error 446.286 2.017 221.224    
Area Hypothesis 12.170 2 6.085  .026 .975 

 Error 474.447 2 237.223    
Stationb Hypothesis 474.447 2 237.223  17.786 .000a

 Error 1853.983 139 13.338    
5  Habitat Hypothesis 152.347 1 152.347  1.088 .402 

 Error 292.275 2.088 139.966    
Area Hypothesis 105.451 2 52.726  .339 .747 

 Error 311.167 2 155.584    
Stationb Hypothesis 311.167 2 155.584  6.226 .003a

 Error 1499.324 60 24.989    

b) Barren grounds Hammerfest vs Vega 

Age class  Source  Type III SS df MS F Sig. 

3  Area Hypothesis 46.522 1 46.522 2.749 .211 
Error 43.645 2.579 16.925   

Location Hypothesis 66.760 2 33.380 1.900 .345 
Error 35.131 2 17.566   

Stationc Hypothesis 35.131 2 17.566 1.317 .270 
  Error 2574.007 193 13.337   

4  Area Hypothesis 6.103 1 6.103 .063 .825 
 Error 197.506 2.037 96.981   
Location Hypothesis 342.390 2 171.195 1.691 .372 

 Error 202.468 2 101.234   
Stationc Hypothesis 202.468 2 101.234 5.865 .003a

 Error 2917.021 169 17.260   
5  Area Hypothesis 28.657 1 28.657 1.477 .338 

 Error 43.119 2.222 19.406   
Location Hypothesis 328.066 2 164.033 8.647 .104 

 Error 37.938 2 18.969   
Stationc Hypothesis 37.938 2 18.969 .561 .573 

 Error 2300.935 68 33.837   
a indicates significance at α = 0.05. 
b Station refers to Habitat * Location interaction. 
c Station refers to Area * Location interaction. 
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Nested ANOVA indicated significant effects of habitat for age structure within 

Hammerfest; however, the habitat and the station interaction term were not significant 

(ANOVAF=2.936, df= 848, P = 0.054; Table 3.4.a). The same three groups as obtained for 

sizes were found: Molvik kelp had the lowest average age, Molvik barren and Finnøy 

kelp formed an intermediate group and the largest average ages were found in 

Rypklubbskjæret kelp, Rypklubbskjæret barren and Finnøy barren (Figure 3.4.a; Table 

7.4). 

However, when comparing the barren stations of Hammerfest and Vega (Figure 3.4.b) a 

significant difference was found for the station interaction term (ANOVAF= 45.649, df = 

872, P < 0.01; Table 3.4.b). Figure 3.4.b showed that stations formed two significant 

different groups based on age: Molvik barren and Vega 2 had the lowest average age, 

and the highest averages were found for Finnøy barren, Rypklubbskjæret barren and 

Vega 1 and 3. This was confirmed by multiple comparisons Tukey’s tests (Table 7.5). 

The results of Nested ANOVA for 3, 4 and 5 year classes (Table 3.5) did not indicate 

significant main effects of habitat and location for sizes for within Hammerfest and 

within barren stations. For Hammerfest, the station interaction term was significant for 

the year classes 4 and 5, and not for the 3 year class. However for barren stations 

significant differences were obtained only for the 4 year class. 

 

3.3.  Growth 

Growth of Strongylocentrotus droebachiensis was higher in kelp forests (9.3 mm year-1) 

than on barren habitats (8.2 mm year-1 and 6.6 mm year-1 for Hammerfest and Vega 

respectively). Diameter as a function of number of growth rings (age) for individuals 

between 1 and 5 years old for pooled samples are shown in Figure 3.5. Nested 

ANCOVAs indicated no significant effects for habitat and location for growth rate of S. 

droebachiensis within Hammerfest; however, the station (interaction) term indicated the 

differences were significant (ANCOVAF=21.632, df = 662, P < 0.01; Figure 3.5; Table 

3.7.a). Individual linear regressions (Table 3.6; Figure 7.1) and Tukey’s Multiple 

Comparison test showed that S. droebachiensis from the station Rypklubbskjæret kelp 

presented the fastest growth within the 6 stations in Hammerfest, whereas the slowest 
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was observed for Finnøy barren (Table 7.8). The same results were observed for growth 

rates in barren stations at Hammerfest and Vega, where significant differences were 

observed for the station (interaction) term (ANCOVAF=9.445, df = 653, P < 0.01; Figure 

3.5; Table 3.7.b). Fastest growth occurred at Vega 3 within all barren grounds while the 

slowest growth occurred at Vega 1 and 2 (Table 3.6, Figure 7.1; Table 7.9). 

 

Table 3.6 Growth and mortality parameters for all the stations and areas. 

Station 
Growth rate 

(mm/yr) 

Upper asymptote 

(L∞) (mm) 

Instantaneous 

Mortality (Z) 

Molvik kelp 8.6 67.85 0.38 

Molvik barren 7.9 55.21 0.62 

Rypklubbskjæret kelp 9.7 64.55 0.30 

Rypklubbskjæret barren 7.9 65.64 0.13 

Finnøy kelp 8.5 67.80 0.50 

Finnøy barren 7.2 69.73 0.26 

Vega 1 6.4 43.74 0.41 

Vega 2 6.4 47.76 0.61 

Vega 3 8.1 62.52 0.19 

Hammerfest kelp 9.3 66.64 0.47 

Hammerfest barren 8.2 62.81 0.30 

Vega 6.6 63.85 0.37 
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Figure 3.5 Linear regressions (with observed values) of diameter vs. number of growth 
rings, for S. droebachiensis between 1 and 5 years sampled in all areas. 

 

 
Table 3.7 Nested ANCOVA test results for homogeneity of S. droebachiensis 
individuals between 1 and 5 years old for a) all stations at Hammerfest and b) all barren 
stations in Hammerfest and Vega. 
 Source Type III SS df MS F Sig. 
a) Hammerfest 
kelp vs barren 

Age Hypothesis 65282,200 1 65282,200 4465,977 ,000a 
Error 9676,901 662 14,618b   

Habitat Hypothesis 344,368 1 344,368 1,103 ,404 
Error 625,299 2,002 312,266c   

Locationb 

Station 

Hypothesis 28,372 2 14,186 ,045 ,957 
Error 633,418 2,000 316,762d   
Hypothesis 632,429 2 316,215 21,632 ,000a 
Error 9676,901 662 14,618b   

b) Barren 
grounds Vega 
vs Hammerfest 

Age Hypothesis 37329,137 1 37329,137 2210,296 ,000a

 Error 11028,353 653 16,889b   
Area Hypothesis 61,878 1 61,878 ,382 ,600 

 Error 322,599 1,993 161,851c   
Locality Hypothesis 911,780 2 455,890 2,822 ,262 

 Error 322,180 1,994 161,577d   
Stationc Hypothesis 319,032 2 159,516 9,445 ,000a 

 Error 11028,353 653 16,889b   
a indicates significance at α = 0.05. 
b Station refers to Habitat * Location interaction. 
c Station refers to Area * Location interaction. 
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In this study, the maximum observed age was 14 years with a corresponding diameter of 

62 and 68 mm (Rypklubbskjæret barren and Finnøy barren respectively). However, the 

biggest sizes were observed within kelp habitats: 72 mm (Molvik) and 73 mm 

(Rypklubbskjæret and Finnøy).  

The Gompertz growth function provided a good fit (Figure 3.6) and therefore allowed 

estimation of the asymptotic size. The asymptotic diameter for kelp habitats in 

Hammerfest (L∞ = 66.64 mm) was higher to that estimated for the barren stations (L∞ = 

62.81 mm). Whereas significant differences among stations were observed (ANOVAF= 

6,277, df = 174, P < 0.01; Table 3.8.a), no main effect occurred for the habitat and 

location terms. The smallest asymptotic diameter was at Molvik barren (55.21 mm) 

whereas the largest was at Finnøy barren (69.73 mm) (Table 3.6, Figure 7.2; Table 7.6). 

On the other hand, the asymptotic diameter (L∞ = 63.85 mm) was significantly different 

in the barren stations in Hammerfest and those in Vega (ANOVAF= 10,954, df = 211, 

P<0.01; Table 3.8.b). Within the barren stations, smallest asymptotic diameter was 

obtained at Vega 1 (43.74 mm) and the largest was obtained at Finnøy barren (69.73 

mm) (Table 3.6, Figure 7.2; Table 7.7). 

Table 3.8 Nested ANOVA test results for homogeneity of S. droebachiensis individuals 
older than 5 years (asymptotes) for a) all stations at Hammerfest and b) all barren 
stations in Hammerfest and Vega. 
 Source Type III SS df MS F Sig. 
a) Hammerfest 
kelp vs barren 

Habitat Hypothesis 574,142 1 574,142 4,992 ,123 
Error 306,792 2,667 115,014   

Location Hypothesis 119,358 2 59,679 ,304 ,767 
Error 392,942 2 196,471   

Stationb Hypothesis 392,942 2 196,471 6,277 ,002a 
Error 5446,443 174 31,301   

b) Barren 
grounds Vega 
vs Hammerfest 

Area  Hypothesis 1066,462 1 1066,462 3,449 ,202 
 Error 628,390 2,032 309,204   
Location Hypothesis 3635,367 2 1817,683 5,446 ,155 

 Error 667,496 2 333,748   
Stationc Hypothesis 667,496 2 333,748 10,954 ,000a 

 Error 6428,602 211 30,467   
a indicates significance at α = 0.05. 
b Station refers to Habitat * Location interaction. 
c Station refers to Area * Location interaction. 
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Figure 3.6 Gompertz growth functions (with observed values) fitted to size-at-age data 
for individuals from Hammerfest and Vega. L∞ is the upper asymptote, k is the lower 
asymptote, x is the growth rate of the population. 

 

3.4. Mortality 

There were no differences in sea urchin mortality between kelp forests and barrens and 

between Hammerfest and Vega. The estimated catch curves for the three areas (data 

from all habitats pooled) are shown in Figure 3.7. Estimated instantaneous mortality 

rates (Z) are presented in Table 3.6. This shows that instantaneous mortality for all sites 

and habitats varied from 0.13 to 0.62. Although a similar recruitment to the adult 

population was observed for the 2 areas, urchins in kelp habitats in Hammerfest 

suffered a higher mortality (Z = 0.47) compared to urchins in barren areas in 

Hammerfest (Z = 0.30) and the ones in Vega (Z = 0.37) (Table 3.6; Figure 3.7). 

However, no significant differences were found between stations (ANCOVAF= 0,088, df = 

48, p = 0,916; Table 3.9.a). For barren habitats, higher mortalities were observed in 

Vega (Z = 0.37) than those in Hammerfest, but again no significant statistically 

difference was observed between stations (ANCOVAF=1,802, df = 49, P = 0,176; Table 

3.9.b). Those assumptions were confirmed with the multiple comparisons Tukey’s test 
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(Tables 7.10 and 7.11) where all individual comparisons indicated that there is no 

significant difference in survival between areas and habitats. 

 
Figure 3.7 Catch curve for S. droebachiensis sampled in all habitats. 

 

Table 3.9 Nested ANCOVA test results for homogeneity of S. droebachiensis catch 
curves for individuals from a) all stations at Hammerfest and b) all barren stations in 
Hammerfest and Vega. 
 Source Type III SS df MS F Sig. 
a) Hammerfest 
kelp vs barren 

Age Hypothesis 48,866 1 48,866 78,166 ,000a 
Error 30,008 48 ,625   

Habitat Hypothesis ,356 1 ,356 5,104 ,100 
Error ,233 3,347 ,070   

Locality 

Stationb 

Hypothesis 1,984 2 ,992 14,966 ,028a 
Error ,199 2,995 ,066   
Hypothesis ,110 2 ,055 ,088 ,916 
Error 30,008 48 ,625   

b) Barren 
grounds Vega 
vs Hammerfest 

Age Hypothesis 33,783 1 33,783 56,241 ,000a 
 Error 29,434 49 ,601   
Area Hypothesis ,528 1 ,528 ,486 ,558 

 Error 2,155 1,985 1,085   
Locality Hypothesis 1,513 2 ,756 ,697 ,590 

 Error 2,157 1,989 1,085   
Stationc Hypothesis 2,164 2 1,082 1,802 ,176 

 Error 29,434 49 ,601   
a indicates significance at α = 0.05. 
b Station refers to Habitat * Location interaction. 
c Station refers to Area * Location interaction. 
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According to the hypothesis: 

‐ There were significant differences in size among stations in Hammerfest and 

among barren ground stations (Hammerfest and Vega). 

‐ No differences were found in age among stations in Hammerfest. However, 

significant differences in age were found among barren ground stations (in 

Hammerfest and Vega). 

‐ Significant differences were obtained in growth for both Hammerfest stations 

and barren grounds (in Hammerfest and Vega). 

‐ No significant differences were found in mortality rates within Hammerfest and 

within barren grounds (in Hammerfest and Vega). 
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4. DISCUSSION: 

Two specific issues must be addressed before discussing the results obtained in this 

study. The first issue concerns the sampling of small individuals. Usually small 

individuals (<20 mm) cannot be counted and collected in proportion to their true 

abundance.  Newly settled juveniles up to 2 years old tend to hide in cracks, crevices 

and kelps holdfast. Those habitats possibly act as refuges against predation by certain 

species of decapods, echinoderms, fish and birds (Himmelman and Steele 1971). In 

addition small individuals are hardly visible and therefore hard to find during collection. 

A third factor could be that the sampling period may have fallen between recruitment 

events. However, data for all stations were collected similarly and all individuals less 

than 20 mm were included in analyses while acknowledging this issue.  

A second important issue relates to aging individuals. Growth lines in urchins are often 

difficult to interpret (Pearse and Pearse 1975) and therefore it is likely that annual 

growth lines are difficult to recognize for slow-growing juveniles (Himmelman 1986). 

Some authors (e.g. Meidel and Scheibling 1998b) have also emphasized that the method 

of counting growth rings is most reliable for Strongylocentrotus droebachiensis 

between 20 and 50 mm in diameter (between 2 and 6 years old). Thus, the results for 

individuals older than 6 years should be interpreted cautiously. 
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4.1. Size structure 

There was a considerable variation in the size distribution among stations in both areas. 

Compared to the barren grounds, sea urchins in kelp habitats at Hammerfest reached the 

maximum sizes (73 mm). Presence of larger sea urchins in kelp habitats may be due to 

higher amounts of food compared to the barren areas, which support lower growth rates 

in such food limited areas (Lang and Mann 1976; Wharton and Mann 1981). Such 

results could lead to a higher grazing activity from the larger individuals, which, at the 

same time, could lead to a new barren habitat. 

When comparing barren stations in Hammerfest and Vega, similar results between both 

areas were obtained. Mean urchin sizes in barren stations at Hammerfest (37.68 mm) 

were more similar to those found in the barren ones in Vega (34.24 mm) than to kelp 

habitats in Hammerfest (31.21 mm). This could indicate that there is a difference in 

sizes due to the type of habitat. However, the results of nested ANOVA indicated the 

opposite (p = 0.078). Reasons for finding smaller average sizes in kelp habitats are due 

to the fact that size-frequencies were highest for smaller individuals. This pattern is 

opposite to what Vadas et al. (2002) described. 

Sea urchins of less than 4 mm were not recorded at all, but individuals between 4 and 

20 mm were occasionally found at all stations in both types of habitats. Small 

individuals (< 20 mm) of Strongylocentrotus droebachiensis are known to settle in 

macroalgal beds, in crevices of rocks and within the matrix formed by calcareous algae 

(Propp 1977; Vadas and Steneck 1988). Therefore sea urchins with diameters smaller 

than 20 mm are most likely under-represented in the data due to bias in sampling. 

Both unimodal and bimodal populations were observed in the two habitats. Whereas 

bimodal distribution can be explained by several strong recruitments of young sea 

urchins or size-specific predation on juveniles (such as Rypklubbskjæret and Vega 3) 

(Himmelman et al. 1983b),   the unimodal distributions are probably a consequence of 

stable conditions characterized by a high individual variability in growth (such as 

Molvik, Finnøy and Vega 1 and 2) (Bluhm et al. 1998). Nested ANOVA for all stations 

showed that the mean size differs significantly among stations within Hammerfest (p < 

0.01). A dominance of small size classes in kelp beds may be the result of a higher 
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density in the population. Data obtained in May 2008 indicated that Finnøy kelp had the 

highest density (50 individuals /m2) compared to the other stations, while the lowest 

was obtained for Molvik kelp (2.4 individuals /m2) (Table 2.1). However, in this 

investigation, higher frequencies of small individuals were found at Molvik kelp. It 

seems then that density has a minor impact on the magnitude of the small size classes. 

Thus, strong recruitment in sea urchin populations or other local factors (such as 

absence of predators or favourable hydrological conditions) can be the reason why there 

were smaller urchins in kelp beds compared to barren grounds. 

As stated by Sivertsen and Hopkins (1995) S. droebachiensis juveniles rarely occur 

together with adults on shallow rocky bottoms. They proposed that larvae settle in loose 

substrata, usually at 8 to 30 m depth. As juvenile individuals grow they migrate from 

these areas to join adult populations on the shallow rocky ones. As our samples were 

obtained at 5 m depth, it can be suggested that this migration to upper areas could be the 

reason why higher frequencies of larger individuals were found on the barren areas 

compared to the kelp ones. Other proposed explanation is that even though larvae could 

settle on hard bottoms, juveniles may be very susceptible to predation or cannibalism 

(e.g. Himmelman et al. 1983a). Himmelman and Steele (1971) also indicated that 

cannibalism is frequently observed between sea urchins, and Sivertsen (1997b) stated 

that due to this interaction some forms of competition occur between large and small 

sea urchins. Therefore, such cannibalism could also explain why there were lower 

frequencies of sea urchins in barren habitats. 

Compared to previous studies done at Vega (Figure 4.1) no sea urchins were found in 

kelp habitats in the present study. Thus no comparisons in sea urchin populations were 

done between the two habitats in Vega. S. droebachiensis are seldom found in this 

habitats in Vega because pristine kelp beds, not affected by grazing, are only located in 

wave exposed areas (Kain and Jones 1971) where sea urchins, due to several factors 

(e.g. swapping away or even death due to water motion), cannot survive (Cowen et al. 

1982). However, the fact that no sea urchins were found in this area during 2009 could 

indicate a strong influence of local factors affecting this species during previous years. 

On the other hand, comparing the overall picture of barren grounds in Vega in 1993 

(Figure 4.1) to the ones obtained in 2009 (Figure 3.1), larger individuals were found in 
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2009. Similar frequencies were observed for young individuals (<20 mm). However, 

urchins larger than 40 mm were less common in 1993.  

 
Figure 4.1 Size-frequency distributions of S. droebachiensis from the two habitat types 
in Vega in 1993 (left: barren grounds and right: kelp beds).  Source: (Rinde et al. 1998). 

 

4.2. Age structure and growth 

According to Propp (1977) Strongylocentrotus droebachiensis is able to migrate several 

hundred meters in shallow waters. Therefore different areas may contain quite different 

age frequencies. This phenomenon is also represented in the present study data set 

(Table 3.1). Sea urchins between 1 and 12 years were found in all stations, while 

individuals younger than 1 year old were only found in kelp beds and urchins older than 

12 years were only found in barren grounds. However, as mentioned previously, growth 

rings in individuals older than 6 years can be hard to interpret. 

The age-structure (Figure 3.3) was similar at barren and kelp stations in Molvik and 

Finnøy. At both locations, there was a high frequency of young individuals (< 4 years) 

and a low frequency of older individuals. This likely indicates high recruitment with 

subsequent high mortality. On the other hand, it is interesting to note that although the 

age distribution in Rypklubbskjæret kelp and Rypklubbskjæret barren is different, both 

locations had a high frequency of 6-7 year old individuals. A possible explanation for 

this pattern is that there was a recruitment event and subsequent high survival of S. 

droebachiensis in the seasons 2002 and 2003 in Rypklubbskjæret (back calculation). 
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The 3 stations in Vega also had a strong recruitment during recent years (between 2005 

and 2007) as very high frequencies of young age classes were observed.  

Almost all stations had similar age distributions with a very high frequency of young 

age groups. There was no significant difference in the average age at stations within 

Hammerfest (p = 0.054). However, significant differences were obtained when 

comparing barren stations (p < 0.01). Therefore, such results indicate that the type of 

habitat is not the factor influencing the population age structure.  

According to the study conducted by Lang and Mann (1976) in St. Margaret´s Bay in 

Nova Scotia, growth rates in natural populations are often lower in barren areas than in 

kelp habitats. Sivertsen (1997b) found similar results in his study along the Norwegian 

coast. The same pattern can be observed in the present study (Figure 3.5), where sea 

urchins grew faster in the kelp beds than in barren grounds in Hammerfest during the 

first 5 years. Higher availability of food (as it is the case in kelp habitats) could be the 

reason for high growth rates, which would lead to a short generation time and to a high 

productivity (Sivertsen 1997a). 

Under optimal conditions, Himmelman (1986) found that S. droebachiensis younger 

than 2 years grow at a rate of 17 mm annually. When the food is scarce, as is the case in 

barren grounds, growth rates may drop to 1 to 2 mm annually. He stated that two year 

old individuals range from 6 to 26 mm. In the present investigation the average size at 

the age of 2 years was 24 mm for all stations (Figure 3.5). Further, the range for 2 year 

old individuals was from 13 to 40 mm. However, juvenile individuals were smaller at 

age 1in kelp beds than in barren grounds both in Vega and Hammerfest. This is contrary 

to what is expected, as kelp habitats often have higher food availability. But as urchins 

in the kelp beds grow faster, they reached the same size as urchins from barren grounds 

at the age of 2 years. 

There are disagreements among authors about the growth rate of older age groups. 

While some report growth rates up to 27.5 mm yr-1 (e.g. Swan 1961; Miller and Mann 

1973; Meidel and Scheibling 1999), others (e.g. Lang and Mann 1976; Propp 1977; 

Himmelman et al. 1983b; Sivertsen and Hopkins 1995) propose 12 mm yr-1 to be more 

realistic for natural populations. In the present investigation, the growth rates were even 

lower: 9.3 mm yr-1 (kelp beds in Hammerfest), 8.2 mm yr-1 (barren areas in 
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Hammerfest) and 6.6 mm yr-1 (barrens in Vega) (Table 3.6). It has been argued that 

such differences are caused by a large sensitivity to the type and quantity of available 

food (Swan 1961; Keats et al. 1984). From the Gompertz growth curves (Figure 3.6) the 

annual increments are estimated to be over 1 cm during the first year and substantially 

less for older age groups. Kelp beds provided the fastest growth rate and largest body 

size. This was also reported by Sivertsen and Hopkins (1995). The asymptotic growth 

varied significantly between the stations in Hammerfest (p < 0.01) and within barren 

stations (p < 0.01), although the differences were minimal as seen in Figures 3.5 and 

3.6. However, it is possible for urchins to survive in barren grounds because they can 

utilize carbon from broken kelp fragments and whole, loose kelp from adjacent kelp 

beds (Himmelman and Steele 1971; Munk 1992; Meidel and Scheibling 1998a). 

Figure 4.2 shows the growth curve for Vega barren grounds obtained in the present 

investigation (Gompertz growth curve) relative to the barren grounds growth curve 

obtained in 1993 (von Bertalanffy growth curve). When comparing both curves, it was 

observed that sea urchins in Vega (barren) grew faster and reached larger sizes in 2009. 

Possible reasons for this include higher temperatures or higher food input. However 

older sea urchins were found in 1993. This could be a result of lack of predators, bias in 

sampling or absence of parasites. 

 
Figure 4.2 Von Bertalanffy growth curves for kelp beds and barren grounds in Vega in 
1993 (Source: Rinde et al. 1998), and superimposed Gompertz curve for barren grounds 
in Vega in 2009.  

Kelp beds 1993 

 Barren grounds 2009 

Barren grounds 1993 
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4.3. Mortality 

Several authors (e.g. Pauly 1984; Ebert 1985) have stated that growth rates tend to be 

inversely linked with longevity and mortality. In the present study, recruitment was 

found to be similar in both habitats and areas. On the other hand, although not different 

(p = 0.916 and p = 0.176 for Hammerfest and barren grounds respectively), there was a 

tendency for mortality of sea urchins to be higher in the kelp-beds. Those results are 

contrary to Christie and Leinaas observations between 1990 and 1994 (unpublished 

data, Norway). They found higher recruitment, higher frequencies of young individuals 

and higher mortalities in barren areas compared to kelp-beds. However, the data in the 

present investigation are consistent with the hypothesis that the number of adult 

individuals is lower in kelp beds because of higher mortality in such habitats (Ebert 

1982; Himmelman et al. 1983a; Bluhm et al. 1998). This could be due to the presence 

of parasites (e.g. Echinomermella matsi (Jones and Hagen)) or sea urchin predators 

(such as wolfish, plaice, lobster or crabs, among others). Other reasons could be high 

food availability and/or higher temperatures as they contribute to high individual growth 

rates. That would result in earlier age at maturity and elevated mortality rates (Sivertsen 

1997b). 
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5. CONCLUSIONS 

From the present study it can be concluded that interactions between habitats and 

location result in: 

1) Differences in size and growth within Hammerfest.   

2) Similarities in age and mortality within Hammerfest  

3) Differences in size, age and growth within barren grounds in Hammerfest and in 

Vega. 

4) Similarities in mortality within barren grounds in Hammerfest and in Vega.  

 

The results indicated that the populations on kelp beds reached larger sizes, were 

younger, had a higher rate of growth, and suffered higher mortality than on barren 

habitats in Hammerfest. Within barren grounds, it was found that S. droebachiensis in 

Hammerfest reached larger sizes, were older, grew faster and had lower mortality rate 

than in Vega.  

 

Factors suggested for such results include presence/absence of food, and/or sea urchin 

predators, strong recruitment, favourable hydrological conditions, cannibalism 

behaviour, and migration ability. However, there is no consensus on the ecological 

causal mechanisms for the decimation of the kelp forests and further studies are needed. 
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APPENDIX I 

Table 7.1Size-at-age cross-tabs for S. droebachiensis at all stations. 

Molvik kelp Size (mm) 
Total 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71- 80 

Age (yr) 0 3 0 0 0 0 0 0 0 3
1 0 16 0 0 0 0 0 0 16
2 0 5 38 0 0 0 0 0 43
3 0 0 9 21 1 0 0 0 31
4 0 0 0 0 7 0 0 0 7
5 0 0 0 0 1 1 0 0 2
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 1
8 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 1 1

Total 3 21 47 21 9 1 1 1 104
     

Molvik barren Size (mm) 
Total 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71- 80 

 Age (yr) 0 
1 

0 
0 

0 
1 

0
0

0
0

0
0

0
0

0 
0 

0 
0 

0
1

2 0 10 40 0 0 0 0 0 50
3 0 0 19 36 2 0 0 0 57
4 0 0 1 13 22 0 0 0 36
5 0 0 1 1 7 1 0 0 10
6 0 0 0 1 1 2 0 0 4
7 0 0 0 0 0 1 1 0 2
8 0 0 0 0 1 2 0 0 3
9 0 0 0 0 0 1 0 0 1

Total 0 11 61 51 33 7 1 0 164
     

 
Rypklubbskjæret 

kelp 
Size (mm)  Total 

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71- 80  
 Age (yr) 

 

0 
1 

0 
4 

0 
30 

0
4

0
0

0
0

0
0

0 
0 

0 
0 

0
38

2 0 4 15 0 0 0 0 0 19
3 0 0 3 11 0 0 0 0 14
4 0 0 0 0 23 2 0 0 25
5 0 0 0 0 5 22 1 0 28
6 0 0 0 0 1 12 9 0 22
7 0 0 0 0 0 8 4 0 12
8 0 0 0 0 0 2 1 0 3
9 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 3 0 0 3
11 0 0 0 0 0 1 2 0 3
12 0 0 0 0 0 1 0 0 1

Total 4 34 22 11 29 51 17 0 168
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Rypklubbskjæret
barren 

Size (mm)  
Total 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71- 80 

Age (yr) 0 0 0 0 0 0 0 0 0 0
 1 6 15 0 0 0 0 0 0 21

2 0 6 11 0 0 0 0 0 17
3 0 0 4 3 0 0 0 0 7
4 0 0 1 9 3 0 0 0 13
5 0 0 0 1 4 1 0 0 6
6 0 0 0 0 7 3 0 0 10
7 0 0 0 0 9 11 0 0 20
8 0 0 0 0 3 8 0 0 11
9 0 0 0 0 1 9 0 0 12
10 0 0 0 0 0 2 0 0 4
11 0 0 0 0 0 1 0 0 8
12 
13 

0 
0 

0 
0 

0
0

0
0

0
0

0
0

7 
0 

0 
0 

7
0  

14 0 0 0 0 0 0 1 0 1
Total 6 21 16 13 27 35 19 0 137
    

 

 

Finnøy kelp Size (mm)
Total 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71- 80 

 Age (yr) 0 2 0 0 0 0 0 0 0 2
1 0 18 0 0 0 0 0 0 18
2 0 7 30 0 0 0 0 0 37
3 0 0 9 34 0 0 0 0 43
4 0 0 0 16 15 0 0 0 31
5 0 0 0 2 2 1 0 0 5
6 0 0 0 0 0 4 0 0 4
7 0 0 0 0 0 1 1 0 2
8 0 0 0 0 0 2 0 0 2
9 0 0 0 0 0 0 2 0 2
10 0 0 0 0 0 0 1 0 1

Total 2 25 39 52 17 8 4 0 147
    

 

 

Finnøy barren Size (mm) 
Total 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 

  Age (yr) 0 
1 

0 
0 

0 
3 

0
0

0
0

0
0

0
0

0 
0 

0 
0 

3
0

2 0 0 5 1 0 0 0 0 6
3 0 0 4 33 0 0 0 0 37
4 0 0 0 14 19 0 0 0 33
5 0 0 0 0 13 2 0 0 15
6 0 0 0 0 1 12 0 0 13
7 0 0 0 0 0 9 2 0 11
8 0 0 0 0 0 1 7 0 8
9 0 0 0 0 0 2 2 1 5
10 0 0 0 0 0 1 1 0 2
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 1 0 1

Total 0 3 9 48 33 27 13 1 134
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Vega 1 Size (mm)   
Total 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 

Age (yr) 0 
1 

0 
0 

0 
3 

0
0

0
0

0
0

0
0

0 
0 

0 
0 

0
3

2 0 2 12 0 0 0 0 0 14
3 0 0 19 22 0 0 0 0 41
4 0 0 4 25 17 0 0 0 46
5 0 0 0 12 9 2 0 0 23
6 0 0 0 6 10 0 0 0 16
7 0 0 0 4 6 0 0 0 10
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 2 0 0 0 2

Total 0 5 35 69 45 2 0 0 156
     

Vega 2 Size (mm)
Total 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 

Age (yr) 0 
1 

0 
0 

0 
8 

0
0

0
0

0
0

0
0

0 
0 

0 
0 

0
8

2 0 7 39 1 0 0 0 0 47
3 0 0 13 25 0 0 0 0 38
4 0 0 0 31 4 0 0 0 35
5 0 0 1 1 12 1 0 0 15
6 0 0 0 0 6 2 0 0 8
7 0 0 0 0 1 1 0 0 2

Total 0 15 53 58 23 4 0 0 153
     

Vega 3 Size (mm)  
Total 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 

 Age (yr) 0 
1 

0 
0 

0 
5 

0
1

0
0

0
0

0
0

0 
0 

0 
0 

0
6

2 0 3 32 1 0 0 0 0 36
3 0 0 7 10 2 0 0 0 19
4 0 0 1 3 8 0 0 0 12
5 0 0 0 1 2 2 0 0 5
6 0 0 0 0 3 6 0 0 9
7 0 0 0 0 0 8 1 0 9
8 0 0 0 0 1 4 3 0 8
9 0 0 0 0 0 4 1 0 5
10 0 0 0 0 1 6 6 0 13
11 0 0 0 0 0 3 2 0 5
12 0 0 0 0 0 2 3 0 5
13 0 0 0 0 0 0 1 0 1

Total 0 8 41 15 17 35 17 0 133
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Figure 7.2 G
om

pertz grow
th functions fitted to size-at-age data (w

ith observed values) for all sam
pled stations. L

∞  is the upper 
asym

ptote, k is the low
er asym

ptote, x is the grow
th rate of the population. 
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APPENDIX III 

Table 7.2 Multiple comparisons Tukey’s test results for ANOVA for S. droebachiensis’ 
size within all stations in Hammerfest. 

(I) Station (J) Station 
Mean 

Difference 
(I-J) 

Std. 
Error Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Molvik kelp Molvik barren -8,370* 1.354 .000 -12.23 -4.51

Rypklubbskjæret kelp -21.982* 1.458 .000 -26.14 -17.82

Rypklubbskjæret barren -16.985* 1.406 .000 -21.00 -12.97

Finnøy kelp -8.554* 1.378 .000 -12.49 -4.62

Finnøy barren -18.157* 1.396 .000 -22.14 -14.17

Molvik barren Molvik kelp 8.370* 1.354 .000 4.51 12.23

Rypklubbskjæret kelp -13.612* 1.424 .000 -17.68 -9.55

Rypklubbskjæret barren -8.615* 1.371 .000 -12.53 -4.70

Finnøy kelp -.184 1.342 1.000 -4.02 3.65

Finnøy barren -9.787* 1.360 .000 -13.67 -5.90

Rypklubbskjæret 
kelp 

Molvik kelp 21.982* 1.458 .000 17.82 26.14

Molvik barren 13.612* 1.424 .000 9.55 17.68

Rypklubbskjæret barren 4.997* 1.474 .009 .79 9.20

Finnøy kelp 13.428* 1.447 .000 9.30 17.56

Finnøy barren 3.825 1.464 .095 -.35 8.00

Rypklubbskjæret 
barren 

Molvik kelp 16.985* 1.406 .000 12.97 21.00

Molvik barren 8.615* 1.371 .000 4.70 12.53

Rypklubbskjæret kelp -4.997* 1.474 .009 -9.20 -.79

Finnøy kelp 8.431* 1.395 .000 4.45 12.41

Finnøy barren -1.172 1.413 .962 -5.20 2.86

Finnøy kelp Molvik kelp 8.554* 1.378 .000 4.62 12.49

Molvik barren .184 1.342 1.000 -3.65 4.02

Rypklubbskjæret kelp -13.428* 1.447 .000 -17.56 -9.30

Rypklubbskjæret barren -8.431* 1.395 .000 -12.41 -4.45

Finnøy barren -9.603* 1.385 .000 -13.55 -5.65

Finnøy barren Molvik kelp 18.157* 1.396 .000 14.17 22.14

Molvik barren 9.787* 1.360 .000 5.90 13.67

Rypklubbskjæret kelp -3.825 1.464 .095 -8.00 .35

Rypklubbskjæret barren 1.172 1.413 .962 -2.86 5.20

Finnøy kelp 9.603* 1.385 .000 5.65 13.55

*. The mean difference is significant at the 0.05 level. 
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Table 7.3 Multiple comparisons Tukey’s test results for ANOVA for S. droebachiensis’ 
size within all barren stations at Hammerfest and Vega. 

(I) Station (J) Station 
Mean 

Difference 
(I-J) 

Std. 
Error Sig.

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Molvik barren Rypklubbskjæret barren -8.615* 1.305 .000 -12.34 -4.89

Finnøy barren -9.656* 1.296 .000 -13.36 -5.96

Vega 1 -5.456* 1.303 .000 -9.17 -1.74

Vega 2 -2.120 1.310 .587 -5.86 1.62

Vega 3 -2.572 1.283 .340 -6.23 1.09

Rypklubbskjæret 
barren 

Molvik barren 8.615* 1.305 .000 4.89 12.34

Finnøy barren -1.041 1.346 .972 -4.88 2.80

Vega 1 3.158 1.352 .180 -.70 7.02

Vega 2 6.495* 1.359 .000 2.62 10.37

Vega 3 6.043* 1.333 .000 2.24 9.85

Finnøy barren Molvik barren 9.656* 1.296 .000 5.96 13.36

Rypklubbskjæret barren 1.041 1.346 .972 -2.80 4.88

Vega 1 4.200* 1.344 .022 .36 8.04

Vega 2 7.536* 1.351 .000 3.68 11.39

Vega 3 7.084* 1.325 .000 3.30 10.87

Vega 1 Molvik barren 5.456* 1.303 .000 1.74 9.17

Rypklubbskjæret barren -3.158 1.352 .180 -7.02 .70

Finnøy barren -4.200* 1.344 .022 -8.04 -.36

Vega 2 3.337 1.357 .137 -.54 7.21

Vega 3 2.884 1.332 .255 -.92 6.68

Vega 2 Molvik barren 2.120 1.310 .587 -1.62 5.86

Rypklubbskjæret barren -6.495* 1.359 .000 -10.37 -2.62

Finnøy barren -7.536* 1.351 .000 -11.39 -3.68

Vega 1 -3.337 1.357 .137 -7.21 .54

Vega 3 -.453 1.338 .999 -4.27 3.37

Vega 3 Molvik barren 2.572 1.283 .340 -1.09 6.23

Rypklubbskjæret barren -6.043* 1.333 .000 -9.85 -2.24

Finnøy barren -7.084* 1.325 .000 -10.87 -3.30

Vega 1 -2.884 1.332 .255 -6.68 .92

Vega 2 .453 1.338 .999 -3.37 4.27

*. The mean difference is significant at the 0.05 level. 
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Table 7.4 Multiple comparisons Tukey’s test results for ANOVA for of S. 
droebachiensis’ age within all stations in Hammerfest. 

(I) Station (J) Station 
Mean 

Difference 
(I-J) 

Std. 
Error Sig.

95% Confidence Interval
Lower 
Bound 

Upper 
Bound 

Molvik kelp Rypklubbskjæret kelp -1.583* .278 .000 -2.38 -.79

Finnøy kelp -.652 .286 .203 -1.47 .16

Molvik barren -.851* .279 .029 -1.65 -.05

Rypklubbskjæret barren -3.270* .290 .000 -4.10 -2.44

Finnøy barren -2.286* .291 .000 -3.12 -1.45

Rypklubbskjæret kelp Molvik Kelp 1.583* .278 .000 .79 2.38

Finnøy Kelp .931* .252 .003 .21 1.65

Molvik barren .732* .245 .034 .03 1.43

Rypklubbskjæret barren -1.687* .257 .000 -2.42 -.95

Finnøy barren -.703 .258 .072 -1.44 .03

Finnøy kelp Molvik kelp .652 .286 .203 -.16 1.47

Rypklubbskjæret kelp -.931* .252 .003 -1.65 -.21

Molvik barren -.200 .253 .970 -.92 .52

Rypklubbskjæret barren -2.619* .265 .000 -3.37 -1.86

Finnøy barren -1.634* .266 .000 -2.39 -.87

Molvik barren Molvik kelp .851* .279 .029 .05 1.65

Rypklubbskjæret kelp -.732* .245 .034 -1.43 -.03

Finnøy kelp .200 .253 .970 -.52 .92

Rypklubbskjæret barren -2.419* .258 .000 -3.16 -1.68

Finnøy barren -1.435* .260 .000 -2.18 -.69

Rypklubbskjæretbarren Molvik kelp 3.270* .290 .000 2.44 4.10

Rypklubbskjæret kelp 1.687* .257 .000 .95 2.42

Finnøy kelp 2.619* .265 .000 1.86 3.37

Molvik barren 2.419* .258 .000 1.68 3.16

Finnøy barren .984* .271 .004 .21 1.76

Finnøy barren Molvik kelp 2.286* .291 .000 1.45 3.12

Rypklubbskjæret kelp .703 .258 .072 -.03 1.44

Finnøy kelp 1.634* .266 .000 .87 2.39

Molvik barren 1.435* .260 .000 .69 2.18

Rypklubbskjæret barren -.984* .271 .004 -1.76 -.21

*. The mean difference is significant at the 0.05 level. 
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Table 7.5 Multiple comparisons Tukey’s test results for ANOVA for S. droebachiensis’ 
age within all barren stations at Hammerfest and Vega. 

(I) Station (J) Station 
Mean 

Difference 
(I-J) 

Std. 
Error Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Molvik barren Rypklubbskjæret barren -2.419* .270 .000 -3.19 -1.65

Finnøy barren -1.435* .271 .000 -2.21 -.66

Vega 1 -.885* .260 .009 -1.63 -.14

Vega 2 .052 .262 1.000 -.70 .80

Vega 3 -1.929* .272 .000 -2.70 -1.15

Rypklubbskjæret 
barren 

Molvik barren 2.419* .270 .000 1.65 3.19

Finnøy barren .984* .283 .007 .18 1.79

Vega 1 1.534* .272 .000 .76 2.31

Vega 2 2.471* .274 .000 1.69 3.25

Vega 3 .490 .283 .512 -.32 1.30

Finnøy barren Molvik barren 1.435* .271 .000 .66 2.21

Rypklubbskjæret barren -.984* .283 .007 -1.79 -.18

Vega 1 .550 .274 .339 -.23 1.33

Vega 2 1.487* .276 .000 .70 2.27

Vega 3 -.494 .285 .510 -1.31 .32

Vega 1 Molvik barren .885* .260 .009 .14 1.63

Rypklubbskjæret barren -1.534* .272 .000 -2.31 -.76

Finnøy barren -.550 .274 .339 -1.33 .23

Vega 2 .937* .265 .006 .18 1.69

Vega 3 -1.044* .274 .002 -1.83 -.26

Vega 2 Molvik barren -.052 .262 1.000 -.80 .70

Rypklubbskjæret barren -2.471* .274 .000 -3.25 -1.69

Finnøy barren -1.487* .276 .000 -2.27 -.70

Vega 1 -.937* .265 .006 -1.69 -.18

Vega 3 -1.981* .276 .000 -2.77 -1.19

Vega 3 Molvik barren 1.929* .272 .000 1.15 2.70

Rypklubbskjæret barren -.490 .283 .512 -1.30 .32

Finnøy barren .494 .285 .510 -.32 1.31

Vega 1 1.044* .274 .002 .26 1.83

Vega 2 1.981* .276 .000 1.19 2.77

*. The mean difference is significant at the 0.05 level. 
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Table 7.6 Multiple comparisons Tukey’s test results for ANOVA for asymptotes 
(individuals ≥ 6 years) for S. droebachiensis within all stations in Hammerfest. 

(I) Station (J) Station 
Mean 

Difference 
(I-J) 

Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Molvik kelp Molvik barren 16.700* 4.334 .002 4.21 29.19

Rypklubbskjæret kelp 9.386 4.045 .191 -2.27 21.04

Rypklubbskjæret barren 13.336* 4.010 .014 1.78 24.89

Finnøy kelp 9.591 4.301 .229 -2.80 21.98

Finnøy barren 9.725 4.054 .162 -1.96 21.41

Molvik barren Molvik kelp -16.700* 4.334 .002 -29.19 -4.21

Rypklubbskjæret kelp -7.314* 1.960 .003 -12.96 -1.67

Rypklubbskjæret barren -3.364 1.887 .479 -8.80 2.07

Finnøy kelp -7.109* 2.445 .047 -14.15 -.06

Finnøy barren -6.975* 1.978 .007 -12.68 -1.27

Rypklubbskjæret kelp Molvik kelp -9.386 4.045 .191 -21.04 2.27

Molvik barren 7.314* 1.960 .003 1.67 12.96

Rypklubbskjæret barren 3.949* 1.068 .004 .87 7.03

Finnøy kelp .205 1.886 1.000 -5.23 5.64

Finnøy barren .339 1.222 1.000 -3.18 3.86

Rypklubbskjæret 
barren 

Molvik kelp -13.336* 4.010 .014 -24.89 -1.78

Molvik barren 3.364 1.887 .479 -2.07 8.80

Rypklubbskjæret kelp -3.949* 1.068 .004 -7.03 -.87

Finnøy kelp -3.745 1.810 .308 -8.96 1.47

Finnøy barren -3.611* 1.101 .016 -6.78 -.44

Finnøy kelp Molvik kelp -9.591 4.301 .229 -21.98 2.80

Molvik barren 7.109* 2.445 .047 .06 14.15

Rypklubbskjæret kelp -.205 1.886 1.000 -5.64 5.23

Rypklubbskjæret barren 3.745 1.810 .308 -1.47 8.96

Finnøy barren .134 1.905 1.000 -5.35 5.62

Finnøy barren Molvik kelp -9.725 4.054 .162 -21.41 1.96

Molvik barren 6.975* 1.978 .007 1.27 12.68

Rypklubbskjæret kelp -.339 1.222 1.000 -3.86 3.18

Rypklubbskjæret barren 3.611* 1.101 .016 .44 6.78

Finnøy kelp -.134 1.905 1.000 -5.62 5.35

*. The mean difference is significant at the 0.05 level. 
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Table 7.7 Multiple comparisons Tukey’s test results for ANOVA for asymptotes 
(individuals ≥ 6 years) for S. droebachiensis within all barren stations at Hammerfest 
and Vega. 

(I) Station (J) Station 
Mean 

Difference 
(I-J) 

Std. 
Error Sig. 

95% Confidence Interval 
Lower 
Bound Upper Bound

Molvik barren Rypklubbskjæret barren -3.364 1.861 .463 -8.72 1.99

Finnøy barren -6.975* 1.952 .006 -12.59 -1.36

Vega 1 10.352* 2.024 .000 4.53 16.17

Vega 2 3.500 2.468 .716 -3.60 10.60

Vega 3 -6.564* 1.898 .008 -12.02 -1.11

Rypklubbskjæret 
barren 

Molvik barren 3.364 1.861 .463 -1.99 8.72

Finnøy barren -3.611* 1.086 .013 -6.73 -.49

Vega 1 13.716* 1.212 .000 10.23 17.20

Vega 2 6.864* 1.861 .004 1.51 12.22

Vega 3 -3.199* .986 .017 -6.03 -.36

Finnøy barren Molvik barren 6.975* 1.952 .006 1.36 12.59

Rypklubbskjæret barren 3.611* 1.086 .013 .49 6.73

Vega 1 17.327* 1.346 .000 13.45 21.20

Vega 2 10.475* 1.952 .000 4.86 16.09

Vega 3 .411 1.147 .999 -2.89 3.71

Vega 1 Molvik barren -10.352* 2.024 .000 -16.17 -4.53

Rypklubbskjæret barren -13.716* 1.212 .000 -17.20 -10.23

Finnøy barren  -17.327* 1.346 .000 -21.20 -13.45

Vega 2 -6.852* 2.024 .011 -12.67 -1.03

Vega 3 -16.915* 1.267 .000 -20.56 -13.27

Vega 2 Molvik barren -3.500 2.468 .716 -10.60 3.60

Rypklubbskjæret barren -6.864* 1.861 .004 -12.22 -1.51

Finnøy barren -10.475* 1.952 .000 -16.09 -4.86

Vega 1 6.852* 2.024 .011 1.03 12.67

Vega 3 -10.064* 1.898 .000 -15.52 -4.61

Vega 3 Molvik barren 6.564* 1.898 .008 1.11 12.02

Rypklubbskjæret barren 3.199* .986 .017 .36 6.03

Finnøy barren -.411 1.147 .999 -3.71 2.89

Vega 1 16.915* 1.267 .000 13.27 20.56

Vega 2 10.064* 1.898 .000 4.61 15.52

*. The mean difference is significant at the 0.05 level. 
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Table 7.8 Multiple comparisons Tukey’s test results for ANCOVA for growth rates 
(individuals from 2 to 5 years) for S. droebachiensis within all stations at Hammerfest. 

 
Table 7.9 Multiple comparisons Tukey’s test results for ANCOVA for growth rates 
(individuals from 2 to 5 years) for S. droebachiensis within all barren stations at 
Hammerfest and Vega. 

TUKEY’S TEST Comparison Std. Error q q0.05.6.∞ Conclusion 

Finnøy barren-Finnøy kelp 0.37 3.634 4.030 Not different

Finnøy  barren - Molvik  barren 0.38 1.834 4.030 Not different

Finnøy  barren - Molvik  kelp 0.42 3.286 4.030 Not different

Finnøy  barren-Rypklubbskjæret barren 0.39 1.884 4.030 Not different

Finnøy  barren-Rypklubbskjæret kelp 0.33 7.510 4.030 Different 

Finnøy  kelp - Molvik  kelp 0.37 0.133 4.030 Not different 

Finnøy  kelp-Rypklubbskjæret kelp 0.27 4.366 4.030 Different 

Molvik  barren- Finnøy  kelp 0.32 1.991 4.030 Not different 

Molvik  barren - Molvik  kelp 0.38 1.806 4.030 Not different 

Molvik  barren-Rypklubbskjæret barren 0.34 0.089 4.030 Not different 

Molvik  barren-Rypklubbskjæret kelp 0.28 6.404 4.030 Different 

Molvik  kelp-Rypklubbskjæret kelp 0.34 3.311 4.030 Not different 

Rypklubbskjæret barren- Finnøy  kelp 0.33 1.855 4.030 Not different 

Rypklubbskjæret barren - Molvik  kelp 0.39 0.127 4.030 Not different 

Rypklubbskjæret barren -Rypklubbskjæret kelp 0.29 6.120 4.030 Different 

TUKEY’S TEST Comparison  Std. error q q0.05.6.∞ Conclusion 

Finnøy  barren- Molvik  barren 0.41 1.706 4.030 Not different

Finnøy  barren-Rypklubbskjæret barren 0.41 1.753 4.030 Not different

Finnøy  barren- Vega 1 0.41 1.914 4.030 Not different

Finnøy  barren- Vega 2 0.39 2.004 4.030 Not different

Finnøy  barren- Vega 3 0.45 2.009 4.030 Not different

Molvik  barren-Rypklubbskjæret barren 0.41 0.074 4.030 Not different

Molvik  barren- Vega 1 0.37 4.062 4.030 Different 

Molvik  barren- Vega 2 0.45 3.269 4.030 Not different 

Molvik  barren- Vega 3 0.41 0.512 4.030 Not different 

Rypklubbskjæret barren- Vega 1 0.37 4.064 4.030 Different 

Rypklubbskjæret barren- Vega 3 0.41 0.430 4.030 Not different 

Rypklubbskjæret barren- Vega2 0.34 4.356 4.030 Different 

Vega 1- Vega 2 0.34 0.037 4.030 Not different 

Vega 1- Vega 3 0.41 4.108 4.030 Different 

Vega 2 - Vega 3 0.39 4.341 4.030 Not different 
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Table 7.10 Multiple comparisons Tukey’s test results for ANCOVA for mortality rates 
(individuals ≥ 2 years) for S. droebachiensis within all stations at Hammerfest. 

 
Table 7.11 Multiple comparisons Tukey’s test results for ANCOVA for mortality rates 
(individuals ≥ 2 years) for S. droebachiensis within all barren stations at Hammerfest 
and Vega. 

TUKEY’S TEST Comparison  Std. Error q q0.05.6.∞ Conclusion 

Finnøy  barren - Molvik  barren 0.064 0.606 4.03 Not different

Finnøy  barren - Rypklubbskjæret barren 0.047 1.141 4.03 Not different

Finnøy  barren - Finnøy kelp 0.058 0.449 4.03 Not different

Finnøy  barren - Molvik  kelp 0.072 0.682 4.03 Not different

Finnøy  barren - Rypklubbskjæret  kelp 0.052 0.067 4.03 Not different

Molvik  barren - Rypklubbskjæret barren 0.060 1.107 4.03 Not different

Molvik  barren - Finnøy  kelp 0.069 0.000 4.03 Not different

Molvik  barren - Molvik  kelp 0.077 0.134 4.03 Not different

Molvik  barren - Rypklubbskjæret  kelp 0.064 0.550 4.03 Not different

Rypklubbskjæret barren - Finnøy  kelp 0.054 1.000 4.03 Not different

Rypklubbskjæret barren - Molvik  kelp 0.064 0.851 4.03 Not different

Rypklubbskjæret barren - Rypklubbskjæret kelp 0.048 0.663 4.03 Not different

Finnøy  kelp - Molvik  kelp 0.072 0.320 4.03 Not different

Finnøy  kelp - Rypklubbskjæret  kelp 0.058 0.387 4.03 Not different

Molvik  kelp - Rypklubbskjæret  kelp 0.067 0.678 4.03 Not different

TUKEY’S TEST Comparison Std. error q q0.05.6.∞ Conclusion 

Finnøy  barren - Molvik  barren 0.057 0.680 4.030 Not different

Finnøy  barren - Rypklubbskjæret barren 0.042 0.665 4.030 Not different

Finnøy  barren - Vega 1 0.057 0.153 4.030 Not different

Finnøy  barren - Vega 2 0.074 0.329 4.030 Not different

Finnøy  barren - Vega 3 0.043 0.442 4.030 Not different

Molvik  barren - Rypklubbskjæret barren 0.054 1.241 4.030 Not different

Molvik  barren - Vega 1 0.066 0.455 4.030 Not different

Molvik  barren - Vega 2 0.081 0.176 4.030 Not different

Molvik  barren - Vega 3 0.054 1.063 4.030 Not different

Rypklubbskjæret barren - Vega 1 0.054 0.684 4.030 Not different

Rypklubbskjæret barren - Vega2 0.072 0.731 4.030 Not different

Rypklubbskjæret barren - Vega 3 0.039 0.243 4.030 Not different

Vega 1 - Vega 2 0.081 0.193 4.030 Not different

Vega 1 - Vega 3 0.054 0.509 4.030 Not different

Vega 2 - Vega 3 0.072 0.600 4.030 Not different


