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Forward 

Hot or Not?  

The 2001 anthrax letter attacks demonstrated that Bacillus anthracis 

spores can heavily contaminate a facility before anyone becomes aware of a 

problem. Ideally, any future anthrax attack would first show up as a positive test 

from routine air monitoring, not as a crisis days later when seriously ill patients 

start appearing in emergency rooms. Unfortunately, researchers haven’t found it 

easy to develop an accurate anthrax test, particularly when dealing with complex 

environmental samples. One big problem is that B. anthracis is highly similar to 

common spore-forming bacteria such a Bacillus cereus and Bacillus 

thuringiensis. The specter of multiple false alarms and consequent public apathy 

gives serious cause for concern. Easterday et al. (p. 731) now provide some 

hope for developing specific and sensitive anthrax detection methods. In 

previous work, they showed that a single nucleotide change corresponding to a 

nonsense mutation in the plcR gene, though present in 89 different B. anthracis 

isolates, is absent in the bacteria’s genetic near-neighbors. In this report, the 

researchers describe the validation of a real-time PCR-based mismatch 

amplification mutation assay for specific quantitative detection of B. anthracis 

DNA. The assay successfully amplifies as little as 25 fg B. anthracis DNA, even in 

the presence of air filter extracts containing a 20,000-fold excess of DNA 

differing in sequence only at the SNP position. The task of homeland defense 

initiatives remains enormous, but advances such as this should help front-line 

personnel determine more rapidly whether a sample contains a hot agent.     

Unknown author    

BioTechniques (Vol. 38, No. 5 (2005) pg 667) 
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Preface 

As humans it seems we have always been developing ideas and 

methods to describe the world around us in a context we can understand. 

From fairy tales to religious texts it has been our attempt to describe 

causation and order or in simpler terms the ‘how.’  Through the 

development of Logic and Science the how is on its way to be answered. 

Where the end is we don’t know, and we can only guess at the possible 

infinity. In man there is a continuum of thought stretching from these 

minds that first sparked the ideas that would lead to science as we know 

it today. These are the moral scientists who stood up for truth and would 

accept nothing less. Today we still have an obligation to produce honest 

work. We are responsible for our future. 

None of this work would have been possible without the support of 

my friends and colleagues. I would first like to thank my colleague and 

friend Matt Van Ert whose enthusiasm, encouragement and guidance 

solidified who I am as a scientist. I would also like to thank my colleagues 

Zack Jay, Jana U’Ren, Tatum Simonson, Leo Kenefic and Shaylan Zanecki. 

I would also like to express my gratitude to Nils C. Stenseth for 

supporting me in compiling this thesis. 

Most of the work presented here was done in Paul Keim’s Genetic 

Laboratory at Northern Arizona University. The focus of his lab has 

enabled the development and accomplishment of these projects. This 

work was funded largely by the U.S. Departments of Energy and 

Homeland Security, National Institutes of Health, the U.S. Federal Bureau 

of Investigation, General Medical Sciences, the Cowden Endowment at 

Northern Arizona University, and the Defense Threat Reduction Agency. 

This thesis was compiled at the Centre for Ecological and Evolutionary 

Synthesis (CEES), Biological Sciences at the University of Oslo, Norway 

for the degree of Doctor Philos. 
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Introduction 

While many researchers see increasing incongruity in the biological 

sciences due to increasing specialization others see opportunity through 

collaboration creating synergy. This synergy will be created when we as 

researchers are able to span the gaps between the different disciplines in 

biology. Indeed here at the Centre for Ecological and Evolutionary 

Synthesis at the University of Oslo, Norway we are already beginning to 

see efforts to bridge different disciplines within biology together. Where 

genetics and molecular biology had been disciplines unto their own, they 

are now being practiced in many fields within biology including population 

biology, ecology and paleontology. The genetics and now genomics 

revolution has been infiltrating all parts of biology.   

This thesis is a compilation of works done on a specific bacterial 

pathogen, Bacillus anthracis, and even more specifically on the 

evolutionary genetics of this organism with respect to its geography. 

Here, through the introduction I will be explaining my own personal views 

of how biology is naturally structured and interconnected. Given the 

present state of research, how will the future of biology naturally evolve? 

Although we cannot see extremely far into the future we can see the next 

logical steps in this progression by examining the tools and methods we 

have today and given the rate of development, we can imagine what the 

near future holds in store for biology. It continues into the introduction of 

the chapters and the considerations, such as evolution, ecology 

(epidemiology), biological warfare and forensics that have bearing this 

work.    

Causation- event and outcome 

After working for nearly a decade in biology in a diverse set of fields 

within biology I began to see the natural connectivity between these 

fields. Not so much in the fact that they dealt with life but that they all 

dealt with evolution and hence studied change. Change is what everything 
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in biology, and the universe for that matter, centers around. In biology, 

broadly speaking, we try to take a measurement of something physical 

and then after some duration we measure it again and that difference is 

its rate of change. In experimental biology we try to fix all the 

components that can change naturally by controlling the variability 

through consistency across replicated experiments. Once we are able to 

control the variability in a system we have a null to compare against, 

after we have added some effecter. Here we can directly measure the 

change from this null to the aftermath of the experiment. The final 

differences between the null/control experiment and experiment with 

variables are the measure of the net effect the variation has on the 

outcome.  

This type of process is used throughout biology to first fix the 

components that we want to measure to create a null or negative control 

then introduce a change or let it occur naturally. We then use these data 

of change to predict what will occur in the future for similar circumstances 

or systems given previous rates of change by a known effecter. This is 

true across all levels in biology throughout Central Dogma up to 

Landscape Ecology. In practice we must understand causation, or 

correlation where causation cannot be teased out from a number of 

possible effectors, to begin to learn from that which we study.        

Biology and the processes that occur within this study are ruled by 

the laws of physics. It is therefore quite helpful to understand some of 

these physical laws of the universe, especially causation. Causation is a 

central law of the Universe where real matter, which makes up the 

Universe, is involved. Nothing in the Universe is static; specifically 

everything in the Universe is made up of matter which has energy or 

velocity.  All matter is moving and at this specific moment in time all 

matter is at a finite distance from all other matter. Many of these 

distances will change at the very next moment, yet this change is ruled 
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by laws where matter with a velocity cannot skip space through time, but 

it must occur at the adjacent space in the next future segment of time.  

Take for instance a ball being thrown from one person (A) to 

another person (B) in outer space. The ball will travel the distance (10 

meters) from person A to person B in 10 seconds. When the ball is 

released by person A, a velocity of 1 meter per second is imparted unto 

the ball. Velocity, direction and speed, determines the path of the object, 

the path is made up of continuous time, over 10 seconds, and discrete 

space. Think of this space-time as a 3 dimensional object. To help 

illustrate this if you as an observer had a camera set-up with a 10 second 

exposure and took a picture of the path of the ball, in the picture you 

would see a 3-dimensional rod between person A and person B. This rod 

is really a 4-dimensional object (3 dimensions of the ball plus one 

dimension of time). We can then break up this 4 dimensional rod into 

discrete segments of time. If we break up the duration of the path into 1 

second segments (10-1 second exposures), in sequential order they 

would make up the path of the ball. Let’s number these segments 1 

through 10 respectively from A to person B. In space (uniform gravity) 

the velocity of the object will be unchanged therefore the 10 space-time 

objects (10- ‘ball through space’ for 1 second) will look exactly the same 

except for the relative position of the objects between person A and B. 

Given these conditions of position and velocity (speed and direction) an 

earlier section will solely determine the shape of next 4-d section. This 

prediction is possible in this type environment because we know the 

velocity (cause) will affect the subsequent event. Here we have one 

attribute (velocity) of one object causing the next subsequent event in 

time, an effect. 

This is causation in a most simple form and this is what we must 

first understand and identify in all sciences including biology. In biology to 

truly understand what we are studying we must first identify and 

understand the natural course of the biological elements without influence 
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from extrinsic sources. Let’s go back to the ball in space, since we have 

this understanding of how the object will travel with respect to space and 

time with no forces involved, other than inertia of the ball we can predict 

its path in both directions of time, future and past. Yet if the outcome is 

different from what we predict, for instance that the ball doesn’t reach 

person B we know that there must be other forces acting upon the ball 

changing the result. If we bring this example from space to earth where 

person A and B are now playing catch in a vacuum we will see new 

effectors on the path and outcome of the object. From our null example in 

space we predict that the ball will leave person A’s hand at time 0 and 

follow a direct path to person B’s hand in exactly 10 seconds. On earth 

given no previous understanding of gravity we expect the same outcome. 

Yet when we see a different outcome, the ball colliding with the ground, 

we can conclude that being on earth (the only variation in conditions) has 

a direct measurable and consistent (in the sense that it is reproducible) 

effect on the ball.  

We can then measure this difference from our null in outer space 

from the ball on earth to calculate the affect of gravity on the ball. After 

we know this variable and its effect on the change of our 1 meter per 

second velocity, we can now determine the path of the ball in both 

directions of time given any position in its path between person A and the 

ground.   

X

Y

X X

Y

X
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Figure 1: Simple diagram showing causation through space (compressed 

to 2-d: X, Y) and time Z.  

To better illustrate causation there are two figures above (fig. 1). 

Within each of the two figures there are three sequential planes along the 

Z-axis (time) the further plane is the past, the nearest is the future. 

These X, Y planes represent a two-dimensional space which is some 

measurable quality or quantity. Along the Z- axis is time, time and 

sequence are not often actively thought about as we often take time for 

granted because it is a natural process that has bearing on everything we 

do.     

At the beginning of the model on the left a force is applied to the 

dark blue square into the lower figure which creates change in velocity 

(directional), indicated by an arrow (fig. 1). We are able to recognize and 

measure this change because we are able to subtract that from the null 

control on the left side. 

This very simple diagram showing causation is illustrative for nearly 

every process that belongs to the universe including biology, where 

everything has a sequential path through space and time. In static 

conditions, where there is a null effect from the surrounding environment, 

the path is straight through space over time. Yet where there is an effect 

from the surrounding environment the object’s path is affected leading to 

a different than predicted (null) outcome.       

Biology 

The individual organism is something we can identify with because 

we are all individuals. The individual is the biological entity which interacts 

with the world (biotic and abiotic) proximate to it. Every organism looks 

the way it does for two reasons: 1) the heritable traits of the genome 

contained within and 2) the development of the organism that is driven 

by the interaction of the genome and the environment. If you look at 
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biological history from the present to the beginning of life it divides into a 

history of converging lineages or paths going back through time. These 

can be broken into smaller pieces down to the life of individual organisms 

which are small segments of any given lineage, similar to the ball in space 

discussed earlier which starts at one point and ends at another occupying 

the 4-dimensions of space and time.  The life of individual organisms can 

be further simplified into a series of events or effecters (like gravity 

although its effects are constant). Each event has an outcome that is 

predicated upon the natural laws in physics which bears directly on 

development, development on fitness and fitness on evolution. Evolution 

is the addition of these small physical events (feeding, reproduction, 

agility, etc.) where sometimes luck but ultimately fitness (these small 

differences in phenotype that make the difference) determines the 

outcome: perpetuation of life. Each event will have an outcome and every 

outcome influences the next event. This event and outcome is just 

causation which is a theme that runs through all disciplines in biology and 

it is the mechanism of evolution.  

In biology there are often outcomes caused by culmination of small 

events, we see their subsequent effects on higher orders of complexity 

such as within Central Dogma. Central Dogma is useful to help 

understand biology and evolution. Central Dogma is structured in a way 

that the smaller things create and make-up the bigger things. This starts 

at the level of genes where the genes are responsible for the coding of 

proteins. These proteins are the machinery and building blocks of cells. 

Cells together (in multi-cellular organisms) create tissues which serve 

specific functions. These create organs and structure which serve as 

machinery (organs) for the organism. Although not typically talked about 

as being part of Central Dogma we can continue to extrapolate: the 

organism is a single member of a population, the population is part of an 

ecosystem and the ecosystem is part of the biome.  
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Now think of the above structure as a linear progression from genes 

to organism to population to ecosystem to biome. Everything biological is 

built by this process. It is difficult to identify all the factors contributing to 

or changing the expression of genes without removing the effecters. How 

do we study and learn the true effects of the external proximate 

environment on the outcome of phenotype; and how does this phenotype 

interact with the world around it? 

The Null Organism  

There are a couple ways to study the genotype-phenotype 

relationship, one way can be done in the natural environment (Gilbert 

2004) which I will discuss later, the other is in a lab and until recently has 

been our only real option. An organism whose developmental needs are 

not limiting in a completely controlled environment is a good model to 

start with. To do this you’d need to strip away all the extrinsic factors that 

influence the development of an organism and not limit the necessary 

resources for growth and development. Our goal will be to see the true 

translation of genotype to phenotype. One of the best example of this, 

was work that was done in the MIR space station, even though this is not 

what they were intending to study directly (NASA 2006), it provides a 

very good example of how small influences shape the development of life.  

On MIR research teams have been growing soybeans (Glycine max) 

in microgravity to develop processes for growing food using aeroponics to 

supply long distance space missions, such as a mission to Mars. As a 

biologist some of the small anecdotes they mentioned fascinated me. 

Growth rates of the soybeans (on earth) using aeroponics was much 

higher than those grown in soil (aeroponics is a growing system where 

roots are not planted but suspended by a trellis in the open air and 

misting system supplies water and nutrients directly to the roots). In 

addition to this, soybeans grown using aeroponics on MIR in the 

microgravity of space had an even faster growth rate than those grown 
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aeroponically on earth. In space we have a plant close to a ‘null’ in terms 

of development. If we go from space to earth the effect of gravity is 

added to the outcome of the plant, which is seen in the reduced growth 

rate as there is now energy being spent to overcome gravity.  

The more influences or constraints we put on the organism as it 

develops we can begin to measure the effects the proximate environment 

has on the phenotype. These induced phenotypes sould provide 

advantages to the organisms which express them (i.e. reduced predation 

as seen in Daphnia and carp, increased maturation rate like in the 

development of spade-footed toad tadpoles) with some cost or trade-off 

(i.e. slower speed/less efficient locomotion or smaller size at maturation).     

The Null Plus 

 Since null organisms do not occur in natural settings they are a null 

plus the net effect of environmental influences. The expression of genes 

under the conditions of the specific proximate environment is responsible 

for the phenotype. This phenotype is the organism that interacts with the 

environment and other organisms around it. However small or 

insignificant these interactions with the environment seem to impact an 

organism, their sum can have great influences on that organism’s life. For 

instance the European map butterflys’, Araschnia levana, development of 

wing patterns is changed by differential expression of genes driven by 

climate (temperature). During the cooler spring the outcome is a more 

reticulated pattern and during the warmer summer a darker less 

reticulated pattern (Gilbert 2004).   

If the interaction is an event which is ubiquitous across a habitat 

such as an unusual temperature or precipitation fluctuation the event can 

affect the development impacting overall fitness of a population having a 

ripple effect in the evolution or success of the lineage. If we had a series 

of warmer springs and began having summer morphs in the spring, how 

would this affect the success of: these individuals? the population? These 
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are things we are not certain of because we do not understand the degree 

of phenotypic plasticity that is achievable determined by the influences of 

environment. Nor do we understand how ‘fit’ this phenotype will be to its 

environment, although we do have examples with Daphnia (Agrawal et al 

1999) and carp, Carassius carassius (Brönmark et al 1994)    

Biology’s Future 

-Yesterday 

When thinking of evolution, which elements play an applied role to 

diversifying species? More specifically which physical elements 

mechanically drive evolution and explain why differences within and 

among species exist? Evolution of life on earth can be thought of as 

similar to Newtonian Gravity with respect to its relativity. This description 

of relativity is the strength (gravity) of the relationship between two 

objects, with respect to size (mass) of and the distance between the two 

objects. Many of the physical mechanisms driving selection and evolution 

have a higher effect with higher relativity (proximity between two or more 

organisms in space and time and the strength of the relationship(s)). We 

see these types of relationships from the very small gene networks (Tong 

et al 2004) to the large ecological networks. Where and when an 

organism exists in space and time is its occurrence. Occurrence 

determines the context of the object or organism and its proximity to 

other real matter. This context is a compilation of physical factors, biotic 

and abiotic which make up the real earth we know.  

This context is the measure, quantification and qualification of the 

physical environment, the data can be organized and related using space 

and time. Context and the change of context have a profound effect on 

the development, survival, adaptation and evolution of organisms. The 

variety of organisms and their genes within are directly linked to their 

occurrence. The genes and the influence of environment create the 

phenotype which is adapted to specific environments. This was a lesson 
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learned by Darwin nearly one hundred and eighty years ago and became 

a foundation in evolutionary thought.   

It was at first not apparent to the young researcher that part of 

what defined a species was its occurrence, as adaptation to these 

environments has guided the species’ evolution. “I have not as yet 

noticed by far the most remarkable feature in the natural history of this 

archipelago; it is, that the different islands to a considerable extent are 

inhabited by a different set of beings. My attention was first called to this 

fact by the Vice-Governor, Mr. Lawson, declaring that the tortoises 

differed from the different islands, and that he could with certainty tell 

from which island any one was brought. I did not for some time pay 

sufficient attention to this statement, and I had already partially mingled 

together the collections from two of the islands (Darwin 1845).” 

Due to Lawson’s statement, Darwin realized that there was a link 

between the specific physical habitat and the types of organisms 

inhabiting it. The occurrence of a species depends on its ability to exploit 

the resources of the specific environment and this environment has 

shaped the evolution of the species. The physical environment is in many 

ways primarily responsible for the genes that exist with it, their 

expression into phenotypes and the evolutionary pressures which 

maintain stasis or force/allow change/drift.  

-Tomorrow 

As biologists we stand on the verge of whole genome sequencing 

becoming a tool that is available to all institutes and all budgets. Single-

molecule whole-genome sequencing will dramatically lower costs in both 

the technology and the data analysis (Venter 2010). This capability will 

produce vast amounts of genetic data. How we manage, couple or 

integrate these data will not only directly impact the value of the parts 

but will dramatically impact the value as a whole.   



16 
 

When collecting organisms and sequencing their genomes we are 

describing these organisms in a most detailed way. However, as was 

mentioned earlier this genome or genotype does not necessarily 

correspond to a phenotype. There are many other factors that influence 

the expression of genes and their influence on the development and 

plasticity of the organism’s traits. These factors are the components of its 

context of existence. This existence occupies a discrete dimension 

consisting of both real-world space and time. Along this flux of existence 

biotic and abiotic factors are literally helping shape the organism by 

extrinsic pressures. Intrinsic and extrinsic biotic and abiotic factors (diet, 

competition, climate, etc.) drive how an organism’s genes are expressed 

and ultimately resulting into a phenotype. This phenotype interacts with 

the world around it and the fitness of this phenotype to the environment 

directly impacts the survivability of the organism, its genes and the 

perpetuation of its lineage. The genotype/phenotype and their applied 

fitness to their environment have been honed by the normalities of the 

environment and impacted severely by dramatic events that have 

occurred to the lineage. This is what truly worries many biologists about 

dramatic climate change. If a climatic event is too extreme for a key 

species or many species, will the overall system be able to cope and 

function without completely collapsing.   

The genome harbored within an organism is truly rare as it exists 

once in discrete time and space. The continuation of any lineage must 

occur from one individual to the next, between the parent and the 

progeny. Here there must be a mechanical movement of genes from one 

organism to the next. Genes are passed and linked directly through time 

and space, creating an unbroken four-dimensional continuation between 

parent and offspring. This coupling between parent and progeny is one 

physical link in the chain or lineage which occupies space through time, it 

stretches from the present back to the origins of life. Along any lineage 



17 
 

are the forces external to it, the proximate environment, which have 

guided its evolution and direction in real space through time.    

Increasingly larger data sets are now and have been the trend in 

biology. Larger data sets over longer time series gives more insights into 

the natural variation that occurs within populations and help reveal how 

selection and environment shape the evolution and distribution of species. 

Increased data sets will also help shed light on atypical patterns of 

occurrence and variation. In the future, genomic and other possibly 

heritable data from an individual and data of its occurrence will naturally 

allude to the connections between each scale in central dogma from DNA 

to organism to population. Although from a different point of view. 

Currently RNA transcription libraries are created to determine how 

variations of one gene are being expressed under controlled or defined 

expression parameters. In the future we will be able to measure 

variations in the genome that account for these phenotypic differences. 

We can find these differences by subtracting likeness between to sets of 

genomic data, whether it is between two organisms or an organism and a 

population or two populations of a species etc., we can identify genetic 

differences responsible for phenotypic differences between groups. In fact 

this type of approach has been used to identify new pathogens specifically 

viruses that have become cryptic by embedding themselves within their 

host’s genome (MacConaill et al 2008). In short large genetic data sets 

alone can be very powerful tools for everything from evolution to public 

health as seen in the 1000 human genomes project (Consortium 2010).  

Yet there will be instances where genetic or other heritable data will 

not provide answers for observations in terms of phenotype. In lieu of 

these genetic differences the data would suggest external factors that are 

responsible for differences in phenotypes. Specifically data associated 

with the context of that organism. These data include all of the 

environmental data associated with the organism’s habitat throughout its 

development. These factors can also be teased out by subtraction. Subtle 
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differences within one habitat can have large impacts on the phenotype of 

organisms. Larger data sets combined with environmental data Central 

dogma with the impact of the environment that translates into a 

phenotype   

Why these genes are the way they are and function the way they 

function is because of where they have originated. This is something that 

has largely been taken for granted or ignored by many geneticists and 

biologists. Yet, very recently ecologists and population biologists are 

beginning to use genetics as tools to explain phenotype. Even though 

unifying these disciplines is still a ways off, what will be next?  

If we look at these trends in biology such as larger data sets, the 

incorporation of genetic data, genomics, proteomics over longer time 

series then linking these with phenotype data and add them to trends we 

see in our databases, computing power and internet networking; what 

should happen next? Our work as biologists at times seems quite abstract 

from the real world even though it is quite real. All life has its place on 

this earth and every time we collect an organism from its environment we 

should be collecting standardized information on its context also (Field et 

al 2008). Eventually from these genomes we will have genotype 

phenotype maps available that show the strength of association between 

the two (Thorisson et al 2009). Once we have this information we can 

organize these data on the web in space a 3-dimensional globe (Liolios et 

al 2008).  
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Figure 2: Biology’s future interactive database to visualize genetic and 

environmental information with occurrence/migration patterns. The user 

will upload genome data along with MIGS (Field et al 2008) that will 

eventually include phenotype data (Houle et al 2010), long-term GPS data 

for animals capable of movement along with progeny data where 

available. The user can build phylogenies in space-time according to a 

specific gene or multiple genes, species, genera, phenotypic traits, etc. 

The user can also use the database to build 4-D models of ecological 

niches and run evolutionary simulations.   

We can even go one step further and plot these data in time within 

the globe. To visualize this take the earth and cut it into equal halves (Fig 
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2). At its center will be time zero for life, some 3.5 billion years, at its 

crust will be the present. In order to fit everything into this globe the 

visual data would need to be compressed logarithmically as data moves 

from the ‘crust’ to its core. As we are able to collect more and more 

information on individuals such as movement and migration patterns 

using GPS tracking, we can incorporate these data to build a 4-

dimensional existence of an individual. Collecting these types of data over 

multiple members within a population over generations we can build 

digital reconstructions of real world phylogenies. The user will also be able 

to build models changing environmental variables to see their impact on 

species or systems.     

With the data accompanying these phylogenies we can begin to see 

how individuals and populations interact with the changing environment. 

Over longer periods of time we can begin to quantify and qualify 

properties of the environment that are selecting for the fit types from a 

population over time. We will be able to watch genes change with the 

environment or migrating to avoid environmental changes. We can see 

specific environmental ques that are responsible for phenotypes. The 

larger this database becomes the more powerful it will be to answer the 

finer peculiarities from the biological world.  

For biology to answer bigger questions we need bigger tools the 

earth through time is the all encompassing (assuming they won’t find life 

on Mars) context for life. It relates all life through space and time with 

respect to the abiotic environment. We can use a tool like this to study 

the life histories of organisms including pathogens and their hosts.  

 Pathogens 

I have always found pathogens interesting, especially the semi-

obligate pathogens because they seem to have one foot in each door: 

unable to walk away from their existence as a pathogen and also not able 

to make the complete jump to an organism that solely relies on its host.  
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Pathogens are really no different than other forms of life. They require 

extrinsic energy to live and to proliferate. Although they have specialized 

to parasitize other life to acquire their energy. Having an ability to 

transmit between hosts and exploit its resources is the simple reason for 

their existence. The evolution of pathogens and their virulence (ability to 

exploit the host) largely depends on the specific type of relationship 

between the pathogen and its host. These relationships have been 

classically divided into three groups: obligate, opportunistic and 

accidental pathogens. Although these classifications describe the 

necessity of the host for the pathogen to proliferate they do not always 

take into account the necessity of the host for the pathogen’s persistence 

and the evolutionary pressures that persistence plays in virulence.  

For instance two bacterial pathogens Mycobacterium tuberculosis 

and Bacillus anthracis would both be put into the ‘obligate’ pathogen 

category. Yet there is a big difference between the two in terms of 

disease pathogenesis and mortality. M. tuberculosis is transmitted directly 

from one host to the next and causes a chronic pulmonary infection. 

Whereas B. anthracis causes an acute and fatal infection. The 

evolutionary pressure on virulence (strategy of exploiting the host) lies in 

the transmission from one host to the next. For M. tuberculosis a chronic 

infection lengthens the time and increases the opportunity for 

transmission. For B. anthracis transmission only occurs after the death of 

the host, leaving no immediate selective pressure to lower virulence. This 

specific relationship between this pathogen and its host create the 

selective pressures which determine the morbidity caused by the 

pathogen to the host.   

Managing infectious diseases that effect livestock, crops, wildlife 

and human health requires the ability to predict, detect, and effectively 

curtail naturally occurring infectious disease epidemics and epizootics. 

Central to this is the development of tools that allow us to monitor the 

environment and hosts for selected pathogens, as well as detect and track 
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the progression of pathogens through an outbreak. Following the 2001 

anthrax attacks in the United States, it became apparent that the same 

tools used in epidemiological and evolutionary studies of infectious 

disease are very relevant in law enforcement and intelligence 

applications.  

Since biocrimes and bioterrorists attacks are typically by design 

covert, prevention is unlikely. Instead, a retrospective microbial forensic 

investigation of the event is a more probable outcome, followed by 

attribution and, if possible, apprehension. The microbial forensic 

investigation and attribution relies on methods and tools to precisely 

identify the attack strain that was released and the ability to link 

biological evidence among crime scenes, and ultimately to a source and a 

responsible person or party. Considering the paucity of physical 

characteristics available to uniquely identify and differentiate microbial 

evidence, genetic signatures are of central importance in any 

investigation.  

Introduction of the Chapters 

This dissertation describes the development of highly precise and 

sensitive molecular detection and typing tools for the pathogen Bacillus 

anthracis, and the application of these tools for forensic and 

epidemiological analyses. The chapters herein represent a top down 

approach to genetically describing B. anthracis isolates in the context of 

their world population using both Single Nucleotide Polymorphisms (SNPs) 

and Multiple Locus Variable Number of Tandem Repeat Analysis (MLVA), 

although much of my contributions to chapters 4, 5 and 6 specifically 

focus on the application of SNP data. It begins at chapter 1 ‘Use of Single 

Nucleotide Polymorphisms in the plcR Gene for Specific Identification of 

Bacillus anthracis in which we define the species as compared to its 

nearest known genetic relatives. At this division there is a distinct 

phenotypic dimorphism caused by this nonsense mutation in the plcR 
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gene. A single nonsense mutation in this gene shuts off the downstream 

genes that it is responsible to regulate. Shutting these genes off is a 

necessary trade-off to allow B. anthracis to sporulate after killing its host, 

which is a central step in the ecology and persistence of this pathogen. 

Using a ubiquitous and specific SNP allows fast and clear typing between 

typical B. anthracis strains and their nearest relatives. 

 

Chapter 2 continues with the use of this same mutation ‘Specific 

detection of Bacillus anthracis using a TaqMan® mismatch amplification 

mutation assay (taqMAMA)’ which only allows the polymerase to extend 

off the specific nonsense mutation in B. anthracis. This allows the 

researcher or investigator to detect B. anthracis by specifically ‘fishing’ it 

out of a pool of genetic templates that may only differ by a single SNP 

without cross reactivity (false positives). Although not published this 

same type of assay, taqMAMA, was designed and used for some of the 

SNP markers in chapter 3 to specifically detect the Ames strain.  

The use of this method was extremely important to forensic 

investigators during the Amerithrax investigation. Because the goal of this 

case was to identify a suspect then trial that person using evidence 

collected during the investigation. In order for the evidence to hold up in 

court much forethought was put into the analysis of materials collected, 

especially in instances where there was no B. anthracis that was 

culturable in environmental type samples. The risk of false positives was 

quite high using traditional PCR- based detection assays because of their 

ability to cross-react with the DNA found in close relatives of B. anthracis 

in the Bacillus cereus group, a very common environmental bacterial 

group. This method allowed very sensitive detection of B. anthracis even 

the presence of near neighbors and extracts that could inhibit or create 

false positives using PCR. 

Where this method really differs from most real-time PCR assays 

used for detecting pathogens is that it uses a small yet significant marker 

that has true biological significance for this pathogen (Easterday et al 
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2005, Mignot et al 2001). In contrast up to this point many markers were 

either developed by using genes that were assumed to be unique or by 

BLAST at a time when the genetic databases were quite small, to identify 

unique regions in the pathogen of interest. After designing makers in 

these unique regions they were often tested against a variety of lab type 

strains within the species of interest and among other species.       

Chapter 3 ‘Strain-specific single-nucleotide polymorphism assays for 

the Bacillus anthracis Ames strain’ demonstrates the ability to rapidly 

detect a specific strain of B. anthracis, in this case Ames, the classic 

laboratory and infamous 2001 letter attack strain, by using SNPs and the 

dramatic advantages this approach allows. Any one of these 6 SNPs are 

quite specific to Ames. In fact 5 of the 6 SNPs can differentiate Ames from 

the known diversity of this pathogen including its closest genetic relatives 

isolated from neighboring counties in Texas, USA. Most importantly this 

chapter illustrates the dramatic advantages this approach allows. This is 

similar to chapter 1 in the sense that the SNPs define specific lineages, 

although they differ from one another as the plcR SNP is most basal in B. 

anthracis phylogeny, whereas the Ames SNPs are much more derived in 

recent evolutionary history. This approach that utilizes SNPs can be used 

to define species, clades or isolates is continued in the following chapter.  

This method as well as many of these others were developed from 

the combination of demand and curiosity. There was a specific need for 

these types of tools to aid in the Amerithrax investigation. Typically it 

would take days to DNA fingerprint a hundred samples to forensic 

standards. In contrast with this method that combined smarter markers 

with faster scoring methods an investigator could now identify process 

thousands samples to identify the presence of the Ames strain to forensic 

standards in a single day.  

Chapter 4 is the most complete description of the world population 

of B. anthracis in the literature to date. ‘Global Genetic Population 

Structure of Bacillus anthracis’ is a description of genetic groups and 

types as defined by SNPs and MLVA. The geographic distribution of many 



25 
 

of these groups has revealed trends of occurrence for anthrax. This in 

turn has led to further more focused investigations into the dispersal of B. 

anthracis such as chapter 6, as well as Kenefic et al’s research into the 

origins of anthrax in North America (Kenefic et al 2009). Despite being a 

highly monomorphic species, the evolutionary history of B. anthracis 

proves to be interesting as it is a good example to understand the 

evolution of pathogens routinely going through population bottlenecks 

(Handel et al 2008) and how they spread and evolve in the absence of 

horizontal gene transfer and genetic recombination which is common in 

many other pathogens, Burkholderia spp. and Bartonella spp. 

Many of these B. anthracis strains were provided by Dr. Hugh-Jones 

who has spent a life time amassing this collection. 

Chapters 5 and 6 are more focused reviews of anthrax in two Asian 

countries, Kazakhstan and China respectively. Kazakhstan is a unique 

data set, and in fact is the first genetic description of naturally occurring 

B. anthracis strains from any part of the former Soviet Union: ‘Historical 

Distribution and Molecular Diversity of Bacillus anthracis in Kazakhstan,’ 

Chapter 6, ‘Bacillus anthracis in China and its relationship to worldwide 

lineages’ describes interesting trends of diversity within China and the 

relationship between some Chinese strains with North American strains. 

These trends were first recognized by M. Van Ert during the preparation of 

chapters 3 and 4.  

Both Kazakhstan and China have problems with anthrax killing 

livestock and humans. In these countries where often much of a family’s 

wealth is invested into their livestock, the untimely death of these animals 

can have huge impacts on the family. It is then decided whether to 

destroy the carcass and suffer the loss or try to salvage some of the 

wealth by butchering and selling the meat. Occasionally the animal dies 

from an infectious disease sometimes it is anthrax. This contaminated 

meat is then sold, becoming a public health problem. DNA fingerprinting 

tools are helpful to investigate outbreaks. Building baseline data such as 
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in chapters 5 and 6 give investigators tools to find the source of infection 

and route of transmission.      

Prior to these chapters, I present background on B. anthracis since 

understanding the challenges associated with molecular forensics and 

epidemiology of this pathogen requires a discussion of; 1) the role of B. 

anthracis as a bioweapon, 2) the ecology and evolution of the pathogen, 

3) the identification of genomic variation and genetic markers between B. 

anthracis and genetic near-neighbors and within the species; and 4) the 

forensic considerations when leveraging assays and global genetic data 

for forensic applications. First, however, it is of benefit to examine the 

significance of B. anthracis as a bioweapon. 

B. anthracis as a Biological Warfare Agent 

The communicability of disease has been known by humans for 

centuries and this knowledge has been leveraged to disseminate diseases 

creating morbidity, mortality and fear. Some of the first accounts of the 

use of biological weapons date back to 400 BC, when Assyrian archers 

used a blood/manure mixture on their arrows to promote wound infection. 

Even more notably, at the beginning of the Black Death in 1344, plague 

victims’ bodies were catapulted into the besieged city of Caffa by the 

Tartars in an attempt to spread the Plague, caused by the bacterium 

Yersinia pestis. Eventually the besieged Genoese fled back to Italy 

bringing with them this disease and starting the Medieval Plague in 

Europe (Handysides 2009). In more recent history, after germ theory 

became fact and a working discipline, this type of warfare has been 

increasingly researched and refined.  

In the 20th and 21st centuries, considerable state-sponsored 

research and funding has gone into selecting effective organisms for 

biological warfare and a diversity of bacterial and viral agents have been 

weaponized, including; B. anthracis (Anthrax), Brucella spp. (Brucellosis), 

Fransicella tularensis (Tularemia) and variola major (smallpox) 
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(Kortepeter et al 1999). Among the bacterial biothreat agents, B. 

anthracis represents a particularly attractive choice as a bioweapon for a 

number of reasons. The ease of cultivation and high virulence of B. 

anthracis likely contributes to its attractiveness as a weapon. However, 

the ability of the bacteria to form highly stable, environmentally resistant, 

infectious spores is a central reason for its weaponization by many 

countries during the 20th century including the Soviet Union, the U.S.A., 

Great Britain and Japan (Handysides 2009). The pathogen has gained 

further notoriety in recent history as a weapon of biological terrorism in 

Japan in 1993 (Kortepeter et al 1999) and the U.S.A. in the 2001 letter 

attacks (Inglesby et al 2002). It was the latter attack that spawned one of 

the largest and most expensive criminal investigations in U. S. history, 

and illustrated the real-world efficacy of B. anthracis as an agent of 

bioterror.  

Not surprisingly, the fields of biosecurity and bioforensics grew 

immensely following the 2001 letter attacks as governments started 

pouring huge sums of money into the development of tools for pathogen 

detection and monitoring (Bohannon 2003). To focus regulatory and 

research efforts, a select group of disease agents that were thought to 

represent the greatest threat to the public were identified. These select 

agents were identified based on several criteria, including availability, 

ease of weaponizing, morbidity/mortality and persistence in the 

environment. In 2002 these select agents were divided into categories by 

the U.S. Center for Disease Control and Prevention (CDC) A, B and C, in 

the order of perceived threat; B. anthracis was classified as an A category 

pathogen at the top of the list.  

Ecology and Evolution of B. anthracis 

B. anthracis belongs to the Bacillus cereus group, which consists of 

three genetically and phenotypically similar species; Bacillus cereus, 

Bacillus thuringiensis and B. anthracis. The group is alike with all being 
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gram positive, soil emanating, and spore-forming bacteria. Pathogenic 

members are found in all three species; B. cereus toxins are known to 

cause food poisoning (Granum et al 1997), B. thuringiensis is a known 

insect pathogen and B. anthracis, the causative agent of anthrax, is a 

mammalian disease that primarily infects herbivores. Despite the 

differences in pathogenesis, the core chromosome of the three species 

shows a high degree of genetic similarity (Helgason et al 2000) and 

among these three ‘species’ is likely a continuum of organisms found in 

the environment that span these gaps between defined species. Indeed 

environmental isolates have been described that genotype with one 

species and share a phenotype with another. For instance, an 

environmental isolate was found that is genetically and phenotypically 

more like B. cereus, yet was capable of producing anthrax-like pneumonia 

using many of the same virulence factors (Hoffmaster et al 2004). The 

existence of these previously unknown near neighbors present unique 

problems and complicate the design of genetic-based species detection 

assays.    

B. anthracis is generally considered an obligate pathogen since 

evidence of common soil propagation remains scarce (Hugh-Jones et al 

2009). As a result, understanding its transmission dynamics is critical for 

understanding its evolution. Anthrax has three clinical manifestations: 

cutaneous, caused by infection through a break in the epidermis; 

pulmonary, inhalation of spores into the lungs; and gastrointestinal 

caused by ingestion of spores. It is the latter, gastrointestinal route which 

is typical of anthrax transmission in wildlife. In this case, herbivores 

ingest spores which, aided by internal abrasions, are phagocytized by 

macrophages in the mucosa and transferred to lymph nodes where the 

spore germinates into a vegetative cell and a subsequent systemic 

infection proliferates. [In gastrointestinal anthrax, if the spore is not 

taken in by this process it will not germinate and will be passed through 

the feces (Hugh-Jones 2010).] Following infection, spores germinate and 
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undergo rapid proliferation killing the host; sporulation begins, as decay, 

aided by scavengers reintroduces the pathogen back into the soil.  

Importantly, the transmission cycle of B. anthracis slows the 

genome’s evolution relative to other pathogens as there is a brief period 

of infection and replication, through which mutations can occur, is 

followed by long periods of dormancy, potentially for decades (Graham-

Smith 1941)during which time genetic mutations are paused. This ‘stop’ 

for long periods (years) and ‘go’ for short periods (days) greatly reduces 

the number of generations from its first emergence as a pathogen to the 

present. Here the number of generations is relatively low compared to 

other bacteria that exhibit continual growth and replication. For instance 

Escherichia coli is estimated to undergo 300 generations per year 

(Guttman et al 1994), whereas B. anthracis is estimated at a magnitude 

less with only 20 to 40 generations per year . The small number of 

generations greatly reduces the number of genetic mutations among 

members within the population.  

Although mutation is likely the primary diversifying force in B. 

anthracis, selection, drift and recombination may all potentially affect 

allelic distributions in B. anthracis (Keim et al 2004). For example, the 

manifestations of the disease likely exert a distinct evolutionary selective 

pressure on the virulence of this pathogen. In the anthrax cycle, spores 

persist in the soil until they are ingested, inhaled or come into contact 

(through skin lesions) with a host and cause their respected pathology as 

described above. In lieu of an unknown alternate path in the transmission 

cycle or long-term chronic infection (which there is no evidence for in the 

literature), failure to cause mortality from any form of infection becomes 

a dead end for the pathogen. Specifically strains that infect and are 

unable to cause mortality of the host will not be selected for and will be 

literally aberuncated from the population. In all the manifestations of the 

disease the core mechanism of transmission to a host is through the soil, 

this transmission step to the soil is only accomplished by killing the host. 
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Necessity of mortality of the host in the B. anthracis transmission cycle 

creates evolutionary pressure to maintain or increase virulence and as 

long as there is not a trade-off in the transmission (spore) phase (Moran 

2002). The selective mechanism behind maintenance or increase in 

virulence is sheer numbers. If mutations arise creating faster division in a 

certain subpopulation within a host, those strains in greater numbers 

should eventually dominate the population through many generations 

(Levin et al 1994). Although B. anthracis may already be quite optimized 

to this habitat within the host which if true may act as a constraint on an 

already optimized genome and its expression allowing little divergence 

from this fit genotype/phenotype, preserving the genetic homogeneity of 

this species.  

As a result of the transmission cycle, and potentially other 

processes, there exists very little molecular variation among globally, 

geographically widespread B. anthracis isolates. It is because of the low 

levels of intra-species genetic diversity that B. anthracis is generally 

considered a ‘recently emerged pathogen’; although the ecology of the 

pathogen, and the stochastic nature of the spore phase, complicates 

molecular clock determinations (see chapter 4). The monomorphic nature 

of the B. anthracis genome and its extremely close genetic relationship 

with its environmentally common near-neighbors complicates efforts to 

develop molecular tools for its precise identification. However, use of 

genomic and evolutionary analyses was used to develop species and 

strain specific assays for B. anthracis.  

Genomics of B. anthracis and Genetic Markers 

The use of new genetic tools for pathogen work, in many ways, 

greatly surpasses the traditional ‘gold standards’ of classical microbiology. 

Frequently prior to 2001 and to some extent now, B. anthracis 

identification (now confirmation) is accomplished through classical 

microbiological methods; using techniques to isolate and phenotype the 
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microbe biochemically and morphologically. This process is laborious, time 

consuming and potentially yields inconclusive results; it also suffers from 

a limited number of diagnostics. In the case of forensic science, human 

genetic data have been used extensively to attribute crimes to 

perpetrators (Pena et al 1993). However these types of data had not been 

used to their potential in microbial forensics prior the 2001 attacks and 

the co-occurring genomics revolution, when there was a push to use 

genetics to identify and subtype pathogens, here B. anthracis, in forensic 

and clinical settings (Popovic et al 2003, Swaminathan et al 2001).  

To meet the needs of forensic and epidemiological investigations of 

anthrax outbreaks, new genetic markers and tools needed to be 

developed for more definitive and precise identification. Having these 

types of tools in place in the event of an intentional release can produce 

key data for investigators. For example, in the circumstance of a release 

the speed and throughput of identifying a pathogen and mobilizing the 

appropriate response could have a significant effect on number of deaths 

within a population. In criminal justice the use of these tools give 

investigators the ability to rapidly include and exclude biological material 

and, by association, suspects.  

Prior to the anthrax attacks, certain Polymerase Chain Reaction 

(PCR) – based methods were already available for the identification of B. 

anthracis as well as resolving genetic groups within the species (Keim et 

al 2000, Qi et al 2001). However the existing research methods suffered 

from limits in through-put and strain discrimination, limiting the 

application to the epidemiological and forensic investigation. The 2001 

anthrax letters forced a change in the development and use of these 

systems from research applications to investigative applications and is the 

focus of this thesis: developing high-throughput, trace-level detection of 

pathogens used in biocrimes; smart tools and markers to detect specific 

pathogens and specific strains, in this case for the pathogen B. anthracis.   
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Although mutations are rare within B. anthracis, examination of 

genomic sequences permitted the identification of Variable Number of 

Tandem Repeat loci. These were some of the first polymorphisms found 

between isolates of B. anthracis and were the first tools to give insight 

into the genetic and geographic history of the pathogen (Keim et al 

2000). Afterwards, more exhaustive, comparative genomic surveys, 

allowed for the discovery of Single Nucleotide Polymorphisms (SNPs) for 

the identification of the species, as well as clonal groups or even a specific 

strains within the species.  

To effectively find SNPs a phylogeny was built using a 15 marker 

Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) system. 

This method was applied to DNA ‘fingerprint’ over one thousand 

geographically diverse isolates of B. anthracis. An evolutionary hypothesis 

was constructed with Unweighted Pair Group Method with Arithmetic 

Mean (UPGMA), using these markers (chapter 4). From this phylogeny a 

total of five genetically diverse isolates were selected for whole genome 

sequencing which includes the Ames strain. A comparison between these 

genomes revealed around 3500 SNPs among these strains. These SNPs 

were then screened against a diverse set of 27 isolates that were 

representative of B. anthracis phylogeny. SNPs were then mapped on a 

phylogeny (Pearson et al 2004) and SNPs that defined major clonal 

lineages were identified. Twelve SNPs were used as binary markers to 

define subgroups within the species (figure 1) and real-time assays were 

designed to these markers to screen a large population of 1000+ globally 

diverse isolates.    
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Figure 1 Representation of the location of Canonical SNPs on a simple B. 

anthracis phylogeny based upon seven diverse strains. The plcR SNP 

(nonsense mutation) occurs between B. anthracis species and other 

members of the B. cereus group.  Also, two Ames strain specific SNPs are 

shown at the Ames terminus. 

Genetic tools, assays and databases for forensics 

In contrast to a natural outbreak, where the public health sector 

responds to and manages the outbreak, the bioterrorist attack of 2001 

required the participation of both public health and law enforcement 

agencies. The amount of work in biodefense that needed to be 

accomplished to have information gathering systems in place was quite 

large, especially for the detection and fingerprinting B. anthracis and 

other pathogens. Hence a symbiosis has been formed between law 

enforcement and the public health sector and joint efforts between the 

two disciplines to structure research into developing new and more 

efficient tools is underway (Goodman et al 2003).  
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The 2001 anthrax letter attacks exposed the gaps in forensic 

capabilities for the specific detection and identification of B. anthracis and 

other pathogens. Furthermore there was no established standard method 

or protocol for strain identification and the need for precise, sensitive, 

high-throughput tools for the identification of B. anthracis strains became 

apparent. In the 2001 Amerithrax case, the strain of interest was Ames, 

and the tools to specifically identify this strain for the purposes of 

including and excluding evidence required development and validation. 

Major challenges in examining evidence arise from inherent limitations of 

the PCR method. Even so the benefits of using PCR outweigh the 

limitations of this method. Although other PCR based methods are used 

for the identification of genetic markers (Van Ert et al 2004), here for the 

detection of SNPs we specifically used real-time PCR.  

Some of these limitations are intrinsic to the method itself including 

inhibition of PCR due to environmental contaminates, such as humic acids 

(Tebbe et al 1993) and the limit of detection which is the lowest copy 

number of a given template yielding a positive result (figure 2). Similarly, 

yet not inherent to PCR, are the problems which may arise where 

sequences which have a similar composition cross-react with the primers 

and probes of the assay used. Given the right conditions this can yield 

false positives and may occur in the negative controls if a combination of 

cycling conditions, chemistry and the design of the oligos allow.  
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Figure 2 Representation of the parameters of detection for a pathogen 

signature in an environmental sample. As the amount of target DNA 

sequence decreases, the larger the impact that PCR inhibitors have on 

any particular assay to the threshold of causing false negatives. The 

cross-reactive sequences also can cause false results. As the amount of 

cross-reactive sequence is increased within a sample the murkier the 

results may become, to the point of creating false positives or negatives. 

Although academic laboratories are known for pioneering research 

in molecular biology, many researchers have developed ritual habits that 

are based on taught and or learned procedures from incorrect 

interpretation of data due to a lack of appropriate controls. In practice 

many researchers will throw out data after 40 cycles of this process, real-

time PCR, because the validity is in question due to the de novo 

fabrication of PCR products which allow for the binding and cleavage of 
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probes creating a fluorescent signal in controls (personal correspondents). 

This is the case when one or more parameters are not optimized to 

prevent these false positives and where appropriate controls were not run 

creating inaccurate conclusions or ambiguous results. In the case of the 

research herein tightly controlled experiments were run with exhaustive 

controls to nullify this notion.   

When samples are taken as evidence for forensic analyses the 

quality cannot always be controlled for. There is the possibility for a range 

of quality when it comes to samples taken as evidence. Obviously the first 

step is to attempt to culture B. anthracis when isolated and grown creates 

a situation where the resource is not finite. Yet culturing the organism is 

often not possible. In these instances confirmation for the presence of the 

organism relies on genetic methods. Here the danger of cross-reactive 

sequences in any sample is always possible and can be likely.     

Genetic/Geographic Databases  

One of the most important tools in epidemiology and criminal 

justice are databases. Databases can be used to quickly query data once 

it is gathered. The likeness of the match, if not perfect, enables 

investigators to focus and structure their investigation to more likely 

sources while excluding or lowering the priority of less like matches. 

Genetic, spatial and temporal data allow epidemiologists and investigators 

to attribute a particular case to a likely source. 

For instance in Hong Kong 2003 Cheung et al. documents a fatal 

case of anthrax in a boy. Anthrax in Hong Kong is an extremely rare 

disease, with only three cases in the last 20 years (Cheung et al 2005). 

Their ability to closely genetically match the isolate to other isolates from 

Guangxi an adjacent province enabled the epidemiologists to attribute the 

bacterium’s presence to probable contamination of a food product.  
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Figure 3 A screenshot from the ‘Bacillus anthracis Dynamic Database.’ 

The database allows the user to enter any combination of genetic data [1, 

2] (SNPs, MLVA, and single nucleotide repeats) and spatial data [3] and 

query these data [4]. The information within the database is secured with 

registered usernames and passwords [6]; each database user is given a 

specific level of access.  

These types of investigations became possible for the following 

reasons. The first was amassing a large enough collection of isolates to 

represent the genetic diversity in a global (spatial) context. The second 

was developing genetic tools that create a fine enough resolution of the 

isolates which allows discrimination of similar isolates from adjacent 

locations. These data then need to be collected into a database. The 

database should be intuitive and easy to query (figure 3). This allows the 

user to query specific data and have specific clear data returned. In turn 

it helps guide investigators to a probable source of the pathogen. Despite 

having a database some of the biggest challenges in these types of 

investigations are actually capturing these data. The following chapters 

present the data and the methods to access these data, even from some 

of the most challenging samples. 
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Global Genetic Population Structure of Bacillus anthracis
Matthew N. Van Ert1¤a, W. Ryan Easterday1, Lynn Y. Huynh1¤b, Richard T. Okinaka1,2, Martin E. Hugh-Jones3, Jacques Ravel4, Shaylan R. Zanecki1,
Talima Pearson1, Tatum S. Simonson1, Jana M. U’Ren1, Sergey M. Kachur1, Rebecca R. Leadem-Dougherty1, Shane D. Rhoton1, Guenevier
Zinser1, Jason Farlow1¤c, Pamala R. Coker3¤d, Kimothy L. Smith1¤e, Bingxiang Wang5, Leo J. Kenefic1, Claire M. Fraser-Liggett4, David M.
Wagner1, Paul Keim1,2,6*

1Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America, 2 Biosciences, Los Alamos National
Laboratory, Los Alamos, New Mexico, United States of America, 3Department of Environmental Studies, Louisiana State University, Baton Rouge,
Louisiana, United States of America, 4 The Institute for Genomic Research, Rockville, Maryland, United States of America, 5 Lanzhou Institute of
Biological Products, Lanzhou, China, 6 Pathogen Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of
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Anthrax, caused by the bacterium Bacillus anthracis, is a disease of historical and current importance that is found throughout
the world. The basis of its historical transmission is anecdotal and its true global population structure has remained largely
cryptic. Seven diverse B. anthracis strains were whole-genome sequenced to identify rare single nucleotide polymorphisms
(SNPs), followed by phylogenetic reconstruction of these characters onto an evolutionary model. This analysis identified SNPs
that define the major clonal lineages within the species. These SNPs, in concert with 15 variable number tandem repeat (VNTR)
markers, were used to subtype a collection of 1,033 B. anthracis isolates from 42 countries to create an extensive genotype
data set. These analyses subdivided the isolates into three previously recognized major lineages (A, B, and C), with further
subdivision into 12 clonal sub-lineages or sub-groups and, finally, 221 unique MLVA15 genotypes. This rare genomic variation
was used to document the evolutionary progression of B. anthracis and to establish global patterns of diversity. Isolates in the
A lineage are widely dispersed globally, whereas the B and C lineages occur on more restricted spatial scales. Molecular clock
models based upon genome-wide synonymous substitutions indicate there was a massive radiation of the A lineage that
occurred in the mid-Holocene (3,064–6,127 ybp). On more recent temporal scales, the global population structure of B.
anthracis reflects colonial-era importation of specific genotypes from the Old World into the New World, as well as the
repeated industrial importation of diverse genotypes into developed countries via spore-contaminated animal products. These
findings indicate humans have played an important role in the evolution of anthrax by increasing the proliferation and
dispersal of this now global disease. Finally, the value of global genotypic analysis for investigating bioterrorist-mediated
outbreaks of anthrax is demonstrated.

Citation: Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, et al (2007) Global Genetic Population Structure of Bacillus anthracis. PLoS
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INTRODUCTION
Anthrax, caused by the bacterium Bacillus anthracis, is a disease with

a natural transmission cycle involving wildlife, livestock, and,

occasionally, humans. Recently B. anthracis received notoriety for

its use as an agent of bioterrorism in the 2001 letter attacks in the

United States [1], and an unsuccessful aerosol attack in Japan in

1993 [2]. Prior to its use as a bioterrorism agent, B. anthracis was

developed as a biological weapon by the governments of several

countries, including the United States, the United Kingdom, and

the former Soviet Union [3]. Despite the emphasis on its role as an

agent of bioterrorism or biological warfare, anthrax has been and

continues to be an important global disease of wildlife and

livestock. Global dispersal of spores via commodities has been

prevalent, such that there are currently endemic anthrax foci on all

continents except Antarctica (http://www.vetmed.lsu.edu/

whocc/). In the environment, B. anthracis primarily exists as

a dormant, highly stable spore, which is central to the ecology,

evolution, and contemporary weaponization of this pathogen.

During the spore phase, which may persist for decades, evolution

is static or at least greatly reduced in rate, which limits the amount

of genetic diversity found among isolates of this species.

In the past the genetic homogeneity of B. anthracis severely

compromised efforts to reconstruct its evolutionary history. Two

molecular approaches, multiple locus variable number tandem

repeat analysis (MLVA) and whole genome single nucleotide

polymorphism (SNP) discovery and analysis, have greatly

enhanced the identification of genetic markers that help to

establish the phylogenetic relationships among B. anthracis isolates

[4,5]. For example, Keim et al. [4] used eight variable number

tandem repeat (VNTR) markers to examine a worldwide

collection of over 400 B. anthracis isolates and described two major

clonal lineages (A and B) and 89 unique MLVA8 genotypes. This
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same VNTR typing scheme also has been used to examine the

diversity of B. anthracis in France, [6] Poland, [7], Italy [8], and

countries in southern [9] and northern Africa [10]. This process

has now been expanded to 15 marker-loci, MLVA15 [11].

Although individual SNPs have limited resolving power relative

to MLVA, researchers have used phylogenetic approaches to

identify SNPs that efficiently partition bacterial strains into genetic

groups consistent with their recognized population structure

[3,11,12]. Recent whole genome sequencing efforts discovered

approximately 3,500 SNPs among five strains of B. anthracis [5,13]

(J. Ravel, unpublished). Pearson et al. [5] mapped nearly 1,000 of

these SNPs across 27 diverse isolates and proposed an extremely

robust and conserved phylogenetic model for Bacillus anthracis. The

conserved distribution of SNPs within the B. anthracis phylogenetic

tree was reflected in the observation that only a single character

conflict (homoplasy) was detected from .25,000 data points.

These results indicated that that a select number of SNPs

representative of specific branches and nodes in the B. anthracis

SNP-derived tree would be sufficient to accurately determine the

current phylogenetic position of any B. anthracis isolate. A working

hypothesis was formulated [3] where a small number of canonical

SNPs (canSNPs) located at key phylogenetic junctions along the B.

anthracis SNP tree could replace a tedious genome-wide SNP

analysis. This strategy is analogous to the TagSNP concept that

has been suggested by the International HapMap Consortium for

the human genome[14] that ‘‘only a minority of sites need to be

examined’’ to fully capture the genotype information in various

conserved regions throughout the genome. CanSNPs in B. anthracis

represent an extreme example of the TagSNP concept where

a single SNP can represent the entire genome of an isolate.

In this study, the canSNP hypothesis for Bacillus anthracis was

tested against a diverse global collection containing .1,000

isolates. An initial set of 12 canSNPs representing different points

in the evolutionary history of Bacillus anthracis were queried against

DNA preparations from this entire collection. These experiments

demonstrate that all of the B. anthracis isolates can be placed into

one of 12 conserved groups or lineages. The slowly evolving

canSNP data set was then coupled to the more rapidly evolving

MLVA15 marker set to greatly enhance the resolution beyond the

original 89 B. anthracis genotypes [4]. The analysis of slowly

evolving canSNPs allowed the definition of major clonal lineages

in B. anthracis, whereas the more rapidly evolving MLVA15

markers elucidated younger population-level structure in the

species. We also utilized molecular clock models, based upon

simple assumptions and exhaustive whole genome synonymous

SNP surveys of representative strains, to estimate the age of major

events in the evolution of B. anthracis. Collectively, our phyloge-

netic and molecular clock analyses, as well as information on

isolate frequencies and global geographic distribution, facilitate the

most comprehensive description to date of the global diversity and

historical transmission patterns of this pathogen.

RESULTS

Canonical SNP analysis
CanSNP analysis subdivided all of the B. anthracis isolates into

three previously recognized major lineages (A, B and C), with

further subdivisions into one of 12 distinct sub-lineages (Figure 1,

stars) or sub-groups (circles). Seven completed whole genome

sequences (C.USA.A1055, KrugerB, CNEVA.9066, Ames, Aus-

Figure 1. The relationship between canSNPs, sub-lineages and/or sub-groups: The stars in this dendrogram represent specific lineages that are
defined by one of the seven sequenced genomes of B. anthracis. The circles represent branch points along the lineages that contain specific
subgroups of isolates. These sub-groups are named after the canSNPs that flank these positions. Indicated in red are the positions and names for
each of the canSNPs (also see Table 1).
doi:10.1371/journal.pone.0000461.g001
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tralia94, Vollum, Western North America, see Table 1) defined

endpoints (stars) that describe 7 distinct sub-lineages within the

canonical SNP tree. These seven strains were picked to represent

previously recognized diversity within B. anthracis [4,5]. In addition

to the 7 lineages the canSNP analysis identified 5 sub-groups

labelled as positions along the branches in the canSNP tree. The

positions of each of the canSNPs are illustrated in Figure 1 and the

canSNP genotype for each of the 7 sub-lineages and the 5 sub-

groups is shown in Table 1. It is important to note that all of the

1,033 isolates in this B. anthracis collection fell into one of these 12

subdivisions and that the specific sequenced lineage isolates are

only representative of a cluster of related isolates within that

lineage.

MLVA15 analysis
UPGMA cluster analysis of the MLVA15 data alone clearly

identifies the three major genetic lineages (A, B, and C; Figure 2).

The longer B and C branch lengths (Figure 1) are underestimated

in this analysis (Figure 2) due to mutational saturation of the

rapidly evolving MLVA markers. This dataset also increased the

number of unique B. anthracis MLVA genotypes from 89 (MLVA8,

[3]) to 221 owing to both a larger subset of isolates and the

expanded resolving power of the MLVA15 marker set (Figure 2,

Tables S1 and S2). The MLVA15 tree (Figure 2) illustrates that

the majority of isolates are located in shallow branches within the

A lineage whereas the B and C lineages have rarer genotypes and

fewer isolates. The MLVA15 dataset indicates that 89.6% (198)

MLVA genotypes are from the A branch, 10% (22 MLVA

genotypes) are from the B branch, and only 0.4% (1 MLVA

genotype) are from the C branch.

Geographical distribution of clonal sub-lineages and

sub-groups
Figures 2 and 3A graphically depict the distribution of the 1,033

isolates into the 12 canSNP sub-lineages and/or sub-groups

(Column N in Fig. 2 and 3A) and also indicates the number of

unique MLVA15 genotypes that were found in each of the 12

canSNP groupings (Figure 3A, column G; also see Table S1 in the

Supplemental Section). The canSNP sub-lineages and sub-groups

in Figure 3A also were assigned unique color codes to assist in

establishing correlations between these 12 canSNP groupings and

the geographic origins of each isolate. These data are presented in

Figure 3B as color-coded pie charts for various geographic regions.

Each pie chart illustrates the proportion of each canSNP grouping

and the total number of isolates that originated from a particular

geographic region. North America, Europe, China and parts of

Africa are very well represented in these studies, whereas South

America and Australia have reasonable representation. Countries

from the Middle East and the former Soviet Union are under-

represented. These sample biases are important considerations but

do not appear to mitigate major genetic and geographic trends in

this data set.

There are distinct differences in the global distributions of the

major B. anthracis clonal lineages (A, B, and C). The A lineage

isolates are widely distributed and are found in all countries

included in this study. In contrast, the geographic distributions of

the B and C lineage isolates are restricted, for example, the B

lineage is primarily found in South Africa [B.Br.Kruger B sub-

lineage and B.Br.001/002 sub-group [9] and portions of Europe

[B.CNEVA-9006 sub-lineage; [4,6,7] with geographical differen-

tiation at the sub-group level. Examples of these sub-lineages are

rarely found outside of these regions.
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Figure 2. UPGMA dendrogram of VNTR data from worldwide B. anthracis isolates: Fifteen VNTR loci and UPGMA cluster analysis were used to
establish genetic relationships among the 1,033 B. anthracis isolates. In this UPGMA dendrogram, which was created using MEGA software [39],
groups of genetically similar isolates are collapsed into black triangles that are sized in proportion to the number of isolates in that particular lineage.
VNTR loci mutate at faster rates than SNPs and, hence, provide greater resolution for terminal branches. Longer branches, such as the B and C
lineages, have length underestimation in this analysis due to mutational saturation. The scale bar indicates genetic distance. Also illustrated on this
figure is the distribution of the canonical SNP groups relative to the MLVA phylogeny (right columns). The number of isolates (N) associated with each
canSNP group is shown in the second column. The correlation between the phylogenetic clusters identified by the canSNP and MLVA analysis with
regards to the world wide geographic distribution of these clusters can be seen in Figure 3.
doi:10.1371/journal.pone.0000461.g002
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Although A branch genotypes appear to be scattered through-

out the world, there are distinct subgroup geographic compositions

for many regions. The dominant genotypes in Southern Africa, for

example, belong to the A.Br.Vollum sub-lineage, whereas in

Europe isolates from A.Br.008/009 sub-group are dominant.

Although central Asia is poorly represented in our collection, the

genetic diversity in Eurasia appears to change along a longitudinal

axis. Isolate collections from the west (Europe) are dominated by

A.Br.008/009 sub-group isolates, and collections from western

and south-central Asia (Turkey, India) and western China are

dominated by genotypes belonging to A.Br.Aust94 sub-Lineage,

(regional data not shown). Further into central and eastern China

the genotypes are dominated by isolates belonging to the

A.Br001/002 sub-group and A.Br.Ames sub-lineage (regional

data not shown). Distinctive genotype compositions are also

observed in the western hemisphere, which is dominated by

unique clonal lineages that are not observed in the eastern

hemisphere. Within the Americas, North and South America

contain different genetic groups of B. anthracis: North American

genotypes belong mainly to the A.Br.WNA sub-lineage and South

American genotypes belong mainly to A.Br.003/004 sub-group.

A striking feature of isolate collections from the Americas is that

the dominant clonal groups are rarely observed outside of these

regions. These collections also exhibit low genetic diversity even

when analyzed using high-resolution MLVA markers (Figure 2).

For instance, in South America isolates from the A.Br.003/004

sub-group (mean within-group VNTR distance = 0.08; Fig. 3A)

comprise more than 80% of the total isolates from this region yet

are rarely observed elsewhere in the world. A similar trend is

observed in the more extensive isolate collection from North

America, which is dominated (70%) by a single group (sub-lineage

A.Br.WNA; mean within-group VNTR distance= 0.06; Fig. 3A)

that is not observed outside of North America. In contrast, the

dominant sub-lineages in Europe, Asia, and Africa exhibit greater

within-group genetic distances [Europe=A.Br.008/009 sub-

group, mean within-group genetic distance = 0.17; South Asia

(India, Turkey) =A.Br.Aust94 sub-lineage, mean within-group

genetic distance = 0.22; East Asia (China) =A.Br.001/002 sub-

group, mean within-group genetic distance = 0.14; Southern

Africa =A.Br.Vollum sub-lineage, mean within-group genetic

distance = 0.19]. In more industrialized regions, such as Western

Europe and the United States, we observe dominant clonal

lineages but also the co-occurrence of greatly differing genetic

types. Important ‘‘donor’’ regions can be identified and differen-

tiated from ‘‘recipient’’ regions based upon their strain diversity

and the positions of these strains in phylogenetic models.

Figure 3. Worldwide distribution of B. anthracis clonal lineages:Phylogenetic and geographic relationships among 1,033 B. anthracis isolates.
(A) Population structure based upon analysis of data from 12 canSNP (Protocol S1). The numbers of isolates (N) and associated MLVA genotypes (G)
within each sub-lineage are indicated as well as the average Hamming distance (D) as estimated from VNTR data. The major lineages (A, B, C) are
labelled, as are the derived sub-lineages (1–12), which are also color-coded. (B) Frequency and geographic distribution of the B. anthracis sub-
lineages. The colors represented in the pie charts correspond to the sub-lineage color designations in panel A.
doi:10.1371/journal.pone.0000461.g003
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Molecular Clock Estimates
Our models, based upon simple assumptions and whole genome

synonymous SNP surveys, allowed us to generate age estimates for

the major events in the evolutionary history of B. anthracis (Methods).

The divergence of the rare C branch isolates from the lineage

containing the A and B branches appears to have occurred

approximately 12,857 to 25,714 ybp. The more recent divergence

of the A and B branch from a common ancestor occurred

approximately 8,746 to 17,493 ybp. On a more recent time scale,

we estimate that the primary A-radiation in B. anthracis, which is

clearly evident in Figures 2 and 3A, occurred approximately 3,277 to

6,555 ybp, or in the mid-Holocene (Table 2).

DISCUSSION
B. anthracis is thought to have diverged from a B. cereus ancestor by

the evolutionary acquisition of two virulence plasmids (pX01 and

pX02) and several important chromosomal mutations, such as the

nonsense mutation in plcR [15–18]. Subsequent evolution within

this pathogen is evidenced by differences in the global distribution

and abundance of isolates from the major clonal lineages (A, B,

and C). In B. anthracis, the more common genotypes and the majority

of isolates are located in shallow branches within the A lineage

(Figures 2, 3A); whereas the B and C lineages are associated with

rarer genotypes and fewer isolates. If isolate abundance is used as

a fitness estimator, with rare genotypes considered less fit than

common types, genotypes from the C branch and, to a lesser extent,

the B branch appear to have very low fitness relative to the A branch

genotypes (Figures 2, 3). Indeed, the C branch has significantly

slower evolutionary rates than the A branch ([5]; Figure 2),

suggestive of fewer infective cycles in nature.

The A branch of B. anthracis has experienced a recent and

massive radiation (Figures 2 and 3A) that was clearly a very

important event in the evolution of anthrax. Evidence for this

event includes the great success of the A branch and its clonal

derivatives, the involvement of A genotypes in most of the recent

anthrax outbreaks around the world, and short phylogenetic

branch lengths within this group. This last point is best illustrated

in the dendrogram generated from the MLVA data alone

(Figure 2), which capitalizes upon the rapid evolution of VNTR

loci to depict the recently-derived radiative lineages within the A

branch. The domination of A branch genotypes on a global scale is

indicative of great reproductive success (hence, fitness) and

considerable long-distance dispersal (Figure 3B). In the absence

of the A-lineage expansion, anthrax likely would be a highly

restricted and rare disease.

There are several possible explanations for the differences in

global distribution and abundance observed among the major

lineages of B. anthracis. One explanation is adaptive genetic

differences that affect survival and propagation in either the

environment or hosts. A comparison of A vs. B isolates from

Kruger National Park, South Africa indicated that A strains were

adapted to more diverse environments than B strains, which were

restricted to more narrow environmental conditions [9]. This

trend is also reflected on a global scale, where the B and C types

may be successful locally or regionally but, unlike the A strains, are

not a dominant presence worldwide. The limited abundance and

geographic distribution of these rarer lineages may arise from

fitness costs associated with niche specialization [9,19].

In addition to possible adaptive differences among lineages,

stochastic processes such as human-mediated dispersal may

explain the greater success of particular genetic groups. The

global genetic population structure of B. anthracis suggests human

activities have played a role in the proliferation and dispersal of

this now global disease and we see evidence for these human

impacts on several time scales. For example, models based upon

simple assumptions and whole genome synonymous SNP surveys

suggest the primary A-radiation in B. anthracis occurred approx-

imately 3,277 to 6,555 ybp, or in the mid-Holocene (Table 2).

These age estimates coincide with periods of increased human

activities in animal domestication and domesticate population

expansion [20–24]. Although the importance of the development

of human civilization and animal domestication in the natural

history of anthrax has been recognized [20,21], our study presents

genetic evidence that it dramatically influenced the global

population structure of B. anthracis.

As an important disease of livestock, it seems logical that major

evolutionary events in anthrax, such as the A radiation, coincide

with human developments in agriculture, animal domestication,

and Old World trade routes. Animal husbandry and farming

Table 2. Molecular clock estimates of separation times among B. anthracis sub-lineages.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compared lineagesa
Major
groupings

Total synonymous
sitesb

Observed
sSNPs

sSNP substitution
frequency

1 death per year
model (ybp62 STD)c

0.5 death per year
model (ybp62 STD)c

dVollum /eAmes A vs. A 899,987 153 1.7E-04 3,8016123 7,6036174

dVollum /fWNA A vs. A 899,957 129 1.4E-04 3,2056113 6,4116160

eAmes/fWNA A vs. A 902,239 114 1.3E-04 2,8256106 5,6516150

Average among A branch divergence times = 3,2776114 6,5556162

gCNEVA/eAmes B vs. A 901,936 322 3.6E-04 7,9836179 15,9666253

hKrugerB vs eAmes B vs. A 902,983 384 4.3E-04 9,5096195 19,0196276

Average B branch/A branch divergence times = 8,7466187 17,4936264

gCNEVA/hKrugerB B vs. B 901,935 188 2.1E-04 4,6616137 9,3226193

iC.A1055/ gCNEVA C vs. B 901,783 484 5.4E-04 12,0026219 24,0036310

iC.A1055/eAmes C vs. A 901,791 553 6.1E-04 13,7136234 27,4256331

a Sub-lineages according to Fig. 1, bTotal Syn Sites = The total sites for synonymous substitutions were determined separately for each pair-wise comparison. c The
model for sSNP substitution rate is particularly sensitive to number of death cycles per year. Therefore, two possible scenarios (1 and 0.5 deaths per year) were modelled
(see supporting methods on the PNAS website for more details). STD = The standard deviation for observed sSNPs, calculated as the square root of the time estimate.
Thus, 2 STD represents ,95% confidence interval based upon fluctuation in this parameter of the model. d Sequence from the Vollum strain, The Institute for Genome
Research (TIGR). e Sequence from the ‘Ames Ancestor’ strain, GenBank Reference Sequence NC 007530. f Sequence from the Western North America USA 6153, TIGR.g
Sequence from the CNEVA-9066, TIGR. h Sequence from the Kruger B strain, TIGR. I Sequence from A1055, TIGR
doi:10.1371/journal.pone.0000461.t002..
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practices, which forced animals into confined areas, are likely to

have increased B. anthracis infection and evolutionary rates, which

would rapidly increase genotypic diversification. Similarly, the

population expansion of large mammal domesticates from the

centers of domestication in Eurasia and North Africa would

function to disperse B. anthracis genotypes. Molecular clock models

suggest that African and Eurasian cattle populations expanded

9,000 ybp and 5,000 ybp, respectively [24]; a time period that

roughly corresponds to the A lineage radiation (3,277 to

6,555 ybp) and the divergence of the two major B branches from

a common ancestor (4,661–9,322 ybp).

Independent domestication and domesticate expansion events

may provide an explanation for the different assortments of A and

B lineages on these two continents. For example, the two major B

lineages are spatially separated, one is found in southern Africa

(B.Br.001/002 sub-group and B.Br.KrugerB sub-lineage) and the

other (B.Br.CNEVA-9066 sub-lineage) is found in portions of

Europe, suggesting that after diverging from a common ancestor,

these two groups experienced independent evolutionary histories.

The divergence of the B.Br.CNEVA and B.Br.Kruger sub-lineages

are similar inmolecular clock estimates to the A radiation and, again,

could represent human influences on this pathogen. Taken together,

human-mediated events in the mid-Holocene provide plausible

explanations for both the dramatic events in B. anthracis evolution

observed during this time period and the diversity among and within

clonal lineages on the African and Eurasian landmasses.

The dispersal of B. anthracis to the western hemisphere was

probably via intercontinental transport of animal products during

European colonization [25,26]. Evidence for this includes isolate

collections from the western hemisphere that are dominated by

clonal groups that are rarely observed outside of these regions and

exhibit low genetic diversity when analyzed using high-resolution

markers. These patterns are consistent with single, relatively recent

introductions followed by widespread dispersal, ecological estab-

lishment, and local differentiation. The close derived genetic

relationship between the North American sub-lineage A.Br.WNA

and the dominant European sub-group A.Br.008/009 is consistent

with an introduction to North America from Europe, possibly via

French or Spanish colonization [25,26].

More recent human activities in commerce and industrialization

also appear to have impacted the global population structure of B.
anthracis. For instance, in addition to a single dominant genetic

type, North America also contains a cosmopolitan assortment of

rarer B. anthracis genotypes that are likely a consequence of

international industrial trade (e.g., wool, skins, bone meal, shaving

brushes). A similar phenomenon is observed in other industrialized

regions, such as Western Europe, where we observe the co-

occurrence of greatly differing genetic types. The dispersal of these

genotypes to industrialized regions has been tied to the trade of

spore-infected items [25,27]. For instance, in the United Kingdom,

the presence of minor genetic types that are dominant in portions of

southern and eastern Asia (sub-lineages A.Br.Aust94, A.Br.001/002,

A.Br.Ames; Figure 3) is consistent with reports tracing anthrax

infections to imported animal products from these regions during the

19th and early 20th century [28–31]. Certainly, the highly-stable B.

anthracis spore plays an important role in the importation of diverse

genotypes into industrialized countries via transport and trade of

contaminated commodities across large distances.

Trade also seems the likely source of B. anthracis in Australia. It

has been hypothesized that anthrax was first introduced to

Australia in 1847 via contaminated bone meal-based fertilizer

shipped from India. Following this initial introduction at Sydney,

the disease is thought to have spread along stock routes to the

interior of the country [32]. Our genetic data provide some

support for this hypothesis. All ten of the isolates we examined

from India were assigned to sub-lineage A.Br.Aust94, which also

appears as the dominant sub-lineage in Australia. It must be noted

that the preponderance of isolates from A.Br.Aust94 lineage in

Australia stems in part from a collection that is dominated by

isolates from a single anthrax outbreak. Our genetic data, in fact,

indicates separate introductions into Australia of isolates that

belong to the A.Br.005/006 and A.Br.001/002 sub-groups; sub-

groups that are more commonly found in Southern Africa and

Eastern Asia, respectively.

B. anthracis has been developed as a biological weapon by several

nations and terrorists groups and this has greatly increased the

value of genotyping analysis for applications that attempt to

differentiate between natural and bioterrorist-mediated outbreaks

of anthrax. This is illustrated in the identification of the Ames

strain as the source for the weaponized material from the 2001

anthrax letter attacks in the USA [1,3,13]. We found that the

Ames strain genotype, which was originally obtained from a dead

cow in Texas in 1981, is unique in this isolate collection and,

hence, apparently rare in nature. North America is well

represented in this study with 273 isolates spanning 44 MLVA

genotypes (A.Br.WNA plus isolates from other sub-lineages,

Figure 3B). However, the Ames genotype was present only once

(although genetically similar isolates to the Ames strain were also

identified in Texas, USA). The rarity of the Ames genotype in

nature, coupled with its widespread use as a laboratory strain,

makes it unlikely that the source material utilized in the 2001

bioterrorist attack was acquired directly from nature. These findings

further highlight the importance of large genetic-geographic

databases for distinguishing between intentional and environment-

acquired infections caused by organisms that are both potential

biological weapons and widespread in the environment [8,33,34].

In summary, our analyses of both canSNP and MLVA data

provide a description of the global diversity and historical trans-

mission patterns of B. anthracis. Our data suggest that although B.

anthracis is a naturally occurring pathogen, human activities have

dramatically influenced its current distribution and occurrence.

We observe the effects of human activities at three levels: 1) the

massive radiation of the A-branch in the mid-Holocene, 2) the

more recent colonial-era importation of specific B. anthracis

genotypes from the Old World into the New World, which lead

to their ecological establishment, and 3) the repeated industrial

importation of rare diverse genotypes into developed countries

through animal products (e.g. wool, hides, and bone meal). The

genetic population structure of B. anthracis is indicative of these

long distance transmission events and illustrates its ability to

become ecologically established in new locations. Fortunately,

natural outbreaks of anthrax can be managed effectively through

vaccination and public health efforts. However, due to actual and

potential nefarious use of the pathogen, anthrax will likely remain

of great social and scientific importance.

MATERIALS AND METHODS

Nomenclature
The tree in Figure 1 is based upon an analysis of .1,000 SNPs

discovered amongst seven complete or draft genomes of B.

anthracis, which yielded a branched phylogeny containing seven

lineages corresponding to the sequenced ‘‘discovery’’ genomes [5].

In a strictly clonal species, like B. anthracis, these genomes will be

situated at the end of each branch. These terminal lineages are

depicted as stars Figure 1 and each of these lineages is named after

the sequenced isolate (e.g. Ames, KrugerB, Vollum, etc.). The

canSNPs are named after one of the three main clades (e.g. A, B,

B. anthracis Population
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or C) followed by a three digit number (A.Br.001, A.Br.002,

A.Br.003). Where possible, we have tried to be systematic in

naming the canSNPs. For example, the first canSNP in the A

branch was proximal to the Ames genome sequence (or the lineage

terminus) and is named A.Br.001 (red labels in Figure 1). The

second canSNP position defines a position between canSNP

A.Br.001 and the circled position called A.Br.001/002. Such

a systematic naming scheme for canSNPs may be compromised by

future studies that define additional lineages and branches (i.e. the

order of the canSNPs from the terminus will be inconsistent with

their names). Hence, this should only be considered an arbitrary

numbering system, but it will function effectively as new phylgenetic

discoveries are made. The circles in the dendrogram represent

branches or branch points defined by flanking characters (canSNPs).

The branch points and the ends of lineages (the circles and stars in

Fig 1) encompass all 1,033 B. anthracis isolates (ranging from 2 isolates

in the C lineage (C.Br.A1055) to 228 isolates in the Western North

American lineage (A.Br.WNA). Branch points also have been

defined and named by their flanking canSNPs (e.g. B.Br.001/002).

The near total absence of homoplasy (character conflicts in the tree),

coupled with character discovery bias, has caused ‘‘branch collapse’’

in this clonally propagating pathogen [5,35]. A collapsed branch is

still defined by its flanking canSNP characters.

B. anthracis isolates
We examined a global collection of 1,033 B. anthracis isolates.

Table S3 contains information on the numbers and distribution of

strains used in this study. These isolates were obtained from known

anthrax cases, environmental sources, or other materials associ-

ated with the disease. Our isolate collection is biased toward

anthrax outbreaks that occurred in the last several decades and

towards countries actively engaged in the international exchange

of scientific material. It is important to note that all of the isolates

analyzed in this study were shown to possess the plcR inactivating

mutation as detected by the PCR assay described in Easterday et

al. [16]. This nonsense mutation is considered essential for

maintenance of virulence plasmids and represents a definitive

character of B. anthracis [16,36].

DNA isolation
A 1.0 ml inoculating loop was used to transfer B. anthracis colony

material into 200 ml of Brain-Heart Infusion broth (Hardy

Diagnostics, Santa Maria, CA) within the wells of a sterile,

untreated polycarbonate 96-well culture plate (Costar Corning

Inc., Acton, MA). The plate was then covered with an adhesive

plastic film, placed in a secondary containment device, and

incubated overnight at 37uC without shaking. Following in-

cubation, 10.0 ml of broth was transferred to a MicrosealTM

Polypropylene Microplate (MJ Research, Waltham, MA). The

samples were then flash-frozen in 96-well cold block (280uC) for
15 s and then immediately thawed in a 96-well heat block (96uC)
for 15 s. This freeze-thaw cycle was repeated two additional times.

The cell lysates were then transferred into a 96-well GV 0.2 mM
Durapore Multiscreen Plate (Millipore, Billarica, MA) containing

100 ml of TE (10 mM Tris-HCl [pH 8.0], 1.0 mM EDTA) per

well. Cellular debris and spores were removed from the 96-well

filter plate by vacuum filtration using a MultiScreen Separations

System Manifold (Millipore, Bedford, MA). The filtrate was

collected into a 96-well plate and used to support PCR for

downstream SNP and MLVA genotyping. The sterility of each

sample was confirmed by plating 1.0 ml of each filtrate onto a TSA

II 5% Sheep Blood prepared media plate (Becton Dickinson and

Company, Cockeysville, MD) and incubating at 37uC for 48 hr.

Genetic Markers
Two types of genetic markers were used to analyze the B. anthracis

collection: canonical single nucleotide polymorphisms (canSNPs)

and variable number tandem repeats (VNTRs). We used data

from the Pearson et al. [5] and unpublished genomic sequence data

(Ravel et al., unpublished data) to identify canSNPs that can be used

for identifying a particular phylogenetic point in the evolutionary

history of B. anthracis. In total, 2 B. anthracis specific SNPs and 12

canSNPs to analyze DNA from the 1,033 B. anthracis isolates.

CanSNP alleles were determined using TaqManTM -Minor Groove

Binding (MGB) allelic discrimination assays. TaqManTM MGB

probes and primers for the canSNPs were designed using ABI

Primer Express software and guidelines, with the exception that

allele-specific probe lengths were manually adjusted to match

melting temperatures [37]. The genomic location for each of the

canSNPs can be found in Table S4 while the probe and primer

sequences for each are listed in Table S5. Each 10.0 ml reaction
contained 16ABI Universal Master Mix, 250 nM of each probe,

and 600 nM each of forward and reverse primers and 1.0 ml of
approximately 350 pg/ml template DNA. For all assays, thermal

cycling parameters were 50u C for 2 min., 95u C for 10 min.,

followed by 40–50 cycles of 95u C for 15 sec and 60u C for 1 min.

Endpoint fluorescent data were measured on the ABI 7900.

DNA from the isolates was also analyzed using 15 VNTR loci;

eight of these VNTRs are described by Keim et al. [4] MLVA8

and the additional 7 markers are described by Zinser [38]. These

markers were compiled together into a multiple-locus VNTR

analysis (MLVA15) subtyping system (see Protocol S1, Table S6

for details on the markers and methods).

Phylogenetic analyses
Two basic approaches were used to analyze genetic relationships

among the 1,033 B. anthracis isolates. First, canSNP and VNTR data

were used in a hierarchical approach to analyze phylogenetic

relationships: data from the slowly evolving canSNPs loci were used

to categorize the isolates into clonal lineages and followed by the use

of data from the 15 rapidly-evolving VNTR loci to measure diversity

and determine the number of genotypes within each of these clonal

categories. This system allowed us to effectively analyze both older

phylogenetic relationships and younger population-level structure

[3]. Second, we used UPGMA cluster analyses of the MLVA15 data

alone to illustrate the global population genetic structure in an

unbiased manner. All phylogenetic analyses were conducted using

MEGA3 software [39].

Geographic distribution of clonal lineages
To examine genetic-geographic patterns in B. anthracis, we mapped

the worldwide distribution of the clonal lineages that were

identified by the analysis of the canSNP data.

Age Estimates
To estimate the age of several events in the evolutionary history of

B. anthracis, we performed whole genome synonymous SNP

comparisons of strains that represent major clonal lineages. We

utilized the following equation to estimate the time since pairs of

strains last shared a common ancestor:

Age~
sSNPs

MR|sSites|generations|2½ � ,

where sSNPs is the total number of synonymous SNPs between two

strains as determined by whole-genome comparisons, MR is the
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per site synonymous mutation rate in B. anthracis (5.2610210

mutations/generation; [40], sSites is the number of synonymous sites

in common between the two strains, and generations is the estimated

number of generations undergone by a given lineage in each year

(estimated as 43 per transmission cycle). The number of generations

per year is based upon an ungulate transmission model and the

number of infection/death cycles per year (see detailed descriptions

below). The age estimates are particularly sensitive to the number of

infection/death cycles per year. As such, we calculated the estimates

using both 1 (43 generations/year) and 0.5 (21.5 generations/year)

infection/death cycles per year (Table 2).

Details of the Age Estimates
The use of sSNPs for the substitution rate restricts these estimates to

nearly neutral evolutionary characters. While all SNPs are relatively

infrequent among B. anthracis isolates, the use of whole genome

analysis has identified many sSNPs (Table 1) and resulted in highly

robust estimates of relationships among isolates [5]. sSNP occurrence

between two strains is modeled well by the Poisson probability

distribution. The relative large number of observations makes the

error in this estimate small. When the expected number is high, the

Poisson become fairly symmetrical with a standard deviation equal to

the square root of the expected number. Thus, two standard devia-

tions from the maxima are very close to the 95% confidence interval.

The mutations rates for single nucleotide changes have been

reported in B. anthracis based upon selection for antibiotic

resistance (Rif) and are very similar to the rates observed for

other well-studied bacteria (2). In this case, Vogler et al. [40]

estimated the rate using the Luria-Delbruck fluctuation test and

then partitioned the phenotypic mutation rate (1.55E-09 mutants

per generation) to different nucleotide positions in the rpoB gene by

sequencing this gene in the mutants. Hence, we have a per site

mutation rate (5.2E-10 mutations per generation) instead of

merely a phenotypic rate.

While Drake [41,42] has argued for a universal substitution rate

for microbial genomes, the extremely episodic nature of anthrax

transmission makes this hard to justify among the clonal lineage of

B. anthracis. Indeed, this is clearly the most sensitive aspect of the

substitution rate model with certain parameters highly influential

in the final estimates.

Ungulate transmission model
The number of Bacillus anthracis generations (G) in a single infected

ungulate was determined using the following equation:

G~ log2 t7ið Þ½ �,

where t= terminal number of B. anthracis organisms in a 100 kg

ungulate (100 kg 6 d), i= initial number of B. anthracis organisms

in the ungulate as obtained from an environmental source (10

organisms), and d= terminal density of B. anthracis organisms per

unit body weight in a mammal (108.8 organisms per kg) [43].

Based on these parameters, it was estimated that G=43.1, which

was rounded to 43. The model is not particularly sensitive to this

particular parameter. Changing the size of the animal and, hence,

the final B. anthracis population size is mitigated by the log2
transformation. The number of generations is altered only by 3.3

for every 10-fold increase in population size. This has a minimal

affect upon the final number of generations.

Infection/death cycles per year
Estimating the number of infection/death cycles per year is

difficult for anthrax. While hundreds or even thousands of

individual animals might die in a single outbreak, it is unlikely

that these multiple victims are sequential infection/death cycles.

Rather, these clusters are likely to be from a single source, or

due to environmental induction of the outbreak. For this reason,

we believe that the average annual number of death/infection

cycles will be one or less, even in the most endemic regions. B.

anthracis spores are known to survive long periods of time; though

very long-term spore survival is unlike to be important in the

overall evolutionary rates as the viability does drop with time. In

this study, we are primarily interested in the most highly fit

branch of B. anthracis (A). Its worldwide distribution and fitness

argues for a higher rate of transmission, probably close to one

infection/death cycle per year. Because this is one of the most

sensitive parameters in the model, we have modeled the

molecular clock estimates using both 1 and 0.5 deaths per year.

These values translate into 43 or 21.5 generations per year when

combined with the population size estimates from a typical host

(see above).

SUPPORTING INFORMATION

Table S1 The 221 MLVA Genotypes and Associated Can

SNPs. The 221 genotypes (1–221, Column A) are organized

according to their Keim Genetics Lab ID Designation (‘‘A’’

number - Column B), prior designations when available (‘‘K’’

numbers - Column C), their original MLVA8 GenoTyping

designation (‘‘GT’’ numbers: 1–89 - Column D) from Keim et

al., (2000) and the alternative strain designations and original

source codes for each isolate (Column E). This is followed by the

isolate’s canSNP lineage/group (Column F, also see Fig 1), two B.

anthracis specific SNPs (Columns G and H), the13 canSNP scores

(Columns I–U) and the 15 marker MLVA profile for that isolate

(Columns W–AK). The first two SNPs (Column G and H) are

Bacillus anthracis specific SNPs originally identified in the plcR

and gyrA loci and are not part of the canSNP profile. There are

221 unique MLVA genotypes listed in this table.

Found at: doi:10.1371/journal.pone.0000461.s001 (0.15 MB

XLS)

Table S2 The MLVA Sizing Code. The VNTR alleles for each

MLVA marker in Supplemental Table S1 are letter coded

according to size to allow these data sets to be utilized by various

tree drawing programs. Apparent MLVA fragment sizes vary from

instrument to instrument and even with various size standards.

Allele codes provide a common designation in the face of this

variation. Table S2 provides a code that describes the fragment

sizes for these alleles based on analysis on an ABI 3100 Genetic

Analyzer (see Protocol S3), a custom made LIZH-labeled internal

size standard (5), and subsequent analysis using Genotyper. The

numeral 1 appears as a code when a fragment failed to amplify;

eg., an isolate lacking the pXO1 plasmid would not be able to

amplify the pXO1.1AAT VNTR marker.

Found at: doi:10.1371/journal.pone.0000461.s002 (0.02 MB

XLS)

Table S3 Geographical Composition of B. anthracis isolates

used in this study

Found at: doi:10.1371/journal.pone.0000461.s003 (0.06 MB

DOC)

Table S4 CanSNPs Description and Chromosomal Location

Found at: doi:10.1371/journal.pone.0000461.s004 (0.03 MB

DOC)

Table S5 Canonical SNP Primers/Probes used in molecular

typing of B. anthracis
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Found at: doi:10.1371/journal.pone.0000461.s005 (0.03 MB

DOC)

Table S6 15 VNTR loci in the B. anthracis 15 VNTR MLVA

system.

Found at: doi:10.1371/journal.pone.0000461.s006 (0.04 MB

DOC)
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Chapter 5  
 
 

 





To map the distribution of anthrax outbreaks and strain 
subtypes in Kazakhstan during 1937–2005, we combined 
geographic information system technology and genetic 
analysis by using archived cultures and data. Biochemical 
and genetic tests confi rmed the identity of 93 archived cul-
tures in the Kazakhstan National Culture Collection as Ba-
cillus anthracis. Multilocus variable number tandem repeat 
analysis genotyping identifi ed 12 genotypes. Cluster analy-
sis comparing these genotypes with previously published 
genotypes indicated that most (n = 78) isolates belonged 
to the previously described A1.a genetic cluster, 6 isolates 
belonged to the A3.b cluster, and 2 belonged to the A4 clus-
ter. Two genotypes in the collection appeared to represent 
novel genetic sublineages; 1 of these isolates was from Kry-
gystan. Our data provide a description of the historical, geo-
graphic, and genetic diversity of B. anthracis in this Central 
Asian region.

Anthrax is a globally widespread disease of livestock 
and wildlife that occasionally infects humans. Ac-

cording to of� cial estimates, the number of human anthrax 
cases worldwide ranges from 2,000 to 20,000 annually (1).

Bacillus anthracis, the etiologic agent of anthrax, persists 
in the environment as a dormant, highly stable spore. The 
prolonged periods of dormancy during the spore phase 
slows evolution of this species, resulting in high levels of 
interstrain genetic homogeneity, which complicates efforts 
to subtype the pathogen. The availability of whole-genome 
nucleotide sequences of B. anthracis for single-nucleotide 
polymorphism (SNP) elucidation and the discovery of 
polymorphic markers such as variable number tandem re-
peat (VNTR) sequences (2,3) have enabled identi� cation 
of unique subtypes within this species. Keim et al. (4) used 
8 VNTRs to describe 89 unique genotypes in a global col-
lection of over 400 B. anthracis isolates. Later studies used 
VNTRs to examine B. anthracis diversity in different glob-
al regions, including France (5), Italy (6), Poland (7), Chad 
(8), and South Africa (9). More recently, SNPs that de� ne 
major clonal lineages in B. anthracis have been identi� ed 
and applied to describe global and regional patterns of B.
anthracis diversity (10).

In the central Asian republic of Kazakhstan, anthrax is 
enzootic and still represents a human public health concern. 
A recent publication examined risk factors associated with 
73 human anthrax cases in Kazakhstan over a 2-year period 
(11) and concluded that most cases were cutaneous and 
had resulted from the handling of infected livestock and 
contaminated animal products. Gastrointestinal anthrax in 
Kazakhstan has also been reported but is less common. De-
spite the widespread nature of the disease in this region, the 
historical incidence, distribution, and genetic diversity of 
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RESEARCH

B. anthracis in central Asia, and Kazakhstan in particular, 
has remained cryptic.

We mapped the historical distribution of anthrax 
in Kazakhstan over a 68-year period. Archived cultures 
from a subset of these outbreaks collected from 10 oblasts 
(provinces) over a 53-year period were analyzed by using 
genetic and biochemical tests. Multilocus variable num-
ber tandem repeat analysis (MLVA) and canonical single 
nucleotide polymorphism genotyping (10) of this collec-
tion enabled us to examine strain dynamics among and 
within these outbreaks and to understand the diversity of 
B. anthracis isolates from Kazakhstan on a local, region-
al, and global scale.

Materials and Methods

Mapping Historical Anthrax Outbreaks
To map the historical distribution of anthrax outbreaks 

and B. anthracis strain types across Kazakhstan, we con-
structed a geographic information system (GIS) database 
within ArcGIS 9.1 (www.esri.com). This database used 
archival data collected through the antiplague stations 
established by the Union of Soviet Socialist Republics. 
This system of stations remains in place under the current 
government, and Kazakhstan maintains a multiagency re-
porting protocol to update, document, and respond to the 
distribution of outbreaks. These data are archived at the 
Kazakhstan Scienti� c Center for Quarantine and Zoonotic 
Diseases. Outbreaks and strain locations were geolocated 
to the nearest village by using GIS data layers produced 
by the Kazakh Institute of Geography. Historical outbreaks 
were mapped for 1937 through 2005. To illustrate differ-
ences in the distributions of outbreaks in cattle and sheep, 
the 2 most affected livestock species, a kernel density esti-
mation was performed by using the Spatial Analyst Exten-
sion in ArcGIS. We mapped outputs by using the standard 
deviation of density values to illustrate areas of greatest 
outbreak concentration by species (12).

Isolation of B. anthracis
Samples collected from anthrax outbreaks in Kazakh-

stan (with the exception of 2 isolates from the Kyrgyzstan 
border region) and cultures spanning a 53-year period were 
archived in the Kazakhstan National B. anthracis Collec-
tion. Most isolates were from human patients, some from 
blood or organs of ruminants (mainly sheep and cows), and 
a few from soil or other inanimate objects contaminated 
by contact with blood or tissues of infected animals. Ar-
chived cultures were con� rmed as B. anthracis on the basis 
of colony morphologic appearance; absence of hemolysis 
and catalase, lipase, phosphatase and protease activity; and 
susceptibility to B. anthracis–speci� c � phage. 

DNA Preparation
B. anthracis cultures from the Kazakhstan National 

Collection were grown on Hottinger blood agar. A colo-
ny from each sample was harvested from the agar plates 
and dispersed in Tris-EDTA buffer for DNA extraction. A 
QIAamp DNA Mini Kit (QIAGEN, Valencia, CA, USA) 
was used to extract genomic and plasmid DNA by using 
the manufacturer’s protocol. A total of 1.0 mL of DNA was 
collected from each of the isolates in the collection.

MLVA Genotyping
Eight VNTR (MLVA-8) markers were ampli� ed by 

PCR by using primer pairs vrrA-f1 and vrrA-r1, vrrB1-f1 
and vrrB1-r1, vrrB2-f1 and vrrB2-r1, vrrC1-f1 and vrrC1-r1, 
vrrC2-f1 and vrrC2-r1, CG3-f1 and CG3-r1, pXO1-AAT-
f3 and pXO1-AAT-r3, and pXO2-AT-f1 and pXO2-AT-r1 
(4). One microliter containing �1 ng of template DNA was 
added to each PCR.

Electrophoresis of ampli� ed products was performed 
on an ABI 310 genetic analyzer (Applied Biosystems, Inc., 
Foster City, CA, USA). Data were analyzed by using Gen-
eMapper software V4.0 (Applied Biosystems, Inc.). To 
ensure comparability and accuracy of raw VNTR scores 
from the strains from Kazakhstan with the genotypes pub-
lished by Keim et al. 2000 (4), we performed electrophore-
sis on ampli� ed fragments from 4 control DNAs (A0462-
Ames, A0488-Vollum; A0071-Western North America 
and A0402; and French B2) in parallel with the isolates 
from Kazakhstan. In addition, DNA molecular size refer-
ence markers (Applied Biosystems, Inc) were included in 
each sample to accurately size the 8 VNTR fragments. Raw 
VNTR sizes were normalized to the sizes reported by Keim 
et al., 2000 (4) for genotypic comparisons.

Unweighted Pair Group Method with Arithmetic 
Mean Cluster Analysis of Genotypes

Unweighted pair group method with arithmetic mean 
(UPGMA) cluster analysis of VNTR data from 92 con-
� rmed B. anthracis isolates and the diverse 89 genotypes 
described by Keim et al. 2000 (4) were used to establish 
genetic relationships. Distance matrices were generated 
in PAUP 4.0 (Sinauer Associates, Inc., Sunderland, MA, 
USA) and imported into MEGA 3.1 (13) for tree-building 
purposes.

Spatial Patterns of Genetic Relationships
The strain database was constructed from museum 

records and contemporary epidemiologic investigations. 
This database was synchronized with the bacterial culture 
collection to geolocate the culture by using the GIS. To 
map strain diversity, we categorized culture collection 
locations by strain identi� cations based on the MLVA 
genotyping results.
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SNP Typing of B. anthracis Isolates
 Representative cultures from each Kazakh MLVA 

genotype plus the STI vaccine strain from Russia were 
genotyped by using previously described canonical SNPs 
discovered by whole-genome sequencing (10,14). SNPs 
were interrogated by using the Roche Light Cycler II real-
time PCR instrument (Roche Diagnostics, Indianapolis, 
IN, USA). Allelic discrimination assays initially devel-
oped on the ABI 7900 real-time platform (10) were adapt-
ed for use on the Light Cycler II. The assay ampli� es a 
fragment of DNA sequence containing the SNP site. Two 
probes complementing the 2 potential SNP states were 
used as real time markers. Each probe had a distinct � uo-
rescent label; i.e., probe 1 was labeled with 6-carboxy-
� uorescein, and the alternate probe was labeled with VIC 
(Applied Biosystems, Inc.). The probe complementary to 
the sequence in the sample amplicon will hybridize over 
the SNP and surrounding sequence during the ampli� ca-
tion process to generate a signal. It is possible for the in-
correct probe to generate some signal but not enough to be 
confused as a positive reaction. The Light Cycler II dis-
criminated which probe was the complementary sequence 
on the basis of the differential intensity of the reaction. 
Controls for each run included template DNA with both 
SNP states of interest.

Results

Historical Incidence and Geographic 
Distribution of Anthrax in Kazakhstan

A total of 1,037 human outbreaks were reported, rep-
resenting 1,765 human cases. The outbreaks occurred in 
665 locations; 198 of those locations reported repeat out-
breaks throughout the study period (Figure 1; Table 1). 
Additional review of historical data at the Kazakhstan Sci-
enti� c Center for Quarantine and Zoonotic Diseases iden-
ti� ed 3,947 outbreak events reported for animal species 
and were entered into GIS. The outbreaks occurred over 
1,790 locations; 805 of those reported repeated outbreaks. 

Cattle and sheep were the primary livestock species af-
fected during the study period; fewer outbreaks occurred 
among swine, and rarer, sporadic outbreaks occurred on 
mink farms and among foxes, and camels (Table 2). Cat-
tle outbreaks were most common in northern Kazakhstan; 
several outbreaks occurred in the southernmost oblasts 
bordering Uzbekistan and Kyrgyzstan (Figure 2, panel 
A). Sheep outbreaks were prominent throughout eastern 
and southern Kazakhstan (Figure 2, panel B). The largest 
cattle outbreak (n = 174 cattle) in the dataset occurred in 
1957 in the northernmost region of the Karaganda oblast 
in north central Kazakhstan. The largest sheep outbreak 
affected 851 sheep and occurred in the southern oblast of 
Zhambyl in 1971.

Biochemical Tests 
All cultures except 1 (isolate no. 49) were biochemi-

cally and morphologically consistent for B. anthracis; 3 
cultures (isolate nos. 65, 76, and 77) were consistent with 
B. anthracis but did not exhibit capsule formation. With the 
exception of culture no. 49, isolates were nonhemolytic; 
nonmotile; phosphatase and lecithinase negative; protease, 
oxidase, and catalase positive; and, with 3 exceptions, 
formed a capsule.

MLVA Genotyping
Of the 92 B. anthracis isolates, 88 isolates yielded 

complete data for the 8 marker MLVA; 3 isolates were 
missing the pX02 marker (isolate nos. 65, 76, and 77), and 
1 was missing the pX01 plasmid marker (isolate no. 7). Af-
ter we coded the raw VNTR fragment sizes, the Kazakh 
B. anthracis genotypes were analyzed by using PAUP 4.0 
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Figure 1. Anthrax outbreaks in 
Kazakhstan, 1937–2005. Each 
dot represents an outbreak; 
red dots indicate that cultures 
were isolated and analyzed 
from these outbreaks.

Table 1. Outcomes for 1,765 human patients in mapped anthrax 
outbreak areas, Kazakhstan, 1937–2005 
Status Number 
Recovered 1,541 
Deceased 75
Lost contact 17
No data/unknown 132
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and MEGA 3.1 phylogenetic software programs. UPGMA 
cluster analysis of the Kazakh isolates with complete ML-
VA-8 data (4) identi� ed 12 unique MLVA subtypes.

UPGMA cluster analysis of the 12 Kazak MLVA 
genotypes (Gkz) with the diverse 89 genotypes reported by 
Keim et al. (4) showed that most isolates (n = 78) belonged 
to the previously described A1.a genetic cluster; 6 isolates 
belonged to the A3.b cluster; and 2 isolates belonged to 
the A4 cluster. More than half of the A1.a isolates be-

long to previously described genotypes (38/74; excluding 
samples with missing pX01, pX02 data), including the 
previously described MLVA genotypes 3 (n = 15), 6 (n = 
2) and 13 (n = 21). Most of the novel genotypes reported 
from the Kazakhstan National collection represent slight 
variants of previously described genotypes that can be ex-
plained by the insertion or deletion of >1 tandem repeats 
at a particular locus, usually in pX01 or pX02 (Table 3). 
However, 2 of the genotypes from Kazakhstan (Gkz -9 and 
-11) appear to represent new sublineages on the basis of 
newly described allele combinations and distance-based 
clustering with the diverse 89 genotypes. In addition, the 
pX01 allele sizing at position 138 appears novel (Gkz -5); 
we have not seen this size reported in previous MLVA-8 
studies (Table 3).

Geographic Distribution of MLVA Genotypes
 The geographic distribution of MLVA types in 

Kazakhstan indicated that A1.a genotypes were widely 
distributed (Figure 3). For example, the most common 
Kazakh genotype (Gkz -1; n = 21) clusters on the Georgia–
Kazakhstan border and on the southern border near Kyr-
gyzstan and Uzbekistan. The A1.a Gkz -4 (n = 17) is also 
widely dispersed across Kazakhstan; cases have occurred 
in the western, southern, and eastern regions and into 
Kyrgyzstan. Speci� c genotypes within the Kazakh A1.a 
group appear to exhibit geographic clustering, re� ecting 
temporally linked outbreaks.
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Table 2. Anthrax outbreaks, number of animal deaths per 
outbreak by species affected, and miscellaneous anthrax-positive 
samples, Kazakhstan, 1937–2005 

Animal species 
No. outbreaks/ 

samples
Deaths/

outbreak* 
Total no. 
deaths

Sheep 1,735 0–851 16,080 
Cattle 1,678 0–84 3825 
Equine 304 0–28 634
Swine 192 0–78 832
Camel 5 1–2 7
Mink 3 28–37 95
Goat 1 1 1
Fox 1 1 1
Dog 2 1 2
Arctic fox 2 5 6
Unidentified 6 – 15
Miscellaneous anthrax-positive samples† 
 Soil samples 17 – –
 Wool 1 – –
*0 indicates animals that recovered from infection. 
†Bacillus anthracis spores were recovered, but there were no infections. 

Figure 2. Kernel density 
estimates of anthrax outbreaks 
in cattle (A) and sheep (B), 
Kazakhstan, 1937–2005. Color 
shading represents SD values 
relative to density values from 
the kernel density estimate 
analysis for each species.
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The KZ genotypes 9–12 (Gkz -9–12) also appear to be 
more geographically con� ned, although this apparent con-
� nement is likely a re� ection of sample size. For example, 
isolates with Gkz-12 (n = 6; Figure 3) are exclusively found 
in the border region of the East Kazakhstan oblast, whereas 
the group 9 isolates (n = 5) are found in the Shymkent oblast 
in the south-central portion of the country. MLVA Gkz-11 
(n = 1), which appears to represent a previously unreported 
genetic lineage, was isolated just south of Kazakhstan in 
Kyrgyzstan.

SNP Typing
Representative cultures from each of the Kazakh 

MLVA genotypes plus the Russian STI vaccine were SNP 
genotyped by using allelic discrimination probes and the 
Light Cycler II instrument. The SNP results were compared 
(Table 4) with the SNP pro� les of Van Ert et al. (10), al-
lowing assignment of the isolates to 1 of 12 sublineages. 
As with MLVA typing, all isolates tested with SNPs had 
genotypes characteristic of the A branches.

Representatives of MVLA genotypes 1–9 were as-
signed to A.Br.008/009, KZ genotype 10 to the A.Br.Vol-
lum subgroup, and genotype 11 and 12 to the A.Br.Ames 
subgroup. The SNP data indicated that all representative 
A1.a Kazakh isolates belonged to the European branch of 
this group. The assignment of MLVA Gkz-10 to the A.Br.
Vollum group is consistent with B. anthracis found glob-
ally in areas such as Pakistan and western China (10). Like-
wise, the assignment of Kazakh MLVA genotypes 11 and 
12 to the A.Br.Ames genotype is consistent with the pres-
ence of this lineage in China (10).

Discussion
The historical occurrence and geographic distribution 

of anthrax outbreaks in Kazakhstan suggest anthrax foci 
are heavily concentrated in the southern region and broadly 

distributed across the northern portions of the country but 
are less common in the central regions. This may re� ect 
regional differences in soil composition, availability of wa-
ter and livestock and even case reporting. For example, the 
central region of Kazakhstan is dominated by desert, which 
likely has poor soils for long-term spore survival, whereas 
in the southern, northern, and eastern oblasts, the soils are 
more alkaline with higher organic matter and likely sup-
port spore survival (15–17). From a temporal perspective, 
outbreaks (or outbreak reports) have decreased in severity 
(number of animals infected), frequency (number of report-
ed outbreaks), and have been associated with smaller geo-
graphic areas affected. However, the spatial distribution of 
the disease appeared to be relatively stable in the northern 
and southern Kazakh oblasts during the study period.

From a genetic perspective, B. anthracis in Kazakh-
stan was dominated by isolates clustering in the MLVA 
A1.a group, which is consistent with reports of the A1.a 
group being widely distributed globally (4,5,6). The wide-
spread occurrence and apparent ecologic establishment of 
these VNTR genotypes in Kazakhstan supports the hypoth-
esis that the A1.a group represents a very � t strain complex 
(6). Of the 8 A1.a genotypes in Kazakhstan, 5 were novel 
(Gkz-2, -3, -4, -5, and -8) and exhibited a previously unde-
scribed pX01 allele (Gkz-5), which is not unexpected con-
sidering that this region has been underrepresented in prior 
MLVA-8 B. anthracis studies (4–8).

SNP typing of representative isolates from the A1.a 
Kazakh MLVA genotypes assigns these isolates to the 
A.Br.008/009 SNP lineage, which is widely distributed 
throughout Europe and has been reported in western China 
(10,18). Notably, the SNP data differentiate the Kazakh 
genotypes from the related North American genotypes, 
which are not effectively differentiated by MLVA alone. 
Since the representative Kazakh isolates in this SNP 
study were cultured from outbreaks spanning a 50-year 
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Table 3. Variable number tandem repeat sizes for Bacillus anthracis isolates, Kazakhstan* 
Kazakhstan
genotype no. 

MLVA
group† MLVA genotype vrrA vrrB1 vrrB2 vrrC1 vrrC2 CG-3 pX01 pX02

1 A1.a Gt-13 (4) 313 229 162 613 604 153 132 137
2 A1.a Novel 313 229 162 613 604 153 135 137
3 A1.a Novel 313 229 162 613 604 153 129 139
4 A1.a Novel 313 229 162 613 604 153 129 137
5 A1.a Novel 313 229 162 613 604 153 138 137
6 A1.a Gt-6 (4) 301 229 162 613 604 153 126 137
7 A1.a Gt-3 (4) 313 229 162 613 604 153 126 137
8 A1.a Novel 313 229 162 613 604 153 132 139
9 Novel Novel 325 229 162 613 604 158 132 137
10 A4 Novel 313 229 162 538 604 158 126 137
11 Novel Novel 313 229 162 583 532 153 129 141
12 A3b Novel 313 229 162 583 532 158 126 139
*Raw allele sizes were determined by electrophoresis on the ABI 310 (Applied Biosystems, Inc., Foster City, CA, USA); sizes were compared to control 
variable number tandem repeats and corrected to the sizes reported by Keim et al. (4).
†MLVA, multilocus variable number tandem repeat. MLVA group determined by unweighted pair group method arithmetic mean clustering with the 
diverse 89 genotypes described by Keim et al. (4).
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period (1952–2002), our data not only expand the under-
standing of the geographic range of this Eurasian lineage 
(A.Br.008/009) but also provide insights into its historical 
incidence and persistence in the country. Because of sam-
pling limitations, the extent to which this dominant lineage 
is represented in the northern sections of Kazakhstan, and 
further into Russia, is unknown. However, in a recent study 
B. anthracis DNA from persons affected by the Sverdlovsk 
accident was assigned to the A.Br.008/009 SNP subgroup 
(19). Our data and the report that the Sverdlovsk strain was 
initially isolated in the 1950s in Kirov, Russia (19), under-
scores the need to genotype additional samples in north-

ern Kazakhstan oblasts and Russia to measure the northern 
range of this apparently highly successful lineage.

The assignment of Kazakh isolates to the A3.b and 
A4 MLVA clades and the A.Br.Ames and A.Br.Vollum 
SNP groups is not surprising considering these MLVA and 
SNP types are also found in Middle Eastern countries, such 
as Pakistan and China (10). As � rst reported by Van Ert 
et al. (10), and later detailed by Simonson et al. (18), the 
A.Br.001/002 is common in China, whereas the closely re-
lated A.Br.Ames SNP lineage is more restricted geographi-
cally. The � nding that the Kazakh isolates from the eastern 
border were assigned to A.Br.Ames SNP group is notable 
considering that the A.Br.Ames isolates that can be geolo-
cated are found exclusively in Inner Mongolia. These geno-
typic similarities may re� ect historical trade and nomadic 
routes linking those regions.

The absence of B lineage genotypes in Kazakhstan, as 
indicated by both MLVA and SNP data, is consistent with 
the lack of these genotypes in China, including the western 
province of Xinjiang (10,18), and supports the hypothesis 
that these lineages are restricted to narrow environmental 
conditions and, therefore, are more restricted in their glob-
al distribution (9). On a more local level, our MLVA data 
permit strain-level analysis of samples isolated during out-
breaks. In several instances we were able to link strains col-
lected from human anthrax patients to the infection source. 
For example, we identi� ed the same strain in 10 cultures 
collected from an outbreak in western Kazakhstan that oc-
curred from July–August 2005. The samples included cul-
tures isolated from livestock, contaminated meat, human 
victims, and contaminated soil. The MLVA data linked the 
cultures and provided a mechanism for retrospective epide-
miologic trace-back.

Sampling biases and limitations are important consid-
erations in any study. For example, the distribution of cul-
tures available for this study does not represent a balanced 
sampling of the entire country. There is an ongoing effort 
in Kazakhstan to expand the culture collection and to in-
clude a wider geographic sampling of the country, includ-
ing the northern oblasts, which is underrepresented in the 
current culture collection but has a long historical record of 
anthrax. It would be worthwhile to revisit livestock burial 
sites and to isolate and analyze cultures from this region. 
In addition, the application of more comprehensive genetic 
analysis of Kazakh isolates would provide greater insight 
into the uniqueness of B. anthracis diversity in this region. 
For example, although canonical SNPs provide a powerful 
tool for assigning isolates into major clonal lineages, their 
resolution is limited by the use of relatively few represen-
tative SNPs and the diversity of the genomes used in the 
initial discovery process.

In summary, our work describes the historical inci-
dence, distribution, and biochemical and genetic diversity 
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Figure 3. Geographic distribution of genotypes of Bacillus anthracis
strains in Kazakhstan (A), with a closer view of outbreaks within 
eastern and southern Kazakhstan (B). Different genotypes are 
represented by different shapes and color coding refl ecting major 
genetic affi liations (C). * and † indicate novel subgroups. Scale bar 
indicates genetic difference.
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of B. anthracis isolates in the central Asian republic of Ka-
zakhstan. Our discovery of novel genotypes in this region 
contributes to the understanding of the global diversity of 
the pathogen and emphasizes the need for future studies 
in this geographic region. In addition, this study provides 
useful baseline data for future epidemiologic studies in Ka-
zakhstan and for guiding future disease control programs
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Table 4. Bacillus anthracis SNPs, Kazakhstan* 

Isolate
KZ MLVA 
genotype SNP group 

SNPs
A branch B branch 

001 002 003 004 006 007 008 009 001 002 003 004
KZ 6 1 A.Br.008/009 T G A T A T G A T G G T
KZ 60 2 A.Br.008/009 T G A T A T G A T G G T
KZ 52 3 A.Br.008/009 T G A T A T G A T G G T
KZ 3 4 A.Br.008/009 T G A T A T G A T G G T
KZ 44 4 A.Br.008/009 T G A T A T G A T G G T
KZ 1 5 A.Br.008/009 T G A T A T G A T G G T
KZ 74 6 A.Br.008/009 T G A T A T G A T G G T
KZ 25 7 A.Br.008/009 T G A T A T G A T G G T
KZ 55 7 A.Br.008/009 T G A T A T G A T G G T
KZ 8 8 A.Br.008/009 T G A T A T G A T G G T
KZ 13 9 A.Br.008/009 T G A T A T G A T G G T
KZ 11 10 A.Br.Vollum T G A T A C T A T G G T
KZ 42 11 A.Br.Ames C A G C A T T A T G G T
KZ 66 12 A.Br.Ames C A G C A T T A T G G T
KZ ST1 NA A.Br.008/009 T G A T A T G A T G G T
*SNP, single nucleotide polymorphism; KZ, Kazakhstan; MLVA, multilocus variable number tandem repeats; NA, not applicable. SNP changes are 
shaded. SNP groups as described in Van Ert et al. (10).
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Abstract
Background: The global pattern of distribution of 1033 B. anthracis isolates has previously been
defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP). These
studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this
anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages) have
become widely dispersed throughout the world and form the basis for the geographical disposition
of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China
provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain
sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP) and multiple
locus VNTR analysis (MLVA) typing has been used to examine this archival collection of isolates.

Results: The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China
out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes
were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/
009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is
present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The
remaining two canSNP genotypes are spread across the whole of China and belong to sub-group
A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds
resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and
A.Br.001/002 sub-groups suggest that these represent older and established clades in China.
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Conclusion: B. anthracis isolates were recovered from three canSNP sub-groups (A.Br.008/009,
A.Br.Aust94, and A.Br.Vollum) in the western most portion of the large Chinese province of
Xinjiang. The city of Kashi in this province appears to have served as a crossroads for not only trade
but the movement of diseases such as anthrax along the ancient "silk road". Phylogenetic inference
also suggests that the A.Br.Ames sub-lineage, first identified in the original Ames strain isolated
from Jim Hogg County, TX, is descended from the A.Br.001/002 sub-group that has a major
presence in most of China. These results suggest a genetic discontinuity between the younger
Ames sub-lineage in Texas and the large Western North American sub-lineage spread across
central Canada and the Dakotas.

Background
Ancient Chinese medical books suggest that an anthrax-like
disease has been present in China for more than 5,000 years
and that by 500–600 A.D. the epidemiology and symptoms
of anthrax had been described [1]. A 1995 report from China
described the results of an anthrax surveillance and control
project in 10 provinces in China between 1990–1994 [2].
Stations in these 10 provinces (Sichuan, Tibet, Inner Mongo-
lia, Xinjiang, Qinghai, Gansu, Guangxi, Guihou, Yunnan
and Hunan) reported 72 outbreaks and 8,988 human cases
of anthrax. These results, which are indicative of a long his-
tory and significant levels of contamination in these specific
areas, are the reason for concern by the Chinese Institute of
Epidemiology and Microbiology [2].

The population structure of Bacillus anthracis has only
recently begun to be resolved with specific geographical
patterns spread across areas mostly inhabited by man and
his animals. Higher genetic resolution within B. anthracis
has resulted from two molecular typing approaches: An
ongoing comparative, single nucleotide polymorphism
(SNP) analysis of diverse isolates that describes a con-
served, clonally derived basal tree, [3] and a multiple
locus variable number tandem repeat analysis (MLVA)
system that provides improved resolution among individ-
ual isolates [4-7]. This process for molecular typing has
now been applied to the study of isolates from China.

An archival collection of 191 B. anthracis isolates from
China [collection dates from 1947–1983, except isolates
A0034 (1993) and A0038 (1997)] was obtained and used
in this study (see Methods and Additional file 1). This col-
lection contained an unusual subset of 122 B. anthracis
isolates recovered from soil, including 107 isolates col-
lected between 1981/1982 in Xinjiang province. This
province is located in the western most tip of China and
was one of the 10 regions surveyed in the study conducted
from 1990–1994. The remaining isolates originated from
many regions across the whole of China. This report
focuses on the molecular genotyping of these 191 isolates.
Our goal was to determine the nature and distribution of
genotypes found in China and to establish phylogenetic
relationships between these isolates and those found else-
where in the world.

Canonical SNP analysis
The original comparative analysis of 5 B. anthracis whole
genome sequences examined the status of ~1,000 single
nucleotide polymorphisms (SNPs) in 26 diverse isolates
[3]. This study revealed an extremely conserved phyloge-
netic tree with only one homoplastic character in ~26,000
measurements. These results prompted the hypothesis
that a few strategically placed "canonical SNPs" could
replace the 1,000 assays and still describe an accurate SNP
based tree. This idea was confirmed in a study using 13
canonical SNPs (canSNP) to examine 1,000 world-wide
isolates of B. anthracis [5]. Figure 1 illustrates this original
canSNP tree and is used here to define important nomen-
clature and terminology.

The basic tree is now defined by 7 sequenced genomes
that form 7 sub-branches or sub-lineages ending in "stars"
in Figure 1. Each of these sub-lineages is designated by the
nomenclature from the whole genome sequence site in
Genbank, e.g. A.Br Ames, A.Br.WNA (for western North
America), and A.Br.Vollum. The relative position of each
canSNP is indicated by vertical script and a small arrow
and is arbitrarily defined, e.g., as A.Br.001 where A refers
to the major subgroup and 001 is the first canSNP (see the
A.Br.Ames sub-lineage in Figure 1, also [5]). In this case
the derived A.Br.001 SNP defines all isolates that are on
the same branch as the sequenced Ames strain. In addi-
tion to these 7 sub-lineages the analysis of 26 diverse iso-
lates uncovered 5 nodes or sub-groups along the branches
of this tree. Four of these nodes are in the major A Branch
and one is in the B Branch (see "circles" in Figure 1). These
nodes are defined by the two canSNPs on either side of the
node position, e.g. A.Br.001/002 or A.Br.008/009. All of
the initial 1,000 isolates in the Van Ert study [5] were
placed into one and only one of these 12 sub-lineages or
sub-groups.

Results
CanSNP analysis of isolates from China
The 191 B. anthracis isolates from China were distributed
into only five of these 12 canSNP sub-lineages/sub-groups
described by Van Ert et al. [5]. These canSNP groups were
A.Br.Vollum, A.Br.Aust.94, A.Br.001/002, A.Br.Ames, and
A.Br.008/009 (Figures 1 and 2). Four of the sub-lineages/
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sub-groups (A.Br.Vollum, A.Br.Aust.94, A.Br.008/009 and
A.Br.001/002) were found in the western province of
China, Xinjiang (Figure 2). But only isolates from A.Br.001/
002 sub-group and the close relative A.Br.Ames sub-lineage
were found scattered throughout the other regions of China
from east to west. These findings clearly suggest 4 or 5 sep-
arate introductions of B. anthracis into or out of China, with
3 possibly involving the routes defined as the Silk Road.

The A.Br.008/009 sub-group is a cluster that predomi-
nates throughout Europe, the Middle East and China. Xin-
jiang province had 49 of the worldwide total of 156
A.Br.008/009 isolates (Table insert in Figure 1 and [5]).
This province also had 44 of 188 worldwide isolates of the
A.Br.Aust94 isolates. This is a sub-group that is also well
represented in neighboring Turkey and India. A smaller
subset of the A.Br.Vollum sub-lineage (also found in
Europe and Africa) accounts for 16 Xinjiang samples out

of a worldwide set that totals 48 isolates (Table insert in
Figure 1).

The remainder of China is dominated by the A.Br.001/
002 subgroup. Chinese isolates represent 74 of the 106
isolates from our worldwide collection of A.Br.001/002
sub-group isolates (Figure 1 and [5]). Only 9 of these iso-
lates are from Xinjiang province to the west. Similarly
there are 8 isolates out of 19 worldwide isolates in the
A.Br.Ames sub-lineage in the main parts of China.

MLVA Analysis of A.Br.008/009, A.Br.Aust94 and 
A.Br.Vollum
CanSNP typing of these isolates has already indicated that
there were 49 total Chinese isolates from the A.Br.008/009
subgroup, 44 from the A.Br.Aust94 sub-lineage and 15
from the A.Br.Vollum (Figure 1). Additional sub-typing
using 15 MLVA markers indicates that there were only 3

The twelve canSNP subgroups and sub-lineages of B. anthracisFigure 1
The twelve canSNP subgroups and sub-lineages of B. anthracis. Determined by the analysis of 14 canSNP sites 
described by Van Ert et al[5]. The five canSNP groups represented in China are indicated in larger and bold fonts in this Neigh-
bor Joining Tree. The number of isolates (N), genotypes (G), and Nei's Diversity Index [8] within groups (D) are illustrated in 
the table in the lower left. Neighbor-joining trees based upon additional MLVA genotypes within each of these 5 canSNP 
groups are illustrated in Figures 3 and 5.
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MLVA genotypes within both the A.Br.Vollum (Nei Diver-
sity Index = 0.038 [8]) and A.Br.Aust94 (Nei's Diversity
Index = 0.031) sub-lineages but 14 MLVA genotypes within
A.Br.008/009 (Nei's Diversity Index = 0.143, Figures 1, 3a,
3b, and 3c). These results suggest repeated infections and
outbreaks for each of these sub-groups of B. anthracis. The
identification of 14 genotypes for the A.Br.008/009 sub-
groups is an indication of a combination of possibly
repeated introductions and infections and a significantly
longer history for this particular clade in this region.

Branch collapse and ongoing SNP analysis
One of the more remarkable findings from the whole
genome SNP analysis of 5 diverse isolates by Pearson et al.
[3] was a nearly total lack of homoplastic SNP markers in
a query of the status of nearly 1,000 SNP positions in 26
diverse isolates. This finding uncovered a phenomenon

called "branch collapse" that resulted in a tree that had no
branching except for those created by 7 sequenced refer-
ence genomes. The remaining 26 isolates were then either
part of one of these seven "sub-lineages" or part of 5 non-
branching nodes ("sub-groups") on one of the 7
branches. While the canSNP tree is highly accurate in the
typing of 1033 isolates, it lacks resolution because it
reflects the results of only 13 of nearly 1,000 SNPs.

Improved resolution between two points was demon-
strated by an extensive analysis of the Ames specific
branch [9,10] when the status of 29 SNPs that define this
branch were determined for the original 12 Ames-like iso-
lates. These analyses have a direct bearing on the isolates
from China that are either Ames-like or part of the
A.Br.001/002 sub-group (Fig. 1 and 4). The extended
analysis of the SNPs on the Ames branch indicate that

Geographical distribution of B. anthracis isolates in ChinaFigure 2
Geographical distribution of B. anthracis isolates in China. This distribution is based on 12 canSNP genotypes described 
in Figure 1 and the analysis of 191 isolates from China; also see [5]. The red routes include the western city of Kashi in Xinjiang 
Province, the main crossroads into China and around the Taklimakan Desert leading into the eastern Chinese provinces.
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there are 74 Chinese isolates in the A.Br.001/002 sub-
group and 8 additional Chinese isolates (see the table
insert in Figure 1) that form three new nodes or collapsed
branch points between A.Br.001/002 and the Ames isolate
(Figure 4). In addition, there is a fourth node closest to the
Ames strain that contains 10 Ames-like isolates from
Texas, one goat and 4 bovine isolates [9] shown in Figure
4 and an additional 5 Ames-like isolates from the CDC
(Brachman collection, see Methods and Materials). The
precise location for the recovery of these latter isolates is
unknown except that they originated in Texas. These 19
isolates (8 Chinese, 10 Texas) and the Ames strain repre-
sent a highly resolved, SNP based A.Br.Ames sub-lineage.
These results indicate that the original Ames strain and a
subset of 10 Texas isolates are decendents of a rare lineage
that is otherwise only found in China.

MLVA: A.Br.001/002
The 15 marker MLVA analysis (MLVA15) of the 74 isolates
belonging to the A.Br.001/002 sub-group yielded 32 dif-
ferent genotypes (Nei Diversity Index = 0.108, Figures 1,
5a). This high diversity index is an indication that this
sub-group, spread throughout the whole of China (Figure
2), is another sub-group of B. anthracis with a long and
extensive evolutionary presence in China.

Discussion
Human anthrax has been an old and continuous problem
in many rural regions in China where as much as six per-
cent of environmental samples have been found to be con-
taminated with B. anthracis [2,2]. An archival collection of
191 B. anthracis isolates was obtained from China and
canonical SNP typing indicated that only 5 of the 12 world-

MLVA15 Analysis of Chinese isolates belonging to the A.Br.Vollum, A.BrAust94 and A.Br.008/009 canSNP sub-lineges/sub-groupsFigure 3
MLVA15 Analysis of Chinese isolates belonging to the A.Br.Vollum, A.BrAust94 and A.Br.008/009 canSNP 
sub-lineges/sub-groups. Representatives of these three sub-groups were only found in isolates recovered in Xinjiang Prov-
ince, or in unknown locations within China (n = 2). All of these isolates were recovered from soil samples in this province.
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wide sub-lineages/sub-groups of this pathogen were repre-
sented in this collection. One striking feature of the
distribution of these B. anthracis isolates within this country
was the discovery that three of the five canSNPs sub-line-
ages/groups (A.Br008/009, A.BrAust.94, and A.Br.Vollum)
are predominantly found in the western most Chinese
province of Xinjiang. The previous observation [5] that
these three sub-lineages/sub-groups are prominent geno-
types in India, Pakistan, Turkey and most of Europe suggest
a likely transmission pattern for anthrax along the ancient
trade route known as the Silk Road [11] that extended from
Europe, the Middle East, portions of Asia and into Xinjiang
province and the whole of China, Figure 2.

More specifically, 107 isolates were recovered from "soil
samples" between 1981–1982 from unspecified sites rela-
tively close to the city of Kashi in this province. Kashi (also
Kashgar, Kaxgar, Kxkr) was a major "oasis" crossroads city
along the ancient Silk Road and dates back more than
2,000 years [11]. Consistent with the idea that the life

cycle of B. anthracis can be maintained by viable spores in
previously contaminated areas, the later 1990–1994 sur-
veillance project in China described three regions in Xin-
jiang Province where severe anthrax outbreaks had
previously occurred [2]. Two of these towns, Zepu and
Atushi, are located approximately 144 and 33 kilometers
respectively from the city of Kashi. In the 1990–1994
study, Zepu recorded 24 villages with 202 human infec-
tions and Atushi recorded 4 villages with 81 human infec-
tions.

Despite a clear correlation between canSNP genotypes
from the A radiation and the spectrum of isolates found
across the Trans-Eurasian continents, there is one set of
genotypes in Europe that are clearly missing in China.
These are representatives from the B branch that appear to
be prevalent in several European states including at least
27 B2 isolates from France and isolates identified in both
the B2 and B1 branches from Croatia, Germany, Poland,
Italy, Norway and Slovakia [5,6,12]. It is not obvious why

The Ames branch of B. anthracisFigure 4
The Ames branch of B. anthracis. This figure shows the relationship between the Ames strain and its closest relatives in a 
worldwide collection [5]. Twenty-nine of 31 original [5] SNPs are defined by their positions in the Ames genome 
(NC_003997) and their positions along the Ames branch. Ames has the derived state for all 29 SNPs and the 4 SNPs between 
Ames and the Texas Goat are specific for the Ames strain alone [5]. A0728 was isolated in China in 1957 but the specific loca-
tion/source of this isolate is unknown.
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examples of the B branch are limited mostly to Africa, this
region of Europe and a small location in California, USA.
Aside from sampling issues the B branch does not appear
to have participated in the world-wide, dynamic radiation
that has characterized the A branch [5].

Additional analyses with the rapidly evolving MLVA
markers suggest that establishment in China of two of

these sub-groups/sub-lineages, A.Br.Aust94 and A.Br.Vol-
lum, resulted from relatively recent events (Figure 3a and
3b). In both of these instances, a sizeable number of iso-
lates (44 and 15, respectively) are clustered into only three
different MLVA15 genotypes (Nei's Diversity Indices =
0.031 and 0.038 respectively, Figure 2). Although these
results may reflect a certain sampling bias, the MLVA com-
parison to other worldwide isolates from this branch indi-

MLVA 15 Analysis of A.Br.001/002 and A.Br.Ames sub-group and sub-lineage respectivelyFigure 5
MLVA 15 Analysis of A.Br.001/002 and A.Br.Ames sub-group and sub-lineage respectively. The A.Br.001/002 sub-
group has a relatively large diversity index (See Figure 2) and suggests that this sub-group has a long history in China with 
repeated outbreaks and eventual spread throughout much of the country.

� � � � � � � � � � � � � 	


 � � � 
 � � � � �
� � � � � � � � � � � � � � � � � � � � � � 
 � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � 
 � � �

� � � � � � � � � � �� � � � � � 
 � � � � � � � � � 
 � � �
� � � � �  
 � � 
 ! � � � � �� � � � � � 
 � � �� � � � � � � �

� � � � � � � � � � �

� � � � � � 
 � " �
� � � � �  
 � � 
 ! � � � � �
# � � $ % � � �


 � � � 
 � � � � �
� � � � � � 
 � � �
# � � $ % � � �
� � � � � � � � � " �

# � � $ % � � �

 � � � 
 � � � " �# � � $ % � � �

� � � � � � � � � " �
� � � � �  
 � � 
 ! � � � � �
# � � $ % � � �
& � ' ( % � � � � �

 � � � 
 � � � � � 
 � � � 
 � � � � �

� � � � � � � �
# � � $ % � � � ) � � � � * � � � �


 � � � 
 � � � � �

 � � � 
 � � � � � � � � � � � 
 � � �

+ � � 
 � � � � � � �
 � � � 
 � � � � �
+ � � 
 � � � � � � , � � � � � �  
 � � 
 ! � � � � �


 � � � 
 � � � � �- . - - � ' ( � � � � $

/ � � � � � � � 0 1 2 � � � � �  
 � � 
 ! � � � " �
� � � � �  
 � � 
 ! � � � � �

 � � � 
 � � � " �

 � � � 
 � � � � �

- . - � ' ( � � � � $



BMC Microbiology 2009, 9:71 http://www.biomedcentral.com/1471-2180/9/71

Page 8 of 11
(page number not for citation purposes)

cates that the A.Br.Aust94 sub-lineage in China is most
closely related to isolates recovered from the large 1997
outbreak in Victoria, Australia (data not shown). The pre-
cise origin and time-scale for this exchange is not certain
but relatively recent exchanges between the Far East and
Australia appear to have originated from India [13],
which could represent a common ancestor or an interme-
diate step in the transmission route.

By direct contrast the MLVA analysis of 49 isolates belong-
ing to the A.Br.008/009 sub-group revealed a more com-
plex pattern with 14 different MLVA15 genotypes (Nei
Diversity Index = 0.143, Figures 1 and 3c). This is a
remarkable finding because it indicates that a variety of
MLVA genotypes are persisting in the different soils from
which the A.Br.008/009 isolates were recovered. These
results are an indication that A.Br.008/009, a major sub-
group in Europe and Asia [5], has had an extensive history
in China. It is difficult to determine the precise origins of
the A.Br.008/009 subgroup (e.g. China versus Europe) at
this point because rapidly evolving MLVA markers are
subject to homoplasy and potentially inaccurate phyloge-
netic reconstructions. These issues can eventually be
resolved using additional whole genome sequencing and
phylogenetic inference to more accurately predict the ori-
gins of the A.Br.008/009 sub-group.

The Ames sub-lineage appears to have descended from the
A.Br.001/002 sub-group, a sub-group that has 106 isolates
in our worldwide collection [5]. Seventy-four of these
accessions were isolated from outbreaks in China and the
remaining 32 isolates were recovered in the UK, other parts
of Europe, North America and other parts of Asia. The large
number of MLVA15 genotypes (n = 32) among the 74 Chi-
nese isolates and a wide distribution throughout the coun-
try indicates that the A.Br.001/002 sub-group is a major
part of the B. anthracis population structure in this region
(Figure 5a). This sub-group also appears to be basal to the
Ames sub-lineage, indicating that 8 isolates from China
and 11 isolates from Texas may share common ancestors
that originated in China (Figure 5b and [10]).

How then did the Ames lineage come to Texas and why is
this lineage not found in Europe? This is still not known
and subject to considerable speculation. By several
accounts, it is believed that anthrax was introduced into
the Gulf Coast states (Louisiana and Texas) by early set-
tlers from Europe. Stein [14,15] indicates that the first
recorded episodes of anthrax in livestock in Louisiana
occurred in 1835, 1851 and 1884; and in Texas in 1860
and 1880. By 1916, when a first national survey was con-
ducted to obtain nation-wide information on the inci-
dence of anthrax, Texas already had 41 counties reporting
infections. A composite of outbreaks compiled after the
4th National Survey by the U.S. Department of Agriculture
between 1916–1944 (Figure 6) indicates three major out-

break pockets: one in California, one in the Dakotas/
Nebraska and the third along the coastal regions of Texas
and Louisiana [15].

An important feature of the outbreaks in Texas is that the
"modern" outbreaks have occurred repeatedly in many of
the same counties depicted in this historical map (Figure
6 and USDA Report: Epizootiology and Ecology of
Anthrax: http://www.aphis.usda.gov/vs/ceah/cei/taf/
emerginganimalhealthissues_files/anthrax.pdf). A cul-
ture-confirmed study between 1974–2000 indicated that
179 isolates were spread across 39 Texas counties (coun-
ties outlined in yellow) that are in general agreement with
the dispersal patterns observed in the early national sur-
veys depicted in Figure 6. The one significant difference is
a shift from the historical outbreaks in the coastal regions
to counties more central and southwesterly in "modern"
times. Similarly, culture-confirmed isolates from a 2001
outbreak in Val Verde, Edwards, Real, Kinney and Uvalde
counties in southwest Texas are similar to outbreaks in
2006 and 2007 when 4 Ames-like isolates were recovered
from Real, Kinney, and Uvalde county [9].

It appears that B. anthracis was introduced into the Gulf
Coast, probably by early European settlers or traders
through New Orleans and/or Galveston during the early
to mid 1800s. The disease became established along the
coastal regions and then became endemic to the regions
of Texas where cattle and other susceptible animals are
currently farmed. Are these B. anthracis, Ames-like geno-
types from the Big Bend region (Real, Kinney, Uvalde
counties) of Texas representative of the ancestral isolates
brought to the Gulf Coast? Van Ert et al. [5] used synony-
mous SNP surveys to estimate the divergence times
between the major groups of B. anthracis and these esti-
mates suggest that the Western North American and the
Ames lineages shared common ancestors between 2,825
and 5,651 years ago. Extrapolating to the much shorter
SNP distances between the most recent Chinese isolate
(A0728) and the recent Texas isolates on the Ames sub-
lineage would approximate that these two shared a com-
mon ancestor between 145 to 290 years ago. These esti-
mates would be consistent with the hypothesis that an
Ames-like isolate was introduced into the Galveston and/
or New Orleans area in the early to middle 1800s.

This relatively recent expansion is in direct contrast to
analyses of the Western North American (WNA) sub-line-
age that appears to have an ancient and significantly
longer evolutionary presence in North America; this
group stretches from the central regions of Canada and
into North and South Dakota (Figure 6; [16]). Phyloge-
netic reconstruction of > 250 Western North American
isolates indicates that the more ancestral isolates of this
sub-lineage are found in the upper reaches of central Can-
ada and portrays a migration pattern where the youngest
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isolates are found in cattle outbreaks in North/South
Dakota and Nebraska. Kenefic, Pearson et al. [16] suggest
that the ancestral isolates may have entered the North
American continent via the Beringian straights 13,000
years ago.

A recent ecological niche model suggests that natural
anthrax outbreaks are "concentrated in a narrow corridor
from southwest Texas northward into the Dakotas and
Minnesota" [17]. This model indicates that conditions
like vegetation, precipitation and altitude along this corri-

dor are suited for maintaining naturally occurring anthrax
outbreaks in livestock and wildlife. Although historical
records provide evidence that validate this model, there is
a molecular and genotyping anomaly: there does not
appear to be a direct epidemiological link between the
"younger" Ames-like cluster and the Western North Amer-
ican lineage. Despite nearly 100 years of monitoring since
the first national outbreak tabulations [15], there is still a
clear physical division between the Ames-like isolates to
the south and the Western North American lineage to the
north (Figure 6). This gap is not obvious until the spatial
patterns are examined in hindsight of the genetic discon-
tinuity. These observations probably reflect the awareness
and controls that were being observed for anthrax out-
breaks as the US entered the 20th century.

Limited sample analysis of isolates from the Texas/Louisi-
ana coastline prevents any conclusions about the overall
dominance of the Ames sub-lineage in this area and we
also cannot exclude the possibility that there are other
sub-groups/sub-lineages that might have been imported
and even become transiently established along the Texas/
Louisiana Gulf region during this same time frame.

Conclusion
Despite containing only 5 of the initial 12 canSNP geno-
types used to define a collection of world-wide isolates
[5], the analysis of 191 Chinese B. anthracis isolates
reveals an interesting impact on global distribution. The
major diversity in these isolates is concentrated in the
western province of Xinjiang and especially the city of
Kashi, the hub of the Silk Road around the Taklimakan
Desert into and out of China. These results reinforce the
idea that this Silk Road region was central to the spread of
anthrax between the trans-Eurasian continents.

In addition to the three distinct sub-groups found in the
western Xinjiang province, the central and eastern regions
of China are dominated by a different, highly diverse, can-
SNP sub-group, A.Br.001/002. This sub-group is a major
presence in relationship to our world-wide collection
since 70% of all the isolates and most of the diversity for
this sub-group were in this Chinese collection. These
results suggest that the A.Br.001/002 cluster may have
originated in China. Finally, the Ames and Ames-like
strains in Texas are descended from common ancestors in
Inner Mongolia in China as an extension of this sub-
group. It is curious that this lineage would become estab-
lished in Texas, and perhaps Louisiana, and not in Europe.
This leaves behind a missing historical gap within the
phylogeography of the Ames lineage.

Methods
B. anthracis isolates
The 191 B. anthracis isolates from China used in this study
were previously isolated from a variety of sources and prov-

Historical Anthrax Incidences between 1915–1944 in Texas/Louisiana and The Dakotas/Nebraska/IowaFigure 6
Historical Anthrax Incidences between 1915–1944 in 
Texas/Louisiana and The Dakotas/Nebraska/Iowa. 
Adapted from Stein (1945, [15]). Darker colors represent 
severe outbreaks and the lighter colors represent sporadic 
outbreaks. The blue and green colors were used to illustrate 
that two distinct genotypes (Western North America 
(WNA) and the Ames sub-lineage) have been indentified in 
"modern" isolates from these two regions. The counties bor-
dered in yellow in Texas indicate counties where docu-
mented incidents of anthrax have occurred between 1974 
and 2000. The numbers 1–4 indicate the counties in which 
the original Ames strain, 2 bovine samples and a goat sample 
have been analyzed by current genotyping methods as 
belonging to the Ames sub-lineage. The molecular analysis of 
more than 200 isolates from North and South Dakota indi-
cates a pre-dominance of the sub-lineage WNA in this 
region. The gray colors indicate moderate to sparse out-
breaks in the states adjoining the Dakotas and Texas.
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inces in China (see Additional file 1). One hundred and fif-
teen isolates were from Xinjiang Province in western China
including 107 isolates from soil samples. The remainder of
the isolates were recovered from the following provinces
with the number of isolates in parenthesis: Hebei (10),
Gansu (8), Henan (2), Inner Mongolia (10), Jiangxi (1),
Liaoning (26), Sichuan (1) and 18 isolates where the prov-
ince of origin was not known. In addition to the 107 soil
samples from Xinjiang Province isolates were obtained
from the following sources: soil (15 additional), air (4),
bovine (3), buffalo (1) fur (2), human (25), laboratory (1),
marmot (1), sheep (3), swine (3) and unknown sources
(26). In addition to the Chinese isolates there are 6 isolates
that were used to describe Figure 4[9,10] and an additional
5 isolates that were obtained from the CDC as part of the
"Brachman Collection" (CDC ID # 34064, 34279, 402,
482, 490). All 11 of these isolates belong to the Ames sub-
lineage and all were isolated in Texas between 1959–2007.
This analysis also includes the original Ames strain that was
isolated in 1981 from bovine in Jim Hogg County.

All isolates were initially genotyped for a B. anthracis spe-
cies-specific plcR nonsense mutation that has been sug-
gested as being necessary for stabilization of the virulence
plasmids [18]. This single nucleotide polymorphism
appears to be diagnostic for B. anthracis [19]. In this study
the ancestral state for this marker was used to root the B.
anthracis SNP tree to the older and more diverse B. cereus/
B. thuringiensis tree. DNA was isolated from each of the
191 isolates as previously described [5].

CanSNP Genotyping
TaqMan™ -Minor Groove Binding (MGB) allelic discrimi-
nation assays were designed for each of 13 canSNPs and
have been described in great detail by Van Ert et al. [5].
The genomic positions for each canSNP and the primer
sequences and probes for each site can be found in Sup-
plemental Tables 4 and 5 in the Van Ert et al. [5].

MLVA Genotyping
Multiple Locus Variable Number Tandem Repeat (VNTR)
Analysis (MLVA) was used to determine the overall diver-
sity of the isolates within each sub-group and sub-lineage.
The first 8 marker set used in this analysis were initially
described by Keim et al., [4] and a second set of 7 addi-
tional markers were described by Zinser [20]. This 15
marker, high-resolution, MLVA system is described in
detail by Van Ert et al. [5] with the genomic positions and
primer sets for these assays described in Supplemental
Tables 2 and 6 of this reference.

Phylogenetic Inference
The genetic relationships among the Chinese isolates were
established using a hierarchical approach where the
slowly evolving, highly conserved, canSNP markers were
first used to place each isolate into its appropriate clonal
lineage. The 15 more rapidly evolving, VNTR loci, were

then used to measure the genetic diversity and to deter-
mine the number of specific genotypes within each of
these clonal lineages. Neighbor joining phylogenetic trees
were constructed for both the canSNP and MLVA datasets
using PAUP (Phylogenetic Analysis Using Parsimony)
[21]; and the MEGA 3 software package [22] was used to
calculate average within group distances for each of the
five canSNP sub-groups/sub-lineages.
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