
Measuring Performance of
Web Content Delivery Over
Mobile Networks
Using NorNet Edge Infrastructure

Diako Kezri
Master’s Thesis Spring 2015





Measuring Performance of Web Content
Delivery Over Mobile Networks

Diako Kezri

18th May 2015



ii



Abstract

We explored the performance of the web content delivery over the
Internet for two Norwegian MBB networks (Telenor and Netcom) using the
NorNet Edge measurement infrastructure. The performance was evaluated
by measuring the impact of several factors including the radio signal
conditions, the ingresspoint placement and the networking topology in
cellular networks when accessing the first byte of the web content of the
top 50 Alexa websites. The time to get the first byte can be decreased
by 80 percent, if the web content is placed close to the ingresspoint. The
ingresspoint placement affects the network delay for domestic subscribers
by only 10 milliseconds. There is no clear differences in time to get the
first byte between 3G or 4G technologies. The time to connect to the web
content (to query DNS and establish a TCP connection) is only 20 percent
of the time spent to receive the first byte of the web content. The poor
radio signal conditions can increase the time to get the first byte of the web
content by 100 milliseconds.

iii



iv



Acknowledgment

I would like to express my special thanks of gratitude to the following
people who supported me during this thesis and my entire period of master
study at Oslo and Akershus University College of Applied Sciences and
University of Oslo:

• My deep gratitude to my supervisor; Ahmed Elmokashefi at Sim-
ula Research Laboratory, as a great professor and also a wonderful
person. Thanks for all his supports, helps, motivation, encourage-
ments and guidelines to overcome the challenges faced throughout
this thesis.

• Special thanks to my internal supervisor; Paal Engelstad as a
knowledgeable professor, for his support, thoughtful advices and
encouragements during this thesis.

• Special thanks to Hårek Haugerud as a great person and knowledge-
able professor who coordinates this master study program at the uni-
versity of Oslo, and helped us a lot beside our studies during these
two years of master study.

• Thanks to Kyrre Begnum as a knowledgeable professor, for his great
classes and for all technical and scientific knowledge that he thought
us.

• Thanks to Ismail Hassan for his help and so many technical stuff that
he taught us in this master program.

• Thanks to Anis Yazidi for all his help and advices during this master
degree.

• Thanks to all my friends and classmates for their support and their
kind friendship during this master degree program.

• I would like to say thanks to the University of Oslo, and to the
University College in Oslo and Akershus for offering me this master
degree program.

• I would like to thank my beloved family in my country and in
Norway, especially my fantastic wife for their all support.

v



vi



Contents

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Mobile Cellular Network . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Generations of Cellular technologies . . . . . . . . . . 5
2.1.2 Ec / Io . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 LTE Networks (4G) . . . . . . . . . . . . . . . . . . . . 11

2.2 Interdomain connectivity . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Autonomous System Number (ASN) . . . . . . . . . 13

2.3 NorNet Research Testbed . . . . . . . . . . . . . . . . . . . . 14
2.3.1 NorNet Edge architecture . . . . . . . . . . . . . . . . 15

2.4 Measurement Tools . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 ICMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Traceroute . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.4 Nslookup . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.5 Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.6 Whois . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methodology and Approach 25
3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Measurement Procedure . . . . . . . . . . . . . . . . . . . . . 26
3.4 Tools and scripting language . . . . . . . . . . . . . . . . . . 27
3.5 Collecting and recording data . . . . . . . . . . . . . . . . . . 27

3.5.1 Httpfetcher.py . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Traceroute.py . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3 Plots.py and Makeplots.py . . . . . . . . . . . . . . . 31
3.5.4 Database.py and utils.py . . . . . . . . . . . . . . . . . 32

4 Results and Analysis 33
4.1 Ingress point placement . . . . . . . . . . . . . . . . . . . . . 33
4.2 Network Delay . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Node-to-ingress delay . . . . . . . . . . . . . . . . . . 34

vii



4.2.2 End-to-end delay . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Node-to-ingress delay ratio to end-to-end delay . . . 37

4.3 Routing path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 HTTP performance delay . . . . . . . . . . . . . . . . . . . . 40
4.5 Time to connect to content provider’s server in Netcom (3G

and 4G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.1 Time to start transfer the first byte of Internet content

in Netcom (3G and 4G) . . . . . . . . . . . . . . . . . 42
4.6 Time to connect to the content provider in Telenor and Netcom 44

4.6.1 Time to start transfer the first byte of web content . . 46
4.6.2 Radio conditions . . . . . . . . . . . . . . . . . . . . . 50

5 Discussion and Future work 55
5.1 Evaluation of the network topology . . . . . . . . . . . . . . 55
5.2 Evaluation of the Network delay . . . . . . . . . . . . . . . . 55
5.3 Evaluation of HTTP performance under accessing web content 56
5.4 Evaluation of radio conditions . . . . . . . . . . . . . . . . . 56
5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusion 59

viii



List of Figures

1.1 Global Mobile Data Traffic, 2014 to 2019 [28] . . . . . . . . . 1
1.2 The UMTS MBB Network simplified Infrastructure . . . . . 2

2.1 The simplified LTE Network Infrastructure . . . . . . . . . . 12
2.2 The cellular Network Core layout . . . . . . . . . . . . . . . . 13
2.3 An overview of NorNet Edge infrastructure . . . . . . . . . . 15
2.4 NorNed Edge UFO-board with four USB modems . . . . . . 16
2.5 NorNet Edge Backend [29] . . . . . . . . . . . . . . . . . . . . 17
2.6 Screenshut of NorNet Edge Visualization website [39] . . . . 18

3.1 The NNE nodes deployed in measurements [34] . . . . . . . 26

4.1 Boxplot of the node-to-ingress delay and end-to-end delay
in second (Telenor) . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Boxplot of the node-to-ingress delay and end-to-end delay
in second (Netcom) . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 The CDF of the node-to-ingress delay ratio to end-to-end
delay (Telenor) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 The CDF of the node-to-ingress delay ratio to end-to-end
delay (Netcom) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 The routing path between MBB operator and the content
provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Overview of the NNE nodes and regions used for measure-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Boxplot of the time to connect in second (Netcom 3G) . . . . 42
4.8 Boxplot of the time to connect in second (Netcom 4G) . . . . 42
4.9 Boxplot of the time to start transfer in second (Netc 3G) . . . 43
4.10 Boxplot of the time to start transfer in second ( Netcom 4G ) 43
4.11 Boxplot of the time to connect in second (Telenor) . . . . . . 44
4.12 Boxplot of the time to connect in second (Netcom) . . . . . . 45
4.13 CDF of the time to connect in second (Telenor) . . . . . . . . 45
4.14 CDF of the time to connect in second (Netcom) . . . . . . . . 46
4.15 Boxplot of the time to start transfer in second (Telenor) . . . 46
4.16 Boxplot of the time to start transfer in second ( Netcom ) . . 47
4.17 CDF of the time to start transfer in second (Telenor) . . . . . 48
4.18 CDF of the time to start transfer in second (Netcom) . . . . . 48
4.19 CDF of the time to start transfer in second for top 3 websites

(Telenor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



4.20 CDF of the time to start transfer in second for top 3 websites
(Netcom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



List of Tables

2.1 Generations of Cellular mobile networks . . . . . . . . . . . 7
2.2 Lists of characters and description that can appear in the

traceroute output . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Sample data collected in Curl measurements recorded in
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Sample data collected in the traceroute measurements and
recorded in database. . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Statistics calculation of node-to-ingress RTT delays in milli-
seconds (Telenor) . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Statistics calculation of node-to-ingress RTT delays in millis-
ceconds (Netcom) . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Statistics calculation of end-to-end RTT delay (Telenor) . . . 35
4.4 Statistics calculation of node-to-end RTT delay (Netcom) . . 35
4.5 RSRP and RSRQ conditions in 4G . . . . . . . . . . . . . . . . 51
4.6 Median of the signal conditions in dBm (Telenor 3G) . . . . . 51
4.7 Median of the signal conditions in dBm (Telenor 4G) . . . . . 52
4.8 Median of the signal conditions in dBm (Netcom 3G) . . . . 52
4.9 Median of the signal conditions in dBm (Netcom 4G) . . . . 53

xi



Chapter 1

Introduction

Internet users are increasingly depending on mobile cellular networks for
browsing web contents, streaming media, social network activities,and
making VOIP calls irrespective of where they are and when they are using
their mobile devices. Therefore, it is important that ISPs (Internet service
providers) provide a reliable mobile network services with good perform-
ance for their subscribers and mobile users.

According to a report from the Cisco Visual Networking Index [27], Global
mobile data traffic reached 2.5 exabytes per month at the end of 2014, up
from 1.5 exabytes per month at the end of 2013. Figure 1.1 shows that over-
all mobile data traffic is expected to grow to 24.3 exabytes per month by
2019, nearly a tenfold increase over 2014.

Figure 1.1: Global Mobile Data Traffic, 2014 to 2019 [28]

Despite the high popularity of mobile cellular networks, their perform-
ance remains unpredictable and at times questionable. This lack of predict-
ability have encouraged regulators, network operators, and researchers to
setup large measurement infrastructures and campaigns to gain insights
into the different factors that impact the end-to-end performance of mobile
networks. At the same time, content providers and operators have been

1



working on optimizing content placement and transport protocols to im-
prove users experience.

This work studies the performance of web content delivery over two
mobile broadband networks in Norway: Telenor and Netcom. Using exist-
ing measurement data from the NorNet project as well as a set of controlled
experiment, it will isolate and study the impact of several factors on the
performance of end-to-end web content delivery. These factors include the
last-mile radio, the layout of the mobile core network and the wide-area
routing configuration.

A cellular network also known as MBB network consists of two main
components are shown in Figure 1.2: The Radio Access Network (RAN)
and the Core Network(CN), more details described in chapter 2. These two
components corporate together in order to connect end-users to web con-
tent. The factors that influence the performance of end-to-end web content
delivery depend on the availability, stability and reachability of both com-
ponents in MBB networks.

Figure 1.2: The UMTS MBB Network simplified Infrastructure

Last-mile radio refers to any telecommunication technology which
links local mobile users to a cellular network by delivering radio signals
between them [32]. The word "last mile" is used as a metaphor for de-
scribing the length of the last mile’s link that may be more or less than a
mile.[18].
The last-mile has a significant impact on the connectivity of the radio access
network part. The radio signal conditions, the availability of connections,
and the number of connection failures which my be caused by congestion
or central failures of mobile network are the main metrics related to this
component of MBB networks. [8]

Mobile network core layout refers to the carrier’s topology of MBB net-
works and determines where traffic from mobile users enters the Carrier’s
core network[4]. The number of ingress points (the entry point between
mobile users and the Internet) of mobile carriers, and their distance to the

2



mobile users have a significant impact on the network latency for the con-
tent delivery to mobile users.

Routing configuration has also impact on the performance of content
delivery networks. Routers on the Internet path between end-to-end users
and the web content providers play a significant role for network availab-
ility and stability which both has a direct influence on the performance of
the end-to-end communication in a cellular network.[37]
The peering agreement between ASes is another reason of causing path in-
flation, e.g. the lack of presence of the carrier network in the same area of
mobile users, or even the location where the carrier’s network peers with
the content provider’s network as well. [4]

1.1 Problem statement

This study focuses on measuring the performance of the content delivery
for mobile users in a cellular network by using NorNet Edge infrastructure.
Using the NorNet Edge (NNE) measurement infrastructure for conducting
the experiments provides a real-world and reliable test-environment which
strives to increase the value of measurements and evaluation of mobile
cellular networks. It tries to address the following questions in our
research:

• Breakdown web access end-to-en delay into its principal components.

• Identify and evaluate the placement of MBB carrier’s ingress point.

• Investigating the impact of interdomain connectivity

1.2 Thesis Outline

This rest of thesis has the following layout structure:

• Chapter 2 (Background) provides a brief description over mobile
cellular networks (MBB), an overview on NorNet measurement
infrastructure, It describes the NorNet Edge component in more
details and how it works. Later this chapter introduces several
networking tools which are used for conducting experiments.

• Chapter 3 (Methodology and approach) consists the methodology
and explains the plan for conducting the experiments.

• Chapter 4 (Results and analysis) describes the results and the analysis
of the important metrics and parameters in methods for collecting
data.

3



• Chapter 5 (Discussions and Future work) dissects in depth the
results, evaluates the them and explains the problems encountered
in the experiments, and finally it discusses the future work.

• Chapter 6 (Conclusion) Finally the questions in the problem state-
ment section are asked clearly in this chapter.

• Appendices contains the scripts used for conducting the experi-
ments. In addition some graphs and configuration files are displayed
here.

4



Chapter 2

Background

This chapter introduces the mobile cellular network, the NordNet edge
measurement infrastructure and several tools, applications and technolo-
gies which are used in the later chapters.

2.1 Mobile Cellular Network

A mobile cellular network also known as mobile broadband (MBB) is a high
speed Internet broadband service which provides the wireless Internet ac-
cess in a larger geographic coverage for end-users through different types
of devices such as mobile phones, laptops, and tablets.

2.1.1 Generations of Cellular technologies

A new mobile generation is appeared approximately every 10 years since
the first generation of mobile technology (1G) was introduced in 1981. The
cellular concept was introduced in 1G technology also known as AMPS
(Advanced Mobile Phone System) [9, 38], the first generation (1G) refers
to the analogue transmission type of cellular technology which all mobile
devices broadcasting analogue signals, therefor 1G made the large scale
wireless communication possible.

The first wireless Internet access, which is referred to as 2G was in-
troduced in 1991. 2G replaced the analogue technology with digital com-
munication and improved the wireless communication quality. The third
generation (3G) of cellular networks, also called wide area cellular net-
work, enabled the high speed Internet access and video telephony. It is
regarded as the first Mobile Broadband (MBB) networks. The 3G and 4G
which have higher speeds become available respectively in 2001 and 2010.
Among these generations 2G and 3G are widely used. Nowadays 4G is be-
coming more popular especially in developed countries.

5



Mobile broadband uses a spectrum between 225MHz and 3700 MHz,
and there are various of standards which are used in different cellular tech-
nologies. For instance, Global System for Mobile (GSM), General Packet
Radio Service( GPRS) and Enhanced Data Rate of GSM Evolution (EDGE)
are known standards used by 2G technology where GPRS (2.5G) and EDGE
(2.75G) are the enhanced GSM. Another standard which 2G partially using
is the Code Division Multiple Access (CDMA). 2G networks can transmit
non-voice data in form of Short Message Service (SMS), and Multimedia
Message Service (MMS). 2G is also connected to the Internet for email and
web browsing, but accessing the Internet is painfully slow because it can
only transfer data around 14.4Kbps and up to 48kbps

3G MBB networks uses two main standards such as the Universal
Mobile Telecommunication Services (UMTS) and CDMA2000. It also
uses other standards such as the Wide band Code Division Multi Ac-
cess (WCDMA), the High Speed Packet Access (HSPA), the Evolved High
Speed Packet Access (HSPA+), the Dual Cell HSDPA (DC-HSDPA), and the
Evolution-Data Optimized version of CDMA2000 (CDMA2000 EV-DO).
Nowadays 3G is the de-facto minimum requirement for using a smart-
phone, it can support transfer speeds from 2Mbps and up to 14.4Mbps.

The 4G technology is based on the standards such as Long Term Evol-
ution (LTE), and Worldwide Operability for Microwave Access (WiMax).
4G promises data transmission from 10Mbps up to 1Gbs. 4G promises
higher data rates and expanded multimedia services, higher quality of ser-
vice (QoS) and higher security

The 5G technology is not specified yet, and it is still in planning phase.
It is is expected to have much higher network capacity and to provide mul-
tiple giga-bits per-second data rate for mobile users. It is also expected that
5G technology to operate in a very large bandwidth( multiple giga hertz)
and to provide all_IP based model for wireless and mobile networks inter-
operability.[42]

Table 2.1 lists the generations of cellular mobile networks from 1G to 5G,
with a brief information such as definition, Speed, technology, and some
features about them.

6



Generation Definition Speed Technology Features
1G Analog 2.4Kbps AMPS,NMT,TACS Voice only , no

data service,
Limited Capacity,
poor availability

2G Digital signals,
Circuit data

14.4
kbps

TDMA,CDMA,GSM Voice and short
text, better qual-
ity and capacity

2.5G Digital, Packet
data

Up to
48kbps

EDGE,GPRS Voice, data, email
and web brows-
ing

3G Digital,Broadband,
Packet data

Up to
2Mbps

IMT2000,FDMA,
UMTS,CDMA2000,
EV-DO

Voice, data,
MMS, video
streaming, smart
phones

3.5G Packet data Up to
14.4Mbps

HSDPA,HSUPA,
HSPA+, DC-HSDPA

Voice, data, video
and TV steaming
, interconnectiv-
ity

4G Digital,Broadband,
Packe data, All
IP Network

Up to
1Gbps

WiMAX,LTE, Wi-Fi Voice, data,
video, Higher
Definition qual-
ity

5G Not yet Multiple
Gbps

Not yet Higher speed,
efficient use of
bandwidth, sup-
port for Wireless
World Wide Web
(WWWW)

Table 2.1: Generations of Cellular mobile networks

2.1.1.1 UMTS networks (3G)

The UMTS network uses Wideband CDMA (WCDMA) [1] to carry the ra-
dio transmissions and often the system is referred by the name WCDMA.
The UMTS employs a 5 MHz channel bandwidth and is designed for both,
voice and the Internet data, compared to GSM networks which can only
transmit voice. The UMTS network is compatible with 2G network and
it can support multiple networks such as GSM, GPRS, EDGE, WCDMA,
HSPA and the enhanced versions of them.

As shown in Figure 1.2 in chapter 1, the UMTS network is divided
into two main components [8]: The Radio Access Network (RAN)
and The Cor Network (CN), each consists of different components
and functionalists.The RAN part is responsible for radio signal related
functionality of calls, where the CN part is responsible for switching,
routing and connecting to Internet.The RAN component of UMTS network

7



consists of the following elements:

• User Equipment (UE) e.g a mobile-phone, tablets and etc, links the
mobile user to the radio interface.

• Node B is the term used to denote the base station transceiver. It
consists of both transmitter and receiver for communicating with an
user equipment (UE).

• Radio Network Controller(RNC) is responsible for controlling the
Node base stations that are connected to it, RNC is also responsible
for the encryption/decryption of user data sent from or to a User
Equipment (UE). it is connected to the Serving GPRS Support Node
(SGSN) in the Packet Switched element of the Core Network.

The CN component of UMTS network consists of two elements:

• Serving GPRS Support Node (SGSN) is responsible for delivering
data packets from and to a Node base station in its geographical area.
In addition, it is responsible for mobility and session management,
for packet routing and transfer, authentication and billing functions.

• Gateway GPRS Support Node (GSSN) is the central element in a
UTMS packet switched network. It is actually the link between Radio
Network Controller (RNC) and external packet switched networks.
Thus GSSN is like a sophisticated router that connects mobile
networks to the Internet. In operation, when the GGSN receives
data addressed to a specific user, it first checks if user is active, then
forwards data to SGSN for that particular UE.

2.1.1.2 UMTS Enhanced technologies

There are several evolutionary technologies for UMTS based 3G networks
which provide a higher data transfer speed [9]:

• 3.5G, High Speed Download Packet Access (HSDPA) is a packet
based data service in WCDMA downlink with data transmission up
to 10 Mbps, it operates over a 5MHz bandwidth..

• 3,75G, High speed Uplink Packet Access (HSUPA) is the uplink
evolution technology in UMTS/WCDMA. It boost the uplink up to
5.74Mbps.

• Evolved HSPA (HSPA+) provides data rates up to 42Mbps in the
downlink and up to 11 Mbps in the uplink, each link operates over
5MHz bandwidth.

• High Speed Packet Access (HSPA) HSPA is combination of HSUPA
and HSDPA for both downlink and uplink speed enhancement.

8



• Dual Carriers/Dual Channels HSPA (DC-HSDA) is a Dual Channel
form of HSPA+ that provides a greater downlink and uplink by using
two 5MHz bandwidth spectrum in parallel instead of one. It provides
data rates up to 42Mbps in downlink direction and 5.8Mbps in uplink
direction.

2.1.1.3 Resiver Signal Strength Indicator (RSSI)

In a wireless networking environment the Receiver Signal Strength Indic-
ator (RSSI) is a measure of the strength of the current radio signals received
by the mobile equipments antenna. [31, 44]. RSSI can be used internally by
the wireless networking card to indicate the power level being received by
the user equipment’s antenna which determines when a packet of informa-
tion is ready to be sent. RSSI may be measured in mW (Milli-Watts) or dBm
(Decibel-Milliwatts).

There is no standardization of RSSI parameters, Different producers
providing the wireless networking cards and chipset have their own
definition for the range of actual power and the range of minimum to
maximum RSSI value (0 - RSSI_MAX). The higher the number, the better
the signal. The exact number vary between cellular carriers. However , -40
dBm to -70 dBm usually indicates an excellent coverage area to the mode.

2.1.2 Ec / Io

The Ec/Io or the noise ratio is a measure of the quality of the signal from
the tower to the modem and indicates the signal to noise ratio. The Ec/Io is
the ratio of the received/good energy to the interference/bad energy, and
it is measured in decibels (dB). If there is no noise level, so the Ec/I0 equals
0. Once the Ec/Io is below -5dB, it means that your connection is going
to suffer. Several factors such as power suppliers, bad cabling, trees, hills,
building, walls, wrong antenna polarization, and congestion at the power
can cause a higher Ec/Io value.

2.1.2.1 Cell ID (CID) and Local Area Code (LAC)

A cellular network is a combination of overlapping small geographic
areas/cells to coverage the bandwidth for a mobile user. In a UMTS net-
work Cell ID (CID) is a unique number to identify each NodeBs. In UMTS
and LTE networks a valid CID has a value range from 0 to 268435455. [6]

A local area is a set of NodeBs overlapping at their edge to optimize the
signaling. In UMTS networks, multiple NodeBs are managed by a Radio
Access Controller (RAN). A local Area Code (LAC) is a unique number
to identify each local areal. Since there are large number of local areas,
changing the location from one local area to another one, requires a mobile
node to update it’s network provider frequently.

9



2.1.2.2 UMTS channels structure

Th UMTS channels are categorized into three channels: [1]:

• Logical channels is responsible for defining the ways to transfer data,
and what is transferred.

• Transport channels in corporation with logical channels to define
how to transfer data.

• physical channels is responsible for carrying the payload data and
controls the physical characteristics of the signal.

The transport channels are involved in how to transfer data, they
consist of the following channels:

• Dedicated Transport channel (DCH) This is used to transfer data to
a particular UE, which each UE has it’s own DCH for both download
and upload links.

• Broadcast channel (BCH) broadcast information to the UE in the cell
in order to enable UE to identify the network and the cell.

• Forward Access Channel (FACH) carries data to the UEs that already
are registered in the system, an UE can have more than one FACH per
cell to carry data packets.

• Paging channel (PCH) alerts the UE for incoming calls, SMS, data
sessions and etc.

• Random Access Channel (RACH) carries requests for services from
an UE trying to access the system.

• Uplink Common Packet Channel (CPCH) is responsible for enabling
additional capability beyond that of the RACH for an EU.

• Downlink Shared Channel (DSCH) for sharing among several users
for large data such as data from web browsing etc.

2.1.2.3 UMTS handover

The RNC element of the RAN makes decisions about handover by monit-
oring continually the information about the signals being received by both
the UE and the NodeB, when a specific link is below a given level and a
better radio signal is available, it initiates a handover. The UE in this mon-
itoring process is involved by measuring the Received Signal Code Power
(RSCP) and Received Signal Strength Indicator (RSSI) and returns the in-
formation to Node A and then to RNC.

For any communication between the UE and the Internet in a cellular
network such as UMTS networks, and before the transmission of any data,
a user equipment (EU) has to attach itself to the network and establish a

10



Packet Data Protocol (PDP) context with the Gateway GPRS Service Node
(GGSN). The PDP context contains information about the user’s session
and the IP address. When the PDP context is successfully established, the
state of Radio Resource Controller (RRC) is checked by Radio Network
Controller (RNC), so RNC assigns a shared (low bit rate) or a dedicated
(high bit rate) radio channel for the user depending on the user’s data
traffic, thus RRC sets different state for the user equipment. [8]:

• CELL_PCH state if the user is not sending any data.

• CELL_FACH state when the user needs shared channel.

• CELL_DCH state when the user needs high bit rate channel.

The Core Network (CN) component of UMTS networks is responsible
for routing of data traffic, and uses a hierarchical structure for both internal
and external networks including the Internet. It uses GTP (GPRS Tunneling
Protocol) when it works with TCP/IP to external networks and the Internet
since all traffic goes through the GGSN which also known as ingress points.

In cellular networks the BTSs/NodeBs are widely distributed in order
to provide a good radio signal coverage for mobile users, whereas the
network carriers and service providers have a small number of GGSNs,
each covering different size of geographical regions.

2.1.3 LTE Networks (4G)

The fourth generation of cellular networks, became available in 2010, is
basically the extension to the 3G technologies with wider bandwidth and
more services than 3G technologies. 4G offers new frequency bands, new
transmission technology and with no backwards compatible. The 4G net-
work is also known as all-IP packets switching network, multi-carrier
transmission support, and ultra high speed. It uses a scalable channel
bandwidths of 5–20 MHz, optionally up to 40 MHz.

The LTE 4G [9, 15] is expected to provide 100Mbps communication
for mobiles users, and up to 1Gbs over fixed stations. It consists two
fundamental componenets as depicted in Figure 2.1: The Evolved Radio
Access Network (eRan) and the Evolved Packet Core (EPC).

The Evolved Radio Access Network (eRAN) is responsible for radio
communication between eNodeB and Evolved Packet Core (EPC). It has
no controller component like BSC in 2G or RNC in 3G UMTS networks. It
consists of two elements [46]:

• UE is the User equipment such as smartphones, tablets and etc, it
links the mobile user to the radio interface.

• eNode B in LTE MBB networks is directly connected to the network
routers. there is no more intermediate controller as BSC in 2G, or

11



Figure 2.1: The simplified LTE Network Infrastructure

RNC in 3G. The architecture of LTE networks is simpler than the pre-
vious MBB networks, which means simplified network operation that
provides better performance over the radio access interface by de-
creasing data transmission latency.

The Evolved Packet Core (EPC) is responsible for packet switching,
routing and connection to external and Internal networks, and also to the
Internet. It consists of the following elements:

• Serving Gateway (SGW) acts as a router between eNodeBs and
PDNGW. Data packets are routed through this point from and to
eNodeBs.

• Packet Data Network Gateway (PDNGW) communicates with
external networks and the Internet. PDN GW has the same role as
Serving GPRS Supporting Node (SGSN) in UMTS networks.

• Mobility Management Entity (MME) controls plane functions such
as user authentication, user session, tracking area update. MME is
linked to HSS which records the user subscription information in a
database.

In Cellular Networks, when a user equipment (UE) moves from one
cell to another cell and performs the cell selection or cell reselection and
performs the handover, it needs to measure the signal strength and quality
of all neighbor cells. In LTE networks, the user equipment has to measure
two parameters related to the radio signals:

• RSRP (Reference Signal Received Power) It measures the average
received power over the resource elements that carry reference
signals in the certain frequency bandwidth of a specific cell.

• RSRQ (Reference Signal Received Quality): It indicates the quality
of received reference signal.

• RSSI (Reference Signal Strength Indicator): It measures the average
total received power observed by the the UE, and indicates the power
from serving and non-serving cells, adjacent channel interference, etc.

12



RSRP is an RSSI type measurements and it is applicable in both
RRC_Idle and RRC_connected modes in the procedure of cell selection or
cell reselection, whereas RSRQ is only used in RRC_Idle mode. The RSRQ
provides additional information when the RSRP is not sufficient to make a
reliable decision for cell reselection or handover.

2.2 Interdomain connectivity

The end-to-end path in the routing data traffic can also be affected by how
ASs and service providers are have relationship or peering as is depicted in
Figure 2.2. A client request for Internet content can take a longer path due
to the agreements between them [13].

Figure 2.2: The cellular Network Core layout

2.2.1 Autonomous System Number (ASN)

An AS (Autonomous System) is a group of IP networks operated by one or
more network operator(s) which has a single external routing policy. ASes
use Exterior Routing Protocol such as the Exterior Gateway Protocol (EGP)
to exchange routing information between them.

A public AS has a unique and global number (ASN), associated with it.
So this number as an identifier of AS, is used for the exchange of exterior
routing information between neighbor ASes. There are two types of ASNs:
public ASN, and private ASN.

A public ASN is needed only when a AS is exchanging routing
information with other ASes on the Internet, thus all routes belong to
the AS are visible on the Internet. A private AS is used only if an
AS communicates via the Broad Gateway Protocol (BGP) with a single
provider, in this case the routing policy will not be visible on the Internet.

The carrier networks such as Telenor has the public ASN 2119, where
as Netcom has the public ASN 12929.

13



2.3 NorNet Research Testbed

NorNet is an open, large scale and multi-homed Internet testbed distrib-
uted geographically across various locations. NorNet is built and operated
by the Simula Research Laboratory and it is funded by the Research Coun-
cil of Norway.[17]

NorNet provides researchers a programmable testbed for doing their
measurements and experimental networking research [45]. The key ele-
ment of NorNet testbed is to provide a real-world Internet testbed for re-
search on Clouds, networking and MBB networks . Nowadays more and
more applications rely on Internet connectivity, and the current Internet
conductivities are not as robust as the should be. In order to provide a
robust Internet connectivity and to make networks more robust, it is ne-
cessary that networks should be equipped by redundancy and multi-path
transport. This idea was the motivation of building a multi-homing net-
work which is connected to multiple Internet Service Providers(ISPs) sim-
ultaneously, and using different access technologies. NorNet consists of
two components: NorNet Core and NorNet Edge.

NorNet Core [16, 19] is the wired part of NorNet [21]. Currently, it con-
sists of 14 programmable sites which 11 sites of them is distributed over all
parts of the country of Norway, one site is placed in Essen of Germany, one
site is located in Karlstad of Sweden and one site is located in Hainan of
China. Each site has at least two Internet connections which are connected
to different Internet Service Providers.

NorNed Edge is the second part and also the complementary part of the
NorNet testbed. It provides a dedicated infrastructure for measurements
and experiments in Mobile Broadband Networks (MBB networks)[29].
NorNet Edge has the following features:

• Currently, NorNet Edge consists of more than 100 measurement
nodes which together provide an entire networking.

• It is distributed nation-wide across various locations in Norway
which includes major cities and even remote islands.

• Each Node is powered by a fully programmable computer running a
standard Linux distribution for maintaining and conducting experi-
ments.

• Each node has often access to wired and wireless networks and is
connected to at least two MBB networks with different Internet access
technologies such as 3G and up to 4G.

• Networking tools and programs are installed on each Nodes which
provides meta data information such as cell ID, connection mode, and
radio signal conditions.

14



Figure 2.3: An overview of NorNet Edge infrastructure

2.3.1 NorNet Edge architecture

The NorNed Edge [29] consists of two main components: a large
set of nodes (over 100 nodes) running a standard Linux Distribution,
and a central backend-system consists of a set of servers responsible
for management, configuration, monitoring, deploying nodes and for
visualization of the status of nodes. Another task the backend-system
doing is to managing the experiments and measurements on nodes. Both
components are described in more details in sections [ 2.3.1.1] and [2.3.1.2].

2.3.1.1 NorNet Edge node (UFO-board)

Fig 2.6 shows an NNE UFO-board which is connected to up to four USB
modems. An UFO-board consists of the following componenets and tools:

1. A Samsung S5PV210 Cortex A8 which has 1 GHz processor, 512 MB
RAM, 512 NAND flash memory, 16 GB SD card storage, it also has
one fast Ethernet port and 7 USB ports.

2. Each NNE node is powered by a Linux Debian distribution with a
3.11.x kernel as its operative system.

3. The UFO-board also has 1-4 UMTS modems for providing up to 4G
Internet connections. All UMTS modes are of type Huawei E353-u2
3G modems and they supports GSM technology up to HSPA+ (3.75
G) and LTE (4G). One advantage of this kind of modems is that they
can collect and report meta-data on network connection mode and
submode, cell ID and signal strength.

4. In addition to UMTS modems, each NNE node is equipped by
1 CDMA modem which is of type EV-DO modems. It provides
connection to Ice which operates in a different Frequency Band (450
MHz).

5. One WLAN is optionally available for some NNE nodes which is
useful to provide Wi-Fi connections in nodes or to turn nodes to Wi-Fi
access points for Internet connections by using MBB connections.

15



6. NNE nodes are equipped with a set of tools and programs, which
provides developers and researchers easy access to nodes, uploading
files, performing some operation to conduct measurements and to
collect data about the state of MBB connections. The following tools
and applications are installed on all NNE nodes:

• SSH: the secure shell (SSH) used for accessing the NNE nodes
remotely from other hosts or servers.

• MULTI: is a command line network manager with multi-
homing functionality which configures routing tables when
multiple interfaces are running in parallel.

• usbmodem-listner: is a daemon program written in Python
which is responsible for modem management, cellular connec-
tion management, metadata management.

Figure 2.4: NorNed Edge UFO-board with four USB modems

2.3.1.2 Backend system

The backend system as stated before, consists of a set of servers in order
to maintain nodes and to visualize the status on nodes in order to monitor
them. Figure 2.5 shows an overview of the backend system and it’s com-
ponents used in NorNet Edge.

• Puppet is an open source configuration management utility [30],
is used for managing, updating and maintaining the NNE nodes.
It is useful for developers and researchers to control and manage
servers/nodes centrally from a single server.

16



Figure 2.5: NorNet Edge Backend [29]

• Icinga [24] is an open source network and computer system mon-
itoring application.It is a fork of the Nagios[33] system monitoring
application developed in 2009. It is commonly used for visualiza-
tion the service status, network maps, reports, logs of hosts. In the
NorNet Edge system backend Icinga reports the status of the node’s
resources such as disk-space, CPU-Usage,Memory and etc.

• Mysql Database [2] is most widely used as open-source rela-
tional database management system(RDBMS). It contains informa-
tion about NNE nodes like location, address,contact person, and ad-
ministrative messages. In addition it records data collected from
measurement experiments.

• Version control records changes to the source code and files of
measurement applications and other software over time.

• Repository and deploying server is interactively connected to the
Version control and Puppetmaster server . It retrieves new versions
of measurement applications, new packages and other software from
the Version control, then the Puppetmaster deploy it on the relevant
NNE nodes.

• Data collector Inserts the collected measurement data from NNE
nodes into Mysql database. The data collector can also perform

17



some analytical operations on the collected data before saving them
in database.

• Measurements server runs the measurements need to be run actively
from the serverside. Although from the Measurement server, other
experiments can be run remotely on the Internet.

• Virtualization of NNE nodes Figure 2.6 shows the screen-shot of the
website, created by NorNet project, for visualization the real-time
status information of all NNE nodes including the status of MBB con-
nections of each node. A node may consist of several operators which
can be filtered by choosing a special operator for displaying the status
information of it. The status of the MBB networks related to each
nodes can be displayed in different collors e.g. red color means the
connections is unavailable.
The visualization website provides researchers and experimenters to
get a realtime information on their network and measurement nodes.
In addition, it shows the performance of different MBB operators that
can be a good point for individuals that are interested in assessing
and comparing the performance of different MBB operators.

Figure 2.6: Screenshut of NorNet Edge Visualization website [39]

2.4 Measurement Tools

This section gives a description on protocols and utilities used for
conducting the experiments, discovering and measuring the Network
topology and routing of a cellular network.

18



2.4.1 ICMP

ICMP is a fundamental part of the TCP/IP protocol suite, which operates
in the Internet layer of TCP/IP. ICMP is widely used in the Internet to dia-
gnose and detect the network problems. ICMP sends a message notific-
ation known as ICMP error message to inform that the network devices
about a detected failure, for example, while a network’s router detects a
network problem under forwarding an IP packet, it will usually sends an
ICMP error massage to the source of packet to inform it a network prob-
lem is happening. it will also send an ICMP error massage when a host or
server is not available or could not be reached in the internet.[25].

Contrary to the transport protocols such as TCP and UDP protocols,
ICMP is not used for transferring data between end-points. All ICMP mes-
sages are contained in a standard IP packet. Each ICMP packet uses 8 bytes
of IP header and different size of payload in order to send ICMP messages.
The ICMP header is divided into type, code and checksum. [20]

ICMP generates many messages which are identified by "type" field
which is a digit. some of known messages are as below:

• Echo reply (type: 0)

• Time exceeded (type: 11)

• Destination unreachable (type: 3)

Many of these ICMP types have digit "code" fields e.g. some of the
"code" fields of "Destination unreachable" are:

• code 0: Net Unreachable

• code 1: Host Unreachable

• code 2: Protocol Unreachable

• code 3: Port Unreachable

• code 6: Destination Network Unknown

• code 7: Destination Host Unknown

ICMP has no authentication method, thus it may be used by attackers
in order to perform som attacks such as Denial of Service(Dos), Ping flood,
Ping of death, and ICMP tunneling.

2.4.2 Ping

Ping is a networking utility written by Mark Muuss in 1983, which is used
by network and system administrators to determine whether or not a spe-
cific host/server is accessible over Internet protocol. Ping is an ICMP based

19



tool and works by sending a packet(s) from a source address to a destina-
tion address and waiting for a reply, if the destination address was able to
send back a response at a specified time out, it means that the host is avail-
able. It is freely available in all Unix/Linux and Windows systems. It helps
to troubleshooting networking issues.

Ping [26] may also be used for calculating the lost rate of packets and for
testing the latency/delay time which is known as Round Trip Time (RTT)
in communication between two hosts. Ping can be issued by predefining
the network interface e.g. (-I eth0), IP address, the number of bytes e.g. (-s
1400), the number of packets e.g. (-c 3), time to live and etc from a host.

Since Ping is an ICMP based tool, and due to ICMP vulnerabilities
which it may be used by attackers, some operating systems, routers and
firewalls may filter or restrict Ping, which results in efficiency reduction of
using Ping by network operators.

2.4.3 Traceroute

Traceroute is a networking utility, written by Van Jacobson[10], that traces
packets from a computer to a host over Internet and discover the route that
packet travel through to their destination. The Traceroute output shows
how many hops the packet requires to reach the host and how long each
hop takes. Traceroute is widely used by network operators to troubleshoot-
ing network problems such as routing failure, routing misconfiguration
and network latency [7].

Traceroute [26] works by sending a sequence of three User Datagram
Protocol (UDP) packets to an invalid port address at the host remote host,
each UPD has a Time To live (TTL) field value set to one. The TTL value of
one causes the datagram to timeout when it reaches the first router through
the path, thus the router replies with an ICMP Time Exceeded Message
(TEM) indicating that the datagram has been expired. Another Three UDP
packets is sent again, each with a TTL value set to two, which causes the
second router in path replies with an ICMP Time Exceeded Message (TEM)
message is occurred by the first sequence of UDP packets. This process
continues until the packet reaches the actual destination host, since these
UDP packets are trying to access an invalid port address at the destination
host, an ICMP Unreachable message is returned by destination host indic-
ating that the port is unreachable, which terminates the Traceroute program
is finished. The Round-Trip-Times (RTT) of the packets received from the
successive host on the routing path is recorded in milliseconds; the sum of
the mean times in each hop indicates the total time used to establish the
connection.

Recording the source of each ICMP Time Exceeded Message provides
a trace the packet took in order to reach the destination host. Traceroute
can be issued with "-m" option up to 255 hops in Traceroute command.

20



The default number of packets is set to four which can be changed by "-q"
option e.g. (-q 10). In order to specify the network interface, the "-i" option
e.g (-i eth0) can be used.

Traceroute has some backdraws and limitations as [22]:

• Traceroute is not able to discover backward path which is knows
as Unidirectional, the path from destination host to the source host,
which is different from the path from host to destination.

• Traceroute is not able to avoid the Internet path loadbalancing in
routers, which many be done by ISPs in order to increase performance
of their network. This issue may result in discovering false links by
Traceroute.[43]

• A large number of Traceroute probes to the same network interface
may lead to an issue known as redundancy in which the router
consider the Traceroute probes as Denial of Service (Dos) attack.

• Traceroute is not able to reveal hidden routers such as Multiprotocol
LabeL Switching (MPLS). [14]

• Some routers restricted the Traceroute probes and they reply with a
limited number of ICMPs e.g only one ICMP message per second,
thus Traceroute is not able to discover this kind of routers known as
Anonymous Routers, therefor Traceroute displays a asterisk "*" in the
output.

A list of characters whit the description of them is shown in Table 2.2

Character Description
For each node, the round-trip time in milliseconds for the
specified number of probes

* The probe timed out
A Administratively prohibited (example, access-list)
Q Source quench (destination too busy)
I User interrupted test
U Port unreachable
H Host unreachable
N Network unreachable
P Protocol Unreachable
T Timeout
? Unknown packet type

Table 2.2: Lists of characters and description that can appear in the
traceroute output

2.4.4 Nslookup

Nslookup is networking tool for querying the Domain Name System (DNS)
to obtain domain name, or mapping IP-address and any other specific

21



DNS records. Nslookup is used by network and system administrators
to troubleshoot and DNS related problems.Following DNS records can be
queried by Nslookup:

• IP address (A record): displays the IP-address of the DNS server for
a given domain name.

• name server (NS record): it maps the domain name to a list of DNS
servers authoritative for that domain, which means that it provides
the name servers which are associated to a given domain name.

• mail exchange (MX record): obtains a list of mail exchange server for
a given domain name.

• Start of authority (SOA record): provides information such as the
authoritative information about the domain, the mail address of the
domain admin, and the serial number of domain.

2.4.5 Curl

Curl [40] is a network application used in command line for transferring
data with URL syntax for instance to transmit and receive HTTP requests
and responses. Curl is free and open software that compiles and run un-
der variety of operative systems such as Linux distributions, Mac OS X and
Microsoft Windows.

It supports protocols such as DICT, FILE, FTP, FTPS, Gopher, HTTP, HT-
TPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP,
SMB, SMTP, SMTPS, Telnet and TFTP.

curl supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading,
HTTP form based upload, proxies, HTTP/2, cookies, user+password au-
thentication (Basic, Plain, Digest, CRAM-MD5, NTLM, Negotiate and Ker-
beros), file transfer resume, proxy tunneling.

Curl offers proxy support, user authentication, ftp upload, HTTP-Post,
HTTP-GET, SSL connection, cookies, file transfer resuming and etc. Curl
has around 150 flags and options that can be used for issuing commands on
a remote host, for instance with "-I" sends a head request to an URL address
on Internet, "-v" or verbose option shows the header request information,
"-s" option silences the Curl’s progress output, with "-o" followed by path
to a file, it redirects the output to file.

There are several available variables can be used with Curl command
in order to customize the output from response headers are as following
[41]:

• http_code : A numerical code obtained from last retrieved HTTP(s)
page.

22



• time_pretransfer: The time in seconds it took from the start until the
file begins to be transferred.

• time_starttransfer: The time in seconds it took from the start until the
first byte is just about to be transferred.

• time_connect: The time in seconds Curl took from start until the
connection to the remote host was completed.

• time_total: The total time in seconds,which displayed in millisecond
resolution, that full operation lasted.

• redirect_url: It will show the actual URL a redirect would take to
when the option "-L" is not used in the HTTP request.

• url_effective: The URL that was obtained last.

• size_download: The total amount of bytes that were downloaded.

• size_request: The total size of bytes that were sent in HTTP request.

• speed_download:The average download speed measured by Curl to
complete download.

• num_redirects: Number of redirects that followed in the request.

2.4.6 Whois

Whois [11]is a query/response protocol which is widely used for query
databases that hold information about Internet resources such as Autonom-
ous System Number (ASN), domain names, IP addresses allocations and
etc. It is used by network and system administrators and Internet operat-
ors to discover and reveal individuals or entities responsible for network
operations on the Internet. [12]

Whois protocol was first described by Ken Harrenstein and Vice White
in 1982. The latest and most significant update of Whois protocol was pub-
lished in 2004. It has both web-based and commandline services . It oper-
ates via the communication between a Whois server and a Whios client. A
Whois server listens on TCP port 43 for requests from Whois clients. The
Whois client sends a text request to the Whois server and the Whios server
replies with text content. The Whois server terminates its connection when
the output is received by the client.

Whois is a simple protocol without any authentication mechanism
between the end-points, and the output structure is not user-friendly which
transform it to one of the complex protocols to work with.

23



2.5 Related work

A research by Dziugas Baltrunas et al [8] measured the reliability of MBB
networks in Norway using NorNet Edge infrastructure with dedicated
nodes. They used end-to-end measurements in order to identify reliabil-
ity, failures and performance problem of different operators. Their results
showed that networks differ in connections stability, packet loss patterns,
ability to support applications.

A study by Kiriakos Zarifis et al [4] provided the taxonomy of causes for
path inflation of mobile client traffic in the USA. They used a dataset collec-
ted from mobile devices subscribed by four major carrier’s in the USA.They
identified the reasons behind the causes and quantified them based on their
impacts. Their study showed that lack of carrier’s ingress points or lack of pro-
vider peering points can cause lengthy latency in mobile traffic. Although
they had found that evolving the carrier’s and provider’s topology would
improve the routing.

Another research done by John P.Rule et al[3] on celluar DNS for con-
tent replica selection in 4G networks. They measurement dataset gathered
from mobile devices using four major USA’s carriers and two other carriers
from South Korea. Their work showed that due to cellular DNS’s poor loc-
alization, using the public DNS has equal or even better performance over
75% of the time.

This study differs from the previous studies in combining all major
factors that influence the performance of web content over cellular mobile
networks. Several factors such as the last-mile radio, the network topology,
the routing path and DNS resolvers will be studied through this work. The
experiments will be performed using the NorNet testbed with dedicated
nodes of 5 major network carriers and service providers in the country of
Norway.

24



Chapter 3

Methodology and Approach

This chapter explains measurement setup, measurement procedure, data
collection, and the assumption and limitations in experiments and meas-
urements to achieve the final goal.

3.1 Objectives

As mentioned in chapter 1, this work aims to study the performance of the
content deliver over three Mobile Broadband networks (MBB networks) in
Norway using NorNet Edge testbed. In the experiments, the last-mile radio
signals, the ingress point of MBB networks, and the path inflation types are
studied and evaluated in order to compare the performance of three major
MBB networks in Norway based on measurements.

3.2 Measurement setup

NorNet Edge (NNE) is flexible platform for measurements and experi-
ments in MBB networks is used to evaluate the properties of the network
interacted with the transport/application layer protocols in experiments.
NNE provides a large number of nodes distributed geographically and
connected to multiple MBB networks.

There are two mobile broadband operators Telenor and Netcom in Nor-
way used for carrying out the measurements in this study.Both Telenor and
Netcom are operating on their own Radio Access Network (RAN) with
nation-wide coverage. Telenor and Netcom have 2G, 3G, and 4G cover-
age nation-wide in Norway.

The measurements are carried out using 16 NNE nodes distributed
in different geographical regions over Norway, as depicted in Figure 3.1.
NNE nodes were chosen from different places in Norway to simulating
the nation-wide coverage of MBB networks. NNE nodes are connected
through modems to 1-3 MBB networks for accessing the Internet.

25



Figure 3.1: The NNE nodes deployed in measurements [34]

3.3 Measurement Procedure

The experiments will be carried out firstly by collecting appropriate data on
NNE nodes, later extracting desired data from collected data. The experi-
ments will be repeated for one week to collect data at different time periods
such as during ordinary days and nights, and in the weekend. Running ex-
periments in different periods of time gives more reliable data due to vari-
ous data traffic and radio signal conditions.

The measurements are carried out by sending different types of data
packets such as Ping, Traceroute, and HTTP request from NNE nodes to a
list of top 50 websites collected from Alexa.com ranking system categorized
in different regions across the world. Using vast numbers of end-to-end
points will give different routing path, network latency and connectivity,
and robust results.

26



3.4 Tools and scripting language

Python [36] is chosen as programming language to carry out the measure-
ments. Python is an open source interpreted programming language for
general purpose. It is a cross-platform and object oriented programming
language which has a large and comprehensive standard library especially
for developing scripts relevant to network and system administration. .

Matplotlib[23] is an open source plotting library written by John D.
Hunter. Matplotlib can be used in Python scripts, web application servers
and graphical user interface toolkits. It allows students and researchers to
visualize mathematical functions, numerical data and signal processing.

The networking tools such as Ping, Traceroute, Curl, and Whois were
described in chapter 1, are used in the Python scripts and with the
measurements.

3.5 Collecting and recording data

Five Python scripts are developed and deployed on NNE nodes which are
as following:

3.5.1 Httpfetcher.py

This script are executed on NNE nodes by accepting two arguments (the
measurement instance id and the network interface) to specify which MBB
connection it should run. There are more than one MBB connections on
NNE nodes, so the script runs for all MBB connections by specifying their
network interface. The script runs in an infinite loop until 7 days, it sends
HTTP_GET request to the index file of the top 50 websites ranked in Al-
exa.com [5] and records the output in separated files, then export them to
the database. It carries out the following operations for each of the top 50
websites from each MBB connections on the nodes:

1. assign a dedicated radio transport channel for the MBB connection,
specified in the argument, by sending a Ping request packet of size
1500 bytes.

2. run the "nne-query-metadata" program for gathering the metadata
information for that MBB connection.

3. send the HTTP request to that website.

4. run again the "nne-query-metadata" program for gathering the
metadata information for that MBB connection.

5. record the metadata information and the HTTP response in a
temporary file located in "/tmp" folder.

27



6. run the operations 1-5 were repeated for all the top 50 websites.

The httpfetcher.py script generates an output of 46 columns in database
which contains two type metrics: the metadata metrics on nodes and the
HTTP_Get metrics when access to the web content of the top 50 websites.
Some examples of the columns from both metrics are represented here:

Metadata metrics
The metadata data information contains several metrics related to the last-
mile radio when NNE nodes accessing the content on the Internet. Among
these metrics:

• node_id: The nodes identification number.

• network_id: The operators identification number.

• ma_mode: The connection mode (3G,4G).

• ma_rssi: This column is the Arbitrary Strength Unit (ASU) as an
integer value proportional to the RSSI value measured on NNE nodes
from the metadata collector.It will be converted to dBm in order to get
The radio signal strength indicator (RSSI).

• ma_rsrp: The Reference Signal Received Power, The average received
power of a single resource element.

• ma_ecio: The Ec/Io or the noise ratio is a measure of the quality of
the signal from the tower to the modem and indicates the signal to
noise ratio.

• ma_rsrq: The Reference Signal Received Quality.

• ma_rscp: The Received Signal Code Power, the power measured by a
receiver on a user equipment. It is the sum of RSSI and Ec/No, both
values in dBm.

HTTP GET metrics

It contains information on the HTTP performance when accessing a
web content on the MBB networks from NNE nodes. The response to HTTP
request from the service providers server contains the following HTTP
parameters collected in Curl measurements which described in chapter 2:

• c_cite: The top 50 websites.

• c_http_code: The HTTP code in HTTP Get request.

• c_t_connect: The amount of time in seconds for connect to the content
providers server. It is the time to connect is the time to establish the
TCP connection to the content provider’s server by sending HTTP
Get request from NNE nodes, it occurs after the DNS lookup for
mapping the IP address to domain name is performed.

28



• c_t_starttransfer: The amount of time in seconds to start to transfer
the first byte from the content provider’s server. It is the time to start
transferring the first byte of the requested resource from the nodes.
The time to start the first byte takes in place after the DNS lookup
and the end-to-end connection is established.

A sample of the httpfetcher.py output recorded in database is shown in
Table 3.1:

node_id net-
work_id

ma_mode ma_rssi c_site c_http_code
c_t_connect

c_t_starttransfer

321 2 5 15 bing.com 200 0.169 0.601
424 1 6 19 ask.com 200 0.891 1.484
452 2 5 10 gooogle.com 200 0.116 0.603
465 1 6 15 apple.com 200 0.163 0.6
582 1 6 15 msn.com 200 0.385 0.84
599 3 6 26 yahoo.com 200 0.223 1.027
645 1 6 14 163.com 200 0.109 0.494
702 3 6 31 youtube.com 200 0.135 1.28
706 3 6 17 twitter.com 200 0 0.268
707 3 6 25 qq.com 200 0.125 0. 56

Table 3.1: Sample data collected in Curl measurements recorded in
database.

3.5.2 Traceroute.py

This script are executed on NNE nodes by accepting three arguments (the
cell identification number, the network interface for MBB connection, and
the time-sleep value). The script records information about the hops and
time spent to reach each hop in the routing path between the NNE nodes
and the service providers (top 50 websites) in files, then exports the data to
a database. The script run in an infinite loop until one week, for performing
the following operations:

1. start with the first website listed in top 50 websites.

2. run traceroute program by sending 10 packets to the website.

3. record result in a temporary file (the name of files is a combination of
the measurements instance_Id and timestamp) located under "/tmp"
folder.

4. run the operations 1-3 for all top 50 websites.

The website robustenett.no [39] is used to map each NNE node to it’s
geographic location, MBB operator and measurements identification. Thus

29



before extracting and logging the result into database, this metrics are ad-
ded to each measurements and then saved in database.

Table 3.2 shows a sample of the Traceroute measurements recorded in
database :

M_Id Node Region ISP website ASN_occurr IngDely ProvDelay
6528 582 Oslo Telenor google.com "2119": 4,

"224": 1
39.207 15.475

6528 582 Oslo Telenor adcash.com "2119": 5,
"15169": 11

19.772 158.609

6528 582 Oslo Telenor youtube.com "2119": 4,
"224": 1

28.182 24.183

6528 582 Oslo Telenor facebook.com "2119": 5,
"32934": 7

39.746 150.044

6528 582 Oslo Telenor google.com "2119": 4,
"224": 1

32.333 37.76

6528 582 Oslo Telenor fc2.com "2119": 5,
"3257": 2,
"16509": 2

23.1 627.229

6528 582 Oslo Telenor msn.com "2119": 5,
"8075": 16

34.005 234.956

6528 582 Oslo Telenor bing.com "2119": 5,
"8075": 1

28.22 41.565

6528 582 Oslo Telenor blogspot.com "2119": 5,
"15169": 2

36.687 25.384

6528 582 Oslo Telenor imgur.com "2119": 5,
"3356": 1

37.865 37.346

Table 3.2: Sample data collected in the traceroute measurements and
recorded in database.

The following measurement parameter are collected by the traceroute.py
scripts on NNE nodes. Each raw in database table contains the following
metrics for traceroute measurements:

• M_Id: The measurements id which is unique number to identify the
measurement’s node and MBB operator.

• Node: The NNE nodes identification number.

• Region: The geographic location of NNE nodes.

• ISP: The MBB operator(s) on each Node (NNE are connected to
multiple MBB operators)

• Website: The web content provider from top 50 websites used in the
measurements.

30



• ASN_occurr: The Autonomous System Number of the IP addresses
in traceroute hops, and the occurrences of each IP-address.

• IngDelay (Ingress delay): The RTT time measured in milliseconds,
when the traceroute packet enters the ingress point of the MBB
operator.

• ProvDelay (content provider delay): The RTT time measured
in milliseconds, when the traceroute packet enters the content
provider’s network .

• All Hops: The IP address of all hops/routers through the Internet
path between end-to-end points ( the NNE nodes and the service
provider’s network).

• Hop’s RTT: The delay time of each hop in the Internet path between
endpoints.

3.5.3 Plots.py and Makeplots.py

The script plots.py implements the Matplotlib library and contains the
generic functions for creating bar charts, boxplots, and plots which accept
several parameters such as dataset, title, and labels for X and Y axises.

The script makeplots.py runs the functions written in plots.py to create
plots and graphs in order to visualizes the desired data for analysis.
The following graphs is chosen to be plotted from the extracted data in
measurements:

• The tables for statistics analysis of values such as min, max, mean,
median, standard deviation, 75 percentile, 95 percentile of results.

• The boxplots of RTT delays for each operators in different graphs.

• The Cumulative Density Function (CDF) of RTT delays fraction for
operators in one graph.

• The boxplots of the median values of the time to connect for nodes
using MBB connection for each operators in different graphs

• The boxplots of the median values of the time to start transfer the
first byte in web access to the content providers, for each operators in
different graphs.

• The Cumulative Density Function (CDF) of the time to connect ratio
to the time to start transfer for operators in one graph.

• The Table of the median values of the radio signal conditions, such as
RSSI, RSCP, Ec/Io, RSRP, and RSRQ.

31



3.5.4 Database.py and utils.py

The script database.py is used for creating database, tables, inserting data
into the tables, and reading records from the tables. The utils.py contains
the python functions/methods that can be reused in traceroute.py and
curl.py scripts.

32



Chapter 4

Results and Analysis

The chapter presents the results of the experiments and the analysis that
has been performed on the collected data.

As mentioned in chapter 3, the measurements carried out using NNE
Edge of Simula Laboratory were divided into two parts, thus there are two
set of measurement results as following:

• The Traceroute measurements consisted of and 101254 measurements
which were recorded in database. From these Traceroute measure-
ments in database, there were 50386 measurements for Telenor, and
39732 measurements for Netcom. Each traceroute measurement was
performed by running Traceroute command from a NNE node to-
wards one of the top 50 Alexa websites using a MBB connection (3G
and 4G) from Telenor or Netcom.

• The Curl measurements consisted of 1736364 measurements recor-
ded in database, 757832 measurements for Telenor and 396948 meas-
urements for Netcom. Each record in database consisted of both the
metadata information of the NNE nodes and the HTTP performance
metrics under accessing the web content from the nodes using Curl
command.

4.1 Ingress point placement

To determine the approximate location of the carrier’s ingress point, the IP
address of the first hop in the routing path was resolved using the Whois
command and mapped to the AS number and the owner of it. If the first
hop’s IP address was a private address e.g (10.0.0.0/24 or 192.168.0.0/24),
so the IP-address of the next hop was chosen as the public IP address of the
MBB operator and etc.

33



4.2 Network Delay

The Round-Trip-Time (RTT) value was measured in order to calculate the
network delay in two cases: from the NNE node to the ingress point (node-
to-ingress delay) and from the NNE node to the content provider ( end-to-
end delay).

For analyzing the network delay, it was chosen to group the NNE
nodes by their geographic regions in Bergen, Oslo, and Trondheim since
the impact of routing path between nodes and the content provider was of
interest in order to measure the delay caused by the routing path.

4.2.1 Node-to-ingress delay

In Telenor, it was observed that the median node-to-ingress delays for the
nodes located in Oslo was around 20 milliseconds, whereas for nodes loc-
ated in Trondheim and Bergen was around 30 milliseconds which is in-
creased 10 milliseconds compared to nodes in Oslo. The 75 percentile
of the node-to-ingress delays in all regions were distributed by 10 milli-
seconds ingress compared to the median values. The 95 percentile of delays
was equally and under 40 milliseconds distributed for nodes located in
Oslo and Bergen, whereas it was 10 milliseconds more for nodes located
in Trondheim as is shown in Table 4.1.

Region Min Max Mean Median Std 75 percentile 95 percentile
Bergen 20 100 30 30 10 40 40
Oslo 10 160 30 20 10 30 40
Trondheim 10 21 30 30 10 40 50

Table 4.1: Statistics calculation of node-to-ingress RTT delays in milli-
seconds (Telenor)

A slightly different results of min, max, mean, 75 and 95 percentile
of node-to-ingress delays was observed using Netcom connection. The
median of node-to-ingress delays for nodes in Oslo was around 20 milli-
seconds, whereas it was 30 milliseconds for nodes in Bergen and Trond-
heim.The 75 percentile of node-to-ingress delays for all regions was ob-
served equally and around 30 milliseconds. The 95 percentile of node-to-
ingress delays were distributed under 30 milliseconds for nodes in Oslo,
whereas it was 40 milliseconds for nodes in other regions as is shown in
Table 4.2. These results showed that the ingress point of both operators is
located in Oslo.

34



Region Min Max Mean Median Std 75 percentile 95 percentile
Bergen 20 48 30 30 10 30 40
Oslo 10 50 20 20 10 30 30
Trondheim 20 18 30 30 10 30 40

Table 4.2: Statistics calculation of node-to-ingress RTT delays in millisce-
conds (Netcom)

4.2.2 End-to-end delay

Table 4.3 and 4.4 show the statistics of end-to-end delays for Telenor and
Netcom respectively. In the results of end-to-end delays for Telenor, it was
observed that the median end-to-end delays for nodes in Oslo was around
150 milliseconds, whereas it was around 160 milliseconds for nodes in the
other regions. The 75 percent of end-to-end delays for nodes in Oslo was
distributed under 230 milliseconds, whereas it was under 240 milliseconds
for nodes in the other regions. The 95 percent of end-to-end delays was
distributed under 400, 410, and 390 milliseconds for nodes in Oslo, Bergen
, and Trondheim, respectively .

Region Min Max Mean Median Std 75 percentile 95 percentile
Bergen 20 3940 190 160 130 240 410
Oslo 20 2810 180 150 120 230 400
Trondheim 20 1940 190 160 120 240 390

Table 4.3: Statistics calculation of end-to-end RTT delay (Telenor)

The median end-to-end delays for nodes in Oslo was around 140 milli-
seconds and for nodes in the other regions was around 150 milliseconds.
The 75 percent of end-to-end delays was distributed under 240 milli-
seconds for nodes in Oslo and Trondheim, whereas it was 270 for nodes
in Bergen. The 95 percent of end-to-end delays for nodes in all regions was
distributed with almost doubled values for nodes in all regions compared
to 75 percentile value.

Region Min Max Mean Median Std 75 percentile 95 percentile
Bergen 30 1300 210 150 160 270 520
Oslo 10 4170 190 140 150 240 470
Trondheim 30 3550 200 150 150 240 460

Table 4.4: Statistics calculation of node-to-end RTT delay (Netcom)

35



Bergen Oslo Trondheim
Regions

10-2

10-1

100

101

R
T
T
 d

e
la

y
 i
n
 s

e
co

n
d
s

ingress point delay

end-to-end delay

Figure 4.1: Boxplot of the node-to-ingress delay and end-to-end delay in
second (Telenor)

Bergen Oslo Trondheim
Regions

10-2

10-1

100

101

R
T
T
 d

e
la

y
 i
n
 s

e
co

n
d
s

ingress point delay

end-to-end delay

Figure 4.2: Boxplot of the node-to-ingress delay and end-to-end delay in
second (Netcom)

36



The distribution of node-to-ingress delays and end-to-end delays for
nodes in different regions of Norway for both operators is depicted in the
boxplot [4.1,4.2]. The RTT delays distribution in case of from nodes to the
ingress point is reasonably much lower than the RTT distribution in case
of from nodes to the content providers since the ingress point is located in
Oslo in both operators.

If RTT delays observed with their spread, Netcom had less spread
of end-to-ingress delays in Bergen and Trondheim, while both operators
have the same spread in Oslo. The skewness of boxplots here indicates
that data distribution are not uniform between different quartile range.
Looking at the 95 percentile values, Netcom performed better than Telenor
in Trondheim, whereas Telenor performed better in Oslo. Comparing
the spread and the 95 percentile values of the end-to-end delays in both
operators, Telenor performed slightly better than Netcom in all regions.

4.2.3 Node-to-ingress delay ratio to end-to-end delay

The plots in Figures 4.3 and 4.4 show the Cumulative Distribution Function
(CDF) of ingress to end-to-end delay ratio in Telenor and Netcom, respect-
ively. Comparing RTT delay fraction for Telenor and Netcom, in over 60
percent of the traceroute fraction, only 20 percent of RTT delay was ob-
served between the node and ingress point, whereas 80 percent of delay
was from end-to-end delay in both operators.

0.0 0.2 0.4 0.6 0.8 1.0
First hop delay ratio to end-to-end delay

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
e
x
p
e
ri

m
e
n
ts

Bergen

Oslo

Trondheim

Figure 4.3: The CDF of the node-to-ingress delay ratio to end-to-end delay
(Telenor)

37



0.0 0.2 0.4 0.6 0.8 1.0
First hop delay ratio to end-to-end delay

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
e
x
p
e
ri

m
e
n
ts

Bergen

Oslo

Trondheim

Figure 4.4: The CDF of the node-to-ingress delay ratio to end-to-end delay
(Netcom)

4.3 Routing path

The MBB operators may send the Internet traffic for accessing the web con-
tent to/from their subscribers either by peering directly with the service
and content providers or by passing the Internet traffic through a transit
ASs, or even they have local copies or local CDNs inside their networks.

In the end-to-end routing path of each operator from the Traceroute
measurements, the ASN occurrences and the number of hops needed to
reach the content provider were studied and a separate table were created
for routing path using Telenor and Netcom connection.

Figure 4.5 shows three different cases of routing path between the NNE
nodes and the content providers:

1. There was only the operator’s ASN in the routing path.

2. The content provider were directly linked to the MBB operator’s
network.

3. There were more than two different ASNs in the routing path.

38



Figure 4.5: The routing path between MBB operator and the content
provider

In the routing path results for Telenor as operator, it was observed
that the Internet path to from NNE nodes to the content providers such
as Bing.com, Linkedin.com, Wikipedia.org, Youtube ended to the Tel-
enor’s network. For other content providers hosted in the USA such as
Google.com, microsoft.com, Amazon.co, Ebay.com, Instagram.com, Stack-
overflow.com, and Netflix.com. it was observed that Telenor passed the In-
ternet traffic either directly to the content providers network or to the ASN-
3356 which owned by Level 3 Communications, Inc.,USA which in 44 of
the 50 content providers. In addition, between 3 and 5 different ASN in the
routing path from the NNE nodes to the other top 50 websites mostly hos-
ted in China such as 163.com, Baidu.com, Gmw.com, Sohu.com, Tmall.com
depending on their geographic location

The routing path results are approximately similar for Netcom AS Nor-
way which is part of the TELIANET TeliaSonera International Carrier.
The Internet path to content providers such as Bing.com, Google.com, Pay-
bal.com, Ebay.com, Youtube.com, Paybal.com and Linkedin.com ended
to the Netcom’s network, and for content providers such as Apple.com,

39



Amazon.com, Yahoo.com, and Twitter.com. The Internet path from Net-
com ended directly to these network. For other content providers depend-
ing on their geographic location across the world, between 3 and 5 differ-
ent ASNs are crossed in order to reach the content provider’s network. The
Level 3 Communications, Inc.,USA which has ASN-3356 was observed in
14 cases of the Internet path using Netcom as operator.

4.4 HTTP performance delay

As mentioned in chapter 3, the Curl measurements were carried out on
NNE nodes in order to collect the metadata information and the HTTP per-
formance of both MBB operators when accessing web content by sending
HTTP request to the index file of top 50 websites.

Since this study is measuring and analyzing the HTTP performance for
accessing a small size of content over the Internet, so the analysis in this
section are based on only two important HTTP metrics of Curl results, the
time-to-connect to the content provider (time-to-connect) and the time to
start transfer the first byte of web content (time-to-start-transfer).

With time-to-connect metric, the time spent to establish the TCP con-
nection from nodes to the content provider’s server were measured. The
time-to-start-transfer the first byte as the second metric of the HTTP Get
was important in this study due to measure the time were spent from nodes
in order to access the web content over the Internet. By comparing the res-
ults of the time-to-start-transfer with the results of the time-to-connect, the
time used for reaching the ingress point and the content providers server
were measured.

By analyzing the Curl measurements for both operators, it was ob-
served that the number of nodes in Telenor using 3G connection was only
two nodes compared to Netcom which had more nodes using 3G connec-
tion (7 nodes). In both operators, more number of nodes using 4G connec-
tion was observed, 10 and 11 nodes using 4G connection for Telenor and
Netcom, respectively.

Table 4.6 describes the Norway regions, the number of NNE nodes in
each region, and the MBB operators available on each node.

40



	  
	  
Region NNE Node Telenor Netcom 

Oslo 

582 ✔ ✔ 

452 ✔ ✔ 

545 ✔ ✔ 

712 ✔ ✔ 

Trondheim 

599  ✔ 

645 ✔ ✔ 

721 ✔ ✔ 

485   

Bergen 

750 ✔ ✔ 

465 ✔ ✔ 

755 ✔ ✔ 

Hammerfest 715 ✔ ✔ 

Bodø 424 ✔  

Kristiansand 

321 ✔ ✔ 

706  ✔ 

707  ✔ 
	  

Figure 4.6: Overview of the NNE nodes and regions used for measure-
ments.

4.5 Time to connect to content provider’s server in
Netcom (3G and 4G)

Figures 4.7 and 4.8 show the results of the median time-to-connect for
nodes using Netcom 3G and 4G connection, respectively. The median time-
to-connect for all nodes in both 3G and 4G, as it can be seen in the boxplots
was between 100 and 200 milliseconds, except node 582 which had median
time-to-connect of 300 milliseconds using Netcom 3G connection.

41



321 452 465 582 599 645 750
NNE nodes

10-3

10-2

10-1

100

 ti
m

e_
to

_c
on

ne
ct

 (i
n 

se
co

nd
s)

0.2 0.1 0.1

0.3
0.2

0.1

0.2

Figure 4.7: Boxplot of the time to connect in second (Netcom 3G)

452 465 582 599 707 712 721 750 755
NNE nodes

10-3

10-2

10-1

100

 ti
m

e_
to

_c
on

ne
ct

 (i
n 

se
co

nd
s)

0.2
0.1

0.2
0.2

0.1
0.1

0.1
0.2

0.1

Figure 4.8: Boxplot of the time to connect in second (Netcom 4G)

4.5.1 Time to start transfer the first byte of Internet content in
Netcom (3G and 4G)

The results of the median time-to-start-transfer of the first byte when
accessing the web content. The boxplots in Figures 4.9 and 4.10 show
very similar results of the median time-to-start-transfer between 500-700
milliseconds in both 3G and 4G connections from Netcom. So there is no
clear differences between 3G and 4G connections for time-to-connect.

42



321 452 465 582 599 645 750
NNE nodes

100

 S
ta

rt
_t

ra
ns

fe
r_

tim
e 

(in
 s

ec
on

ds
)

0.6
0.5 0.5

0.6 0.6
0.5

0.7

Figure 4.9: Boxplot of the time to start transfer in second (Netc 3G)

452 465 582 599 707 712 721 750 755
NNE nodes

10-1

100

 S
ta

rt
_t

ra
ns

fe
r_

tim
e 

(in
 s

ec
on

ds
)

0.6 0.5
0.6 0.6

0.5 0.5
0.6

0.7
0.5

Figure 4.10: Boxplot of the time to start transfer in second ( Netcom 4G )

43



4.6 Time to connect to the content provider in Telenor
and Netcom

The boxplots in Figures 4.11 and 4.12 show the distribution of the median
time-to-connect in scale of seconds to the content provider’s server from
the NNE nodes for both Telenor and Netcom. All nodes using Telenor
connection had a similar median value of the time-to-connect between 200
milliseconds except from three nodes (750, 582 and 424) had the median
time-to-connect of 300 seconds which was unexpected.

The results of the median time-to-connect for the nodes using Netcom
showed a slightly lower median time-to-connect in Telenor. The median
values of 100 milliseconds was observed on nodes (321, 452, 582, 599, and
750) while the median values of 200 milliseconds were observed on the rest
of nodes using the Netcom connections. The inter-quartile range in both
operator is very similar.

321 424 452 465 582 645 712 721 750 755
NNE nodes

10-3

10-2

10-1

100

 ti
m

e_
to

_c
on

ne
ct

 (i
n 

se
co

nd
s)

0.2
0.3 0.2

0.2
0.3

0.2 0.2
0.2 0.3

0.2

Figure 4.11: Boxplot of the time to connect in second (Telenor)

44



321 452 465 582 599 645 707 712 721 750 755
NNE nodes

10-3

10-2

10-1

100

 ti
m

e_
to

_c
on

ne
ct

 (i
n 

se
co

nd
s)

0.2 0.2
0.1

0.2
0.2

0.1 0.1
0.1

0.1
0.2

0.1

Figure 4.12: Boxplot of the time to connect in second (Netcom)

Figure 4.13 shows the CDF of the median time-to-connect in the scale of
seconds for nodes using Telenor as MBB connection. The figure shows that
up to 50 percent of cases for all nodes located in different places in Norway,
the median time-to-connect is under 250 milliseconds.

0.0 0.5 1.0 1.5 2.0
time to connect

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

750
582
755
465
452
712
321
645
721
424

Figure 4.13: CDF of the time to connect in second (Telenor)

It can be also seen that up to 80 percent of cases in the mentioned node
the median time-to-connect is under 500 milliseconds.

The results of the median time-to-connect for nodes using Netcom
connection is shown in Figure 4.14. The results showed that the median

45



time-to-connect in Netcom is slightly shorter than what experienced in
Telenor. It can be seen that Netcom has very similar the median time-to-
connect up to 40 percent of cases.

0.0 0.5 1.0 1.5
time to connect

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

750
582
755
465
452
707
712
599
321
645
721

Figure 4.14: CDF of the time to connect in second (Netcom)

4.6.1 Time to start transfer the first byte of web content

The boxplots in Figures 4.16 and 4.15 shows that how the median time-to-
start-transfer were distributed in both operators.

321 424 452 465 582 645 712 721 750 755
NNE nodes

10-1

100

 S
ta

rt
_t

ra
ns

fe
r_

tim
e 

(in
 s

ec
on

ds
)

0.6

0.8
0.6

0.5
0.6

0.5 0.5
0.5 0.6

0.5

Figure 4.15: Boxplot of the time to start transfer in second (Telenor)

46



321 452 465 582 599 645 707 712 721 750 755
NNE nodes

10-1

100

 S
ta

rt
_t

ra
ns

fe
r_

tim
e 

(in
 s

ec
on

ds
)

0.6 0.6 0.5
0.6 0.6

0.5 0.5 0.5
0.6

0.7
0.5

Figure 4.16: Boxplot of the time to start transfer in second ( Netcom )

As it can be seen in the figures, both operators had almost very similar
distribution of the time-to-start-transfer around 500 and 600 milliseconds
for nodes using both operators. Only two nodes had slightly different me-
dian values: In Netcom, node 750 had the median time-to-start-transfer of
700 milliseconds, and in Telenor node 424 had the median time-to-start-
transfer of 800 milliseconds.

Figure 4.17 and 4.18 show the CDF of the median time-to-start-transfer
for nodes in both operators. The results showed that the median values
were scattered equally in all cases for both operators, except from two
nodes had the different median of the time-to-start-transfer, in Telenor node
424 and in Netcom node 750, which was not expected.

It can be seen in the graph that in up to 80 percent of the cases in both
operators, the median time-to-start-transfer was under 1000 milliseconds.

47



0.0 0.5 1.0 1.5 2.0
Start transfer time 

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

750
582
755
465
452
712
645
721
424

Figure 4.17: CDF of the time to start transfer in second (Telenor)

0.0 0.5 1.0 1.5 2.0
Start transfer time 

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

750
582
755
465
452
707
712
599
721

Figure 4.18: CDF of the time to start transfer in second (Netcom)

4.6.1.1 Time to start transfer the first byte of web content of top 3
websites (Google.com,Apple.com, and Bing.com)

In this section the results of the median time-to-start-transfer are ana-
lyzed when the web access to only top 3 content providers: Google.com,
Apple.com, and Bing.com. The reason for analyzing the time-to-start-
transfer of them was to discover how much of time is used in order to reach
the web content of those content providers with their web content closest
to the ingress point.

48



The CDF plots of the median time-to-start-transfer for top 3 content
providers for nodes in both operators are shown in Figures 4.19 and 4.20.
The results showed that in 20 percent of cases, the nodes in both operators
had spent less than 200 milliseconds in order to reach the web content of
these top three content providers. It can also be seen in the plot that in 95
percent of the cases the median time to reach the web content of them were
less than 300 milliseconds.

0.5 1.0 1.5 2.0
Time to start transfer

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

750
582
755
465
452
321
645
721
424

Figure 4.19: CDF of the time to start transfer in second for top 3 websites
(Telenor)

0.5 1.0 1.5 2.0
Time to start transfer

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

750
582
755
465
452
707
599
321
645
721

Figure 4.20: CDF of the time to start transfer in second for top 3 websites
(Netcom)

49



4.6.2 Radio conditions

In order to understand what may cause the bad connection condition un-
der the HTTP Get results, the median values of the RSSI, RSCP,Ec/Io, RSRP,
and RSRQ were analyzed for the nodes using the MBB connection from
both operators.

As mentioned in chapter 2, the RSSI measures the total received signal
power which includes both the good signal power and the interfaces/noise
power, so a high RSSI does not indicate a good radio condition. The ma_rssi
metrics from the metadata information collected in the Curl measurements
in in ASU (Arbitrary Signal Unit), thus it needed to b converted from ASU
to RSSI in scale of millidecibel by using this formula:

1 dBm = ( 2 * ASU) - 113

Then the median RSSI values for all nodes were categorized into five
groups:

• 1 bars: -103 dBm and lower

• 2 bars: -98 dBm to -102 dBm

• 3 bars: -87 dBm to -97 dBm

• 4 bars: -78 dBm to -86 dBm

• 5 bars: -77 dBm to higher

In 3G connection the Ec/Io measures the signal quality (the signal ratio
to noise) which is for the connection stability, the median Ec/Io values were
grouped in three categories:

• Good (0 dB> Ec/Io > -8 dB)

• Medium (-8 dB> Ec/Io >-15 dB)

• Bad (-15dB> Ec/Io <-33 dB)

RSCP values in 3G connection for both operators were categorized in
three groups:

• Sufficient ( RSCP > -99 )

• Poor ( -115 < RSCP <-100 )

• No coverage ( RSCP < -115 )

In 4G connection the RSRP and RSRQ represents the signal power and
the signal noise, respectively. They were categorized in four groups:

50



Condition RSRP RSRQ
Excellent RSRP >= -80 RSRQ >= -10
Good -90 < RSRP < -80 -15 < RSRQ < -10
Midle -100 < RSRP < -90 -20 < RSRQ < -15
Poor RSRP =< -100 RSRQ =< -20

Table 4.5: RSRP and RSRQ conditions in 4G

The results of the median radio signal conditions for nodes using Tel-
enor 3G connection are shown in Table 4.6. As mentioned before in this
section, there were only two nodes (321 and 424) using Telenor 3G con-
nection. Node 321 had the median RSSI of -73.0 dBm and node 750 had
the median RSSI of -91.0 dBm. Node 424 had also the median RSCP of -
96.0 dBm and the median Ec/Io of -5.0 dBm. Node 424 had lowest median
RSCP and Ec/Io compared to node 321, it had -96.0 dBm and -5.0 dBm for
RSCP and Ec/Io, respectively.

The only 3G connection was available on node 321 which had the me-
dian RSCP, and Ec/Io of -78 dBm and -2.0, respectively. The other nodes
were using the 4G connection mode of Telenor connection.

Table 4.7 shows the median values of the RSSI, the signal power
(RSRP) and the signal noise/quality (RSRQ) for nodes using Telenor 4G
connections. The median RSSI values between -75.0 dBm and -85.0 dBm
were observed for all nodes. The result shows that the median RSSI for
nodes was between -75.0 and 89.0 dBm, the highest that nodes had the
median RSRP in range -98.0 and -114.0 dBm, the highest median RSRP was
observed for node 721 which was -98.0 dBm and the lowest median RSRP
was observed for node 452 which was -114.0 dBm. The median RSRQ for
nodes using 4G connection varied between -4.0 dBm and -20.0 dBm, the
lowest median RSRQ was observed for node 424 which was -20.0 dBm, and
the highest median RSRQ was observed for node 465 which was -4.0 dBm.
The result showed that node 424, 452 and 712 using Telenor 4G connection
had suffered of poor signal quality.

Node RSSI RSCP Ec/Io RSRP RSRQ
321 -79.0 -78.0 -2.0 - -
424 -91.0 -96.0 -5.0 - -

Table 4.6: Median of the signal conditions in dBm (Telenor 3G)

51



Node RSSI RSCP Ec/Io RSRP RSRQ
424 -75.0 - - -112.0 -20.0
452 -89.0 - - -114.0 -10.0
465 -83.0 - - -106.0 -4.0
582 -81.0 - - -106.0 -5.0
645 -83.0 - - -109.0 -7.0
712 -83.0 - - -113.0 -11.0
721 -73.0 - - -98.0 -6.0
750 -85.0 - - -106.0 -6.0
755 -75.0 - - -103.0 -7.0

Table 4.7: Median of the signal conditions in dBm (Telenor 4G)

Table 4.8 shows the results of the median radio signal conditions for
nodes using Netcom connection 3G. The results shows that the median
RSSI for nodes was between -73.0 dBm and -89.0 dBm. Node 750 and 452
had the lowest median RSSI, in both -93.0 dBm. The results, shows that the
median RSCP was between -73.0 dBm and -103.0 dBm, the lowest median
RSCP were -103.0 and -102.0 dBm which were observed for nodes 452 and
750, respectively. The median Ec/Io was between -1.0 and -9.0 dBm for
nodes. the highest Ec/Io was -1.0 dBm which was observed for node 321.
The lowest Ec/Io was -9.0 dBm for node 452. The results showed that node
452 and 752 had suffered of poor signal power.

Node RSSI RSCP Ec/Io RSRP RSRQ
321 -81.0 -80.0 -1.0 - -
452 -93.0 -103.0 -9.0 - -
465 -79.0 -84.0 -4.0 - -
582 -87.0 -94.0 -7.0 - -
599 -71.0 -73.0 -4.0 - -
645 -85.0 -93.0 -8.0 - -
750 -93.0 -102.0 -8.0 - -

Table 4.8: Median of the signal conditions in dBm (Netcom 3G)

Table 4.9 shows the median signal condition for nodes using Netcom
4G connection. As it can be seen in the table, the median RSSI for nodes
were observed between -71.0 dBm and -87.0 dBm, The lowest median RSSI
was observed for node 750 with the median RSSI of -87.0 dBm, and the
highest median RSSI was -61.0 dBm which was observed for node 707. The
median RSRP for nodes was observed between -89.0 dBm and -118.0 dBm,
the lowest median RSRP was -118.0 dBm was observed for node 750. The
median RSRQ for nodes was between -6.0 dBm and -11.0 dBm, the lowest
median RSRQ was -11 which were observed for nodes 750 and 452. The
results showed that nodes have good signal quality but nodes 750 had poor
signal power.

52



Node RSSI RSCP Ec/Io RSRP RSRQ
452 -71.0 - - -97.0 -11.0
465 -79.0 - - -105.0 -6.0
582 -77.0 - - -105.0 -8.0
599 -67.0 - - -94.0 -6.0
707 -61.0 - - -89.0 -6.0
712 -67.0 - - -93.0 -6.0
721 -79.0 - - -107.0 -7.0
750 -87.0 - - -118.0 -11.0
755 -79.0 - - -106.0 -7.0

Table 4.9: Median of the signal conditions in dBm (Netcom 4G)

So the poor radio conditions on nodes 424 in Telenor and Node 750 in
Netcom had a significant impact on their HTTP Get performance. As the
median time to connect and the median time to start transfer the first byte
were increased by approximately 100 milliseconds for these nodes.

53



54



Chapter 5

Discussion and Future work

This chapter discusses and evaluates our results.

5.1 Evaluation of the network topology

The analysis of the Traceroute results, showed that the web access from
nodes towards the top 50 content providers can take three different routing
paths based on where the web content is located. In addition, it was
observed that the web content of some popular content providers such
as Bing.com, Google.com, and Apple.com were located inside the MBB
operator’s network or was closest to the ingress point of MBB operators.

5.2 Evaluation of the Network delay

The analysis of the ingress point placement, showed that having only one
ingress point (GGSN / PDNGW) in a small country like Norway that is
not very wide compared to the countries such as USA or Russia, would not
significantly affect the latency from different regions across Norway. In the
results, it was observed that the delay from nodes to ingresspoint for nodes
located in Bergen and Trondheim was similar and around 20 milliseconds
compared to Oslo that was 20 milliseconds, which mean that only 10 milli-
seconds different between regions in Norway.

The network delay between the operator’s ingresspoint and the content
providers varied based on where the web content was located. The results
of the node to ingresspoint delay ratio to the end-to-end delay showed that
that only 20 percent of network latency for accessing the web content is
caused by the distance between nodes and the ingress point, the remaining
80 percent is because of the distance between the ingress point and the
content provider.

55



5.3 Evaluation of HTTP performance under accessing
web content

The results from time to connect and time to start transfer the first byte of
the web content in the HTTP Get request to the content providers, showed
that there were no significant differences between operators in the time to
connect and time to start transfer the first byte. The median time spent to
query the DNS and establish TCP connection with the content provider’s
server (time to connect) was between 100 and 200 milliseconds, which is
about 20 percent of the whole time spent to get the first byte which was
between 500 and 600 milliseconds.

5.4 Evaluation of radio conditions

The results of the radio signal conditions for nodes, showed that the poor
radio signals related to the signal power and signal quality affected the
HTTP Get performance on nodes. The results showed that nodes that had
poor radio signals, had also the higher median values of the time to connect
and time to start transfer the first byte. The poor radio signal conditions can
increase the time to get the first byte of the web content by 100 milliseconds

5.5 Limitations

There were also some limitations in this study. Firstly, the NNE nodes are
stationary nodes, which do not provides mobility to carry out the meas-
urements. So the performance of content delivery were measured only in
a static environment. In mobility of user equipments it is expected that the
radio signals strength changes frequently which results in more often con-
nectivity loss, connection failure and even delay in transmission of data.
In addition to the mobility of users, the coverage of MBB network in other
public places like in the subways, under grounds, tunnels etc is not com-
pared in this study.

5.6 Future Work

Due to the time constraint, this work could not cover some other research
possibilities on the performance of the content delivery over the Internet,
so some aspects of the work remains as an inspiration for future work re-
lated to the performance of MBB networks.

The HTTP Get performance was measured using TCP/IP protocol to
only get the first byte of the web content as a very small size of data. As
a future work, the HTTP Get performance can be measured in other scen-
arios for accessing content over the Internet such as the media streaming

56



and file transfer.

The combination of multiple MBB operators may provide a more reli-
able communication, and better performance for subscribers. So the per-
formance of content delivery over Internet using multiple path and proto-
cols such as MPTCP is highly recommended as a future work.

In the future, we also plan to investigate the performance of the current
proposals for optimizing web access such as Spdy, HTTP2 [35] and the
different choices for DNS servers placement.

57



58



Chapter 6

Conclusion

According to the evaluation results and the analysis presented in chapter 4
and 5, The following conclusions were obtained:

It is shown that the networking topology has significant impact on the
end-to-end web performance for the mobile subscribers, so that the net-
work delay can be decreased by 80 percent if the web content is hosted
inside the MBB network or near the ingresspoint. In addition, the MBB
networks have ingresspoint located in Oslo. For a small country like Nor-
way, the ingress point placement does affect the network delay only by 10
milliseconds increased for the regions that are far away from the ingress-
point.

Regarding the web performance by accessing a small size of the web
content, there was no clear differences in time to get the first byte between
MBB networks using 3G or 4G technologies.

In addition, it is shown that the time to connect to the web content (to
query DNS and establish a TCP connection) is only 20 percent of the time
spent to receive the first byte of the web content.

It is also shown that the poor radio signal conditions including the
signal power and the signal quality would increase the time to get the first
byte of the web content by 100 milliseconds.

59



Appendices

60



Appendix 1: Top 50 Alexa websites

Top 50 websites ranked by Alexa.com
1 google.com
2 facebook.com
3 youtube.com
4 baidu.com
5 yahoo.com
6 wikipedia.org
7 amazon.com
8 twitter.com
9 taobao.com

10 yandex.ru
11 qq.com
12 linkedin.com
13 live.com
14 sina.com.cn
15 weibo.com
16 tmall.com
17 ebay.com
18 blogspot.com
19 hao123.com
20 bing.com
21 reddit.com
22 sohu.com
23 tumblr.com
24 imgur.com
25 wordpress.com
26 instagram.com
27 pinterest.com
28 msn.com
29 apple.com
30 paypal.com
31 microsoft.com
32 aliexpress.com
33 xvideos.com
34 imdb.com
35 fc2.com
36 alibaba.com
37 stackoverflow.com
38 vk.com
39 ask.com
40 360.com
41 netflix.com
42 163.com
43 adcash.com
44 go.com

61



45 craigslist.org
46 never.com
47 diply.com
48 gmw.cn
49 xhamster.com
50 rakuten.co.jp

62



Appendix 2: Developed scripts

utils.py

#! /usr/bin/env python
import subprocess
import sys
from time import gmtime,strftime
import datetime
import socket
import io
import commands
import netifaces as ni
import signal
import shutil
import os

def filename(path,experiment,ts,instanceId):
return "%s%s_%s.sdat.%s"%(path,experiment,str(instanceId),ts)

def filename2(path,experiment,instanceId):
ts=strftime("%Y%m%d%H%M%S",gmtime())
return "%s%s_%s_%s"%(path,experiment,str(instanceId),ts)

def logger(path,instanceId,str):
logfile="%serror.logs"%path
log=open(logfile,"a")
ts=gettime()
log.write("%s %s %s\n"%(ts,instanceId,str))

def gettime():
time=strftime("%Y-%m-%d %H:%M:%S",gmtime())
return time

def gettimeF():
time=strftime("%Y%m%d%H%M%S",gmtime())
return time

def curlparams():
params= ’’’<http_code>%{http_code}</http_code>

<redirect_url>%{redirect_url}</redirect_url>
<url_effective>%{url_effective}</url_effective>
<total_time>%{time_total}</total_time>
<speed>%{speed_download}</speed>
<total_size>%{size_download}</total_size>
<number_connection>%{num_connects}</number_connection>
<size_request>%{size_request}</size_request>
<time_connect>%{time_connect}</time_connect>
<time_pretransfer>%{time_pretransfer}</time_pretransfer>
<time_starttransfer>%{time_starttransfer}
</time_starttransfer>

’’’
return params

63



def copyfileTo(f1,f2):
shutil.copy2(f1,f2)

def makeDir(dir):
if not os.path.exists(dir):

os.mkdir(dir,0755)

def pwd():
currentdir=os.path.dirname(os.path.realpath(__file__))
return currentdir

def top50sites():
currdir=pwd()
filename=currdir+"/top50sites.txt"
file=open(filename,"r")
lines=file.readlines()
list=[]
for l in lines:

sp=l.strip()
list.append(sp)

return list

def floatf(value):
return "%.2f"%value

def executecommand(list,filename):
fileout=open(filename,"a")
subprocess.Popen(list,stdout=fileout, \

stderr=subprocess.STDOUT)

def myhostname():
hostname=socket.gethostname()
return hostname

def timestamp():
ts= datetime.datetime.now()
return ts

def regreplace(pattern,strtorep,line):
#pattern=r"\d+\.\d+\.\d+\.\d+"
match=re.search(pattern,line)
res=""
if match:

m= match.group()
res=re.sub(m,strtorep,line,1)

return res

def writeoutput(filename,str):
file=open(filename,"a")
file.write("%s\n"%str)
file.close()

def getAllifaces():

64



return ni.interfaces()

def getnodeiface():
allifaces=getAllifaces()
return allifaces[-1]

def getnodeIP():
allifaces=getAllifaces()
ppp= ni.ifaddresses(allifaces[-1])
return ppp[2][0][’addr’]

def hostResolver(hostname):
s=subprocess.check_output([’host’,hostname])
return s.split()[3]

def getMCCmns(iface):
mapping={}
mapping["ppp1"]=24202
mapping["ppp0"]=24201
mapping["ppp2"]=24007
mapping["ppp3"]=24205
mapping["ppp5"]=24206
if iface in mapping:

return str(mapping[iface])
else:

return 0

def getIP(host):
hostname="www."+host
ipaddr= socket.getaddrinfo("wwww.facebook.com",80,0,0,\

socket.IPPROTO_TCP)
return ipaddr

def nodeInfo():
hostname=myhostname()
nodeiface=getnodeiface()
nodeip=getnodeIP()
MCCmns=getMCCmns(nodeiface)
print "\n\nHostname: %s"%hostname
print "NodeInterface: %s"%nodeiface
print "Node IP: %s"%nodeip
print "MCCmns: %s"%MCCmns
print "pid number: %d"%os.getpid()

def curlargs():
arg=sys.argv
if (len(arg)<3):

print "please type instanceId and interface:"
sys.exit(0)

else:
instanceId= arg[1]
interface=arg[2]
MCCmns=getMCCmns(interface)

return (instanceId,interface)

65



def traceargs():
arg=sys.argv
if (len(arg)<4):

print "please type instanceId, network interface and timesleep:"
sys.exit(0)

else:
instanceId=arg[1]
interface=arg[2]
timesleep=arg[3]
MCCmns=getMCCmns(interface)

return (instanceId,interface,timesleep)

def curlargsD():
arg=sys.argv
if ’start’ in arg:

if (len(arg)<4):
print "please type instanceId and interface:"
sys.exit(0)

else:
instanceId= arg[2]
interface=arg[3]
return (instanceId,interface)

else:
return 0

traceroute.py
#!/usr/bin/env python

import subprocess
import re
import time
import sys
import socket
import geoip
import netifaces as ni
import utils
import signal
import os
import daemon
import lockfile

temp="/tmp/"
measurements="/home/diako/scripts/"
running = True

class tracerouteClass:

def __init__(self):
self.args=utils.traceargs()
self.hostname=utils.myhostname()
self.instanceId=self.args[0]
self.interface=self.args[1]

66



self.timesleep=int(self.args[2])
self.nodeip=utils.getnodeIP()

def handler(self,signum=None,frame=None):
sig= "Traceroute signal handler:%s"%str(signum)
time.sleep(1)
running=False
os.killpg(os.getpgrp(),9)
sys.exit(0)

def signalexec(self):
signal.signal(signal.SIGTERM, self.handler)
signal.signal(signal.SIGINT,self.handler)

def copyfiles(self,tracelog):
utils.copyfileTo(tracelog,measurements)
os.remove(tracelog)

def traceroute(self,host):
start=utils.gettime()
cmd=[]
cmd.append("traceroute")
#cmd.append("-s")
#cmd.append(self.nodeip)
cmd.append("-q")
cmd.append("10")
cmd.append("-n")
cmd.append("-i")
cmd.append(self.interface)
cmd.append(host)
p=subprocess.Popen(cmd,stdout=subprocess.PIPE,\

stderr=subprocess.PIPE)
stdout,stderr=p.communicate()
result=stdout.splitlines()
error=p.returncode
res="<d>\n"
res+=("<site>%s</site>\n"%host)
starttime="<starttime>%s</starttime>\n"%str(start)
res+=starttime
res+="<traceroute>\n"
for line in result:

res+="%s\n"%line.strip()
end=utils.gettime()
endtime="<endtime>%s</endtime>\n"%str(end)
res+="<errorcode>%s</errorcode>\n"%str(error)
res+="</traceroute>\n"
res+=endtime
res+="</d>\n"
return res

def doWork(self):
sites=utils.top50sites()
utils.makeDir(measurements)
#counter=0

67



while running:
#ts=utils.gettimeF()
tracelog=utils.filename2(temp,"trace",\

self.instanceId)
utils.writeoutput(tracelog,"<root>")
for host in sites:

if running is False:
return

res=self.traceroute(host)
utils.writeoutput(tracelog,res)

utils.writeoutput(tracelog,"</root>")
self.copyfiles(tracelog)
time.sleep(self.timesleep)

def run(self):
self.signalexec()
self.doWork()

if __name__=="__main__":
obj=tracerouteClass()
obj.run()

httpfetchter.py
#!/usr/bin/env python
import subprocess
import sys
import socket
import utils
import time
import signal
import os
from time import gmtime,strftime
import daemon
import lockfile

temp="/tmp/"
measurements="/home/diako/scripts/temp/"
running = True
pingurl="173.254.3.58"

class httpfetcherClass():

def __init__(self):
self.args=utils.curlargs()
self.hostname=utils.myhostname()
self.instanceId=self.args[0]
self.interface=self.args[1]
self.nodeip=utils.getnodeIP()

def handler(self,signum=None,frame=None):
sig= "The httpfetcher signal handler:%s\n"%str(signum)
time.sleep(1)
running=False
os.killpg(os.getpgrp(),9)

68



sys.exit(0)

def signalexec(self):
signal.signal(signal.SIGTERM, self.handler)
signal.signal(signal.SIGINT,self.handler)

def copyfiles(self,httplog):
utils.copyfileTo(httplog,measurements)
os.remove(httplog)

def ping(self):
pingcmd="ping -I %s -s 1500 %s > /dev/null"% \

(self.interface,pingurl)
sub=subprocess.Popen(pingcmd,shell=True, bufsize=-1)

def metadata(self,startend,httpfile):
MCCmns=utils.getMCCmns(self.interface)

metadatacmd="nne-query-metadata"
ts=utils.gettime()
sub=subprocess.Popen(metadatacmd,shell=True, \

stdout=subprocess.PIPE,stderr=subprocess.STDOUT)
lines=sub.stdout.readlines()
httpfile.write("<%s>"%startend)
res="<time>%s</time>"%ts
for line in lines[1:]:

l=line.strip().split(’,’)
if MCCmns == l[2]:

res+="<%s>%s</%s> "%(l[3],l[4],l[3])
httpfile.write(res)
httpfile.write("</%s>"%startend)

def check(self,url):
try:

p=subprocess.check_output("curl -s --interface %s -f %s"%\
(self.interface,url),shell=True,\
stderr=subprocess.STDOUT)

except subprocess.CalledProcessError as e:
return e.returncode

def curl(self,url,httpfile):
params=utils.curlparams()
cmd=[]
cmd.append(’curl’)
cmd.append(’-sL’)
cmd.append(’--interface’)
cmd.append(self.interface)
cmd.append(url)
cmd.append(’-w’)
cmd.append(params)
cmd.append(’-r’)
cmd.append(’0-100’)
cmd.append(’-o’)
cmd.append(’/dev/null’)

69



start=utils.gettime()
proc=subprocess.Popen(cmd,stdout=subprocess.PIPE)
output=proc.stdout.readlines()
httpfile.write("<site>%s</site><start>%s</start>"%(url,start))
for l in output:

httpfile.write("%s"%l.strip())
end=utils.gettime()
#df=end-start
errcode=self.check(url)
if errcode is None:

err=’0’
else:

err=str(errcode)
httpfile.write("<curl_code>%s</curl_code><end>%s</end>"%(err,end))

def allData(self,url):
timestamp=utils.gettimeF()
utils.makeDir(measurements)
httplog=utils.filename(temp,"http",timestamp,self.instanceId)
httpfile=open(httplog,"a")

self.ping()
ts=utils.gettime()
httpfile.write(’\ %s\ \t%s\t0\t’%(ts,self.instanceId))
httpfile.write("<d>")
self.metadata("metadatabefore",httpfile)
httpfile.write("<curldata>")
self.curl(url,httpfile)
httpfile.write("</curldata>")
self.metadata("metadataafter",httpfile)
httpfile.write("</d>")
httpfile.write("\n\n")
httpfile.close()
self.copyfiles(httplog)

def doWork(self):
sites=utils.top50sites()
counter=1
start=utils.timestamp()
while running:

for s in sites:
if running is False:

return
self.allData(s)

def run(self):
self.signalexec()
self.doWork()

if __name__== "__main__":
obj=httpfetcherClass()
obj.run()

70



plot.py
#! /usr/bin/env python
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
#matplotlib.use("agg")

colors="byckm"
class plots:

def __init__(self):

def datatuples(self,operatorsdata):
N =len(operatorsdata)
xaxis=np.arange(1,N+1)
yaxis=[float(y) for (a,b,y) in operatorsdata]
labels = [l.replace(’.com’,’’) for (l,a,b) in data]
return (xaxis,yaxis,labels)

def appenditem(self,list1,list2,list3,list4,index):
res=[]

res.append(list1[index])
res.append(list2[index])
res.append(list3[index])
res.append(list4[index])

return res
def formatratio(self,str):

f="%.2f"%str
return float(f)

def cdffromlist(self,list):
counter=1
cs = []
size=len(list)
sorted=np.sort(list)
while counter<=size:

prob=float(1)/size
if(len(cs))> 0:

sum=prob+cs[len(cs)-1]
cs.append(sum)

else:
cs.append(prob)

counter+=1
cs= [self.formatratio(x) for x in cs]
return cs

def sec(self,data):
d=[(d/1000) for d in data]
return d

def fractiondelayplot(self,xlabel,ylabel,title,filename,data):
cdf1=self.cdffromlist(data[0])
cdf3=self.cdffromlist(data[1])

71



cdf4=self.cdffromlist(data[2])
plt.plot( data[0],cdf1, ’b’,label="Bergen")
plt.plot( data[1],cdf3, ’m’,label="Oslo")
plt.plot( data[2],cdf4, ’c’,label="Trondheim")

plt.margins(0.05,0.05)
plt.grid(True)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.legend(loc=’lower right’,prop={’size’:10})

plt.savefig("%s.pdf"%filename)
plt.close("all")

def CDFplot(self,xlabel,ylabel,filename,data):
markers=[’o’,’+’,’*’,’.’,’d’,’|’,’h’,’H’,’p’,’s’]
clr=open("colors.txt","r").readlines()
clr=[c.strip() for c in clr]
count=0
for k,v in data.items():

values=np.sort(v)
cdf=self.cdffromlist(v)

cl=clr[count]
plt.plot( values,cdf,color=cl,label="%s"%k)
count+=1

plt.margins(0.05,0.05)
plt.grid(True)
plt.xlabel(xlabel)
plt.ylabel(ylabel)

#plt.xlim(0,12) #xlim of start_tranfertime
#plt.xlim(-21,1) #xlim for RSRQ
plt.title("")
plt.legend(loc=’lower right’,prop={’size’:10})
plt.savefig("%s.pdf"%filename)
plt.close("all")

def set_box_color(self,bp, color):
plt.setp(bp[’boxes’], color=color)
plt.setp(bp[’whiskers’], color=color)
plt.setp(bp[’caps’], color=color)
plt.setp(bp[’medians’],linewidth=1, color=’k’)

def groupboxplots(self,xlabel,ylabel,title,filename,telenor,netcom):
labels=["Telenor", "Netcom"]
plt.figure()
bp1=plt.boxplot(telenor, positions=np.array(xrange\

(len(telenor)))*2.0-0.4,widths=0.6 ,notch=True,\
patch_artist=True)

bp2=plt.boxplot(netcom, positions=np.array(xrange\
(len(netcom)))*2.0+0.4,widths=0.6 ,notch=True,\
patch_artist=True)

self.set_box_color(bp2, ’m’)

72



plt.plot([], c=’c’, label=’ingress point delay’)
plt.plot([], c=’m’, label=’end-to-end delay’)

plt.legend(loc=’upper right’,prop={’size’:10})
plt.xticks(xrange(0, len(labels) * 2, 2),labels)
plt.xlim(-2, len(labels)*2)
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.savefig("%s.pdf"%filename)
plt.close("all")

def groupboxplotsregion(self,xlabel,ylabel,title,filename,d1,d2):
labels=["Bergen","Oslo","Trondheim"]
plt.figure()

print labels
bp1=plt.boxplot(d1, positions=np.array(xrange(len(d1)))*2.0-0.4,\

widths=0.6 ,notch=True,patch_artist=True)
bp2=plt.boxplot(d2, positions=np.array(xrange(len(d2)))*2.0+0.4, \

widths=0.6 ,notch=True, patch_artist=True)
self.set_box_color(bp1, ’c’)

self.set_box_color(bp2, ’m’)

plt.plot([], c=’c’, label=’ingress point delay’)
plt.plot([], c=’m’, label=’end-to-end delay’)

plt.legend(loc=’upper right’,prop={’size’:10})
plt.xticks(xrange(0, len(labels) * 2, 2),labels)
plt.xlim(-2, len(labels)*2)
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.yscale("log")
plt.savefig("%s.pdf"%filename)
plt.close("all")

def boxplot(self,xlabel,ylabel,filename,labels,listoflists):
data_to_plot=listoflists
bp1=plt.boxplot(data_to_plot,positions=np.array(xrange(len\

(data_to_plot)))*2.0-0.3, widths=0.6 ,notch=True,\
patch_artist=True)

self.set_box_color(bp1, ’m’)

for line in bp1[’medians’]:
x, y = line.get_xydata()[1]
plt.text(x, y, ’%.1f’ % y, horizontalalignment=’center’)

plt.margins(0.5,0.5)
plt.xticks(xrange(0, len(labels) * 2, 2),labels)
plt.title("")
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.yscale("log")

plt.savefig("%s.pdf"%filename)
plt.close("all")

73



makeplots.py

#!/usr/bin/env python
import os
from plots import plots
import numpy as np
from scipy.stats import norm
from collections import defaultdict
from collections import Counter
import collections

dir="traceroutegraphs/"
curlpath="httpgraphs/"
class runplotsClass:

def __init__(self):
if not os.path.exists(dir):

os.makedirs(dir)
if not os.path.exists(curlpath):

os.makedirs(curlpath)
self.path=dir
self.curlpath=curlpath

self.plots=plots()

def mean_sd_percentile(self,dataset):
min=self.formatratio(np.min(dataset))
max=self.formatratio(np.max(dataset))
mean=self.formatratio(np.mean(dataset,axis=0))
median=self.formatratio(np.median(dataset))
sd= self.formatratio(np.std(dataset,axis=0))
sd= self.formatratio(np.var(dataset,axis=0))
Q1=self.formatratio(np.percentile(dataset,25))

Q2=self.formatratio(np.percentile(dataset,75))
Q3=self.formatratio(np.percentile(dataset,95))
print "size: %d\n"%len(dataset)
res="%s & %s & %s & %s & %s & %s & %s & %s"% \
(min,max,mean,median,sd,Q1,Q2,Q3)

return res

def tep(self,file):
f=self.curlfile(file)
dic=self.curlstarttotalregions(file)
print file
for k,v in dic.items():

size=len(v)
per20=self.formatratio(np.percentile(v,20))

per80=self.formatratio(np.percentile(v,80))
print k,size,per20,per80

w=[]
t=[]
with open(f,"r") as f:

74



lines=f.readlines()
for line in lines:

l=line.split(’|’)
si=l[1].strip()
st=l[3].strip()
if(float(st))< 0.26:

w.append(si)
if(float(st))> 0.85:

t.append(si)

def operatoranalytical(self,filename):
data=self.readingressdelayallregions(filename)
ingress=[]
provider=[]
for d in data[0]:

ingress.append(self.mean_sd_percentile(d))
for d in data[1]:

provider.append(self.mean_sd_percentile(d))

res=(ingress,provider)
return res

def formater(self,str):
f= "%.2f"%(float(str)/1000)
return float(f)

def filename(self,filename):
file="%s%s"%(self.path,filename)
return file

def curlfile(self,filename):
file="%s%s"%(self.curlpath,filename)
return file

def readfile(self,file):
data=[]
with open(self.filename(file),"r") as f:

lines=f.readlines()
labels=[x.split(’|’)[0] for x in lines]
ingress=[self.formater(x.split(’|’)[1]) for x in lines]
contentprovider=[self.formater(x.split(’|’)[2])\

for x in lines]
return (labels,ingress,contentprovider)

def formatratio(self,i):
str="%.2f"%float(i)
return float(str)

def readingressdelayallregions(self,file):
oi=[]
bi=[]
ki=[]
ti=[]
op=[]

75



bp=[]
kp=[]
tp=[]
lines=open(self.filename(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
if "Oslo" in l[0]:

oi.append(self.formater(l[1]))
op.append(self.formater(l[2]))

elif "Bergen" in l[0]:
bi.append(self.formater(l[1]))
bp.append(self.formater(l[2]))

elif "Trondheim" in l[0]:
ti.append(self.formater(l[1]))
tp.append(self.formater(l[2]))

ingress=[bi,oi,ti]
provider=[bp,op,tp]
return (ingress,provider)

def divide(self,a,b):
d= float(a)/float(b)
return str(d)

def delayfractionregions(self,file):
o=[]
b=[]
k=[]
t=[]
lines=open(self.filename(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
if "Oslo" in l[0]:

o.append(self.formatratio(\
self.divide(l[1],l[2])))

elif "Bergen" in l[0]:
b.append(self.formatratio(\
self.divide(l[1],l[2])))

elif "Trondheim" in l[0]:
t.append(self.formatratio(\
self.divide(l[1],l[2])))

o=np.sort(o)
b=np.sort(b)
k=np.sort(k)
t=np.sort(t)

fraction=(b,o,t)
return fraction

def curlstarttotalregions(self,file):
st=defaultdict(list)
td=defaultdict(list)

lines=open(self.curlfile(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
node=l[0].strip()

76



sttransfer=l[3].strip()
st[node].append(float(sttransfer))

ost=collections.OrderedDict(sorted(st.items()))
return ost

def timeconnect(self,file):
dict=defaultdict(list)
lines=open(self.curlfile(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
node=l[0].strip()
site=l[1].strip()
s=l[3].strip() # IN mreged 3G_4G files is 2
c=l[2].strip() # IN mreged 3G_4G files is 2
#frac=float(c)/float(s)
if (float(c)>float(s)):

dict[node].append(s)
orssi=collections.OrderedDict(sorted(dict.items()))
return orssi

def RSSI(self,file):
dict=defaultdict(list)
lines=open(self.curlfile(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
node=l[0].strip()
ASU=l[2].strip() # IN mreged 3G_4G files is 2
if ASU <> ’NULL’:

RSSI=(2*int(ASU))-113
dict[node].append(RSSI)

orssi=collections.OrderedDict(sorted(dict.items()))
return orssi

def MSRP(self,file):
dict=defaultdict(list)
lines=open(self.curlfile(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
node=l[0].strip()
msrp=l[2].strip() # IN mreged 3G_4G files is 2
if msrp <> ’NULL’:

dict[node].append(int(msrp))
orssi=collections.OrderedDict(sorted(dict.items()))
return orssi

def MSRQ(self,file):
dict=defaultdict(list)
lines=open(self.curlfile(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
node=l[0].strip()
msrq=l[3].strip() # IN mreged 3G_4G files is 2

77



if msrq <> ’NULL’:
dict[node].append(int(msrq))

orssi=collections.OrderedDict(sorted(dict.items()))
return orssi

def MRSCP(self,file):
dict=defaultdict(list)
lines=open(self.curlfile(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
node=l[0].strip()
msrp=l[1].strip() # IN mreged 3G_4G files is 2
if msrp <> ’NULL’:

dict[node].append(msrp)
orssi=collections.OrderedDict(sorted(dict.items()))
return orssi

def mediansignals(self,file,index):
dict=defaultdict(list)
lines=open(self.curlfile(file),"r").readlines()
for l in lines:

l=l.strip().split(’|’)
node=l[0].strip()
val=l[index].strip()
val=int(val)
#vv=(2*val)-113
dict[node].append(int(val))

co=collections.OrderedDict(sorted(dict.items()))
labels=[]
values=[]
for k,v in co.items():

if len(v)>1000:
labels.append(k)
values.append(np.median(v))

return (labels,values)

def operatorAllregionsbotxplot(self,filename,fileread,title):
filenametosave=self.filename("%s"%filename)

data=self.readingressdelayallregions(fileread)
self.plots.groupboxplotsregion("Regions","RTT delay\

in seconds" ,title,filenametosave,data[0],data[1])

def Allregionsfractionplot(self,filename,fileread,title):
filenametosave=self.filename("%s"%filename)

data=self.delayfractionregions(fileread)
self.plots.fractiondelayplot("First hop delay ratio\

to end-to-end delay" ,"Fraction of experiments"\
,title,filenametosave,data)

def curlstarttransferdboxplot(self,filename,fileread):
filenametosave=self.curlfile("%s"%filename)

data=self.curlstarttotalregions(fileread)

78



labels=[]
values=[]
for k,v in data.items():

if len(v)>1000:
labels.append(k)
values.append(v)

self.plots.boxplot("NNE nodes"," Start_transfer_time\
(in seconds)" ,filenametosave,labels,values)

def curlstarttimefractionplot(self,filename,fileread):
filenametosave=self.curlfile("%s"%filename)

dict=self.curlstarttotalregions(fileread)
data={}
for k,v in dict.items():

if len(v)>1000:
data[k]=v

self.plots.CDFplot("Start transfer time ","Fraction \
of experiments",filenametosave,data)

def curltimeconnectboxplot(self,filename,fileread):
filenametosave=self.curlfile("%s"%filename)

dict=self.timeconnect(fileread)
labels=[]
values=[]
for k,v in dict.items():

if len(v)>1000:
print k, v

labels.append(k)
values.append(v)

self.plots.boxplot("NNE nodes"," time_to_connect (in seconds)"\
,filenametosave,labels,values)

def timetoconnectplots(self,filename,fileread):
filenametosave=self.curlfile("%s"%filename)

dict=self.MSRP(fileread)
data=dict

data={}
for k,v in dict.items():

if len(v)>1000:
data[k]=v

self.plots.CDFplot("Time to connect ratio to time to start\
transfer","Fraction of experiments",filenametosave,data)

def RSSICDFplots(self,filename,fileread):
filenametosave=self.curlfile("%s"%filename)

dict=self.RSSI(fileread)
data=dict

data={}
for k,v in dict.items():

if len(v)>1000:
data[k]=v

self.plots.CDFplot("RSSI","Fraction of \

79



experiments",filenametosave,data)
print "%s crated\n"%filenametosave

def MSRPCDFplots(self,filename,fileread):
filenametosave=self.curlfile("%s"%filename)

dict=self.MSRP(fileread)
data=dict

data={}
for k,v in dict.items():

if len(v)>1000:
data[k]=v

self.plots.CDFplot("RSRP","Fraction of \
experiments",filenametosave,data)

print "%s crated\n"%filenametosave

def MSRQCDFplots(self,filename,fileread):
filenametosave=self.curlfile("%s"%filename)

dict=self.MSRQ(fileread)
data=dict

data={}
for k,v in dict.items():

if len(v)>1000:
data[k]=v

self.plots.CDFplot("time to connect","Fraction of \
experiments",filenametosave,data)

print "%s crated\n"%filenametosave

if __name__=="__main__":
obj=runplotsClass()

# in order to run plots call the functions making plot
#obj.MSRQCDFplots(......)

database.py
#!/usr/bin/env python
import xml.etree.ElementTree as et
import sqlite3 as lite
import subprocess
import os
import re
import time
from cymruwhois import Client
from collections import OrderedDict
import json
import shutil
import ast

path="traceroutefiles/"
pathtomove="/Users/dikon/Documents/plots/finishedfiles/"

class extractor:

80



def __init__(self):
self.path=path
#self.tracefiles=allfiles

def conn(self):
return lite.connect(’experiments.db’)

def createHTML(self,filename):
html="""

<html>
<head>

<style>
.TableRow td{

border-bottom: 2px solid rgb(167,167,167);
border-top: 2px solid rgb(167,167,167);

}
.TableRaw tr{

margin-top:5px;
}
span {margin-left: 4px;}

</style>
</head>
<body>

<center>
<h1>%s</h1>
<table cellspacing="1">

%s
</table>

</center>
</body>

</html>
"""

result=self.internetpath(filename)
with open(filename+".html","w") as f:

f.write(html%(filename,result))
f.close()

def internetpath(self,file):
str=’’
with open(file,’r’) as f:

lines=f.readlines()
for l in lines:

str+=’<tr class="TableRow">’
sp=l.strip().split(’|’)

site=sp[1]
str+="<td>%s</td>"%site
tracepath=eval(sp[2])
str+=’<td>’
for k,v in tracepath.iteritems():

if not ’NA’ in k:
q=self.queryTable("select asn,owner from \

whois where asn=%s"%k )
str+="<span>%s : </span><span>%s ;</span><span>\

%s hops</span><br/>"%(q[0],q[1],v)

81



str+="</td>"
str+="</tr>"

return str

def nodeoperatorsmapping(self):
lines=self.readfile("cooperators.txt")
m={}
for l in lines[1:]:

line=l.split()
if line[3]=="1":

m[line[0]]=(line[1],line[2],’Telenor’,line[4])
elif line[3]=="2":

m[line[0]]=(line[1],line[2],’Netcom’,line[4])

return m
def mapper(self,key):

m=self.nodeoperatorsmapping()
return m[key]

def createTraceTable(self):
con=self.conn()
with con:

cur=con.cursor()
cur.execute("DROP TABLE IF EXISTS traceroute")
cur.execute("CREATE TABLE traceroute (M_Id INT,\

timestamp TEXT,node INT,region TEXT,ISP TEXT, \
connection TEXT, website TEXT,asn_occurr TEXT,\
ingDelay REAL, provDelay REAL, \
hops TEXT, delays TEXT);")

print "Table traceroute createds"

def createWhoisTable(self):
con=self.conn()
with con:

cur=con.cursor()
cur.execute("DROP TABLE IF EXISTS whois")
cur.execute("CREATE TABLE whois (ip TEXT,asn INT,owner TEXT);")
print "Table whois createds"

def formatdelay(self,ms):
list=[float(l.strip()) for l in ms]
minimum= min(list)
return str(minimum)

def hopsoccurence(self,rsn):
uniqASN={}

str=""
if r.asn not in uniqASN:

uniqASN[r.asn]=1
else:

uniqASN[r.asn]+=1
return uniqASN

82



def whoisMany(self,iplist):
c=Client()
ips=[x for x in iplist if not x.startswith(’10’) and \

not x.startswith(’192.168’)]
uniqASN=OrderedDict()

str=""
for ip in ips:

raws=self.fetchWhois(ip)
if raws == 0:

whois=self.whoisSub(ip)
if whois <> 0:

asn=whois[0]
ip=whois[1]
owner=whois[2]

if asn not in uniqASN:
uniqASN[asn]=1

else:
uniqASN[asn]+=1

self.insertTableWhois(ip,asn,owner)
else:

asn=raws[1]
ip=raws[0]
owner=raws[2]

if asn not in uniqASN:
uniqASN[asn]=1

else:
uniqASN[asn]+=1

res= json.dumps(uniqASN)
return res

def whoisSub(self,ip):
cmd=[]
cmd.append("whois")
cmd.append("-h")
cmd.append("whois.cymru.com")
#cmd.append(" -v ")
cmd.append(ip)
sub=subprocess.Popen(cmd ,stdout=subprocess.PIPE)
res= sub.stdout.readlines()
if len(res)>1:

sp= res[1].split(’|’)
asn=sp[0].strip()
ip=sp[1].strip()
owner=sp[2].strip().replace(’\n’,’’)

tup=(asn,ip,owner)
#print tup
return tup

else:
return 0

sub.wait()

def searchhopsanddelay(self,hoplines):
ip_pattern=r"\d+\.\d+\.\d+\.\d+"
delay_pattern=r"\s\d+\.?\d+\s"

83



tup=()
both=[]
dict={}
#hops=hoplines
hops=hoplines.split("\n")
for line in hops[2:]:

m1=re.search(ip_pattern,line)
m2=re.findall(delay_pattern,line)
if m1 and m2:

ip=m1.group()
minvalue=self.formatdelay(m2)

tup=(ip,minvalue)
both.append(tup)
dict[ip]=minvalue

return (both,dict)

def insertTableTrace(self,tuples):
con=self.conn()
with con:

cur=con.cursor()
cur.executemany("INSERT INTO traceroute \

VALUES(?,?,?,?,?,?,?,?,?,?,?,?)",(tuples,))
#print "New raws added to traceroute"

def insertTableWhois(self,ip,asn,owner):
con=self.conn()
with con:

cur=con.cursor()
cur.execute("INSERT INTO whois VALUES(?,?,?)",(ip,asn,owner))
#print "New raws added to whois"

def fetchWhois(self,query):
con=self.conn()
with con:

con.row_factory = lite.Row
cur=con.cursor()
cur.execute("SELECT * FROM whois WHERE ip=?",(query,))
raw=cur.fetchone()
if raw == None:

return 0
else:

return raw

def commitdb(self):
self.conn().commit()

self.conn().close()

def readfile(self,filename):
f=open(filename,"r")
lines=f.readlines()
return lines

84



def xmlparser(self,filename):
parser= et.parse(filename)
return parser.getroot()
#return parser

def siteAndhopstext(self,filename):
root=self.xmlparser(filename)
dict={}
for child in root.iter("d"):

site=child.find(’site’).text
tracehops=child.find(’traceroute’).text
dict[site]=tracehops

return dict

def getAll(self,filename):
tup=()
sp= filename.split("_")
measureid=sp[1]
timestamp=sp[2]
map=self.mapper(measureid)
node=map[0]
region=map[1]
ISP=map[2]
connection=map[3]
tracedata=self.siteAndhopstext(filename)
for site,tracehops in tracedata.iteritems():

if len(tracehops)>100:
hopsanddelay=self.searchhopsanddelay(tracehops)
both=hopsanddelay[0]
print len(both)
if len(both)>0:

keyvals=hopsanddelay[1]
hops=[x[0] for x in both]
delays=[x[1] for x in both]
ingressdelay=delays[0]
providerdelay=delays[-1]
allhops=’,’.join(hops)
alldelays=’,’.join([str(d) for d in delays])
list=[]
whoisinfo=self.whoisMany(hops)
#whoisstr= whoisinfo[0]
asnoccurrences= whoisinfo
tuples=(int(measureid),timestamp,int(node),region,ISP\

,connection,site,asnoccurrences,float(ingressdelay),\
float(providerdelay),allhops,alldelays)

self.writeout(tuples)
self.insertTableTrace(tuples)
self.commitdb()
print "New rows added to traceroute table\n"

self.logger(filename)
time.sleep(1)

def movefile(self,p1,p2):
shutil.move(p1,p2)

85



def logger(self,filename):
with open("logs.txt","a") as f:

str="%s is completed.\n" %filename
f.write(str)
print str

f.close()

def writeout(self,tuple):
with open("finalltraces.txt","a") as f:

print >> f, tuple
f.close()

def queryTable(self,query):
cursor=self.conn().cursor()
try:

cursor.execute(query)
#results=cursor.fetchall()
results=cursor.fetchone()
if results <> None:

return results
except:

print "Error: unable to fetch data by \
executing the query: %s"%query

#self.db().close()

def dowork(self):
counter=1
for root,dirs,files in os.walk(self.path):

for f in files:
if f.startswith("trace"):

print f , counter
tf=os.path.join(root,f)
self.getAll(tf)
counter+=1
p2="%s%s"%(pathtomove,f)
self.movefile(tf,p2)

def run(self):
self.dowork()

obj=extractor()
#obj.tabledata()
#obj.createTraceTable()
#obj.createWhoisTable()

#obj.run()
#obj.createHTML("telenor.internetpath")
#obj.createHTML("netcom.internetpath")

86



Bibliography

[1] Adrio Communications Ltd : Resource and analyse for electronic engin-
eers. URL: http://www.radio- electronics.com/info/cellulartelecomms/
umts/umts_wcdma_tutorial.php.

[2] Mysql AB: relational database management system. URL: http ://www.
mysql.com.

[3] John P.Rula et al. ‘Behind the curtain-Cellular DNS and content
replica selection’. In: Internet Computing, IEEE 5.5 (Sept. 2001). ISSN:
1089-7801. DOI: 10.1109/4236.957902.

[4] Kyriakos Zarifis et al. Diagnosing path Inflation of mobile client traffic.
Tech. rep. Juni. 2012.

[5] Alexa Internet Inc. 1996 - 2015. URL: http://www.alexa.com.

[6] M. Amirijoo et al. ‘Neighbor cell relation list and measured cell
identity management in LTE’. In: Network Operations and Management
Symposium, 2008. NOMS 2008. IEEE. Apr. 2008, pp. 152–159. DOI: 10.
1109/NOMS.2008.4575129.

[7] B. Augustin, T. Friedman and R. Teixeira. ‘Multipath tracing with
Paris traceroute’. In: End-to-End Monitoring Techniques and Services,
2007. E2EMON ’07. Workshop on. 2007, pp. 1–8. DOI: 10 . 1109 /
E2EMON.2007.375313.

[8] Dziugas Baltrunas, Ahmed Elmokashfi and Amund Kvalbein. ‘Meas-
uring the Reliability of Mobile Broadband Networks’. In: Proceed-
ings of the 2014 Conference on Internet Measurement Conference. IMC
’14. Vancouver, BC, Canada: ACM, 2014, pp. 45–58. ISBN: 978-1-4503-
3213-2. DOI: 10.1145/2663716.2663725. URL: http://doi.acm.org/10.
1145/2663716.2663725.

[9] Mudit Ratana Bhalla and Anand Vardhan Bhalla. ‘Generations of
mobile wireless technology: A survey’. In: International Journal of
Computer Applications (0975–8887) 5.4 (2010).

[10] S. Branigan et al. ‘What can you do with Traceroute?’ In: Internet
Computing, IEEE 5.5 (Sept. 2001), pp. 96–. ISSN: 1089-7801. DOI: 10.
1109/4236.957902.

[11] Team Cymru. Whois: URL: http : / /www . team - cymru . org / IP - ASN -
mapping.html#whois.

[12] Leslie Daigle. ‘WHOIS protocol specification’. In: (2004).

87

http://www.radio-electronics.com/info/cellulartelecomms/umts/umts_wcdma_tutorial.php
http://www.radio-electronics.com/info/cellulartelecomms/umts/umts_wcdma_tutorial.php
http://www.mysql.com
http://www.mysql.com
http://dx.doi.org/10.1109/4236.957902
http://www.alexa.com
http://dx.doi.org/10.1109/NOMS.2008.4575129
http://dx.doi.org/10.1109/NOMS.2008.4575129
http://dx.doi.org/10.1109/E2EMON.2007.375313
http://dx.doi.org/10.1109/E2EMON.2007.375313
http://dx.doi.org/10.1145/2663716.2663725
http://doi.acm.org/10.1145/2663716.2663725
http://doi.acm.org/10.1145/2663716.2663725
http://dx.doi.org/10.1109/4236.957902
http://dx.doi.org/10.1109/4236.957902
http://www.team-cymru.org/IP-ASN-mapping.html#whois
http://www.team-cymru.org/IP-ASN-mapping.html#whois


[13] Wei Dong, Zihui Ge and Seungjoon Lee. ‘3G meets the internet: un-
derstanding the performance of hierarchical routing in 3G networks’.
In: Proceedings of the 23rd International Teletraffic Congress. Interna-
tional Teletraffic Congress. 2011, pp. 15–22.

[14] Benoit Donnet et al. ‘Revealing MPLS tunnels obscured from
traceroute’. In: ACM SIGCOMM Computer Communication Review 42.2
(2012), pp. 87–93.

[15] K. Doppler et al. ‘Device-to-device communication as an underlay
to LTE-advanced networks’. In: Communications Magazine, IEEE 47.12
(Dec. 2009), pp. 42–49. ISSN: 0163-6804. DOI: 10.1109/MCOM.2009.
5350367.

[16] T. Dreibholz and E.G. Gran. ‘Design and Implementation of the
NORNET CORE Research Testbed for Multi-homed Systems’. In:
Advanced Information Networking and Applications Workshops (WAINA),
2013 27th International Conference on. Mar. 2013, pp. 1094–1100.

[17] Thomas Dreibholz. NorNet – An Open, Large-Scale Testbed for
Multi-Homed Systems. Invited Talk at Swinburne University, Centre
for Advanced Internet Architectures (CAIA). Melbourne, Vic-
toria/Australia, 30th Jan. 2014. URL: https ://www.simula .no/sites/
www.simula.no/files/publications/files/caia2014-presentation-web.pdf.

[18] Denis Fawler. ‘The last mile: making the broadband connection’. In:
ACM New York, NY, USA 4 (Mars. 2000). ISSN: 1091-3556 EISSN. DOI:
10.1145/330894.330900.

[19] Forough Golkar. ‘Measuring and Comparing the Stability of Internet
Paths over IPv4 & IPv6’. In: (2014).

[20] F Gont. ‘ICMP Attacks against TCP’. In: Internet Engineering Task Force
(IETF) (July. 2010). ISSN: 2070-1721.

[21] Ernst Gunnar Gran, Thomas Dreibholz and Amund Kvalbein. ‘Nor-
Net Core – A multi-homed research testbed’. In: Computer Networks
61 (2014). Special issue on Future Internet Testbeds – Part I, pp. 75–
87. ISSN: 1389-1286. DOI: http : / / dx . doi . org / 10 . 1016 / j . bjp . 2013 .
12 . 035. URL: http : / / www . sciencedirect . com / science / article / pii /
S1389128613004489.

[22] Rahul Hiran, Niklas Carlsson and Phillipa Gill. ‘Characterizing large-
scale routing anomalies: a case study of the China Telecom incident’.
In: Passive and Active Measurement. Springer. 2013, pp. 229–238.

[23] John D. Hunter. Matplotlib. URL: http://matplotlib.org.

[24] Icina: System monitoring. URL: https://www.icinga.org/.

[25] ICMP: (Internet Control Message Protocol). January. 2015. URL: http://
en.wikipedia.org/wiki/Internet_Control_Message_Protocol.

[26] Cisco Inc: Understanding the Ping and Traceroute Commands. Novem-
ber. 2006. URL: http://www.cisco.com/c/en/us/support/docs/ios-nx-os-
software/ios-software-releases-121-mainline/12778-ping-traceroute.html.

88

http://dx.doi.org/10.1109/MCOM.2009.5350367
http://dx.doi.org/10.1109/MCOM.2009.5350367
https://www.simula.no/sites/www.simula.no/files/publications/files/caia2014-presentation-web.pdf
https://www.simula.no/sites/www.simula.no/files/publications/files/caia2014-presentation-web.pdf
http://dx.doi.org/10.1145/330894.330900
http://dx.doi.org/http://dx.doi.org/10.1016/j.bjp.2013.12.035
http://dx.doi.org/http://dx.doi.org/10.1016/j.bjp.2013.12.035
http://www.sciencedirect.com/science/article/pii/S1389128613004489
http://www.sciencedirect.com/science/article/pii/S1389128613004489
http://matplotlib.org
https://www.icinga.org/
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-software-releases-121-mainline/12778-ping-traceroute.html
http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-software-releases-121-mainline/12778-ping-traceroute.html


[27] Cisco Inc: Visual Networking Index. URL: http://www.cisco.com/c/en/
us/solutions/service-provider/visual-networking-index-vni/index.html.

[28] Cisco Inc: Visual Networking Index. February. 2015. URL: http://www.
cisco . com / c / en / us / solutions / collateral / service - provider / visual -
networking- index- vni/white_paper_c11- 520862.html?CAMPAIGN=
VNI+2014&COUNTRY_SITE=us&CREATIVE=PR+to+Mobile+VNI+
WP&POSITION=PR&REFERRING_SITE=Press+release.

[29] Amund Kvalbein et al. ‘The Nornet Edge platform for mobile
broadband measurements’. In: Computer Networks 61 (2014). Special
issue on Future Internet Testbeds – Part I, pp. 88–101. ISSN: 1389-
1286. DOI: http://dx.doi.org/10.1016/j.bjp.2013.12.036. URL: http:
//www.sciencedirect.com/science/article/pii/S1389128613004490.

[30] Puppet Labs: Configuration management. URL: https : / / puppetlabs .
com/.

[31] G. Lui et al. ‘Differences in RSSI readings made by different Wi-
Fi chipsets: A limitation of WLAN localization’. In: Localization and
GNSS (ICL-GNSS), 2011 International Conference on. June 2011, pp. 53–
57. DOI: 10.1109/ICL-GNSS.2011.5955283.

[32] Carlos d M. Cordeiro et al. The last mile: Wireless Technologies for
Broadbands and home Network. Tech. rep. University of Cincinnati,
OH-USA: Center for distributed and Mobile communication, ECECS,
2005.

[33] Nagios: System monitoring. URL: http://www.nagios.org/.

[34] Norway Map. URL: http://mapsof.net/map/norway-municipalities.

[35] Jitu Padhye and Henrik Frystyk Nielsen. A comparison of SPDY and
HTTP performance. Tech. rep. Citeseer, 2012.

[36] Guido van Rossum. Python. URL: http://www.python.org.

[37] Liia Sarjakosk. ‘Challenges of Mobile Peer-to-Peer Applications in
3G and MANET Environments’. In: Publications in Telecommunications
Software and Multimedia Teknillisen korkeakoulun tietoliikenneohjelmisto-
jen ja multimedian julkaisuja (Spring 2005). ISSN: 1455-9749.

[38] Abhi Sharma. ‘An intro to Cellular communication Generations’. In:
Open Scholar Library (2013). URL: https://www.academia.edu/3099956/
Generations_of_Wireless_Communication._From_0G_to_5G_Abhi.

[39] NorNet Edge Simula. Resilient Networks Mobile Broadband Measure-
ments. URL: http://robustenett.no/mape.

[40] Daniel Stenberg: cURL. 1977. URL: http://curl.haxx.se.

[41] Daniel Stenberg: cURL. 1977. URL: http://curl.haxx.se/docs/manpage.
html.

[42] Pratik Sule and Anish Joshi. ‘Architectural Shift from 4G to 5G
Wireless Mobile Networks’. In: (2014).

[43] Paris Traceroute: Paris Traceroute. URL: http://www.paris- traceroute.
net.

89

http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html?CAMPAIGN=VNI+2014&COUNTRY_SITE=us&CREATIVE=PR+to+Mobile+VNI+WP&POSITION=PR&REFERRING_SITE=Press+release
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html?CAMPAIGN=VNI+2014&COUNTRY_SITE=us&CREATIVE=PR+to+Mobile+VNI+WP&POSITION=PR&REFERRING_SITE=Press+release
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html?CAMPAIGN=VNI+2014&COUNTRY_SITE=us&CREATIVE=PR+to+Mobile+VNI+WP&POSITION=PR&REFERRING_SITE=Press+release
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html?CAMPAIGN=VNI+2014&COUNTRY_SITE=us&CREATIVE=PR+to+Mobile+VNI+WP&POSITION=PR&REFERRING_SITE=Press+release
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html?CAMPAIGN=VNI+2014&COUNTRY_SITE=us&CREATIVE=PR+to+Mobile+VNI+WP&POSITION=PR&REFERRING_SITE=Press+release
http://dx.doi.org/http://dx.doi.org/10.1016/j.bjp.2013.12.036
http://www.sciencedirect.com/science/article/pii/S1389128613004490
http://www.sciencedirect.com/science/article/pii/S1389128613004490
https://puppetlabs.com/
https://puppetlabs.com/
http://dx.doi.org/10.1109/ICL-GNSS.2011.5955283
http://www.nagios.org/
http://mapsof.net/map/norway-municipalities
http://www.python.org
https://www.academia.edu/3099956/Generations_of_Wireless_Communication._From_0G_to_5G_Abhi
https://www.academia.edu/3099956/Generations_of_Wireless_Communication._From_0G_to_5G_Abhi
http://robustenett.no/mape
http://curl.haxx.se
http://curl.haxx.se/docs/manpage.html
http://curl.haxx.se/docs/manpage.html
http://www.paris-traceroute.net
http://www.paris-traceroute.net


[44] J. Uribe and W. Fu. Receiver signal strength indicator. US Patent
7,630,695. Dec. 2009. URL: https : / / www . google . com / patents /
US7630695.

[45] NorNet visualizaiton: Resilient Networks Mobile Broadband Measure-
ments. URL: http://robustenett.no/map.

[46] Kimio Watanabe and Mamoru Machida. ‘Outdoor LTE Infrastructure
Equipment (eNodeB)’. In: FUJITSU Sci. Tech. J 48.1 (2012), pp. 27–32.

90

https://www.google.com/patents/US7630695
https://www.google.com/patents/US7630695
http://robustenett.no/map

	Introduction
	Problem statement
	Thesis Outline

	Background
	Mobile Cellular Network 
	Generations of Cellular technologies
	Ec / Io
	LTE Networks (4G)

	Interdomain connectivity
	Autonomous System Number (ASN)

	NorNet Research Testbed
	NorNet Edge architecture

	Measurement Tools
	ICMP
	Ping
	Traceroute
	Nslookup
	Curl
	Whois

	Related work

	Methodology and Approach
	Objectives
	Measurement setup
	Measurement Procedure
	Tools and scripting language
	Collecting and recording data
	Httpfetcher.py
	Traceroute.py
	Plots.py and Makeplots.py
	Database.py and utils.py


	Results and Analysis
	Ingress point placement
	Network Delay
	Node-to-ingress delay
	End-to-end delay
	Node-to-ingress delay ratio to end-to-end delay 

	Routing path
	HTTP performance delay
	Time to connect to content provider's server in Netcom (3G and 4G)
	Time to start transfer the first byte of Internet content in Netcom (3G and 4G)

	Time to connect to the content provider in Telenor and Netcom
	Time to start transfer the first byte of web content
	Radio conditions


	Discussion and Future work
	Evaluation of the network topology 
	Evaluation of the Network delay
	Evaluation of HTTP performance under accessing web content
	Evaluation of radio conditions 
	Limitations
	Future Work

	Conclusion

