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SUMMARY:  

This study is part of a project where the Chlamydomonas reindhardtii rbcL 5’UTR is 

analyzed for its effect on transcript stability. Two different mutated rbcL 5’UTRs 

were fused to GUS reporter genes, and introduced into the Chlamydomonas 

chloroplast genome. In vivo transcript accumulation was determined by northern blot 

assay. 

One of the 5’UTR modifications was an addition of 9 nucleotides to the 5’terminus of 

the transcript and a deletion of the nucleotide at the original start of transcription. The 

other mutation changed the nucleotide sequence in a 5’UTR stem-loop without 

changing its secondary structure. It was found that both modifications rendered the 

transcripts unstable, and significantly reduced accumulation of GUS transcripts. 
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1. Introduction 

1.1 The Chloroplast  

1.1.1 The chloroplast  

Chloroplasts are organelles found in plant cells and eukaryotic algae. The chloroplast 

belongs to the organelle group called plastids. Chloroplasts are usually 2 to 10 µm in 

diameter, and most chloroplasts have a double membrane. The matrix inside the 

chloroplast is called the stroma. Within the stroma lie plastid DNA, ribosomes, and 

stacks of thylakoids. A thylakoid stack is called a granum (Figure 1-1). 

Photosynthesis takes place in the thylakoid membrane.   

Plastids are believed to originate from an endosymbiosis with cyanobacteria that 

allowed eukaryotes to carry out oxygenic photosynthesis (Cavalier-Smith, 2000). The 

mitochondrion is also believed to originate from a similar endosymbiotic event. The 

genome of organelles is considerably reduced compared to that of their evolutionary 

ancestors (Hoffmeister & Martin, 2003; Martin et al., 2002). Most genes in organelle 

genomes have been lost or transferred to the nucleus. In plants and algae this gene-

transfer is believed to be an ongoing process. There have also been found examples 

of mitochondrion-plastid gene transfer, and transfer of genes from the nucleus to 

organelles. The influence from the nucleus has resulted in a eukaryote-like plastid 

genome organization (e.g., intron invasion and the presence of maturases) and 

regulatory units to genes (Maul et al., 2002).  Most genes needed for mitochondrial 

and plastid functions are located in the nucleus (~95%). Chloroplasts typically 

contain only 100-200 genes, whereas cyanobacteria often contain more than 1500 

genes. Chloroplast proteins encoded in the nucleus are transported to the chloroplast 

by a unique translocation system, which is inherited, in part, from the endosymbiotic 

ancestor (Soll & Schleiff, 2004).  

The chloroplast is a semi-autonomous organelle that contains the biochemical 

machinery necessary to replicate and transcribe its own genome and to synthesize 

protein. Most of the genes retained in the chloroplast are those encoding components 



 

of the photosynthetic apparatus and the gene expression apparatus of the plastid 

(Barbrook et al, 2006). One of the reasons some genes are not relocated to the 

nucleus might be that synthesis of these proteins in the chloroplast makes redox-

regulated expression a direct way to rapidly regulate these genes by redox signals 

from the electron transport chain (Bock & Timmis, 2008; Race et al, 1999). Another 

reason might be that the plastid location allows those genes to be regulated as part of 

global plastid gene-regulation e.g. during plastid development.  

 

Figure 1-1: Plant cell chloroplast structure. Photosynthesis takes place in the thylakoid 
membrane. Illustration from http://micro.magnet.fsu.edu. 

 

1.1.2 Photosynthesis 

Located in the thylakoid membrane are pigments (in the antenna complex) that 

capture and transfer photons to a reaction centre, where they ionize chlorophyll 

molecules. This produces excited electrons, which are used in an electron flow chain 

to convert ADP to ATP and to reduce NADP+ to NADPH while producing oxygen 

gas from water. These reactions are known as the light reactions of photosynthesis 

7 
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(Figure 1-2). In the algal chloroplast ATP is generated via the transmembrane 

enzyme CF0CF1 ATPase. The Calvin cycle (dark reactions) fixes carbon from CO2 

into organic compounds. The enzymes in the cycle are not membrane-bound but 

soluble in the stroma. One of the enzymes is RuBisCO (Ribulose-1.5-bisphosphate 

carboxylase / oxygenase), which catalyzes the first major step of carbon fixation. 

RuBisCO is thought to be the most abundant protein in the world, and usually 

consists of two subunits, called the large chain and the small chain. The rbcL gene 

encodes the large chain. The reducing power and ATP produced by the light reactions 

have through several studies been linked to regulation of  mRNA degradation and 

other parts of the molecular machinery in chloroplasts (Salvador & Klein, 1999).   

   

Figure 1-2: The light reactions and the Calvin Cycle of the photosynthesis. RuBisCO 
catalyze the rate-limiting step of the Calvin cycle. ATP and NADPH are produced through 
the light reactions. Illustration from http://mrskingsbioweb.com.  
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1.2 Chlamydomonas reinhardtii 

1.2.1 The model organism Chlamydomonas reinhardtii 

Chlamydomonas reinhardtii (hereafter referred to as Chlamydomonas) is a eukaryotic 

green alga, commonly found in soil and fresh water (Figure 1-3). It is unicellular, 10 

µm in length and 3 µm in with, and with two flagellae (Merchant et al., 2007). The 

cell harbours three genomes; the nuclear (~ 121 Mb), the mitochondrial (~15.8 kb) 

and the chloroplast genome (~ 200 kb). The Chlamydomonas wild type mutant 

laboratory strain CC137 (mt+) originates from an isolate made in 1945. The alga is a 

model organism, used for research on different biological processes, including 

photosynthesis, protein synthesis, stress responses and flagella motility (Harris, 2001; 

Merchant et al., 2007).  

It has several features making it a popular research target. Chlamydomonas can grow 

both photosynthetically and with acetate as sole carbon source. Because non-

photosynthetic mutants are viable, these have been used to study the photosynthetic 

process. Its capability of growing photosynthetically, heterotrophically and 

mixotrophically also makes it possible to control its life cycle by nitrogen and light. 

Alternating periods of light and dark synchronizes cell division (Lien & Knutsen, 

1979), and nitrogen starvation triggers sexual propagation.  Under ideal growth 

conditions the alga reproduces only through mitosis. The progeny inherit chloroplast 

DNA only from the maternal mating type parent  (Sager & Ramanis, 1973) . Since 

Chlamydomonas species are normally haploid, the effects of mutations are seen 

immediately without further crosses. Under nitrogen starvation haploid gametes 

develop. There are two mating types, mt (+) and mt (-), which can fuse to form a 

diploid zygote that serves as a dormant form of the species in the soil. This zygote 

can under favourable conditions release four flagellated haploid cells by meiosis.   

There are also other advantages of using Chlamydomonas as a model organism. It is 

easy to maintain and propagate under laboratory conditions, needing only an 
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inexpensive salt medium to grow and it can form clear colonies on agar plates.  In 

1988, it was developed a chloroplast transformation system for Chlamydomonas 

based on micro projectile bombardment (Blowers et al., 1989; Boynton et al., 1988). 

It allows for exogenous reporter genes and mutated versions of endogenous genes to 

be stably introduced into the chloroplast genome via homologous recombination.  

The chloroplast of Chlamydomonas is one of few chloroplasts that can be efficiently 

transformed, and this has made the chloroplast of Chlamydomonas a widely used 

model system for the study of photosynthetic processes.  

 

Figure 1-3:  The unicellar Chlamydomonas. It is 10 µm in diameter and swims 
with two flagella. Picture from http://www.terradaily.com. 

 

1.2.2 The chloroplast genome of Chlamydomonas reinhardtii 

Chlamydomonas reinhardtii contain a single cup-shaped chloroplast that occupies 

nearly 40% of the cell volume. Each chloroplast of Chlamydomonas contains 50 to 80 

copies of the genome. The size of the chloroplast genome is 203 395 bp, and its full 

sequence was determined in 2002 (Maul et al., 2002) (Figure 1-4). It consists of two 

inverted repeats (IR) of 21.2 kb each and two in between areas of ~81 kb and ~78 kb 

(Maul et al., 2002). The inverted repeats are believed to originate from a transposition 

event, and make the genome able to undergo "flip-flop" recombination between the 

repeats (Aldrich et al., 1985). The genomes are found in the chloroplast as 

monomeric and dimeric linear and circular genomes (Maul et al., 2002). As in most 

http://www.terradaily.com/


 

plastid genomes the majority of its genes code for products involved in gene 

expression and the photosynthetic apparatus.  

 

Figure 1-4: The plastid chromosome of Chlamydomonas. The inner circle shows 
BamHI and EcoRI restriction fragments. The second concentric circle indicates 
seven overlapping BAC clones that span the genome. The third circle shows genes 
and ORFs of unknown function, including those for which disruption experiments 
were unsuccessful. The outer circle shows genes of known or presumed function, 
with sequenced or hypothesized introns shown in olive green. Genes are color coded 
by their function, as shown at bottom (Maul et al., 2002). 

11 
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The Chlamydomonas chloroplast genome distinguishes itself from other chloroplast 

genomes in several ways. It is encoding only 99 genes (most plastids contain around 

130 genes) (Simpson & Stern, 2002),  has an atypical organization of genes encoding 

the RNA polymerase (they are widely separated and contain introns), and more than 

20% of the genome is repetitive DNA. The majority of intergenic regions consist of 

numerous classes of short dispersed repeats (SDRs) that might have structural or 

evolutionary significance. Phylogenetic reconstruction of changes shows that SDRs 

proliferate in the Chlamydomonas chloroplast genome, but there is also an 

accelerated rate of gene loss in the Chlamydomonas plastid. In contrast to most 

chloroplast genes of vascular plants, most Chlamydomonas chloroplast genes are not 

organised in polycistronic transcription units (Drapier et al., 1998). 

1.3 Chloroplast gene expression 

1.3.1 Chloroplast transcription 

RNA polymerases 

Plastid transcription is performed by two types of RNA polymerases with distinct 

transcriptional activities. They are termed PEP and NEP.  

PEP is a plastid-encoded multisubunit RNA polymerase. It is present in plastid 

genomes of all types of photosynthetic plants and algae, and is the only active RNA 

polymerase in the Chlamydomonas chloroplast (Lilly et al., 2002). The plastid-

encoded RNA polymerase resembles the E.coli  σ70-RNA polymerase, and is thought 

to have evolved from the RNA polymerase of endosymbionts (Igloi & Kössel, 1992). 

The PEP core enzyme comprises four subunits (α, ß, ß´ and ß˝) which are 

homologues to the bacterial core subunits of RNA polymerase (α, ß and ß´). In 

bacteria they are encoded by the three genes rpoA, rpoB and rpoC. The homologous 

genes in plastids are normally rpoA, rpoB, rpoC1 and rpoC2 (the rpoC gene split in 

two) (Igloi & Kössel, 1992). Chlamydomonas has an atypical organization of genes 

encoding PEP (Maul et al., 2002). The rpoC1 gene is lacking, and rpoB is instead 

split into two genes.  
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Both the bacterial and the plastid RNA polymerase depend on sigma-factors for 

promoter specificity (Troxler et al., 1994). The PEP sigma-factors are not encoded in 

the plastid genomes, but by a small family of nuclear genes and transported into the 

plastids (Asayama et al., 1996). They have sequence homologies to bacterial sigma 

factors, and originate from a sigma factor encoded in the endosymbiotic eubacteria. 

While in most plastids sigma-factors have evolved into different types that can 

differentiate transcriptional regulation (Allison, 2000) the Chlamydomonas 

chloroplast has only one sigma factor , RPOD, (Bohne et al., 2006) that contributes to 

general up-regulation of chloroplast transcription in a light-dependent (circadian 

clock) manner (Carter et al., 2004).  PEP transcribes photosynthesis-related genes 

(Stern et al., 1997),  and the sigma-factors make them capable of responding to 

external factors (e.g. light) and endogenous signals at a transcriptional level.   

NEP is a nuclease-encoded single-peptid RNA polymerase. It is present in higher 

plants, where it transcribes non-photosynthetic housekeeping genes (Hess & Borner, 

1999).  It is homologous to T3/T7 bacteriophage RNA polymerase, and most likely 

evolved through a gene duplication of mitochondrial RNA polymerase (also nucleus 

encoded). NEP is active in proplastids and non-photosynthetic tissue and does not 

require sigma-factors (Shiina et al., 2005). 

Plasmid promotors 

PEP and NEP recognize distinct types of promoters. 

Standard PEP promoters resemble E.coli σ70-type promoters and are characterised by 

-10(TATAAT) and -35(TTGACA) consensus sequence elements (Hayashi et al., 

2003; Sugiura et al., 1998).  Positions are relative to start site of transcription.  The 

strength of the promoters varies considerably, and is probably determined by 

similarity of the promoter elements to consensus sequences. It is the most common 

promoter in higher plants. In Chlamydomonas chloroplast rRNA is transcribed by this 

sort of promoter (Klein et al., 1992). Protein-coding genes are transcribed by  another 

type of promoter (Salvador et al., 2004a). It lacks the -35 consensus motif, but 
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includes a palindrome sequence element TATAATAT around position -10 (Klein et 

al., 1992). A third promoter type is identified in spinach and Chlamydomonas. It is 

thought to be an internal promoter of a subpopulation of chloroplast tRNA genes.  

NEP promoters are found in higher plants. Most NEP polymerases recognise an 

YRTA-motif which is similar to mitochondrial Ia promoters (Hess & Borner, 1999; 

Weihe & Borner, 1999).  In several genes of higher plants the NEP promoter has 

been found upstream of  PEP promoters (Hajdukiewicz et al., 1997) . NEP 

polymerase is the most active polymerase during plastid development, when 

photosynthesis related genes are largely silent (Baumgartner et al., 1993). PEP 

polymerase takes over as the most active later in plant development.  Some genes can 

therefore be transcribed by different polymerases at different stages of plant 

development (Klein et al., 1994; Magee & Kavanagh, 2002).        

Transcriptional regulation 

Unlike prokaryotes, chloroplast genes are rarely regulated individually at a 

transcriptional level (Bollenbach et al., 2004).  Transcription can be regulated 

globally by changes in genome copy number (Simpson & Stern, 2002), by changes in 

DNA supercoiling in plastid nucleoids (Salvador et al., 1998), by intracellular 

relocation of plastid nucleoids and by phosphorylation of RNA polymerases (Shiina 

et al., 2005). Chlamydomonas chloroplast transcription has been found to be globally 

up-regulated in light and can exhibit a circadian oscillation (Salvador et al., 1993b). 

Transcription also can be differentially enhanced by illumination (Klein & Mullet, 

1990) and both PEP and NEP promoters can be regulated by extra cis-elements and 

various nuclear-encoded transcription factors (Shiina et al., 2005). 
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1.3.2 Post-transcriptional processing. 

In plastids, primary transcripts undergo a series of mRNA maturation steps. These 

include RNA editing, intercistronic processing, intron splicing and processing of the 

5’ and 3’ ends. These modifications prepare the transcripts for translation. Post-

transcriptional processing can be used by the cell for protein level regulation. Some 

of these RNA processing steps exhibit prokaryotic features that have been retained 

from the eubacterial ancestor of present-day plastids, but they have also obtained 

features normally associated with eukaryotic nuclear genomes (Herrin & Nickelsen, 

2004; Monde et al., 2000). 

RNA editing 

RNA editing occurs in chloroplasts of higher plants and in eukaryotic nuclear 

genomes (Freyer et al., 1997), but not in chloroplasts of algae or in prokaryotes 

(Barkan & Goldschmidt-Clermont, 2000). RNA editing activity in plastids is 

responsible for specific Cytosine-to-Uracil conversions in the nucleotide sequence of 

transcripts prior to other post-transcriptional processes. Examples of Uracil-to-

Cytosine conversions have been found in ferns and hornworts (Yoshinaga et al., 

1996). Editing mostly affects protein-coding sequences, but has also been found to 

occur in non-coding transcribed regions and structural RNAs. The change in the 

coding sequence leads to a changed translated protein, often with higher similarity to 

the corresponding non-plant homologues. RNA editing can also affect initiation or 

stop codons, or binding sites for proteins necessary for initiation of translation 

(Esposito et al., 2001). The editing sites have sequences (cis-acting elements) of ~15 

nucleotides in their immediate upstream region. These elements are recognized by 

site-specific  proteins (trans-acting editing factors), encoded in the plant nuclear 

genome (Miyamoto et al., 2004). RNA editing activity in plastids is probably not a 

regulatory mechanism of gene expression, but has earlier in evolution given  

enhanced genetic variation at  RNA level (Tillich et al., 2006).  
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Intercistronic processing          

An mRNA is monocistronic when it contains genetic information to translate only a 

single protein. Polycistronic mRNAs carry the information of several genes, which 

are translated into several proteins. As in eubacteria, most plastid genes are organized 

in polycistronic transcription units (operons). Chlamydomonas is an exception from 

this, with mostly monocistronic units (Rochaix, 1996). In plastids, most polycistronic 

precursor transcripts are processed into monocistronic units by specific 

endonucleolytic cleavage (Herrin & Nickelsen, 2004). It is also possible for some 

polycistronic chloroplast mRNAs to be directly translated  (Carpousis et al., 1989). 

As genes in the same operon are transcribed together, the same promoter controls 

their transcription. The rate of processing reactions can vary significantly during plant 

development (Riesmeier et al., 1994), and processing can, therefore, be considered as 

a possible regulator mechanism of gene transcription. 

Intron splicing 

While absent in bacteria, introns are present in a number of plastid-encoded genes. In 

higher plants ~17% of the plastid genes contain introns and most of them belong to 

intron group II  (Plant & Gray, 1988). Sequencing of the Chlamydomonas chloroplast 

genome has confirmed that it contains few introns. They are located in the psbA, psaA 

and 23S rRNA genes (Maul et al., 2002). The introns belong to both group I (psbA 

and 23S) and group II (psaA). The group II introns are spliced in trans (exons joined 

from two different transcripts). It is likely that these introns need trans-acting splicing 

factors (Herrin & Nickelsen, 2004).  The group I introns are spliced in cis and are 

self-splicing (Cech, 1990) but probably use trans-acting proteins to promote the 

splicing (Li et al., 2002). Splicing rate of the psbA introns has been found to be 

increased by light. As group I intron ribosomes require cations for folding and 

catalysis,  this induction is probably electron transport dependent (Deshpande et al., 

1997). 

Processing of the 5’ and 3’ends  

Most plastid transcripts undergo specific processing at the 5’and 3’ends. The role of 

5’mRNA processing is still unclear, but for the psbA mRNA, it has been linked to 
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coupling to the ribosomes (Bruick & Mayfield, 1998). Some Chlamydomonas 

transcripts, e.g. psbD and atpB, can be found in the cell as two different forms. A low 

abundant precursor form and a shorter, predominant form, that is most likely 

generated by a 5’processing event (Anthonisen et al., 2001). 3’end processing is done 

at the 3’terminus to remove nucleotides added during transcription. This is done by 

ribonucleases and is for most chloroplast mRNAs essential for transcript stability 

(Drager et al., 1996; Stern et al., 1989).  A general feature in plastid-encoded mRNA 

is the presence of inverted repeats in the 3’UTR that fold into stem-loop structures. 

These structures resemble transcriptional terminators in bacteria, but are probably not 

terminator signals. They are likely 3’end-prosessing signals and  preventing 3’ to 5’ 

exonuclease degradation (Rott et al., 1998).  3’prosessing creates an mRNA 

terminating in a stem-loop structure.  In Chlamydomonas, 3’end maturation of the 

atpB mRNA starts with an endonucleolytic cleavage at an AU-rich site located ~10 

nucleotides downstream of a stem-loop structure. This cleavage is followed by 

exonucleolytic trimming to generate the mature 3’end (Stern & Kindle, 1993).  

 



18 

 

1.3.3 Transcript Degradation 

The level of mRNAs in the chloroplast is determined not only by its synthesis, but 

also by the decay rate. While the 3’regions of eukaryote transcripts have been found 

to be primary modulators of mRNA longevity, in bacterial and organelle mRNAs the 

essential determinants of transcript longevity seem to be located mostly in the 

5’UTR. Plastid mRNAs are protected from degradation by cis and trans-acting 

elements. The transcripts are rapidly degraded by ribonucleases when the protection 

from these elements is removed. Ribonucleases are divided into exonucleases that 

start degrading from either the 3’end or the 5’end, and endonucleases that start 

degrading inside the sequence.   

mRNA stability is measured in mRNA half-life. Half-life is the time required for half 

the initial amount of RNA to disappear (Monde et al., 2000). Different mRNAs 

within the same cell have distinct lifetimes that vary between species. Chloroplast 

mRNA is more resistant to degradation than bacterial mRNA. The half-life of 

bacterial transcripts range from seconds to half an hour, while plastid transcripts have 

half-life of several hours (Salvador & Klein, 1999).   

The degradation machinery in chloroplasts has some similarity to that of bacteria. 

Plastid homologues to the bacterial endonuclease RNaseE that cleave AU-rich 

elements have been found (Linchao et al., 1994). But as indicated by the great 

difference in longevity of transcripts, there also are differences. In bacteria the 

presence of a hairpin structure at the 5’end of mRNA has been found sufficient to 

maintain the longevities of the transcript. This is supposedly because the hairpin 

secondary structures hinder the endonuclease RNaseE from doing the initial 

nucleolytic attack. In chloroplasts, the secondary structures of their 5’end has been 

found insufficient to maintain the long lives of the mRNAs, and it has been shown 

that nucleus-encoded protein factors are required for transcript stability in the 

chloroplast (Kuchka et al., 1989; Nickelsen & Kück, 2000; Sieburth, et al., 1991).   
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Rates of transcription in mature chloroplasts are relatively constant despite external 

or developmental signals. It is therefore thought that gene expression is mainly 

regulated at a post-transcriptional level  (Mayfield et al., 1995). Chloroplast mRNA 

has relatively long lives, and regulation of decay makes the cell capable of rapid 

change in protein level. Down-regulation of mRNA degradation can quickly result in 

higher protein levels because translation can start immediately from an already 

existing mRNA pool. Up-regulation of mRNA decay will also affect mRNAs already 

transcribed, and thus more efficiently hinder proteins synthesis. It is beneficial for the 

chloroplast to be capable of making rapid changes in protein synthesis levels in 

response to external factors (e.g. light), and RNA decay rate changes are therefore 

thought to be the mature chloroplast’s main response to environmental changes. 

The importance of the 3’UTR for mRNA stability  

The stem-loops at the 3’ends of mature chloroplast mRNAs are necessary for stability 

of the transcripts. The stem-loops are increasing the stability of the mRNA by 

sterically hindering  3’ to 5’exonucleases attack and blocking polyadenylation 

(Lisitsky, et al., 1996). The stem-loops must be removed by endonucleolytic cleavage 

(performed by CSP21a, CSP41b and possibly an RNaseE homolog) before 3’ to 

5’exonucleolytic degradation can occur (Bollenbach et al., 2004).   

In Chlamydomonas petD, psbA and rbcL mRNA the sequence-unspecific 

endonuclease CSP41a has been found to cleave within the 3’stem-loop. This initiates 

mRNA decay (Bollenbach, et al., 2003).  In the Chlamydomonas rbcL mRNA there 

are found two cis-acting elements in 3’UTR stem-loops, which independently are 

sufficient to maintain mRNA stability (Goldschmidt-Clermont, 2007). The stabilizing 

element is likely the structure of the stem (Gruissem W. et al., 1986).   

In Chlamydomonas one nucleus-encoded regulator protein (crp3) that targets the 

3’UTR has been identified. The trans-acting factor has several plastid mRNA targets 

(Levy et al., 1999). The 3’UTR of rbcL mRNA has not been found to be important 

for light-dependent regulation.  
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3’ to 5’degradation in chloroplasts can probably be poly(A) tail independent, 

performed by RNaseII and PNPase (Bollenbach et al., 2004), but the best defined 

pathway starts with polyadenylation. Poly(A) tails promote transcript degradation in 

bacteria and chloroplasts.  In mitochondria polyadenylation can promote both 

degradation and enhanced stability. The poly(A) tails target the RNAs for 

exonucleolytic 3’ to 5’end degradation by PNPase which has a poly(A) RNA binding 

site (Hayes et al 2003). Polyadenylation sites in plastids are frequently found within 

the coding region (Klaff, 1995). In Chlamydomonas poly(A) tails have been detected 

on mRNA, tRNA and rRNA (Komine et al., 2000). They have been reported to 

destabilize the atpB gene (Komine et al., 2002).   

The importance of the 5’UTR for mRNA stability 

Unlike all prokaryotes investigated to date, chloroplasts contain a 5’ →  3’ 

degradation pathway (Drager et al., 1998). The ribonucleases responsible for this 

decay have not yet been identified, but analysis of the effect of mutations in 5’UTR 

sequences on mRNA longevity has revealed that plastid 5’UTRs can be determinants 

of mRNA stability. In Chlamydomonas, insertion of a poly(G) cassette, which 

impedes movement of exoribonucleases along RNA molecules in the 5’UTR of petD 

(Drager et al., 1999) and psbB (Vaistij et al., 2000) genes protected against decay. 

These facts imply the existence of 5’ to 3’exonucleases.  The 5’UTRs of chloroplast 

mRNAs have been found to harbour stem-loops, similar to the stabilizing stem-loops 

in the 3’UTR, but it has not been found evidence that it is the secondary structure of 

the 5’ stem-loops that define the regulatory qualities of the 5’UTR. The stabilizing 

elements are likely cis-acting sites recruiting sequence specific trans-factors (Suay et 

al., 2005).  There have not been found any cis-acting consensus sequences in the 

5’UTRs of plastid transcripts. This implies that trans-acting factors stabilize specific 

transcripts, and can be used for individual regulation of different transcripts.  

Trans-acting factors 

Analysis of nuclear mutants has revealed several loci that affect mRNA stability. 

These nuclear loci encode proteinaceous trans-acting factors which enhance the 

stability of the mRNAs. Most of these stability factors have been found to function 
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via association with specific sequences in 5’UTRs. Direct evidence is missing for 

binding between proteins and stabilizing cis-acting elements, but there have been 

identified proteins that complement RNA stability mutants and proteins that bind to 

mRNAs 5’UTR (Suay et al., 2005). Examples of these are the Chlamydomonas genes 

mbd1, mcd1, mbb1 and nac2 that are found to stabilize the mRNAs of psbD, petD, 

psbB and psbD respectively (Boudreau et al., 2000; Drager et al., 1998; Nickelsen et 

al., 1994; Vaistij et al., 2000).  

The amino acid sequences of mbd1 and mbb1 revealed that both proteins harbour a 

protein-protein interaction motif called TRP (tetratriconpeptide motif). In vascular 

plants a related motif, PPR (pentatriconpeptide motif), has been found in nuclear 

factors which process chloroplast mRNA. Homologues of this PPR domain have been 

found in several nuclear-encoded Chlamydomonas genes (Nickelsen, 2003). An 

intraction of nuclear-encoded proteins with other proteins in the cell has been further 

indicated by finding the mbd1 and mbb1 proteins in high molecular weight 

complexes (Boudreau et al., 2000; Vaistij et al., 2000).  

It is possible some of the trans-acting factors are redox-carrying proteins, and thus 

are influenced by light. Difficulties in finding these trans-acting factors might be due 

to the requirement for particular secondary structures that may be hard to establish in 

vitro (Suay et al., 2005).  

Cis-acting factors 

The capability of Chlamydomonas chloroplast to be efficiently transformed has made 

it possible to identify the targets of nuclear trans-acting factors in the alga. The cis-

acting stability determinants have mostly been found in the 5’UTR of transcripts. 

Exceptions are the cis-loci in the coding region of atpA mRNA and the nuclear-

encoded protein crp3’s targets in several chloroplast  3’UTRs (Levy et al., 1999). In 

petD mRNAs there has been found an 8-nucleotide RNA stability element in a stem-

loop structure at the 5’end terminus (Drager et al., 1998; Higgs et al., 1999).  In psbD 

transcripts two distinct elements are required for stable accumulation of psbD mRNA. 
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Neither is predicted by computer analysis to form any significant secondary structure. 

One of these elements is located at the 5’terminal end of the precursor transcript. The 

other has a location making it a part of the mature mRNA (Nickelsen et al., 1999).  

Light dependent regulation of RNA decay 

Light can affect both RNA synthesis and degradation in chloroplasts (Thompson & 

Mosig, 1984). In the chloroplasts of Chlamydomonas and tobacco reduced 

transcription rates and an increase in RNA stability were found in dark (Salvador et 

al., 1993b; Shiina et al., 1998).  

A possible mechanism by which transcript turnover can be regulated by light/ dark is 

through the concentration of divalent cations. The concentration of stromal Mg2+ is 

found to be significantly higher in light grown leaves than in dark adopted leaves 

(Bollenbach et al., 2003). The ribonucleases RNaseE, CSP41a, PNPase and RNaseII 

are known to require divalent-metal ions to perform cleavage. Divalent cation levels 

can therefore be a control mechanism for light-dependent transcript degradation.  In 

Chlamydomonas Mg2+ levels has been found to have a destabilizing effect on psbD 

5’UTR RNA (Nickelsen et al., 1994). It is also possible for chloroplast ribonucleases 

to be under control of redox conditions, but to date only the mustard p54 chloroplast 

ribonuclease has been shown to be under this control (Nickelsen & Link, 1993).  

Light-dark regulation can also be done through stabilizing/ destabilizing trans-acting 

factors. Rates of degradation have been linked to the redox state in the chloroplast 

and are thought to involve chloroplast proteins that function as redox carriers 

(Anthonisen et al., 2001; Salvador & Klein, 1999).  
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1.4 The 5’end of the Clamydomonas rbcL transcript 

1.4.1 The rbcL 5’UTR affects light-dependent decay rates 

The 5’UTR is a modulator of transcript longevity 

In studies where the 3’UTRs of the Chlamydomonas rbcL transcripts were fused 3’ to 

GUS genes, it was found that the 3’UTRs did not affect rates of degradation (Blowers 

et al., 1993).  It was concluded that rbcL 3’UTRs are not important in modulation of 

decay rates. But the 5’UTRs of Chlamydomonas rbcL transcripts were found to 

induce rapid light-dependent degradation of mRNA when they were fused to the 

coding region of foreign genes (Salvador et al., 1993a). From this, it was concluded 

that sequences in the 5’UTR are sites of determinants of transcript longevity.  

Element reversing the destabilizing effect of the 5’UTR 

The coding region of rbcL has a stabilizing sequence in position +329 to +334 

(relative to start of transcription) that reverses the destabilizing effect of the 5’UTR 

(Singh et al., 2001). It has been postulated that there is a protein binding sequence 

both in the 5’UTR and the coding region, and that these interact either by binding to 

the same protein, or binding two different proteins that interact, possibly through a 

larger protein complex (Singh et al., 2001). It has been found that most stabilizing 

trans-acting factors are TPR-proteins with protein-protein interaction sites.  

The longevity of rbcL transcripts 

WT-rbcL transcripts are stable in the light, and have a half-life of 21 hours in the 

dark, and 3.5 to 5 hours in light.  Because of reduced transcript synthesis in the dark 

this results in constant rbcL levels, independent of light/ dark conditions.  However, 

the chimeric GUS genes used in this study do not include the stabilizing element of 

the rbcL coding region, and have a half-life of 4 to 5 hours in the dark and only 20 

min in the light when a WT-rbcL 5’UTR is used (Anthonisen et al., 2001). RNA from 

the reporter gene must therefore be isolated in the dark, to avoid light-dependent 

degradation. 
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1.4.2 Elements at the 5’end of rbcL transkripts 

The 5’ UTR of the rbcL transcript consists of 92 nucleotides. It is predicted to fold 

into two stem-loop structures (Figure 1-5). The first stem-loop is situated at the 

5’end, and consists of 41 nucleotides. The second and smaller stem loop is situated 

between nucleotides +45 and +66, relative to the start of transcription. The promoter 

of the rbcL gene is a -10 palindromic sequence (TATAATAT) (Salvador et al., 

2004b). An enhancer has been found to extend from position +108 to +143. This 

sequence element is able to increase transcription about 10-fold (Anthonisen et al., 

2002).  

 

Figure 1-5: The predicted RNA secondary structure of the 69 first nucleotides of the 
Chlamydomonas rbcL transcript. The cis-acting stability element (+38 to 47) is boxed. 
(Figure from Suay et al., 2005). 

A possible light-dependent degradation target 

Because the rbcL 5’UTR were found to induce light-dependent degradation when 

fused to the coding region of foreign genes  it has been postulated that there is a light-

dependent degradation target within the first 63 nucleotides of the 5’UTR. Previous 

mutation analyses has shown that the postulated degradation target is likely to be 

either  a specific sequence between  nucleotide +20 and +41, or the secondary 

structure of the first stem loop (endonuclease target) (Singh et al., 2001). However, 

the first stem-loop has been found to have no effect on the transcript stability, and no 

specific destabilizing sequence has been found.  It is possible that light dependent 

RNAase is responsible for enhanced decay upon illumination. The stabilizing trans 
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element postulated to bind/ be stabilized by the cis-acting sequence in positions +329 

to +334 may or may not be redox-dependent, as it also has a stabilizing effect in the 

dark.  

A light-independent cis-acting sequence 

Various mutations in the first 64 nucleotides of the transcript have been found to 

destabilize the chimeric rbcL: GUS transcript to a degree where no transcript is 

detectable by northern analysis, even when RNA is isolated in the dark. Chimeric 

genes with destabilizing mutations are estimated to have a half-life of well below 5 

min (Salvador et al., 2004b). These studies have led to the conclusion that there is a 

cis-acting stabilizing element in the rbcL 5’ UTR, postulated to work through binding 

of a proteinaceous trans-factor, hindering nuclease attack. Mutation studies have 

shown that transcripts with mutations in nucleotides +38 to +47 or mutations that 

disturbs the secondary structure of this sequence renders the transcript highly 

unstable (Anthonisen et al., 2001). This places the cis-acting element in the area 

between the stem-loops, and the lower part of the stems (Figure 1-5). It also implies 

that the cis-acting element is recruiting a sequence specific trans-acting factors that 

also depend on a specific secondary structure. There has not yet been found any 

sequence similar to the 10-nucleotide RNA-stabilizing element in other chloroplasts 

(Anthonisen et al., 2001).  

Rates of transcription have been investigated for mutated chimeric rbcL 5’end: GUS 

transcripts with point mutation in positions + 40 and +46 (Anthonisen et al., 2001). 

Mutations were not found to affect transcription. The effect of light has also been 

investigated for the chimeric rbcL 5’end: GUS transcripts with modified rbcL 

sequences in positions +38 to +47 (Anthonisen et al., 2001). It was found that the 

mutated transcripts still showed the typical light/ dark regulation of abundance, 

suggesting the dark/ light regulated mechanism of transcript destabilization is distinct 

from the RNA decay mechanism involving the cis-acting element between 

nucleotides +38 to +47.   
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1.5 The scope of this study 

This study is part of a project in which the 5’UTR of the Chlamydomonas rbcL gene 

is analyzed for its effect on transcript stability. The transcript folds into a 5’terminal 

stem-loop structure, closely followed by a smaller stem-loop. The two stem-loops are 

spaced by three unpaired nucleotides (figure 1-6).  
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Figure 1-6: The 5’UTR of a Chlamydomonas rbcL transcript. Nucleotides in positions +1 
to +69 relative to start of transcription. The cis-acting stability element (nucleotides +38 to 
+47) shown in red. 

A series of mutation studies has led to the conclusion that the sequence and 

conformation of a 10-nucleotide element in the rbcL 5’UTR is essential for 

stabilizing chimeric GUS transcripts (figure 1-6) (Anthonisen et al., 2001). The 

presence of two stem-loops has been found necessary to give this element its 

secondary structure.  

The role of the second stem-loop remains uncertain, but is being investigated through 

various mutation studies. In this study the upper sequence of the second stem-loop 

(positions +50 to +63 relative to start of transcription) was changed in a way that kept 

the secondary structure and the size of the stem-loop, to investigate the importance of 

the nucleotide sequence.  

It has previously been shown that adding up to 8 nucleotides to the 5’terminus of the 

rbcL transcript does not significantly affect the stability of chimeric GUS transcripts, 

while adding 10 nucleotides or more abolish transcript accumulation completely. A 

second modified rbcL 5’UTR: GUS construct was made as part of this study where 9 

nucleotides were added 5’ to the transcript.  
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2. MATERIALS AND METHODS 

2.1 Escherichia coli: bacterial strains, media and methods 

2.1.1 Growth of E.coli  

Recombination-deficient strain E.coli TB1 was used for cloning.  The strain is not 

ampicillin resistant.  

E.coli was grown in liquid LB medium (10 g tryptone/ l, 5 g yeast extract/1 and 10 g 

NaCl/1) or LB plates (LB with 1.5% agar) at 37°C. 

2.1.2 Preparation and transformation of competent E.coli cells. 

E.coli cells were made competent by CaCl2 treatment (Sambrook & Russell, 2001). 

Frozen competent cells were melted on ice prior to adding DNA. Heat shock (42°C 

for 90 seconds), followed by immediate cooling on ice was used for transforming the 

cells (Sambrook & Russell, 2001). Transformants were selected using ampicillin-

containing (60 μg/ml) LBA plates. 

2.1.3 Plasmid isolation from E.coli 

Mini-prep 

For small-scale plasmid isolation mini-preps were performed according to protocol 

(Sambrook & Russell, 2001). Transformed cells where grown overnight, to stationary 

phase, in ampicillin-containing (60 μg/ml) LB medium before isolation. Plasmid 

isolation from 1.5 ml cell culture gives an expected yield of 1 to 3 μg DNA. 

Maxi-prep 

For large-scale plasmid isolation, a maxi-prep was performed. The CsCl density 

gradient centrifugation method was used according to the protocol (Sambrook & 

Russell, 2001). Transformed cells where grown overnight in ampicillin-containing 
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(60 μg/ml) LB medium before isolation. Plasmid isolation from 100 ml cell culture 

yields about 150 to 400 μg of DNA.  

2.2 Chlamydomonas reinhardtii: algal strains, media and 
methods 

2.2.1     Chlamydomonas reinhardtii strain 

The atpB-deficient Chlamydomonas reinhardtii mutant strain, CC-373 (ac-u-c-2-21 

mt+), was obtained from the Chlamydomonas Genetics centre at Duke University, 

NC, USA. The mutant strain has a 2.5 kb deletion of the 3’ half of the atpB gene and 

a portion of an adjacent inverted repeat (Figure 2-1) (Blowers et al., 1989). Because 

the atpB gene is encoding the chloroplast ATP synthase β-subunit the strain is ATP 

synthase-deficient. This makes the mutant alga light-sensitive, non-photosynthetic 

and acetate-requiring. CC-373 has been widely used as a recipient for chloroplast 

transformation experiments.  

   

deleted region

Bam HI Bam HI

atpBIR

2.5 kb

 

Figure 2-1: The 2.5 kb deletion in CC-373 and flanking regions. The deletion removes a 
part of the atpB gene and inverted repeat (IR) between the two BamHI restriction sites. The 
atpB gene is transcribed from right to left. 

2.2.2 Media for growing Chlamydomonas reinhardtii 

The Chlamydomonas transformants have  restored atpB genes (re-established 

photosynthetic capacity), and were grown in HS (high salt) medium (Sueoka, 1960). 

The atpB-deficient Chlamydomonas mutant was grown in HSHA (high salt high 

acetate) medium, which is HS medium supplemented with potassium acetate (2.5 g/l). 

Media for plates were made by adding 1.5% agar to HS or HSHA. 



 

2.2.3 Preparation of Chlamydomonas reinhardtii cells for 
transformation 

Before transformation CC-373 was grown in liquid HSHA medium (Sueoka, 1960). 

The cultures were diluted in fresh medium every second day to maintain exponential 

growth. Because the non-photosynthetic mutant is light sensitive it is kept under low-

light conditions. Immediately before transformation cells were plated onto HSHA 

agar plates. 

2.2.4 Transformation of Chlamydomonas reinhardtii chloroplast 

The DNA was precipitated onto 0.6 µm gold particles, and shot by micro projectile 

bombardment into the agar-plated mutants (Blowers et al., 1989; Boynton et al., 

1988). This was done using the particle delivery system (PSD-1000/He; Bio-Rad), 

with helium gas at a pressure of 1300 psi (Figure 2-2). After shooting, the agar plates 

were kept in the dark to allow for recombination to occur between the DNA and the 

genome chloroplast. Transformants (restored atpB gene, capable of photosynthetic 

growth) were selected by transferring the algae to HS agar plates and exposing them 

to bright light. 

 

Figure 2-2: The PSD-1000/He Particle Delivery System. An elemental particle of heavy 
metal is coated with plasmid DNA and shot by micro projectile bombardment into the 
chloroplast of the agar plated cells. Picture from: http://en.wikipedia.org/wiki/Gene_gun. 
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2.2.5 Growth conditions for transformed Chlamydomonas 
reinhardtii 

After transformation the photosynthetic algae were grown on HS agar plates under 

continuous light. Six colonies were picked, and grown in 200 ml liquid HS medium 

under continuous light. The cultures were then transferred to 100 ml tubes, placed 

into a 32°C water bath, and grown under continuous light and bubbling with 2% 

CO2–enriched air to improve the growth rate. These cultures were used for DNA 

isolation. Before RNA isolation the cultures were grown in a water bath in alternating 

12 hour dark/ 12 hour light cycles to synchronize the cells life cycles. Total RNA was 

purified at the end of the dark cycle (11 h) because Chlamydomonas RNA levels are 

highest in the dark. Upon illumination transcripts are degraded (Salvador et al., 

1993b).  

2.2.6 DNA isolation from Chlamydomonas reinhardtii  

DNA isolation was performed according to protocol (Blowers et al., 1989). 

2.2.7 RNA isolation from Chlamydomonas reinhardtii  

RNA isolation was performed according to protocol (Sambrook & Russell, 2001).  

2.3 Oligonucleotides and Plasmids 

2.3.1 Oligonucleotides  

Two pairs of synthetic, complementary, single strained oligonucleotides (Figure 2-3) 

were obtained from MWG Biotech AG. After annealing, both double-stranded 

sequences had one blunt end and one sticky end with a four-nucleotide overhang 

(GGCC). The sticky ends are complementary to a BspEI restriction site. Sticky ends 

are easier to ligate and decide the orientation the sequences are ligated into the DNA. 
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A) Oligonucleotide +9 

  9 nucleotide addition 
5’-AGTATACATAAATGTATTTAAAATTTTTCAACAATTTTTAAATTATATTT    - 3’ 
3’-TCTTATGTATTTACATAAATTTTAAAAAGTTGTTAAAAATTTAATATAAAGGCC- 5’ 
                                           overhang 

B) Oligonucleotide M 

  overhang 
5’-CCGGACAGGCCGCCCCGAGGCCGTCAAAAGAAGTTACATTTATTTATATAAGAT-3’ 
3’-    TGTCCGGCGGGGCTCCGGCAGTTTTCTTCAATGTAAATAAATATATTCTA-5’  
       changed nucleotides 

Figure 2-3: Sequences of the annealed oligonucleotides. A) Oligonucleotide +9 with the 9 
nucleotide addition in red and BspEI-overhang in green. B) Oligonucleotide M with 
changed nucleotides in red and BspEI-overhang in green.  

Oligonucleotide  +9 

The annealed oligonucleotide +9 contains the first 41 base pairs of the 5’UTR in the 

Chlamydomonas rbcL gene (position +1 to + 41 relative to start of transcription). In 

the 5’end the construct has an addition of nine base pairs (5’-AGTATACAT- 3’).  

The 3’end of the construct has a four-nucleotide overhang, complementary to the 

BspEI restriction site in the rbcL-5’UTR (Figure 2-3A). 

Oligonucleotide M 

The annealed oligonucleotide M contains 50 base pairs from the 5’UTR of the 

Chlamydomonas rbcL gene (position +46 to +96 relative to start of transcription) 

with changes in the base pairs in positions +50 to +62. The sequence                                                  

5’-AUUUAUUUUAGGAU-3’ is replaced with 5’-GGCCGCCCCGAGGC-3’. This 

alters the nucleotide sequence of the second stem-loop in the 5’UTR of the transcript. 

The 5’end of the oligonucleotide has a four-nucleotide overhang, complementary to 

the BspEI restriction site in the rbcL 5’UTR (Figure 2-3B).  
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2.3.2 Plasmids 

Plasmid +19/SK+ 

Plasmid +19/SK+ (~5.2 kb) contains a chimeric rbcL: GUS sequence (2.2 kb) cloned 

in between the XhoI/ XbaI sites of pBluescript SK+ (Strategene) (figure 2-4). The 

rbcL region consists of 229 base pairs from the 5’end of the Chlamydomonas rbcL 

gene (positions -70 to + 157 relative to start of transcription). This 5’end region is 

fused 5’ to the coding region of the bacterial uidA (GUS) reporter gene (Figure 2-4).  

rbcL 5«region (229bp)

2.2 kb

EP 5`UTR

 XbaIXhoI   SwaI(+1)  

GUS

 +93        -70           +1          

BspEI(+41) 

+157        

 

Figure 2-4: The chimeric rbcL: GUS gene in plasmid +19/SK+. Selected restriction sites 
are shown below the drawing, and positions above the drawing. The position +1 indicates 
the transcription start site, and the 5’UTR is located between +1 and +93. P indicates the 
rbcL promoter and E is the enhancer sequence.  

The rbcL 5’UTR harbours a SwaI, restriction site in position +1 and a BspEI site in 

+41 relative to start of transcription. The plasmid is encoding ampicillin resistance as 

selectable marker. 

Plasmid +93 (EcoRV)/SK+ 

Plasmid +93 (EcoRV)/SK+ (~3 kb)contains a rbcL 5’ sequence (nucleotides in 

positions -70 to +93 relative to start of transcription) cloned into the  pBluescript SK+ 

XhoI / EcoRV restriction sites (Figure 2-5).  

rbcL 5 `region 

P 5`UTR

XhoI(-70)  

pBluescript/SK+

EcoRV(+93)
 SmaI   BamHI   XbaI

-70           +1           +93        

SwaI(+1)  
BspEI(+41) 

 

Figure 2-5: The chimeric rbcL: atpB sequence in plasmid +93 (EcoRV)/SK+. Selected 
restriction sites are shown below the drawing, and positions above the drawing. The 
position +1 indicates the transcription start site. P indicates the position of the rbcL 
promoter.  



 

The pBluescript SK+ sequence harbours SmaI, BamHI and XbaI sites. The rbcL 

enhancer sequence is not included in this construct. The plasmid is encoding 

ampicillin resistance as selectable marker. 

Plasmid pCrc32 

Plasmid pCrc32 (~11 kb) is based on the pUC8 plasmid. It contains two regions 

homologous to sequences in the chloroplast genome of Chlamydomonas, including 

the complete atpB gene and a part of the inverted repeat (IR) region (Figure 2-6). 

These regions are corresponding to the deleted sequence and the areas flanking the 

deletion in mutant algae CC-373, and make transformation of the mutant algae 

possible by homologous recombination.  

pCrc32 containes a cimeric gene [atpB 5’end: GUS: psaB 5’end] cloned in between 

the atpB-gene and the IR (Figure 2-6).  The atpB 5’region and the GUS gene are 

flanked by XhoI/  XbaI restriction sites.  The IR region contains a BspEI and a SwaI 

restriction site. The plasmid is encoding ampicillin resistance as a selectable marker. 

atpB 5`end

pCrc32
IR atpBpsaB 3`endGUS 

XhoI XbaI  

Figure 2-6: The chimeric rbcL: GUS: psaB gene and flanking areas in plasmid pCrc32. 
XhoI and XbaI restriction sites are shown below the drawing.  
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2.4 DNA methods 

2.4.1 Oligonucleotide annealing 

Complementary oligonucleotide strands were annealed by mixing equal amounts 

(500ρmol each) of the complementary sequences, before heating to 100°C for 2 two 

minutes followed by a cool down of 30 min. After annealing, the 5’ends were 

phosphorylated using 1 µl T4-polynucleotide kinase (10 u/μl), in the presence of 5 µl 

ATP (10 mM, pH7) and 5 µl PNK buffer (10X) (Fermentas, Life Science) in a total 

volume of 50 µl. The concentration of the resulting dsDNA fragments was 

determined by calculation from the oligonucleotide data, supplied by MWG Biotech 

AG. 

2.4.2 Restriction enzymes 

Restriction enzymes from New England Biolabs and Promega were used according to 

manufacturer instructions.   

2.4.3 Agarose gel electrophoresis  

A 1% or a 1.3% agarose gel containing ethidium bromide was used in TAE buffer 

(Sambrook and Russel, 2001). Gel loading buffer was added to samples (2% of total 

sample volume). A 1 kb plus ladder (Invitrogen) was used to estimate the size and 

concentration of DNA fragments. 

2.4.4  Isolation of DNA fragments by gel electrophoresis  

DNA fragments were separated by agarose gel electrophoresis (2.4.3), and a well was 

made in the gel by cutting out a piece of the gel right below the DNA band. A 

dialysis-membrane was inserted into the well to make a barrier for movement of the 

DNA, and the well was filled with TAE buffer. Electrophoresis was resumed until the 

DNA fragments had moved into the well. The TAE buffer in the well was then 
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collected using a pipette, and the DNA fragments purified using phenol extraction 

and ethanol precipitation. 

2.4.5 Ligation 

Ligation was performed with T4 DNA ligase (3 u/μl, Promega) according to 

manufacturer instructions. Before ligation the DNA was heated to 45°C for 5 minutes 

to break hydrogen bonds. The reaction was set at room temperature for 3 hours. It 

was used an insert: vector ratio (in moles) of 1.3: 1 for inserts of 0.5-3 kb, and 5: 1 for 

inserts smaller than 100 bp. Dot spot analysis was used to estimate DNA 

concentrations. When the olignucleotides (~50 bp) was ligated in to the +19/SK+-

vector (~5.2 kb) the ratio was 20 ng: 200 ng. When the chimeric rbcL: GUS gene (2.2 

kb) was ligated in to the pCrc32-vector (~11 kb) the ratio was 300 ng: 800 ng. 

2.4.6 DNA sequencing 

2 μg of the constructs p+9 and pM cloned into the plasmid pCrc32 were sequenced by 

the Sanger dideoxy method (MWGBiotech, Martinsried, Germany) to verify that the 

mutated sequences were correct. It was used a GUS primer 

(CGCGCTTTCCCACCAACGCTG). 

2.4.7 DNA/ RNA quantification  

Estimation of DNA concentrations was done by dot spot analysis (Sambrook & 

Russell 2001). More accurate measurements of DNA and RNA concentrations were 

done by spectrophotometer at 260 nm (Sambrook & Russell 2001).  

2.5 Bioinformatics 

Prediction of RNA secondary structures was done with the MFOLD computer folding 

program, where prediction of RNA secondary structure is based on calculation of the 

minimum free energy (Zuker, 2003).  
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2.6 Hybridization analysis      

2.6.1 Probes 

For Northern blot and slot-blot a GUS probe was made from the entire 1.9 kb coding 

fragment of the GUS gene. The probe was made by BamHI/ SacI digestion of a 

pBI1221 plasmid (Clontech, CA, USA) (Jefferson et al, 1986). For Southern blot a 

0.7 kb atpB probe was prepared from the plasmid pCrcatpB (Blowers et al., 1990) by 

HpaI / EcoRV restriction digesting. Both probes were radio labelled with [α-32P]-

dCTP (Amersham Biosciences, Buckinghamshire, UK) by random primer labelling 

using the Klenow fragment of DNA polymerase I (Feinberg & Vogelstein, 1983). 

2.6.2 DNA slot blot   

The DNA slot blot was performed using 0.5 µg DNA isolated from Chlamydomonas 

and denatured at 65 ºC with 0.3 N NAOH. The DNA was transferred to a Zeta-Probe 

nylon membrane (Bio-Rad) in a slot blot apparatus (PR600, Hoefer Scientific 

Instruments). The DNA was fixed to the membrane by cross-linking with UV light 

(254 nm) for 3 min (Blowers at al., 1990). The membrane was hybridized to the radio 

labelled GUS probe according to protocol (Church & Gilbert, 1984). Washing the 

membrane of excess probe was carried out according to the Bio-Rad protocol. The 

pattern of hybridization was visualized on X-ray film (Kodak BioMax MS) by 

autoradiography. The membrane and the film were incubated at -80ºC in a cassette 

containing an intensifying screen. The strength of the radioactive signal on the 

membrane was measured using a Geiger counter before the incubation because the 

exposure time required depended on the specific activity of the labelled probe and the 

abundance of the target. 

2.6.3 Southern blot     

1.5 µg of the DNA isolated from Chlamydomonas was KpnI/ HindIII restriction 

digested, and separated on a 1% agarose gel next to 1 kb plus ladder.  DNA fragments 



 

on the gel were blotted onto a Zeta-Probe nylon membrane (Bio-Rad) according to 

the Bio-Rad protocol. The membrane was hybridized with radiolabeled atpB probe 

according to protocol (Church & Gilbert, 1984). UV-cross linking, washing and 

exposure to X-ray film was carried out as in section 2.5.2 (DNA slot blot).  

2.6.4 Northern blot   

The Northern analysis was performed using 4 µg RNA isolated from 

Chlamydomonas growing in a dark/light regime, cells harvested at the end of the dark 

period. The RNA was denatured by formaldehyde and separated on a 1.3% agarose/ 

formaldehyde gel at 60 mA constant current. The RNA on the gel was transferred to a 

Zeta-Probe nylon membrane (Bio-Rad) according to the Bio-Rad protocol. The 

membrane was hybridized to the radiolabeled GUS probe according to protocol 

(Church & Gilbert, 1984). UV-cross linking, washing and exposure to X-ray film was 

carried out as in section 2.5.2 (DNA slot blot) (Figure 2-7). 

 

Figure 2-7: Northern blot. RNA is separated on an agarose gel, blotted on a membrane, 
radiolabeled and exposed on film. Illustration from http://www.molecularstation.com 
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3. Results  

3.1 Subcloning 

3.1.1 Cloning of oligonucleotides in vector +19/SK+  

A first cloning step was performed to induce mutations in the rbcL 5’ UTRs. The 

rbcL 5’ UTRs were located in pBluescript SK+- based plasmids. One of the plasmids 

(+19/SK+) had a GUS coding region fused 3’ to the rbcL 5’ UTR. The other plasmid 

(p+93(EcoRV)/SK+) did not include the GUS sequence, and the GUS coding region 

was inserted in an additional cloning step after the mutation of the rbcL 5’ UTR. 

The obtained complementary oligonucleotides were annealed (as described in section 

2.4.1). To induce mutations in the rbcL 5’ UTRs the annealed oligonucleotides +9 

and M (figure 2-3) were ligated into plasmid +19/SK+ (figure 2-4)  and 

p+93(EcoRV)/SK+ (figure 2-5), respectively (2.4.5). 

Chlamydomonas  5´UTR              

oligonukleotid+9

A)
SwaI (+1) BspEI  (+41) BspEI  (+41) 

Chlamydomonas  5´UTR              

oligonukleotid M

B)

pBluescript/SK+              

SmaI  (+154)  

 

Figure 3-1: The Chlamydomonas rbcL 5’UTRs with the positions of the oligonucleotides 
+9 and M cloned into the gene. Positions of restriction sites are relative to rbcl start of 
transcription. A) Oligonucleotide +9 cloned into the 5’UTR between the restriction sites 
SwaI (+1) and BspEI (+41). B) Oligonucleotide M cloned into Chlamydomonas 5’UTR 
between the restriction sites BspEI (+41) and SmaI (+154). 

The double stranded +9-oligonucleotide (50bp) was ligated into SwaI/ BspEI digested 

p+19/SK+ (figure 3-1A). This maintained the sequence of the rbcL 5’UTR and added 

9 nucleotides at the 5’terminus of the transcript. The new vector was named 

p+9/SK+. 

The annealed M-oligonucleotide (50bp) was ligated into BspEI/ SmaI digested 

p+93(EcoRV)/SK+ (figure 3-1B). This introduced changes in the rbcL 5’UTR 

sequence in positions +49 to +62 (relative to start of transcription). The restriction 
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digestion of the plasmid also removed a part (61 bp) of the plasmid sequence. The 

new vector was named pM/SK+.  

Transformation was performed with the ligated vectors into competent E.coli cells. 

(2.1.2). The transformants were selected on the basis of ampicillin resistance. 

3.1.2 Verifying the ligation  

Transformed E.coli cells were grown in 3 ml liquid cultures, and plasmids were 

isolated by mini-prep (2.1.3). To verify the ligation, the isolated plasmids were cut 

with various restriction enzymes (2.4.2) and run on agarose gels (2.4.3). 

To verify the cloning, isolates from p+9/SK+ and pM/SK+ were digested with SwaI 

and SmaI, respectably. The successfully mutated plasmids should have lost a 

restriction site upon the ligation of the oligonucleotides into the vector. SwaI digested 

p+9/SK and SmaI digested pM/SK+ should still be uncut and circular if the inserts 

had been present into the plasmid. In an agarose gel the mutated plasmids should 

appear as supercoiled DNA.  

As seen in the photos of the gel (Figure 3-2A) mini-prep isolate nr. 1-3 containing 

DNA from p+9/SK+ transformants lacked the SwaI restriction site. Isolate nr. 4 did 

not appear as expected in the gel, and was excluded from further testing. All isolates 

obtained from pM/SK+ transformants contained plasmids lacking the SmaI restriction 

site (Figure 3-2B). Only transformant nr.3 was chosen for further testing.   
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A)   

 

1: 1 kb plus DNA ladder 
2-5:  p+9/SK+ uncut by SwaI 
6: control: p+19/SK+ cut by SwaI 
7: 1 kb plus DNA ladder 

 
B) 

 

 
1: 1 kb plus DNA ladder 
2-5: pM/SK+ uncut by SmaI 
6: control: p+94(EcoRV)/SK+ cut by SmaI 
7: 1 kb plus DNA ladder 
 

Figure 3-2: Control of the cloning of +9 into p+19/SK+ and M into p+19(EcoRV)/SK+. A) SwaI 
digested p+9/SK+ isolated from transformed E.coli. B) SmaI digested pM/SK+ isolated from 
transformed E.coli. 
 
To additionally check for the presence of the modified sequences in the plasmids two 

different restriction digests were used.  

Plasmid p+9/SK+ from transformants nr 1-3 were BspEI/ XhoI digested. A mutated 

plasmid should release a small fragment of 124 bp, while an original +19/SK+ vector 

should release a fragment of only 115 bp. The difference in number of base pairs is 

caused by the inserted 9-nucleotide addition. As seen in figure 3-3 all p+9/SK+ 

vectors were cut twice and released a small fragment of ~120 bp.  



 

 

1: 1 kb plus DNA ladder 
2-4:  p+9/SK+ cut by BspEI- XhoI 
5: control: p+19/SK+ cut by BspEI- XhoI 
6: 1 kb plus DNA ladder 

 
Figure 3-3: Control of the cloning of +9 into p+19/SK+. Checking the size of the BspEI- 
XhoI fragments in plasmid DNA isolated from p+9/SK+ transformants. The larger 
fragments are ~5 kb and the smaller fragments are ~0.1 kb. 

Plasmid pM/SK+ from transformant nr 3 was XbaI/ XhoI digested. A modified 

plasmid should release a small fragment of 168 bp. An original p+93(EcoRV)/SK+ 

vector should release a fragment of 229 bp. The fragments differ in size because the 

insertion of the M-oligonucleotide leads to a sequence deletion in the original vector 

(figure 3-4B). As seen in figure 3-4 the isolated pM/SK+ was cut twice and released a 

small fragment of expected size.  

  

1: 1 kb plus DNA ladder 
2:  pM/SK+ (from transformant nr.3) cut by XhoI-XbaI 
3: control: p+94(EcoRV)/SK+ cut by XhoI-XbaI 

Figure 3-4: Control of the cloning of M into p+93(EcoRV)/SK+. Checking the size of the 
XhoI-XbaI fragments in plasmid DNA isolated from pM/SK+ transformants. The larger 
fragments are ~3 kb and the smaller fragments are ~0.2 kb. 

The larger fragment resulting from the XbaI/ XhoI digestion was expected to be ~5 

kb, but it was only ~3 kb in both pM/SK+ and in the control (figure 3-4). This was 

because the ~2 kb GUS coding sequence was not included in the original 
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p+93(EcoRV)/SK+ vector. To complete the reporter construct it was therefore 

necessary to ligate the missing GUS sequence into the pM/SK+ vector.  

3.1.3 Introduction of GUS into vector pM/SK+ 

+19/SK+ was used as a source of the GUS gene. The required 1.9 kb GUS sequence 

was released from the vector by BamHI/ XbaI restriction digestion. The pM/SK+ 

vector was prepared for ligation by restriction cutting with the same restriction 

enzymes. The GUS coding sequence (~2 kb) and the restriction cut pM/SK+ vector 

(~3.2 kb) were isolated by gel electrophoresis (2.4.4). Sample concentration of the 

two DNA fragments were determined by dot spot analysis (2.4.7), and ligation was 

performed (2.4.5). To amplify the vector it was transformed into competent E.coli 

cells (2.1.2), grown in cultures (2.1.1), and isolated with min-prep (2.1.3). To verify 

the size of the new pM/SK+ vector it was restriction digested with XbaI to make it 

linear, and run on an agarose gel (2.4.3).  

 

1: 1 kb plus DNA ladder 
2-5: Isolate nr 1-4 cut by XbaI 
1: 1 kb plus DNA ladder 

 
Figure 3-5: Control of GUS into pM/SK+. Checking the size of the XbaI digested plasmids 
isolated from pM/SK+ transformants. Isolate nr 2 contained the ~5 kb vector. 

Only isolate nr 2 contained the 5.2  kb vector (figure 3-5). Isolates nr 1 and 4 

contained the pM/SK+ vector religated without the GUS insert and isolate nr. 3 

contained a ~1.6 kb plasmid of unknown origin. Transformant nr 2 was used for 

further analyses.  

 



3.1.4 Cloning of rbcL 5’UTR: GUS into vector pCrc32 

A second cloning step was performed to insert the mutated [rbcL 5’end: GUS coding 

region] constructs into an 11 kb transformation vectors. They were inserted 5’ to 

psaB 3’UTRs in order to complete the gene constructs. 

Maxi-prep (2.1.3) was performed on E.coli cultures transformed with successfully 

mutated plasmids.  XbaI/ XhoI digestion of the isolates yielded in two DNA 

fragments of 2.2 bp and 3.0 bp. The 2.2 kb fragment contained the mutated rbcL: 

GUS construct, and was isolated by gel electrophoresis (2.4.4). The transformation 

vector pCrc32 (11kb) was also XbaI/ XhoI digested, and the larger DNA fragment, 

of 9 kb, was isolated by gel electrophoresis. 

The rbcL 5’end: GUS constructs were ligated into the restriction-digested pCrc32 

vector (Figure 3-6). The cloned pCrc32 vectors containing p+9/SK+ and pM/SK+ 

were named pCrc32/+9 and pCrc32/M, respectively. 

atpB 5`end    
pCrc32

IR                       atpBpsaB 3`end     GUS   

+19/SK+

XhoI                

mutated rbcL 5`end: GUS 

 XbaI

M

 

Figure 3-6: The rbcL 5’UTR: GUS construct ligated into vector pCrc32. The original atpB 
5’end and the coding region of GUS in the pCrc32 are exchanged with the mutated rbcL: 
GUS construct. M indicates the mutated sequence in the rbcL 5’UTR. 

In order to amplify pCrc32/+9 and pCrc32/M, transformation was performed with the 

ligated vectors into competent E.coli cells (2.1.2). Transformants were selected on the 

basis of ampicillin resistance. 
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3.1.5 Verifying the cloning 

To verify the cloning, the transformed E.coli cells were grown in 3 ml liquid cultures, 

and plasmids were isolated by min-prep (2.1.3). The isolated plasmids were 

restriction digested (2.4.2) and separated on agarose gels (2.4.3).  

Both pCrc32/+9 and pCrc32/M were XhoI/ XbaI digested for size confirmation. The 

cloned vectors appeared in the gel as two linear fragments; one of 8.8 kb and one of 

2.2 kb (rbcL: GUS) (Figure 3-7). This was a verification of that there were GUS 

constructs in the vectors.  

 

1: 1 kb plus DNA ladder 
2:  pCrc32+9/SK+ cut by XhoI-XbaI 
3:  pCrc32M/SK+ cut by XhoI-XbaI 
4: control, original pCrc32 cut by XhoI- XbaI 
 

Figure 3-7: Control of the cloning of p+9/SK+ and pM/SK+ into pCrc32. Checking the size of the 
XhoI-XbaI fragment in plasmid DNA isolated from pCrc+9/SK+ and pCrcM/SK+ transformants. 
The larger fragments are ~9 kb and the smaller fragments were  ~2 kb. 
 
A second test was performed on each of the plasmids to verify that the atpB: GUS 

construct of the original pCrc32 vector has been replaced by the rbcL: GUS construct.  

BspEI was used to digest pCrc32/+9. There should be two restriction sites in the 

cloned transformation vector.  One in the inserted rbcL sequence and one outside the 

inserted fragment in the Chlamydomonas sequence.  

SwaI was used to digest pCrc32/M. The clone should contain two SwaI sites. There is 

one SwaI site in the mutated insertion and one in the original transformation vector.   

The cloned vectors appeared in the gel as two fragments (Figure 3-8A and B). This 

was a verification of the presence of rbcL: GUS constructs in the vectors. 



 

 

A)  
Checking for p+9-insert by BspEI digestion of 
pCrc+9/SK+ transformants 
1: 1 kb plus DNA Ladder 
2:  pCrc32+9/SK+ cut by BspEI 
3:  control, original pCrc32 cut by BspEI 
 

 

B)  
Checking for pM-insert by SwaI digestion of 
pCrcM/SK+ transformants  
1: 1 kb plus DNA Ladder 
2:  pCrc32+M/SK+ cut by SwaI 
3: control, original pCrc32 cut by SwaI 

Figure 3-8: Control of the cloning of p+9/SK+ and pM/SK+ into pCrc32. A) BspEI 
digested pCrc+9/SK+. B) SwaI digested pCrcM/SK+. The cloned vectors appeared in the 
gel as two fragments. The controls were only cut once.  

3.1.6 Sequencing  

After verification of cloning by restriction cutting, the final transformation vectors 

were sent to MWGBiotech, Martinsried, Germany for sequencing (2.4.6). The 

analysed sequence included the rbcL 5’end sequence and some of the GUS gene. This 

confirmed that the sequence in pCrc32/M was as expected. But the sequence in 

pCrc32/+9 was not. The first nucleotide of the original rbcL 5’UTR was missing. 

This probably happened during ligation of the +9-oligonucleotide into the SwaI/ 

45 

 



 46

BspEI sites of p+19/ SK+. The deletion would lead to a change in the secondary 

structure of the 10-nucleotide cis-acting structure. This is already known through 

earlier analyses to render the transcript unstable. It was decided to continue testing 

the construct anyway. 

3.1.7 Transformation of Chlamydomonas 

Maxi-prep (2.1.3) was performed on cultures with E.coli cells transformed with 

successfully mutated plasmids. The plasmids pCrc32/+9 and pCrc32/M were 

introduced into the chloroplast of Chlamydomonas CC-373 (2.2.1) by micro 

projectile bombardment (2.2.4).  This allowed for recombination to occur between the 

homologous sequences in the chloroplast DNA and the plasmids (Figure 3-9). 

Transformants (restored atpB gene, not light-sensitive) were selected by exposing 

them to bright light. 

pCrc32

deleted region

2.5 kb

 rbcL       GUS         psaB   IR atpB

IR atpBCC-373

 

Figure 3-9: Recombination  between the homologous sequences in the chloroplast DNA 
and the plasmids. The chimeric rbcL 5’end: GUS: psaB 3’end is introduced into the CC-
373 through homologous recombination. The crosses indicate the recombination event.



3.2 Screening for GUS gene transformants by Slot blot. 

The amount of the chimeric rbcL: GUS: psaB genes in the transformants were 

determined by performing a Slot blot (2.6.2) on total genomic DNA using a GUS 

probe (2.6.1) (Figure 3-10).  This was done with DNA isolated from six randomly 

selected transformants. Isolates from transformants with the highest GUS content 

gave the strongest autoradiogram signal, and were used for further analyses. For 

construct p+9 transformants number 2 and 6 were chosen (Figure 3-10A). For 

construct pM transformants number 2, 3, 4 and 6 were chosen (Figure 3-10B). 

  A)                                                            B) 

                 

Figure 3-10: Autoradiogram showing amount of the chimeric GUS gene in the 
transformants. A) 6 isolates from different p+9-transformants. Isolates number 2 and 6 
gave the strongest signals. B) 6 isolates from different pM-transformants. Isolates number 2, 
3, 4 and 6 gave the strongest signals. 

3.3 Determination of homoplasmicity (Southern analysis) 

Southern analysis was performed on the isolated DNA to determine the 

homoplasmicity percentage of the selected transformants (2.6.3). There are 50-80 

copies of the DNA chromosome in the chloroplast of a Chlamydomonas cell. Each of 

these chromosomes can be transformed with the mutated plasmid. The 

homoplasmicity percentage reflects the number of chromosomes that are transformed 

with the new sequence.  
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DNA isolated from the transformants was cut with restriction enzymes KpnI and 

HindIII. If the chloroplast genome had incorporated the chimeric rbcL: GUS: psaB 

construct, this digestion would release a fragment of ~5.5 kb. A chloroplast genome 

without the chimeric GUS gene insert would release a fragment of only ~3 kb.  

The digested fragments were separated on an agarose gel and visualized through a 

Southern blot using an atpB probe (2.6.1). Isolated total DNA appears as “a smear” in 

the gel if it is restriction digested (Figure 3-11A and 3-12A). The position of the 

DNA is shown relative to the 1 kb Plus DNA ladder and a ruler. The ruler was later 

used to estimate the sizes of the atpB-fragments shown in the autoradiogram.  

The autoradiogram of the Sothern blot is shown in figure 3-11B and 3-12B. For 

further analysis, the transformants with highest homoplasmicity were used. For 

construct p+9 transformants the digested isolates had barely visible 3 kb fragments, 

both chloroplasts were estimated to have a homoplasmicity of ~90%, and were used 

for further analysis. For construct pM transformants the transformant number 6 had a 

very weak 3 kb signal, was also estimated to have a homoplasmicity of ~90% and 

was used for further analysis. 

 A)                                                              B) 
 

            

1: 1 kb plus ladder 
2: Transformant nr. 2 
3: Transformant nr. 6 

Figure 3-11: The degree of homoplasmicity of the p+9 transformants. A) Picture of the gel 
showing the presence of restriction cut DNA. A ruler and the 1 kb plus ladder indicate 
positions of the expected fragments. B) Autoradiogram showing the restriction cut 
fragments. The ~3 kb fragments are barely visible and the homoplasmicity of both 
transformants were estimated to ~90%.  



 

A)                                                            B) 

          

1: Transformant nr. 2 
2: Transformant nr. 3 
3: Transformant nr. 4 
4: Transformant nr. 6 
5: 1 kb plus ladder

Figure 3-12: The degree of homoplasmicity of the pM transformants. A) Picture of the gel 
showing the presence of restriction cut DNA. A ruler and the 1 kb plus ladder indicate 
positions of the expected fragments. B) Autoradiogram showing the restriction cut 
fragments. The transformant number 6 ~3 kb fragment is barely visible and the 
homoplasmicity was estimated to ~90%.  

3.4 Determination of GUS transcript accumulation 
(northern analysis) 

To investigate the stability of the rbcL: GUS: psaB transcripts, transcript levels were 

detected by northern hybridization (2.6.4). A stable transcript would lead to 

accumulation of GUS RNA in the chloroplast. This would be detected in a Northern 

blot hybridized with a GUS probe (2.6.1). Highly unstable transcripts would not 

reach detectable levels.  

Isolated RNA (2.2.7) from the transformants were separated on agarose gels (Figure 

3-13A and 3-14A) and transferred to Zeta-Probe membranes. The membranes were 

hybridized to the GUS probes and exposed to X-ray films. The autoradiograms 

showed the accumulation of the chimeric GUS transcripts (Figure 3-13B and 3-14B). 

RNA concentrations were reflected in the strength of the signals.  
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A)                                          B) 

                

1: Control, +157 
2: Transformant nr. 2 
3: Transformant nr. 6 
 

Figure 3-13: RNA isolated from the p+9 transformants. A) Agarose gel with total genomic 
RNA. Showing the presence of RNA. B) Autoradiogram showing abundance of chimeric 
GUS transcripts in transformants. Only control-transcripts are visible. No accumulation of 
GUS transcripts from p+9 transformants.  

A)                                             B) 

                   

1: Control, plasmid +157 
2: Transformant nr. 6 
3: Control, MU7 

Figure 3-14: RNA isolated from the pM transformants. A) Agarose gel with total genomic 
RNA. Showing the presence of RNA. B) Autoradiogram showing abundance of chimeric 
GUS transcripts in transformants. Only the 100% and the 10% controls visible. No 
accumulation of GUS transcripts in pM transformants. 

RNA isolated from a transformant named 157+ was used as control for both 

transformants. The isolate has a 100% GUS RNA level relative to dark-isolated 

mRNA levels in a transformant harbouring a GUS gene with an unmodified rbcL 

5’end. This would have been the expected GUS transcript level in a p+9 transformant 

if the induced modifications had not affected the stability of the transcript.  
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For the pM transformant an additional control (MU7) with a 10% RNA level was 

used. This was because the rbcL enhancer sequence was not included in the pM-gene 

construct. The chimeric gene would therefore be transcribed to a ~10% mRNA level 

compared to an equivalent chimeric gene containing the enhancer.  

Only controls were seen in the autoradiograms. Accumulation of the p+9 and pM 

GUS transcripts were not detectable by northern blot assay.
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CONCLUSION 

The p+9-construct 

A 5’ addition of 9 nucleotides to the 5’UTR of the Chlamydomonas rbcL gene and a 

deletion of the first nucleotide of the original transcript made the chimeric rbcL 

5’end: GUS transcripts highly unstable. The homoplasmicities of the transformants 

were high, estimated to about 90% by Southern analysis. The transcript levels in the 

transformed Chlamydomonas chloroplasts were not detectable by northern blot.  

From this it can be concluded that the induced modifications significantly 

destabilized the transcripts. However because two different modifications were 

present in the construct which both, independently, could abolish transcript 

accumulation, it cannot be decided whether both modifications, or just one of the 

induced alterations destabilized the GUS transcripts. 

The pM-construct 

Modifications in the sequence of the second stem-loop of the 5’UTR of the 

Chlamydomonas rbcL transcripts (positions +50 to +63 relative to start of 

transcription) also led to highly unstable GUS transcripts in the cells. The 

homoplasmicity of the transformant was estimated to ~ 90% by Southern analysis. 

Transcript accumulation was not detectable by northern analysis. This indicates that 

there are nucleotide(s) within this changed area essential for transcript stability. 

 



4. Discussion  

In this study two different reporter genes were constructed to analyze how the 5’UTR 

of the rbcL mRNA affects the stability of the transcript. Two different modifications 

were introduced at rbcL 5’UTRs. The 5’UTRs were fused to GUS reporter genes and 

the chimeric genes were cloned into Chlamydomonas chloroplast genomes in order to 

investigate the in vivo effect of the modifications. One modification added 9 

nucleotides to the 5’ terminus of the transcript and deleted the first nucleotide of the 

original transcript. The other changed the nucleotides in a 5’UTR stem-loop. It was 

found that both rbcL 5’UTR modifications destabilize the GUS transcripts and 

significantly reduses transcript accumulation.  

4.1 The p+9 construct’s effect on transcript stability 

The p+9-construct’s effect on transcript stability 

The addition of 9 nucleotides to the 5’terminus of the rbcL transcript (Figure 4-1) was 

introduced to determine whether this addition would destabilize the transcript. 

However, during ligation there was also made a single-nucleotide deletion in the 

construct affecting the secondary structure of the +38 to +47 cis-acting sequence.  

        A)               B)     
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Figure 4-1: Predicted rbcL 5’UTR RNA secondary structures. A) Unmodified sequence of 
the rbcL 5’UTR with sequence +38 to +47 shown in red. B) The chloroplast rbcL 5’UTR of 
Chlamydomonas with 9 additional nucleotides (shown in green) and a deleted +1 
nucleotide (resulting in a longer ss-sequence between the loops).   
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Changes in the secondary structure of the 10-nt cis-acting sequence are already 

known to render the transcript unstable. Therefore the transcript destabilization 

observed in this analysis could be a result of both the inserted modifications or only 

one of them. As a result of this no definitive conclusion about the effect of the added 

9 nucleotides can be drawn. 

Previous work affecting the 5’ terminal sequence 

Previous experiments have shown that adding up to 8 nucleotides to the 5’ terminus  

does not significantly affect transcript stability. 10 or more additional nucleotides 

abolish transcript accumulation (Klein, U., personal communication).  

The destabilizing effect of 10 or more additional nucleotides at the 5’terminus might 

be because the introduced nucleotides interfere with the binding of a stabilizing trans-

acting factor. It is also possible that the additional nucleotides provide binding sites 

for 5’-3’ RNases.  

When less nucleotides are added, the introduced 5’ sequence might not be long 

enough to bind RNases or to interfere with the binding of a trans-acting factors. It has 

not yet been investigated how 5’end processing affects the mutated mRNAs. As 

adding 8 nucleotides or less does not significantly change transcript stability it is 

possible the added nucleotides are removed by 5’end processing, resulting in WT-

rbcL 5’ends in the mature mRNA. 

4.2 The pM construct’s effect on transcript stability 

The pM-construct’s effect on transcript stability 

The findings presented in this thesis show that when it is introduced changes in the 

upper part of the small 5’UTR stem-loop (position +50 to +62 relative to start of 

transcription) (figure 4-2) that does not disturb the secondary structure, the transcripts 

are destabilized. This means that there are one or several nucleotides in this area 

important for transcript stability. 



 

A)                 B)         

C     

  
U
U   
.  
A
A
A
A
U
U
U   
  
A
U
G
U
A
A
A

A     

  
A
A   
  
U
U
U
U
A
A
A   
 
U
A
U

 C A A A ...- 3´5´ -

U

A
C

U
U

U

U U
U
A
G  
 

A

G
A
U
C 
.  
G
U

U
A
A

A

U U

G

C     
.
 
U
U   
  
A
A
A
A
U
U
U   
.  
A
U
G
U
A
A
A

A     
.    
.   
A
A   
.   
U
U
U
U
A
A
A   
. 
U
A
U
A
U
U
U C C G G C A A A ...- 3´5´ -

U

A
C

U
U

U

U C
C
G
G  
. 
C
A

G

G
G
C
C 
.  
G
U

C
C
G

A

C C

A

A
U
U
U C C G G

C
A

Figure 4-2: Predicted rbcL 5’UTR RNA secondary structures. A) Unmodified sequence of 
the rbcL 5’UTR with sequence +38 to +47 shown in red. B) The chloroplast rbcL 5’UTR of 
Chlamydomonas with the changed  sequence in positions +50 to +62 shown in green.  

The proximity of this newly found stabilizing nucleotide(s) to the previously found 

+38 to +47 element makes it likely that they are part of the same cis-acting sequence. 

Stabilizing elements in the 5’UTR of chloroplast transcripts are believed to be cis-

acting sites recruiting sequence-specific trans-factors (Suay et al., 2005). 

The role of the nucleotides located in the second stem-loop might be providing a 

binding site to the postulated trans-acting factor. As the secondary structure of the 

stem-loop was not disturbed, the stabilizing nucleotide(s) are likely to have a 

sequence specific interaction with the postulated trans-acting factor.  

Previous work on the second stem loop 

Previously there has been done a deletion of the +56 to +63 sequence which did not 

have a significant effect on transcript stability (Salvador et al., 2004b). The deletion 

disrupted the secondary structure of the second stem loop from position +50 to +55, 

but maintained the nucleotides at positions +50 to +53 in a loop-structure (figure 4-3). 

There have also been inserted point mutations in nucleotides +48, +49, +53 and +59, 

which also did not have a significant effect on transcript stability (Anthonisen et al., 

2001) (figure 4-3). The Northern blot membrane containing hybridized +49 mutated 

RNA presented by Anthonisen et al. ( 2001) reveals a somewhat weaker signal than 

55 
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the control (~50%), implying that also this nucleotide can have an impact on 

transcript stability. Alternatively, this could be a result of lower homoplasmicity. 
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previously changed or deleted without effecting the transcript stability are shown in green.  

The location of nucleotide(s) important for transcript stability 

In light of these results, it seems that nucleotide(s) important for transcript stability 

can be found between nucleotides +50 and +55, not including nucleotide +53. This 

because the deletion of the + 56 to +63 sequence and the point mutation in +53 did 

not have a significant effect on transcript stability. The +49 nucleotide might also be 

of importance (figure 4-4).  
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nucleotide(s) in the second stem loop that might be of importance for transcript stability are 
shown in green. The location of the previously found cis-acting element is shown in red.  
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It is not known whether the loop-configuration in nucleotides +53 to +55 is of 

importance as both the pM-construct and the deletion performed by Salvador et al. 

(2004) preserved this configuration. 

It is also open whether all the nucleotides +50, +51, +52, +54 and +55 are necessary 

for transcript stability, or if a deletion/ change in one or some of these nucleotides 

will destabilize the transcript. It is possible that several of these nucleotides are 

necessary, but that this part of the cis-acting element allows for small changes, as 

point mutations, without disturbing or losing the stabilizing effect. The stability in the 

+53 mutant and the reduced stability in the +49 mutant could be a result of this. 

Increased number of hydrogen bonds 

In the WT-rbcL 5’UTR the second stem loop consists primarily of adenine and 

thymine. The mutation made the sequence guanine/ cytosine-rich with an increased 

number of hydrogen bonds. This did not affect the stem-loop secondary structure, but 

might influence the stability of the transcript by enhancing the rigidity of this area, 

which may change the nature of the interaction with a trans-acting factor. 

FUTURE PERSPECTIVES 

Future mutation analyses of the Chlamydomonas rbcL 5’UTR effect on transcript 

stability should determine the location of nucleotide(s) important for transcript 

stability in the small stem-loop of the 5’UTR. To determine whether an addition of 9 

nucleotides to the 5’terminus of the rbcL transcript has a destabilizing effect it should 

be made a new mutation construct, without any additional changes. 

Finding proteins binding to the rbcL 5’UTR can also give information on how the 

5’UTR affects the longevity of Chlamydomonas rbcL transcripts. 
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