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Abstract 
 
Cancer is a disease resulting from an accumulation of acquired genetic mutations. The 

consequence is an uncontrolled growth of cells and disruption of normal control mechanisms. 

Complex chromosomal aberrations such as amplification and deletion of DNA copy number 

can lead to the activation and deregulation of oncogenes and tumour suppressor genes 

respectively, leading to uncontrolled cell growth and giving rise to tumours. 

 

In sarcomas, rare malignant tumours of mesenchymal origin, aberrations such as 

amplifications and losses of DNA are frequently seen. In this project, a panel of 13 

leiomyosarcomas (LMS) and seven gastrointestinal stromal tumours (GIST) were analysed by 

array comparative genomic hybridisation (array CGH). This technique makes it possible to 

map DNA copy number changes and identify chromosomal regions containing “target genes” 

responsible for tumour development and/or progression.  

 

The most frequent aberrations observed in GISTs were losses of the whole or parts of 

chromosome 22, seen in all tumours with a minimal recurrent region in 22q12.2-q13.31, as 

well as chromosome 14, 1p36.32-p13.1, 13q12.11-q33.2, 15q13.2-qtel and 9q13-q34.2. 

 

In leiomyosarcomas, the most recurrent aberrations were loss of 10q21.13 and 13q14.2-q14.3. 

The region in chromosome 17p13.1-p11.2 presented high amplification and its analysis 

revealed nine candidate genes. Four genomic clones within this region were tested in three 

LMS samples by fluorescence in situ hybridisation (FISH). LMS1, -10 and -25 showed 

different levels of DNA copy number although LMS10 was expected to have normal copy 

number in this region.   

 

Only two genes previously cited in literature were contained in the clones tested by FISH 

although other clones within the amplicon could contain the actual “target” genes; those were 

MAP2K4 often mutated in many tumour types and SPECC1 involved in juvenile 

myelomonocytic leukaemia. These genes may be useful in studies of the biology of LMS and 

should be investigated further. 
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1 Introduction 
 
1.1 Cancer in general 
 

Cancer is one of the most frequent causes of death in humans. Although there are many kinds 

of cancer, they all start because of uncontrolled growth of cells. This growing mass of 

abnormal cells gives rise to a tumour - or neoplasm.  

 

Normal cells follow a cell cycle where they grow, divide and die in a controlled manner. 

Cancer cells continue to grow and divide, but instead of dying, they will form new abnormal 

cells. As long as the tumour cells remain together but separate from surrounding normal 

tissues, the tumour is said to be benign. If the tumour cells gain the ability to invade 

surrounding tissue, then it is a cancer and becomes malignant (Alberts et al. 2002 for review). 

 

The abnormal cells will pass its abnormalities to its progeny and accumulation of further 

genetic and epigenetic changes within the cell will lead to further changes in gene activity. 

Several factors as genetic variation in response to external/endogenous carcinogens, DNA 

damage and disturbance of gene regulation can influence the evolution of cancer. 

 
1.2 Genetics of cancer 
 
1.2.1 Chromosomes 
 
The genetic information of a cell is contained in their genes residing in chromosomes. 

Chromosomes are composed of chromatin (DNA and DNA binding protein complex) tightly 

packed in the cell nucleus. Usually, the chromosomes are not visible in the interphase nucleus 

(non-dividing phase) because the chromatin is so loosely packed that single chromatin threads 

are not detectable. In metaphase, the chromosomes can be easily distinguished. Metaphase 

chromosomes have two sister chromatids held together by the centromere. The centromere 

divides each of the chromatids in two arms; the short arm of each chromosome is designated 

“p” (for petit) and the long arm is “q”. The ends of chromosomes are called telomeres (See 

Speicher 2005 for review). 

 

Normal human cells have 22 matching pairs of non-sex chromosome and one pair of sex 

chromosomes. The 44 non-sex chromosomes are known as autosomes. The homologous pairs 

are arranged by geneticists after their decreasing size to produce a karyotype (in humans, 1 is 
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the longest autosome and 22 the shortest). In other words, a karyotype is a visual description 

of a set of chromosomes in one cell ( Hartwell L. 2000 for review). 

 

The position of a gene can be identified on maps that describe the cytogenetic location 

according distinctive pattern of light and dark bands that appear when the chromosome is 

Giemsa stained. The position is usually designated by two digits (representing a region and a 

band), which are sometimes followed by a decimal point and one or more additional digits 

(representing sub-bands within a light or dark area). The number indicating the gene position 

increases with distance from the centromere. For example: 14q21 represents position 21 on 

the long arm of chromosome 14. 14q21 is closer to the centromere than 14q22. The 

abbreviations “cen” or “ter” are also used to describe a gene’s cytogenetic location. “cen” 

indicates that the gene is very close to the centromere while “ter” stands for terminus, which 

indicates that the gene is very close to the end of the p or q arm.  

 

 
Figure 1.1 How to indicate the localization of a gene (from Genetics Home Reference, U.S. National 
Library of Medicine) 
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1.2.2 Cancer 
 

A normal cell has to change many aspects of its phenotype to become a cancer cell, and these 

changes probably require the alterations of many genes. Cancer is thus, a malignancy 

involving the accumulation of acquired genetic and epigenetic aberrations. 

 

These alterations can be divided into six categories; i) point mutations or deletion/insertion of 

single or few nucleotides; ii) Alterations in chromosome number involving losses or gains of 

whole chromosomes (aneuploidy); iii) Chromosome translocations detected as fusion of 

different chromosomes or genes, where the fused gene will induce tumorigenic properties; iv) 

epigenetic modifications, as loss or gain of genomic DNA methylation, local CpG island 

hypermethylation-associated gene silencing and histone modification patterns (Esteller 2006); 

v) gene deletions causing the loss of one or both copies of genes involved in carcinogenesis; 

and vi) gene amplifications, where several copies of genes (or regions –amplicon) can be 

seen. These amplicons are different from duplications of larger regions that result from 

aneuploidy and translocations (Lengauer et al. 1998). 

 
Figure 1.2 Chromosomal aberrations leading to aneuploidy (Figure from Albertson et al. 2003) 
 

The past years, with the advent of new molecular biology technology, and DNA sequencing 

in particular, both smaller and more abundant alterations have been observed. Such 

differences include single nucleotide polymorphisms (SNPs), various repetitive elements that 

involve short DNA sequences (as micro- and microsatellites), and small insertions, deletions, 

inversions and duplications, also known as copy number polymorphisms (CNPs) (Feuk et al. 

2006). CNPs involve gain or losses of several kilobases to hundreds of kilobases of genomic 

DNA among phenotypically normal individuals.  
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Identification of disease-specific chromosome aberrations is an important step towards 

defining the genes involved, particularly since the net effect is the gain or loss of specific gene 

function. There are two general types of mutations found in tumours: those that improperly 

activate and those that inactivate protein function. The mutant alleles leading to cancer are 

referred as cancer genes: Oncogenes and tumour suppressor genes (TSG).  

 

Oncogenes act dominantly (Fig 1.3A). They become activated either by structural alteration 

or amplification. Chromosomal aberrations affecting oncogenes are mutation, translocation, 

inversion and amplification. Normal genes that become oncogenes by mutation are known as 

proto-oncogenes. Examples of common oncogenes are MYC, MYB, RAF and RAS, often 

related to leukaemia, neuroblastoma and other neoplasms (Alitalo et al. 1984; Lengauer et al. 

1998; Dang 1999; Pinson et al. 2001). 

 

TSGs contribute to cancer in a recessive manner (Fig 1.3B); meaning that loss or inactivation 

of both alleles is required to target TSGs (Knudson 1971). Chromosome loss is one 

mechanism for inactivation of TSGs, as well as partial deletions, mutations and epigenetic 

silencing. They result in removal of their checkpoint and/or inhibitory effect on cell growth 

and many vital cell pathways (See Roberts 2001 for review). Inheritance of a single mutant 

allele of many TSGs increases the risk for developing certain types of cancer, e.g. RB1 in 

Retinoblastoma, TP53 in Li-Fraumeni syndrome and APC in colon cancer (Li et al. 1969; 

Knudson 1971; Lindahl 1996). 

 
Figure 1.3 Cancer genes act dominantly or recessive; A. One single mutation activates an oncogene 
stimulating proliferation. B. Two mutations are needed to inactivate TSGs stimulating proliferation 
(Figure from Alberts B 2002) 
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Searching for new oncogenes and TSGs is of great importance as many of these genes control 

essential regulatory steps in the cell. Understanding more about these genes will lead to 

improvements in cancer diagnosis and treatment, making it selective as we could target 

directly the genes (and pathways) regulating critical cell mechanisms. 

 
1.2.3 Gene amplification 
 
Genomic amplification is a selective increase in copy number of subchromosomal DNA 

sequences. Amplification occurs more easily in cancer cells than in normal cells, that is a very 

important oncogenic process, as genes may become highly up-regulated and that is clearly 

associated with tumour progression (Lengauer et al. 1998). 

 

Amplicons (amplified regions) can be large and complex, and within them there can be 

present many genes. Identifying and defining amplified DNA in cancer cells has been a 

strategy for the isolation of many proto-oncogenes involved in growth control and possibly in 

tumorigenesis.  

 

Oncogene activation may involve exchange of material between two chromosomes in a 

balanced or unbalanced order. The significance of amplification emerged from the analysis of 

tumour cells carrying chromosomal abnormalities, double minutes (DMs) and homogeneously 

staining chromosomal regions (HSR) which has been known to signal the presence of 

amplified DNA (See Schwab 1999 for review). DMs appear as small, spherical, chromosome-

like structures and may contain circular DNA in chromatin form. They are products of 

extrachromosomal amplification. HSRs may also contain genetic material of different 

chromosomal origins (See Myllykangas and Knuutila 2006 for review)  

  

Amplified oncogenes can be assembled in two different ways; i) first the amplified DNA can 

be intra-chromosomal, residing at the chromosomal site of the single copy gene involved. 

This amplification could further proceed by unequal but homologous sister chromatide 

exchanges and secondary arrangements; ii) Second, the DNA can be amplified 

extrachromosomally or in a chromosomal region distant from the resident site of the single 

copy gene (e.g. double minutes and episomes). This type of amplification gives rather short 

co-amplified DNA (Schwab 1999).  
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According to the breakage-fusion-bridge model (McClintock 1942), the initiating event in 

HSR formation is the breakage of double chromatid in e.g. fragile sites. After replication, the 

two sister chromosomes fuse, as a consequence of the action of DNA repair proteins. In 

mitosis the fused chromatids form a bridge, where two copies of an oncogene would be 

arranged head to head. If this structure breaks asymmetrically, the daughter cells will receive 

either a duplicated oncogene or a deleted one (See Fig. 1.4) 

 
Figure 1.4 Gene amplification according to the breakage-fusion-bridge model (Figure from Schwab 
1999) 
 
Classical examples in human tumours involve the gene amplification of the Epidermal 

Growth Factor (ERBB), Rat Sarcoma oncogen (RAS) and v-myc myelocytomatosis viral 

oncogene homolog (MYC) families. Drug resistance is frequently induced by amplification of 

drug target genes, e.g. culture cells selected for resistance to N-(phosphonacetyl)-L-aspartate 

frequently amplify CAD. Dihydrofolate Reductase (DHFR) gene amplification conducts to 

methotrexate resistance, a DHFR enzyme inhibitor used in the treatment of various 

malignancies. Likewise, the BCR-ABL fusion gene encodes a mutant tyrosine kinase, which 

promotes the pathogenesis of chronic myeloid leukemia. Table 1.1 shows some of the genes 

frequently amplified in human malignancies and their location in the genome. 
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Table 1.1 Oncogenes frequently amplified in human malignancies  

Oncogene  Function    Tumour type   Localisation 
ABL  Protein tyrosine kinase Chromic myologenous leukaemia 9q34 
CCND1  Cyclin D1   Breast cancer, oesophageal and   11q13 

head and neck cancer, bladder cancer  
CDK4  Cyclin dependent kinase 4,  Sarcoma, glioblastoma  12q13-q15 
  phosphorylation of pRb 
C-MYC  DNA-binding protein  Breast cancer, ovarian cancer,  8q24 
     carcinoma of the uterine cervix, 
     squamous cell lung carcinoma,  

osteosarcoma, gastric cancer, 
     colon cancer 
ERBB1/EGFR Epidermal growth factor  Glioma, head and neck squamous  7p12 

receptor    cell carcinoma, lung carcinoma, 
   breast cancer 

ERBB2/HER2 Growth factor receptor Breast cancer, ovarian cancer,  17q11-q12 
     gastric and oesophageal cancer  
FGF4  Fibroblast growth factor 4  Kaposi sarcoma, breast cancer,  11q13.3 
     oesophageal carcinoma 
GLI  Zinc finger protein  Glioma    12q13-q15 
HMGIC  Architectural transcription factor Sarcoma    12q13-q15 
INT2  Fibroblast growth factor 3  Kaposi sarcoma   11q13 
KRAS2  GTPase   Adrenocortical tumours, giant cell 12p12 
     carcinoma of the lung, breast cancer, 
     ovarian cancer, gastric carcinoma  
MDM2  Binding and inactivation of p53 Sarcoma, glioblastoma  12q13-q15 
MYB  DNA-binding protein  Pancreatic cancer, leukaemia,   6q22-q24 

colon carcinoma, melanoma 
N-MYC  DNA-binding protein  Neuroblastoma, retinoblastoma  2p24 
     small-cell lung carcinoma,  

astrocytoma, rhabdomyosarcoma  
NRAS  GTPase   Breast cancer, lung carcinoma,  1p13 
     head and neck squamous cell  

carcinoma 
SAS  Transmembrane protein  Sarcoma    12q13-q15 
 

Traditionally, genomic aberrations have been studied using cytogenetics. Conventional 

chromosome analysis based on banding was one of the first techniques used to study the 

cellular aspects of heredity, chromosome structure and causes of disease. Later, Gall and L. 

Pardue (1969) reported the use of DNA-RNA hybridisation to localize the genes encoding 

ribosomal RNA, giving birth to in situ hybridisation. 

 

Fluorescence in situ hybridisation (FISH) was introduced by Rudkin and Stollar (1977). The 

technique used fluorescently labelled antibodies that recognized specific DNA-RNA hybrids. 

Now, DNA or RNA sequences (probes) are hybridised to a target such as metaphase 

chromosomes, interphase nuclei or extended chromatin fibres. However, there have been huge 

advances in FISH-based techniques as new technology is being developed. Comparative 

Genomic Hybridisation (CGH) is an example of that.  

 

CGH was developed by Kallioniemi (1992) in order to overcome the difficulties in 

preparation of high-quality metaphase spreads from solid tumours. This technique is still used 

to detect and map DNA copy number changes throughout the genome. However, the 

 8



microarray technology makes it possible to use mapped clones instead of metaphase 

chromosomes.  

 

Other molecular genetic technologies used in chromosome aberration analysis are also being 

widely used; High-throughput analysis of loss of heterozygosity (LOH), restriction landmark 

genome scanning (RLGS) and representional difference analysis (RDA) are to be mentioned.  

 
1.3 Sarcomas 
 

Cancers are classified according to the tissue from which they arise. Cancers arising from 

connective or supportive tissue or muscle cells are termed sarcomas (See figure 1.5).  

 

Sarcomas are rare malignant tumours and account for approx 1% of all human cancers. The 

patient’s average age for is 60-65 years old, nevertheless sarcoma can also develop in children 

and youngsters, accounting for 10% of all cancers in young people (Bjerkehagen and 

Myklebost 2005). 

 

Sarcomas are generally derived from the mesenchymal tissue. The mesenchyme is a loose 

network of cells within the mesoderm, one of the three primary germ layers created at an early 

stage in the embryo. They give rise to as connective tissue, bone, cartilage, and other 

structures and systems, e.g. blood cells, smooth muscle cells, circulatory system, etcetera 

(Alberts et. Al. 2002). 
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Figure 1.5 Pathways of sarcoma development from tissue of mesenchymal origin (Figure from 
Mackall et al. 2002) 
 
Sarcomas can be classified in sarcomas of the bone and soft tissue sarcomas. Table 1.2 shows 

some of the different subtypes of sarcomas.  

 
Table 1.2 Most common Sarcoma types and the tissue they resemble 
Sarcoma Type  Normal Tissue 
Osteosarcoma Bone cells 
Liposarcoma Fat tissue 
Fibrosarcoma Fibrous tissue 
Rabdomyosarcoma Striated muscle tissue 
Leiomyosarcoma Smooth muscle tissue 
Synovial sarcoma Joints 
Malignant Peripheral Nerve Sheath  Peripheral nerves sheath  
Kaposi's sarcoma, Angiosarcoma and Hemangiopericytomas Blood or lymphatic vessels 
Malignant Fibrous Histiocytoma  Fibrous tissue 
 

Most sarcomas are sporadic but some are associated to genetic predisposition syndromes or 

environmental exposure. As an example, patients with retinoblastoma are at an increased risk 

of developing sarcomas later in life. TP53 mutations in Li-Fraumeni syndrome, NF1 in 

neurofibromatosis type I and c-KIT in gastrointestinal stromal tumours (GISTs) can all lead to 
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different types of genetic predisposition to sarcoma (See Helman and Meltzer 2003 for 

review). 

 

Different diagnostic criteria are used when classifying sarcoma types. Traditionally, sarcoma 

classification was based on histology and pathology, but now genetic techniques are widely 

used. This is the result of new knowledge on molecular alterations which are present in some 

subtypes of sarcomas.  

 
1.3.1 Genetics of Sarcoma 
 
 
Sarcomas can be divided into two main types by their genetic aberrations. One group has 

simple near-diploid karyotypes with few chromosome rearrangements, whereas the other has 

complex karyotypes with severe disturbance in genomic stability (Helman L. and Meltzer P., 

2003). 

 

The first group contains disease-specific chromosome translocations. These translocations 

create fusion genes that are related to growth-factor signalling cascades, having dramatic 

effects on the pathways they affect. In Ewing`s sarcoma, gene fusions between the EWS and 

FLI1 gene are common. The EWS gene is also translocated in myxoid/round cell liposarcoma 

and extraskeletal myxoid chondrosarcoma. The SYT gene in synovial sarcoma is also involved 

in gene fusions with the genes SSX1 and SSX2 (Bjerkehagen and Myklebost 2005). Other 

chromosomal changes as inversions, deletions and insertions are also present in this group of 

sarcomas.  

 

The second group contains aneuploid tumours that show complex chromosomal 

rearrangements but not simple reciprocal translocations. Many of these aberrations result in 

copy number changes, such as amplification of proto-oncogene-containing regions. Malignant 

Fibrous Histiocytoma (MFH), Osteosarcoma and Leiomyosarcoma (LMS) are examples of 

sarcomas with complex karyotypes.  

 

Some gene alterations seen in other types of cancer are also being found in sarcomas. This is 

the case of the TP53 gene. p53-regulation of the cell cycle and cell death can be repressed by 

high production of MDM2, a protein blocking p53. MDM2 is often amplified in many types 

of sarcoma although never in tumours where p53 is inactive by mutation. Another important 
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gene is RB1, coding for the retinoblastoma protein pRB. RB1 is often inactivated by higher 

production of different proteins, e.g. CDK4. This gene codes for a kinase capable of 

inactivating pRB by phosphorylation by heightened production. In other cases, this kinase can 

be highly activated because the gene coding of the p16-protein is deleted and therefore is 

unable to repress CDK4 (Bjerkehagen and Myklebost 2005).   

 

Although some genes involved in sarcoma development have been identified, they are few in 

the spectra of genes controlling different pathways in the cells leading to tumour progression. 

The use of modern molecular biochemical techniques, DNA microarray in particular, makes 

the approach to target genes easier and, by understanding how they affect the cell we can 

learn more about the nature behind sarcoma development.  

 
1.4 Gastrointestinal Stromal Tumours 
 
 

Gastrointestinal stromal tumours (GIST) are uncommon tumours that usually occur in middle-

aged or older persons. These tumours are found in the gastrointestinal tract (mostly stomach 

and intestine) and account for 1-3% of all gastrointestinal malignancies.   

 

Gastrointestinal stromal tumours (GISTs) were thought to be of a heterogeneous group of 

mesenchymal tumours, based on the finding that some of these tumours were very similar to 

smooth muscle tumours; they were known as leiomyoblastoma, leiomyoma or 

leiomyosarcoma. However, is it thought that GIST is derived from the interstitial cells of 

Cajal (ICC). The ICC are a network of unique, innervated cells that are situated between the 

peripheral nervous system and the smooth muscle cells of the gastrointestinal (GI) tract. They 

develop from mesenchymal cell precursors that give rise to both ICC and true smooth muscle 

cells. Their principal function is to serve as pacemaker cells responsible for generating 

rhythmic contractions of the GI tract involved in digestion and peristalsis (See Tornillo et al. 

2005 for review). 

 

Both ICC and GIST show diffuse strong c-KIT (CD117) and CD34 protein expression, 

therefore GIST have been suggested to be tumours of the ICC (See Sandberg and Bridge 2002 

for review). It could thus be argued that GIST is not a mesenchymal tumour, but of 

neurogenic origin. However, this is also the case for e.g. malignant peripheral nerve sheath 

tumours (MPNST), but both subtypes are still regarded as sarcomas. 
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c-KIT (KIT) also known as CD117, is a type III receptor tyrosine kinase, that is involved in 

the development and maintenance of ICC. Binding of KIT ligand, also known as stem cell 

factor causes KIT dimerization and autophosphorylation through phosphorylation of critical 

tyrosine residues. This activation leads to the phosphorylation of other signal transduction 

proteins; many of them have kinase activity, resulting in modulation of cellular behaviour 

including proliferation, chemotaxis and apoptosis (See Rubin 2006 for review).  

 

However, KIT is not the only target of mutation in GIST. The platelet derived growth factor 

receptor A gene (PDGFRA) is also mutated in some GIST. PDGFRA is a member of the same 

family of receptor tyrosine kinases as KIT, and they are thus very similar. A tyrosine kinase 

inhibitor, Imatinib mesylate has been used to target KIT, PDGFRA and PDGFRB. This drug 

is widely used for the treatment of metastatic unresectable GIST, but its efficiency in primary 

GIST is not yet certain (See Tornillo et al. 2005 for review).  

 

GIST has complex karyotype changes. Losses of chromosome 14, 22q, 1p, 9p or 11p are the 

most common cytogenetic findings (Bardi et al. 1992; Sreekantaiah et al. 1993; El-Rifai et al. 

2000; Heinrich et al. 2003 and more). High-level DNA amplification at 3q26-q29, 5p and 

8q22-q24 (el-Rifai et al. 1996) as well as gain at 19q13 have also been observed (Knuutila et 

al. 1998). 

  
1.5 Leiomyosarcoma 
 
Leiomyosarcoma is a malignant tumour resembling smooth muscle tissue, relatively rare, 

accounting for 10% of the soft tissue sarcomas. It usually occurs in middle-aged or older 

persons, although it can also occur in young adults and children. LMS has also become the 

second leading malignancy of children with human immunodeficiency virus (HIV) infection 

or other immunodeficiency diseases (Sandberg A, 2005). Leiomyosarcomas arise often in the 

retroperitoneum, but they can also develop in the uterus, gastrointestinal system and 

extremities. The cause of leiomyosarcoma is still unknown (Fletcher CDM. et. Al., 2002). 

 

This type of soft tissue sarcoma has a complex karyotype, and no consistent aberrations have 

been noted. Cytogenetic findings show frequent gain of chromosome region 1q21-31, and loss 

of 3p21-23, 8p21-pter, 13q12-13 and 13q32-qter. The variation in these regions is also 

common among subtypes. Previous studies by CGH shows gain of material from 
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chromosomes 1, 15, 17, 19, 20, 22 and X and loss from 1q, 2, 4q, 9p, 10, 11q, 13q and 16, 

and have identified regions of amplification in 1q21, 5p14-pter, 12q13-15, 13q31, 17p11 and 

20q13 (Fletcher CDM 2002). 

 

From previous studies, some genes have been related to LMS progression. The loss of 

chromosome 13 material showed association to the Retinoblastoma 1 gene (RB1). The Rb-

cyclin D pathway involving RB1, CDKN2A, CCNDI, CDK4 and CCND3 shows abnormalities 

in LMS. Amplification at different regions of the genome suggests candidate genes including 

MDM2, GLI and SAS at 12q13-15, the FLF and PRUNE genes at 1q21, and the critical region 

involved in Smith-Magenis syndrome at 17p11.2 (Fletcher CDM 2002).  

 

KIT expression can be used to differentiate GIST from LMS and other types of soft tissue 

sarcoma. Approximately 70-80 % of the mutations in GISTs occur in exon 11. Most LMS 

lacks mutations of exon 11 of c-KIT, although studies in uterine LMS have occasional 

reported expression of KIT (Caudell et al. 2005). This mutation makes the tumour responsive 

to imatinib mesylate therapy, although mutations in other exons maybe causing low or no 

response to the treatment. The lack of expression of KIT, CD34, cytokeratin, myoglobin, or 

neural markers may be used diagnostically to distinguish LMS from other tumours. 

 

1.6 Aims of this study 
 

In sarcomas, alterations in DNA copy number are frequently seen. The goal of this study was 

to identify target genes that could be important for leiomyosarcoma development and/or 

progression by determining novel areas for amplification and deletion in a panel of human 

leiomyosarcomas using array comparative genomic hybridization.  
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2. Materials and methods 
 
A list of solutions and reagents can be found in the appendix A. 

 
2.1 Tumour material 
 

In this project, tumor samples from 20 human sarcomas were used. 19 initially diagnosed 

leiomyosarcoma samples (LMS), some of which were later revised to GIST, and one 

malignant fibrous histiocytoma sample (MFH), later revised to LMS (Table 2.1). The 

anonymous and frozen samples were obtained from the Norwegian Radium Hospital’s 

biobank. 

 
Table 2.1 Summary of the 20 human sarcomas studied in this project, their diagnosis and location. 
 

GIST: Gastrointestinal stromal tumour 
LMS: Leiomyosarcoma  
MFH: Malignant fibrous histiocytoma 
x: Xenograft     
Prim: Primary tumour   
Met: Metastasis  
F: Female     
M: Male 
* Sample from the same patient. LMS1 
primary tumour and LMS25 arm 
metastasis.
 
 

 

 
 
 
 
 
 
 
 
 
 

 

Sample Sample 
origin 

Age/Sex Diagnosis 
Initial       Revised 

Location 

GIST1 Prim 73/M LMS GIST Abdomen 
GIST2 Rec 52/M LMS GIST Small bowel 
GIST3 Rec 61/F LMS GIST Small bowel 
GIST4 Rec 47/M LMS GIST Rectum 
GIST5 Met 53/M LMS GIST Liver 
GIST7 Prim 74/M LMS GIST Abdomen 
GIST8 Prim 70/M LMS GIST Stomach 
LMS1* Prim 59/F LMS LMS Retroperitonum 
LMS3 Prim 72/F LMS LMS Retroperitonum 
LMS5x Prim 46/F LMS LMS Uterus 
LMS7 Prim 71/F LMS LMS Thigh  
LMS10 Prim 67/F LMS LMS Retroperitonum 
LMS124 Prim 67/M LMS LMS Retroperitonum 
LMS17 Prim 59/F LMS LMS Uterus 
LMS18 Prim 46/F LMS LMS Uterus 
LMS21 Prim 31/F LMS LMS Retroperitonum 
LMS23 Prim 72/F LMS LMS Thigh  
LMS24 Prim 66/F LMS LMS Perineum 
LMS25* Met 59/F LMS LMS Arm 
LMS28 Prim 82/M MFH LMS Knee  
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2.1.1 Isolation of genomic DNA 
 

The DNA was isolated from most of the samples using the following protocol.   

 

The equipment (mortar and pestle) was pre-cooled in liquid N2. Frozen tissue was placed in 

the mortar with liquid N2 and it was grinded to powder. The powder (in N2) was transferred to 

a 50 ml tube, leaving the cap open until most of the N2 had evaporated. The tube was 

immersed in N2 to maintain low temperature. 

 

4 ml Lysis buffer A was added to the powder and then it was placed at -70°C for 30 minutes. 

The suspension was thawed at 37°C, then 4 ml Lysis buffer B were and 100 μg/ml Proteinase 

K were added; diluting 1:100 from 10 mg/ml stock = 80 μl. The suspension was placed in the 

incubator at 37°C over night, with gentle rocking of the sample (Orbital Incubator, 

Gallenkamp). 

 

Then, DNA was extracted from the suspension by using first a phenol-chloroform extraction. 

Phenol (~pH 8) was thawed, and an equal volume was added to the solution. The solution was 

mixed gently by inversion and later centrifuged (Sorvall® RC 5C Plus SS-34 rotor) for 7-8 

minutes: 172 x g, at room temperature. The upper phase (containing the DNA) was 

transferred to a new 50 ml tube, avoiding the interphase. The same procedure was repeated 

one time, keeping the upper phase. 

 

An equal volume of phenol-chloroform-isoamylalcohol was added to the solution (25:24:1) 

and mixed gently by inversion. The same procedure was repeated one time, keeping the upper 

phase.  

 

An equal volume of chloroform-isoamylalcohol was added to the solution (24:1) and mixed 

gently by inversion. The upper phase was transferred to a 30 ml centrifuge tube, and then 1/10 

of the volume of NaAc 3M pH 5.2 was added. 10 ml isopropanol was added and mixed 

gently, then another 10 ml, and again mixed gently. The solution was centrifuged for 40-60 

minutes: 11951 x g at 4°C (Sorvall® RC 5C Plus SS-34 rotor).  

 

The pellet was washed once in 1 ml 70% (v/v) ethanol, followed by a 5-minute spin at 20198 

x g at 4°C (Sorvall® RC 5C Plus SS-34 rotor) and it was dissolved in a suitable amount of 1x 
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TE. The 1xTE volume depends on the size of the pellet: 0.15-0.2 ml at first, then increasing if 

necessary to dissolve more DNA. The sample was stored at 4°C, and it was later quantified by 

using a spectrophotometer or fluorometer (Picogreen® dsDNA Quantitation Kit, Molecular 

Probes) 

 
2.2 Array Comparative Genomic Hybridisation 
 
2.2.1 Theory 
 

Conventional nucleic acid hybridisation is the pairing of complementary DNA strands to 

produce DNA-DNA hybrids (or DNA-RNA hybrids). If a double-stranded DNA is subjected 

to heat, the complementary strands will separate. When these single strands are cooled slowly 

down, they will reunite to form again a double-stranded molecule (See Magliano D 2001 for 

review) 

 

In CGH, total genomic DNA is isolated from test (tumour DNA) and reference sample 

(normal diploid sample). The two DNA samples are differentially labelled, and hybridised to 

normal human metaphase chromosomes where DNA sequences from both sources will bind 

to different genomic locations to be distinguished (See Pinkel and Albertson 2005 for review) 

In that way, CGH detects and maps DNA copy-number differences throughout the genome 

(See figure 2.1) 

 

The ratios of test and reference fluorescence along the chromosomes are quantified using 

digital image analysis. Gains and amplifications in the test DNA are identified as 

chromosomal regions with increased fluorescence ratios, whereas losses and deletions result 

in a reduced ratio. Ratios are normalized so that the modal value is 1.0 on a linear scale or 0.0 

on a logarithmic scale.  

 

Conventional CGH is unable to detect balanced chromosomal translocations, inversions and 

whole- genome ploidy changes. In addition, because of the limited resolution of metaphase 

chromosomes, alterations smaller than 5-10 Mb cannot be detected using conventional CGH 

(See Oostlander et al. 2004 for review) The necessity for higher resolution led to the 

development of microarray-based CGH. In microarrays, the target isn’t metaphase 

chromosome but a large number of mapped clones spotted onto a glass slide. In this project, 
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slides containing 4549 genomic clones were used. The slides were provided by the Norwegian 

Microarray Consortium; they cover the whole genome at a resolution of 1 Mb.  

         
 
Figure 2.1 Overview of array-based comparative genomic hybridisation. Genomic DNA samples from 
sample and a control subject are individually labelled with fluorescent dyes to a DNA microarray 
consisting of genomic clones with known location. Relative levels of copy number changes are 
measured according to the fluorescence intensity for each probe. Green spots will represent gain, 
yellow no change and red loss in DNA copy number. 
 

The clones used in the genomic microarrays are artificial chromosomes (bacterial and P1) 

provided by the Wellcome Trust Sanger Institute. The BAC clones used belonged to the 

RPCI-11 library, whereas the PAC clones were from the RPCI-1, -3, -4 and –5 libraries. The 

location of each BAC and PAC was based on sequence alignment from the search tool 

BLAST (http://www.ebi.ac.uk/blast/) from the European Bioinformatics Institute. 

 

Additional RPCI-11 clones belonging to chromosome 1, 12, 17, X and Y from the Cancer 

Chromosome Aberration Project (CCAP) (Kirsch and Ried 2000) and the VGC mapped BAC 

library (Cheung et al. 1999) were incorporated, as well as 575 Caltech clones from the 

OncoBAC clone collection. The clones were arrayed in quadruplicate onto amine-binding 

slides (CodeLink, Amersham) using a MicroGrid II arrayer (BioRobotics). 
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2.2.2 Labelling and setup for array CGH 
 

Digestion of genomic DNA  

 

Each sample was prepared as follows, using a 1.5-ml microcentrifuge tube:  

 

Component       Amount 

1 μg genomic DNA (Sample/Reference)  1 μg 
10x Dpn II buffer (100 mM NaCl, 50 mM Bis Tris-HCl,  

          10 mM MgCl2, 1 mM dithiothreitol 
          New England Biolabs®)  5 μl 

Dpn II          (20 U/ μl; New England Biolabs®) 3 μl 
Sterile water            to 50 μl 
 

The samples incubated at 37°C overnight, and then it follows a purification step by using the 

QIAquick® PCR purification kit (QIAGEN®)    

 

Labelling of genomic DNA 

 

Typical array CGH procedures use 300 ng to 3 µg of test DNA. In this project, 0.5 µg DNA 

was used in the labelling reaction; a random primer labelling was followed with the purpose 

of amplifying DNA for the hybridisation (BioPrime® Array CGH Genomic Labelling 

System, Invitrogen®). Each sample was prepared as follows, using a 1.5 ml microcentrifuge 

tube:  

 

Component               Amount 

 

0.5 μg digested DNA (Sample/Reference)               0.5 μg 

2.5x Random Primer Mix (125 mM Tris-HCl (pH 6.8), 12.5 mM MgCl2,  
          25 mM 2-mercaptoethanol, 750 μg/ml oligodeoxyribonucleotide  
          primers (random octamers) Invitrogen®)               40 μl  

Sterile water              to 46.5 μl.    

 

The samples were denatured for 10 min at 100°C, placed in ice/water and spun down. Then, 

10 μl 10x dCTP Nucleotide Mix (containing 1.2 mM dATP, dGTP and dTTP and 0.6 mM 

dCTP in 10 mM Tris (pH 8.0), 1mM EDTA; Invitrogen®) were added followed by 1.5 μl 1.0 
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mM Cy3™ (Sample) or 1.5 μl 1.0 mM Cy5™ (Reference) –dCTP (PerkinElmer) and 2 μl 

Exo-Klenow Fragment (40 U/ μl Invitrogen). The samples were incubated at 37°C overnight.  

 

The reaction was stopped by adding 10 μl Stop Buffer (0.5 M EDTA pH 8.0) to each tube, 

then vortexed and spun down. Then, it follows a purification step by using the MicroSpin™ 

G-50 Columns (Amersham Pharmacia Biotech) 

 

Probe preparation 

 

Unlabeled competitor (Cot-1) DNA was included to suppress the hybridisation of the 

repetitive sequences in the genomes, so that the unique sequences could be measured. The 

fluorescent nucleotides are sensitive to photobleaching so it was very important to minimize 

exposure of the fluorescent nucleotides and labelled DNA to light. 

 

Each sample was prepared as follows, using a 1.5 microcentrifuge tube: 

 

Component       Amount 

Cy3™ labelled DNA (Sample)   ~100 μl 
Cy5™ labelled DNA (Reference)   ~100 μl 
Cot-1 DNA (1 μg/μl; Invitrogen™)     135 μl 
3M NaAc pH 5.2         37 μl 
96% Ethanol (-20°C)       850 μl 
 

The solution is placed at -80°C for 30-40 min, and then spun at 20985 x g for 30 min (4°C; 

IEC Micromax RF) The supernatant is discarded, letting the pellet air-drying for about 5 min 

and 84 μl of MMI solution is added. Let it stand for 10 min at RT.  

 

The solution was later vortexed and placed at 70°C for 2-3 min to facilitate dissolving. After 

that, 24 μl 20% SDS and 4 μl yeast tRNA (100 μg/ μl; Invitrogen™) are added to the solution. 

The solution was placed at 72°C for 10 min (denaturing) and then at 37°C for 1h. The solution 

was applied to the hybridization chamber. 
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Hybridization and wash 

 

In this study, there was used a Hybarray™ (PerkinElmer) hybridization station.  This system 

automates hybridization and post-hybridization washes. 

 

The hybridization was performed at 37°C with agitation for 42-46 hours. After hybridisation, 

the station washed the slides with three different solutions; First a solution of 50% formamide, 

2X SSC at 48°C; 2X SSC/0.1% SDS at 48°C; and finally a PN buffer (0.1mol/l 

NaH2PO4/Na2HPO4 pH 8, 0.1% NP-40) at 25°C. For all three solutions, the hybridisation 

station washed for five cycles; each cycle has a flow time of 20 sec and a hold time of 40 min.  

 

Scanning and analysis 

 

The slides were taken out of the station and rinsed briefly manually 2 times in 0.05X SSC. 

The slides were spun at 1000 rpm for 3 min before being scanned using the Agilent G2565BA 

DNA microarray scanner (Agilent Technologies). The software GenePix Pro 6.0 was used to 

analyse the data (Axon Laboratories); Spots were automatically segmented and manually 

adjusted when necessary. Local background was subtracted, and the fluorescent intensities 

and ratio of the two dyes were calculated for each spot.  

 

GenePix files were exported to M-CGH, a MATLAB toolbox designed to filter, normalise 

and visualise microarray data (Wang et al. 2004). Empty and manually flagged spots, and 

with intensities lower than the background in both channels as well as net signal intensities 

below local background plus twice the standard deviation of the background were excluded.  

 

Log2-transformed ratios were normalised using a global intensity depended algorithm 

(LOWESS) (Cleveland et al. 1976) and then they were combined in a text file. Calculating the 

mean and the standard deviation of the quadruplicated spots in the array assesses the quality 

of the spot reproducibility. The clones with standard deviation larger than 0.2 and ratios based 

on a single measurement were eliminated. The mean ratios of the replicate spots were 

exported to a text file (Wang et al. 2004).  

 
Missing values were imputed via a K-nearest Neighbour algorithm normalisation using 

Significance Analysis of Microarrays (SAM) (Tusher et al. 2001). All samples were clustered 
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by J-Express (Dysvik and Jonassen 2001) with average linkage (WPGMA) as the cluster 

method and Pearson correlation as the metric distance. 

 

The identification of significant copy number changes was performed by CGH-Explorer v. 

2.52 (Lingjaerde et al. 2005). Analysis of copy number errors (ACE) was performed using a 

false discovery rate of 0.0000 in LMS and GIST separately. Chromosomal regions showing 

gains or losses in at least four of 13 LMSs (30%) and three of seven GISTs (42%) were 

considered for identifying minimal recurrent regions of alteration. Because information about 

the sex of some of the patients was missing before the array CGH was done, only autosomes 

(non-sex chromosomes) were taken into account in this study. 

 

To identify chromosomal regions differing significantly in DNA copy number between LMSs 

and GISTs, a t-test analysis was performed using SAM. A list of genomic clones showing 

differences in copy number between the two groups was generated.   

 
2.3 Artificial Chromosomes 
 
Artificial chromosomes are DNA molecules assembled in vitro from defined constituents, 

capable of accepting selected fragments DNA, and replicating the resulting hybrid when it is 

introduced into living cells. They also guarantee the stable maintenance of large DNA 

fragments with the properties of natural chromosomes, because they have a lower 

recombination frequency and susceptibility to DNA shearing forces (See Roosen G 2002 for 

review). 

 
In this project, the Bacterial Artificial Chromosomes (BACs) and P1 phage-derived Artificial 

Chromosomes (PACs) were used in FISH and array CGH slides. BACs are vectors based on 

the E. coli fertility plasmid (F factor), which is normally present at one to two copies per cell. 

This is essential for the stability of the cloned inserted. PACs are hybrids of P1 bacteriophage 

and BAC vectors. They are also of low copy number.  

 
2.3.1 Isolation of BAC clones 
 
A bacterial colony was inoculated to 8 ml 2X TY-medium pH 7.4 supplemented with 20 

ug/ml Chloramphenicol in a 15 ml snap-cap tube. The tube was incubated overnight shaking 
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at 300 rpm at 37°C (GFL Shaking Incubator 3031, GFL). The tube was centrifuged at 1076 x 

g for 10 min (Sorvall® RC 5C Plus SS-34 rotor). 

 

The supernatant was discharged, and the pellet resuspended in 0.3 P1 solution. The solution 

was transferred to an Eppendorf tube, and 0.3 ml P2 solution was added. The tube was gently 

mixed and was left at room temperature for 5 min. The appearance of the suspension changed 

from very turbid to almost translucent.  

 

Slowly, 0.3 ml P3 solution was added to the tube. A thick white precipitate of the protein and 

E. Coli DNA was formed. The tube was left on ice for 5 min, and then centrifuged at 9327 x g 

for 10 min (4°C, IEC Micromax RF). The supernatant was transferred to a new Eppendorf 

tube containing 0.8 mL ice-cold isopropanol, avoiding to take any white precipitated material.  

 

The tube was mixed by inversion a few times and again placed on ice for 5 min. The tube was 

centrifugated at 9327 x g for 15 min (4°C, IEC Micromax RF) The supernatant was removed 

and 0,5 ml 70% EtOH was added. The tube was inverted to wash the DNA pellet, and was 

centrifugated for 5 min (4°C, IEC Micromax RF) 

 

The supernatant was removed and the pellet was air-dried at room temperature until it turned 

from white to translucent. The pellet was resuspended overnight in 60 ul 1X TE. The 

concentration was measured by fluorescence (PicoGreen® dsDNA Quantitation Reagent, 

Molecular Probes) and the purity by gel electrophoresis.  

 
2.4 Fluorescence in Situ Hybridisation 
 
  
FISH is a protocol used to detect specific nucleic acid sequences directly on the chromosomes 

of a karyotype. This technique is based in sequence-specific annealing of denatured nucleic 

acid strands; fluorescently labelled probes and the target chromosomes are denatured making 

the DNA single stranded. Complementary sequences in the probe will reanneal, and stringent 

washes will remove non-specifically bound probe. After that, the fluorescent signal can be 

observed at the site of hybridisation in a fluorescent microscope. The method is described in 

figure 2.2 (See Gole 2001 for review). 
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Figure 2.2 Principles of Fluorescence in Situ Hybridisation. Fluorescently labelled probes and the 
target chromosomes are denatured making the DNA single stranded. Complementary sequences in the 
probe will reanneal and the fluorescent signal can be detected (Figure from Gole 2001). 
 

FISH has been used for many different purposes; one of them is the analysis of interphase 

cells for detection of numerical anomalies. A hybridisation control is usually done on 

metaphase cells: If the probes give a single signal at the expected chromosomal position, the 

interphase cells can be tested with the same hybridisation conditions, and will give specific 

signals according to how many copies there are in the cell nucleus (See KH A Choo 2001 for 

review). In cancer cytogenetics, amplification and deletion of genes can be visualized by 

FISH. A normal probe is seen as two signals in a nucleus. More signals means aneuploidy or 

amplification of the targeted region e.g an oncogene. 
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2.4.1 FISH Procedure 
 

Sample Slide Preparation 

 

Interphase slides from the samples LMS1,-5x,-10 and -25 were prepared.  

 

The equipment (mortar and pestle) was pre-cooled in liquid N2. The tissue was placed in the 

mortar with liquid N2, and was grinded into powder. The powder (in N2) was transferred to a 

15 ml tube, leaving the cap open until most of the N2 had evaporated. The tube was immersed 

in N2 to maintain low temperature. 

 

A solution of 1:3 acid acetic/methanol solution was prepared and 20 ml were added to the 

tube, and mixed by inversion. The tube was centrifuged 10 min at 172 x g at room 

temperature (Sorvall® RC 5C Plus SS-34 rotor). The supernatant was removed, and the pellet 

was resuspended in 60% acid acetic. The amount depending on the pellet size.  

 

The solution was dripped (two drops) to pre-warmed glass slides (Superfrost Color, Menzel; 

50°C) and dried at the same temperature. The slides were stored at -20°C.  

 

Probe labelling 

 

Each clone (RP11-12H18,-471L13,-219A15 and 121A13) was prepared as follows, using a 

0.5-ml GeneAmp (Applied Biosystems) tube as follows:  

 

Component                   Amount 

1 μg BAC DNA          1 μg 

10x dNTP mix (0.2 mM each dCTP, dGTP, dTTP; 0.1 mM dATP; 0.1 mM biotin-14-dATP 
   500 mM Tris-HCl (pH 7.8); 50 mM MgCl2; 100 mM β-mercaptoethanol 
   100 μg/ml nuclease-free BSA, Invitrogen)     5 μl 

Enzyme mix (0.5 U/μl DNA Polymerase I; 0.007 U/μl DNase I; 50 mM Tris-HCl (pH 7.5) 
5 mM magnesium chloride; 0.1 mM phenylmethylsulfonyl fluoride; 50% (v/v) 
glycerol; 100 μg/ml nuclease-free BSA, Invitrogen)    3 μl 

Sterile water                      to 50 μl    
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The tube was placed in a PCR-machine (Programmable Thermal Controller, MJ Research) in 

a programme of 16°C for 90 min, 70°C for 10 min and finally at 0°C. The concentration of 

the sample should be 20 ng/ μl. 5 μl DNA product was separated in a 1% agarose gel (90 V 

Power PAC 300, Bio Rad) stained with ethidium bromide (10 mg/ml). A photo of the gel was 

taken by Gel Doc 1000 Bio Rad.  

 

Slide Preparation 

 

The slides were placed in 70% Ethanol for about one hour at 4°C and then air-dried. The 

metaphase slides were also put in a 1:3 acetic acid /methanol solution for about half hour and 

then air-dried. A solution of 0.4 mg/ml pepsin in 0.01 M HCl was prewarmed to 37°C, and 1 

ml was added to the slide. The slide was incubated for 10 min at 37°C in a humid atmosphere, 

and later washed three times in 1xPBS (Phosphate-buffer saline) for 5 min at RT.  

 

The slides were incubated for 10 min at RT in a 1% formaldehyde/1%PBS solution, washed 

for 5 min in 1XPBS, dehydrated in ethanol series; 70, 90, 96 and 100% ethanol about 1 min 

each and air-dried.  

 

Then, 100 μl DF (70% deionized formamide/2XSSC) was added to the slide and then covered 

with a cover slip. The slide was denatured at 70°C; metaphase: for 1.5 min and interphase for 

2 min and put in cold 70% ethanol. The slide was again dehydrated in ethanol series and air-

dried.  

 

Hybridisation 

 

Each probe (RP11-12H18, -471L13, -219A15 and 121A13) was prepared as follows, using a 

1.5 microcentrifuge tube: 

 

Component       Amount 

Labelled DNA probe     200-400 ng  
Cot-1 DNA (1 μg/μl; Invitrogen™)   10 μl 
3M NaAc pH 5.2     1/10x of the volume 
100% Ethanol (-20°C)    2.5x of the volume 
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The solution was placed at -80°C for 30-40 min, and then spun at 20986 x g for 30 min (4°C; 

IEC Micromax RF). The supernatant is discarded, letting the pellet air-dry for about 5 min. 

Later, 16 μl of MMI solution (Dextran sulphate, formamide, SSC) is added, and let stand for 

10 min. The solution was denatured 10 min at 80°C, then 3 min on ice/water and finally at 

37°C for about half an hour. 

 

The solution was added to the slide and covered with a cover slip. The cover slip was sealed 

with rubber cement, and was placed at 37°C in a humid atmosphere overnight.  

 

Detection 

 

The following morning, the rubber cement was removed, and the slide washed in a pre-

warmed 50% formamide/2XSSC solution for 5 min, 3 times; then 0.1XSSC for 5 min, 3 

times; and in the end, it was washed in TNT solution (Tris HCl, NaCl, Tween).  

 

In FISH, the probes bound to a target can be detected by two manners commonly used –

indirect or direct labelling. For indirect labelling, probes are labelled with modified 

nucleotides that contain a binding molecule with affinity for a protein receptor, whereas direct 

labelling uses the incorporation of nucleotides that contain directly a bound fluorophore. In 

this project, the ligand incorporated to the probes was biotin. The Cy3-Avidin/TNB antibody 

(Tris HCl, NaCl, blocking reagent) binds to the biotin conjugated nucleotides. DAPI (4.6-

diamino-2-phenylindole) was used for fluorescent counterstaining. 

 

Blocking solution (TNB, 100 μl) was added to the slide and covered with a cover slip. The 

slide incubated at RT for 30 min. A solution of 1:50 Cy3-Avidin/TNB antibody was made and 

centrifugated for 3 min at 15762 x g (4°C; IEC Micromax RF). Of this solution 100 μl were 

added to the slide and covered with a cover slip. The slide incubated 30 min at 37°C in a 

humid atmosphere. The slide was washed in TNT 3 times for 5 min, dehydrated with ethanol 

series and air-dried. Later, 19 μl Vectashield® (DAPI, Vector Laboratories) was added to the 

slide. The slide was stored at 4°C. 

 

Fluorescent signals were detected by a fluorescence microscope (Axioskop, Zeiss). The 

microscope has selective filters, for which different fluorochromes can be excited and 
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observed. The DAPI filter was used to localize the nucleus, while the DAPI/Cy3 filter was 

used to identify the probe signals in the nucleus (Cy3-Avidin antibody signals). 
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3. Results 
 
3.1 Array Comparative Genomic Hybridisation 
 
3.1.1 Hierarchical clustering of tumours 
  
Initially 19 tumour samples diagnosed as LMSs were analysed using array CGH. GenePix Pro 

6.0 was used to analyse the data (Axon Laboratories). GenePix files were later exported to M-

CGH (MATLAB), where data was filtered and normalised. Log2-transformed ratios were 

normalised using a global intensity algorithm and they were combined in a text file. The 

samples were later hierarchical clustered by J-Express.  

 

Two well-defined main clusters were identified by clustering. After pathological revision of 

samples, it was revealed that all samples within one of these main clusters were re-classified 

to GISTs. All the samples in the other main cluster were LMSs, including one sample 

previously classified as MFH (Now LMS28) added to the study (See figure 3.1) 

 

The LMS cluster was further divided into two subclusters. The only noteworthy difference 

between the subclusters was the anatomic location of the tumour. All LMSs of uterine origin 

clustered together, along with one LMS of retroperitoneal origin (Figure 3.1B). LMS1 and 

LMS25, primary and metastasis sample from the same patient, were the most closely related 

samples of the tumour panel.   
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Figure 3.1 Hierarchical clustering of 20 human sarcomas by J-Express. Gain and loss of DNA copy 
number is seen as red and green respectively. A Two sample groups (LMS and GIST) are easily 
visualized in this cluster. B Tumour location in all samples  
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3.1.2 Genetic Alterations in LMS 
 

CGH-Explorer was used for the statistical identification of gained and deleted region in all 

sarcoma samples. This program is used for visualization and statistical analysis of array CGH 

data. The algorithm, analysis of copy number errors (ACE) in CGH-Explorer was used for 

detecting copy number errors in the data set originated from GenePix and M-CGH. This 

algorithm also computes false discovery rates (FDR) of the data set. This means that the 

program calculates different rates of false significant values and shows how it could possibly 

affect the results. In this project, the FDR was restricted to 0.0000. 

 

Analysis by ACE showed many genetic alterations in the LMS samples. Identification of 

minimal recurrent regions of alteration was done by considering gain or losses only when 

present in at least four of the 13 LMS samples (30%). There were 30 minimal recurrent 

regions with both gains and/or losses. From the 30 regions, 19 showed losses in DNA copy 

number while 15 showed gain in copy number. The most frequent losses were observed in 

10q21.3 and 13q14.2-q14.3 whereas most frequent gains in region 17p13.1-p11.2. Results are 

summarized in Table 3.1. 

 

Table 3.1 Minimal recurrent regions altered in leiomyosarcomas (n=13) 

Cytoband Aberration Start clone End clone Size [Mb] Frequency 

1p36.32-p36.21 Loss RP1-37J18 RP4-636F13 7.9 5/13 
1q21.1-q23.2 Gain RP11-277L2 RP11-550P17 9.9 6/13 
1q23.2-q23.3 Gain RP11-517F10 RP11-404F10 0.5 5/13 
1q23.3-25.1 Gain RP11-572K18 RP5-1198E17 11.3 6/13 
2p25.1-p21 Loss RP11-83M8 RP11-27C22 35.9 8/13 
2p14-p13.1 Loss RP11-263L17 RP11-1P9 8.8 7/13 
2q24.1q31.2 Loss RP11-552E1 RP11-250N10 19.1 7/13 
2q37.1-q37.2 Loss RP11-52C8 RP11-556H17 9.4 7/13 
3p12.3-p12.1 Gain RP11-16M12 RP11-447J13 7.9 6/13 
4q31.3-qtel Loss RP11-259G7 CTC-963K6 36.2 5/13 
5p13.2-pcen Gain CTD-2291F22 RP11-269M20 14.7 6/13 
6p25.2-p22.3 Loss RP1-136B1 RP11-289M23 21.2 6/13 
6q14.1-q23.3 Loss RP11-173D14 RP11-95M15 58.6 4/13 
7p22.3-p13 Loss RP11-510K8 RP4-647J21 43.4 4/13 
7q31.33-qtel Loss RP5-902E20 CTB-3K23 35.0 4/13 
9q21.13-q31.3 Gain RP11-563H8 RP11-202G18 39.8 5/13 
10q21.3 Loss RP11-161L14 RP11-778O10 0.8 10/13 
11p15.5-p15.4 Loss RP11-295K3 RP11-438N5 2.4 5/13 
11q22.1-q24.1 Loss RP11-49M9 RP11-166D19 21.9 6/13 
13q14.2-q14.3 Loss RP11-305D15 RP11-40A8 2.7 10/13 
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14q12-q21.1 Gain RP11-30H9 RP11-138H18 9.1 6/13 
14q21.2-21.3 Gain RP11-565J15 RP11-58E21 3.6 6/13 
14q31.3-q32.2 Gain RP11-300J18 RP11-76E12 9.7 6/13 
15q11.2-q12 Gain RP11-289D12 RP11-446P9 3.5 5/13 
16q21.2-q22.1 Loss RP11-452G23 RP11-354N7 20.2 6/13 
17p13.2-p13.1 Loss RP11-243K12 RP11-186B7 1.4 7/13 
17p11.2 Gain/Amp RP11-524F11 RP1-162E17 1.9 7/13 
18q11.2-qtel Loss RP11-535A5 CTC-964M9 57.9 4/13 
21q21.1-q22.11 Loss RP1-152M24 RP1-245P17 18.4 5/13 
22q13.1-q13.33 Loss CTA-228A9 CTA-722E9 11.4 6/13 

 

Some alterations involved a whole chromosome arm; the whole q arm of chromosome 1 was 

gained in four of the samples and three minimal recurrent gained regions were identified, 

1q21.1-q23.2 (9.9 Mb) in 6 samples; 1q23.2-q23.3 (0.5 Mb) in 5 samples; and 1q23.3-1q25.1 

(11.3 Mb) in 6 samples. Gain was also common in the q arm of chromosome 14, involving the 

regions 14q12-q21.1 (9.1 Mb), 14q21.2-q21.3 (3.6), 14q31.3-q32.3 (9.7 Mb). Chromosome 

18 was also target for aberrations of the whole q arm; the region 18q11.2-qtel (57.9 Mb) was 

deleted within four samples out of 13.  

 

Chromosome 2 was also a frequent target for deletion. Alterations of at least one segment in 

this chromosome were seen in 10 of the samples; four minimal recurrent regions were found 

in the p arm as well as two regions in the q arm. Other regions targeted by deletions were 

4q31.3-qtel (36.2 Mb), 6q14.1-q23.3 (21.2 Mb), 7p22.3-p13 (43.3 Mb), 7q31.33-qtel (35.0 

Mb), 13q14.2-q14.3 (2.7 Mb), 16q21.2-q22.1 (20.2 Mb), 17p13.2-p13.1 (1.4 Mb), 18q11.2-

qtel (57.9 Mb), 21q21.1-q22.11 (18.4 Mb) and 22q13.1-q13.33 (11.4), all showing a 

frequency of at least four out of 13 samples. 

 

Although deletions were more common than gains in LMSs, some regions, in addition to 

those above, showed increased DNA copy number. The regions 3p12.3-p12.1 (7.9 Mb), 

5p13.2-pcen (14.7 Mb), 9q21.13-q31.3 (39.8 Mb), 12p11.22-p11.21 (2.3 Mb), 15q11.1-q12 

(3.5 Mb), 15q25.1-q26.3 (21.2 Mb) and 20q11.21-q13.33 (32.1 Mb) were gained in at least 

five out of 13 samples. A frequency plot of gains and losses for LMSs is shown in Figure 3.2, 

as well as a representative copy number profile for this type of tumours (LMS23). 
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A 

B 

Figure 3.2 CGH Explorer plots showing A ACE plot of gains (red) and losses (green) from 
chromosome 1 to 22 of all LMS samples. The plot shows the frequency of gained and lost clones from 
the array CGH data  B Copy number (Log2 ratio) profile for LMS23 from chromosome 1 to 22. 
 

Chromosome 17 showed regions with loss, but also high levels of amplification. The region 

17p13.2-p13.1 showed in many LMS samples (7/13) loss of DNA copy number, although the 

region 17p13.1-p11.2 showed most frequent gains in the sample panel (7/13). The minimal 

recurrent region of gain was limited to 1.9 Mb in 17p11.2, where three samples showed high-

level amplification (See fig. 3.3) 
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The region 17p13.1-p11.2 covered 12.7 Mb, and was represented by 23 BACs and PACs, 

starting with RP11-404G1 and ending with RP11-121A13. In order to narrow down the list of 

candidate target genes for this amplification, the array CGH results were compared to the 

expression levels in six of the LMSs analysed, and one additional sample (LMS29) (Data not 

shown. Francis, Namløs, Myklebost, Nilbert et al., unpublished). According to Ensembl, 172 

genes are located within the amplified region. 

 

 
Figure 3.3 shows the copy number profile along chromosome 17 for the seven LMS samples. The 
region 17p13.1-p11.2 is selected within the square and showed increased copy number. The region 
17p13.3-p13.1 showed loss of copy number, also visualized in this figure.  
 

Nine genes located within the amplified region showed increased expression (log2 ratio >1) 

relative to the soft tissue sarcoma median in two or more of the seven LMSs analysed. The 

expression level of these genes is shown in Figure 3.4. Microfibrillar-associated protein 4 

(MFAP4) was over-expressed in four LMSs, whereas aurora kinase B (AURKB) and sterol 

regulatory element binding transcription factor 1 (SREBF1) were over-expressed in three 

LMSs. Aldehyde dehydrogenase 3 family member A2 (ALDH3A2), mitogen-activated protein 

kinase 7 (MAPK7) and serine hydroxymethyltransferase 1 (soluble) (SHMT1) were all over-

expressed in two LMSs. In addition, three genes with no known function showed increased 

expression; FLJ10847 in three LMSs and LOC201158 and LOC220594 in two LMSs.  
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SREBF1 showed the highest level of expression, being more than 16-fold higher expressed in 

LMS1 and -3 compared to the soft-tissue sarcoma median. Six of the genes; SREBF1, 

SHMT1, LOC220594, MAPK7, MFAP4 and FLJ10847 are located within the minimal 

recurrent region of amplification in 17p11.2 identified after ACE analysis. 

  

Figure 3.4 Levels of gene expression for seven LMS samples (Francis, Namløs, Myklebost, Nilbert et 
al., unpublished)  
 

Analysis of one primary tumour and its metastasis 

 

After pathological revision (See table 1.3) it was revealed that LMS25 was a metastasis of a 

primary retroperitoneal tumour LMS1, meaning the two samples came from the same patient. 

The samples clustered together in J-Express (See figure 3.1A) and when compared by CGH-

Explorer, they showed very similar copy number profiles except for a few regions. (See figure 

3.5) 
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Figure 3.5 CGH Explorer log2 ratio plots showing A All autosomes for a primary tumour (LMS1) and 
its metastasis (LMS25) visualized in red and blue respectively. Also detailed plots of some of the 
altered chromosomes differentiating LMS1 and LMS25 B In Chromosome 1, LMS25 presented loss of 
large parts of the p arm C In Chromosome 4 a region of 63.77 Mb is loss in LMS25 D Regions of 
chromosome 10 were also lost in the same sample.    
 

The ACE algorithm was used to identify regions differing from LMS1 and LMS25. Loss of 

DNA was seen in the p arm of chromosome 1. The regions 4q28.1-qtel (63.77 Mb); 10q21.2-

21.3 (17.56 Mb); 11p15.5-p12 (42.49 Mb); and 17q12-qtel (50.09 Mb) were deleted in 

LMS25 although these regions were not altered in LMS1. 13q12.11-q13.3 (19.47 Mb) was 

gained in LMS1 but normal in LMS25.   

 

In chromosome 16 and 19, both gains and losses of DNA were identified. The regions 

16p13.11-p11.2 (16.66 Mb) and 19p13.3-p12 (23.55 Mb) were gained in LMS25, while the 

regions 16q22.2-qtel (17.88 Mb) and 19q12-q13.43 (30.88 Mb) were deleted in the same 
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sample. These results are summarized in Table 3.2. Note that the regions listed are those 

differentiating LMS1 from LMS25 but the type of aberration is listed in relation to LMS25. 

 

Table 3.2 Aberrations differentiating LMS25 from LMS1 from CGH-Explorer (ACE threshold) 

Cytoband Aberration Size [Mb] Start clone End clone 

1ptel-pcen Loss 139.57 Mb RP4-785P20 RP3-365I19 
4q28.1-qtel Loss 63.77 Mb RP11-282B13 CTC-963K6 
6p21.32-p21.1 Gain 13.37 Mb RP5-1077I5 RP11-546O15 
9p24.3-p21.3 Gain 21.82 Mb GS1-77L23 RP11-149I2 
10q21.2-21.3 Loss 17.56 Mb RP11-532F4 RP11-314J18 
11p15.5-p12 Loss 42.49 Mb RP11-496I9 RP11-108L12 
13q12.11-q13.3 Loss 19.47 Mb RP11-76K19 RP11-131F1 
16p13.11-p11.2 Gain 16.66 Mb RP11-82O18 RP11-388M20 
16q22.2-qtel Loss 17.88 Mb RP11-70E3 RP4-597G12 
17q12-qtel Loss 50.09 Mb RP1-29G21 RP11-567O16 
19p13.3-p12 Gain 23.55 Mb CTD-3113P16 RP11-359H18 
19q12-q13.43 Loss 30.88 Mb CTC-459F4 GS1-1129C9 

 
 
3.1.3 Genetic Alterations in GIST 
 

The most frequent aberration observed was loss of the whole or parts of chromosome 22, seen 

in all tumours with a minimal recurrent region in 22q12.2-q13.31 (17.8 Mb). Minimal 

recurrent regions are summarized in Table 3.3.  

 
Table 3.3. Minimal recurrent regions altered in gastrointestinal stromal tumours (n=7) 

Cytoband Aberration Start clone End clone Size [Mb] Frequency 

1p36.32-p13.1 Loss RP4-785P20 RP11-27K13 114.1 4/7 
4ptel-q13.2 Gain CTC-36P21 RP11-211G17 67.2 3/7 
5p15.33-q35.3 Gain CTD-2265D9 RP11-451H23 177.5 3/7 
8p23.3-pcen Gain RP11-338B22 CTD-2115H11 43.0 4/7 
9p21.3 Loss RP11-149I2 RP11-468C2 3.2 3/7 
9q13-q34.2 Loss RP11-274B18 RP11-153P4 65.3 3/7 
13q12.11-q33.2 Loss RP11-76K19 RP11-406G20 86.5 4/7 
14q11.2-q32.33 Loss RP11-84C10 RP11-417P24 85.1 5/7 
15q13.2-qtel Loss RP11-38E12 CTB-154P1 71.8 4/7 
17q22-qtel Gain RP11-429O1 GS1-50C4 30.0 3/7 
18qcen-qtel Gain RP11-296E23 CTC-964M9 58.8 3/7 
20q12-q13.12 Gain RP4-600E6 RP1-138B7 4.1 3/7 
22q12.2-q13.31 Loss RP1-76B20 LL22NC03-75H12 17.8 7/7 

 

Most frequent gains were seen in 8p23.3-pcen (43 Mb) in four out of seven samples. Other 

alterations were gains in 4ptel-q13.2 (67.2 Mb), 5p15.33-q35.3 (177.5 Mb), 17q22-qtel (30.0 
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Mb), 18q (58.8 Mb) and 20q12-q13.12 (4.1 Mb), all observed in three out of seven samples, 

the lower frequency limit selected for this analysis. 

 

Another frequent alteration was loss of chromosome 14, where one copy of the entire 

chromosome was lost in five out of seven samples. In addition, three chromosomal regions 

were lost in four out of seven samples; 1p36.32-p13.1 (114.1 Mb); 13q12.11-q33.2 (86.5 

Mb); and 15q13.2-qtel (71.8 Mb), whereas 9q13-q34.2 (65.3 Mb) was lost in three out of 

seven tumours. A frequency plot of gains and losses for GISTs is shown in Figure 3.6, as well 

as a representative copy number profile for this type of tumours (GIST1).    

 
Figure 3.6 CGH Explorer plots showing A ACE plot of gains (red) and losses (green) from 
chromosome 1 to 22 of all GIST samples. The plot shows the frequency of gained and lost clones from 
the array CGH data B Copy number (Log2 ratio) profile for GIST1 from chromosome 1 to 22. 
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3.1.4 Copy number changes distinguishing GISTs from LMSs  

 

Significance Analysis of Microarrays (SAM) was applied to determine regions of the genome 

that can differentiate LMSs and GISTs by means of DNA copy number changes. SAM uses a 

modified t-test to find significantly differing genes, or genomic clones between two 

microarray datasets. This analysis led to 178 genomic clones that are significantly 

differentially altered between LMSs and GISTs. The 178 clones identified, almost 

exclusively, four chromosomal regions; in 1p, 9q, 14q and 22q. 

 

Between 1p36.11 and p13.1, over 60 % of the genomic clones (58/95) were identified as lost. 

SAM also selected 29 of 91 clones (32 %) between 9q21.11 and 9q34.3, both regions 

significantly lost in GISTs compared to LMSs. A large proportion of the clones representing 

the chromosomal segments 14q11.2-q32.33 and 22q11.32-q13.31 were lost in GIST, 47/91 

(52 %) and 40/43 (93 %) clones, respectively. SAM showed that these segments were lost in 

GIST compared to LMS. Figure 3.7 shows the genomic areas that are significantly different in 

copy number between GISTs and LMSs.  

 

 
Figure 3.7 In red, genomic areas differing significantly in copy number between GISTs and LMSs.  
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3.2 Fluorescence in Situ Hybridisation 
  
From the array-CGH results, the region 17p13.1-p11.2 (12.7 Mb) showed the highest level of 

amplification in the LMS samples. 23 BACs and PACs, starting with RP11-404G1 and 

ending with RP11-121A13, represented the region. To confirm these results, four clones 

within the 23 were used as probes in FISH experiments: RP11-12H18, RP11-471L13, RP11-

219A15 and RP11-121A13.  

 

Probes from 17q11.2 (centromeric) and 17q25.3 (telomeric) regions, were also tested. These 

probes, located within normal regions of chromosome 17q (based on array CGH analysis), 

could give information on ploidy of 17.  

 

The four BACs were first hybridised to metaphase slides to assay the specificity of the clones 

to the chromosome 17. Figure 3.8 (B&C) shows photo of metaphase chromosomes hybridised 

with RP11-121A13 and RP11-471L13; the remaining clones showed equal specificity and 

similar signals (data not shown).  

 

Three LMS samples, LMS1, LMS10 and LMS25 were tested with the four clones. The clones 

were hybridised to interphase nuclei from the LMS samples. From the array CGH data, LMS1 

and LMS25 showed DNA amplification in 17p13.1-p11.2, while LMS10 had normal copy 

numbers in that region. 

 

Hybridisation to normal cells would usually give two signals, one from each chromosome. In 

case of amplification, more signals can be seen, and the number reflects the level of 

amplification in the sample. 10 or more signals show high-level amplification, while three to 

nine are scored as moderate amplification. Figure 3.8 (D&E) shows photos of interphase 

nuclei hybridised with one of the clones.  
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Figure 3.8 FISH experiments. A Overview of the chromosome 17 and the gained region 17p13.1-
p11.2. The four arrows are pointing the clones tested, from left to right: RP11-12H18, RP11-
471L13, RP11-219A15 and RP11-121A13. Specificity of the four clones to the chromosome 17 
were also tested (only two are shown here) B RP11-121A13 C RP11-471L13. Photos of RP11-
121A13 hybridisation to LMS25 are shown in D & E. D Photo shows high-level amplification in this 
nucleus (>10 signals are counted). E Normal cell   
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Figure 3.9 Percentage of amplification of four clones tested in LMS1, -10 and –25. 2 signals represent 
normal DNA copy number, 3-9 a moderate amplification while 10 or more represent high level 
amplification   
 

The signals were counted and summarised as shown in Figure 3.9. Most cells show normal or 

moderate amplification, although normal stroma cells (tumour heterogeneity) contribute to 

this percentage. The sample showing highest amplification is LMS25; with three of four 

clones showing at least 20% high amplification, especially the clone RP11-12H18 with more 

than 60%. 

 

LMS10 was expected to show a normal profile, but moderate amplification was seen in all 

four clones and high amplification in three of them, although the fraction was low compared 

to LMS25.  

 

In LMS1, RP11-471L13 was the most amplified clone with over 40% followed by RP11-

121A13. Data for RP11-219A15 and probes in centromeric and telomeric regions of 17q, is 

missing because of technical problems. These probes were set up many times but still did not 

show good results.  
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4. Discussion 
 
In order to identify genes associated with human diseases, a combination of disciplines is 

needed; genome mapping, sequencing and computational tools, as well as refined molecular 

techniques. Cancer is to a large extent caused by epigenetic and structural chromosomal 

aberrations, inheritable at the cellular level. In sarcomas, chromosome aberrations have been 

analysed by different methods, among them chromosome banding, FISH, multicolour FISH 

(M-FISH), spectral karyotyping (SKY) and conventional CGH. 

 

The initial aim of this project was to discover novel cancer related genes by identifying 

recurrent DNA copy number changes in a panel of 20 human sarcoma samples (LMS and 

GIST). Tumour samples were analysed for DNA copy number changes using array CGH. 

Chromosomal regions showing gains or losses in at least 30% of the tumours were considered 

as recurrent regions of alteration. We detected an amplicon in 17p13.1-p11.2 and used FISH 

to validate our findings.  

 
4.1 Microarray analyses of DNA copy number variation 
 

Array CGH makes it possible to measure DNA copy number at high resolution and 

sensitivity. Using BAC and PAC clones with known chromosomal location spotted on a glass 

slide, it was possible to localise in which regions of the genome the aberrations took place and 

whether a gain or a deletion of chromosomal material was present. Furthermore, the BACs 

and PACs used in this study were all from the genome project, and their sequence was 

precisely defined. Upon mapping, it was thus easy to identify which genes were included in 

the detected amplicons.  

 

Except for validation purposes, array CGH is much more efficient than clone-by-clone testing 

of copy numbers by southern blotting or FISH experiments, often time requiring because of 

the need to select and optimize which probes to use, the technical difficulties of the 

procedures and the laborious manual scoring. Array CGH decreases substantially the labour 

involved as the whole genome can be analysed in a single experiment. The implementation of 

whole-genome amplification protocols is also bringing array CGH closer to clinical use, 

enabling the analysis of small numbers of cells such as those obtained from thin-needle 

biopsies. Another advantage of this method is its rapidity and amenity to automation, as it can 
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be performed on any sample from which genomic DNA can be extracted, and thus, does not 

require cell culture (Salman et al. 2004). 

 

Although array CGH has been used mostly in cancer research, its application in the study of 

many other diseases is increasing exponentially. Compared to traditional cytogenetic 

techniques, array CGH offers higher resolution opening the possibility to discover aberrations 

or other submicroscopic aneuploidies. Such results would otherwise be missed by 

chromosomal banding or by FISH analysis with a limited set of probes.  

 
Although this technology is sensitive, fast and specific, it also has its limitations. Array CGH 

is impaired to identify balanced chromosomal abnormalities, such as balanced translocations, 

inversions and intragenic rearrangements. Ploidy changes are also not detected, and array 

CGH cannot distinguish cytogenetic variation in mixed populations of cells. To detect the 

mosaicism of a sample, the use of FISH is recommended; as the analysis is done at the single 

cell level and a large number of nuclei can be screened. 

 

Resolution of the array will be given by the genomic distance between probes. The slides used 

in this study cover the whole genome at a resolution of 1 Mb, meaning that there are probes 

distanced approximately every 1 Mb. This has the probability of missing small genetic 

alterations that fall between two probes. Currently, tiling-path arrays using 32800 BAC 

probes has decreased the resolution to less than 80 Kbp. In order to improve the resolution 

further, different types of probes can be used; fosmids, PCR products or oligonucleotides. 

These new generations of arrays offer the possibility of detecting very small alterations  down 

to 100 bp  (Davies et al. 2005).  

 

It is also important to take into account copy number polymorphisms (CNPs), a novel type of 

genetic diversity between individuals. Although the identification of genome-wide large-scale 

CNPs is virtually untouched, several studies have ascertained their importance in health and 

disease. Lin et. al., identified a region (276 bp) of chromosome 22q13 that was deleted not 

only in 47% of ovarian cancer cell lines but also in 18% of constitutional DNA samples from 

healthy individuals (Lin et al. 2000). Another study reported a homozygous deletion (102 bp) 

on chromosome 8p12-21 in biliary and pancreatic tumours (Ryu et al. 2001). Both studies 

concluded that the identified regions might represent normal human genetic variation rather 

than cancer-associated aberrations (Buckley et al. 2005). Therefore in order to correctly 

 44



interpret genomic data, it is important to distinguish abnormal lesions from normal CNPs 

(Sebat et al. 2004). However, one can overcome this problem using normal DNA from the 

same patient as reference, when available. However, this is more demanding than using 

standard DNA pools, as was done here because the experimental variation will increase. 

 

The analysis of the array CGH data requires software capable to filter and normalise 

according to statistical criteria. These types of data transformation must be carefully applied, 

because they can have a profound effect on the results. The purpose of filtering is to exclude 

poor-quality spots. Quality scores are generated when spots are recognised (gridding), 

segmented, and their intensity extracted. Softwares like GenePix automatically flags spots of 

poor quality, but it is often necessary to adjust the gridding and/or manually flag spots. Low 

signal intensity spots also contribute to data noise. In order to eliminate weak signals spots 

with intensities lower than the background in both channels and net signal intensities below 

local background plus twice the standard deviation of the background were excluded.  

 

Normalisation of the microarray data is also important as it removes systematic errors by 

balancing the fluorescence intensities of the two labelling dyes. Differences in quantity of 

starting DNA, dye-labelling efficiencies and heat and light sensitivities are among the reasons 

why data must be normalised (Quackenbush 2002). Some methods for calculating 

normalization factor include median global normalisation, global intensity depended (also 

known as global locally weighted scatterplot smoothing, LOWESS) and print-tip LOWESS.  

 

In spite of careful normalisation, log2-ratio values can have a systematic dependence on 

intensity; this can be seen as deviation from zero for low-intensities. Global intensity 

depended algorithm (LOWESS) (Cleveland et al. 1976) was favoured in this study because it 

can remove those intensity-dependent effects in the log2-ratio values, and it could be applied 

on the entire data set (Quackenbush 2002). This type of normalisation applies to slides with 

fluorescent images that do not suffer from spatial effects. When there are significant 

differences affecting regions of the slide separately, suggesting a geographical effect, print-tip 

LOWESS should be considered (Leung and Cavalieri 2003).     

 

Missing values can also affect the analysis of microarray data. This can occur for diverse 

reasons such as scratches or dust over the array feature, or low intensity. The latter problem 

may be more serious, as certain probes may give poorer signal due to low DNA amount or 
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less efficient representation by the degenerate PCR primers used to amplify it. Thus the data 

used for imputation in those cases is less reliable, and may affect a larger part of the data set. 

Before methods for replacement of missing values were developed, missing log2-transformed 

data was often replaced by zeros, however analysis methods such as clustering and self-

organising maps required more accurately estimation of missing values (Troyanskaya et al. 

2001).  

 

Common methods for missing value imputation include filling in least squares estimates, 

iterative analysis of variance methods, randomised inference methods and likehood-based 

approaches. In this work, missing values were permuted by K Nearest Neighbours algorithm 

(KNN). The KNN-method selects the clones with values similar to the clone of interest to 

impute missing values. This is done comparing both the values of the same clone in the 

neighbouring samples and the neighbouring values of the clones in the same sample. This 

method is very accurate, showing only 6-26% average deviation from the true values 

depending on the type of data and fraction of values missing (Troyanskaya et al. 2001).  

 

It is important to mention that different statistical methods may produce different (but usually 

overlapping) sets of significantly gained or deleted regions. Therefore, it is important to 

choose the right transformation method according to the sample and different criteria to study 

(Quackenbush 2002).  

 

Although the results from array CGH data can be difficult to interpret, it is possible to 

compare and validate them with other techniques. In this project, array CGH results from 

some of the samples were integrated with gene-expression data. Finding that a gene is over-

expressed when its copy number is elevated supports its functional role in cancer.  

 

Identification of deleted regions and genes related to them can be complex. In some cases, a 

decrease in expression caused by deletion of a single copy of a gene contributes to tumour 

development. In the case of tumour suppressor genes, function is lacking because of deletion 

of all copies of a gene or deletion of one copy and mutation or epigenetic alterations of the 

other, or alteration of one copy and replacement of the other by a duplicate of the altered copy 

(Pinkel and Albertson 2005). There is also the case that, only a single working copy of a gene 

is present (with the other copy inactivated by hereditary mutation or another mechanism), and 
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this single functional copy of the gene does not produce enough of gene product leading to an 

abnormal or disease state (Griffith 2005).  

 

4.1.1 Array CGH as a classification tool 
 
Initially 19 tumour samples diagnosed as LMSs were analysed using array CGH. The data 

resulting from this analysis was filtered and normalised. The samples were clustered using J-

Express.  

 

In this study, hierarchical clustering was used to determine if copy number changes could be 

used to classify samples based on their phenotypic, or clinical characteristics. In this 

approach, standard statistical algorithms are used to arrange the tumour samples according to 

their similarity. The output is displayed graphically, grouping the samples according to 

patterns of gain or loss in DNA copy number. This approach was preferred because it is an 

unsupervised method, meaning it does not take into account sample classification therefore 

prior knowledge about the sample is not needed (Eisen et al. 1998; Quackenbush 2002). It is 

important to mention that only the tumour samples were clustered, thus keeping genomic 

clones in chromosomal order to maintain the positional relation. 

 

A disadvantage of hierarchical clustering is that each sample or clone can only be placed in 

one relation, whereas clearly there may be relations in several directions. Other algorithms, 

such as self-organising maps and K means clustering, can be used to predefine the number of 

groups (Nilbert et al. 2004)  

 

Supervised methods depend on prior knowledge about samples in order to search for 

correlations with disease state. Also there has to be sufficient numbers of samples with known 

classification in a training set to calibrate the method and in this study, the set of samples is 

small making the unsupervised method a better alternative to cluster the data set (Ringner et 

al. 2002).  

 

By using hierarchical clustering, two well-defined main clusters were identified. Histological 

revision of the samples using current pathological criteria showed that seven of the initial 19 

LMS samples would today be scored as GIST, confirming that the two clusters separated 

LMS and GIST. Histopathology, immunohistochemical staining (particulary CD117) and 
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other clinical parameters has recently helped to differentiate these tumours. Therefore, in this 

study, array CGH had the power to differentiate the two different groups based on DNA copy 

number changes. This work shows that changes in DNA copy number reflect the underlying 

biology for these tumours, and that this information can be used for their classification.  

 
4.1.2 Gene alterations in LMS  
   

Analysis by ACE showed many genetic alterations in the LMS samples. Identification of 

minimal recurrent regions of alteration was done by considering gain or losses in at least four 

of the 13 LMS samples (>30%). 

 

In LMSs, 19 recurrent regions of loss and 11 of gain were identified. The most frequent 

aberrations observed were loss in 10q and 13q, in 10 out of 13 samples. This has been 

reported in several studies as the most common genomic alterations for LMS (El-Rifai et al. 

1998; Otano-Joos et al. 1998; Derre et al. 2001; Hu et al. 2001; Wang et al. 2003). The 

minimal recurrent region of loss in 10q21.3 contains only one gene reported in the literature; 

CTNNA3 (alpha-T-catenin) is involved in the organization of the actin cytoskeleton and in cell 

adhesion. Functional assays in alpha-catenin-deficient carcinoma cells (e.g. prostate and colon 

cancer) showed restoration of cadherin-mediated cell–cell adhesion. That indicates that 

CTNNA3 is necessary for the formation of stretch-resistant cell–cell adhesion complexes 

(Ewing et al. 1995; Janssens et al. 2001 and more). Several studies show that aberrations in 

the catenin/cadherin pathway is close related to tumour aggressiveness and metastasis 

(Clairotte et al. 2006; Robles-Frias et al. 2006 and more)    

 

Deletion of the 13q14-34 region was found at least in five of 13 LMS samples. This region 

includes the RB1 and DBM gene loci. Alteration of the RB1 tumour suppressor gene has 

frequently been seen in a number of cancers, including leiomyosarcoma and other sarcomas 

(Stratton et al. 1989). Another locus contained in the same region of chromosome 13 has been 

suggested to contain genes acting as tumour suppressor genes. This locus is composed by the 

genes KCNRG, FAM10A4 and DLEU7, involved in B-cell chronic lymphocytic leukemia and 

prostate cancer development (Sossey-Alaoui et al. 2002; Ivanov et al. 2003; van Everdink et 

al. 2003; Hammarsund et al. 2004).  

 

 48



Loss of DNA copy number of 2p and 10q, as well as gain in 1q and 17p has been frequently 

detected in high-grade tumours, while loss of 13q is an early event in development. All these 

regions may be associated with more aggressive behaviour and shorter survival time (El-Rifai 

et al. 1998; Wang et al. 2003; Hu et al. 2005). The region 1q21.1-q23.3 is frequently 

amplified in sarcomas and other types of cancer as osteosarcoma, breast and ovarian cancer 

among others (Forus et al. 2001). The APOA2 and PPIAL4 genes are known target of this 

region (Meza-Zepeda 2003; Kresse et al. 2005).  

 

The region 17p13.1-p11.2 was gained in at least seven out of 13 samples with four samples 

showing high levels of amplification (log2 ratio >1). 17p has been reported in the literature as 

a common region for high amplification in LMS (El-Rifai et al. 1998; Levy et al. 2000; 

Otano-Joos et al. 2000 and more) and is also frequently amplified in osteosarcomas and 

retinoblastoma (Forus et al. 1995; Tarkkanen et al. 1995; Atiye et al. 2005 and more).  

 

The minimal recurrent region in 17p13.1-p11.2 of approximately 1.9 Mb contained many 

genes that are usually co-amplified. This makes it difficult to narrow down the search for the 

possible “target genes”, assumed to “drive” the amplification. One way to address this 

problem is to analyse many samples, looking for a minimal common amplicon. Another way 

is to look for expression levels, as an amplified gene should be consistently over-expressed in 

amplified samples. Both of these methods usually lead to more than one candidate gene in 

each amplicon.  

 

Gene expression for 70 of the 172 genes contained in the region 17p13.1-p11.2 has been 

analysed using cDNA microarrays in a parallel study by Francis, et al., (unpublished). 

Expression data from seven samples were used to narrow down the list of candidate genes, 

unfortunately only three of the samples (LMS1, -12 and –23) analysed by array CGH, had 

increased copy number of the region. Over-expression was also seen in samples that were not 

amplified (LMS3 and -10). Those genes are probably over-expressed by other mechanisms 

than amplification. Nine genes located within the amplified region showed increased 

expression (log2 ratio >1) relative to the soft tissue sarcoma median in two or more of the 

seven LMSs analysed.  

 

The MFAP4 gene was over-expressed in four LMSs; MFAP4 could be involved in calcium-

dependent cell adhesion or intercellular, and is commonly deleted in Smith-Magenis 
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syndrome and might have a role in neuroblastoma development (Zhao et al. 1995; Hienonen 

et al. 2005).  
 
AURKB was over-expressed in three LMSs; this gene is involved in regulation of the cleavage 

of polar spindle microtubules and is a key regulator for the onset of cytokinesis during mitosis 

(Kimura et al. 1998), consequently it has been related to lung, pancreatic, thyroid and prostate 

cancer development (Kokkinakis et al. 2005; Nikiforov 2005; Smith et al. 2005; Chieffi et al. 

2006). 

 

SREBF1 was over-expressed in three LMSs. The gene SREBF1 regulates the transcription of 

genes for sterol biosynthesis and the LDL receptor gene (Yokoyama et al. 1993) and has been 

shown to be up-regulated in prostate cancer during progression to androgen independence 

(Ettinger et al. 2004), as well as transcriptional regulation of fatty acid synthesis in colorectal 

cancer (Otano-Joos et al. 2000)  

 

ALDH3A2 was over-expressed in two of the samples. Aldehyde dehydrogenase isozymes are 

thought to play a major role in the detoxification of aldehydes generated by alcohol 

metabolism and lipid peroxidation. This gene product catalyzes the oxidation of long-chain 

aliphatic aldehydes to fatty acid. Mutations in the gene cause Sjogren-Larsson syndrome (De 

Laurenzi V 1996). 

 

MAPK7 is involved in the transcriptional activation of factors modulating expression of genes 

required for cell proliferation and survival (Zhou et al. 1995). Together with SHMT1, a gene 

coding for a folate-metabolizing enzyme which catalyses the reversible conversion of serine 

into glycine (Garrow et al. 1993) were found over-expressed in two of the LMS samples. 

MAPK7 is a member of the MAP kinase subfamily of the serine/threonine protein kinase 

family and has been related to many malignancies including sarcoma. SHMT1 has been 

associated to adult acute lymphocytic leukaemia and malignant lymphoma (Skibola et al. 

2002; Hishida et al. 2003). 

 

Based on the functions of some these genes, it is possible to related them to LMS biology. 

Some of genes can control cell proliferation, something that can be linked to tumour 

development and metastasis. AURKB, key regulator of cytokinesis during mitosis can affect 
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both proliferation and the amount of chromosomal DNA in the cells; its disruption could lead 

to aneuploidy or other aberrations in LMS. 

 

High level amplification of 17p11~12 has also been reported in previous studies of 

osteosarcomas (Forus et al. 2001; Atiye et al. 2005 and more) suggesting that multiple 

amplicons in the 17p region are involved in the development of sarcomas. It is also important 

to account that other target genes not identified within this study could be responsible for 

alterations in this region.  

 

Two interesting samples: LMS1 and LMS25 

 

In this study, array CGH was also used to compare a primary tumour, LMS1 to its metastasis, 

LMS25. The patient, from whom this sample was taken from, suffered multiple recurrences 

and metastasis during a period of about 20 years. It is interesting to see how the DNA copy 

number profiles of the two samples were very similar, supporting that the two tumours were 

clonally related, although they differ in some regions of the genome.   

 

Two important aberrations differing between LMS25 and LMS1 were loss of large parts of 

chromosome 10 and 13q12.11-q13.3. Although in this study, 10p was also altered, loss of 10q 

has been proposed as a potential marker for clinical diagnosis and prognosis in early studies 

because of its association with metastases and large tumours, meaning aggressive behaviour 

of LMS. That is also the case of regions in the q arm of the chromosome 13 (Hu et al. 2001; 

Hu et al. 2005). Other aberrations differentiating the two samples were losses in the p arm of 

chromosome 1, 4q28.1-qtel, 11p15.5-p12, 16q22.2-tel, 17q12-qtel and 19q12-q13.43 and 

gains in 6p21.32-p21.1, 9p24.3-p21.3, 16p13.11-p11.2 and 19p13.3-p12.  

 

Loss of tumour suppressor genes in deleted regions may be responsible for activation or 

inactivation of other oncogenes. The restoration or loss of chromosome regions in metastases 

can be explained by clonal evolution in tumour development. The metastasis will have 

selective advantages over their primary tumour with each carcinogenic mutation. Genetic 

modifications will then evolve extensively in the tumour cells, in parallel to tumour 

progression, meaning higher number aberrations will accumulate over time (late-stage 

tumours will have greater alterations than their precursors). Although it is important to 

consider that the changes on the magnitude of the aberrations could indicate different tumour 
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heterogeneities in the two samples. This means different populations of cancer/normal cells 

could be enriched in one tumour compared to the other. 

 
4.1.3 Genetic Alterations in GIST 
 

Loss of DNA was more frequent in GISTs, seven recurrent regions of loss were determined 

compared to six regions of gain. Some of the results of the copy number analysis can be 

compared to the literature. That is the case for the lost regions in 14q11.2-q32.33 and 

22q12.2-q13.31. Previous studies, shown that loss of chromosome 14q and 22q are common, 

followed by the loss of regions in 1p, 9p and 15q (el-Rifai et al. 1996; Debiec-Rychter et al. 

2001; Heinrich et al. 2003 and more). Deletion of 14q is often seen in benign GISTs 

indicating that this change is an early event in GIST tumorigenesis, also deletion in 15q was 

postulated as a genetic marker distinguishing high-risk GISTs from low-risk GISTs in the 

same study (Heinrich et al. 2003). Loss of 9p in GISTs has been associated with aggressive 

behaviour and correlation with loss of p16Ink4a tumour supressor gene, frequently loss in 

many types of cancer. (Schneider-Stock et al. 2003; Ricci et al. 2004; Sabah et al. 2004)  

 
Gain of 5p and 20q was observed in three out of seven tumours. This as well as gain in 17q 

and loss of 13q has been associated with aggressive and metastatic GISTs (El-Rifai et al. 

2000; Debiec-Rychter et al. 2001). Recurrent gain of 17q and loss of 13q were observed in 

three and four out of seven samples respectively. In general, increased number of genetic 

changes correlates often with aggressive and malignant behaviour in GISTs. 

 

4.1.4 Patterns Distinguishing GIST from LMS   
 

As shown above, hierarchical clustering of array CGH data can be used to differentiate two 

histologically similar sarcoma groups. In order to identify the specific regions that differ in 

copy number between GISTs and LMSs significance Analysis of Microarrays (SAM) was 

applied. The analysis identified 178 genomic clones that were significantly differently altered 

between LMSs and GISTs. The 178 clones group almost exclusively into four chromosomal 

regions; in 1p36.11-p13.1, 9q21.11-9q34.3, 14q11.2-q32.33 and 22q11.32-q13-31 All these 

regions were preferentially but not exclusively lost in GISTs compared to LMSs. 

 

Most common regions differencing GISTs from LMSs from the literature include regions in 

chromosome 1, 14, 15 and 22 (El-Rifai et al. 1998; Knuutila et al. 1998; Sarlomo-Rikala et al. 
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1998). These regions could be potential markers for differential clinical diagnosis. This 

distinction is important because GIST show a poor response to chemotherapy and 

radiotherapy, often used in LMS treatment but have positive response to imatinib mesylate a 

new designer drug for kinases (Tornillo et al. 2005). 

 
4.2 Validation of Array CGH analyses by FISH 
 

FISH is a powerful technique, capable of detecting a specific DNA target (in this case, the 

nuclei of interphase cells or normal metaphase chromosomes) in fixed normal or tumour 

samples. Genetic alterations can be detected at single-cell level making it possible to discern 

cells with normal copy number and cells with gains or losses of DNA. Searching for 

candidate genes only by FISH, can be time-consuming because many probes have to be 

selected, tested and optimised. Combining array CGH as a screening tool and later FISH to 

narrow down and validate areas, makes it less demanding to identify target candidate genes.   

 

In this project, FISH was used to validate copy number alteration detected by array CGH in 

three LMS samples. Array CGH showed 23 BACs and PACs representing a region of 

amplification in 17p13.1-p11.2. From this region, four BACs showing amplification were 

used as probes. Probes from 17q11.2 (centromeric) and 17q25.3 (telomeric) regions, were 

also tested. After several attempts, these probes did not provide any satisfactory result in 

metaphase chromosomes. These probes, located within normal regions of chromosome 17, 

could give information on ploidy of 17q in the samples.  

 

All tumour samples are heterogeneous, consisting normal and sometimes multiple populations 

of neoplastic cells. Array CGH analysis determines the average copy number of the tumour 

and does not give information on heterogeneity. On the other hand, FISH is capable of 

distinguishing this relation, because single cells are being investigated and the information on 

different populations can be obtained. All the samples showed a minimum of 20% of normal 

cells (2 signals/nuclei) but also a fraction that showed moderate amplification up to 50% (3-9 

signals/nuclei) and high amplification, up to 60% (more than 9 signals/nuclei). In order to 

examine the heterogeneity of the tumour, a high number of nuclei (>100) must be counted, 

but in some of the samples high number were difficult to obtain, especially LMS1. As 

explained before, the slides were dripped with cell suspension (in acetic acid, the amount 

depended on pellet size), but it was difficult to estimate the dilution of the cell suspension to 
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avoid “flooding” the slides with cells. Under the microscope, cells would be seen as clumps, 

making signal counting difficult.      

 
High background was also a problem when counting the number of signals in each nucleus. 

According to Henegariu et. al.(2001) background is mainly influenced by: i) the efficacy of 

the competitor DNA in blocking the repetitive sequences of the probes, ii) the hybridisation 

temperature, when lowered non-specific binding it could increase, iii) hybridisation time and 

probe amount, iv) the stringency of the post-hybridisation washes and v) incomplete RNA 

removal. For future attempts the quality of the slides, and either the amount of competitor 

DNA and probe have to be adjusted cautiously for each BAC. It is well known, however that 

some BACs just won’t give satisfactory results from FISH.  

 

Because of the low amount of nuclei counted for some of the probes, it is difficult to compare 

the samples to each other. LMS10 was expected to have normal DNA copy number but FISH 

results showed also moderate amplification and some nuclei with high amplification in RP11-

471L13 and RP11-219A15. The heterogeneity in the sample can explain why the results in 

this case were different. Normal cells in the tumours could be the reason why the array CGH 

analysis underestimated the amplification levels and a subpopulation of cells with high 

amplification was possibly undetected.   

 

LMS1 and LMS25 were expected to have gain in DNA copy number according to array CGH 

data, and this agrees with the results. All four clones showed amplification in three LMSs 

indicating the possibility that they contain target genes involved in cancer development and/or 

progression.  

 

The clones tested in this project contained both unknown genes and some genes previous 

cited in the literature. RP11-471L13 contains the Mitogen-Activated Protein Kinase Kinase 4 

gene (MAP2K4) involved in activation of JUN kinases, signal transduction and also the Ras 

pathway and hepatogenesis. MAP2K4 is also one of the most consistently mutated genes 

across tumour types (Xin et al. 2004; Koed et al. 2005; Hickson et al. 2006) although only one 

study has reported high-level amplification (van Dartel et al. 2003) RP11-121A13 contain the 

Spectrin Domain with Coiled-Coils 1 gene (SPECC1). This gene has been reported as highly 

expressed in tumour cells and for being a fusion partner to the gene PDGFRB in juvenile 

myelomonocytic leukaemia (Hammarsund et al. 2004; Morerio et al. 2004) 
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Because only four clones were analysed by FISH, it cannot be excluded that other clones 

within the amplicon could also contain interesting “target” genes. There is also the probability 

of alterations being missed because they fall between probes. To improve the attempt 

overlapping probes can be used to narrow down interesting areas and identify candidate 

genes.   
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5. Conclusions and future prospects 
 

Most of previous studies on copy number alterations used conventional CGH and 

cytogenenics in order to identify gained or deleted regions. In this study, a panel of sarcoma 

sample were analysed by array CGH, a technology with high resolution that makes possible 

the identification of narrow regions with copy number changes.  

 

The limit of conventional CGH is its resolution. Large altered chromosome arms or regions 

have been reported in literature, but few use the array CGH technology in their analyses. In 

this project, DNA microarray slides covering the whole genome at a resolution of 1 Mb were 

used trying to identify smaller altered regions.  

 

In this study it was possible to narrow down previously reported regions as well as 

identification of novel segments. Most frequent aberrations in LMSs, were narrow down to 

loss of 10q21.3 and 13q14.2-q14.3 and gains in 5p13.2-pcen, 9q21.13-q31.3, among others. 

Novel regions of gain in 3p12.3-p12.1 and large parts of 14q; losses in 6p25.2-p22.3 and 

q14.1-q23.3 as well as 11p15.5-q24.1, 21q21.1-q22.11 and 22q13.1-q13.33 were identified by 

array CGH.  

 

In GIST, the most frequent aberrations were could be narrowed down to 1p36.32-p13.1, 

13q12.11-q33.2, 9q13-q34.2, 14q11.2-q32.2, 15q13.2-qtel and 22q12.2-q13.31, among others. 

Novel regions as 4ptel-q13.2, 8p23.3-pcen and 18qcen-qtel, also loss in 9q13-q34.2 could also 

be identified.  

 

Until recently, GISTs were classified among smooth muscle tumours, and they were 

diagnosed often as LMS. In this project, array CGH was also used to test whether this 

technology could be used to differentiate these two kinds of sarcoma. Hierarchical clustering 

of the samples could discriminate LMS from GIST. These two groups could also be 

differentiated by their patterns of copy number alterations; the four chromosomal regions: in 

1p36.11-p13.1, 9q12.11-q34.4, 14q11.2-q32.33 and 22q11.32-q13.31.  

 

These results highlight the use of array CGH to distinguish histological similar tumours. This 

technique has also the potential to be implemented in clinical diagnostics. As mentioned in the 

introduction, it is important by means of the treatment to be followed. However, further 
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validation with a larger panel of samples could also bring information about those novel 

regions. Knowledge on the alterations affecting LMS and GIST can tell us more about the 

biology of these types of tumours. Some of the altered regions could also be used as 

biological markers in the prediction of tumour development and progression. 

 

Two LMS samples, LMS1 and –25, a primary tumour and its metastasis, are samples that will 

be followed closely. Because the patient, whom the sample was taken from, has had recurrent 

metastases during a period of about 20 years, it is possible samples from others biopsies had 

been spared. Array CGH analysis of those samples and comparison on alterations, could lead 

to regions and candidate genes important for leiomyosarcoma development and progression.     

  

The region in chromosome 17p13.1-p11.2 was also gained in LMSs, therefore it is further 

investigated in this study. Four BAC probes within this region were chosen and tested in two 

of the high-amplified samples and one normal sample. They all showed gain of DNA copy 

number. High background and noise was a problem when counting the signals, therefore 

alternative and milder techniques for cell fixation and pre-treatment of the slides should be 

considered. Also, in order to achieve representative data, a higher number of nuclei for each 

sample must be counted. Clones overlapping this region could be tested to assure the 

identification of candidate genes.  

 

Only two genes previously cited in the literature were contained in the clones tested by FISH; 

those were MAP2K4 often mutated in many tumour types and SPECC1 involved in juvenile 

myelomonocytic leukaemia. Because only four BACs were analysed by FISH, it cannot be 

excluded that other parts of the amplicon could also contain interesting “target” genes. To 

improve this attempt other amplified clones could be tested and/or overlapping clones could 

be used to map that region. 

 

In LMS, some interesting genes were target of amplification in the 17p13.1-p11.2 region and 

were also by expression arrays found to be over-expressed. They include genes related to 

cancer and other diseases. The most over-expressed genes include MFAP4 possible involved 

in neuroblastoma development and AURKB involved in different types of cancer. It is 

possible other genes went missing because the limited information on gene expression. A 

study of a more complete panel of genes could have given even more information on 
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amplified and over-expressed genes in the data set and better discriminate the candidate 

genes.   

 

After validation with a larger panel of samples in array CGH and gene expression, functional 

analyses of a limited set of consistently amplifies and over-expressed genes, such as over-

expression in cell lines and/or siRNA to knocking down the candidate genes could be done to 

it, to better identify the “real” driver genes.   
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Appendix A: Solutions 
 
EDTA, 0.5 M pH 8.0 
186.1 g disodium EDTA◦2H2O 
800 ml d H2O 
Stir vigorously on a magnetic stirrer 
Adjust the pH to 8.0 with NaOH 
d H2O to 1000 ml 
Sterilize by autoclaving 
 
1M Tris-HCl pH 8.0 
400 ml dd H20  
60.56 g TRIS 
Adjust to pH 8.0 with 10M HCl 
Dilute to 500 ml in volumetric flask 
 
Lysis buffer A 
10 mM Tris-HCl pH 8 
0.1 M NaCl  
1 mM EDTA 
 
Lysis Buffer B 
10 mM Tris-HCl pH 8 
0.1 M NaCl  
1 mM EDTA  
2% Sodium Sarcosyl 
100 μg/ml Proteinase K 
 
Sodium Acetate, NaAc 3M pH 5.2 
408 g NaAc◦3 H2O 
800 ml dH2O 
Adjust pH with glacial acetic acid 
dH2O to 1000 ml 
Sterilize by autoclave 
 
1X TE 
10 mM Tris-HCl pH 7.5  
1 mM EDTA  
 
MMI 
50% deionised formamide  
10% dextran sulphate  
2X SSC, pH 7 
Warm to 70°C to help dissolving 
 
20X SSC 
175 g NaCl 
88.2 g Na3Citrate◦dH2O 
800 ml DEPC-dH2O 
Adjust pH to 7.0 with HCl 
dH2O to 1000 ml 
Sterilize by autoclave 
 
2X TY-Medium pH 7.4 
16 g Tryptone 
10 g Yeast Extract 
5 g NaCl 
1 l dH2O 
Sterilize by autoclave 

 
P1 
15 mM Tris, pH 8 
10 mM EDTA 
100 ug/ml RNase A 
 
P2 
0,2 N NaOH 
1% SDS 
 
P3 
3M KOAC, pH 5.5 
 
1% Agarose Gel 
50 ml 1XTEA 
0,5 g Agarose 
3 ul Ethidium Bromide 
 
Washing Solution 1 
250 ml Formamide 
50 ml 20X SSC 
200 ml dH2O 
 
Washing Solution 2 
50 ml 20X SSC 
2.5 ml 20X SDS 
450 ml dH2O 
 
PN-buffer 
50 ml 1M Na2HPO4
2.5 ml 1M NaH2PO4
525 μl Nonidet P-40 (Octylphenoxy, 
Polyethoxyethanol)  
 
1X TNT 
100 ml 1M Tris pH 7.5 
30 ml 5M NaCl 
5 ml10% Tween 
865 ml dH2O 
 
1X PBS 
2.7 mM KCl 
1.4 mM KH2PO4 
137 mM NaCl 
4.3 mM Na2PO4 
200 mg KCl 
200 mg KH2PO4 
8.0 g NaCl 
1.15 g Na2PO4·7H2O 
800 ml dH2O 
Adjust pH to 7.2 with NaOH 
dH2O to 1000 ml 
Sterilize by filtration through a 0.2-0.45 μm filter 
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Appendix B: Overview of the clone set in 17p13.3-p11.2 
 
 
List of clones covering the gained region 17p13.3-p11.2 containing the interesting amplicon 
studied in this. The four clones tested by FISH are underlined in red. Figure is from Ensembl 
v39 Human Cytoview (www.ensembl.org) 
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