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SUMMARY OF PAPERS 

I: Comigration of two autophagosome-associated dehydrogenases on two-dimensional 

polyacrylamide gels 

 In this paper, two-dimensional immunoblotting was used to study variants of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a largely cytosolic enzyme 

previously found to be represented by an N-truncated variant in autophagic membranes 

from rat hepatocytes (Fengsrud, M. et al. 2000,  Biochem. J. 352, 773-781). With wide-

range isoelectric focusing (pH 3-10), immunostaining of 5-6 putative GAPDH forms 

could be observed. These included full-length forms (37 kDa), partly associated with 

cytoplasmic membranes, as well as short, presumably truncated forms (35 kDa) partly, 

but specifically, associated with the membranes of autophagosomes and lysosomes. Upon 

attempting to verify the enzyme identity by MALDI-TOF MS-based tryptic 

fingerprinting, two of the full-length forms could be identified as GAPDH, but the major 

short form was, surprisingly, identified as a different enzyme, 3- hydroxysteriod

dehydrogenase (HSD). To improve the spot resolution, we switched to narrow-range (pH 

6-9) isoelectric focusing, and used immunoblotting with an HSD-specific antibody. The 

antibody identified four HSD variants, subsequently verified by MALDI-TOF tryptic 

fingerprinting, all with a molecular mass of 35 kDa (but differing in pI) and all showing 

an autophagosomal membrane enrichment. In addition, the antibody produced a 

nonspecific immunostaining of three spots at 44 kDa, identified by MALDI as variants of 

isocitrate dehydrogenase. One of the HSD variants still coincided with the major 35 kDa 

GAPDH variant, and would probably have contributed significantly to the 

autophagosomally enriched, silver-stained protein spot previously ascribed to GAPDH.  

The fact that several HSD variants were binding selectively to autophagic membranes 

would be consistent with a function for this enzyme in autophagic degradation. 



II: Proteomic analysis of autophagosomal membrane proteins

 Since autophagosomes are essentially a package of cytoplasm surrounded by a 

specific autophagic delimiting membrane, proteins selectively associated with the latter 

should be recognizable by their higher abundance in autophagosomal membrane 

preparations than in membranes from whole cytoplasm. To obtain a general overview of 

such proteins, we took a proteomic approach, using narrow-range two-dimensional gel 

electrophoresis to separate proteins in the sedimentable (membrane-containing) fraction 

from frozen-thawed autophagosomes and compare them with proteins in the 

sedimentable fraction from frozen/thawed cytoplasm. 1,570 distinct protein spots were 

detected by silver staining, including 67 spots that were significantly, at least twice 

enhanced in the autophagosomal membranes. By MALDI-TOF mass spectrometric 

peptide mass fingerprinting we could identify 58 protein variants, including 11 proteins 

that were enriched >20x, corresponding to a virtually exclusive autophagic membrane 

localization (i.e., in the autophagosomal delimiting membrane). Examples of such 

proteins were a small form of heat shock cognate protein 70 (Hsc70), 

phosphatidylethanolamine-binding protein (PEBP), catechol-O-methyltransferase 

(COMT), betaine:homocysteine methyltransferase (BHMT), selenium-binding protein 2 

and several peroxiredoxins. The autophagic membrane-association of several chaperonins 

and proteins involved in methylation, redox reactions and drug metabolism might suggest 

a role as binding proteins in a selective scavenging of unfolded, hypermethylated, 

oxidized, drug-adducted or otherwise denatured proteins during the sequestration of 

cytoplasm by the phagophores. 

III: Selective Binding of Betaine:Homocysteine Methyltransferase Fragments to 

Autophagic Membranes 

The presence of several forms and assumed fragments of betaine:homocysteine 

methyltransferase in our detailed study of autophagic membrane-associated proteins in 

paper II compelled us to investigate this enzyme further. Using a specific antibody 

against the N-terminal peptide of full-length BHMT, we detected several additional 

BHMT-derived polypeptides, the identities of which were verified by MALDI-TOF and 

ion trap mass spectrometry. A 17-kDa BHMT fragment turned out to be a complete in
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vitro artifact, generated by proteolytic cleavage even in SDS-containing lysates. A 10-

kDa BHMT fragment was present in intact cells, but additionally both generated and 

degraded in vitro. Larger fragments at 27, 30 and 33 kDa were relatively stable in vitro,

but could be slowly degraded upon disruption of lysosomes in the absence of cytosol or 

in the presence of SDS. All cleavages were apparently enzymatic as indicated by the 

suppressive effects of various proteinase inhibitors, and involved both leupeptin-resistant 

and leupeptin-sensitive proteinase activities, the latter probably being ascribable to 

released lysosomal cathepsins. 

The small, 10-kDa BHMT form (p10) was characterized by MALDI-TOF and ion 

trap mass spectrometry as an N-acetylated, N-terminal BHMT fragment with additional 

modifications (acetylation or trimethylation) at several internal lysines. This fragment 

was found to accumulate in leupeptin-treated hepatocytes over a period of 4 h, probably 

by intralysosomal entrapment, and could possibly serve as an indicator of autophagic-

lysosomal flux detectable in whole cells. In purified autophagosomes, a substantial 

fraction of the p10 protein as well as of the larger p27, p30 and p33 BHMT fragments 

were found to be associated with autophagosomal membranes, whereas in preparations 

from whole cells they were almost exclusively soluble. This selective binding of protein 

fragments to autophagic membranes could indicate an active role of autophagy in the 

specific elimination of these and other abnormal cellular proteins.  

IV: Phosphorylated and Non-phosphorylated Forms of Catechol O-Methyltransferase 

in Rat Tissues  

 In paper II we demonstrated the existence of two autophagosomally enriched 

variants of catechol-O-methyltransferase (COMT), one of which was found to be 

phosphorylated. In paper IV we have investigated this modification in more detail, 

extending the scope to several rat tissues. The two well-known isoforms of COMT, 

S-COMT ("soluble") and MB-COMT ("membrane-bound") were detected in many 

tissues by our novel, domestic antibody, but subcellular fractionation revealed that 

S-COMT was often membrane-bound and MB-COMT often soluble, suggesting that their 

names should be changed. In rat liver, where COMT is most abundant, two-dimensional 

immunoblotting revealed seven different spots, all identified as COMT by a combination 

of mass spectrometric techniques. Three of the five S-COMT variants could be shown to 
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be N-acetylated, and the two most acidic forms were found to be phosphorylated in their 

C-terminal tail at Ser260. No modifications were found in the two MB-COMT variants. 

The most acidic S-COMT variant was entirely liver-specific; other tissues expressed a 

limited, but relatively tissue-specific set of COMT forms. Phosphorylated COMT was 

thus found to be present in liver, brain, thymus and kidney. Given the key role of COMT 

in the metabolism of natural and pharmacological catecholamines, the discovery of 

COMT phosphorylation, and hopefully the future elucidation of its regulatory 

significance, should be of considerable medical interest. 
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INTRODUCTION
The work presented in this thesis relies on two defined research fields in life science: 

autophagy and proteomics. While the former describes a cell biological phenomenon, the 

latter can be considered a tool with which a greater understanding of cellular mechanisms 

can be achieved. The preface of the thesis will aim at providing an introduction to both 

areas of research, with focus on recent development. 

AUTOPHAGY

The main mechanism of autophagy is the sequestering of cytoplasmic material, including 

organelles, by an isolating membranous cisternal organelle and delivery of the material to 

the lysosome for degradation. The membranous organelle, which is termed a phagophore 

at the sequestration step, matures into a vacuole named an autophagosome upon 

completed engulfment. This autophagic organelle can be considered a transportation 

vehicle which in turn fuses with other vacuoles, initially with the endosome to form an 

amphisome. Next, the amphisome fuses with a lysosome, delivering the sequestered 

material inside. An autophagosome may also fuse directly with a lysosome (see Fig. 2 

and see below for detailed description). In the lysosome the contents of the 

autophagosome are degraded by acidic hydrolases. Autophagy is thus a lysosomal 

degradation process.

This system is complemented by non-lysosomal degradation, which is dominated 

by the ubiquitin-proteasomal system (UPS). In short, this system takes care of short-lived 

proteins as well as abnormal and misfolded proteins by tagging them with chains of 

ubiquitin, an 8 kDa polypeptide. The tagged proteins are then tethered and degraded by 

proteasomes residing in the cytoplasm. The proteasome is a multienzyme complex 

consisting of several subunits that dismantle proteins (Hochstrasser, 1995; Kvam and 

Goldfarb, 2007). Lysosomal and non-lysosomal degradation have been regarded as 

completely separated systems, but new insights into these mechanisms indicate a closer 

interrelationship, as seen in several pathological disorders, where one system can 

compensate for malfunction of the other (see below; Wooten et al., 2006). 
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Figure 1. Progression of autophagy-related research. Indications of expansion in the 

field by number of articles published per year 1963-2007, some key events displayed.

The pioneering work of Christian De Duve who characterized the lysosome and invented 

the term autophagy (origin: Greek auto – self, phagein – to consume/eat) (de Duve and 

Wattiaux, 1966; de Duve, 1963), initiated a series of studies where biochemical tools in 

addition to the usage of electron microscopy were used extensively to examine the 

mechanisms of this process. Over the years many milestones have been reached, and a 

recent expansive growing interest and knowledge of the field has been witnessed (see 
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Fig. 1), along with numerous tools to dissect the molecular machinery (Klionsky et al., 

2007b).

Figure 2. Summary of lysosomal degradation pathwats. Refer to text for details. From 

(Klionsky et al., 2007a).  
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AUTOPHAGIC PROCESSES 

MACROAUTOPHAGY

Autophagy has been studied in many eukaryotes from yeast to humans, and is in many 

aspects similar in all cell types, but with several differences. A plethora of definitions and 

terms are related to this field (for review: see Klionsky et al., 2007a), and this thesis will 

aim at a brief description. As originally defined, autophagy (now often termed 

macroautophagy) is a non-selective process in nature, engulfing apparently random 

portions of the cytoplasm for degradation, as a response to various mediators, especially 

amino acid deprivation (see below).  

MICROAUTOPHAGY

Several minor versions of the autophagic processes exist (see Fig. 2). Microautophagy is 

the term coined for the direct uptake of cytoplasm by the lysosomal membrane from 

surrounding cytoplasm (Ahlberg et al., 1982). It differs from macroautophagy in two 

manners: 1) the site of sequestration is the degradative organelle and 2) this sequestration 

is performed by invagination or protrusion of the lysosomal membrane. The enclosed 

material is then encapsulated in a mono-layered membrane vacuole inside the lysosome 

and degraded in the same manner as for macroautophagy (Wang and Klionsky, 2003). 

The function of microautophagy remains elusive, but perhaps it plays a role in turnover of 

long-lived proteins. Morphometric studies on long-term starvation (48 hrs) in rat 

hepatocytes indicate an association between decline of microautophagic vesicles and 

basal proteolytic turnover (Mortimore et al., 1983). Simultaneous measurement of 

macroautophagy revealed no change in same time period.  

VARIANTS OF MICROAUTOPHAGY 

A related mechanism is piecemeal microautophagy of the nucleus (PMN), found 

in Saccharomyces cerevisiae, a process differing from of functional macroautophagy in 

that it does not require functional Atg8 (Roberts et al., 2003). PMN is a constitutive 

process but stimulated to high levels by starvation or rapamycin and active under cell 

division. PMN occurs at nucleus-vacuole (NV) junctions formed by interactions between 

the vacuole membrane protein Vac8 and the outer-nuclear membrane protein Nvj1, and 

results in the  pinching off of nonessential portions of the nucleus for degradation (see 
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Fig. 3; Kvam and Goldfarb, 2007). There has also been a report on complete autophagic 

sequestration of the nucleus in murine epithelial cells (Kovacs et al., 2000). 

Figure 3: Five steps in piecemeal microautophagy of the nucleus machinery. Red 

squares Vac8, green squares Nvj1. N = nucleus, V = vacuole. From (Kvam and 

Goldfarb, 2007) 

Recent inquiries concerning the fate of different cellular organelles have 

unraveled several specific targets for autophagy. In the methylotropic yeast Pichia

pastoris, there has been found a subset of genes responsible for specific sequestration of 

peroxisomes, a process called pexophagy, of which there exist two sub-variants: micro-

and macropexophagy – also seen in liver (Luiken et al., 1992). 

Similarly, depolarized mitochondria undergoing mitochondrial permeability 

transition (MPT) seem to be subject to selective autophagy. This process, called 

mitophagy, also comes in two varieties, micro- and macromitophagy, as indicated on 

figure 2 (Lemasters, 2005). Also larger cellular objects appear able to elicit a specific 

autophagic response, such as smooth endoplasmic reticulum (ER), that has been observed 

to be enriched in autophagic vacuoles induced by phenobarbital-treatment (Bolender and 

Weibel, 1973). Additional data concerning autophagic sequestration of ER include a 

report on multiple rough ER cisternae concentrated in autophagic vacuoles during the 

unfolded protein response (UPR; Bernales et al., 2007), in sum justifying the term 

reticulophagy (Klionsky et al., 2007a).

CRINOPHAGY

Secretory protein granules formed in excess from the trans-Golgi network (TGN) have 

also been reported to be subject for lysosomal degradation (Glaumann et al., 1981), this 
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process is called crinophagy (Greek: crino- exude). The process depends on fusion of 

secretory vacuoles with the lysosome and delivery of internal proteins and peptides for 

degradation.

AGGREPHAGY

Aggrephagy, a novel term introduced in Paper II, refers to the concept of selective 

degradation of aggregates, preferentially of proteins (Øverbye et al., 2007). Aggregates 

could form inside the cell after various events, such as misfolding, defective proteasomes, 

aberrant protein expression, oxidative stress, mutations or ageing (Kopito, 2000). Many 

of these are involved in the pathogenesis of several diseases (see separate section below) 

such as huntingtin and presenilin 1, and evidence exist for clearance of these aberrant 

aggregates through autophagy (Rubinsztein et al., 2005). Aggresomes, the organelles 

Figure 4. Formation of protein aggregates. Blue dots indicate ubiquitin. Yellow ribbon 

proteins. From (Wooten et al., 2006).
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functioning as a collection site for aggregates in the cell are enveloped by a similar 

double-layered membranes as are the autophagosomes, and may thus fuse directly with 

lysosomes for degradation (Kopito, 2000; see Fig. 4).

XENOPHAGY

Selective autophagy may play a role in a protective response to invasion of foreign bodies 

as several in vitro studies report on the sequestering of pathogenic bacteria and viruses 

that have escaped phagosomes by autophagosomes (Gutierrez et al., 2004a; Deretic et al., 

2006). This process has recently been termed xenophagy (Levine, 2005). An example is 

the uptake and degradation of group A Streptococcus that have escaped from phagosomes 

into the cytosol in HeLa cells or fibroblasts, a process that was shown to be blocked by 

Atg5 knockout (Nakagawa et al., 2004). With electron microscopy it has been 

demonstrated that the bacterium Rickettsia conorii was present in autophagosomal 

structures (Walker et al., 1997). Proinflammatory cytokines lead to increased 

macroautophagy and Rickettsia clearance from the cytoplasm. The metabolic inhibition 

of Listeria monocytogenes after phagosome lysis renders these bacteria susceptible for 

macroautophagy and lysosomal clearance (Rich et al., 2003). Mycobacterium 

tuberculosis was shown to be cleared from mouse macrophages and a human macrophage 

cell line by macroautophagy (Gutierrez et al., 2004a; Singh et al., 2006). Pharmacological 

inhibitors of macroautophagy inhibited starvation-induced clearance of a variant of M. 

tuberculosis, bovine BCG. Recently, parasites such as Toxoplasma gondii were added to 

the list of invading pathogens targeted by autophagy (Andrade et al., 2006). Clearance of 

tachyzoites from T. gondii upon macrophage activation could be stalled by PI3K-

inhibitors and siRNA silencing of Beclin-1 (Ling et al., 2006).

Evidence that certain single-stranded viruses subvert the autophagosomes and use 

exocytosis from the amphisome to deliver mature viruses out of the cell has been 

produced (Kirkegaard et al., 2004). Furthermore, coronavirus and other viruses replicate 

on the surface of autophagosomal membranes (Jespersen et al., 1999; Prentice et al., 

2004). These viruses appear to lock the fusion of autophagosomes, which carry their 

replication complexes, with lysosomes. For poliovirus and rhinoviruses this autophagy 

regulation is apparently mediated by the 2BC and 3A proteins, which are sufficient to 

induce the accumulation of autophagosomes (Jackson et al., 2005). 
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Figure 5. Different fates: Autophagic response to pathogenic invasion. Viruses, bacteria 

and parasites are either cleared or interfere with their own destruction by autophagy. 

From (Schmid and Munz, 2007).
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CHAPERONE-MEDIATED AUTOPHAGY 

Chaperone-mediated autophagy (CMA) describes a variant of lysosomal degradation 

where the protein cargo is recognized by a specific motif (KFERQ and related sequences) 

(Backer et al., 1983; Dice et al., 1990) and taken up across the lysosomal membrane. This 

Figure 6. Chaperone-mediated autophagy. 

1) Binding of HSC-70 complex to substrate, 2) translocation of complex to 

lysosome and binding to LAMP2A, 3) unfolding of substrate, 4) transfer of 

substrate across lysosomal membrane, 5) substrate degradation in lysosome 6) 

HSC70-complex recycles from lysosome and 7) may bind another KFERQ-motif 

substrate. From (Dice, 2007).
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sequence is present in about 30% of cytosolic proteins (Chiang and Dice, 1988). It is also 

believed that certain post-translational modifications can generate similar motifs in 

proteins, extending the potential targets for CMA (Gracy et al., 1998). This process needs 

and is closely regulated by heat shock cognate protein of 70 kDa (HSC70), a molecular 

chaperonin (Chiang et al., 1989), in addition to secondary chaperones and a lysosomal 

receptor, lysosome associated membrane protein 2a (LAMP2a; Cuervo and Dice, 2000). 

HSC70 is a constitutively expressed heat shock protein and needs to be present both on 

the cytoplasmic and the lysosomal side of the lysosome. In order to transport target 

proteins across the membrane, HSC70 is attended by HSP40 which stimulates the former 

protein’s ATPase activity, and heat shock protein interacting protein (HIP) initiates 

binding between HSP40, HSC70 and target protein (Suh et al., 1999; Hohfeld et al., 

1995). Heat shock protein organizer protein (HOP) mediates binding between HSC70 and 

heat shock protein of 90 KDa (HSP90; Demand et al., 1998). HSP90 is necessary to 

supervise the folding and unfolding of target proteins, which seems to be the key function 

for the whole complex prior to translocation (Richter and Buchner, 2006). Finally, the 

interactions are regulated by Bcl2-associated athanogene-1 (BAG-1; Luders et al., 2000). 

When this complex approaches the lysosomal membrane, it binds to a homomultimeric 

complex of LAMP2a. This binding is the rate-limiting step in CMA, and is regulated by 

recruiting LAMP2a locally from lipid microdomains situated on the lysosomal membrane 

(Kaushik et al., 2006). LAMP2a is the only isoform of three LAMP2-proteins (a, b, c) 

involved in CMA. All forms are heavily glucosylated on the lysosomal side of the 

membrane.  

In the lumen of lysosome, a more acidic variant of HSC70 (Ly-HSC70) awaits the 

cargo, and helps to translocate the, by now, unfolded target protein (Agarraberes et al., 

1997). Ly-HSC70 has to be present in the lysosomes to make them CMA-competent. 

How this is achieved is unclear, although is has been speculated that macroautophagy 

delivers HSC70 to the lysosome for this end (Massey et al., 2006).

THE VID AND CVT PATHWAYS 

Two pathways related to autophagy share many of its characteristics, namely the VID 

(vacuolar import and degradation) and the CVT (cytoplasm-to-vacuole) pathways present 

in yeast (see Fig. 2). VID has been demonstrated by the involvement in the specific 
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sequestration of the energy-regulating enzymes 1,6-fructose bisphosphatase and malate 

dehydrogenase in a small (30 nm) vesicle that fuses with the yeast vacuole. The VID 

process is triggered by a shift in glucose conditions (Shieh et al., 2001). In the CVT 

pathway hydrolases required for vacuolar function, such as aminopeptidase 1 (Ape1) and 

alpha-mannosidase are sequestered in double membrane-delimited vesicles (Huang and 

Klionsky, 2002; Abeliovich and Klionsky, 2001). Many proteins determined to be vital 

for autophagy in yeast also exert function in the CVT pathway (see table 1). A distinction 

between autophagy and CVT is the requirement for nutrients: autophagy is starvation-

induced, while the CVT pathway is functional in rich medium.  

AUTOPHAGY-RELATED GENES 

The advent of genetic manipulation allowed the identification of several autophagy 

related genes (common nomenclature ATG) necessary for autophagosome formation in 

yeast (Tsukada and Ohsumi, 1993; Thumm et al., 1994), of these many have known 

mammalian orthologs (see Table 1). Prominent among these proteins is Atg1, a kinase 

residing in a complex also consisting of Atg11, Atg17, Atg 20 and Atg24. It works as a 

sensor of amino acid starvation or rapamycin-treatment through the binding of a Vac8-

Atg13 dimer to Atg1 for activation (see Fig. 7A). This interaction is regulated by TOR: 

when active (in the presence of amino acids and the absence of rapamycin), this kinase 

leads to a multiphosphorylated Atg13. This in turn disables binding to Atg1 thus 

inhibiting autophagy (Kamada et al., 2000).  

Formation of phosphatidylinositol 3-phosphate is another essential step, involved 

in phagophore formation, and performed by a lipid kinase (see Fig. 7B). In 

Saccharomyces cerevisiae, this kinase activity resides in a complex composed of Atg6, 

Atg14, Vps15 (an activator of Vps34) and the class III PI-3 kinase, Vps34. Atg14 serves 

as a bridge between Atg6 and Vps34. The presence of Atg9 appears also to be an 

essential component at the cytoplasmic membrane for Vps34 activation (Young et al., 

2006). The mammalian counterpart of the PI3K class III complex consist of hVps34, 

Beclin-1 (Atg6), p70 (Atg14) and p150 (Vps15). New insights in mammalian autophagy 
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Figure 7 A-D: Atg complexes involved in autophagy. Underlined proteins indicate 

known orthologues in higher eukaryotes. Adapted from (Levine and Yuan, 2005). 
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have revealed two activating partners for Beclin-1: UVRAG and Ambra1 (Liang et al., 

2006), the latter will be discussed below.  

Two conjugates mechanistically related to the ubiquitin system have been shown 

to be required for autophagic vacuole formation: the Atg12-Atg5-Atg16 complex and the 

Atg8-PE conjugate (Ichimura et al., 2000; Ohsumi, 2001; see Fig 7C). Atg12, a ubiquitin-

like protein, is activated by Atg7 in an E1-like manner and transferred to Atg10, which 

functions as an E2-like enzyme (Mizushima et al., 1998). Atg12 then binds to Atg5 

through its C-terminus, establishing a stable conjugate. Atg5 may later bind to Atg16 to 

form the Atg12-Atg5-Atg16 complex (Mizushima et al., 1999). Atg8, another ubiquitin-

like protein, is also activated by Atg7, after initial proteolytic processing by Atg4. In this 

case Atg3 acts as the E2-like enzyme that transfers the phospholipid 

phosphatidylethanolamine (PE) to the C-terminal glycine to form Atg8-PE (Kabeya et al., 

2002). The Atg12-Atg5-Atg16 complex appears as a tetramer that seems to be essential 

for phagophore expansion and necessary for recruitment of Atg8-PE to the phagophore 

(Tanida et al., 2004; see also below).

A fourth functional group of Atgs involved in the autophagic machinery is the 

Atg9 –associated protein complex (see Fig. 7D). In yeast, Atg9 retrograde cycling 

between the phagophore assembly site (PAS) and mitochondria or peripheral pool found 

in proximity to ER is dependent on Atg2 and Atg18 as well as Atg23. These proteins are 

in turn recruited by Atg1 and the Vps34 complexes (Reggiori et al., 2004). In the absence 

of these protein complexes Atg9 is present at PAS; when activated, Atg9 redistributes to 

the peripheral pool. In mammalian cells, the hypothesis presented by Dr. Tooze and her 

coworkers explains a reversed, but analogous system (Chan et al., 2007; Webber et al., 

2007). Mammalian Atg9 (mAtg9) cycles from the trans-Golgi network (TGN) to a 

peripheral Rab7-positive endosomal pool upon starvation. This translocation is hindered 

by knockout of the mammalian Atg1 analogue ULK1 and resembles shuttling of cation-

independent mannose 6-phosphate receptor (CI-MPR). This may indicate that TGN is in 

close proximity to the mammalian equivalent of PAS.  

Atg8 has four known mammalian homologues, microtubule-associated protein 1 

light chain 3 (MAP1-LC3; Kabeya et al., 2000), GABA-receptor associated protein 

(GABARAP; Wang et al., 1999), Golgi apparatus ATPase enhancer of 16 kd (GATE-16; 

Legesse-Miller et al., 2000) and ATG8L (Tanida et al., 2006). Only LC3 has been 

26



convincingly associated with autophagy. LC3 appears in two forms, I & II, migrating as 

an 18 and 16 kDa protein in a SDS-PAGE gel respectively: LC3-I is predominantly 

cytosolic, while LC3-II is PE-bound and associated with membranes. LC3-II is to date 

the only autophagosome-specific protein known and in contrast to the Atg16L complex, 

does not disengage the completed vacuole. Therefore, it is the most commonly used 

marker for autophagosome formation and monitoring of autophagic flux, especially as a 

genetically modified fluorescent protein by addition of a GFP-tag. Recently, a novel way 

of monitoring autophagosomal maturation was introduced by the Yoshimori laboratory, 

where a tandem fluorescence tagged mRFP-GFP-LC3 was used as a marker (Kimura et 

al., 2007). This approach has the advantage of informing the researcher of the lysosomal 

fusion step, where the GFP-tag will be extinguished by the acidic environment, in 

contrast to mRFP-LC3. A possible error of monitoring autophagic flux by GFP-LC3 

staining was demonstrated where overexpression of transfected LC3 led to incorporation 

of LC3 in accumulating protein aggregates in cells with non-existent autophagy (Kuma et 

al., 2007). These studies should contribute to a more careful interpretation of autophagy 

measured by LC3-accumulation alone.  

The Atg12-Atg5-Atg16L complex is also present in mammals, although Atg16L 

is considerably larger than yeast Atg16 (63 kDa vs 17 kDa) and has in addition a WD-

repeat domain indicating putative protein-protein interaction not seen in yeast 

(Mizushima et al., 2003). The mammalian complex encompasses an 400 kDa tetramer or 

800 kDa octamer. Both Atg12 and Atg5 are essential for autophagy in higher eukaryotes: 

newly-born Atg5 null mice develop severe malfunctions and die, indicating the 

importance of functional autophagy in neonatal mammals (Kuma et al., 2004).  
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Yeast Human /Mouse Pathway Function 

Atg1 ULK1 BOTH Protein kinase,  PAS localization 

Atg2 AUT Peripheral membrane protein, Atg9 interaction 

Atg3 HsAtg3 AUT E2-like protein for Atg8/LC3 

Atg4 HsAtg4A/ B/ C/ D AUT Cysteine protease for GATE-16 (A), LC3 (B), GABARAP (B) and 

delipidation enzyme for Atg8-homologs. 

Atg5 HsAtg5 AUT Ubiquitin-like protein, interacts with Atg12,  PAS localization 

Atg6 Beclin-1 BOTH Tumor suppressor, PI3K complex 

Atg7 HsAtg7 AUT E1-like protein for Atg8/LC3 and Atg12 

Atg8 MAPLC3/

GABARAP/

GATE-16/  

ATG8L 

BOTH Modifier for autophagosomal membrane, PE-conjugated 

Atg9 HsAtg9 BOTH Membrane protein, PAS localization 

Atg10 mAtg10 AUT E2-like protein for Atg12 

Atg11 BOTH Cargo recognition 

Atg12 hAtg12 AUT Interacts with Atg5,  PAS localization 

Atg13 AUT Interacts with Atg1, hyperphosphorylated under normal conditions 

Atg14 p70 BOTH PI3K complex 

Atg15 ? Putative lipase, autophagosome breakdown 

Atg16 Atg16L AUT Binds Atg12-Atg5, PAS localization 

Atg17 BOTH Interacts with Atg1 

Atg18 WIPI49 BOTH Peripheral membrane protein, Atg2 interaction 

Atg19 CVT Cargo receptor 

Atg20 BOTH Peripheral membrane protein, PAS localization, PX domain 

Atg21 CVT Atg8 recruitment 

Atg22 AUT Integral membrane protein, efflux from lysosome, permease 

Atg23 BOTH Peripheral membrane protein, Atg9 interaction,  PAS localization 

Atg24 CVT Sorting nexin protein, pexophagy and CVT pathway 

Atg25 Pexopagy Pexophagy 

Atg26 ? Peripheral membrane protein 

Atg27 AUT Atg9 interaction, PI3K-complex 

Atg28 Pexophagy Pexophagy 

Atg29 AUT PAS localization 

Atg31 AUT Atg17 interaction 

Table 1: AUT-CVT genes comparison (adapted from (Klionsky et al., 2003), (Klionsky 
and Emr, 2000); (Mizushima et al., 2002); (Tanida et al., 2004) (additional references, 
Atg27 (Yen et al., 2007); Atg28 (Yen and Klionsky, 2007; Stasyk et al., 2006); Atg29 
(Kawamata et al., 2005); Atg31 (Kabeya et al., 2007); (http://GO db.yeastgenome.org, 
accessed 2007-07-04)).
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Another mammalian ortholog of autophagy-related genes deserves closer description. 

The mammalian gene Beclin-1 (which corresponds to yeast Atg6) was originally 

identified as a Bcl-2-binding protein from yeast two-hybrid experiments (Aita et al., 

1999). Beclin-1 can complement autophagy in autophagy-defective yeast with Atg6 

deficiency, and promotes autophagy in human breast carcinoma cells, MCF-7 (Liang et 

al., 1999). Interestingly, the anti-apoptotic protein Bcl-2 inhibits starvation-induced 

autophagy as a function of its direct interaction with Beclin-1. In yeast, mammalian cells 

and in vivo models, Bcl-2 effectively inhibits Beclin-1-mediated autophagy. Furthermore 

Bcl-2 mutants lacking the Beclin-1-binding domain also lose their autophagy-inhibitory

effect (Pattingre et al., 2005). 
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THE AUTOPHAGIC ORGANELLES

THE PHAGOPHORE 

The phagophore, sometimes referred to as the isolation membrane, is the initial organelle 

in the autophagosomal-lysosomal pathway (Seglen, 1987). It appears to be a flattened 

membrane cistern which expands to envelop cytoplasmic material until it closes to form 

an autophagosome. In yeast there is evidence for these organelles to be located at the so-

called pre-autophagosomal structure (PAS), also dubbed phagophore assembly site 

(Suzuki et al., 2001), and believed to be a processing plant for phagophores. In this region 

the majority of the Atg-proteins necessary for autophagy are found. The phagophore itself 

contains different protein complexes which reside at the organelle, such as the Atg8-PE 

conjugate and Atg16-12-5 complex. The latter of these is localizing to the extreme ends 

of the organelle at the time of sequestration (Kuma et al., 2002). 

 The origin of the phagophore membrane is a topic of extensive debate. It may 

materialize either by reuse of preexisting membrane material or by de novo synthesis. 

Early suggestions included the plasma membrane (Oledzka-Slotwinska and Desmet, 

1969), Golgi-apparatus (Locke and Sykes, 1975) and lysosomes (Sakai et al., 1989), in 

addition to compartments from the endocytic pathways (Dunn, 1990) as source of the 

isolation membrane. These postulates have been mostly disregarded due to the 

morphological character of the phagophore as well as the absence of common marker 

proteins from these membranes. In fact, proteins seem to be rather scarce on the outer 

membrane surface, the cisternal membrane also appears to be rich in unsaturated fatty 

acids as detected by electron microscopy, and confirmed by osmium staining (Reunanen 

et al., 1985; Fengsrud et al., 2000). Protein markers common in endoplasmic reticulum 

(ER) found in autophagosomal structures indicate a stronger candidacy for this cisternal 

cytoplasmic organelle (Novikoff and Shin, 1978; Reunanen and Hirsimäki, 1983), and 

evidence for cycling of the membrane protein Atg9 from ER to PAS in yeast supports this 

explanation (Reggiori et al., 2005). However, in accordance with other studies with early 

autophagic structures (Reunanen et al., 1985; Furuno et al., 1990) purified 

autophagosomes from rat hepatocytes lack any enrichment of ER markers (Strømhaug et 

al., 1998). In mammals, the reported ULK1- and starvation-dependent trafficking of 

mAtg9 between TGN and endosomes indicate the trans-Golgi network as a supplier of 
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membranes to PAS (Köchl et al., 2006). The presence of the mammalian homologue of 

Atg18, WIPI49, on TGN gives additional support to this theory (Jeffries et al., 2004).

 Induced autophagy in yeast involves the new-synthesis of proteins necessary for 

phagophore formation: the eukaryotic initiation factor 2 (eIF2 ) kinase Gcn2 and its 

downstream target Gcn4, a transcriptional transactivator of autophagy genes, turn on

autophagy during nutrient depletion (Tallóczy et al., 2002; Takeshige et al., 1992). In 

contrast, cycloheximide does not impair autophagosome formation in mammalian cells, 

indicating a constitutive pool of available phagophores (Kovács and Seglen, 1981). 

Mammalian autophagy can proceed for several hours without the need for protein 

synthesis (Lawrence and Brown, 1993) suggesting an extensive reutilization of 

phagophores and associated proteins for sequestration.

THE AUTOPHAGOSOME 

Upon completion the autophagosome appears as a vacuole delimited by a distinct double- 

(sometimes multi-) layered membrane, and containing a heterogeneous mixture of 

Figure 8. Autophagosomes. Electron microscopic images of purified isolated 

autophagosomes containing varius subcellular components. From (Strømhaug 

et al., 1998). 



cytoplasmic material, including organelles, proteins and various cellular components 

(Seglen, 1982). It has been estimated that 40 % of the protein in a cell can be devoured by 

autophagy under starvation conditions. The vacuole is usually about 200 nm in diameter, 

but can be substantially larger, as in case of the 1000 nm autophagosomes detected in 

neurons containing aggregates, and for xenophagic purposes (Rubinsztein et al., 2005). It 

is best characterized by electron microscopy, where an autophagosome will appear as a 

membrane-inclusion of cytoplasm, and due to the ideally non-specific nature of uptake, 

the inside would not differ substantially from the outside (Fengsrud et al., 2000). 

Simultaneously, it should be devoid of markers that are specific for later vacuoles in the 

lysosomal pathways as mentioned below. The half-life of the autophagosomes has been 

estimated to 8-10 minutes (Pfeifer, 1978).  

THE AMPHISOME 

After completion the autophagosome may suffer different fates. The usual route leads to a 

convergence with the endocytic pathway in the manner of fusion with an endosome, this 

new union have received the term amphisome [amphi- both] (Gordon and Seglen, 1988). 

This prelysosomal meeting point has been demonstrated by both biochemical means, as 

well as by cryo-electron microscopy (Tooze et al., 1990). The joint vacuole itself has 

been isolated and described by Berg and co-workers, who also indicate that both early 

and late endosomes may fuse with autophagosomes (Berg et al., 1998). This important 

distinction between autophagosomes and amphisomes can be made biochemically by 

checking for the presence of endocytic markers such as early endosomal antigen 1 

(EEA1), asialoglycoprotein receptor (ASGPR) or mannose 6-phosphate receptor (M6PR) 

and the absence of lysosomal marker exemplified by LAMP1 and cathepsin B and D 

(Fengsrud et al., 2000). Noteworthy is also the fact that yeast lacks the amphisome 

altogether, implying 1) more complex functions of the autophagic pathways in higher 

eukaryotes or 2) inability of yeast genetic assays to also identify key proteins needed for 

amphisome formation, although autophagosome-endomsome  fusion has been 

investigated in mammalian cells (Berg et al., 1998). The subsequent fusion of 

amphisomes with lysosomes apparently requires the small ras-like GTPases rab5 and 7; 

knockdown of these proteins leads to amphisome accumulation (Jäger et al., 2004; 

Gutierrez et al., 2004b). 
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THE LYSOSOME  

The end of all things, at least for the degradation pathway here described, is the lysosome,

originally discovered by de Duve in 1955 (de Duve et al., 1955). Lysosomes contain 

various enzymes to digest organelles, food particles, and engulfed pathogenic entities. 

They maintain an acidic interior (pH 4-5), optimizing the conditions for acidic 

hydrolases, by pumping protons from the cytosol into the lysosome by ATPases and 

chloride-ion channels. The low pH requirement of the lysosomal enzymes protects the 

cytosol in case of membrane disruption as the degradative enzymes will have suboptimal 

function in the more alkaline environment of the cytosol (pH 7.0); furthermore, these 

enzymes are kept in check by a number of cytosolic inhibitors. To distinguish between 

the origins of the material delivered for degradation, it has been common to denote the 

autolysosome as the organelle that is a merger of an autophagosome/amphisome and a 

lysosome, thus containing autophagocytosed material internally. In contrast a lysosomal 

organelle resulting from a union of an endosome and a lysosome is called a 

heterolysosome, evading the autophagic pathway and having exogenous material inside 

(auto = self, hetero = unlike (i.e. not self)).  

 There are two main ways to impair lysosomal degradation, either by inhibiting the 

proteases inside with for instance pepstatin A, leupeptin, or E64d (Seglen et al., 1979), or 

by neutralizing the intralysosomal acidic environment. The latter can be achieved by 

blocking the proton pump with a specific inhibitor of H+ vATPase, such as bafilomycin 

A (Ohkuma et al., 1993), vanadate (Fosse et al., 1995) or nigericin (Poole et al., 1972), or 

by adding weak bases that are able to cross the membrane, such as ammonia, increasing 

the pH inside the lysosomes (Seglen and Gordon, 1980). 

 The enzymes in the lysosomes are produced in the ER. They receive a M6PR tag 

on their way through the Golgi and are activated when reaching the inside of the 

lysosome. In yeast, the corresponding organelle is simply named the vacuole.  It is on the 

receiving end of the CVT pathway that shares many of the genes of autophagy, most 

prominently the Vps34 kinase complex, where Atg14 is replaced by Vps38 (see table 1).  
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THE CYTOSKELETON 

Transport in the cell of the various autophagic organelles and their fusion events are 

closely related to cytoskeletal network. It has been shown that different cytoskeleton 

inhibitors have diverse effect on autophagy, such as the microtubule disruptive 

compounds vinblastine and nocodazole that induce accumulation of autophagosomes in 

isolated rat liver cells by disabling their fusion with lysosomes or endosomes (Blankson 

et al., 1995; Kovács et al., 1982). However, these inhibitors have little or no effect on 

sequestration. The vinblastine effect was not dependent on nutrients nor on mTOR 

activity (see below), but required Atg5 and Atg6 (Köchl et al., 2006). The microfilament 

inhibitor cytochalasin D did not effect autophagy in hepatocytes (Blankson et al., 1995), 

but reportedly did so in kidney cell lines (Aplin et al., 1992). Another toxin, okadaic acid, 

has been shown to disrupt the intermediate filament keratin network, and to completely 

suppress autophagy in hepatocytes, without affecting the microtubular or 

microfilamentous networks. Furthermore, the resulting overphosphorylation undid the 

function of the cytoskeletal cross-linker plectin (Ruud Larsen et al., 2002). Additionally, 

autophagosomes are practically devoid of cytoskeletal proteins such as tubulin, plektin, 

keratin and actin, in an otherwise bulk sequestration process, supporting a role for the 

cytoskeleton as an external scaffold for the phagophore that is removed after completion 

of the sequestration (Strømhaug et al., 1998; Ruud Larsen et al., 2002). 

The association of several autophagy-related proteins with microtubuli, e.g. LC3, 

BHMT (Sandu et al., 2000), and Atg4 (Lang et al., 1998), hints at a central autophagic 

function of these transportation structures. Knockout of HDAC6, a histone deacetylase, 

that is actually more specific for microtubules and dynein (Rubinsztein, 2007), leads to 

impaired fusion of autophagosomes; furthermore, overexpression of HDAC6 rescued 

cells from the toxicity related to proteasome inhibition (Iwata et al., 2005). It has been 

shown recently that HDAC6 also bind to polyubiquitinated proteins and may augment 

UPS-failure as demonstrated in a D. melanogaster spinal muscular atrophy (Pandey et al., 

2007b). These data introduce this enzyme as a link between the main protein degradation 

pathways for misfolded proteins, revealing another piece of the puzzle for understanding 

the role of cytoskeletal networks in autophagic degradation (Pandey et al., 2007a). 

 Yet another protein related to ubiquitin is sequestosome 1/ ubiquitin-binding 

protein p62 (SQSTM1/ p62), a protein found in inclusion bodies containing 
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polyubiquitinated protein aggregates (Zatloukal et al., 2002). In diseased brain tissues it is 

found in Lewy bodies, PD neurofibrillar tangles and huntingtin aggregates (Kuusisto et 

al., 2001; Nagaoka et al., 2004; Kuusisto et al., 2003), in liver in Mallory bodies and 

associated with steatohepatatis and hyaline bodies in hepatomas (Zatloukal et al., 2002), 

as well as in aggregates in aggressive variants of breast cancer (Rolland et al., 2007). 

Recent discoveries indicate the appearance of p62 in aggresome-like induced structures 

(ALIS), which are the result of stressors commonly associated with induced autophagy, 

such as amino acid deprivation, oxidative stress and puromycin (misfolding inducer) 

treatment (Szeto et al., 2006). Johansen and coworkers discovered that p62 binds directly 

to LC3 through an N-terminal domain also necessary for ubiquitin-binding, and this 

interaction in crucial for degradation of p62-positive inclusion bodies by autophagy. They 

were also able to determine p62 binding partners by LC-MS-MS, identifying MAP1B as 

its partner for MAP1-LC3B binding (Pankiv et al., 2007; Bjorkoy et al., 2005). This 

finding correlates with another study where p62 levels was found to increase in Purkinje 

cells treated with autophagy inhibitors, leading to the suggestion of using p62 as a novel 

indicator for autophagy impairment (Wang et al., 2006b; Yue, 2007). 
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Figure 9: Regulators of different steps of autophagy. Green arrows and boxes indicate 

positive regulation, red arrows and boxes negative regulation. DAMP and MDC = 

staining agents. Refer to text for details. Adapted from (Kirkegaard et al., 2004). 

AUTOPHAGY-REGULATING CONDITIONS 

AMINO ACIDS AND HORMONES 

There is evidence for autophagy performing a constitutive background clearing of 

proteins (Komatsu et al., 2005), but in addition it is highly induced by several factors, and 

inhibited by another set of factors. Central to regulation of autophagy are the amino 

acids, removal of which induces the process, i.e. as a starvation response (Mortimore and 

Schworer, 1977). Specific studies have been done to reveal that amino acids differ in the 

induction effect of their removal. Leucine has the highest inhibitory impact, but also 

phenylalanine, tyrosine, tryptophan, histidine, proline, methionine and glutamine may 

inhibit protein degradation (Grinde and Seglen, 1981; Seglen et al., 1980). Asparagine 

has been found to cause no change in autophagosome formation, but exerts its effect by 

blocking later fusion steps (Hoyvik et al., 1991, see Fig. 9). The important hormones 

insulin and glucagon modulate the amino acid effect, potentiating and antagonizing it, 

respectively (Kovács et al., 1989; Mortimore et al., 1987). However the added effect of 

these hormones is only seen at intermediate amino acid levels, neither insulin nor 



glucagon exerting any influence when autophagy rates are very low or high (Schworer 

and Mortimore, 1979),(Mortimore et al., 1989). As amino acids are one of the end 

products of autophagic degradation, feedback-inhibition of the process is a logical 

mechanism, but the exact molecular means of this inhibition is not well understood. It has 

been suggested that the mechanism includes an extracellular amino acid receptor, such as 

for leucine (Miotto et al., 1992), but this remains disputed since amino acid transport 

across plasma membrane was shown to be necessary for the amino acid effect (Van 

Sluijters et al., 2000; Luiken et al., 1996). The target for amino acids inside the cell in 

relation to autophagy is primarily the protein kinase mTOR, possibly through 

involvement of Rheb-binding (Avruch et al., 2006, see below, Fig. 11). Insulin, a 

polypeptide hormone product of the pancreas in mammals, has its effect regulated 

through the specific insulin receptors at the cell surface, initiating a signal cascade 

through insulin receptor substrate (IRS), phosphatidylinositol- 3 kinase (PI3K) and 

protein kinase B (Akt/PKB; see below, Fig. 11). 

CALCIUM

Calcium, a critically important ion in biological regulation appears to play a role in 

autophagy. Experiments with Ca2+ ionophores and chelators revealed dependency on the 

presence of Ca intracisternally, this observation was also strengthened by the use of the 

S/ER Ca2+ ATPase (SERCA) inhibitor thapsigargin (TG; Gordon et al., 1993). However, 

recent studies gainsay these findings by showing data that indicate autophagic stimulation 

by the same compound, though activation of the CaMKKbeta-pathway and mTOR 

inhibition (Mijaljica et al., 2007; Hoyer-Hansen et al., 2007). However, these latter 

findings are contradicted by an even more recent paper on the effect of S/ER Ca2+ stores 

in cardiac myocytes and its necessity for autophagy mediated by the S/ER variants of 

Bcl-2 or Bcl-XL, vital Beclin-1 binding partners and regulators (Brady et al., 2007). 

Kroemer and co-workers have presented data on ER-stress in relation to autophagy, 

where the second messenger inositol 1,4,5-triphosphate (IP3) acts on calcium-channels to 

inhibit starvation-induced, but not rapamycin-induced autophagy (Criollo et al., 2007b; 

Criollo et al., 2007a). It appears that the effect of IP3 on autophagy is mediated through 

the 1,4,5 triphosphate receptor (IP3R) and its ability to bind Bcl-2, since xestospongin B, 

37



an IP3R antagonist, does not affect Ca2+ - concentrations in ER or cytosol while 

autophagy is induced (see Fig. 10). 

Figure 10. Regulation of autophagy by inositol derivatives. Description of the PtdIns 

pathway and involvement of PI3Ks class I and III in opposite roles in autophagy. 

PtdIns(4,5)P2 processed by phospolipase C (PLC) releases IP3, which in turn acts on its 

Ca2+-regulating receptor IP3R on the ER membrane. TG and tunicamycin leads to Ire1-

mediated ER-stress and induced autophagy. IP3R inhibited by xestospongin B changes 

its interaction with Bcl-2, which in turn make more Beclin-1 available for autophagy 

activation independent of calcium stores. From (Criollo et al 2007).

LIPIDS AND LIPID-DERIVATIVES

The double-layered delimiting membrane of autophagic vacuoles depends on the correct 

balance of lipids present in the cell and the recruitment of phospholipid components. 

Phosphoinositides (PI), phosphorylated derivatives of the membrane lipid 
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phosphatidylinositol (PtdIns), regulate membrane trafficking, cytoskeleton function, and 

receptor signaling by recruiting of protein complexes to specific membranes in a 

reversible manner (Gillooly et al., 2001). PI3K is tied to regulation of autophagosome 

formation, since prominent inhibitors of the two classes of these kinases, 3-

methyladenine (Seglen and Gordon, 1982) and wortmannin (Ui et al., 1995) also lead to 

autophagic arrest. The regulation of autophagy in mammalian cells occurs via two PtdIns 

3-kinase complexes, class I and class III. The class III enzyme that generates 

phosphatidylinositol-3-phosphate (PtdIns(3)P) is similar to yeast Vps34 and exerts a 

stimulatory function on autophagy. Adversely, class I enzyme, which converts 

PtdIns(4,5)P2 to PtdIns(3,4,5)P3 at the plasma membrane, has an inhibitory effect on 

autophagy (Petiot et al., 2003; Petiot et al., 2000). This latter enzyme is part of a signaling 

cascade that activates mTOR (see below) and other kinases in the Akt/PKB pathways. 

The function of PtdIns(3)P in mammalian cells is not clear, although it is likely to have a 

role similar to that in yeast; however, the Atg20, Atg21, Atg24, and Atg27 proteins, 

which appear to bind this phosphoinositide, do not have known homologs in higher 

eukaryotes. Atg18 is the only PtdIns(3)P-binding protein with a mammalian homolog 

WIPI49 (Proikas-Cezanne et al., 2004). The formed phosphoinositide presumably recruits 

proteins containing FYVE or PX motifs required for autophagosome formation (Gillooly 

et al., 2001; Wishart et al., 2001). An example of a FYVE-domain protein connected to 

autophagy regulation is Alfy, shown to be associated with membranes and ubiquitin-

positive aggregates (Simonsen et al., 2004).  

RAPAMYCIN AND TOR KINASE 

Rapamycin, also known as sirolimus, is a macrolide drug that works as a potent inducer 

of autophagy through binding of FK506-binding protein 12 (FKB12; Cutler et al., 1999), 

and sequential inhibition of its target protein: a serine/threonine protein kinase called 

TOR (target of rapamycin), structurally related to phosphatidylinositol kinase. Among 

several other key functions, activated TOR is a prominent inhibitor of autophagy. In 

addition to rapamycin, TOR is inactivated under amino acid-deficient conditions, 

resulting in enhanced autophagic activity. Under amino acid-rich conditions, however, 

TOR is active and autophagy is inhibited (Van Sluijters et al., 2000). One of the known 

effects on the molecular machinery of autophagy is the TOR-dependent phosphorylation 
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of Atg13 (see above Fig. 7A). TOR is conserved in mammalian cells (as mTOR) and both 

yeast and mammals (m)TOR is part of two complexes known as (m)TORC1 and 2 (see 

Fig. 11). Mammalian mTORC1 complex consist of the additional proteins Raptor and 

mLST8, while mTORC2 has Rictor, mLST8 and mSin1 as extra components (Nojima et 

al., 2003; Wullschleger et al., 2005; Wullschleger et al., 2006).

The major difference between the two complexes is that mTORC1 is rapamycin-

sensitive, while mTORC2 does not respond to rapamycin. Additional stimuli for both 

complexes include stress, growth factors, insulin and phosphatidic acid. mTORC1 has 

several known protein phosphorylation targets including p70 ribosomal protein S6 kinase 

Figure 11: mTORC1 and 2 pathways. Refer to text for details. Adapted from 

(Wullschleger et al., 2006).
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(S6K) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1; Hay and Sonenberg, 

2004). Although not unequivocally proven, the negative regulatory cascade upstream of 

mTOR includes class I PtdIns 3-kinase, PDK1 and Akt/PKB, while the phosphatase 

PTEN acts antagonistically to the PtdIns 3-kinase to induce autophagy (Arico et al., 

2001). Akt/PKB in turn, inhibits the tuberous sclerosis complex TSC1/2, a complex also 

activated by the AMPK-cascade (for AMPK, see below). Finally, this complex, 

composed of proteins hamartin and tuberin, exhibits GTPase-activating properties to alter 

the small GTPase Rheb by changing its binding partner from GTP to GDP (Tee et al., 

2003).

 Rheb, first identified as a Ras homologue enriched in brain, is a G-protein 

involved in autophagy regulation by its activation of mTOR: it is potentially necessary 

for both mTORC complexes. Rheb expression is elevated in many tumor cells, and it may 

be the critical target by which farnesyl transferase inhibitors mediate their anti-tumor 

activity (Basso et al., 2005). mTORC2 appear to have a role in cytoskeleton regulation, 

especially during cell growth,  through its stimulation of F-actin stress fibers, paxillin, 

Rho, Rac, cdc42 and protein kinase C (PKC , Sarbassov et al., 2004). This complex also 

appears to be responsible for Akt/PKB activation, although through a different 

phosphorylation site than PDK1, indicating PDK2-properties for mTORC2 (Sarbassov et 

al., 2005).

 Heterotrimeric guanine nucleotide-binding proteins (G-proteins) are molecules 

involved in signal transduction in general, but also specifically in modifying autophagy 

(Ogier-Denis et al., 1996). New evidence suggests that the pertussis toxin-sensitive alpha 

subunit of variant Gi3 specifically is required for the insulin-mediated regulation of a 

autophagy and furthermore hints at a previously unrecognized function for G i3 on 

autophagosomal membranes as a go-between with mTOR, thus implying a cross-talk 

between these related mediators of autophagy (Gohla et al., 2007). Autophagy was found 

to be stimulated by a G -interacting protein (GAIP) which promoted the hydrolysis of 

G i3-bound GTP (Ogier-Denis et al., 1997). Another protein, AGS3, prevents 

dissociation of GDP from G i3 again leading to stimulated autophagy (Meijer and 

Codogno, 2004).

 The monomeric GTP-binding protein rab7 is believed to be located to delimiting 

membranes of amphisomes and autolysosomes, and has a late endosomal origin. 



Furthermore, overexpression of a dominant negative form of rab7 protein led to the 

inability of autophagosomes to fuse with lysosomes (Kimura et al., 2007), indicating a 

crucial role for rab7 in this mechanism. The related protein Ras is also involved in 

autophagic regulation, by its position upstream of ERK1/2, which inhibits TSC1/2.
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SPHINGOLIPIDS

Ceramide is a sphingolipid signal molecule with an essential role in cell growth, cell 

death, proliferation, and stress (Levade et al., 2002). Ceramide was first implicated as 

being a signal for programmed cell death when patients with the genetic disorder 

Niemann-Pick disease were found to have certain cell types that were resistant to 

apoptosis (Merrill 2006). Studies have indicated several targets for ceramide, including 

PP1, PP2A, PKC and cathepsin D (Pettus et al., 2002; Kashiwagi et al., 2002; Kajimoto 

et al., 2004; Heinrich et al., 1999), proteins that are activated subsequent to ceramide 

stimulation. In human colon cancer cells, C2-ceramide, a membrane-permeable ceramide 

variant, stimulated autophagy, probably through interference with class I PI3K activation 

and Akt/PKB-phosphorylation (Scarlatti et al., 2004). It was also shown to induce 

increased levels of Beclin-1. Furthermore, ceramide is believed to mediate tamoxifen-

dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. 

Ceramide also enhance transcription of BNIP3, a cell death factor protein found in 

mitochondria inducing autophagic cell death (Daido et al., 2004).

 The related product sphingosine-1 phosphate created from sphingosine 

(deacylated ceramide) by sphingosine kinase 1 (SK1) has similar effects on autophagy as 

seen by apparent inhibition of mTOR and increased levels of Beclin-1 (Lavieu et al., 

2006). The autophagic effects of S1P are, however, milder than for ceramide, and appear 

at a later stage in the signaling cascade, indicating different roles in regulating cell 

survival by autophagy for these two second messengers.  

ENERGY

Energy in the form of ATP is, as for almost all cellular processes, also required for the 

autophagic process, at the initial sequestration step, for fusion events and for lysosomal 

proton pumping (Plomp et al., 1987; Plomp et al., 1989). By external stimuli that deplete 

ATP stores, the ratio between AMP and ATP increases, which leads to repressed 

autophagy, possibly due to the activation of  energy-sensing AMP-activated protein 

kinase (AMPK) (Samari and Seglen, 1998). AMPK is a heterotrimeric serine/threonine 

kinase activated by LKB1-effected phosphorylation (Baas et al., 2003), and/or by 

adenosine monophosphate, its allosteric activator. Its main function is to gauge the 
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energy conditions in the cell through binding of AMP, and correspondingly down-

regulating ATP-dependent metabolic processes to promote short-term cell survival. The 

ability of adenosine and AMP analogues, AICAR and ZMP respectively, to inhibit 

autophagy supports the involvement of AMPK (Møller et al., 2004b). Furthermore, the 

differentiated antagonistic effects of the flavonoid naringin against a spectrum of 

autophagy-inhibiting toxins as well as against AMP/ZMP, exactly parallels its 

antagonism of AMPK inhibition.  

 Ambient temperature is also a potent regulator of the autophagy, a total lack of 

autophagosomes being seen in isolated hepatocytes at 20˚ C (Gordon et al., 1987). 

PROTEIN KINASES 

Ample evidence for the impact of phosphorylation states on autophagy exist, in addition 

to the already mentioned AMPK and mTOR. S6K1 is another kinase that exerts an 

inhibitory effect on autophagic sequestration (Blommaart et al., 1995). This 

serine/threonine kinase, originating from a single gene encoding two variants, p85 and 

p70, the former including a nuclear localization signal, the latter predominantly 

cytoplasmic, is also known to be involved in cell growth. p70S6K is activated through 

sequential phosphorylations in the tail-region mediated by PI3K (Pullen et al., 1998), and 

additional phosphorylation events mediated by PDK and mTOR which promotes 

phosphorylation at the key site threonine-389 (Dennis et al., 2001). Since administration 

of an autophagy-repressing amino acid mixture also led to S6 phosphorylation, a target 

for S6K, a hypothesis that S6 was directing amino-acid-dependent inhibition of 

autophagy was presented (Blommaart et al., 1995). This is in accordance with the effect 

of rapamycin on both pathways in yeast (Noda and Ohsumi, 1998), but not with evidence 

from hepatocytes where rapamycin fails to work antagonistically on amino acid inhibition 

under certain conditions (Kanazawa et al., 2004). Recent studies have shown that 

autophagy-suppressive agents such as okadaic acid, AICAR and amino acids all led to 

phosphorylation of the tail region of S6K, but not S6 phosphorylation, indicating a 

relationship between autophagy and S6K, rather than S6 (Møller et al., 2004a). Further 

evidence for S6K involvement in autophagy emerges from a study where ATG1 was 

shown to regulate S6K by interfering with Thr389 activation site phosphorylation in D. 
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melanogaster (Lee et al., 2007). Overexpression of ATG1 similarly inhibited S6K and 

was associated with stimulated autophagy, and cell growth arrest.

Algal toxins  inhibit protein phosphatase type 2A, resulting in 

hyperphosphorylation and consequent inhibition of autophagy, indicating a positive effect 

of said phosphatase (Holen et al., 1993). Interestingly, the flavonoid naringin antagonized 

the okadaic effect and restored autophagic rates (Gordon et al., 1995). Other kinases may 

influence the process in the opposite direction, such as cyclin-dependent kinases: for 

example, the CDK inhibitor olomoucine was found to inhibit autophagy (Strømhaug et 

al., 1997). Furthermore, an involvement of Ca2+/calmodulin-dependent kinase II 

(CaMKII; Holen et al., 1992) was indicated by the effect of KN62 and other CaMKII 

inhibitors, which canceled the autophagy-suppressive effect of okadaic acid (Holen et al., 

1993).

 Stress-activated kinases (SAPK) and mitogen-activated kinases (MAPK) are 

classes of protein kinases, among which ERK1/2 (extracellular signal-regulated kinase 

1/2), SEK-1 (SAPK/ERK kinase) and JNK (c-Jun N-terminal kinase) seem to play a role 

in autophagy regulation. ERK1/2 is a part of the Ras/Raf-1/MEK/ERK cascade that 

seems to have a role in regulation of TSC1/2 (see Fig. 11). Reports on increased activity 

of this cascade is related to induction of autophagy in several human carcinomas; 

additionally, it seems that ERK1/2 interact with the previously mentioned GAIP to 

regulate autophagosome formation (Ogier-Denis et al., 2000). SEK-1  and JNK  were 

both found to be activated in an okadaic acid-dependent and naringin-sensitive manner in 

rat hepatocytes, indicating the involvement of an AMPK - SEK/JNK-cascade in 

mediating toxin-repressive effects on autophagy (Møller et al., 2004a).

CALPAIN 

The endopeptidase family of calpains consists of calcium-dependent proteins that are 

involved in cytosolic proteolysis. The catalytic subunit of 80 kDa joins with a regulatory 

subunit of 30 kDa to form a heterodimer, of which there exist several ubiquitous as well 

as tissue-specific variants (Goll et al., 2003). Calpains regulate protein activity by 

proteolytic processing. Their major function is exerted at the plasma membrane, to which 

they are recruited after Ca2+ activation in the presence of inositol-phospholipids (Saido et 

al., 1992). Substrates of calpain are numerous, including plasma membrane Ca2+-ATPase 
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(Brown and Dean, 2007), PEBP (Chen et al., 2006), Atg5 (Yousefi et al., 2006) and 

possibly other autophagy-related proteins, since autophagy was non-existent in a calpain-

knockout model of mouse embryonic fibroblasts (MEF, Demarchi et al., 2006). In cell 

lines overexpressing Atg5, its processing by calpain appears to work as a switch to 

programmed cell death, as demonstrated by an N-terminally processed form of Atg5 

detected in mitochondria of apoptotic cells together with Bcl-XL (Yousefi et al., 2006).

OXIDATIVE CONDITIONS 

Reactive oxygen species (ROS) occur in the cell spontaneously or as a result of 

environmental influence, and may have deleterious effects on the cell. Reported stimuli 

of ROS formation include mitochondrial malfunction, ER stress and tumor necrosis 

factor stimulation (Kamata et al., 2005). ROS are highly reactive molecules against which 

cells have developed defense mechanisms, such as the ubiquitin-proteasomal pathway, 

but also autophagy, that remove damaged mitochondria and oxidized proteins. It seems 

that mildly oxidized proteins are targets for CMA (Kiffin et al., 2004), while cells under 

more severe oxidative stress accumulate damaged proteins prone to degradation through 

macroautophagy (Xiong et al., 2007). Oxidation may also be responsible for signaling 

events, the activity of several enzymes being modulated through oxidation of cysteines in 

their active site (Rhee et al., 2005). In a recent study, low levels of hydrogen peroxide 

(H202) were produced in mitochondria at the early stages of starvation-induced autophagy 

in a class III PI3K-dependent manner (Scherz-Shouval et al., 2007). By adding 

antioxidants, autophagy was inhibited, indicating the need for ROS in autophagic 

initiation. Furthermore, the cysteine protease hAtg4, required for the inactivation and 

delipidation of Atg8 homologues, appeared to be the target for ROS. The active site 

consisting of a cysteine at position 81 in hAtg4A was oxidized, thus inactivating the 

enzyme, and increased lipidation of mammalian Atg8s was seen in vitro (Scherz-Shouval

et al., 2007). In conclusion, this could mean that ROS may also work as a positive 

regulator of autophagy. Additional studies on rapamycin-induced autophagy and 

mitochondria in yeast show similar result, where ROS were observed quickly after 

autophagic induction in the cell together with oxidation of mitochondrial lipids. By 

adding resveratrol, an antioxidant found in grapes, the induced autophagy of cytosolic 

proteins as well as mitochondria was stalled (Kissova et al., 2006). Also, since damaged 
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mitochondria and peroxisomes produce more ROS than normal ones, it has been 

extrapolated that the selective sequestration of these organelles by autophagy may be 

initiated by hydrogen peroxide in a similar fashion (Liu and Lenardo, 2007). 
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AUTOPHAGY AND DISEASE 

A viable autophagy is most important for the cell (and organism) as a maintainer of 

homeostasis. As the stimulated autophagic pathway can dispose of up to 4 % of the 

cellular proteins per hour, and may account for as much as 80 % of the total protein 

turnover, an impaired autophagy will have major consequences for the cell. In addition, 

the degradation of RNA and lipids will also contribute to the functional role of this 

pathway. On the tissue level, it has been shown that liver size may vary greatly in the 

absence or presence of nutrients, and autophagy is assumed to be a major contributor to 

this effect (Millward, 1980; Mortimore et al., 1987). For unicellular organisms, such as S.

cerevisiae, a defect in autophagy will lead to rapid death under starvation conditions 

(Kametaka et al., 1998). For many disease-associated autophagic mechanisms, there is a 

balance between too much and too little activity, where one condition could be as 

pathologic as the other (see also Fig. 12). For instance, the lysosomal glycogen-storage 

disorder Pompe disease (Engel, 1970; Sharma et al., 2005), characterized by an  

accumulation of autolysosomes in muscle, seems to be caused by both a malfunction in 

lysosomal degradation and elevated autophagic activity (Raben et al., 2007). 

 The question of whether autophagy is involved in normal development is 

addressed in a recent study showing the involvement of autophagy in the clearance of 

dead cells in the early mouse embryo (Qu et al., 2007). Furthermore, embryos that 

contain a mutation to Beclin-1 die early during embryogenesis, exhibiting a 

developmental delay (Yue et al., 2003) whereas Atg5- or Atg7-deficient mice survive 

embryogenesis but suffer from nutrient and energy insufficiency soon after birth (Kuma 

et al., 2004; Komatsu et al., 2005). To elucidate the mechanism by which Beclin-1 is 

regulated during early stages of development, a gene-trap approach have been used to 

identify modulators, uncovering a new protein, called Ambra1, responsible for triggering 

Beclin-1–dependent autophagic response during embryogenesis to avoid neural tube 

defects (Maria et al., 2007). 
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The great surge in research on autophagy has been spearheaded by its emerging 

importance in the pathology of serious human diseases. The evidence for suppressed 

protein degradtion in cancer cells, and thus accelerated growth, indicates the possible 

Figure 12. Possible effects of autophagy on certain diseases. Red area encompasses 

negative effects, blue area positive effects. Right/light side increased/induced 

autophagy, left/dark side repressed/inhibited autophagy. Adapted from (Shintani and 

Klionsky, 2004). 
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therapeutic value of autophagy regulation (Gunn et al., 1977). New developing strategies 

involve autophagy or lysosome inhibitors as adjuvants to chemotherapy, for example the 

use of chloroquine, an anti-malaria drug that disrupt lysosomal pH, which was shown to 

augment therapy of lymphomas (Amaravadi et al., 2007). In cells with defective 

apoptosis, autophagy inhibitors could sensitize cells to therapy otherwise rendered 

ineffective due to autophagy-driven cell survival (Jin and White, 2007). Furthermore, 

ionizing radiation aimed at killing cancer cells leads to abnormal proteins believed to be 

removed by an active autophagy (Paglin et al., 2001), in which case a supplementary 

inhibition of autophagy could be therapeutically beneficiary.

 The basic tumour-suppressive role of autophagy was first demonstrated by the 

ability of preneoplastic and neoplastic liver cells, which have a low autophagic activity, 

to escape autophagic (3-MA-sensitive) cell death caused by amino acid starvation 

(Schwarze and Seglen, 1985). More recently, an overexpression of Beclin-1 (hAtg6) that 

led to increased autophagy was shown to be accompanied by a reduced tumorigenicity 

(Liang et al., 1998; Aita et al., 1999; Liang et al., 1999). The interaction between Bcl-2, 

an antiapoptotic pro-oncogene, and Beclin-1 might be at the core of the relationship 

between cancer and autophagy (Pattingre and Levine, 2006). A specific binding domain 

for Bcl-2 in Beclin-1 hinders the latter protein from taking part in autophagic stimulation 

as a part of the PI3K complex (Pattingre et al., 2005). There is also evidence for other 

known tumor suppressors which stimulate autophagy, e.g. PTEN (Arico et al., 2001), 

DAPk (Gozuacik and Kimchi, 2004) and p53 (Feng et al., 2005), and vice versa, 

oncogenes that suppress autophagy, such as mTOR (Feng et al., 2005) and class I PI3K 

(Petiot et al., 2000; Arico et al., 2001). It should, however, be stressed that some basic 

autophagic activity may be needed even by cancer cells, e.g., for survival under extreme 

nutrient deprivation (Thompson et al., 2005). 

 In addition to the elimination or support of intracellular pathogens discusses on 

page 12, autophagy may play a role in the adaptive immune response. The innate and 

adaptive immune system apparently triggers autophagy by producing tumor necrosis 

factor (TNF) alpha and interferon gamma (IFN, Gutierrez et al., 2004a). It has been 

shown that autophagic digestion of endogenously synthesized cytosolic proteins enables 

their processing for MHC II presentation thus connecting autophagy with adaptive 

immunity (Paludan et al., 2005; Dengjel et al., 2005). Apparently, the antigens are 
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presented on the cell surface after exocytosis from amphisomes (Levine and Deretic, 

2007). CMA seems to be involved in the presentation of endogenous peptides for MHC 

class II (Zhou et al., 2005).

 A protective effect against viruses by the eIF2a pathway, which induces 

autophagy has also been observed (Tallóczy et al., 2002). In contrast, some recent studies 

point to an autophagy-subversive mechanism of ssDNA viruses such as polio virus. 

Infected cells display vesicles similar to double-membrane delimited autophagosomes, 

and in these cells siRNA against LC3 and Atg12 reduced both intra- and extra-cellular 

viral yields (Kirkegaard and Jackson, 2005). Apparently, the poliovirus proteins 2BC and 

3A which co-localize with LC3 induce autophagosome-like vesicles to form RNA 

replication platforms.  

 The turnover of cytosolic proteins may also prevent accumulation of toxic 

aggregate-prone proteins. Post-mitotic cells such as neurons are particularly susceptible 

to disruptions in basal homeostasis caused by such aggregates. Aggregation of proteins 

can be elicited in cells by a number of stimuli (see Fig. 4), some of which are also 

inducers of autophagy. A role for autophagy has been discovered in Alzheimer’s disease 

(AD; Nixon et al., 2005; Cataldo and Nixon, 1990), Parkinson’s disease (PD; Anglade et 

al., 1997), and in the degradation of proteins with polyglutamine expansions 

characteristic of Huntington’s disease (HD; Ravikumar et al., 2002), and different forms 

of ataxia (Berger et al., 2006). In amyotrophic lateral sclerosis the anti-oxidant protein 

(Cu/Zn) superoxide dismutase (SOD1) is mutated and develops toxic aggregates. 

Monomers of mutated SOD1 are bound to and inhibit the proteasome after 

ubiquitinylation through the mediation of CHIP (Carboxy-terminal end of HSC70 

interacting protein), a cochaperone for HSC70 (Huang and Klionsky, 2002; Urushitani et 

al., 2004).

 Since the UPS may, furthermore, be impaired by protein aggregates (Hyun et al., 

2003; Bence et al., 2001), it could be that autophagy serves as a mechanism that cells 

hold in reserve for the removal of protein aggregates. In this regard -synuclein can be 

degraded by both UPS and autophagy (Webb et al., 2003) unless it is mutated (Cuervo et 

al., 2004; see Fig. 13). So can wild-type huntingtin, but the polyQ expansive variant 

inhibits UPS function and induces autophagosome formation (Venkatraman et al., 2004; 

Kegel et al., 2000). Therefore, as aggregates arise, cells could degrade these proteins by 
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autophagy while preserving the function of the UPS. Several studies now indicate that 

cells may attempt to compensate for impairments in one form of proteolysis (UPS) by 

dramatically elevating an alternate form of protein degradation (autophagy) (Keller et al., 

2004; Pandey et al., 2007a). 

Figure 13. Effect of mutant -synuclein on chaperone-mediated autophagy. Normal 

–synuclein (Syn) is targeted by Hsc70 and delivered to the lysosome through CMA.  

A mutant form of –synuclein ( Syn), however, binds to lysosome surface and 

blocks other CMA substrates leading to protein aggregates. Adapted from (Cuervo et 

al., 2004). 



PROTEOMICS 

Proteomics encompasses the large-scale identification and study of proteins, particularly 

their structures and functions. Proteins are vital parts of living organisms, as they are the 

main components of the physiological pathways of cells. The term "proteomics" was 

coined to make an analogy with genomics, the study of the genes. The word "proteome" 

is a portmanteau of "protein" and "genome". The proteome of an organism is the set of 

proteins produced by it during its life cycle, or during a distinct internal or external 

condition.
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Figure 14. Progression of proteomic research. Indications of expansion in the field by 

number of articles published per year 1994-2006, some key events displayed.
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Proteomics is often considered the next step in the study of biological systems, after 

genomics. However, it is much more complicated than genomics, mostly because while 

an organism's genome is rather constant, a proteome differs from cell to cell and 

constantly changes through its biochemical interactions with the genome and the 

environment. An organism has radically different protein expression in different parts of 

its body, different stages of its life cycle and different environmental conditions. Another 

major difficulty is the complexity of proteins relative to nucleic acids, by way of 

modifications which may occur on many amino acids.  

 Although protein analysis and mass spectrometry are well-established fields, it is 

just over a decade since the first pure proteomics article was published. Since then, a 

steady increase in research articles on proteomics has been witnessed: from less than a 

score in 1996 to almost 4000, outpacing the growth in the autophagy field (see Fig. 14). 

Scientists are very interested in proteomics because it gives a much better understanding 

of an organism than genomics. First, the level of transcription of a gene gives only a 

rough estimate of its level of expression into a protein. An mRNA produced in abundance 

may be degraded rapidly or translated inefficiently, resulting in a small amount of 

protein. Second, many proteins experience post-translational modification that 

profoundly affect their activities; for example some proteins are not active until they 

become phosphorylated. Methods such as phosphoproteomics and glycoproteomics are 

specialized subfields used to study post-translational modifications. Third, many 

transcripts give rise to more than one protein, through alternative splicing or alternative 

post-translational modifications. Finally, many proteins form complexes with other 

proteins or RNA molecules, and only function in the presence of these other molecules. 

 At the time of the completion of a rough draft of the human genome, many 

researchers started to look at how genes and proteins interact to form other proteins. A 

unexpected finding of the Human Genome Project is that there are far fewer protein-

coding genes in the human genome than proteins in the human proteome (an estimate of 

20,000 - 25,000 genes versus about 1,000,000 proteins, Lander et al., 2001; Venter et al., 

2001). The protein diversity is thought to be due to alternative splicing, controlled protein 

degradation and ~200 different post-translational modification of proteins – occurring 

with a much greater variety than previously thought (Tsur et al., 2005). The discrepancy 
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implies that protein diversity cannot be fully characterized by gene expression analysis, 

thus proteomics is useful for characterizing cells and tissues.

HUPO

An international collaboration aiming at coordinating proteome research is headed by the 

Human Proteome Organization (HUPO: http:// www.hupo.org). It was launched to 

‘foster... international proteomic initiatives to better understand human diseases’. The 

main focus for HUPO so far has been to standardize protocols for sample handling and 

data analysis. These steps are crucial to have under control when aiming to compare 

results on a world-wide basis. On a larger timescale, the goal for HUPO is to map all 

proteins in the human body. Specific emphasis has been put on a few select areas by 

initiating a Human Liver Proteome Project (http://www.hlpp.org), a Human Brain 

Proteome Project (http://www.hbpp.org) and a Plasma Proteome Project 

(http://www.ppp.org). In addition HUPO is engaged in establishing PSI- Proteomics 

Standard Initiative (Hermjakob et al., 2004; Orchard et al., 2003), as well as the Human 

Antibody Initiative (HAI), which include the Human Protein Atlas 

(http://www.proteinatlas.org; Uhlen et al., 2005). All research is available for scientists 

through internet connections and is free of charge.  
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MASS SPECTROMETERS 

Mass spectrometry has since its infancy a century ago grown from a specialized field for 

isotope determination to a widely used tool for research and development in biomedicine, 

chemistry and physics (Thomson, 1912). It relies on separation of molecules by mass and 

has had many different manifestations during its development. As an instrument it 

consists of five parts; 1) an inlet system, 2) an ion source, 3) a mass analyzer, 4) a 

detector and 5) a recording system (Fig. 15). A breakthrough was the coupling of a mass 

spectrometer (MS) to a gas chromatograph in 1957, but even greater usage within the 

biological world was obtained by the discovery of new ionization techniques in the 1980s 

by Hillenkamp and Karas (Hillenkamp and Karas, 1990), Tanaka (Hirayama et al., 1987), 

and Fenn (Fenn et al., 1989). This discovery was rapidly having such a great impact that 

the latter two of the inventors received the Nobel Prize in Chemistry in 2002. 

Electronspray ionization (ESI; Fig. 16) and matrix-assisted laser desorption-ionization 

(MALDI; Fig. 16) enabled the vaporization of biomolecules such as proteins and 

peptides. For the ionized gas molecules to be analyzed they must be subjected to a 

magnetic or electric field which separates them according to their specific mass per 

charge ratio (m/z) in a mass analyzer. The development in mass analyzers would also 

influence the use of mass spectrometers within protein chemistry. The key parameters for 

mass analyzers in proteomics are sensitivity, resolution, and mass accuracy. The current 

Figure 15. Schematics of a mass spectrometer. 1) Inlet, 2) ion source, 3) mass 

analysator, 4) detector, 5) recording system/ data analysis. Dotted black line indicates 

boundaries for mass spectrometer proper, and may be under vacuum conditions, red 

dotted line represents the trajectory of an ion.  
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instruments commonly used which fulfill these rigid criteria are ion trap (IT), time-of-

flight (TOF), quadrupole (Q) and Fourier transform ion cyclotron resonance (FTICR) 

instruments. These can also be combined in sequence to expand the possibilities of the 

instrument, such as QTOF, QIT (another Nobel Prize-winning invention: Paul and 

Dehmelt in 1989), QQQ, IT-FT and TOFTOF (see Fig. 16 a-f).  

In a TOF mass spectrometer, the ions can be deflected with an electrostatic 

reflector that also focuses the ion beam. Thus, the masses of the ions reaching the second 

detector can be determined with high precision and these masses can reveal the exact 

chemical compositions of the peptides, and therefore their identities. Accuracy and 

sensitivity are the strongest hallmarks for new TOF-instruments.  

 In a linear quadrupole mass filter, certain combinations of alternating current 

(AC) and direct current (DC) voltages allow an ion to have a stable trajectory; ions pass 

through the filter and strike a detector. In the QIT-MS, those ions with stable trajectories 

are trapped in the volume encompassed by the electrodes. The donut-shaped ring 

electrode takes the place of one pair of poles. The end-caps replace the other pair of 

poles. The dimensions of the QIT-MS are described in terms of the distance from the 

center of the trap to the closest point on each of these electrodes. Although the 

specifications of commercial QITs are significantly lower than those for an FT-ICR-MS, 

the QIT-MS is mechanically and operationally much simpler. In addition to the inherent 

advantages of a trapping instrument, the QIT-MS also boasts relatively simple vacuum 

requirements, a small footprint, fast analysis, and ruggedness, and it is relatively 

inexpensive. Furthermore, an ion trap is able to do several MS-stages up to MS8 (Jin & 

Glish 1998). New developments include the advent of high capacity three-dimensional 

and linear versions, as well as the Orbitrap, which have the advantages of the ion trap 

with the accuracy typical of a TOF-instrument (Schwartz et al., 2002; Hu et al., 2005). 
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Figure 16 (a-f). Variants of ion sources and mass analyzers. From (Aebersold and Mann, 

2003).

PROTEIN CHARACTERIZATION 

Current research in proteomics requires first that proteins be resolved, sometimes on a 

massive scale. Protein separation can be performed using two-dimensional gel 

electrophoresis which usually separates proteins first by isoelectric focusing and then by 

molecular weight. Protein spots in a gel can be visualized using a variety of chemical 

stains or fluorescent markers and quantified by the intensity of their stain (see Fig. 17). 

Once proteins are separated and quantified, they are identified. Individual spots are cut 

out of the gel and cleaved into peptides with proteolytic enzymes. These peptides can 

then be identified by mass spectrometry through peptide mass fingerprinting (PMF). Due 

to its simplicity, mass accuracy and resolution, MALDI-TOF MS is the most favored 
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instrument for PMF identification of proteins. The mass list generated from the m/z ratios 

of peptides in the spectrum of a digested protein is compared with a theoretical database 

of proteins that have been treated with the same proteinase in silico. With high mass 

Figure 17. Schematic procedure for identification of proteins by LC-ESI-QTOF mass 

spectrometry
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. 1) Subcellular fractionation, and protein separation by SDS—PAGE, 2) 

Extraction and proteinase treatment to produce peptides, 3) LC MS of tryptic peptides, 

4) Selection of parent ion that is processed by CID 5) to get peptide sequence 

information leading to proptein identification. From (Aebersold and Mann, 2003).



accuracy this procedure enables valid identification of a few proteins in a spot or simple 

mixture, especially if the organisms have a complete protein database or genome 

sequence. For more complex protein identification, a tandem mass spectrometer is used, 

with a sequence of mass analyzers (see Fig. 16). The peptides detected with the first MS 

are isolated /selected one by one and subjected to collision-induced dissociation (CID- or 

collisionally activated decomposition -CAD) before entering a new MS, which measures 

the resulting fragments in a MS/MS spectrum.  

 This usually leads to peptide backbone cleavage, and sequence information at the 

amino acid level, giving greater confidence in protein identification (see Fig. 18). Both 

methods rely on different search algorithms for verifying results and bioinformatics tools 

with inherent strengths and weaknesses, for instance the popular Mascot search engine 

from Matrix Science (http://www.matrixscience.com) and ProFound at The Rockefeller 

University (http://prowl.rockefeller.edu). Another fragmentation technique unique for ion 

traps called electron transfer dissociation (ETD) which uses fluoranthene anions to 

Figure 18: Fragmentation of peptides by tandem mass spectrometry.  A charged 

peptide ion collides with an inert gas and is sequentially cleaved along the peptide 

backbone. Nomenclature starts with labeling of the cleaved fragments from the 

amino-terminal end, x,y,z with the charge on the C-terminal fragment, a,b,c with 

charge retained on the N-terminal fragment. CAD/CID preferentially produces to b/y-

ions, ETD with c/z –fragment ion pairs. From (Mikesh et al., 2006). 
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transfer charged groups in gas phase (Mikesh et al., 2006) results in softer cleavages for 

labile PTMs, as demonstrated for glycoproteomics (Catalina et al., 2007). 

METHODICAL CHALLENGES  

One of the main limitations for a comprehensive proteomic analysis has its origin in the 

vast quantitative differences of the proteins themselves. Most techniques only allow the 

study of the most abundant proteins, as was illustrated by a systematic 2D-gel analysis of 

S. cerevisiae, where repeated runs revealed that the same 1500 proteins constituting of the 

major protein mass in the yeast cell would be detected by different basic methods (Gygi 

et al., 2000). Another demonstration of the concern with differences in abundance 

appeared in a 3-dimensional separation of rat liver proteins, where only highly expressed 

proteins were seen (Stevanovic and Bohley, 2001).

PROTEIN SEPARATION 

The dynamic range of proteins found in cells and body fluids pleads for a higher order of 

separation, for instance, the abundance of plasma proteins range from 2 pg/ml 

(interleukin-6) to 50 mg/ml (albumin) (Lai et al., 2002; Ritchie et al., 1999). All physico-

chemical properties of proteins can be used to separate them, preferably in an orthogonal 

manner. Common preparative separation methods utilized are high performance liquid 

phase chromatography (HPLC), such as weak or strong cation or anion exchange, 

hydrophobic interaction  and reverse phase (RP) chromatography, as well as capillary 

electrophoresis, liquid phase isoelectric focusing (LP-IEF) and free-flow electrophoresis 

(Righetti et al., 2003). Many of these can be combined to further separate complex 

samples, enabling the discovery of less abundant protein variants, i.e. LP-IEF followed 

by strong cation exchange and RP-HPLC. It is important that the characteristics of the 

proteins used for separation display little overlap between each other to maximize 

separation effect. Another intriguing technique developed in Ghent is the COFRADIC 

method, where diagonal electrophoresis is applied to simplify complex mixtures (Gevaert 

et al., 2003; Sandra et al., 2007). This is done by performing a primary HPLC run of a 

complex mixture of tryptic peptides that is subsequently chemically altered at selected 

amino acids side chains. The changed characteristics of these peptides makes them shift 
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retention time when a second, identical HPLC run is performed, enabling the sorting out 

of modified peptides.  

QUANTIFICATION

Quantification of proteins and peptides in complex samples is another potential pitfall of 

proteomic analysis. Two-dimensional (2-D) gel electrophoresis has been a historically 

important and currently widely used approach for high-throughput mass spectrometry-

based quantification of proteins. By comparing the intensities of stained spots on 2-D 

gels, the relative amounts of specific proteins can be obtained (Lilley et al., 2002). Its use 

was further enhanced by introducing fluorescent staining dyes (DIGE), which made 

comparison easier and less time-consuming, although at a higher cost (Unlu et al., 1997).

 Quantification at a larger scale can only be done with mass spectrometers, but 

there have been obstacles to climb before this can be achieved. Firstly, the ionization 

techniques are still not completely understood with regards to relationship between 

analyte inserted and signal measured. Secondly, there is a selectivity in which peptides 

become ions, and this will be reflected by poor relative quantification (Aebersold and 

Mann, 2003). The preferred way to overcome this is to apply a stable isotope to half the 

pool of samples.

 This method makes use of the ability of a pair of chemically identical species with 

different molecular weights due to stable isotopes to be differentiated in a mass 

spectrometer, an example is isotope-coded affinity tags (ICAT; Gygi et al., 1999; see Fig. 

19) and AQUA (Conrads et al., 2002). The ratio of the signals between the isotopes will 

reflect the relative amount of each of the samples. Different types of isotope-tagging of 

proteins are specific for sulfhydryl (Gygi et al., 1999), and amino acids (Munchbach et 

al., 2000). An assay for labeling in vitro have been developed: stable isotope labeling 

with amino acids in cell culture (SILAC), which incorporates heavy isotopes of carbon to 

specific amino acids in one set of samples (Ong et al., 2003). SILAC used in studies on 

Jurkat T-cells stimulated with CD95/Fas/Apo-1 to induce apoptosis demonstrated the 

efficacy of this technique when compared to silver-stained two-dimensional gels (Thiede 

et al., 2006).   
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Figure 19. Quantification with ICAT. Two sets of samples are labeled with different 

isotopes, typically d0 and d8, the latter has 8 hydrogens exchanged for the one mass 

unit heavier isotope deuterium. After processing, a difference in m/z value of 8 Da can 

be detected in the mass spectrum and the corresponding sample peaks will have a 

ratio reflecting the quantitative relationship between the proteins in the samples. ICAT 

is a biotin-tagged patented reagent. 

 A alternative method is AQUA that aim at delivering absolute quantization based 

on synthetic internal peptide standards and selective reaction monitoring (SRM) mass 

spectrometer analysis (Gerber et al., 2003; Stemmann et al., 2001). The suitability of the 

method depend on criteria for sample preparation, amount and ease-of-use, for instance 

the ICAT design only enables pair-wise comparison, while AQUA relies on synthesizing 

peptides identical or similar to analyte. Hence, quantification of a protein mixture is only 

possible with preparation and beforehand knowledge of proteins of interest.  

 Emerging techniques combined with more sensitive instruments have changed the 

concept of quantification of large-scale proteomics studies, as demonstrated by a serum 

procedure developed at NIH Bethesda including FT instrumentation, standardized LC-

set-up, abundant protein removal and most importantly better normalization algorithms 

(Wang et al., 2006a), the advent of label-free quantitative proteomics may be near. 
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Additional assurance might be found in utilizing evidence-based peptide libraries (Roy 

and Becker, 2007) that could nearly eliminate false positives that have been a pitfall of 

proteomics on a large scale. 

DATA ANALYSIS 

The staggering amount of data generated from a proteomic experiment is yet another 

potentially problem. To handle the output in a stringent and reliable way is crucial to 

proteomic research, and necessitates bioinformatics knowledge. The main problem with 

CID-generated peptide sequences is the occurrence of false positives and how to 

eliminate them without manual handling. Thus, it is important that computer programs 

use robust and transparent statistical principles to estimate accurate probabilities 

indicating the likelihood for the presence of a peptide or protein in the sample, such as 

evaluated for the yeast proteome (Keller et al., 2002; Peng et al., 2003). New standards 

are emerging for acceptable protein identifications- and m/z values are expected to be 

presented for external evaluation by peer-reviewer in the event of a publication of mass 

spectra data and stored in a public accessible database called PRIDE 

(http://www.ebi.ac.uk/pride; Martens et al., 2005). 

TOP-DOWN PROTEOMICS 

Analyzing the proteome by digesting the proteins into peptides and subsequential 

fractionation and identification is termed “bottom-up” approach. In many cases, a “top-

down”- approach is wanted, due to the properties of intact proteins is closer to a real 

situation. A major limitation of top-down methods is that inefficient fragmentation of 

large analytes by CID often precludes protein identification, and most studies so far have 

been restricted to high pI and/ or low-mass proteins (Louie et al., 1996; Krishnamurthy et 

al., 1999). However, recent electron capture dissociation (ECD) or electron transfer 

dissociation (ETD) methods (see Fig. 18), when combined with high-resolution MS 

(FTICR MS) show promise in alleviating this problem (Lee et al., 2002; Macek et al., 

2006). Fragmentation involves electron capture by the analyte followed by free-radical-

based backbone cleavage, which is largely sequence-independent. A recent top-down 

study reported 101 protein identifications from bacterial whole-cell lysates (Patrie et al., 

2006), and an analysis of histones illustrates the power of this approach for revealing 
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complex modifications of proteins and combinatorial regulation of modification sites 

(Beck et al., 2006).

PROTEOMICS AND DISEASE 

One of the most promising developments to come from the study of human genes and 

proteins has been the identification of potential new drugs for the treatment of disease. 

Because most drug targets are proteins, an increased knowledge through studies will 

enable drug discovery, development and clinical practice. The detection of protein 

profiles associated with disease have been used since the advent of applying two-

dimensional gel mapping on clinical samples (Tracy et al., 1982), but the inauguration of 

rapid mass spectrometers in the field can resolve tens of thousands protein and peptides 

in disease tissue, for instance cancer material, which could result in better and more rapid 

diagnosis (Petricoin et al., 2002).  

 DNA microchips have been used for the past decade (McNeish et al., 2004) and 

have given valuable insight in disease states on a transcriptional level. Although a recent 

study indicates good correlation between mRNA expression levels and proteins (r = 

0.71), there is a consensus that protein microarray chips will give more accurate 

information of diseases states than genetic microarrays, as well as enabling profiling 

DNA-empty fluids such as plasma and urine (Shankavaram et al., 2007). 

 One of the first protein profiling of disease tissue using protein microchips was 

reported by Knezevic and co-workers who analysed tissue from squamous cell 

carcinomas of the oral cavity on an antibody microarray (Knezevic et al., 2001). Here 

they used laser-capture micro-dissection to obtain total protein from microscopic 

subcellular populations, and could demonstrate that expression patterns of several 

proteins changed with tumor progression in a controlled study. Recently, several other 

groups also report the use of protein microchips for profiling studies, including tissues 

such as prostate epithelium (Paweletz et al., 2001), skeletal muscle (Schulz et al., 2006) 

and the use of surface-enhanced laser desorption/ ionization (SELDI) for pancreatic 

adenocarcinomas (Melle et al., 2007). SELDI is a technique based on MALDI-principle 

that uses a target modified to achieve biochemical affinity with the analyte compound, 

enabling specific binding of substrate of interest (Wright et al., 1999).  
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  Yet another option for protein profiling is scanning of tissues-cross sections called 

imaging mass spectrometry. It involves using laser-thin cryo-sections coated with matrix 

for MALDI MS analysis and measuring m/z values across the sample to obtain a typical 

fingerprint- a three-dimensional image of protein location of the tissue at various 

localisations (Stoeckli et al., 2001). These methods have now become more standardized 

(Altelaar et al., 2007), and applications range from brain tissue of PD patients (Pierson et 

al., 2004) to MPTP lesions from mice (Skold et al., 2006). 
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