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ABSTRACT

Male sex hormones (androgens) are important for the normal development of the male 

sexual characteristics and maintenance of the male reproductive system, including the 

prostate gland. Androgens are also involved in pathological conditions such as prostate 

cancer, which is the third leading cause of cancer-related deaths for men in western 

industrialized countries. Androgens mediate their action through the androgen receptor 

(AR), a ligand-dependent transcription factor of the nuclear receptor superfamily. Upon 

ligand-binding, AR translocates to the nucleus and binds specific sequences in the 

promoter or enhancer of androgen-responsive genes. Androgen-regulated genes have thus 

been of special interest for a long time for better understanding of normal prostate 

biology and in the search for potential biomarkers and therapeutic targets in prostate 

cancer. One such gene that was recently discovered is kallikrein 4 (KLK4), which is 

androgen regulated and specific to the prostate for expression. KLK4 belongs to the 

human tissue kallikrein family, consisting of 15 closely related members whose genes are 

tandemly located in a large cluster on chromosome 19q13.4. Interestingly, KLK4 was 

shown to have a different gene structure than the other members of this family, as KLK4 

transcripts did not contain the putative exon 1 predicted to encode a signal peptide 

targeting the protein for secretion. The lack of a signal peptide resulted in an intracellular 

KLK4 which was predominantly expressed in the nucleus of prostate cancer cells and in 

the basal cells of the prostate epithelium. KLK4 was also overexpressed in malignant 

prostate as compared to normal prostate glands, both at the mRNA and protein level. 

Furthermore, we demonstrated that overexpression of KLK4 induces proliferation of the 

prostate cancer cell lines PC-3 and DU145. The increased rate of proliferation was at 

least in part due to changes in the expression of cell cycle regulatory genes. We suggest 

that KLK4 may have a role in prostate cell growth and is an important factor in the 

development and progression of prostate cancer; thus, KLK4 has potential utility as a 

diagnostic or prognostic marker, or therapeutic target in prostate cancer therapy.

In addition to identification and characterization of androgen target genes, it is also 

important to understand the molecular details of AR function to gain full insight into 

androgen action. To that end, we studied the interactions of AR with its target sites in 
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chromatin in living cells. Using fluorescence microscopy techniques, we found that there 

is a transient and dynamic interaction of AR with target genomic sites in the presence of 

agonists, which coincides with the recruitment of chromatin remodeling complexes and 

RNA Polymerase II, resulting in transcriptional activation. The kinetics of these 

interactions are ligand-dependent, as the interaction of antagonist-bound AR was 

dramatically faster than for agonist-bound AR. Furthermore, the interaction of a 

transcriptionally compromised mutant AR with target sites was faster than for wild type 

AR, and occurred without transcriptional activation, suggesting a correlation between 

transcriptional activity and residence time on the promoter. Furthermore, there were 

intramolecular interactions between the N- and C-termini of promoter-bound AR in its 

active state which were important for transcriptional activity. Finally, we elucidated how 

AR nuclear dynamics are changed in response to altered chromatin acetylation status. 

Interestingly, and in further support of a direct correlation between nuclear dynamics and 

transcriptional activity, we found that increased AR transcriptional activity, induced by 

histone deacetylase inhibitors, resulted in reduced mobility of AR at its target promoter. 

These data challenge the traditional static view of nuclear receptor action, and support the 

more recent view of transcription factor–chromatin interactions that constitute a highly 

dynamic system in continuous flux involving transient and rapid molecular interactions. 

These findings thus provide a kinetic and mechanistic basis for regulation of gene 

expression by androgens and anti-androgens in living cells. 
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INTRODUCTION      

1. Androgens and the Androgen Receptor 

1.1. Androgens 

The male sex hormones are known as androgens, a name derived from the Greek andros,

man, and gennan, to produce. The importance of androgens was first discovered in 1849, 

when Arnold Bechter linked the behavorial and physiological changes of castration to a 

substance secreted by the testes into the bloodstream. The testicular hormone later known 

as testosterone was isolated in 1934, and artificially produced only one year later 

(Freeman et al., 2001). In the decades to follow, other androgens were also identified 

(Table 1).  

Table 1. Androgens commonly found in man 

Androgen Abbreviation Type Characteristics 

Testosterone TST Steroid hormone Produced in the testis, is the 
main circulating androgen 

5 -dihydrotestosterone DHT Steroid metabolite The active metabolite of TST 

Dehydroepiandrosterone DHEA Steroid hormone Produced in the adrenal cortex 

Androstenedione Andro Steroid hormone Produced in the testis, adrenal 
cortex, and ovaries 

Androstenediol - Steroid metabolite Is a regulator of gonadotropin 
secretion 

Androsterone - Steroid metabolite Chemical by-product from 
break-down of other androgens 

Androgens are necessary for normal development of the penis, scrotum, testicles, and 

male secondary characteristics at puberty. Testosterone is the main circulating androgen, 

and in the developing male, the fetal testis secretes testosterone at sufficient levels to 

stimulate the differentiation and growth of the male reproductive organs. After birth, the 

serum testosterone levels decrease to a low level maintained until puberty, when the level 

increases to the adult range (Isaacs, 1994).  
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Approximately 90% of the androgens are produced by the Leydig cells in the testes, 

while the remainder is secreted by the adrenal cortex. The production of testosterone is 

regulated by negative feedback regulation by LH (Lutenizing Hormone) and the LHRH 

(Lutenizing Hormone Releasing Hormone) via the gonad-hypothalamus-pituitary axis 

(see Figure 1). The action of androgens can be blocked by anti-androgens which are 

described in more detail below. In the blood, testosterone is found complexed to either 

albumin (54%) in a low affinity fashion, or to SHBG (Steroid Hormone Binding 

Globulin) (44%), while only 1-2% is free. Testosterone can either enter the cell passively 

in its free form or by dissociation of albumin near the membrane, or it can be actively 

transported into the cell through a membrane receptor when bound to SHBG (Rosner et 

al., 1999) (see Figure 3). Once inside the cell, 90% of the testosterone is irreversibly 

converted to its more active metabolite DHT (5 -dihydrotestosterone) by the enzyme 5 -

reductase in a sequential series of steps involving the cofactor NADPH (Levy et al., 

1990). Testosterone or DHT then binds to the AR (Androgen Receptor), where DHT has 

five-fold higher affinity.  

1.2. Androgen Receptor   

The effects of androgens are mediated by AR, which is a ligand-dependent transcription 

factor that belongs to the nuclear receptor (NR) superfamily. This family of transcription 

factors consists of more than 150 members that are likely to have arisen from a single 

ancestor gene (Escriva et al., 2000) and comprise the largest family of transcription 

factors known. The importance of this protein family can be explained by the diversity 

and importance of their ligands: from sex steroids and thyroid hormones, to bile acids and 

vitamins (Mangelsdorf et al., 1995). Historically, these ligands were isolated in the early 

part of the 20th century based on their abilities to affect development, differentiation, 

metamorphosis, and homeostatis. Many of these ligands are also associated with human 

diseases, such as many cancers (see e.g. (Wiseman & Duffy, 2001; Singh & Kumar, 

2005)). In the mid-1970s, it became evident that steroid hormones were targeted to their 

responsive tissues by the presence of specific high affinity receptor proteins. Due to the 

lipophilic character of the steroid hormones, they can pass through the lipid bilayer of the 

cell membrane and interact with intracellular receptors. The identification of hormone 
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responsive genes within these tissues then led to the identification and cloning of the 

steroid hormone receptors in the mid-1980s. Later studies revealed the presence of 

receptors for all known nuclear hormones, as well as a myriad of orphan receptors, which 

led to the concept of a nuclear receptor superfamily (reviewed in (Robinson-Rechavi et 

al., 2003)).  

Figure 1. The role of androgens in the gonad-hypothalamus-pituitary axis
GnRH (Gonadotropin Releasing Hormone)/LHRH (Lutenizing-Hormone Releasing Hormone) is 
produced in the hypothalamus which signals the pituitary gland to produce LH (Lutenizing 
Hormone). LH then stimulates the Leydig cells of the testes to produce testosterone (TST), which 
is released into the bloodstream. In the prostate, TST is converted to DHT (5 -
dihydrotestosterone) which activates the androgen receptor. TST and DHT production is 
regulated via a negative feedback loop to the hypothalamus. Anti-androgens can block the 
function of TST in the prostate and adrenal androgens produced by the adrenal cortex. 
Orchiectomy is medical castration for the inhibition of testosterone production. 
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NR family members can be classified into three groups based on their ligand binding 

properties: steroid hormone receptors, RXR (Retinoid X Receptor) receptors, and orphan 

receptors (sometimes also divided in dimeric and monomeric orphan receptors). AR 

belongs to the steroid hormone receptor subfamily, which also includes the progesterone 

receptor (PR), glucocorticoid receptor (GR), estrogen receptor (ER), and 

mineralocorticoid receptor (MR). The steroid hormone receptor subfamily is activated 

upon binding of its steroid ligand that are small lipophilic molecules, and in general bind 

inverted half-sites in DNA as homodimers, although other binding sites are also reported 

(for a review, see (Beato & Klug, 2000)). The RXR receptors bind DNA (both direct and 

inverted half sites) as heterodimers, usually with RXR as partner. The orphan receptors 

form the largest group of NRs, for which no ligands were originally identified, and these 

receptors bind DNA either as homodimers, or as monomers, to direct repeat of single 

half-sites (Mangelsdorf et al., 1995; Khorasanizadeh & Rastinejad, 2001).  

1.2.1. AR gene and protein structure 

The AR gene is localized on chromosome Xq11.2-12. It consists of eight exons, which 

encodes a 98 kDa protein (110 kDa on SDS-PAGE) (see Figure 2). Only one AR cDNA 

has been identified, so the various AR ligands probably bind the same receptor (Lubahn 

et al., 1988a; Lubahn et al., 1988b). The NRs have a common protein structure, with 

three distinct domains: a divergent N-terminal domain (NTD), a highly conserved DNA 

binding domain (DBD), and a moderately conserved C-terminal ligand binding domain 

(LBD). In AR, the NTD contains one large activation function (AF1) which is made up 

of two discrete regions: one required for full ligand-inducible transcriptional activity 

(Transcription Activation Unit 1, TAU-1) and one ligand-independent region (TAU-5) 

(Jenster et al., 1991; Simental et al., 1991; Jenster et al., 1995). Furthermore, the NTD 

contains two motifs involved in intramolecular interactions with the LBD (He et al., 

2000). The LBD is made up of 12 conserved -helical regions and two anti-parallell beta-

sheets folded into a three-layered helical sandwich (Matias et al., 2000; Sack et al., 2001; 

Pereira de Jesus-Tran et al., 2006). In addition to being involved in ligand binding, the 

LBD also stabilizes homodimerization and orchestrates interaction with coregulators. The 

other activation function, AF-2, is also placed in the LBD. It is a ligand-dependent 
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transactivation function, and is also involved in interactions with co-regulators (Jenster et 

al., 1991; Slagsvold et al., 2000). Furthermore, the AF2 core is involved in the 

intramolecular interaction with two motifs of the NTD (described in more detail in 

paragraph 1.2.4) (Doesburg et al., 1997; Langley et al., 1998; He et al., 2000). The DBD 

is made up of approximately 70 amino acids, which folds into two zinc-finger motifs in 

which two perpendicular oriented –helices specify DNA recognition (Freedman & 

Luisi, 1993). At the border of the DBD and the hinge region, connecting the DBD with 

the LBD, there is a nuclear localization signal (NLS) that targets the AR homodimer for 

translocation to the nucleus (Jenster et al., 1993; Zhou et al., 1994). 

Figure 2. Schematic presentation of the gene, mRNA, and protein structure of AR 
(A) Chromosomal location of the AR gene. (B) Exon structure of AR mRNA, with localization of 
the polymorphic CAG and GGN repeats, with indication of which exons encode the different 
domains of the AR protein. (C) Domain-structure of the AR protein: The N-terminal domain with 
the transactivation function AF1, divided into the two discrete regions TAU-1 and TAU-5, and 
the position of two motifs involved in intramolecular N/C interaction; the central DBD with two 
zinc-finger motifs specifying ARE (Androgen Response Element) recognition; the hinge region 
and the nuclear translocation signal (NLS); and the C-terminal LBD with the ligand dependent 
transactivation function AF2. The numbering for aminoacids in the AR protein is based on 20 
polyglutamine and 16 polyglycine repeats. 
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The AR gene contains 2 polymorphic trinucleotide repeat segments, CAG and GGN, 

which encode polyglutamine and polyglycine tracts, respectively, in the N-terminal 

transactivation domains of AR. Both repeats, but especially the N-terminal polyglutamine 

repeat, have been linked to several disease states (Giovannucci et al., 1997; Kantoff et al., 

1998; Krithivas et al., 1999). The polyglutamine repeat ranges from 8 to 31 repeats in 

normal individuals, with an average of 20 repeats (Hardy et al., 1996). In vitro, the length 

of the polyglutamine repeat is inveresely correlated with AR transcriptional activity 

(Chamberlain et al., 1994; Kazemi-Esfarjani et al., 1995). Longer polyglutamine repeats 

results in decreased AR activity and is associated with impaired spermatogenesis and 

infertility (Tut et al., 1997) and generally a lower risk of prostate cancer, whereas a 

shorter repeat length is associated with hyperactive AR and may increase prostate cancer 

risk (Irvine et al., 1995; Giovannucci et al., 1997). Expansion of the polyglutamine tract 

to more than 40 repeats causes the rare neuromuscular disorder spinal and bulbar 

muscular atrophy (SBMA or Kennedy’s disease) (La Spada et al., 1991).  

1.2.2. AR transcriptional activation 

In the absence of ligand, AR is found in the cytoplasm complexed with heat-shock 

proteins (HSP). Upon ligand-binding, AR dissociates from this complex, forms a 

homodimer which is phosphorylated and translocates to the nucleus where it binds to 

androgen response elements (AREs) in the enhancers or promoters of target genes. The 

AREs contain two hexanucleotide half-sites oriented as palindromes, spaced by three 

nucleotides (AGAACAnnnTGTTCT). However, other types of AREs also exist, such as 

direct repeats and elements with altered site sequence (Robins et al., 1994; Zhou et al., 

1997; Geserick et al., 2005). Once bound to its response element, AR initiates gene 

transcription by the recruitment of chromatin modifying and remodeling complexes, 

coregulators and other factors of the basal transcription apparatus (Lemon & Tjian, 2000; 

Dilworth & Chambon, 2001; Hager, 2001; Nye et al., 2002; Orphanides & Reinberg, 

2002; Shang et al., 2002; Belandia & Parker, 2003; Huang et al., 2003; Metivier et al., 

2003). A schematic presentation of AR transcriptional activation is given in Figure 3. 
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Figure 3. AR transcriptional activation  
Testosterone (TST) dissociates from albumin close to the cell surface and diffuses into the cell, or 
enters the cell through a SHBG (Steroid Hormone Binding Globulin) receptor. TST is converted 
to 5 -dihydrotestosterone (DHT) by the enzyme 5 -reductase, and binds the androgen receptor 
(AR). AR dissociates from the complex with heat shock protein (HSP) and dimerizes with 
another ligand-bound AR. The homodimer is phosphorylated and translocates to the nucleus. 
Here AR binds androgen response elements (AREs) of target genes, recruits coregulators and the 
general transcriptional machinery resulting in transcription of AR target genes generally inducing 
proliferation and differentiation.  

Coregulators strongly influence AR transcriptional activity, and a wide range of both 

coactivators and corepressors for AR have been described (for reviews, see e.g. (Heinlein 

& Chang, 2002; Wang et al., 2005a; Burd et al., 2006)). These augment or repress AR-

mediated transcription through variable mechanisms, such as modulating ligand 

selectivity and DNA-binding capacity, histone modifications, or recruitment of chromatin 
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remodelling complexes and other factors of the general transcriptional machinery. 

Coregulators can be categorized based on their functional characteristics, and can be 

divided into two major types. Type I coregulators function primarily with AR at the 

target promoter, promoting DNA occupancy, chromatin remodelling or by recruitment of 

general transcription factors associated with the RNA Polymerase II (PolII) holocomplex. 

Examples of these coregulators are CBP (CREB Binding Protein)/p300 and SRC-1 

(Steroid Receptor Coactivator-1), which both harbour histone acetyl transferase (HAT) 

activity, and also the SWI/SNF chromatin remodelling complex. The type II coregulators 

function mainly through modulating the appropriate folding of AR, aiding in ligand 

binding or facilitating AR intramolecular N/C interaction, thereby contributing to AR 

stability or influence its subcellular localization. This category include coregulators such 

as the ARA70 that stabilizes the ligand-bound receptor, and filamin that facilitates the 

nuclear translocation of AR (reviewed in (Heinlein & Chang, 2002)). Corepressor may in 

addition repress AR activity by inhibiting the recruitment of coactivators. The correct 

balance of coactivators and corepressors ensure the ligand and tissue-specific activity of 

AR, and a deregulation in the levels of these coregulators may cause inproper AR activity 

and therefore be involved in disease states such as prostate cancer (for review, see e.g. 

(Culig et al., 2004; Burd et al., 2006)). 

The timing and order of events in the recruitment process during transcriptional 

activation induced by AR has been under scrutiny for many years. By the use of time-

course based chromatin immunoprecipitation (ChIP) assays, the temporal recruitment of 

the AR and associated factors to AREs in chromatin have been described (Shang et al., 

2002; Kang et al., 2004; Wang et al., 2005b). These studies have revealed that there are 

differences in the ligand-induced loading of AR, its cofactors and PolII between 

promoters and enhancers of the same gene, and between different genes; however, there 

seems to be a functional coordination between the promoter and enhancer regions 

through shared factors in the transcription complex (Shang et al., 2002; Wang et al., 

2005b). Brown and colleagues suggest a model in which the agonist-bound AR is 

recruited to both the promoter and the enhancer, followed by the ordered recruitment of 

p160 proteins, CBP, and other factors, which results in a chromosomal loop that allows 
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PolII to track from the enhancer to the promoter and initiate transcription (Shang et al., 

2002; Wang et al., 2005b). In contrast to what have been observed for ER (Shang et al., 

2000; Metivier et al., 2003), there does not seem to be cyclical recruitment of AR and its 

cofactors to the promoter or enhancer (Wang et al., 2005b). Furthermore, antagonist-

bound AR was shown to be recruited to the promoter of the PSA gene, but not the 

enhancer, followed by the formation of a corepressor complex (Shang et al., 2002). 

Although the ChIP assay is a powerful tool, it has limitations in that one averages the 

events occurring in a population of cells and the process involves crosslinking which will 

obscure dynamic interactions. These limitations have recently been addressed by live cell 

imaging techniques, such as FRAP (Fluorescence Recovery After Photobleaching) and 

FLIP (Fluorescence Loss After Photobleaching), allowing the real-time imaging of 

molecules in single cells, thus making it possible to measure molecular dynamics at much 

smaller timescales compared to ChIP analysis. These techniques have been applied to the 

study of steroid hormone receptors such as AR, GR, ER and PR and suggest a much more 

dynamic interaction between the receptor and the chromatin than what was believed 

earlier (McNally et al., 2000; Stenoien et al., 2001a; Farla et al., 2004; Farla et al., 2005; 

Rayasam et al., 2005). Nuclear receptor dynamics are described in more detail in 

paragraph 2.5. 

1.2.3. AR antagonists 

Given the important role of androgens in prostate cancer development, AR antagonists or 

anti-androgens have been developed, some of which are currently used in the treatment of 

prostate cancer (see Table 3). Anti-androgens antagonize AR function by binding to the 

LBD of AR in competition with the natural agonists TST and DHT (Denis & Griffiths, 

2000; Klotz, 2000; Masiello et al., 2002). In general, the AR-antagonist complex does not 

activate transcription, although in some circumstances it can occur (Miyamoto et al., 

1998; Fujimoto et al., 1999), but it is not clear which steps in the AR signaling pathway 

are influenced. For example, it has long been held that the antagonists may block nuclear 

import or DNA binding, based largely on biochemical and in vitro experiments. 

However, data exists supporting the opposing view (e.g. (Kemppainen JA, 1992; 
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Masiello et al., 2002)). It has also been suggested, as for the estrogen receptor (ER) (for a 

review, see (Greschik H, 2003)), that antagonist-binding gives rise to a different 

conformation of the LBD compared with the agonists, thereby affecting the interactions 

of AR with coactivators and corepressors when bound to DNA (Poujol et al., 2000; Bohl 

CE, 2005). Furthermore, recent reports suggest that AR antagonists actually facilitate 

AR-DNA association, but inhibit transcriptional activation via the recruitment of 

corepressors to the promoter (Shang et al., 2002). In support of this view, a recent study 

demonstrated that antagonist function can be blocked by the disruption of corepressor 

recruitment (Zhu et al., 2006). However, the molecular details of AR antagonist function 

are at present still not clear. 

1.2.4. AR intramolecular N/C  interaction 

Genetic and biochemical experiments have indicated that the LBD of AR interacts with 

its NTD upon ligand binding (Langley et al., 1995; Doesburg et al., 1997; Langley et al., 

1998) similar to that observed for ER (Kraus et al., 1995). This interaction is mediated by 

two N-terminal motifs (23FQNLF27 and 433WHTLF437) and the C-terminal AF2 (He et al., 

2000; Slagsvold et al., 2000; Steketee et al., 2002; He et al., 2004), and has been shown 

to be important for optimal receptor activity, occuring only in the agonist-bound receptor 

(Doesburg et al., 1997; Schaufele et al., 2005). AR cofactors, such as the histone acetyl 

transferase CBP, facilitate this agonist-dependent N/C interaction (Ikonen et al., 1997), 

and recent studies have suggested that other AR cofactors also modulate this interaction 

(Shenk et al., 2001; Bai et al., 2005; Hsu et al., 2005). 

The initial studies on AR N/C interactions were in large part performed with truncated 

versions of the receptor in mammalian or yeast two-hybrid systems, or in biochemical 

experiments in vitro. However, agonist-dependent N/C interaction was recently also 

demonstrated for the full length receptor in human cells by the use of FRET 

(Fluorescence Resonance Energy Transfer) technology (Schaufele et al., 2005). AR with 

one fluorophore linked to the C-terminus, and another fluorophore linked to the N-

terminus was used in FRET analysis to determine the time and subcellular location of 

ligand-induced conformational changes. The AR antagonist hydroxyflutamide, OHF, 
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blocked the N/C interaction within AR, which was also closely correlated with loss of 

AR transcriptional activation. Mutation of the -helical motif (23FQNLF27) in the NTD 

disrupted the N/C interaction, confirming the involvement of this motif in the interaction 

(Schaufele et al., 2005). Interestingly, in a recent study using the Xenopus oocytes as a 

model system, the AR N/C interaction was demonstrated to be involved in AR binding to 

chromatin, suggesting a novel role of this interaction in control of AR transcriptional 

activity (Li et al., 2006). 

1.2.5. AR modifications 

AR undergoes several posttranslational modifications such as phosphorylation, 

acetylation, ubiquitination, and sumoylation (Poukka et al., 2000; Lin et al., 2002; Fu et 

al., 2004; Faus & Haendler, 2006). For instance, the NTD of AR is constitutively 

phosphorylated at Ser-94 and becomes phosphorylated at multiple additional sites in 

response to ligand binding (Gioeli et al., 2002). The kinases responsible for the 

phosphorylation of AR and the functional importance of AR phosphorylation have, 

however, not been established, although some studies suggest MAPKs (Mitogen 

Activated Protein Kinases) and Akt to play a role (Wen et al., 2000; Gioeli et al., 2006). 

Furthermore, a cyclin-dependent kinase 1 (CDK1) has recently been identified as an AR 

Ser-81 kinase. AR phosphorylation at Ser-81 increased AR protein expression and CDK 

inhibitors decreased not only AR Ser-81 phosphorylation, but also AR protein expression 

and transcriptional activity in prostate cancer cells (Chen et al., 2006). In addition, 

tyrosine phoshorylation induced AR activity and was elevated in hormone-refractory 

prostate tumors (Guo et al., 2006). The AR acetylation sites are clustered to a KXKK 

motif in the hinge region, and mutation of the lysine residues in this motif severely 

impairs AR function and delays nuclear translocation (Fu et al., 2000; Fu et al., 2002; Fu 

et al., 2004; Thomas et al., 2004). All steroid hormone receptors are subjected to 

ubiquitination, and some of the enzymes involved have been identified, although the 

exact sites have proven difficult to map (Faus & Haendler, 2006). A similar process to 

ubiquitination is sumoylation which leads to the covalent attachment of a SUMO chain 

onto a lysine residue in the consensus KxE motif (Seeler & Dejean, 2003). AR was the 

first steroid hormone receptor shown to be modified by SUMO, namely at K386 and 
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K520 (Poukka et al., 2000). The exact functional relevance of ubiquitination and 

sumoylation to AR function remains unclear. For an overview of post-translational 

modifications of steroid receptors, see (Faus & Haendler, 2006). 

2. Nuclear Receptor Dynamics 

Nuclear receptors mediate the action of their specific ligands through interaction with 

chromatin and the initiation of transcription of target genes. The identification of 

hormone responsive genes within different tissues and the subsequent molecular cloning 

of the steroid hormone receptors in the mid-1980s, followed by the expansion to a 

nuclear receptor superfamily, completed the initial characterization of the steroid 

hormone signaling pathway. This led to the classical model of nuclear receptor action 

where ligand-binding is followed by an allosteric change in receptor conformation which 

allows the receptor-ligand complex to translocate to the nucleus and bind high affinity 

sites in chromatin to regulate transcription (Yamamoto, 1985). The development of the 

chromatin immunoprecipitation assay (ChIP) enabled the study of NR binding to target 

promoters in cell culture models. These studies, together with more traditional 

biochemical studies on receptor-DNA interaction, built further upon the classical view of 

nuclear receptor action. According to this view, the nuclear receptors are stably 

associated with their target sites in chromatin for as long as the ligand is present, leading 

to the sequential recruitment of large transcriptional complexes (McKenna & O'Malley, 

2002; Shang et al., 2002). The assembled protein complexes were thought to have long 

residence times on the DNA template, with changes in the composition of these 

complexes occurring on the time scale of minutes or hours. However, the ChIP 

technology is not sensitive enough to detect rapid protein movements, due to the need of 

fixation of the complete DNA/protein environment of the cell which takes time. 

Furthermore, the results represent the averaging of events across a cell population and 

cannot account for heterogenous cell responses. Therefore, there has been a need to 

develop new technologies to study NR-chromatin interactions in shorter time scales. 
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2.1. Hit-and-run model for nuclear receptor action 

An alternative approach to study the dynamics of protein-chromatin interactions came 

with the advances in GFP (Green Fluorescent Protein) technology and quantitative live 

cell microscopy, allowing the visualization of protein dynamics in single living cells 

(Schaffner, 1988; Rigaud et al., 1991; McNally et al., 2000; Fletcher et al., 2002; Nagaich 

et al., 2004a; Nagaich et al., 2004b). Using this technology, a real time view of protein 

interactions with stable structures in live cells is possible. As chromosome movement is 

restrained in live cells (Marshall et al., 1997), it is possible by the use of photobleaching 

techniques, such as FRAP and FLIP, to characterize the interaction of a soluble 

transcription factor with the chromatin template. To specifically and visually study the 

interaction between NRs and their DNA response elements in chromatin, the regulatory 

sites must be amplified in the chromosome, creating a high density of binding sites, thus 

enabling the visualization of the GFP-tagged NR on its response element. This was first 

achieved with the establishment of a cell line with 200 copies of the steroid hormone 

receptor inducible MMTV (Mouse Mammary Tumor Virus) promoter stably integrated 

into the chromosome of a murine mammary adenocarcinoma cell line (McNally et al., 

2000). The LTR (Long Terminal Repeat) of MMTV contains HREs to which steroid 

hormone receptors can bind specifically (see Figure 4), and the GFP-tagged receptor 

binding to a regulatory element can thus be observed by microscopy (McNally et al., 

2000). For the use of such arrays, it is important to establish that the genes within the 

array behave similarly to normal, single copy sequences. For the MMTV array, the 

hormonal response of the MMTV promoters within the array have been rigorously 

characterized (Fragoso et al., 1998; Kramer et al., 1999). The position and extent of 

nucleosome remodeling in the amplified array was compared to that observed in low-

copy and single-copy MMTV in chromatin which showed that the chromatin 

reorganization event summed over the individual promoter copies in the array is 

indistinguishable from the event averaged over many cells with single gene copies. 

Furthermore, the kinetics of receptor induced transcription observed in the array cells is 

also identical to that originally described in low copy cells (Archer et al., 1994; Smith et 

al., 1997).  
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Figure 4. Structure and organization of the MMTV array
200 copies of a 9 kb repeat of the MMTV (Mouse Mammary Tumor Virus) promoter integrate 
into the host chromosome, creating an MMTV array. The MMTV Long Terminal Repeat (LTR) 
is characterized by a series of positioned nucleosomes (A-F) and liganded nuclear receptors (NR) 
can bind to hormone response elements (HREs) in the nucleosome B-C region, driving the 
transcription of a reporter gene (Rep). 

Direct measurements of the residence time of GR on the MMTV promoter using FRAP 

and FLIP analysis demonstrated a very rapid and dynamic interaction between GR and 

chromatin, with the receptor only present at the template for a period of 10-20 seconds at 

a time (McNally et al., 2000). These unexpected results were in disagreement with the 

traditional view of a long-term and stable transcription initiation complex. However, 

similar high mobility of other transcription related factors has been demonstrated in the 

same (Becker et al., 2002; Rayasam et al., 2005) or similar systems (Stenoien et al., 

2001a; Dundr et al., 2002; Agresti et al., 2005; Bosisio et al., 2006). This has led to the 

proposal of an alternative model for nuclear receptor action, called the hit-and-run model 

(see Figure 5). According to this model, the receptor transiently interacts with the 

promoter, recruits other factors, and is itself dynamically displaced from the promoter 

(for reviews, see e.g (Hager et al., 2004)). These confounding results and the resulting 

new model for NR action have given new insights into protein-movement in the nucleus 
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and their dynamic equilibrium with multiple targets in the nuclear compartment (Phair & 

Misteli, 2000; Misteli, 2001; Phair et al., 2004). 

The “static” versus “dynamic” view on the development of transcriptional complexes on 

regulated promoters can be integrated in a model that provides a possible resolution of 

these two apparently opposing views (Hager et al., 2006; Metivier et al., 2006). It has 

been suggested that the initiating factor, e.g. a NR, exists in the nucleoplasm in different 

complexes with its coregulators. These complexes search for their binding sites by three-

dimensional scanning of the genome, and then interact randomly and dynamically with 

response elements in target promoters (Phair et al., 2004). Most of these interactions are 

not productive, as the promoter must be in the appropriate state for the complex to initiate 

transcription. As chromatin, and also the cofactors themselves, are being modified, and 

other factors are being recruited, the stability of the complex is enhanced and may initiate 

transcription. ChIP analysis at varying times during this process would trap the 

complexes at a specific stage of promoter development giving the impression of a 

statically bound complex, although the actual dynamics of site occupancy are rapid  (see 

illustration of this “return to template” model in (Hager et al., 2006)). The rapid cycling 

of factors on and off its template allows promoters to be activated very rapidly upon 

stimulation, an obvious advantage for efficient promoter function.  

In addition to this dynamic cycling of factors on and off its regulatory element, detailed 

studies using ChIP analysis of ER responsive promoters have revealed a periodic cycling 

of ER and cofactors on the promoter over periods in the range of 15-45 minutes (Shang et 

al., 2000; Burakov et al., 2002; Metivier et al., 2003; Reid et al., 2003). Using an ultrafast 

UV crosslinking assay, a similar periodic binding and displacement of GR from its 

chromatin template was also observed in an in vitro system (Nagaich et al., 2004b). The 

underlying mechanisms and the significance of this cyclical behavior are at present 

unknown. It has been suggested that proteasome-mediated degradation of the receptor 

and phosphorylation of Pol II are important factors in this process (Reid et al., 2003). 
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Figure 5. Hit-and-Run model for nuclear receptor action
Upon ligand-binding, the nuclear receptor (NR) is translocated to the nucleus where it is 
associated with target sites in the chromatin. Factors of the transcriptional machinery are 
recruited, including chromatin remodeling complexes (SWI/SNF), histone acetyl transferases 
(CBP), coactivators (SRC) and RNA Polymerase II (PolII). The chromatin is remodeled, allowing 
for more proteins to bind and a fruitful transcriptional initiation complex is established. NR is 
dynamically displaced (symbolized by the arrows) and shuttles between the chromatin-bound and 
free nucleoplasmic state. 

2.2. Chromatin remodeling and chaperone dependency 

In addition to highly dynamic protein-chromatin interactions, emerging evidence suggests 

that energy-dependent processes contribute significantly to the rapid movement of 

proteins in live cells, and to the rapid exchange of sequence-specific DNA-binding 

proteins with regulatory elements. This was demonstrated by a strong ATP-dependence 

on factor movement, as ATP-depletion inhibited protein movement in the nucleus, as 

well as site specific interactions with a template (Elbi et al., 2004; Stavreva et al., 2004; 
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Agresti et al., 2005). Two separate energy-dependent mechanisms have been implicated 

in transcription factor mobility: chromatin remodeling and chaperone dependency. 

ATP-dependent chromatin remodeling complexes play essential roles in the regulation of 

transcription, DNA repair, cell cycle and development (Wallberg et al., 2000; Narlikar et 

al., 2002; Peterson, 2002; Gregory & Shiekhattar, 2004). According to the ATPase that 

forms the main component of the complex, they can be classified into three major types: 

SWI/SNF, ISWI, and Mi-2. The mammalian SWI/SNF complex is probably the best 

described, and was first identified in yeast (Peterson et al., 1994). It contains one of two 

ATPases, BRG1 or BRM, and several BRG1-associated factors. Even though BRG1 and 

BRM are highly homologous ATPases, they can play roles in very different cellular 

pathways through selective association with certain coregulatory proteins (Hsiao et al., 

2003; Kadam & Emerson, 2003; Salma et al., 2004). Although BRG1 has been shown to 

be the preferred ATPase for GR-induced (Fryer & Archer, 1998) and PR-induced 

(Mymryk & Archer, 1995) chromatin remodeling, a strong dependence for BRM as the 

core ATPase for AR activity has been demonstrated (Marshall et al., 2003). SWI/SNF is 

recruited to the AR transcription site via the histone acetyl transferases (HATs) CBP and 

p300. Although histone acetylation enhances the recruitment of SWI/SNF, it is not 

required for SWI/SNF-induced chromatin remodeling. However, both SWI/SNF 

remodeling activity and CBP/p300 HAT activities are required for hormone dependent 

activation. Hence, there is not only direct recruitment by NR’s, but also cofactor-cofactor, 

and cofactor-histone interactions occurring at the active transcription site (Huang et al., 

2003).  

Receptor mobility is also dependent on the presence of chaperone proteins. Unliganded 

GR, PR and AR usually reside in the cytoplasm in complex with several chaperones, such 

as certain heat shock proteins (HSPs). It is thought that chaperones are important for the 

insertion of the steroid ligand into the hydrophobic environment of the receptor LBD 

(Pratt et al., 1996). Other functions of molecular chaperones were demonstrated by Elbi 

et al., using digitonin to permeabilize cells such that much of the free cytoplasmic protein 

of the cells is released (Elbi et al., 2004). Due to their size, GFP-labeled receptors (GR 
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and PR) were retained in the cytoplasm enabling the study of their motility by FRAP 

analysis. Under conditions where the cells were permeabilized, the steroid receptors were 

totally immobile, but this loss was in large part recovered when a cocktail of seven 

chaperone proteins was added to the cells (Elbi et al., 2004). This process was also 

completely ATP-dependent. These results suggest a more general role of chaperones in 

NR action: chaperones are not only required for ligand assimilation but also the 

movement of receptor within the nucleus. 

2.3. Histone acetylation 

In addition to chromatin remodeling complexes, enzymes that catalyze posttranslation 

modifications of histones also regulate the accessibility of promoters to the transcription 

and replication machinery (Berger, 2002). Changes in the multiple modifications of the 

N-terminal tails of histones can control chromatin packaging and create binding-sites for 

chromatin-associated proteins (Jenuwein & Allis, 2001; Fischle et al., 2003). Several 

different covalent modifications of histones have been identified: acetylation (of lysine 

residues), methylation (of lysine or arginine residues), phosphorylation (of serine 

residues) and ubiquitination (of lysine residues) (for review see (Berger, 2002)). Histone 

modification and ATP-dependent chromatin remodeling are functionally connected for 

gene regulation, although it is unclear whether there exists an actual mechanistic 

interrelationship between them. Promoters are usually envisioned to be in either a non-

accessible off-state, or in a more accessible on-state allowing gene transcription. 

However, it now seems that genes pass through a continuum of activity states, and the 

evolution of these states can be quite complex (reviewed in (Hager et al., 2006)). 

Histone acetylation is one of the most well studied histone modifications. In general, 

histone acetylation induces transcription by converting chromatin from a low-acetylated, 

‘closed’ form, to an acetylated, ‘open’, more accessable form (Verdone et al., 2005). The 

key observation to support this view was that several promoter-associated coactivators 

possessed HAT activity, suggesting that HAT activity was important for transcriptional 

activation (Kuo & Allis, 1998). Several enzymes with HAT activity have been identified, 
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many of which are components of large multisubunit complexes, recruited to promoters 

by interaction with DNA-bound activator proteins.  

HAT activity is required for optimal AR activity. CBP, a well described histone 

acetyltransferase, was identified as a coactivator for AR, and the overexpression of CBP 

was also able to rescue the activity of transcriptionally compromised AR mutants 

(Fronsdal et al., 1998). Furthermore, AR agonists and antagonists exhibit differences in 

their ability to promote recruitment of HAT complexes to promoters, indicating that 

receptor-binding to chromatin is followed by histone modifications (Kang et al., 2004). In 

support of this, it was demonstrated by ChIP analysis that both CBP and the related p300 

were recruited to the promoter and enhancer of PSA gene by agonist-bound AR (Shang et 

al., 2002; Wang et al., 2005b). However, in the presence of the antagonist bicalutamide, 

CBP was not recruited, confirming the important role of HAT activity in AR 

transcriptional activation (Shang et al., 2002). Other AR coactivators possessing HAT 

actvtivity include SRC-1 and SRC-3 (also called AIB1, pCIP, and TRAM1) that interacts 

with CBP (Liao et al., 2002), and PCAF (p300/CBP associated factor), also involved in 

interaction with p300/CBP and in the acetylation of non-histone targets such as various 

transcription factors and also AR itself (Fu et al., 2000). 

2.3.1. HDAC inhibitors 

Enzymes called Histone Deacetylases (HDACs) function in opposition to HATs by 

deacetylating histone tails. In general, HDACs create a “closed”, non-accessible form of 

chromatin, inhibiting transcription of many genes, and are commonly associated with 

transcriptional repression (reviewed in (Marks et al., 2003)). At present, there are eleven 

identified HDACs in humans which can be divided into four classes based on sequence 

homology to yeast HDACs: class I (HDAC 1, 2, 3, and 8), class II (HDAC 6 and 10), 

class III (HDAC 4, 5, 7, and 9), and class IV (HDAC 11). The global chromatin 

acetylation status is dependent upon the correct equilibrium between HAT and HDAC 

activity. Genetic abnormalities in HAT/HDAC genes may cause an inbalance in 

chromatin acetylation status resulting in repression of, e.g. cell cycle control genes, or 

overexpression of oncogenes, which may promote tumorigenesis and cancer. If the 
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inbalance in histone acetylation is a result of inhibited HAT activity or increased HDAC 

activity, HDAC inhibitors (HDACis) may restore this balance and thereby block tumor 

cell proliferation. A variety of agents, both natural and synthetic, with HDACi activity 

have been discovered, and can be divided into five main classes: short-chain fatty acids, 

hydroxamic acids, electrophilic ketones, cyclic tetrapeptides, and amino benzamides (see 

Table 2). Genes silenced in cancer cells, such as many tumor suppressor genes, seem to 

be especially sensitive to HDACis. Interestingly, HDACis are growth suppressive and 

apoptotic only in transformed cells. They act very selectively, and alter the transcription 

of fewer than 2% of expressed genes. Many HDACis have therefore been explored for 

potential anti-cancer activity, and some of these are in clinical trials for cancer treatment 

(reviewed in (Monneret, 2005; Gallinari et al., 2007)). 

Although the general effect of HDACis is to increase acetylated chromatin and the 

resulting activation of several genes, there  are several examples where HDACs appear to 

be required for gene activation, and HDACis then actually repress gene transcription 

(Lallemand et al., 1996; Siavoshian et al., 2000; Laribee & Klemsz, 2001; Ferguson et 

al., 2003; Qiu et al., 2006). The effect of HDACis may also be dependent on the promoter 

and transcription factor context. This is exemplified by the MMTV promoter, at which 

the GR activity is inhibited upon treatment with the HDAC inhibitor TSA, in contrast to 

AR which is activated (List et al., 1999a; List et al., 1999b).  

2.3.2. HDAC inhibitors in prostate cancer 

A number of HDACis have proved to have antiproliferative effects in cultured human 

prostate cancer cells and in mouse xenograft models. The mechanisms by which these 

inhibitors exhibit their antiproliferative effect vary widely among the inhibitors. The 

hydroxamic acid pyroxamide caused growth inhibition through cell cycle arrest in 

prostate cancer cells, and inhibited the growth of the CWR22 prostate cancer xenografts 

(Butler et al., 2001), as did also its analogue SAHA (Butler et al., 2000), both with 

relatively low toxicity.  



                                                                                                                                              INTRODUCTION

28

Table 2. Natural and synthetic HDAC inhibitors and their properties 

HDAC inhibitor Type Activity Clinical 
trials References 

AN-9 (pivaloyloxymethyl 
butyrate) Short-chain fatty acid H, C, A Phase I/II (Zimra et al., 1997; 

Reid et al., 2004) 

CI-994 Synthetic benzamide 
derivate  H, C, A Phase I (LoRusso et al., 1996; 

Loprevite et al., 2005) 

Depsipeptide 
(FK228/FR901228) 

Natural (bacterial) 
cyclic tetrapeptide H, C, A Phase II (Furumai et al., 2002; 

Piekarz et al., 2006) 

LAQ-824 Synthetic hydroxamic 
acid derivate H, C, A Phase I (Catley et al., 2003; 

Kato et al., 2007) 

MS-275 Synthetic pyridyl 
carbamate derivative H, C, A Phase II (Lee et al., 2001; Gojo 

et al., 2006) 

Na-Butyrate Short-chain fatty acid H, C, A Phase I/II (Prasad, 1980; 
Newmark et al., 1994) 

Na-Phenylbutyrate Short-chain fatty acid H, C, A Phase I (Gore et al., 2002; 
Camacho et al., 2007) 

PXD101 Synthetic hydroxamic 
acid derivate H, C, A  Phase I (Plumb et al., 2003; 

Qian et al., 2006) 

Pyroxamide Hydroxamic acid H, C, A - (Butler et al., 2001) 

Suberoylanilide 
hydroxamic acid (SAHA) 

Synthetic hydroxamic 
acid H, C, A Phase II 

(Vrana et al., 1999; 
Ruefli et al., 2001; 
Duvic et al., 2007) 

Trapoxin Natural (fungal) 
cyclic tetrapeptide H, C - (Kijima et al., 1993) 

Tributyrin Short-chain fatty acid H, C, A Phase I 
(Chen & Breitman, 
1994; Conley et al., 
1998) 

Trichostatin A (TSA) Natural (fungal) 
hyroxamic acid H, C - (Yoshida et al., 1987; 

Yoshida et al., 1995) 

Valproic acid Short-chain fatty acid H, C, A Phase I/II (Gottlicher et al., 2001; 
Kuendgen et al., 2005) 

H-inhibits purified HDAC 
C-inhibits growth of transformed cells 
A-inhibits in vivo tumor growth in animal models 
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Valproic acid, another hydroxamic acid, inhibited prostate cancer cell growth, in vitro

and in vivo, by inducing apoptosis (Angelucci et al., 2006; Xia et al., 2006). In a similar 

manner, sodium butyrate and TSA synergize with 1,25-(OH)-vitamin D3 to inhibit the 

growth of LNCaP, PC-3 and DU145 by inducing apoptosis (Rashid et al., 2001). The 

short chain fatty acid phenylbutyrate inhibited the invasive properties of prostate cancer 

cells (Dyer et al., 2002) and inhibited prostate cancer cell and xenograft proliferation 

through cell cycle arrest and induction of apoptosis (Melchior et al., 1999). The cyclic 

tetrapeptide depsipeptide (FK228) inhibited prostate cancer cell growth in vitro and in 

vivo, through the effect on the expression of angiogenesis factors (Sasakawa et al., 2003a; 

Sasakawa et al., 2003b). Possibly the most promising current HDACi is SAHA, which at 

doses without detectable toxicity, reduced tumor growth by 97% in mice transplanted 

with CWR22 human prostate tumors (Butler et al., 2000). It is also the most advanced 

HDACi in clinical trials, with meaningful clinical responses in patients with different 

types of cancer (Gallinari et al., 2007). However, there is at present no HDACi in clinical 

trials for prostate cancer. 

3. Androgens in Prostate Cancer 

Even before the discovery of testosterone, it was very well known that there was a strong 

dependency between the testes and the prostate. As early as 1895, reports showed the 

inverse correlation between prostate size and castration in elderly men. After the isolation 

of testosterone in 1934, Huggins and Hodges demonstrated that androgens, secreted from 

the testes, are important for the development and growth of prostate cancer (Huggins, 

1941). It is now clear that androgens have a critical role in the development and 

maintenance of the male reproductive system and have roles in physiological and 

pathological conditions, including the normal prostate and prostate cancer (reviewed in 

(So et al., 2003; Karayi & Markham, 2004)). 

3.1. Androgens in prostate biology 

The prostate is an exocrine gland of the male mammalian reproductive system. Its main 

function is to store and secrete a clear, slightly basic fluid that constitutes up to one-third 
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of the volume of semen. Some of the proteins contained in the prostate secretion helps 

liquefy the semen. However, the specific function of the prostate gland is still unknown, 

and it is in fact the largest organ of the human body of unknown specific function (Isaacs, 

1994). In the fetus, testosterone stimulates budding of the prostate epithelium from the 

urogenital sinus and signals the differentiation and growth of the prostate gland. If 

sufficient levels of testosterone are not present, the prostate gland does not develop. The 

prostate remains small (1-2 grams) until puberty when it grows to its adult size of 

approximately 20 grams. This period of exponential growth between the age of 10-20 

years is the same period when serum testosterone levels are rising from the initial low 

levels to the high levels seen in the adult male (Isaacs, 1994). When the adult size of the 

prostate is reached, there is normally no more net growth of the gland.   

The normal adult prostate gland shows a high degree of cellular organization, and is 

composed of a glandular epithelial and a fibromuscular stroma compartment. The 

epithelial compartment is made up of two major morphologically distinct cell types: the 

luminal and basal cells. Luminal cells tend to be differentiated and androgen dependent, 

with a relatively low proliferative capacity and high apoptotic index, while the basal cells 

generally appear undifferentiated and androgen independent, with high proliferative 

capacity and low apoptotic index, attributes characteristic of stem cells. The prostate 

epithelium has also a third cell type, the neuroendocrine cells, which are scattered at low 

percentage throughout the gland. In addition, a transiently proliferating/amplifying cell 

population, serving as an intermediate between the undifferentiated stem cells of the 

basal layer and the highly differentiated exocrine, and also neuroendocrine, cells of the 

lumen has been proposed (Isaacs & Coffey, 1989).  

3.2. Prostate carcinogenesis 

Androgen levels increase in puberty, resulting in a net growth of the prostate until it 

reaches its maximum adult size around the age of 20. After this age, the prostate normally 

ceases its continuous net growth, and androgens regulate the total number of prostatic 

cells by stimulating the rate of proliferation and at the same time inhibiting cell 

death/apoptosis (Isaacs, 1994). An inbalance in this regulation, either by increased 



                                                                                                                                              INTRODUCTION

31

proliferation or inhibited apoptosis, may give rise to an abnormal growth of the prostate, 

eventually leading to prostate cancer.  

Carcinoma of the prostate is the most frequently diagnosed non-cutaneous malignancy in 

men.  It accounts for one third of all cancers diagnosed and it is the third leading cause of 

cancer-related death in men in western industrialized countries (Jemal et al., 2007). 

Prostate cancer is predominantly a disease of elderly men, with a steeply increasing 

incidence in the 7th decade of life. The recently observed rise in incidence of prostate 

cancer may, therefore, partly be explained by an ageing population. However, the age-

adjusted incidence has also increased, hence other factors such as genetic disposition, life 

style and diet are probably also important factors (Parkin et al., 2001). There is a striking 

difference in prostate cancer risk between ethnic groups, with a more than 10-fold higher 

incidence of prostate cancer in Western industrialized countries compared to East Asian 

countries (Quinn & Babb, 2002b; Quinn & Babb, 2002a). Furthermore, in the United 

States, the risk of prostate cancer is approximately 60% higher in African-American than 

in European-American men and the comparative mortality rate is more than twice as high 

(Powell, 2007). However, immigrant studies have demonstrated that genetic disposition 

can only account for some of this difference, suggesting that other factors, such as life 

style and diet, are important (reviewed in (Jankevicius et al., 2002)). In contrast to the 

increasing incidence of prostate cancer, the mortality rate has declined since the early 

1990s, possibly due to the use of PSA (Prostate Specific Antigen) screening leading to 

earlier diagnosis and treatment (see also paragraph 4.3). However, it is still debatable if 

the decline in mortality rate is actually a consequence of PSA screening (Constantinou & 

Feneley, 2006). Another reason could be a mis-certification of cause of death in a large 

group of men in the 1980s-1990s (Feuer et al., 1999). 

During the progression of prostate cancer (see Figure 6), the prostate retains some of its 

glandular structure and is therefore classified as adenocarcinoma. The first detectable 

morphological change in the development of prostate cancer is considered to be prostatic 

intraepithelial neoplasia (PIN). PIN may occur in men in their twenties (Isaacs, 1994), 

and can be detected histologically by thickening of the epithelial layer, and also loss of 
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distinct basal and secretory layers. The progression of the disease is slow, and clinically 

detectable prostate cancer does not typically arise until the sixth decade. The carcinoma is 

firstly confined to the prostate, but about one third of prostate tumors become locally 

invasive, spreading beyond the tissue capsule, and finally developes into metastatic 

disease (Isaacs, 1994). The most frequent metastatic sites for prostate carcinomas are 

bone, liver and lung, and the metastases usually appear undifferentiated. Most prostate 

cancer tumors regress upon initial androgen depletion therapy; however, the tumors in 

most cases recur in an androgen independent state for which there is no efficient therapy 

at present. The molecular mechanisms of transition from androgen-dependence to 

androgen-independence remain poorly understood, although it appears that AR signaling 

remains important throughout the course of the disease (Balk, 2002; Chen et al., 2004). 

For the last decade, there has been a major research focus on the molecular mechanisms 

of this transition which is crucial for the development of effective therapies (for reviews, 

see (Feldman & Feldman, 2001; Navarro et al., 2002; Agoulnik & Weigel, 2006)). 

Figure 6. Prostate cancer progression 
The epithelium of the prostate gland is composed of luminal cells (grey) oriented towards the 
lumen of the gland, basal cells (brown) and neuroendocrine cells scattered throughout the gland. 
In prostatic intraepithelial neoplasia (PIN), the cells start to proliferate towards the lumen of the 
gland, until the tissue capsule breaks and the tumor becomes locally invasive. The tumor then 
progresses to a metastatic state spreading to distant organs, and then finally to an androgen-
independent state.  
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3.3. Anti-androgens in prostate cancer treatment 

The initial treatment of prostate cancer is usually radical prostatectomy or radiation to 

remove or destroy the cancerous cells that are still confined within the prostate capsule. 

However, many patients are not cured by this treatment and their cancer recurs, or the 

patient may not have been diagnosed until after the cancer has spread beyond the tissue 

capsule (Pirtskhalaishvili et al., 2001). The first systemic therapy for advanced prostate 

cancer emerged in 1941 with the discovery that surgical or medical castration, leading to 

a reduction in the levels of circulating androgens, caused regression of prostate tumors 

(Huggins, 1941). This induced reduction in androgen-levels is called androgen ablation 

therapy, which still is the only successful treatment for advanced prostate cancer. There 

are several types of androgen ablation therapy: surgical castration, medical castration 

using LHRH analogues, anti-androgen monotherapy, and maximum androgen blockade 

(MAB) which is a combination of castration and anti-androgen administration. Surgical 

and medical castration lowers the levels of free testosterone in the circulation; however, 

some testosterone (~5%) still remains since androgens are also produced by the adrenal 

cortex, which is not affected by the treatment, and anti-androgens are then used to block 

the function of the remaining androgens (Pirtskhalaishvili et al., 2001; Anderson, 2003). 

Recently, monotherapy with anti-androgen alone have proved to be an attractive 

alternative to castration as it results in less severe side-effects (reviewed in (Anderson, 

2003)). Table 3 lists anti-androgens that were previously or are currently used in the 

treatment of advanced prostate cancer. The non-steroid antagonist bicalutamide is at 

present probably the most favorable anti-androgen used in prostate cancer therapy 

(Anderson, 2003; Miyamoto et al., 2004). 

Table 3. Anti-androgens previously and/or currently used in prostate cancer treatment 

Anti-androgen Trade name Type 

Cyproterone Acetate (CPA) Androcur, Climen, Diane 35, Ginette 35 Synthetic steroid, partial 
antagonist 

Bicalutamide Casodex Non-steroid, pure 
antagonist 

Flutamide Eulexin Non-steroid, pure 
antagonist 

Nilutamide Nilandron Non-steroid, pure 
antagonist 
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3.4. Prostate cancer models 

In vitro cell culture is one of the most commonly used models in cancer research. For the 

study of prostate cancer, the androgen-sensitive cell line LNCaP is the most widely used 

model system (Horoszewicz et al., 1980). This cell line is cultured from a lymph node 

metastasis of a white Caucasian man. LNCaP cells express AR, but with a T877A 

mutation in the LBD which renders it more sensitive to a wider range of steroid ligands 

than wild type AR (Veldscholte et al., 1990; Veldscholte et al., 1992; Tan et al., 1997). 

Some androgen non-responsive prostate cancer cell lines, such as PC-3 (bone metastasis) 

(Kaighn et al., 1979) and DU145 (brain metastasis) (Stone et al., 1978) are also widely 

used. Other cell lines are also available, but many of these have proved to be either 

derivatives of the three mentioned cell lines, or of other non-prostatic cell lines, or are not 

freely available (van Bokhoven et al., 2003). The available cell lines also do not span the 

range of prostate cancer phenotypes. Primary cultures, of both malignant and normal 

epithelial prostate cells, are therefore also necessary. Technical improvements over the 

last decades have made the use of primary cultures more widespread, and there are now 

several primary cultures of human prostatic cells, representing the different stages of 

prostate cancer, but some hurdles remain for their routine use (for review, see (Peehl, 

2005)). Xenografts derived from human prostate cancer cell-lines, is another means of 

obtaining in vivo models for human prostate cancer. At present, various xenograft models 

representing the various stages of clinical prostate cancer, and also in some cases cell 

lines established from these, are available (reviewed in (van Weerden & Romijn, 2000)). 

Animal models, mainly mouse and rat, are widely used tools in cancer research. Despite 

the obvious anatomical differences between the mouse and human prostate, several 

mouse models have been developed which recapitulate many features of human prostate 

cancer (reviewed in (Abate-Shen & Shen, 2002)). The most commonly used model is the 

TRAMP (transgenic adenocarcinoma mouse prostate) mice, expressing SV40 viral 

oncogenes specifically in the prostate driven by the rat probasin promoter (Greenberg et 

al., 1995). The TRAMP mice develop high-grade PIN and/or prostate cancer within 12 

weeks of birth, and also ultimately develop metastases by 30 weeks. Androgen depletion 

results in decreased tumor incidence, as well as the subsequent appearance of androgen-
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independent disease (Gingrich et al., 1997). Thus, the TRAMP mice recapitulate many 

aspects of human prostate cancer and have given significant insights into the molecular 

mechanisms of prostate cancer development and progression. Other transgenic and 

knock-out mouse models have also been developed (for a review, see (Abate-Shen & 

Shen, 2002)). Especially useful knock-out models for prostate cancer have been the 

NKX3.1 (Bhatia-Gaur et al., 1999) and PTEN (Di Cristofano et al., 1998) models. 

Human NKX3.1 is localized to chromosomal region 8p21, a region which undergoes 

loss-of-heterozygosity (LOH) in ~80% of prostate cancers (He et al., 1997). However, 

there are discrepancies in the literature about how or if NKX3.1 expression is changed 

during prostate cancer progression (Bowen et al., 2000; Xu et al., 2000; Ornstein et al., 

2001; Korkmaz et al., 2004b; Bethel et al., 2006); thus, it is under debate if the NKX3.1 

gene is actually lost in the Chr8p21 deletion. PTEN maps to chromosomal region 10q23, 

a region that also undergoes LOH at advanced stages in many cancers, including prostate 

cancer (Di Cristofano & Pandolfi, 2000). The cooperativity between loss of NKX3.1 and 

PTEN has also been studied, and was shown to be restricted to the prostate, and 

importantly, the knock-out mice displayed carcinoma lesions that resemble early stages 

of human prostate cancer (Kim et al., 2002).  

Under physiological conditions, cancer cells reside histologically as three-dimensional 

organoids, and the host microenvironment is known to be pivotal to malignant 

progression of the cancer cells (Chung et al., 2005). The established in vitro models do 

not fully recapitulate the prostate tumor environment, and further insight into cancer 

biology and therapy requires new and improved research models. Recently, several 3D 

co-culture models for the study of prostate cancer growth have been developed (reviewed 

in (Wang et al., 2005c)). Formation of human prostate tissue from embryonic stem cells 

which shows species–conserved signaling mechanisms, was also recently achieved 

(Taylor et al., 2006). These model systems may prove useful for studies of human 

prostate development and maturation and may give insights into mechanisms of prostate 

carcinogenesis. 
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3.5. Prostate cancer biomarkers 

As the treatment options for advanced prostate cancer are limited, early detection of the 

disease is essential. A biomarker that allows for the detection of prostate cancer at an 

early stage is therefore of significant importance, and much effort has been invested in 

the search for prostate specific molecules that might serve as cancer biomarkers or as 

therapeutic targets. AR regulated genes have been of special interest, which led to the 

discovery of PSA (Prostate Specific Antigen), a widely used biomarker for prostate 

cancer (see paragraph 4.3). Although increased levels of PSA are correlated with risk of 

prostate cancer, PSA has its limitations both for the detection and grading of prostate 

cancer due to high rates of false positive and negatives, and therefore other more specific 

markers are needed for the improved diagnosis and monitoring of disease progression. In 

this regard, other AR target genes have been of interest and the advances in microarray 

technology over the last decade have accelerated the insight into AR-mediated gene 

expression programs (see e.g. (DePrimo et al., 2002; Nelson et al., 2002; Nantermet et al., 

2005; Asirvatham et al., 2006)). The majority of large-scale expression studies have been 

performed in LNCaP cells, and gene expression profiling studies have revealed that 1.5% 

to 4.3% of the LNCaP transcriptome is either directly or indirectly regulated by 

androgens (for a review, see (Dehm & Tindall, 2006)). How these changes translate to 

the protein levels in most cases remains unclear, and is a subject of future research.  

4. Human Tissue Kallikreins 

The human tissue kallikreins (KLKs) is a family of proteins primarily expressed in the 

glandular epithelia of many organs, also the prostate. Their transcription is in many cases 

regulated by sex steroid hormones, which are involved in the development of several 

endocrine-related tumors. The most well studied member of this family is KLK3 or PSA, 

which is, as already described, a commonly used marker for prostate cancer. Other 

members of this family are also under scrutiny as potential biomarkers for prostate cancer 

and other endocrine-related cancers (reviewed in e.g. (Borgono & Diamandis, 2004)). 
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4.1. The human tissue kallikrein locus 

The human KLKs form a family of 15 closely related serine proteases encoded by 

conserved genes tandemly located in a large gene cluster (320 kb) on chromosome 

19q13.4 (Figure 7). The first three members of the family, KLK1 (tissue kallikrein), 

KLK2, and KLK3 (PSA) were long thought to be the only members of the family. 

However, during the last decade the availability of human genome sequences and 

extensive screening of the KLK locus has revealed the presence of 12 additional KLK 

genes (Riegman et al., 1992; Gan et al., 2000; Clements et al., 2001). This gene cluster 

represents the largest cluster of contiguous protease genes in the human genome (Puente 

et al., 2003; Yousef et al., 2003). The human KLK locus has its rodent counterpart with a 

cluster of 28 functional genes in mouse (Evans et al., 1987; Olsson & Lundwall, 2002) 

and 10 functional genes in rat (Southard-Smith et al., 1994), and tissue KLKs have to 

date been identified in six mammalian orders. The significance of the different numbers 

of KLK genes in the different organisms is currently not known. Alternative splicing is 

prevalent within the human KLK locus, a trait not observed with rodent genes, and 

alternative splice variants have been described for all but one (KLK14) of the KLK genes 

(reviewed in (Kurlender et al., 2005)). 

Figure 7. The human tissue kallikrein gene locus 
Position and orientation of the kallikrein genes KLK1-KLK15 in the KLK gene locus at 
Chr19q13.4, with genes with telomeric to centromeric orientation in green, centromeric to 
telomeric orientation in blue, and pseusogenes in red. Non-kallikrein genes are in grey.  
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4.2. Kallikreins as cancer biomarkers 

With the complete description of the human KLK locus, the main research effort is now 

centered around the elucidation of potential biological functions of the KLKs. The KLK 

genes encode putative serine proteases, with a conserved catalytic triad made up of 

histidine (H), aspartic acid (D) and serine (S), giving trysin- or chymotrypsin-like 

specificity. In vitro studies have shown that some KLKs can auto-activate while others 

can activate each other, suggesting that the KLKs may be part of an enzymatic cascade 

(Yousef & Diamandis, 2002; Borgono & Diamandis, 2004). Serine proteases play key 

roles in diverse physiological processes and vary widely with respect to substrate 

specificity (Rawlings & Barrett, 1993). The KLKs are expressed in a wide range of 

tissues, suggesting a functional role in diverse physiological and pathophysiological 

processes, including skin desquamation and other skin diseases, tooth development and 

enamel defects, Alzheimer’s disease, and Parkinson’s disease, in addition to several 

cancers. Hence, many members of the KLK family have shown potential as diagnostic or 

prognostic markers, especially in hormone dependent cancers such as prostate, breast, 

testicular and ovarian cancer (for reviews, see (Diamandis & Yousef, 2002; Borgono & 

Diamandis, 2004; Clements et al., 2004; Paliouras et al., 2007)). It has been suggested 

that KLKs might promote or inhibit cancer cell growth, angiogenesis, invasion and 

metastasis by activation of growth factors and other proteases, release of angiogenic or 

anti-angiogenic factors, and degradation of the extracellular matrix (ECM) (reviewed in 

(Borgono & Diamandis, 2004)). As KLKs possibly promote tumor growth through their 

proteolytic activity, the design of KLK inhibitors that may have potential in anticancer 

therapies is under development. For instance, highly specific serpins to KLK2 have been 

designed which displayed unique reactivity to KLK2 (Cloutier et al., 2004). Further 

research is required to reveal the functional roles of KLKs in various tissues and 

determine whether they have clinical utility as biomarkers for disease states, and possibly 

also as therapeutic targets.  

4.3. Prostate Specific Antigen (PSA) 

PSA is a widely used clinical tumor marker for detection and monitoring of prostate 

cancer progression (Stamey et al., 1987; Partin et al., 2002; Stephan et al., 2002). PSA is 
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produced at very high concentrations by the prostate gland, and it is secreted into the 

seminal plasma at a concentration from 0.5 to 5 mg/mL under normal physiological 

conditions. PSA degrades the seminal vesicle proteins semenogelin I and II and aids in 

the liquefaction of the semen, an event that is integral to sperm motility (Ban et al., 1984; 

Lilja, 1985; Lilja et al., 1989). Prostate cancer and physical trauma to the prostate, 

resulting in the perturbation of the prostate gland, can result in significant rise in the PSA 

concentration of the blood. Thus, elevated PSA levels are used as a marker for prostate 

gland abnormalities (Stephan et al., 2002; Lilja, 2003). 

The advantages of using PSA as a prostate cancer marker is that it is secreted and enters 

the circulatory system, allowing easy detection of PSA in patient’s serum samples. In 

addition, virtually all primary prostate tumors maintain PSA expression. However, there 

are some problematic issues concerning the use of PSA as a marker for prostate cancer. 

Due to PSA expression in benign prostatic hyperplasia (BPH), it is difficult to 

discriminate between BPH and prostate cancer, resulting in a high level of false positives 

and unnecessary biopsies (Barak et al., 1989; Drago et al., 1989). Another problem is that 

PSA can fail as a marker for residual disease since not all metastases maintain PSA 

expression (Sissons et al., 1992; Daher & Beaini, 1998; Constantinou & Feneley, 2006). 

Thus, the necessity to find additional markers for prostate cancer still remains.  

In addition to PSA, another gene of this family that is androgen regulated and highly 

enriched to prostate for expression is KLK2, which may also have utility as a prostate

cancer marker in conjunction with PSA (Rittenhouse et al., 1998; Stenman, 1999; 

Stephan et al., 2005). KLK2 is of particular interest in the discrimination of benign and 

malignant disease when the PSA levels are low, and between locally advanced and organ-

confined prostate cancer (Haese et al., 2005). Yet another member of the family, KLK4, 

has more recently been identified as prostate-specific and androgen regulated, and is 

described in more detail below.
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4.4. Kallikrein 4 (KLK4) 

KLK4 was first cloned in 1999 by different approaches and is also known as prostase, 

KLK4-L1, PRSS17 and ARM-1 (Nelson et al., 1999; Stephenson et al., 1999; Yousef et 

al., 1999; Korkmaz et al., 2001). The KLK4 gene has the typical kallikrein gene structure, 

with five exons and four introns (Nelson et al., 1999; Stephenson et al., 1999) (see Figure 

8A). Initial computer analysis of the gene predicted a transcript encoded by all five 

exons, which would be translated into a pro-KLK4 of 254 amino acids (aa), with a 26-aa 

signal peptide that would result in an active protein of 224 aa after cleavage of the pro-

piece. However, extensive screening of cDNA libraries and RACE analysis did not 

permit the cloning of a 5’-extension with the putative first exon (Korkmaz et al., 2001). 

By the use of reverse transcriptase-PCR of mRNA from the prostate cancer cell line 

LNCaP and the androgen-dependent prostate cancer xenograft CWR22, the vast majority 

of KLK4 mRNA was found to have only four coding exons (Korkmaz et al., 2001). This 

transcript would thus give rise to a protein lacking the signal peptide that normally targets 

the protein for secretion, and was therefore the first member of the kallikrein family that 

was predicted to be intracellularly localized.  

The KLK4 gene gives rise to 8 different mRNA forms through alternative splicing and/or 

alternative transcription start sites and expected to give rise to at least 7 different protein 

moieties (reviewed in (Kurlender et al., 2005)). It is at present not clear which of these 

transcripts are most relevant to prostate cancer. There have been some reports suggesting 

to prove the secretion of KLK4, however with questionable validity. Based on a KLK4-

specific immunoassays, it was claimed that KLK4 is secreted into biological fluids 

(Obiezu et al., 2002; Obiezu et al., 2005). However, the specificity of the antibodies used 

in these studies was not verified, it was for instance not demonstrated that the antibodies 

detect endogenous KLK4 in prostate cancer cells. Furthermore, sample numbers are not 

high enough for proper statistical analysis. Another study reports the secretion of KLK4 

based on the presence of KLK4-specific antibodies in prostate cancer patient sera (Day et 

al., 2002), which is only indicative of the presence of secreted KLK4. Importantly, they 

were also not able to detect endogenous KLK4 in LNCaP cells, questioning the 

specificity of the antibody used. A more recent report analyzed the compartmentalized 
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expression of endogenous KLK4 in prostate cancer cell lines and prostate tissue, and 

found that the full-length KLK4 transcript and the exon-1 deleted transcript are expressed 

in prostate cancer, resulting in a cytoplasmic and a nuclear form of the KLK4 protein, 

respectively (Dong et al., 2005), confirming the presence of a nuclear KLK4 as proposed 

(Korkmaz et al., 2001). Although these data suggest that KLK4 may be expressed in two 

major isoforms (see Figure 8), more extensive analysis is required for the determination 

of which forms of KLK4 are expressed, and their relative importance, in prostate cancer. 

Figure 8. Structure of the KLK4 gene and two KLK4 protein isoforms 
(A) Exon/intron organization of the KLK4 gene. Two translational start sites (*), and the stop 
codon is indicated (arrow). (B) Structure of the two KLK4 protein isoforms detected in prostate 
cancer, encoded by the full-length KLK4 transcript (upper) and the exon 1-deleted transcript 
(lower). The signal peptide (SP) and pro-piece (PP) of the secreted KLK4 is given. The positions 
of the three amino acids of the conserved catalytic triad (H, D, S) are indicated. 

The biological function of human KLK4 is at present unknown. Strong evidence suggests 

that the murine and porcine KLK4 is involved in the regulation of enamel matrix protein 

processing and further function in defining structure and composition of enamel (Hu et 

al., 2002; Simmer & Hu, 2002; Nagano et al., 2003). Recent studies reported that 

mutations of KLK4 results in enamel defect (Stephanopoulos et al., 2005; Hart, 2006). 

Human KLK4 is highly prostate enriched, and is androgen regulated (Nelson et al., 1999; 

Korkmaz et al., 2001), which suggests that it may function in prostate or seminal plasma 
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similar to KLK2 and PSA. The full-length KLK4 transcript, encoding a secreted protein, 

has been used in several studies to express recombinant versions of KLK4 in order to 

examine its substrate specificity. Takayama and coworkers showed that a recombinant, 

chimeric form of KLK4 (ch-KLK4) in which the pro-piece of KLK4 was replaced by that 

of PSA to create an activation site susceptible to trypsin-type proteases, had a trypsin-

type substrate specificity (Takayama et al., 2001). In addition, ch-KLK4 also readily 

activated both pro-PSA and single chain urokinase-type plasminogen activator (scuPA, 

pro-uPA), and completely degraded prostatic acid phosphatase (PAP), indicating that 

KLK4 may have a role in the physiological processing of seminal plasma proteins, as 

well as in the pathogenesis of prostate cancer through its activation of pro-uPA 

(Takayama et al., 2001). In a recent report, it was demonstrated that the three-domain 

receptor of uPA, uPAR, is also a target for KLK4, cleaved in the D1-D2 linker sequence 

and, to a lesser extent, in its D3 juxtamembrane domain (Beaufort et al., 2006). These 

data suggest a role of KLK4 in modulation of the tumor-associated uPA/uPAR-system 

activity by either activating pro-uPA or cleaving the cell surface-associated uPA receptor.

Furthermore, recombinant KLK4 was reported to cleave extracellular matrix proteins, 

suggesting a role of KLK4 in tissue remodeling (Obiezu, 2006). However, there is at 

present not sufficient substrate and enzymatic evidence to support the notion that KLK4 

has a functional role in seminal liquefaction.  

In addition to these in vitro studies with recombinant protein, there have been a few 

studies trying to reveal the biological function of endogenous KLK4 in prostate cancer 

cells. Veveris-Lowe et al. showed that cytoplasmic KLK4, as well as PSA, increases cell 

migration when ectopically expressed in the prostate cancer cell line PC-3. This was 

associated with loss of E-cadherin and an increase of vimentin, suggesting an 

involvement of cytoplasmic KLK4 in the epithelial-mesenchymal transition, a crucial 

event in the progression of cancer to an invasive phenotype (Veveris-Lowe et al., 2005). 

Recently, a role of secreted KLK4 in prostate cancer metastasis to bone was also 

suggested, based on the dependency of KLK4-expression in the interaction between 

prostate cancer cells and osteoblasts in bone metastasis (Gao et al., 2007). These results 

suggest that the secreted form of KLK4 may have a role in prostate cancer development 
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and progression, although more studies are needed in order to elucidate its actual 

presence in biological fluids, and exact role in prostate cancer biology. It is at present no 

report on the biological function of nuclear KLK4. For a complete understanding of the 

role of KLK4 in prostate cancer development and progression, it is important to elucidate 

the relevance of the different forms of KLK4 expressed. The functional properties of the 

encoded protein(s) may then be elucidated in greater detail. 
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AIMS OF THE STUDY 

As detailed in the introduction, androgens are involved in important physiological and 

pathological processes, such as normal prostate biology and prostate cancer; however, the 

molecular mechanisms of androgen action remain largely unclear. The major aim of this 

study was thus to examine in greater detail the molecular mechanisms underlying 

androgen action in the cell. To this end, there were two main focus areas:  

1. Characterization of the androgen target gene KLK4 

2. Nuclear dynamics of AR-mediated transcriptional activation 

KLK4 has been identified as a prostate specific and androgen regulated gene, with 

potentially important functions in prostate cancer. Previous work suggested that KLK4 

may have a different gene structure than the other members of the kallikrein family; thus 

we set out to map the 5’ end of the KLK4 transcript in detail. The cellular localization of 

the encoded protein, as well as its androgen regulation in prostate cancer cells was 

studied. To elucidate the potential role of KLK4 in prostate carcinogenesis, we examined 

the expression levels of KLK4 in benign compared to malignant human prostate glands. 

Furthermore, the functional properties of KLK4 in prostate cancer cells were elucidated 

using adenovirus-mediated overexpression and siRNA technology. 

AR is a ligand-dependent transcription factor and the main mediator of androgen action 

in the cell. Thus, a detailed understanding of the mechanisms by which AR regulates 

transcription is essential for elucidating androgen action. We therefore investigated AR-

mediated transcription in detail, with a special focus on its interaction with chromatin in 

response to androgens and anti-androgens. To this end, we developed a system enabling 

the visualization of GFP-tagged AR when it is bound to its response element in living 

cells. We then used advanced fluorescence microcopy techniques to elucidate the nature 

of AR interactions with target sites, and correlated these interaction kinetics with the 

recruitment of factors of the transcriptional apparatus and the initiation of transcription. 

Finally, we investigated how HDAC inhibitors affect AR transcriptional activity and 

chromatin interaction dynamics in living cells.  
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SUMMARY OF PAPERS 

Paper I. Kallikrein 4 is a predominantly nuclear protein and is overexpressed in 

prostate cancer 

Kallikrein 4 (KLK4) is a member of the human tissue kallikrein family, consisting of 15 

closely related serine proteases. It was demonstrated by systematic PCR analysis that 

KLK4 has a gene structure differing from the rest of the family members. The putative 

exon one, encoding a signal peptide targeting the protein for secretion, is not part of the 

main KLK4 transcript, and KLK4 is thus an intracellular protein. Immunostaining of 

ectopically expressed KLK4 in COS-7 cells and endogenous KLK4 in LNCaP cells 

demonstrated that KLK4 is predominantly localized in the nucleus, which was further 

confirmed by biochemical fractionation experiments. KLK4 is strongly androgen-regulated 

in LNCaP cells, and is not expressed in the androgen-insensitive cell lines PC-3 and 

DU145, suggesting that KLK4 expression is correlated with the presence of functional AR. 

Furthermore, we showed that KLK4 mRNA is overexpressed in prostate cancer compared 

to normal prostate by in situ hybridization of prostate tissue microarrays, being expressed 

predominantly in the nucleus of basal cells of the prostate epithelium. This is the first 

report of nuclear localization of a member of the kallikrein family, suggesting that it may 

have unique functions compared to the other members of the family. Importantly, its 

androgen regulation and overexpression in prostate cancer suggest that it might have 

important roles in prostate carcinogenesis. 

Paper II. Ligand-specific dynamics of the androgen receptor at its response element in 

living cells  

Cell lines with tandem repeats of the MMTV promoter stably integrated into its genome 

have previously been used to demonstrate rapid interactions between steroid hormone 

receptors and chromatin in live cells. As the hormone response elements of the MMTV 

LTR function also as AREs, we adopted this system and established MMTV array 

containing cell lines stably expressing GFP-fusions of AR and a transcriptionally impaired 

mutant (AR-E897A). FRAP analysis in combination with other methods was used to study 

the dynamics of AR-chromatin interactions in live cells in response to a wide set of AR 

ligands. A rapid interaction of AR with target genomic sites in living cells in the presence
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 of agonists was demonstrated, which coincided with the recruitment of PolII and the 

SWI/SNF chromatin remodeling complex, resulting in transcriptional activation. The 

interaction of antagonist-bound or mutant AR with its target site was kinetically different: it 

was dramatically faster, and occurred without the recruitment of SWI/SNF or PolII, and 

without any transcriptional activation. ATP- and SWI/SNF-dependent displacement of AR 

from the MMTV chromatin was also demonstrated in vitro. Furthermore, FRET analysis of 

wild type and mutant AR, when associated with its target sites, showed that intramolecular 

interactions between the N- and C-termini of AR play a key functional role in AR 

transcriptional activation. These data provide a kinetic and mechanistic basis for regulation 

of gene expression by androgens and anti-androgens in living cells. 

Paper III. Kallikrein 4 is a proliferative factor that is overexpressed in prostate 

cancer 

As demonstrated in Paper I, KLK4 is a unique member of the human tissue kallikrein 

family. Here we further elucidate the functional properties of KLK4 in prostate cancer 

cells, and its expression in normal prostate and prostate cancer specimens. Firstly, we 

examined the expression of KLK4 at the protein level in prostate tissue microarrays by 

immunohistochemistry. Consistent with its mRNA expression, KLK4 is significantly 

overexpressed in malignant prostate carcinomas as compared to benign prostate glands. 

Furthermore, KLK4 is predominantly expressed in the nucleus of basal cells of the prostate 

epithelium. An adenovirus-mediated expression system for KLK4 was generated and used 

to conditionally express KLK4 in the prostate cancer cell lines PC-3 and DU145. The 

expression of KLK4 in these cell lines dramatically induced proliferation as demonstrated 

both by colony formation and proliferation assays. The increased proliferation was at least 

in part through significant alterations in cell cycle regulatory gene expression as 

demonstrated by cell cycle specific oligonucleotide array analysis. Consistent with these 

data, siRNA-mediated knockdown of endogenous KLK4 in LNCaP prostate cancer cells 

inhibited cell growth. These data identify KLK4 as the first member of the kallikrein family 

with proliferative properties mediated through the alteration of cell cycle regulatory gene 

expression, and indicate that KLK4 may have important roles in prostate cancer 

development and progression. 
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Paper IV. Reduced mobility of the androgen receptor at its target sites in living cells 

in response to histone deactylase inhibiton 

As reviewed in the introduction, histone acetylation is an important factor in gene 

regulation. Compounds that affect histone acetylation, such as inhibitors of histone 

deacetylases (HDACis), can thus be used to regulate gene expression. The mechanisms by 

which histone acetylation regulates transcription is unclear, hence we elucidated the effect 

of altered chromatin acetylation on the dynamic interactions between AR and chromatin as 

described in paper III. To this end, HDACis were used to induce AR transcriptional 

activity, and its corresponding nuclear mobility was examined by FRAP analysis. 

Furthermore, the mobility of a transcriptionally impaired AR mutant (AR-E897A), and also 

GR, was analyzed in a similar manner. We demonstrated that AR and AR-E897A mobility 

is strongly reduced in response to HDAC inhibitors TSA and SAHA, which correlated with 

increased transcriptional activity. However, TSA and SAHA did not affect mobility of 

antagonist bound AR and AR-E897A with no change in transcriptional activity. 

Importantly, the same inhibitors did not increase the transcriptional activity of agonist-

bound GR, and its mobility on the target promoter was not affected. These data suggest that 

histone acetylation is involved in the dynamic interaction between steroid receptors and 

target sites in chromatin through alteration of receptor transcriptional activation.  
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RESULTS AND DISCUSSION 

Kallikrein 4 is an intracellular protein that is overexpressed in prostate cancer  

Previous work from our laboratory (Korkmaz et al., 2001) suggested that KLK4 has a 

different gene structure than the other family members, with only four coding exons. The 

KLK4 main transcript was proposed to lack the putative exon 1, thus encoding a protein 

without a signal peptide, possibly resulting in an intracellular protein. This would suggest 

a different function of KLK4 compared to the other members of the kallikrein family, 

hence it was of significant importance to explore the nature of the KLK4 transcripts. 

We therefore set out to analyze the 5’ end of the KLK4 transcript in greater detail. 

Through a detailed PCR analysis using a set of different 5’-primers, it became evident 

that a transcript without the putative exon 1 was the physiological relevant form of KLK4 

mRNA. A transcript containing all five exons was also present, although at a 1000-fold 

less abundancy than the exon 1-deleted transcript. A transcript lacking the putative exon 

1 would encode a protein not targeted for secretion, and we therefore decided to examine 

the cellular localization of KLK4. Ectopic expression of tagged KLK4 in COS-7 cells 

showed predominantly nuclear localization of the protein. A KLK4-specific antibody was 

raised, and used to stain endogenous KLK4 in LNCaP cells, confirming the nuclear 

localization of the protein. Biochemical fractionation experiments furthermore confirmed 

the localization of KLK4 to the nucleus (Figure 9).  

The androgen regulation of KLK4 had been demonstrated at the mRNA level (Nelson et 

al., 1999; Yousef et al., 1999; Korkmaz et al., 2001). Having a KLK4-specific antibody, 

Western analysis was used to demonstrate androgen regulation also at the protein level, 

with a 20-fold increase in KLK4 after 48 hours of androgen treatment of LNCaP cells. 

No KLK4 was detected in the androgen-insensitive prostate cancer cell lines DU145 and 

PC-3, suggesting that KLK4 expression is correlated with the presence of functional AR. 

The fold-regulation of KLK4-expression upon androgen treatment has varied widely 

among different studies (Nelson et al., 1999; Stephenson et al., 1999; Yousef et al., 1999; 

Korkmaz et al., 2001; Dong et al., 2005), possibly due to differences in cell culture 
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conditions and antibody-specificity, and clearly also discrepancies in which KLK4 

isoform has been studied.  

Figure 9. Nuclear localization of KLK4 
(A) LNCaP cells were treated with R1881 for 48 hours and subjected to immunofluorescence 
analysis with a KLK4-specific antibody, or (B) nuclear (nucl.), cytoplasmic (cyt.), whole cell 
(WCE) and secreted (Med.) protein extracts were made and subjected to Western analysis using 
specific antibodies for KLK4, STAMP1, NKX3.1 and PSA. 

The size of the protein detected by Western blot was around 45 kDa, in contrast to the 

calculated size of about 28 kDa. This suggests that KLK4 may be post-translationally 

modified. However, despite thorough analysis no glycosylation modifications of KLK4 

could be detected, suggesting that KLK4 may be modified in other ways such as by 

ubiquitination or sumoylation. Further analysis is thus needed to determine the nature of 

KLK4 post-translational modifications. 

The prostate-specific, and androgen regulated expression of KLK4 suggest a potential 

involvement in prostate cancer. Hence, we used a KLK4-specific riboprobe to study 

KLK4 mRNA expression in prostate tissue microarrays, containing normal and tumor 

glands from human prostates. The analysis showed that KLK4 was significantly 

overexpressed in prostate carcinoma compared to benign prostate glands. Furthermore, 

KLK4 was predominantly expressed in the nucleus of the basal cells of the prostate 

epithelium. Together these findings confirm the presence of an intracellular form of 

KLK4, with potential function in prostate carcinogenesis.  
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The presence of an intracellular form of KLK4 has later also been confirmed by others 

(Dong et al., 2005). There are some discrepancies in the exact N-terminal sequence of the 

nuclear form of KLK4 which should be elucidated in future studies. Furthermore, Dong 

et al. did not detect any androgen regulation of nuclear KLK4 in LNCaP cells (Dong et 

al., 2005), in contrast to what has been repeatedly observed in our laboratory. The 

exchange of cells and antibodies between the laboratories might aid in elucidating the 

reason for this obvious discrepancy. In line with our observations, Dong et al. also did not 

detect any glycosylation of nuclear KLK4, proposing that the discrepancy between 

calculated and detected size of the protein is due to other modifications. 

Although the full-length KLK4 transcript was found to be much less abundant than the 

exon 1–deleted transcript, it cannot be ruled out that also the full-length transcript 

encodes a protein with important physiological roles. As discussed in the introduction, 

there have been some reports on the secretion of KLK4, however with questionable 

validity (Day et al., 2002; Obiezu et al., 2002; Obiezu et al., 2005). More recently, work 

by Dong et al, which confirmed the presence of a nuclear form of KLK4, also detected a 

cytoplasmic KLK4 in prostate cancer cell lines and prostate cancer tissue (Dong et al., 

2005). Furthermore, secreted KLK4 was also detected in seminal fluid from a prostate 

cancer patient, not present in a healthy individual. Later work from the same laboratory 

propose cytoplasmic KLK4 to have roles in epithelial-mesenchyme transition processes, 

indicating that it may be involved in the  progression of prostate cancer through the 

promotion of tumor cell migration (Veveris-Lowe et al., 2005). Furthermore, a recent 

report from Gao et al. suggests that secreted KLK4 potentially is involved in the cellular 

interaction between prostate cancer cells and osteoblasts, thus proposing a role of KLK4 

in prostate cancer bone metastasis (Gao et al., 2007). Taken together with the data 

presented in this thesis, it can be suggested that KLK4 is expressed in both a nuclear and 

secreted form. Both forms may have important function in prostate carcinogenesis, and 

their properties and relative importance in prostate cancer needs to be explored 

individually. 
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The abundancy of the exon-1 deleted KLK4 transcript, its overexpression in prostate 

cancer and its strong androgen regulation suggest a potentially important physiological 

role of nuclear KLK4 in prostate carcinogenesis. Thus we set out to elucidate its 

expression in prostate specimens, and its functional role in prostate cancer cells in greater 

detail. Firstly, we analyzed KLK4 protein expression in prostate tissue microarrays by 

immunohistochemical staining. The analysis confirmed the results at the mRNA level, 

with significant overexpression of KLK4 in malignant prostate carcinoma compared to 

benign prostate glands. This is also in line with what has been observed in another study 

(Veveris-Lowe et al., 2005), however in contrast to what was found by others (Obiezu et 

al., 2005). Both these studies examined the cytoplasmic and secreted form of KLK4, 

probably giving rise to the discrepancies. One study reports the expression of nuclear 

KLK4 in human prostate specimens, with stronger signal in cancer cells than in benign 

glands (Dong et al., 2005), however without any statistical analysis. This is therefore the 

first report of significant overexpression of nuclear KLK4 in prostate cancer. The 

immunohistochemical staining further confirmed the nuclear localization of KLK4, with 

expression predominantly in the basal cells of the prostate epithelium. 

KLK4 is a proliferative factor in prostate cancer cells 

To study the functional properties of KLK4 in prostate cancer cells, we developed an 

adenoviral-mediated expression system. The system was designed to express a His-

tagged KLK4 under a doxycycline-inducible promoter (Figure 10A). The proliferative 

effect of KLK4-expression in the prostate cancer cell lines PC-3 and DU145 was 

evaluated by colony formation and proliferation assays, and the results clearly 

demonstrated a proliferative effect of KLK4 in both cell lines (Figure 10B).  

Increased proliferation of cancer cells can be mediated through several mechanisms, such 

as inhibition of apoptosis or induction of cell cycle progression. To evaluate if the latter 

was the case in our system, cell cycle specific oligoarrays were probed with biotin-

labeled cRNA from KLK4-expressing PC-3 cells, and compared to non-expressing cells. 

The analysis revealed that the proliferative effect of KLK4 was at least in part through 

the alteration in cell cycle regulatory gene expression. Several genes involved in 
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progression of the cell cycle, such as E2F1 and cyclin B1, as well as the proliferative 

markers PCNA and Ki-67, were upregulated in response to overexpression of KLK4. 

Furthermore, several inhibitors of the cell cycle, such as the CDK (cyclin dependent 

kinase) inhibitors p15, p16 and p21, were downregulated in the same cells. CDK 

inhibitors act as tumor-suppressor genes, and their down-regulation or loss is commonly 

seen in prostate cancer (reviewed in (Fernandez et al., 2002)). These data suggest that 

KLK4 induces proliferation of prostate cancer cells through the alteration of cell cycle 

regulatory gene expression. As KLK4 is not a transcription factor, intermediate factors 

must be involved and the identification of these will give important information about the 

mechanisms of action of KLK4.  

                        
Figure 10. Overexpression of KLK4 induces proliferation of prostate cancer cells
(A) PC-3 and DU145 cells were infected with KLK4-expressing adenovirus, and the expression 
of His-tagged KLK4 upon addition of doxycycline was verified by Western analysis using a His-
specific antibody. (B) Quantification of colony formation by PC-3 and DU145 cells expressing 
(+dox) or not expressing (-dox) KLK4. p<0.05 as assessed by Student’s t-test. 
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The size of the adenovirus-expressed KLK4 was about 26 kDa, which is significantly 

smaller than the size of endogenous KLK4 in LNCaP cells (see Paper I), questioning if 

the physiological properties of KLK4 are maintained in this system. In addition, the 

overexpression of proteins may cause non-specific side-effects on cellular properties. 

Hence, in order to elucidate if the observed proliferative effect of KLK4 also applied to 

endogenous KLK4, siRNA was used to specifically knock down the expression of KLK4 

in LNCaP cells. The specific knock-down of KLK4 was confirmed both at the mRNA 

and protein level, and resulted in the inhibition of growth of the LNCaP cells. These 

results confirm the proliferative effect of KLK4 in prostate cancer cells, suggesting that 

the smaller size KLK4 expressed in PC-3 and DU145 cells has maintained its functional 

properties.

This is the first report on important biological functions of the nuclear form of KLK4. 

The data presented suggest a role of KLK4 in prostate cancer cell proliferation, proposing 

that KLK4 may be involved in the progression of prostate cancer. The specific 

mechanisms by which KLK4 mediates this effect remain to be elucidated 

Ligand-specific dynamics of the androgen receptor 

As detailed in the introduction, the traditional way of viewing nuclear receptor action has 

recently been challenged by a new dynamic model, in which the receptor transiently 

interacts with its target genomic sites and are dynamically displaced at the timescale of 

seconds (see Figure 5). The dynamics of AR interaction with target genomic sites have 

not previously been studied, thus we set out to analysie the kinetics of AR interaction 

with chromatin in respose to angonists and antagonists using advanced fluorescence 

microcopy techniques. 

Cell lines with integrated tandem repeats of the MMTV promoter, containing 800-1000 

binding sites for AR, stably expressing GFP-tagged AR and the mutant AR-E897A were 

generated. These cell lines have maintained their response to AR ligands with respect to 

nuclear translocation and transactivation potential. The high density of AR binding sites 

within the tandem MMTV repeat enabled the visualization of the GFP-tagged receptor 
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when bound to its response element, and FRAP analysis was used to analyze the 

dynamics of the interaction between the receptor and its promoter in living cells in 

response to agonists, partial antagonists and antagonists. The FRAP recovery curves 

(Figure 11A) clearly demonstrate a rapid and dynamic interaction between AR and its 

target promoter, with times for half-maximum recovery in the scale of seconds. The 

recovery of AR is strongly ligand-dependent, with significantly delayed recovery in 

response to agonist as compared to antagonist. The delayed recovery corresponds to 

increased AR transcriptional activity, as demonstrated by RNA FISH analysis (Figure 

11B). Furthermore, the recovery of the transcriptionally impaired mutant AR-E897A was 

significantly faster than wild type AR, proposing a correlation between AR 

transcriptional activity and recovery kinetics at the promoter. 

Figure 11. Ligand-specific dynamics of AR 
GFP-AR expressing cells were treated with different ligands as indicated, and GFP-AR 
interaction with the MMTV array was analyzed by FRAP analysis (A), or the cells were subjected 
to RNA FISH analysis for quantification of transcriptional activity (B). Error bars represent 
standard error. 

Rapid recovery of agonist bound-AR as demonstrated by FRAP analysis was first 

described by Farla et al. (Farla et al., 2004), and the recovery kinetics was later shown to 

be ligand-dependent with faster recovery of antagonist-bound AR than agonist-bound AR 

(Farla et al., 2005; Marcelli et al., 2006), in line with our observations. However, these 

studies were performed on AR in the general nucleoplasmic space, and not on a target 
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promoter. This is therefore the first time to demonstrate the transient and rapid interaction 

between AR and its response element in living cells. 

Delayed recovery of agonist-bound receptor as compared to unliganded receptor has also 

been demonstrated for the steroid hormone receptors PR (Rayasam et al., 2005) and ER 

(Stenoien et al., 2001b). As observed for AR, the recovery of PR was faster in the 

presence of antagonist (ZK98299) than in the presence of agonist (R5020) (Rayasam et 

al., 2005). In agreement with our observations, the partial antagonist RU486 resulted in 

delayed recovery of PR compared to the pure antagonist ZK98299, suggesting that the 

mechanism of RU486 induced antagonism is different from other antagonists. In contrast 

to what was observed for AR and PR, ER mobility was dramatically reduced in the 

presence of antagonist ICI 182,780 compared to agonist E2 (Stenoien et al., 2001b), 

suggesting that antagonist function differs among the steroid hormone receptors. 

The delayed recovery of agonist-bound AR coincided with the recruitment of Pol II and 

the chromatin remodeling complex SWI/SNF, which was not observed for antagonist-

bound AR or the mutant AR-E897A. Furthermore, in an in vitro chromatin remodeling 

assay, ATP- and SWI/SNF-dependent displacement of AR from the chromatin template 

was seen, demonstrating the importance of chromatin remodeling in the dynamic 

interaction between AR and chromatin. The involvement SWI/SNF-induced chromatin 

remodeling in transcriptional activation has previously been described for AR, as well as 

other nuclear receptors (Fryer & Archer, 1998; Dilworth & Chambon, 2001; Fletcher et 

al., 2002; Belandia & Parker, 2003; Marshall et al., 2003; Rayasam et al., 2005).  

As described in the introduction, an intramolecular interaction between the N- and C- 

termini of AR is important for optimal receptor activity, however, this interaction has not 

been demonstrated for AR in its active form when associated with its target genomic site. 

We therefore used FRET analysis of dual-labeled AR when bound to the MMTV array to 

examine the importance of this intramolecular interaction. The possible role of 

intermolecular interaction between two neighboring molecules was also evaluated. A set 

of AR and AR-E897A fusion proteins were generated, and their expected response to 
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androgen was confirmed by luciferase reporter assays. Acceptor photobleaching was then 

used for FRET analysis, and the results confirm the presence of intramolecular 

interactions between the N-and C-termini of wild type AR when associated with its target 

promoter (Figure 12). FRET was significantly reduced for the transcriptionally impaired 

AR-E897A, suggesting that the intramolecular interaction is important for optimal 

receptor activity. Some FRET was also observed when co-transfecting single-labeled AR 

(CFP-AR + AR-YFP), suggesting that there are some intermolecular interactions between 

neighboring molecules. However, these are similar for wild type and mutant AR, 

suggesting that they are not as important for AR transcriptional activity as the 

intramolecular interactions.  

Together these data give significant new information about mechanisms of actions of AR, 

and about antagonist function. The results support the hit-and-run model of nuclear 

receptor action, suggesting that the model describes a general feature of at least steroid 

hormone receptors, and possibly also of other DNA-interacting proteins. This dynamic 

nature of protein-chromatin interaction allows for very rapid response to changes in the 

cellular environment, giving a new dimension to transcriptional regulation.  

          
Figure 12. Intramolecular interactions of AR at its target promoter
(A) MMTV array-containing cells were transfected with different AR-fusion constructs as 
indicated, treated with R1881 for 48 hours, and subjected to FRET analysis. (B) Schematic 
presentation of the intramolecular interaction between the N-and C-termini of agonist-bound AR 
Error bars represent standard error, * means statistically difference (p<0.05) as assessed by 
Student’s t-test. 
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Reduced mobility of the androgen receptor in response to HDAC inhibitors  

As discussed in the introduction, histone acetylation is an important factor in gene 

regulation; however, the underlying mechanisms are unclear. Thus we wanted to 

elucidate the effect of altered chromatin acetylation on the dynamic interactions of AR 

with its target sites in living cells. HDACis are compounds that change the acetylation 

status of chromatin by inhibiting the deacetylation of histone tails, and it has been shown 

that AR transcriptional activity is induced by HDACis (List et al., 1999b; Shang et al., 

2002; Korkmaz et al., 2004a). Hence, we decided to use the HDACis TSA and SAHA in 

our system to study the effect of chromatin acetylation on AR interactions with 

chromatin, and the possible correlation between transcriptional activity and receptor 

dynamics. 

TSA treatment resulted in increasing acetylation of histone 3 (H3) in our cell lines in a 

time-dependent fashion, concomitant with an increase in AR transcriptional activity and 

delayed FRAP recovery curves (Figure 13). However, AR recovery dynamics was not 

affected by treatment with the same compound when associated with antagonist (OHF), 

corresponding with no change in transcriptional activity. The same effect was also seen 

for the HDAC inhibitor SAHA. Furthermore, TSA induced the transcriptional activity of 

the mutant AR-E897A, followed by significantly delayed FRAP recovery at the MMTV 

array. These data suggest that increased histone acetylation results in delayed recovery 

and increased residence times of AR at the promoter through the induction of 

transcriptional activity. 

HDAC inhibitors can have various effects on different receptors, and in different 

promoter contexts. In contrast to for AR, HDAC inhibitor TSA has actually been shown 

to have an inhibitory effect on GR activity on the MMTV promoter (List et al., 1999a). 

We therefore used a previously described (McNally et al., 2000) cell line with integrated 

MMTV array stably expressing GFP-GR to study the effect of HDAC inhibitors on GR 

nuclear mobility. TSA and SAHA had the same effect on chromatin acetylation status in 

this cell line as in the AR cell lines; however, GR transcriptional activity was not 

significantly altered in response to the inhibitors and FRAP analysis demonstrated no 
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change in GR residence time on the promoter. These data support a correlation between 

increased transcriptional activity and reduced nuclear mobility. Furthermore, the data 

suggest that histone acetylation does not always induce transcription, but is dependent on 

promoter and transcription factor context. A more detailed study into the factors involved 

in the dynamic exchange of the receptor between its chromatin-bound state and the free 

nucleoplasmic state will give further information about the mode of action of nuclear 

receptors. It will be of special interest to examine which factors are involved in AR-

mediated transcription in comparison to GR-mediated transcription, thereby identifying 

factors with receptor-specific roles. Potential candidates might be HDACs, which have 

shown to be exhibit both activation and repression properties as co-regulators for nuclear 

receptor action (Gallinari et al., 2007). One example is HDAC1, which has a repressive 

role in AR transactivation (Shang et al., 2002), while it has been identified as a 

coactivator for GR (Qiu et al., 2006).  

Figure 13. Increased transcriptional activity and reduced mobility of AR in response to 
HDAC inhibitor TSA 
GFP-AR expressing cells were treated with TSA and R1881 or OHF for different time periods, 
and subjected to RNA FISH (A) and FRAP (B) analysis. Error bars represent standard error, and 
* indicates statistically difference (p<0.05) as assessed by Student’s t-test. 

Together these data gives further insight into the molecular details of the dynamic 

interaction between AR and its target sites. Furthermore, important differences between 

AR- and GR-dependent transcriptional activation have been identified, being potentially 

important in the search for novel diagnostic and therapeutic targets in prostate cancer. 
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The proposed correlation between transcriptional activity and AR mobility on the 

promoter needs to be elucidated in greater detail, but could potentially be used as a tool in 

high-throughput screening for novel anti-androgens for the use in prostate cancer therapy. 

Detailed analysis of the dynamic interaction between nuclear receptors, and also other 

transcription factors, and chromatin are needed in order to fully understand the molecular 

details of transcriptional regulation. 
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FUTURE PERSPECTIVES 

In this thesis, we identified KLK4 as a unique, intracellular member of the KLK family. 

We found that KLK4 is overexpressed in prostate cancer and induces proliferation of 

prostate cancer cells, suggesting that it may have important roles in prostate 

carcinogenesis. The mechanism by which KLK4 achieves this effect is largely unknown 

and will be of importance to explore in greater detail. A comprehensive study of KLK4 

expression in prostate tissue specimens from large patient cohorts, representing the 

various stages of prostate cancer, would give clues as to how KLK4 expression varies 

during prostate cancer progression. The expression of KLK4 in matched normal and 

cancer samples from the same prostate gland would also be of interest to study to 

elucidate the local expression pattern of the protein. These data would give valuable 

information about the potential in using KLK4 as a diagnostic or prognostic marker for 

prostate cancer. 

One important aspect of KLK4 expression is its regulation by androgens; however, the 

fold induction of KLK4 by androgens has varied between different studies. The reason 

for this discrepancy should be explored. The KLK4 promoter should be analyzed for 

potential androgen response elements, and the functionality of these determined. To this 

end, and for other analysis concerning androgen regulation, it would be of great value to 

check the response of KLK4 expression in other androgen regulated cell lines, such as 

LAPC-4 (Klein et al., 1997). There is also inconsistency in the literature regarding the 

size of KLK4. Possible post-translational modifications of KLK4, such as glycolysation 

and sumoylation, and the physiological relevance of these, if any, are also important 

aspects to explore. To understand the potential role of KLK4 in prostate cancer, the 

specific mechanisms underlying the proliferative effect of KLK4 are of importance to 

elucidate. This can possibly be achieved through the identification of KLK4 interaction 

partners, and direct up- or downstream targets, both for ectopically expressed and 

endogenous KLK4. This can for example be achieved by yeast two hybrid analysis and 

co-immunoprecipitation studies. Furthermore, examination of the effect of KLK4 

expression in in vivo model systems, either by overexpression or knock-down/knock-out 

studies, would give valuable insight into KLK4 function. Given its intracellular location, 



                                                                                                                                FUTURE PERSPECTIVES

61

KLK4 likely has different functional roles than the other members of the KLK family. 

Possible nuclear variants of the other KLKs may also exist and needs to be explored in 

detail. The presence of the other KLK4 isoforms should also be explored, and the 

possible functional roles of these should be determined. Taken together, these studies 

would give important new information about KLK4 function and its possible role in 

prostate carcinogenesis.  

In this thesis we also explore the molecular mechanisms of AR action in living cells, 

using advanced fluorescence microscopy techniques. The data presented demonstrate a 

very dynamic interaction between AR and its target promoter, supporting the hit-and-run 

model of nuclear receptor action. The traditional static view on nuclear receptor-

chromatin interactions and the idea of a stable transcriptional complex staying bound to 

the template for as long as transcription occurs, is challenged by this model. Although a 

highly dynamic behavior has now been described for many nuclear proteins in the 

general nucleoplasmic space, it is essential that similar studies, as we present here for 

AR, for other transcription factors on their regulatory elements are performed. These 

studies would then decide if the observed behavior also applies to a wider range of DNA-

interacting proteins, or is specific for just a subset of transcription factors.  

The long-term loading profile of AR and its cofactors onto the MMTV promoter would 

be of interest to elucidate, by ChiP analysis, in order to determine if AR exhibits the same 

cyclical loading profile as observed for ER. The possible functional relevance of this 

could then be explored. The role of chromatin acetylation on receptor dynamics should 

also be elucidated in greater detail. HDAC inhibitors are important tools for such studies, 

and inhibitors working by various mechanisms could be used. Furthermore, the 

overexpression and/or knock down of specific HATs and HDACs might prove useful in 

exploring the molecular details underlying transcriptional activation by steroid hormone 

receptors. The comparison of factors recruited to the promoter in the presence of AR 

compared to GR, as well as the acetylation status of the promoter after treatment with 

HDAC inhibitors, may give clues to why these two receptors respond differently to these 

inhibitors. One approach to this could be to determine which HDACs are involved in AR- 
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versus GR-mediated transcription, possibly identifying factors that have unique roles in 

the two systems. It would also be of great interest to study the dynamics of AR on a 

natural promoter. In order to relate the ligand-dependent dynamics of AR to its role in 

prostate carcinogenesis, this should preferentially be evaluated in a prostate cancer cell 

line. This can be achieved by the recombinant incorporation of a serially amplified AR-

responsive promoter (e.g. the PSA promoter) into the chromosome of a prostate cancer 

cell line. Such a system would give further information about the physiological relevance 

of the highly dynamic interaction between AR and chromatin. A detailed understanding 

of how AR interacts with response elements of target genes will give significant insight 

into the regulation of AR-mediated transcription, an important aspect of normal 

physiology as well as in the development and progression of prostate cancer. 
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