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Chapter 1

Introduction

I have had trouble creating a title which captures the essentials of the project in few
words. The one I landed on mentions the method used and the systems investigated,
hopefully without being too general. The idea behind the project is investigating
how solid structures behave, and how the type of chemical bonds between atoms
influences the behaviour. [ will address two types of daily occurring processes,
fracturing and friction. Being the more complex and less understood process, friction
has the biggest emphasis in the thesis, mostly through numerical surface contact
experiments.

Of the four fundamental forces, electromagnetism is the only relevant one at
the nanoscale. Gravitational forces are neglected because its characteristic strength
is as low as approximately 10736 times the strength of electromagnetism. Objects
the size of a car (about 10?® atoms) are needed for gravity to become significant.
Furthermore, the strong nuclear force acting between quarks is important in nuclear
physics, but quark degrees of freedom are eliminated in effective theories for atoms
and molecules. An atomic nucleus is normally considered as a point particle, only
interacting electromagnetically with electrons and other nuclei.

We are left with the theory of quantum electrodynamics, a theory developed in
the 1940s to describe the interactions between electrically charged particles. Photons
are the force carriers for these interactions. On the lowest level, the reason for
electrostatic repulsion and attraction between particles is discrete cases of scattering
induced by the transmission and absorption of virtual photons. The degrees of
freedom of the photons are eliminated by averaging over these interactions and
creating a continuous theory. The result is classical electrodynamics, formulated by
Maxwell’s equations.

In low-energy physics, which describes all significant processes occurring at the
nanoscale, particles move at speeds much lower than the speed of light ¢. For
example, medium-sized atoms vibrate with a speed of around 10~%c at room tem-
perature. We therefore do not have to take into account Einstein’s theory of special
relativity, and can approximate quantum field theory by quantum mechanics. To-
gether with classical electrodynamics, this theory has been used for atomic energy
calculations since the 1920s.

The field of thermodynamics and statistical physics also has an important place
in this project. The systems to be studied include a great number of degrees of
freedom. Even more of these, constituting the surroundings, are neglected and
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modelled only by their average effect on the system. In such big systems, meaning
big in comparison with a single atom, the effect of the second law of thermodynamics
can be accepted as a fact. The entropy of the system will always decrease, meaning
that all forms of abundant energy are eventually converted to heat. As this heat is
dissipated and conducted out of the system, it does not return in other forms. This
process is irreversible.

In the macroscopic world, irreversible processes with a lot of energy dissipation
dominate everything we perceive. A car engine is said to be efficient at transforming
the energy in fossil fuel to mechanical power. Yet a lot of heat (and negligibly, sound
energy) is dissipated in the engine. Some of the energy is used to heat the drive
shaft and connected parts, the catalyser, the exhaust pipe and the tires. Finally,
friction in the ground and air dissipate energy into heat in the surroundings. Only
about 250 kJ, the energy contained in 10 ml gasoline, is used to accelerate the car
from 0 to 80 km/h.

Fracture mechanics is the study of why and how material failure occurs. The
processes involved in fractures are very different in nature for e.g. ceramics, metals
and polymers. The simplest form of analysis in this field is linear elastic fracture
mechanics (LEFM), where Hooke’s law is assumed an actual law [1]. More advanced
treatment is possible by examining dislocations in big systems, as lattice dislocation
interactions are important in the fracturing of many materials. My systems are too
small for investigating dislocations, but the used interatomic potentials will describe
the mechanics better than LEFM, making the complexity of this project close to
the average in fracture simulation studies. I study tensile (mode I) and shear (mode
II) fractures, characterizing elastic and plastic deformations in fracturing of the
two materials Si and NaCl. Defects such as microscopic cracks can influence the
fracturing behaviour, and are also brought into the model.

Tribology is the science of how material surfaces interact. It is a big field,
and the one most relevant to the phenomena of friction. The interactions between
two surfaces in contact determine the outcome of rubbing them together. Rougher
surfaces give a higher friction force. Lubricants and other contaminants can reduce
this force. Adhesion is important in stick-slip motion, that is, the surfaces sticking
together and slipping again, periodically [2]. The effect is easily seen and heard
when sliding one rubber sheet on another with a low velocity. I attempt to model
surface roughness by a single asperity interacting with a plane surface. I investigate
the compressive and tensile stress at the interface of the two surfaces, and the energy
involved in adhesion.

My main investigative method is computational programming. Traditionally,
physics has been divided into theoretical and experimental branches. Recently in
the history of physics, in the second part of the 20th century, computational physics
became established as a third branch. In a sense, it is methodologically positioned
between the other two. Theoretical physics underlies a computational physics sim-
ulation, and the results from the simulation are compared with experimentally ob-
tained results. The method is often called numerical experimentation, since theory
and approximations are tested and verified. In most cases, this cannot be done
analytically by paper and pencil.

Mathematical problems with roots in real life, specifically linear algebra prob-
lems, differential equations and integrals, often require an automated problem solver.



Pretty, continuous functions are discretized (sampled at a finite set of points) and
stored in a computer as a large amount of numbers. These numbers go through
a programmed procedure to produce results. As computers are logical in nature,
their natural language is mathematics. Programming intricate problems is still a big
challenge, and requires knowing a programming language and general programming
techniques well. Computational science has contributed with important advances
to molecular biology, material science, geophysics, solar astronomy, and fluid mech-
anics, to mention some fields.

The next chapter presents what is to be studied, nanoscale mechanical processes.
What the systems consist of and what will happen to them is discussed. Details
concerning the two materials, silicon and sodium chloride, are also listed. Chapter
3 presents the method for the numerical study, molecular dynamics simulations.
It explains how classical mechanics and thermodynamics can be applied on the
nanoscale in order to predict the global behaviour of systems consisting of thousands
of atoms. Chapter 4 shows how I try to model the interactions between atoms, and
how to efficiently compute these interactions. This is the chapter with the most
mathematical formulas and fewest pictures.

Moving on to more practical matters, chapter 5 presents the numerical setup.
I explain how the system is represented inside my computer program, and the
numerical methods I have used to treat the systems in physically realistic ways.
Chapter 6 contains technicalities of the program I have developed. It shows a
flowchart containing the numerical procedures, which are described in appendix
A.

The results of the numerical simulations are presented in chapters 7 and 8,
corresponding to the two main classes of systems mentioned in chapter 2. Finally,
in chapter 9, I put the results into perspective and make some concluding remarks
regarding the outcome of this project and possible improvements to the numerical
model.

I want to thank my advisor, Anders Malthe-Sgrenssen, for advice, fruitful discus-
sions and insight into physical results. Additionally, my co-advisor Morten Hjorth-
Jensen has provided constructive critique of the thesis. I want to acknowledge the
support and motivation from fellow students in the Computational Physics research
group. Weekly seminars and a good atmosphere have helped making my studies
enjoyable.






Chapter 2

Systems of interest

In this project, I will investigate the dynamics of solid state structures on the
nanoscale. This requires taking into account the fact that matter is composed of
atoms. The mathematical theory for the behaviour of atoms, quantum mechanics,
was developed by Einstein, Bohr and de Broglie, amongst others. Rutherford and
Thomson contributed with experimental verifications of the atomic nature of matter,
and during the 20th century, quantum mechanics and atomism became established
as proven facts [3]. Modelling the behaviour of atoms with computationally efficient
methods was and continues to be another challenge. This problem is approached in
the next chapter.

The systems under study are bulk materials and surfaces. Solid state materials
have a periodic structure referred to as crystalline. Perfect crystals are composed
of a collection of atoms, the basis of the crystal, repeated in three directions. I will
only consider cubic structures, where these directions are orthogonal and parallel to
the Cartesian axes of my coordinate system. Being cubic, the unit cells containing
the basis being repeated is equal in extension in the three Cartesian directions. In
addition to the translational symmetry of the crystal, cubic structures have inherent
rotational and reflectional symmetries. Some of these are broken when the basis
being repeated consists of more than one atom.

In any case, a real crystal is never perfect. All solids contain point defects
and dislocations. A battle against these imperfections is futile except at very low
temperatures. Even though a perfect crystal is the state with the least potential
energy between atoms, a crystal with defects has more entropy, making it a more
probable structure. Another type of defect is thermal vibrations. A crystal with
finite temperature is always subject to collective vibrations, known as phonons.
These are waves of elastic energy with different frequencies propagating through the
crystal, enabling the conduction of heat and sound. Atoms can also vibrate more or
less independently of each other. The theory behind these two vibration phenomena
have been used to develop theories for estimating the heat capacity of solids, the
Debye and Einstein models, respectively.

My systems can be divided into two classes, bulk and surface systems. Fractures
and other types of mechanical failure are interesting processes occurring in bulk
solids. In the second case, interfaces between solids and how surfaces interact are
the matters of interest. The analysis is performed for two types of materials in order
to investigate the effect of different chemical bond types on these phenomena. The
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first chosen material is sodium chloride, better known as rock salt, which has ionic
bonds. The second is a semimetal with covalent bonds, silicon, used in modern-day
electronics and solar cells.

2.1 Fracture mechanics

It is a well-known fact that the usual reason for fracture in a solid state material
is lattice defects. As discovered by A. A. Griffith in 1920 [4], the only significant
non-material-inherent quantity that influences the breaking stress is the linear size
of the biggest flaw, or simply the flaw size. By this, Griffith meant the length of a
crack inside the material, with direction normal to the direction of inflicted stress.
Griffiths relation predicts a proportionality between the tensile stress at which a
fracture occurs, oy, to the flaw size a [1, 4]:

1 (2.)
xX —=. .
of \/a
The expression for the proportionality constant was found by Griffith and improved
by G. R. Irwin. The more general form used by Irwin is [1]

orv/a = M (2.2)

Here, 75 is the surface energy density in the material. When a surface is created
inside the material, some potential energy corresponding to 75 is lost. The term -,
is the energy dissipation to elastic waves and heat. The value of the parenthesis
is the approximate total energy which is converted between different forms in the
fracture process. Finally, E is Young’s linear elasticity modulus of the material.

The strain € and tensile stress o can be measured in experiments and simulations
in order to test that the stress reproduces Eq. (2.1), and at what strain fracture
occurs. The relation in Eq. (2.2) has proven a reliable approximation for both brittle
and ductile materials [1]. For brittle materials, the surface energy term dominates,
while in ductile materials, the dissipation term is the most significant. The relation
is intended for a linear crack extending through a plate. For other flaw shapes, the
constant factor is slightly different and can be calculated, but I will not go into more
details on the exact value of the factor.

Figure 2.1 depicts tensile and shear forces deforming a cube. The lengths and
forces shown can be used to define stress and strain. These quantities are actually
Cartesian tensors, but I assume an isotropic solid. The formulae below can be used
in the general case when written in differential tensor forms. Tensile strain ¢ and
stress o are

AL, F,

L,’ Ay’
where A,. is the cross-sectional area normal to the tensile force. Shear strain v and
stress T are

€

(2.3)

(2.4)
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L, AL,

-

Figure 2.1: Illustration of how tensile and shear forces (respectively) deform a solid, and
definitions of the lengths used in the stress and strain formulae.

Stress is a one-dimensional and directional variant of pressure, which acts equally
in every direction.

According to Hooke’s law for elastic materials, there is a linear relationship
between the applied tensile stress and the resulting strain, when these quantities are
sufficiently small [1]. The proportionality constant is Young’s modulus E:

o = Ee. (2.5)

Using this relation, it is an easy task to estimate E. Although it is not a part of this
project, estimation of s and v, is also possible, so that Eq. (2.2), or its modification
for a specific flaw shape, may be verified. In the case of a harmonic solid, Hooke’s
law is exact (but no fracture occurs). The harmonic spring potentials (U = $kr?)
between atoms will act as coupled springs when the solid is stretched or compressed.

In a real solid, the stress is not linear, but tends to be monotonically increasing
with strain. This applies especially to brittle materials, which store a lot of elastic
energy before fracturing suddenly. Ductile materials have a broad plastic region,
where deformation processes occur gradually, long before a fracture. These are
irreversible because energy is dissipated. Upon a purely elastic deformation, the
solid can always be brought back to its initial state with no energy loss.

The quantities presented here all assume a continuous solid evolving in continu-
ous time, but the formulae can be discretized and specialized to atomic solids, as
shown in chapter 5.

Previous molecular dynamics studies of tensile stress with atoms interacting
through the simple Lennard-Jones potential report a linear stress-strain relationship
in the entire elastic region [5]. A newer study using the same potential, but a huge
number of atoms (500 million) gives more complicated results due to the formations
of dislocation patterns [6]. On the extreme side of large-scale MD computations, we
find stress corrosion cracking simulations with 200 billion atoms simulated on 200
thousand CPUs [7]. Large-scale simulations with coupling to continuum mechanics
are popular because the length scales become closer to the macroscopically observed
ones. However, some studies are also devoted to the microscopic structure and
behaviour of fracturing materials of more complex and realistic potentials, like crack
propagation in silicon [§].
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2.2 Material interfaces and friction

Friction between materials is a phenomenon which have been observed and measured
for hundreds of years, but which has not yet been fully understood from basic
principles. The problem is that it is quite a complex process, and different questions
have to be asked and answered on different length scales. The only well-known law
of friction that approximately describes macroscopic materials is the one formulated
independently by DaVinci, Amontons and Coulomb [2]. It states that the force
of friction is neither dependent on the sliding velocity v or object area A, but
proportional to the normal force (or load) L:

F=plL. (2.6)

The proportionality constant p is called the friction coefficient. It is material
dependent and most often takes values between 0.2 and 0.8.

Even if one sticks to the macroscopic scale, researchers have discovered several
complications by the use of experiments and computer models. One needs for
instance to consider the coupling between the mechanical process and the heating of
both surfaces in contact. Important mechanical phenomena which appear when
sliding two rough materials against each other are fractures and slips near the
material interface [9].

A general observation done in the course of the last decades is that the friction
force indeed varies with the contact area between the materials. This is, however,
the real area of contact Ag, which is much smaller than the geometrical area A
of an entire surface. As surfaces can have a roughness on all scales, only very few
asperities make contact to counteract the load L (see Fig. 2.2). Ringlein and Robbins
[10] provide a refined friction formula based on their research on friction,

F = ulL + cAc, (2.7)

where ¢ is an additional proportionality constant between real contact area and
force. They also point out the reason why Eq. (2.6) often works well for macroscopic
materials. The real area of contact A¢ is often proportional to the load L, causing
one to believe that there is only a linear load dependence.

Figure 2.2: How the interface between apparently flat material surfaces can look like on a
small scale. Modelled in Matlab using smoothed random walks.

Digging deeper into the origins of friction requires understanding the forces
between asperities. By the word asperity, I do not refer to the roughness of a
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whole surface, but a microscopic tip standing out of a surface. Many such tips,
on various scales, constitute the roughness of a surface. In my model, the surface
of a nanoscale asperity has a spherical curvature, which is a good approximation
to the real situation. As sliding friction is complicated and time consuming to
model, I focus mostly on investigating contact stress and adhesive forces in material
interfaces. The distribution of stress between two spheres and between a sphere
and a plane surface should have the same form, due to symmetry. The stresses will
differ only by a multiplicative constant. In my case, the latter of these systems is
the easiest one to model.

Defining the area of contact between materials becomes problematic on the
atomic scale. How big is the contact area between an atom and a surface of atoms?
This could be approximated by a geometric approach of finding an area enclosing
all atoms close to the surface, but such a method will require too many parameters
and will not be reliable enough for my purpose. It will be more effective to assign a
cross-sectional area to an atom based on how far it is from the surface atoms [11].
The method I use is based on this idea (see section 5.2.4).

Forces between asperities have been investigated by measuring the stress between
a sphere and a plane surface or between two spheres composed of generic atoms
[11, 12]. The stress distributions are heavily dependent on how the atoms inside
the spheres are arranged. Results are shown in Fig. 2.3. Moving on to bigger
scales, the paper [13] investigates the effect of pushing a rough and a smooth surface
together using both molecular dynamics and the finite element method. The contact
area between the surfaces varies linearly with the applied load, while the interfacial
separation is reduced in a logarithmic manner. This can be seen as results averaged
over thousands of asperities.

Figure 2.3: Stress distributions in the interface between plane surfaces and sphere seg-
ments of bent, random and stepped organization. The first row is with purely repulsive
interactions while the second row also includes adhesive interactions. Borrowed from Luan
and Robbins [12].
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Friction simulations with realistic potentials are very rare. The paper [9] de-
scribes molecular dynamics studies of the processes occurring in the interface of
large, atomically smooth blocks in relative motion. This includes stick-slip motion,
fractures and bulging of surfaces. Such smooth surfaces have also been studied by
experiment, with the fascinating technique of friction force microscopy. A micro-
scopic tip of a hard material, such as tungsten or diamond is slid across a plane
surface, and a pattern with the lattice constant a as periodicity emerges in the
measured friction force [2]. The large-scale mechanisms of friction between rough
surfaces, which cause Fpiction to vary linearly with the normal force, are explained
quite well in [10].

2.3 Materials

The processes which I have described are qualitatively and quantitatively different
for different materials. This is a result of their differing type of interatomic forces
(chemical bonds) and crystal structure. These are again affected by more funda-
mental properties such as the number of elementary particles of each type inside
the atoms. The simulations will always be homogeneous with respect to material
types. Interfaces between two different types of materials are outside the scope of
this thesis. Some details characterizing the two materials under study are given
below.

(a) Nat and C1~ ions in a double fec cell. (b) Si atoms in a diamond cell.

Figure 2.4: Conventional unit cells for the two crystalline materials.

2.3.1 Sodium chloride

Sodium chloride is a solid composed of Na® and Cl~ ions forming an ionic lattice.
The mean mass of sodium atoms and chlorine atoms are 22.9898 amu and 35.4525
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amu, respectively [14]. These numbers are achieved by averaging over the different
isotopes of the chemical elements, weighted by their relative occurrence in the
universe. Only stable isotopes of chlorine are considered. I neglect the small effect of
an abundant or deficient electron on the ion masses. Sodium chloride has a normal
density of 2165 kg/m?, corresponding to a mixed particle density of 0.045 A3

The most stable crystal structure of sodium chloride is the double face centered
cubic structure. Each of the ions are placed in a Bravais FCC lattice, displaced with
a vector u = ge, + ge, + ge., where a is the lattice constant. The basis used in my
program is arranged so that surfaces parallel to the Cartesian axes will be charge
neutral (visible in Fig. 5.6). The lattice constant has the value a = 5.63 A [15]. The
conventional unit cell consists of four atoms of each type. One filled unit cell of a
NaCl crystal is shown in Fig. 2.4(a).

Sodium chloride is a ductile (soft) material. Rather than breaking violently, like
glass, salts will exert only small amounts of energy to its surroundings upon fracture.
In most cases, atoms will float freely and rearrange slowly to when deformations are
induced.

2.3.2 Silicon

Silicon is a semi-metal and has covalent bonds between atoms. The mean mass of a
silicon atom is 28.0854 amu [14]. Its solid phase density is 2329 kg/m?, corresponding
to a particle density of 0.050 A=3.

The most stable crystal structure of silicon atoms is the diamond structure.
The atoms are placed in two Bravais FCC lattices, displaced with a vector u =
7€: + e, + fe.. The conventional unit cell has eight atoms and a lattice constant
5.43 A [15]. Figure 2.4(b) shows one filled unit cell of a diamond crystal consisting
of silicon atoms.

The angular dependence in the electronic density around silicon atoms is the
reason for the equilibrium diamond structure. Silicon has a remarkable feature
which it shares with water. The liquid phase has a higher density than the solid
(crystalline) phase. Thus, a silicon crystal will melt when compressed to a sufficiently
low density. It is a brittle material, which means that a fracture will exert a lot of
stored-up elastic energy, while there are no significant plastic deformations before
the fracture itself. This behaviour can in some ways be seen as the opposite of that
of a salt.

In summary, I am considering systems of Si and NaCl lattices undergoing mechanical
deformations. These deformations are described in detail in section 5.2. Most of
the important quantities measured are energies which must be fed to a system in
order to deform it or energy exerted by a system on its surroundings. Structural
organization in the form of various-scale defects are also important to investigate,
because it influences these energies and how the mechanical processes are taking
place.






Chapter 3

Basics of molecular dynamics

Atoms are objects which have an extension in the order of one Angstrém, 1071
meters. They are composed of electrons and a nucleus which also consists of more
elementary particles. This is, even when viewed classically, a complicated system.
And we know that quantum mechanics must be applied to systems of this small
size. All elementary particles are quantum fields with an associated wave function
and a quantized energy. In this project, I study systems containing thousands of
atoms. Ab initio calculations, containing only strictly controlled approximations,
a minimum of empirical parameters and a fully quantum mechanical description of
the system, is no feasible approach.

The Born-Oppenheimer approximation says that the nucleus of an atom has a
much greater mass than the electrons, and will stand perfectly still in an electronic
time scale. The degrees of freedom of the electrons and the nucleus are separated.
The energy of a collection of atoms can be calculated using only the electronic wave
functions, with e.g. density functional theory (DFT) [16]. This enables calculations
of forces on nuclei, and the movement of nuclei can be simulated classically. Such a
DFT-MD coupling is very accurate, but also extremely time-consuming. More direct
methods have also been developed, such as the Car-Parrinello quantum molecular
dynamics [16, 17]. Classical molecular dynamics (MD) takes the approximations
one step further and considers not only nuclei, but entire atoms as point particles.
Classical mechanics describes the motion of the atoms, but the potential between the
atoms tries to take into account their electronic structure (more of this in chapter 4).
The interatomic potentials can be improved to the point that the resulting dynamics
is equal to what one would get using an ab initio approach.

Predicting values of macroscopic observables for homogeneous matter in equilib-
rium has been the most important application of MD. This requires coupling the
dynamics to certain external thermodynamic conditions. All ensembles of statist-
ical mechanics can be simulated in some artificial way in order to study systems in
various conditions. Properties of bulk matter are of great interest. Properties of
phase transitions and pair correlation functions can be used to learn much about
how materials behave on a microscopic scale. To a certain extent, dynamical pro-
cesses involving the system as a whole can also be studied. Simulations of fracture,
friction, corrosion, diffusion and catalysis are examples of areas of earlier and current
research.
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3.1 Equations of motion

Lagrange’s and Hamilton’s formulations of classical mechanics are often used to
derive equations of motion for molecular dynamics simulations. This is useful when
simulating e.g. rigid molecules with constraints on the relative motion of atoms,
using generalized coordinates in addition to Cartesian ones. As I do not consider
molecules in this project, but crystalline solids, I stick to the simpler Newtonian
formulation. In a collection of atoms 7, the equation responsible for the dynamics is
Newton’s second law,

dQI'Z'
where m; is the mass of atom i, F; is the force vector exerted on atom 7 by other
atoms or external conditions, and r; is the position of the atom. All forces are
dependent on the positions of all the atoms in the system.

The force acting on an atom with index ¢ is the negative gradient of the potential
energy of the entire system, U,. In the usual case of interaction pairs, this equals
the sum of the negative gradient of interaction potentials U;; from other atoms j,

Fi = —Vil,(r;) = =Y ViUi(ry). (3.2)
j#i

The meaning of V; is the gradient with respect to the position of atom . The symbol
r;; is shorthand for r; — r;. By Newton’s third law, F,;; = —Fj;. By exploiting this,
only half of the possible potential gradients need to be calculated when finding the
forces on all atoms. In a system of N atoms, this means 2N (N — 1) force terms
must be calculated when a straightforward approach is used.

When put together, Eqgs. (3.1) and (3.2) form 3N time-dependent, coupled,
nonlinear partial differential equations. The nonlinearities arise from the forms of
the potential energy function, unless we deal with e.g. an ideal (non-interacting) gas
of atoms in a homogeneous gravitational field. Because of the nonlinearities, even
the exact solutions of the equations will display sensitivity to initial conditions.
Perturbations will then grow exponentially with time [17]. T’ll come back to this
point briefly in section 3.2.

3.1.1 Time integration

In most cases, to integrate Newton’s second law, Eq. (3.1), molecular dynamics pro-
grams use symplectic integrators like the Verlet and Leapfrog methods [16, 17, 18|.
All integrators conserve momentum exactly and energy approximately. Symplectic
integrators are time reversible and also conserve phase space ({r;}-{p;}-space)
volume between trajectories.

My program uses the velocity Verlet method, because of its numerical stability
and ability to efficiently estimate the velocity and positions of particles at simultan-
eous times. Given initial positions r(t), velocities v(t) and forces F(¢), the values of
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these quantities at the next time step is calculated this way:

v(t+ At/2) = v(t) + MAt, (3.3)
r(t+ At) =r(t )+V(t+At/2)At (3.4)
F(t + At) = =VU,(r(t + At)), (3.5)
v(t+ At) =v(t+ At/2) + Mm. (3.6)

2m

The atom index 7 is dropped for brevity. The method can be derived from Newton’s
second law, or directly from Hamilton’s principle of least action using a forward
Euler discretization [17].

The time step should be set so that the thermal oscillation of atoms are well-
described by the discrete dynamics. In my simulations, I put the time step to 2-4
fs (1 fs = 1071° s), and one oscillation goes over approximately 20 time steps. An
atom with room temperature thermal velocity will use about 100 time steps to reach
from its own place to an adjacent atom’s position. This ensures that atoms do not
get too close to each other, preventing unphysically large forces. The Verlet method
is of order 4 in position and order 2 in velocity. This means that the errors are
proportional to At* and A#?, respectively. Since the energy is a function of both
position and velocity, the largest error term in the energy will be proportional to

At?.

Energy accuracy

The total energy of a system of N particles is the sum of their kinetic and potential
energies, most generally written as

|
U{r pih) = 5 Z P U (i), (37)
where p; = m;v; is the momentum of particle 7. This is, in the case of a time-
independent potential, equivalent to the Hamiltonian of the system.

In a simulation of 1728 NaCl ions with a time step At = 2.0, the standard
deviation in total energy is oy = 4.9-107¢ eV. For comparison, the standard deviation
in potential energy is oy, = 1.1-107% ¢V when the ions are in equilibrium in their
crystal structure. Figure 3.1 shows how the energy varies over the course of the
simulation. The deviations are the biggest when conversions between kinetic and
potential energy happen, that is, when the derivatives of these energies are great in
absolute value. Increasing the time step gives an increase in the error over time, but
not as drastic as the order 2 property suggests. With At = 4.0 fs, oy = 7.2-1076
eV and with At = 8.0 fs, oy = 19.1-107° eV.

No dynamical equation integration scheme conserves energy exactly. It is possible
to create such a scheme, but it might come at the price of momentum exactness.
One possibility for ad hoc velocity estimation is to demand that lost or gained
potential energy is converted directly to kinetic energy. This gives the following
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Figure 3.1: Deviation in energy from the starting value for 1728 NaCl ions simulated over
400 time steps.

explicit formula for the velocity:

v(t+ At) = v(t) + \/(v(t) )2+ 2 (U, (1) = Uyt + A8) — (v(t) ) | 0. (3.8)

m

The important thing with regard to energy is that the magnitude of the new velocity
is correct. The unit vector n points in the direction of velocity change, which can be
determined by force evaluation. Although this velocity estimation results in an exact
conservation of energy, it should not be used when updating the position, because
it would introduce a low-order approximation. Either way, this velocity estimator
is not used in my calculations due to its troublesome nonlinearity.

3.2 Thermodynamics

Thermodynamics is the science of energy balance in systems of many degrees of
freedom. Its essence is captured in four laws, which can be formulated in the
following way:

0. If two thermodynamic systems are each in thermal equilibrium with a third,
then they are in thermal equilibrium with each other. Two objects will exchange
energy until they are in thermal equilibrium with each other. This is equivalent
to having the same temperature. For objects A, B and C' with temperatures
Ty, T and T¢, the zeroth law says that Ty = T¢ if both Ty = T and
T = Te. This may seem self-explanatory, but physicists saw it necessary to
state the property as a fundamental law defined by the abstract concept of
equilibrium.

1. In any process in an isolated system, the total energy remains the same. The
law of energy conservation is the most fundamental in all of physics, and it is
yet to be disproven. In thermodynamics, it is often stated as AU = Q + W:
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The change in energy U equals the energy input from heat () and work W. I
use this relation several times in the thesis, and always operate with quantities
which are positive when the energy of the system is increased.

2. Any process in an isolated system has a tendency to increase the entropy of
that system. This law does not exclude a decrease in entropy, but this is so
improbable that it will only happen in systems of a couple of atoms. The law
of large numbers is responsible for this. In a bigger system, there are many
more composite states of high entropy than low entropy, so a high entropy
is most probable. As a result, matter will diffuse and energy will spread out
across the available degrees of freedom.

3. As temperature approaches absolute zero, the entropy of a system approaches
a constant minimum. The same is true for the heat capacity, Cy, = T g—js,,
where S is the entropy. I do not utilize the third law in this thesis, but it has
important consequences in the field of low-energy quantum mechanics (e.g. for

Bose-Einstein condensates).

Some words are needed to clarify what is meant by thermodynamic equilibrium.
There are in principle three types of thermodynamic processes: heat exchange,
compression/expansion, and particle exchange. These have their associated pairs
of conjugate thermodynamic variables and types of equilibria, listed in Table 3.1.
The processes will occur between two systems until they are in the equilibrium
specific for the process. This does not imply that any of the systems are totally
static. Particles continue to move, and heat is still exchanged between the two
systems, but in equal amounts both ways. Total equilibrium in a single system
can be loosely defined by all the variables in Table 3.1 being constant on average.
Section 3.3 describes how equilibrium can be achieved in a simulation.

Process Equilibrium | Extensive variable Intensive variable
Heat exchange Thermal Entropy S Temperature T’
Compression /expansion | Mechanical Volume V Pressure P
Particle exchange Diffusive Particle number N | Chemical potential

Table 3.1: Thermodynamical processes and equilibria [19].

Table 3.1 leaves some loose ends in the form of intensive and extensive variables.
Extensive variables have a linear dependence on amounts of matter, whereas intens-
ive variables stay constant in this respect. For example, if you double the system
size, the number of particles will of course double, but the chemical potential stays
constant. The product of a pair of conjugate variables (one extensive and one intens-
ive) equals the energy transferred in the associated process. For example, the work
done in transferring N particles is u/N. Furthermore, the table suggests trivial defin-
itions for the intensive variables. Temperature is the tendency to transfer heat and
loose entropy, pressure is the tendency to do mechanical work and increase volume,
and chemical potential is the tendency to transfer, and thereby loose, particles. Note
that a higher volume with the same pressure means a lower energy. This causes the
minus sign in Eq. (3.15).
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If a system is in equilibrium, the ergodic hypothesis applies. In the MD approx-
imation, a system can be uniquely determined by the positions and velocities of
its contained atoms. The phase space of the system is a 6/N-dimensional Cartesian
coordinate space with the position and velocity components of all the N particles
as variables. The phase space density p({r;}, {p;}) determines the probability for
the state of the system to reside at a certain point in phase space. The form of this
function depends on which ensemble we are working in. The ergodic hypothesis says
that, when a system is observed for a very long time, the distribution of states the
system has been in coincides with the phase space density. Vaguely put, the system
explores every region of its phase space.

The ergodic hypothesis implies an important fact about averages. If an observ-
able variable A depends on the phase space variables, it will also implicitly depend
on time. The ensemble average and the time average of A are, respectively,

(A) = / p({r}. {pi}) Adw, (3.9)

t
A= tim = [ Adt, (3.10)

t—o0 0

where dw is an infinitesimal phase space element. Since the distribution of the phase
space variables will be equal in the ensemble and in time, these averages must be
equal, (A) = A. Simulating the dynamics of the system and taking the time average
over a reasonable long time therefore produces a representative equilibrium value of
any variable A. If we were to calculate an ensemble average, we would need to know
the form of the phase space density and evaluate a 6 N-dimensional integral, which
is highly infeasible.

Due to nonlinearities in the dynamical equations, two nearly identical configur-
ations in phase space will separate exponentially with time and evolve into entirely
different trajectories. For systems in equilibrium, this is no big issue, as we are
interested in averages over atoms and time. Averages are not influenced by small
fluctuations in the microscopic phase space variables. The importance is greater in
systems far from equilibrium. Small fluctuations can e.g. make a solid fracture at
an earlier or later point in time. Especially in the small system sizes I consider,
simulations with apparently negligible changes in parameters will produce different
results. This limits the accuracy of the numerical calculations and sometimes forces
me to average over several simulation runs.

3.2.1 Ensembles

The most fundamental principle of classical mechanics is conservation of energy.
This will be approximately satisfied by discrete time integrators. Therefore, particles
simulated using only such a time integrator will constitute a microcanonical (NV E)
ensemble. (The variables in the parenthesis are kept constant.) Every system state
with total energy E will contribute equally to computed averages, so the phase space

density is
p({ri}, {pi}) o 6(E — U({ri}, {pi})), (3.11)
with 0(z) being the Dirac delta function.
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In macroscopic experiments, it is generally easier to keep the temperature con-
stant instead of the energy. This is the most prominent reason for using the canonical
(NVT) ensemble. This ensemble can be simulated by using methods popularly re-
ferred to as thermostats. In this case, the phase space density is proportional to the
Boltzmann factor of a configuration:

p({ri}; {pi}) < exp (=U({r}, {pi})/ksT). (3.12)

There is also a possibility of simulating the pressure canonical (N PT) ensemble by
keeping the pressure constant and changing the volume by so-called barostats.

The fourth important ensemble, the grand canonical (uV'7T') ensemble is not
common in MD simulations. However, this is useful when performing multiscale
simulations with interfaces between atomic and continuous regimes, and would
require keeping the chemical potential constant and varying the number of particles.
Finding the triple points of phase boundaries efficiently also requires this ensemble
to be simulated. The (uPT) ensemble does not exist, because the variables p, P
and T together contains redundant information, while we are missing other pieces of
information which can only be determined by keeping at least one extensive variable
constant [17].

In computing most of the results in this thesis, the canonical ensemble is used.
Thus the temperature is an important quantity which must be estimated. According
to the equipartition principle, every degree of freedom which is quadratic in position
or speed will contribute with an average energy of

1
Baor = 5heT (3.13)

to the total energy, where kg is the Boltzmann constant and 7' is the temperature
of the system. This applies to a canonical ensemble in thermodynamic equilibrium.
This formula can be summed over all kinetic degrees of freedom, and inverted to give
an estimate of the system temperature. As the total translational kinetic energy is
U, = %ZZ]\LI mv? = 3NkgT, we get

N
1
T = m;v? 3.14
N L 311
in three dimensions. The temperature T is estimated only from the translational
degrees of freedom, while the degrees of freedom associated with potential energy are
left out. Measuring the temperature exactly requires the usage of the fundamental
thermodynamic relation, derived from an expanded first law of thermodynamics,

dU = TdS — PdV + pdN. (3.15)

This shows how the internal energy U changes when the entropy S, volume V
and particle number N varies. Finding the temperature requires differentiating the
energy with respect to entropy, which is non-trivial to calculate for general systems.
Therefore, we assume equilibrium between the translational and potential degrees
of freedom.
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The temperature estimation can be used to verify how a thermostat performs
over time. Regardless of the thermostat used, all velocities are initialized to random
values obeying the Maxwell-Boltzmann distribution. For each Cartesian direction,

it corresponds to a normal distribution with standard deviation % As a

7

simulation starts, kinetic energy will be transformed to potential energy, and the
measured temperature will (in most cases) drop, if a thermostat is not applied.

3.2.2 Thermostats

One way of keeping the temperature constant is to use a simple rescaling factor. All
the particle velocities are multiplied by a factor o so that T — o?T = Tiarget- This
rescaling factor is easily found from Eq. (3.14) to be

3NkBTar e
V =1 """

This rescaling will give the system the correct temperature, but it will not sample
the Maxwell-Boltzmann-distribution correctly for all degrees of freedom, and does
therefore not satisfy the ergodicity requirements of the canonical ensemble.

Many different thermostats have been proposed to fix this problem, but all
have their weaknesses. The Andersen thermostat replaces the velocities of random
particles with velocities from the Maxwell-Boltzmann distribution. The Berendsen
and Nosé-Hoover thermostats add a fictitious friction force which gradually decrease
or increase the velocities of the particles to obtain the correct temperature [16, 20].

The Andersen thermostat is known to work well for equilibrating systems, al-
though it should not be used when simulating dynamics. The algorithm is strikingly
simple. Define a collision time 7, significantly larger than the time step At, after
which all particles in the system on average have exchanged energy with the heat
bath. For each time step, the probability of replacing a particle’s velocity by a
Maxwell-Boltzmann distributed one is given by At/7. The energy absorbed from
the heat bath can be calculated by simply computing the kinetic energy before and
after the thermostat has been used.

The BDP thermostat

The thermostat I use during dynamical processes is one recently developed by Bussi,
Donadio and Parrinello [20] (I will refer to it as the BDP thermostat). It contains
a friction term and a stochastic force, as in Langevin dynamics for e.g. solvent
particles. In its original infinitesimal form, the change in kinetic energy due to the

thermostat is
Utarget o Uk Uk Utarget
AUy, = XAt + 24/ X ——dW. 3.17
k T + 3NT ( )

The first term is identical to the one used in the Berendsen thermostat [16]. The
second term is the stochastic term, which can be shown to sample the canonical
distribution for kinetic energy. dW is a infinitesimal Wiener process path element.
The parameter 7 defines a relaxation time for the thermostat, that is, how fast the
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system is being cooled or heated. The equation must be integrated using stochastic
integration, and in the article [20], the resulting rescaling factor is found:

T T
2 _ D target 2 2\/ targetD 1-D 1
a +avr ZR +2)/ S D (1= D)y, (3.18)
where D = e=27 {R;} are 3N Gaussian distributed random values, and R, is just

one of these.

Velocities are rescaled by simply setting v; — av; for all dynamical particles
. The result of using the BDP thermostat is ergodic sampling of the canonical
distribution (when in equilibrium), undisturbed dynamics (which is important in
my case) and tunability by changing the 7 parameter. Figure 3.2 shows a histogram
of the velocity distribution of particles after equilibration with the BDP-thermostat.
Generating all the random values is a tedious task, so this thermostat will be more
CPU-intensive than the others, but the workload will be negligible in comparison to
the calculation of forces between particles.
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Figure 3.2: The distribution of one velocity component for 4096 silicon atoms in a simula-
tion using the BDP thermostat, resembling a Gaussian distribution.

For one velocity rescaling, the energy absorbed from the heat bath is Uy (a? — 1),
where Uy is the total kinetic energy of the system. Assuming that the velocities are
rescaled every time step, the power exerted on the system by the heat bath is

pP= EUk(a —1). (3.19)
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3.3 Equilibration

It is crucial to equilibrate a molecular dynamics system before measurements can
be made or dynamics can be simulated. The standard approach I use is to simulate
the dynamics in a usual fashion with a heat bath coupling to all the particles using
the BDP thermostat. However, some systems are harder to equilibrate than others
and require special treatment.

In the sphere-surface interface experiments, it is hard to keep the sphere from
bouncing, rolling and vibrating internally after being pushed down towards the
surface. This type of computational experiments therefore require an extensive
equilibration epoch. The following phases constitute a method to equilibrate this
system:

1. Initial dynamics, letting the sphere “fall” onto the surface so a contact is
established. The BDP thermostat is used with a global coupling. Ended when
the sphere is slightly compressed and ready to start a vertically oscillating
bounce motion.

2. Energy dissipation phase, adding a force term —~v; to all particles to simulate
viscosity. The friction parameter is chosen so that yAt/m; < 1. To avoid
requiring a “hard” implementation of this in the equation of motion integration,
the velocity of the previous time step is used in the force, so the dynamics
will have an error comparable to that of the Euler scheme for integrating the
equations of motion. The temperature is decreased and the oscillations die
out gradually, optimally making the system totally static. No thermostat is
used in this phase.

3. As velocity rescaling would just have restarted the oscillations, the Andersen
thermostat is now used to make the atoms vibrate more independently. I often
divide this phase into two phases where the heat bath temperature is abruptly
increased from 50-100 K to 300 K.

4. The sphere should be in equilibrium with the heat bath of the desired temper-
ature, so the data gathering phase can start. The BDP thermostat is used in
a heat conduction simulation form (see section 5.1.3). Some collective vibra-
tions will reappear in the sphere, but these are naturally occurring phonons,
and have an amplitude which is comparable to the thermal fluctuations of
independent particle positions.

Figure 3.3 shows the energy and center of mass velocity in the x direction during
a typical silicon surface contact experiment. The initial drops in potential energy are
caused by introduction of a gravitational field of discontinually increasing strength.
During the dissipative dynamics phase, both the kinetic and potential energy reach
a minimum where the sphere is frozen (at zero temperature). Subsequently, the
Andersen thermostat heats up the system in two phases by giving them independent
random kinetic energies. The transition to the data gathering phase where the BDP
thermostat is used is seamless.

The center of mass velocity x component shows that the sphere oscillates as
it hits the fixed particle surface, as expected. These oscillations are killed by the
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Figure 3.3: Time development of energy and collective velocity of a big Si sphere pushed
towards an Si surface during all simulation phases.

dissipative dynamics, and there is no collective motion apart from fluctuations when
the Andersen thermostat is applied. The rightmost section of the graph shows the
combination of the mentioned phonons and fluctuations caused by particles “going
against the flow” because of thermal excitations (the phonon oscillations do not die
out at the end, even if it appears so in this particular case). This is how a crystal
should behave in equilibrium, and good conditions for gathering e.g. mean stress
data.

Molecular dynamics is a beautifully simple method. Its main principles can be
explained to high school students without having to mention quantum mechanics,
even though it is responsible for everything that happens. In fact, our coupled
differential equations, which I call equations of classical mechanics, can be derived
as the average behaviour of a quantum system. Using the canonical quantum

momentum operator p = —ihV and a wave function description of a particle,
Ehrenfest’s theorem says that [21]

A5

W _ oy, -

This is equivalent to Newton’s second law for average dynamical quantities. Of
course, atoms are small enough that averages do not tell the whole story. Atoms and
even big molecules have a wave-like nature which allow them to bend around corners
and diffract through small gratings, in the same way as electromagnetic radiation.
However, in collections of thousands of atoms, averages measured in simulations
using the Born-Oppenheimer approximation are reliable enough for most purposes.

I have explained the most essential features of the MD method, which have
been in use for many decades. In addition to the atoms directly simulated by time
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integration, effects of the existence of the rest of the universe are also taken into
account. This is done in subtle ways, as small amounts of energy transferred into or
out of the system (read more in chapter 5). Energy exchange is the most useful for
these types of simulations, but including volume changes and particle exchange in
equilibrium is also possible, in order to simulate the pressure canonical and grand
canonical ensembles.
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Interaction potentials

Molecular dynamics (MD) is a classical theory, but tries to describe quantum mech-
anical phenomena using effective interaction potentials for atoms. The electronic de-
grees of freedom are not taken into account explicitly in the dynamics, even though
both the nucleus and the electrons affect how atoms will interact with each other.
Common practices are to use quantum mechanical energy calculations or measure-
ments from scattering experiments to construct the effective potentials. Approxim-
ately correct atom dynamics are recovered even though the atoms are treated as
classical point particles. The effective potentials usually contain parameters which
are determined by trial and error. The parameters are chosen such that numer-
ical simulations best reproduce the experimentally observed behaviour for a specific
system.

The interaction potential between atoms are determined by functions which have
a continuous dependence only on the positions of these atoms. The first molecular
dynamics simulations used so-called hard-sphere potentials, which are described
mathematically by step functions. These require special algorithms with a non-
constant time step. Although they had educating purposes in their time, such
potentials are now seldom in use.

The total potential energy in a system of N atoms is normally the sum of
interaction potentials between all pairs of atoms ¢ and j. In the case of periodic
boundary conditions (see section 5.1.1), this sum also goes over infinitely many
copies of the atoms in the system:

Up=>_> > Uj(llry +RJ). (4.1)

R i=1 j=1

Here U;; is the two-atom interaction potential and r;; = VT Tij 18 the distance

between atoms ¢ and j. The translation vector R points to all possible copies of the

system (R = n,L,e, +n,Lye, +n,L.e, for n,,n,,n, € Z). Atoms do not interact

with themselves, so the 1 = j term is skipped if R = 0.
The force exerted on atom ¢ by atom 7 is

87’@' Tz’j

F,; = VU = (4.2)

In covalent bonds, the potentials also have angular dependencies because the
electron densities are not spherically symmetric around atomic nuclei. An easy
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way to model this is by including three-body forces. The Stillinger-Weber potential
(section 4.3) is one example. Below, I present this and other potentials I use in my
simulations, and give some details regarding how they are computed efficiently.

4.1 The Lennard-Jones potential

One of the simplest and most successful interatomic potentials constructed is the
Lennard-Jones (LJ) potential. It contains a repulsive part caused by the Pauli
exclusion principle, which must be taken into account when electronic wave functions
have a significant overlap. It also contains an attractive part, because electron
densities are slightly higher between a pair of atoms than elsewhere, inducing dipole
moments which interact. This is the theoretical interpretation of the mathematical
form, but originally, it has roots in experimental studies.

Scattering experiments are usually carried out with the purpose of finding either
an interaction cross-section for a pair of objects or a structure factor S(k) for one
object. For example, high energy photons, electrons or neutrons can be used to
find the structure factor of a crystal, and neutrons and even neutrinos can be fired
at atomic nuclei to find their structure factor. If this function is inversely Fourier-
transformed, the form of the potential around the object can be found. Atomic
scattering is done in a slightly different way. We are interested in the interaction
potential between two atoms, so they have to be fired at each other and collide. As
free composite particles, the atoms will act as plane waves, but after a collision, the
phases of these waves have changed. The total phase change will tell how strong
potential fields the atoms have encountered. If the experiment is done with several
different initial momenta p, or equivalently, different wave vectors k, the minimum
distance between the atoms will change. The data of phase change for different
minimum distances can be used to obtain a potential depending on interatomic
distance.

The LJ potential shows a good correspondence between underlying theory and
experimental measurements. With optimal parameters, the potential is very close
to the actual potential between pairs of noble gas atoms. It was the first continuous
potential used in a MD simulation, by Rahman [22], who studied correlations in
liquid argon. It has become a standard to use this potential for modelling generic
short-range repulsion between all sorts of atoms.

The form of the potential is

where ¢; and o;; are parameters specific to the different atomic elements in a
simulation.
The derivative of this is straightforward to calculate, and gives rise to the force

’ 7 [(W) <’f’z'j) ]rj 4
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Atom €i [eV] oi [A] | Source
Ar | 1.0318-10°2 | 3.405 | [22]
Na® | 5.6478-10° | 2.35 | [23]
KT | 43501-10° | 3.33 | [24]
CL | 4.3501-10° | 440 | |[23]

Table 4.1: LJ parameters for a few atoms and ions of interest.

Table 4.1 shows the LJ parameters for interactions between pairs of equal atoms.
These are found by varying them and comparing the resulting simulation data
with experimental data. The parameters for atoms of two different elements are
calculated by two combination rules. Given parameters for interactions between
atoms of the same element, homogeneous interactions, geometric and arithmetic
means give reasonable values for the parameters of heterogeneous interactions [25].
The combination rules are

1
€ = e€;  and oy = o (0w +0j5). (4.5)

Ions are very close to being noble gases and having a spherically symmetric
electronic density. Therefore the LJ potential is used to model the interactions
between Na®™ and Cl~ ions in this project. The short-range part of the Coulomb
interaction is strong enough that the attractive force of the LJ interaction is almost
negligible in the dynamics. The most important role of the LJ potential is stopping
equally charged particles from crashing into each other.

4.1.1 Implementation details

The simplest form of real space cutoff possible with periodic boundary conditions
(see section 5.1.1) is the minimum image convention. Define x;; as the distance in
one direction between atoms ¢ and j. With PBC, the distance is calculated as the
smallest number of x;;, x;;+ L, and x;; — L,. In words, the atoms are only interacting
with the nearest of their copies. This is used in my program, as LJ interactions do
not exceed half the system size in any direction.

Neighbour lists, or Verlet lists, are lists of all atoms that are closer to each other
than a specified cutoff length. In my implementation, all atoms 7 have their own lists
of atoms 7 < ¢ that are close to them. The force evaluations happen only between
neighbouring pairs of atoms, and the lists are updated every 10th time step or so.
The cutoff length must be set so that short range potentials like the LJ potential are
negligible beyond it. I normally set the cutoff for this potential to r, = 12 A. The
maximum number of neighbours is set to three times the expected number based on
the average particle density p,

4
max neighbours = 3 - grgp. (4.6)

Regardless of how big the cutoff length is, cutting off the potential will introduce
a discontinuity. There are many possible modifications of the L.J potential that avoid
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a discontinuity, but I will not go into this matter. The systems I am investigating
will be strongly bound, and as mentioned, only the very short-range part of the LJ
potential will make an important contribution to the dynamics.

4.2 The Coulomb potential

Electrically charged atoms, ions, interact through the Coulomb potential in addition
to short-range quantum mechanically derived potentials like the LJ potential. The
mathematical form of the Coulomb potential is exact, if the quantization of electro-
magnetic radiation is neglected. A more critical approximation is that of describing
the abundant or deficient electron as a point charge. This is done in order to avoid
quantum mechanical calculations and to complete the calculations in a reasonable
amount of time. Thus ions are modelled as point particles with an associated unit
elementary charge, ¢ = £e. Still working classically, it is also possible to use partial
charges for ions and atoms to model inhomogeneous concentrations of electrons in
a discrete manner (see e.g. [26]).
In reduced units (see section 6.1), the Coulomb potential between two particles
with charge ¢; and ¢; is
qu]
Uij(rij) = (4.7)

Tij

Regardless of how simple it may look, this very important potential causes problems
with PBC (section 5.1.1) because of its long ranged nature. To see this, it is useful
to write down the total electrostatic energy due to the Coulomb interactions,

=YYy T R (48)

R i=1 j=1

The comments to the more general Eq. (4.1) also apply here.

Even for the simple case of N = 1 in one dimension, we encounter infinities. The
total potential energy will then be 2¢?¢(1), where ((n) is the Riemann zeta function.
¢(1) is the harmonic series, which barely diverges. For the case of every other ion
on a line being positively charged and the rest negatively charged, the interaction
energy of one ion is 2¢?In2. Even if this is finite, the convergence rate is so slow
that the required precision for this kind of calculations will not be achieved in a
reasonable amount of time.

In all cases with periodic boundary conditions in one or more directions, the
electrostatic energy of an ionic system can not be computed using a real space
cutoff approach. Many methods have been devised for solving this problem. In this
project, I use the simplest and most famous of these, the particle-particle Ewald
summation technique. More advanced methods use multipole expansions or map
the charge density to a mesh and solve Poisson’s equation to obtain electrostatic
forces [16, 17].

4.2.1 3D Ewald summation

The Ewald summation technique is used to efficiently capture the long range in-
teraction properties of the Coulomb interaction with a finite number of summation
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terms [16, 17, 18]. It can also be applied to other long range interactions, like the
van der Waals potential.
First, we need to express the pair potential in Eq. (4.7) as a Fourier transform:

q:q; AT v
Uil + RI) = g [ e Comack. (19)

The integration goes over the entire reciprocal space. The following identity comes
straight from the definition of the reciprocal lattice vectors k:

D MR = @ > (K —k). (4.10)

The k-vectors are reciprocal to the translation vectors R for the entire system. V
is the volume of the entire system. Using the identities in Eqgs. (4.9) and (4.10)
in Eq. (4.8), we will get rid of the R-vector sum and replace it with a sum over
k-vectors. The k = 0 term corresponds to infinite-range interactions. Due to
the charge neutrality of the systems I am considering, these interactions consist
of infinite terms that cancel each other out, enabling me to drop the k = 0 term

from the summation:
zk rij

ZZZqu] e (4.11)

k;éOz 1 j5=1

The particle index 7 is always used as an index and should not be confused with the
imaginary unit ¢.

We now have a sum which is computable, but will converge very slowly. The
charge distributions of point particles are Dirac delta functions, which linear com-
bination of plane waves ¢’*¥i do a terrible job at describing. We will need so many
plane wave terms that carrying out the sum directly is not feasible.

Now for the trick of the Ewald summation technique: Imagine that the charge
distribution of the atoms were instead a Gaussian,

062 3/2 2 2
pi(r) = ¢ (-) e~ Ir—ril” (4.12)

™

The parameter o adjusts the standard deviation, which has the value 1/(v/2a).
This distribution is Fourier transformed, and the resulting potential is added to and
subtracted from Eq. (4.9). By doing this, the total energy will be given by three
summation terms:

N i—1
27 erfe(ar;;)
U, = v k%éo 5 1S(k e i + ; 1 ; 1 ¢iqj————= o - E Q. (4.13)

The first one, which comes from summing up the Gaussian distribution energies,
is long ranged. The second one, which is the correction term (Dirac delta minus
Gaussian), is very short ranged and can be summed neglecting other copies of the
system. The third term removes reciprocal space interactions between an ion and
itself, and is constant.
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The structure factor S(k) is defined as

S(k) =) ge (4.14)
j=1
and the complimentary error function is erfc(z) = 1 — erf(z), where

2 [" e
erf(z) = —/ e " dt. (4.15)
0

T

The parameter a can be freely set and will decide which sum converges the fastest.
If it is big, the second term converges with fewer terms, but the first one will require
more terms, and vice versa for a small a [27].

The total electrostatic energy in Eq. (4.13) contains not only the distance
between ions, but the actual position vectors. The force arising from the first term
must therefore be calculated by taking the gradient directly. This gives terms which
can be written as sums of sines and cosines of k - r;;, but I choose to use complex
numbers explicitly, both in derivations and the numerical implementation. The de-
rivative of the error function is a Gaussian. We get the following expression for the
force exerted on ion i:

1700~ L tensapt
F,=- v : Z?Im{e krig(k)le 17k
K40
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where Im{z} is the imaginary part of a complex number z.

4.2.2 2D Ewald summation

In some cases, two-dimensional PBC have to be used even if the simulated system
is three-dimensional. This actually makes the Ewald summation more difficult and
time-consuming. I have looked at two methods, Kawata and Mikamis (KM method)
[28] and the PHL method, presented in the same paper.

For the reciprocal space term of k = 0, which for the 2D-PBC case is non-zero,
I use the PHL method. For the k # 0 terms, I have implemented both methods,
but use the KM method for the calculations in this project. This is because the
terms are computationally demanding, and the KM method of computing them has
a favourable scaling.

The direction without PBC will in my case be along the x axis, and I refer to the
lengths of the simulation box in the other directions as L, and L.. The short-range
sum will be exactly the same as in the 3D case, so I only present the long range
reciprocal space terms here.

The potential energy of the charged systems is the sum of three contributions.
The first one is the quasi-2D analogue of the reciprocal 3D sum. The k # 0 term
corrects for that the real-space potential sum has too short a reach in the x direction,
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where a regular Coulomb potential should have been used. The last term is the same
self-interaction correction term as in the 3D case.

1 o 1 1 (k24h2
L _ L (k2+h 2
Vi = mZ/m e st
L —a?z2,
Uo = L L 0 —e i + mwaerf(axy;) |, (4.18)
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Uit = ——= Z g (4.19)
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Here, x;; is the distance from ion j to ion ¢ in the z direction. The integration variable
h acts as a continuous reciprocal lattice vector component in the z direction. The
modified quasi-2D structure factor has the form

N
— Z qjei(k-l‘jJrhl’j). (420)
7=1

The trick of the KM method is that a double sum over ions is replaced by
integration over this structure factor. The force on ion ¢ will have independent
contributions in the y-z and z directions. For A = y, z, with reciprocal vector
components ky, the force components are

2 > 1 — L5 (k2+h? —i(k-r;+hx;
(Fiwoi)s = —7.7 Sob [ e w0 e e ()
? k40 —

(4.21)
The force in the z direction get contributions from both Ulf?éo and UL_,. The
two contributions are

2 o h 1 (p24h2 A
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_ 2mg;
(Fi_o.) . m] g g;erf(ax;;). (4.23)

4.2.3 Implementation details

The most demanding matter in this project, both mathematically and computa-
tionally, is the Ewald summation method for the Coulomb interaction. The short
ranged parts of the sums, which are the least computationally expensive, are carried
out with the same neighbour lists as with the LJ potential. The cutoff length 7.
from Eq. (4.26) is used. This length is forced lower than half the system size, for
compatibility with the minimum image convention.

The long ranged parts are summed over k-vectors of small length, prioritizing the
contributions of longest range, which are the dominant ones. To keep the isotropic
nature of the infinite crystal, a spherical cutoff is used, so that k2 + k; + k2 < keutort
In the 2D case, k, is simply put to zero. There will be roughly thousands of vectors
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in the sum for 3D periodicity, and hundreds for the 2D periodicity. The vectors
are found and stored at program start, together with the terms in the summation
formulas depending only on the vectors.

In both the 2D and 3D periodicity cases, the problem of calculating forces is
divided into two parts. First, the structure factor in Eq. (4.14) or Eq. (4.20) is found.
Only the particles which are repeated periodically are included in the structure
factor sums. In some cases, the simulation will contain particles without PBC.
These interact amongst each other using a direct Coulomb term, U;; = ¢;q;/ri;. The
structure factor is updated whenever particles move between time steps, thus not
for stationary fixed particles. A speed-optimizing improvement is also implemented
for the case of a constant displacement of all the fixed particles. In this case, which
occurs during many of my applied deformations, the structure factor is multiplied
with a single complex number for each value of k and h. For example, if 2D PBC is
applied to all fixed particles, and they are moved a distance Az in the z direction, the
numbers to multiply with is exp (i¢hAzx). The structure factor is correctly updated
with no new summations over particles required.

After the structure factor of the periodic interaction is found, the resulting forces
on dynamical ions and total potential energy can be calculated. This takes somewhat
shorter time than the structure factor calculation. In the 3D energy and force sums,
the symmetry operation k — —k does not change the inner expressions. This is used
to reduce the computational cost by a factor of 2. Three sums are being carried out,
a triple sum with k, > 0 (a half-sphere), a double sum with %k, = 0 (a semi-circle)
and k, > 0 and a single sum with k, =0, k, = 0 and k£, > 0 (a line).

The integrals in the 2D k # 0 sums are approximated by using Simpson’s com-
posite rule. By minimal recommendations in the paper 28], the interval for A is
[—1.5k., 1.5k.], and the number of evaluation points is 65. The more sophisticated
Gaussian quadrature would work very well here. Hermite polynomials use a Gaus-
sian weighting function [29], which corresponds well to the exp (h?/4a?) term in the
energy and force sums.

A much more efficient way to model repeating two-dimensional patterns would
be to keep 3D-PBC and insert thick slabs of vacuum in the z direction directly
outside the system. The slabs of matter would then lie in a layerwise fashion,
interacting only slightly with each other. This method has been used in several
cases of numerical surface research, but it introduces complications when applying
boundary conditions and deformations to some of my systems. I have therefore not
investigated the method, but it is definitely a matter worth pursuing in projects
where bigger ionic lattice simulations are needed.

The required parameters for the Ewald summation technique are calculated
internally in the same way as in the Protomol MD package [27]:

N\ /6
S Gl 13 (4.25)
«

k. =2av—Ine. (4.26)

In this way we change from three to two input parameters and gain an O(N%/?)
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scaling. The constant C' adjusts the ratio between the time usage of the real-space
and reciprocal-space sums, and is in most cases set to 2.0. The relative accuracy of
the calculations is equal to e. I put this to 107® most of the time, as this is more
than enough for studying the phenomena my program is made for.

To prove the scaling hypothesis, I note that V' o« N, such that o o« N~
A particle has a number of neighbours proportional to r? oc o™ oc N¥2. This
must be computed for all N particles, giving an N3/? scaling for the real-space sum.
The number of k-vectors included in the reciprocal-space sum is proportional to
k3V oc NY/2, because the density of k-vectors is V/2x. This sum also runs over all
particles, giving it an N%/? scaling.

In the cmath header from the C++ standard library, the functions exp, sin,
cos, erf and erfc are all defined and implemented in an optimized way. These
are used for the Ewald summation calculations in my program. Complex number
arithmetic is performed with a custom class, including basic algebraic, exponential
and trigonometric operations (see appendix section A.1).

There are many ways of optimizing the Ewald summation method, some general
and others specific to systems. The methods I have mentioned which are not
implemented in my code would indeed increase the performance, but I choose to
limit the time and effort used on this matter, as this project is more oriented towards
physics than numerical methods.

1/6

4.3 The Stillinger-Weber potential

Atoms have in general interatomic potentials with angular dependence. This can
be seen even when solving the time-independent Schrédinger equation for a single
electron orbiting an atomic nucleus. Higher energy states, starting with the so-called
2p states, include spherical harmonics which are not spherically symmetric [21].
Thus the electron distributions in atoms of elements heavier than beryllium have an
angular dependence. Further, the electron densities are shifted when several atoms
come close. This is especially important for atoms that do not fulfill the chemical
octet rule and create covalent bonds. In order to model the interaction properly,
this must be taken into account, in the form of many-body potentials. Consider the
potential energy sum

Uy =Y U®, (4.27)

b=1

where U® is the b-body potential. Each term is a sum of all b-body energies between
all combinations of b atoms, dependent on their positions. In principle, with all the
right b-body potentials, the correct atomic dynamics can be produced, even though
we approximate the atoms as point particles. We use this sum perturbatively and
put U® =0 for b > 3. That is, to model covalent bonds, we move one step ahead
from the LJ potential and consider a three-body potential.

For this purpose, I use the Stillinger-Weber (SW) potential, which is constructed
especially for silicon [30]. This potential reproduces the cohesive energy and melting
point of bulk silicon matter. Its history is not completely clear, but it was likely
produced in the same way as the Lennard-Jones (LJ) potential. I use a slightly
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different notation and organization than the standard one when presenting the
mathematical form.

The total SW potential energy has three terms (sums over system replicae are
dropped for convenience):

N N -1 N N j-1
Upy=> U+ > 02 +3 3> v (4.28)
i=1 i=1 j=1 i=1 j=1 k=1

In the last term, the sum does not include the terms where 57 = ¢ or k = 7. The
double counting of index j occurs because atom ¢ occupies a special position, the
middle of the atom trlplet There is a symmetry between the atoms not in the
middle position, Uzjg,z Uzk], but no symmetries between ¢ and j or k.

The first term is constant, and is included to get the correct cohesive energy of
the crystal structure. There are %N (N —1) terms in the double sum, as before, and
TN(N —1)(N —2) in the triple sum. These are drastically reduced by the natural
cutoff of the potential, which encourages the use of neighbour lists.

The two-body part of the potential has the form

A(£—1>e ( ) for r;; <re,

o = 4G e () or 20
0 for 1y >re.

All derivatives of the potential are continuous at r;; = r.. The potential acts

repulsively at short distances and attractively at slightly larger distances, just like
the LJ potential.
The SW three-body potential has the form

S

ijk

ol o 1y? ijs i
@_{M@QMW+MW)WW+9 for  rij, rik < T, (4.30)

0 otherwise.

There is a term similar to the exponential term in Ul(] , but also a multiplicative term
of angular dependence. This can force smaller or greater angles between triplets of
atoms, and therefore act both attractively and repulsively in collections of several
atoms. The three-body dot product term Cjjy, is the cosine of the angle between the
vectors r;; and r:

Tij - Tik

Cijk = COS Hjik = (431)

T'ijTik '

The factor 1/3 in Eq. (4.30) is there because solid state silicon atoms are arranged
in the diamond structure (section 2.3.2). In this equilibrium structure, each atom has
four bonds (atoms within cutoff distance) and the angles between atom pair vectors
are such that cosfeq = —1/3 (6eq ~ 70.53°). Other structures can be produced by
setting 0.4 to a different value.

The constants in the SW potential are adjusted to fit experimental data [30].
They are summarised in Table 4.2 with the units I use externally with my program.
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re [Al | AeV [ BIAY | o [A] | A[eV] | v [A]
3.7712 | 12.840 | 11.603 | 2.0951 | 38.248 | 2.5141

Table 4.2: The six constants required in the SW potential [Eqgs. (4.29) and (4.30)].

4.3.1 Forces

The two-body force between atoms ¢ and j can be derived straightforwardly from
Eq. (4.29), producing the expression

A 4B B o o
Yy [T?j " (Tfj ) (Tz‘j—rc)Q} P <7”ij—7”c)rj (4.32)

In calculating the three-body force, one can use that the forces arising from a

potential term must be zero if you sum over all three atoms: (V;+V; +Vk)UUk 0
[18]. Therefore, the most complicated term, V,;U, y ,3, does not have to be calculated.
The forces arising from Ui(jk are

F\Y = (V;+ VU,

FY = -v,U7), (4.33)

FY = -V, U,

Using a new shortcut, the force on atom k& can be gained by switching the indices
j and k in the force on atom j. In this way, only one of three terms needs to be
analytically differentiated. This property is also used to speed up the numerical
calculation of the forces.

In differentiating the potential, one needs the derivative of the three-body dot
product term,
r;j r,kv 1 v]‘(rij‘rik).

Tik TU Tijrik

The first term is computed in much the same way as the two-body potential, using
Eq. (4.2). The second term is problematic, but can be calculated using the general

index notation formula

9*B D*A;
V(A -B)=)_ (AJ o ] By 5. )e (4.34)
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where e; is the unit vector in the ith direction. Using this, I obtain V;(r;; 1) = ri,
and the whole derivative becomes:

1 (Cijpry i
VG = (— - r—k) (4.35)

ij T'ij T'ik
With Eq. (4.35), the required potential derivative can be calculated, and we
finally obtain

gl gl 1
U® =\ Ciin + =
Vel o <T¢j—7“c+nk—7“c) ( Jk+3)

1 r;; 2 Czrz r;
A Cin + = %_ur_ —igkliy Tk |
3) (rij—re)?riy  rig \ 1 Tik

(4.36)
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which can be inserted into Eq. (4.33) to find all SW three-body forces.

4.3.2 Implementation details

For storing the interacting neighbours, the neighbour lists developed for LJ inter-
actions are used. The interaction cutoff length is set to r. (Table 4.2), and the
neighbour list cutoff length is normally set to 110% of this. Each atom must now
keep track of the neighbours with both lower and higher indices than their own.
The atom checking for neighbours is always the middle one, with the first index in
Egs. (4.30) and (4.33). The third index will always be smaller than the second one,
as when calculating forces between pairs of particles. This way, all bonds between
dynamical atoms are accounted for exactly once.

Sometimes, an open ends boundary condition with fixed particles on the sides are
necessary (see section 5.1). Calculation of three-body forces between dynamical and
fixed particles requires some extra thought. Four types of three body fixed particle
terms (TBFPT) can occur, all illustrated in Fig. 4.1. By having fixed particles
in the neighbour list, the first two terms are automatically included in the sums.
TBFPT4 requires fixed particles to have their own neighbour lists, specifying which
dynamical particles are close to them. TBFPT3 requires these lists to also include
other fixed particles, but force terms are of course only calculated when at least one
of the interacting particles are not fixed.

TBFPT1 TBFPT2 TBFPT3 TBFPT4

B O Q0O
O 0 O 0@ 4

Figure 4.1: The four different three-body fixed particle terms in force and potential
calculations. Particles in the gray area are fixed.

4.4 Comparison of the potentials

I have now presented all the interatomic potentials used in this project. Their
mathematical forms are very different in nature. The LJ and Coulomb potentials
are both spherically symmetric, in the sense that only the distance between the
interacting pair of atoms affects the potential energy. The Coulomb potential has
different signs when equally and oppositely charged particles interact. The range of
the Coulomb potential is very long, while the LJ potential has a stronger divergence
when atoms are close. The SW potential has one part much like the LJ potential,
but also a part which is not spherically symmetric around an atom.



4.4 Comparison of the potentials 41

1.4} !
1
1
12F 1
1
1
1F \
1
3 1
> 0.8 1
2 1
Q
3 ! Lennard—-Jones potential
s 06 “ Coloumb potential
é \ = = = Coloumb short range part (alpha = 0.3)
o 04f \ Stillinger—-Weber 2-body potential
\ — — — Zero line
\
0.2F \
\\ N
N
~ d
0 = e e——— E, NI N e
1 1 1 1 1 1 1 J
0 2 4 6 8 10 12 14 16

Distance between atoms [A]

Figure 4.2: Comparison of interaction potentials as a function of the distance between two
sodium ions and two silicon atoms.

Figure 4.2 shows radial plots of the different two-body potentials presented.
Sodium parameters are used in the LJ potential, and silicon parameters in the SW
potential. As the potentials behave quite differently, plotting them in the same
diagram is not very informative. The bottom of the SW potential well is far below
what is seen (—1.819 eV) while the LJ potential well is too small to be seen at all
(—€i; = —5.6478 - 1076 &V).

This chapter concludes the theory part of the thesis. The physical and mathematical
foundation is now laid, and what remains is to model the systems on a computer.
This enables me to predict the response of a system to an applied deformation,
which is the objective in this project. Bits of the numerical methods have already

been presented, as it was natural to explain how the potentials are computed within
this chapter.






Chapter 5

Numerical setup

The physical systems and dynamical equations have been presented, and now we
must go into how the numerical experiments are performed. Some mathematical
methods and constraints need to be chosen in any simulation, and the choices are not
always easy. For example, one often has choices between more complex and reliable
methods and methods which are easier to implement, or between computationally
efficient methods and methods with a stronger physical foundation. Generally, I
have restricted myself to simple and efficient methods which do not necessarily
aim to reproduce the conditions in a real experiment. This project is more about
investigating chemical bonds and nanoscale structures than accurately predicting
the mechanical strength of a macroscopic piece of material.

The systems I consider are atoms initialized to an energetically preferable crystal
structure. The starting positions of the atoms are calculated by iterating over
conventional unit cells in the z, y and z directions and the basis vectors (see Fig.
2.4). This creates a cuboid lattice, which can be chopped, stretched, cut to a sphere,
or otherwise deformed.

Velocities are generated according to the Maxwell-Boltzmann velocity distribu-
tion for a given initial temperature. Thus the translational degrees of freedom are
closer to equilibrium than they would be for e.g. a uniform speed distribution. The
total linear momentum of the system is set to zero at the start of the simulation, to
prevent drift when periodic boundary conditions are applied. No corresponding cor-
rection is done for the rotational momentum, because periodic boundary conditions
assure this to be zero.

A simulation is always split into phases. An example of this is already presented
in section 3.3. One or more equilibration phases are executed at the start of the
simulation. Mechanical deformations are applied in the next phase, and dynamical
quantities are measured. Optionally, the deformation is stopped so the system
reaches equilibrium again, and averaged quantities can be measured.

5.1 Boundary conditions
In my molecular dynamics (MD) simulations, all the particles are either free or in

some way confined to a cuboid, a rectangular prism with right angles. This cuboid,
which I call the simulation box, has side lengths L,, L, and L, in the three Cartesian
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directions. What I am mainly interested in is the interactions between the atoms
inside the box, but the effect of the surrounding atoms is also important. This is
incorporated approximately through different boundary conditions.

5.1.1 Periodic boundary conditions (PBC)

In materials science MD simulations, the most used kind of boundary condition is
the periodic one. Call the length of a particular PBC direction of the simulation
box L. If a particle escapes the box on the left or right side, its position will be
shifted in that direction with +L or —L, respectively. Particles will also interact
with an infinite number of copies of themselves and other particles in the system.
If all three directions have PBC, the vectors to these system copies are R =
nylL.e, + nyLye, + n.L.e,, for integers n,, n, and n,. There will not be any
surfaces, only an infinite amount of bulk particles. PBC in non-cuboidal geometries
is also possible, as long as the shape of the region can be stacked periodically to fill
space. Irregular prisms and the truncated octahedron are usual examples.

The reason for using PBC is the interest on what is happening inside materials.
A great amount of research connected to the properties of surfaces is taking place,
but PBC is still used in this case in the directions parallel to the surface, to have
only one e.g. material-air-interface. A box with PBC in all directions will enable
the possibility of bulk particle simulations. The dynamical atoms will behave like
atoms in the middle of a macroscopic piece of material.

In the program, all particles have flags which tell in which directions they
experience PBC. This is useful in surface contact experiments, where a group of
particles with no PBC is in contact with one or two plane surfaces. The surface
particles, either if fixed or dynamical, will always have PBC in the directions tangent
to the surface. When a pair of particles interact, the interaction itself will have PBC
in a certain direction if one of the particles experience PBC in that direction. As
an example, particles will not fall of the edge of such a plane surface, but continue
to move as if the surface continued to infinity in its PBC-directions.

5.1.2 Fixed particles

The simplest kind of boundary condition is open ends, that is, nothing is done to
prevent particles from escaping. In most of the experiments in this project, I use this
boundary condition in one direction in tandem with fixed particle forces. A perfect
lattice of fixed particles is placed at the sides in the direction without PBC. This
will not strictly contain the particles in the box, but prevent them from dispersing
towards infinity.

The thickness of the fixed particle lattice layer will always be greater than the
cutoff length for forces and potentials. If the dynamical particles are in a crystalline
state, the difference between the dynamics with PBC and open ends with fixed
particles in one direction is almost negligible.

An application of this boundary condition is to study a crack propagating in
the y-z-plane in an otherwise perfect crystal. Two-dimensional y-z-PBC with open
ends and fixed particles in the x direction will limit the number of crack copies in
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the x direction to one. Figure 5.1 shows the two-dimensional analogue of the setup
schematically.

Figure 5.1: The boundary conditions for a system with fixed particles on the z-sides and
PBC in the y direction. The thermal motion is greatly exaggerated.

In adhesion and friction experiments, I am interested in a solid with a surface at
x = 0 and an infinity of unit cells in the —z direction. The electrostatic interactions
are in this case hard to compute with the Ewald summation method. There has
been attempts at this, see e.g. [31]. However, it is stated in the results section of this
paper that there is only a 1% difference in the interaction energy between a single
ion and my hypothetical half-infinite NaCl solid and between a single ion and a
two-dimensional monolayer of NaCl. The reason for this is the obvious cancellation
of forces, making the effective range of the interaction for a neutral monolayer of
NaCl approximately one lattice constant a. For this reason, I model the surface
which the sphere of atoms interact with as a slab of thickness equal to the cutoff
range of the potentials summed in real space, for both the Si and NaCl systems. In
practice, this means about 6 atomic layers.

With simulation tests, the lattice energy of such a system was measured to be
—4.014 eV per particle, a difference of 0.55% from the bulk system with PBC in all
directions (see section 7.1). For this test, layers of fixed particles were put on both
x-sides, and PBC was applied in the y-z-plane.

When the lattice is cut into a sphere, the positive z direction layers of fixed
particles are removed. In both the sphere and sphere segment systems, only fixed
particles are experiencing PBC. For NaCl, this gives an electrostatic structure factor
of very low magnitude, because of the translational symmetry of the lattice. Thus
the long-ranged Coulomb forces have a minimal effect on the dynamics.

5.1.3 Heat conduction

When simulating the dynamics of systems far from equilibrium, one cannot assume
that the heat bath has an equal thermal coupling to all the dynamical atoms. There
must be a thermal coupling between fixed and dynamical atoms, though the fixed
atoms can be said to have zero heat conductance because they do not gain any
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kinetic energy. An artificial thermal coupling to the outside can be accomplished
by performing a temperature rescaling on only the dynamical atoms near the box
sides. For this purpose, I use the BDP thermostat introduced in section 3.2.2.

To avoid an unreasonably sudden cutoff, the relaxation time 7; of the thermostat
is chosen differently for each atom. An atom directly on the side wall will have a base
relaxation time 7 read in as a parameter. Diverging at the cutoff point, the relaxation
time decays from this point towards the edge as 1/x. Atoms which are further inside
the box than the cutoff point have no thermal coupling to the outside. A 1/x form is
chosen because the relaxation time enters the energy difference equation [Eq. (3.17)]
multiplicatively as 1/7. Thus the energy coupling to the outside heat bath decreases
linearly inwards from the box edges.

Rescaling cutoff

Figure 5.2: The variation of the temperature measurement weight w; and thermostat
relaxation time 7; for an atom 4 at different z-positions in the simulation box.

Since the relaxation time varies with the distance from the sides, how temperat-
ure is measured before a rescaling must be changed. Fourier’s (macroscopic) law of
heat conduction says that the rate at which heat enters a system is proportional to
the difference between the temperatures of the system and the surroundings. Equa-
tion (3.17) takes this directly into account. As the measured temperature affects the
thermostat, the temperature must be measured only near the sides of the box. If
not, the edges would be cooled down too much when the temperature at the middle
of the box rises.

I choose to weight the energies of the atoms by a linearly decreasing factor w; in
the temperature measurement. These weights are normalized so that the measured
side temperature is

Nincl Nincl

1
Tsi e =™ 57 1T\ Vi — Veo 2 ith z‘:]., 5.1
q 3kBizlwm(v Veon)~ wi izlw (5.1)
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where Ni,q is the number of atoms included in the rescaling and v, is the collective
(average) velocity of the particles on one of the sides. Removing the collective
velocity component is necessary when all the atoms are moving in one direction at
one of the sides, e.g. when shear stress is applied. This is not equally important in
global temperature estimation, as the average motion of all particles often cancels
out. Figure 5.2 shows the values of 7; and w; at different places inside the simulation
box.

This method has no solid physical foundation, but serves as a tunable way to
consistently conduct heat in and out of the system. The amount of heat conducted
can be seen by plotting the power absorbed from the heat bath, as in the case of a
uniform atom to heat bath coupling.

5.2 Applied deformations

5.2.1 Tensile stress

To see how much stretching a material can take before it fractures, I apply a steadily
increasing strain to the system. The typical speed at which the system is elongated
is 5-10% of the speed of sound in the material. This will induce a fracture in a plane
perpendicular to the direction of elongation, called a mode I fracture.

The z direction boundary condition is given by open ends with fixed particles
outside the simulation box. The distances between the fixed particles are not
stretched, as they exist only to keep the dynamical particles at the edges in place.
The distances between dynamical particles are uniformly stretched to correspond to
the stretching of the simulation box and moving of the fixed particles. If ¢ denotes
the distance from the middle to a particle, the displacement rate caused by tensile
strain will be £ = %’, where L is the length of the simulation box, and v/2 is
the expansion rate of the box in one direction. Applying a constant stress is also
possible, by using a thermodynamical ensemble similar to the pressure canonical
ensemble [5]. Figure 5.3 shows the expansion schematically.

—0-0:0 © O 0i0~-O~

Figure 5.3: Displacements caused by tensile strain.

The displacements by the tensile strain function will not give any forced contri-
bution to the velocity of particles. This would disturb the dynamics and give higher
temperature measurements.
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Let us consider stress and strain in the case of an extension in the x direction.
I call the equilibrium length of the simulation box L, and the deviation from this
length AL,. The tensile strain € is the easiest to calculate:

AL,

€ Lx

(5.2)

Before calculating the tensile stress o, the energy balance between two consec-
utive time steps t and ¢ + At must be examined. I assume that the only processes
changing the system energy are heat conduction and applied stress. For each time
step, the energy transferred to the system by these processes are denoted AUz and
AU,, respectively. With U denoting the sum of potential and kinetic energy in the
system, the energy balance equation reads

U(t+ At) —U(t) = AUr + AU,. (5.3)

Thus, by storing the energy of the previous time step and calculating the energy
absorbed from the heat bath, the difference in energy caused by stress can be found.
The exerted force from the deformation is calculated with the discretized derivative
F, ~ ﬁg;, where the minus sign is discarded because the force from the dynamical
particles act against the elongation. The one-dimensional stress is nothing but force
per area, so the average stress (over the system volume) in the x direction is

AU,

T L,L.AL,

(5.4)
I have also tested a method of calculating the stress on a specific y-z-cross-section
in the middle of the volume. For atom pairs interacting across this cross-section, the

force working on the atoms on the right side is added up to a total cross-sectional
force Fi. For particle triplets, the three-body force (see section 4.3) working on a
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Figure 5.4: Comparison between the two tested methods of stress calculation, showing a
good correspondence for a silicon crystal.



5.2  Applied deformations 49

middle atom is added up if it is on the right side of the cross-section and either
one of the other two atoms is on the left side. Long-ranged Coulomb forces are
too troublesome to be included in these calculations, so the cross-sectional force is
estimated by only including short-range forces. The cross-sectional stress is

o ch
- L,L.

Ocs (5.5)
The stresses 0 and o5 are compared for a 4096-Si-atom system undergoing a fracture
in Fig. 5.4. The energy balance-based stress ¢ is more averaged (also over the z
direction), and has much smaller fluctuations from the general trend than the cross-
sectional stress o.. The methods give the same maximal stress, though the slope is
slightly different over the whole curve. The results after the fracture are irrelevant.
The two stress graphs for a corresponding NaCl simulation are similar to each other,
but have much larger deviations, both positive and negative. These are presumably
only due to the exclusion of long-ranged forces in o.

In the rest of the thesis, I will only mention the z-direction-averaged stress o.
The choice of a cross-section is arbitrary, and the cross-sectional breaking stress
will give too low results when the material has defects. These can cause the area
around the cross-section to have an atomic deficiency in comparison with ordinary
bulk matter, giving a reduced cross-sectional force. Additionally, this method of
measurement is too complicated when long-ranged Coulomb forces are included.

The time of fracture can be pinpointed by examining when a few particles start
to move rapidly in an area that is about to fracture. The recent motion quantity
(section 6.4) is ideal for this. Generally, the time of fracture coincides with the time
of highest achieved stress. The value of this stress is used as the breaking stress o
when testing Griffith’s relation [Eq. (2.1)].

5.2.2 Shear stress

A shear deformation exerts inhomogeneous stress on different parts of a material,
as when scissors cut through paper. With fixed particles outside the x direction
edges, I move these particles in opposite directions in the y direction, as shown in
Fig. 5.5. This alone will move the dynamical particles correspondingly at each side.
The interesting thing is what happens in the middle of the simulation box. Again,
the speed of the fixed particles is constant. A plastic deformation must eventually
occur, in the form of a slip of atomic layers in the direction of fixed particle motion,
called a mode II fracture.

The fixed particles experience PBC in the y direction, so that they appear at
the opposite y side if they are displaced out of the box.

When applying shear stress in the y direction, the atomic layers will become
skewed. Shear strain 7 is defined by the tangent of the skew angle, which can be
measured or found by inspection of the visualization. It is calculated as

_ Ay

T (5.6)

~

where Ay is the relative displacement of the fixed atoms from the left and right
sides. The length of the simulation box in the x direction L, enters the equation
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Figure 5.5: Displacements caused by shear strain.

because this is the direction where the applied stress is inhomogeneous. Be aware
that the x and y axes have switched places from Fig. 2.1.

Shear stress 7 can be calculated in a way similar to tensile stress, by dividing
the force required to apply the deformation by the area normal to this force. Again,
the force is approximated by a discretized derivative of the energy, this time with
respect to the distance the left and the right sides have moved relative to each other,

Ay. We get the expression
AU,

" LLAY
with AU, calculated exactly as AU, in Eq. (5.3).

(5.7)

5.2.3 Bulk material flaws

In fracture experiments, an interesting question is how a flaw (crack) inside the
material influences the breaking stress. Theoretical considerations were presented
in section 2.1. Such a flaw is modelled as a void (vacuum area where atoms are
removed) shaped as a sphere or cylindrical disk. As the simulations contain discrete
atoms, the flaw must have a thickness larger than the interactomic distance. The
position of the flaw is not important due to translational symmetry (PBC), so it is
always placed in the middle of the simulation box, for convenience when visualizing
the structure. I use the term flaw size when referring to the radius of the void.

5.2.4 Contact, adhesion and friction

In numerical experiments regarding surface contact, I look at the interaction between
a sphere or sphere segment of particles and a plane surface of the same type of
particles. The attraction between such surfaces with the same atomic species is
called cohesion, but I will stick to using the more general word adhesion. The
spherical form is meant to model an asperity on a rough material surface, such as
depicted in Fig. 2.2. It corresponds to the stepped crystal surface in a similar model
by Luan and Robbins, seen in [12] and Fig. 2.3. The plane surface consists of some
atomic layers of fixed particles, as mentioned in section 5.1.2. Additional layers of
dynamical particles can be added for the surface not to be completely rigid. The
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surface particles have PBC in the directions parallel to the surface, while the sphere
particles have no PBC.

The sphere is pushed down towards the surface by a constant force on the upper
half of the particles. This force corresponds to a homogeneous gravitational field,
although it is set several thousands times stronger. An alternative would be a force
on all particles in the sphere, but this is unphysical and could cause the lower half
of the sphere to disintegrate in a unrealistic fashion. Another alternative, which I
also use, is pushing only a lower sphere segment downwards using another surface
of the same material.

1
|
|

NS A

Figure 5.6: A microscopic sphere segment (here a half-sphere) and surface of NaCl. The
initial positions in a simulation for contact force measurements.

Z
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The sphere method is used to simulate the reaction from indenting the sphere
into the fixed particle layers with forces of different magnitude. The potential energy
from the constant force in the negative z-direction is summed up and added to the
total and single particle energies. However, the energy is still not exactly conserved
because the number of particles this force affects is not constant. Only particles
positioned higher than the mass center of the sphere are pushed. This is checked
for each time step. If the sphere begins to roll, as it may do in friction experiments,
the upper half of the sphere is still the only part that is forced downwards, giving
the simulation a greater stability. The total force, which I for simplicity call F, is
distributed over the atoms above the sphere’s center of mass in the following way:

m.
' _F, (5.8)
Zj m;

where m; is the mass of an atom ¢ and j runs over all the affected particles. This
will cause the force to be distributed non-uniformly across the middle cross-section
of the sphere, because there are more particles above the middle than at the edges.
The effect of this unphysical force distribution on the lowermost part of the sphere
is small, since inner tension in the sphere will even the forces out.

Fi:
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The sphere segment method will simulate a smaller number of dynamical
particles and therefore demand less computing time for the same sphere curvature.
The input force distribution will also be uniform. In the simulations, the upper fixed
particle layers will be moved downwards very slowly with a constant speed and stop
after a given time for measurements to be performed. The applied force is difficult
to control when this approach is used. Though, the contact forces and stress can be
measured, giving results very similar to those obtained with the sphere method.

The indentation speed of the upper layer can be compared to the root mean
square thermal speed of the atoms. Using the equipartition principle, we have

3ksT
m

U, = %mv2 = ngT =  UpMS = \/ﬁ = (5.9)
for one atom. The atoms I am simulating have thermal speeds of 1.63-1073 A/ fs for
silicon, 1.80-107 A /fs for sodium and 1.45-10~ A /fs for chlorine. The indentation
speed is normally put to 0.20 - 1073 A/ fs, so the indentation process is effectively
quasistatic. The pushing of the upper layer will not create unwanted elastic waves
or other dynamics which is not already happening in equilibrium due to thermal
motion. The method I use for the indentation is the same as the expansion (and
compression) method introduced in section 5.2.1, so dynamical particles will also
be slightly moved. I have tried turning this effect on and off with no noticeable
difference in dynamics, energies or forces.

The stress between the sphere and the surface, o, is measured in a similar way,
but using microscopic forces instead of potential energy. The surface is divided into
rectangular bins, about 20 in each direction. For each time step, the sphere particles
are distributed among these bins according to their positions, and the forces from
the surface particles are calculated. For each bin b, all x components of forces on
sphere particles are summed up and divided with the area of the bin to find the
stress,

N,
PN S R o0
1€b jéesurface

where N, is the number of bins and L, L, is the area of the plane surface (inside the
simulation box). This gives an approximation to the stress normal to the surface. I
have also attempted to simplify this to stress in donut-shaped bins for specific radii,
o(r), but the results were too unstable. Long range Ewald forces between dynamical
and lower fixed particles are neglected when the contact stress is calculated. Early
measurements show that these are many orders of magnitude (107') smaller than
the other force contributions.

Adhesive forces are studied using the sphere segment method. The materials
are brought in close contact and then separated. Some particles stick to the lower
surface of fixed particles, and some form strings between the two surfaces, eventually
broken by the gradual separation. A quantity of interest in these experiments is the
energy needed to push the sphere segment up or down between time steps. Summing
these energy increments for a whole phase of movement can determine the energy
needed to press the materials together and push them apart. The energies are found
exactly as in the bulk stress experiments (see section 5.2.1):
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The energy gained by pushing the upper fixed layer of particles will be used to
pull particles out of potential fields, to deform the crystal structure, and to induce
movement which is transferred out of the system as heat.

Contact area

The real area of contact Ac is estimated in my simulations by calculating the
potential energy between atoms belonging to the sphere and the surface, U. This
energy is then divided by the surface energy per area of bulk material, >, to obtain
the area of contact:

Ao=g. (5.12)

The constant ¥ is material dependent and must be measured in a computational
experiment. In order to to this, I simulated bulk crystals with PBC in the y and z
directions and walls of fixed atoms in the x direction. The simulation was performed
at a temperature of 10 K for the potential energies of the atoms not to have too
great deviations from the minima. I then defined ¥ as the calculated potential
energy between dynamical atoms and lower fixed atoms, divided by the area L,L..
My results are ¥ = —0.2471 ¢V /A? for silicon and ¥ = —0.02522 ¢V/A? for
sodium chloride. The NaCl calculations were done with four layers of unit cells with
fixed atoms on the sides of the simulation box (eight atomic layers). The numbers
show no deviation when changing the system size up or down from 4096 atoms.
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Figure 5.7: The time evolution of the area of contact for a Si sphere segment upon
indentation and separation (see Fig. 8.8).

When pushing a sphere and a surface of equal materials together, the A vs ¢
graph (Fig. 5.7) is continuous and seems to describe well what is going on. The
system does not reach the same equilibrium state for slightly different initial condi-
tions (because of a different random generator seed). The atoms in the interface will
often be disordered and able to fall into many local energy minima. In this kind of
experiments, a contact area measurement will have a low precision and is only used
to extract qualitative information about trends for different cases.
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Friction

Using the sphere method, once the sphere is pushed towards the surface and the
system is near equilibrium, the simulation of friction dynamics can take place.
Friction force is traditionally measured for two surfaces with a constant relative
velocity. This condition is applied by adding a small velocity to all particles so that
the collective velocity of the sphere v oy is constant. The only large scale forces that
are at work tangential to the surface are the driving force that keeps the constant
velocity condition fulfilled and the friction force. By Newton’s first law, these forces
are equal. For each time step, the friction force is therefore calculated as

AU’drive o AUvdrive
Arcom  VeonAt

(5.13)

Ffriction =

This is a discretized derivative with no minus sign, so the force is positive when it
works in the same direction as veo. AUgrive is simply the time step change in kinetic
energy when driving the particles to keep a constant velocity.

Two infinite surfaces where one has a single asperity is a better setup for a friction
experiment. Therefore I have also investigated the friction phenomenon using the
sphere segment method. An input applied load is necessary, which is kept by moving
the upper layer of fixed particles up and down until the contact force reaches a desired
value. By abstraction, this is equivalent to the problem of solving the equation
F(z) = L, where F' is the current contact force, z is the relative position of the
surfaces of fixed atoms and L is the desired load. There are many well-developed
ways of solving such an equation, but nearly all of them involve calculating the
derivative i—f. In my case, this would have to be a discretized derivative, given the
computational complexity of storing the z-derivative of all forces between the sphere
and the bottom layers of fixed atoms. I emphasize simpler methods not requiring
such derivatives.

I have tested some methods of obtaining a desired load, all with one parameter
( which has to be adjusted. One alternative is to simply move the fixed particles
with a speed +43, upwards if the load is too high and downwards if it is too low.

This gives a displacement
Az = +[AL. (5.14)

This method is reminiscent of step methods in equation solvers for many variables.
Preferably, a time damping term is included to prevent the fixed layers from moving
constantly back and forth, creating elastic waves which propagate through the sphere
segment. Such a damping can also be introduced by bringing the difference F' — L
into the equation. The obvious choice is to let the speed vary linearly with this force
difference, creating a displacement

Az = (F(x) — L)BAL. (5.15)
This method has problems with stability, and will also induce oscillations in Az

because it creates weak elastic waves in the sphere segment. When a small 3 is
used, it is still the preferred method.
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5.2.5 Relative rotations

The numerical experiments described so far are all performed with materials aligned
in a commensurate manner. This simply means that the atomic layers of the surfaces
in contact are oriented equally with respect to each other, a condition rarely satisfied
in real life. It is non-trivial to investigate the forces between incommensurate
surfaces in MD simulations. In my cuboidal systems, the PBC directions always
coincide with the three Cartesian directions. When rotating layers of fixed atoms,
the Cartesian translational symmetry of the simulation box will in general be broken.
In order to avoid this, all four corners of the intersection between the simulation box
and the plane of rotation must correspond to the same point in the conventional
unit cell of the crystal structure. That is, for a set of Pythagorean triples a, b, c € N,
the angle of rotation # must obey

cosf =a/c, sinf =b/c. (5.16)

This condition even requires the intersection between the simulation box and the
plane of rotation to be quadratic, with the number ¢ determining the original number
of unit cells in each Cartesian direction. A visual example for the lowest Pythagorean
triples is given in Fig. 5.8.

Figure 5.8: A simple cubic crystal plane rotated with an angle § = 36.87°. The dotted
triangle is Pythagorean with @ = 4, b = 3, ¢ = 5. Correct translational symmetry is
achieved only if the particles inside the box are included in a simulation.

The system in Fig. 5.8 is somewhat troublesome to create, owing to the required
extension and cutting of the lattice. Furthermore, the rotation angle is special
because of the joint repetitiveness of the lattices, which is required for translational
symmetry. The surfaces are not as incommensurate as they could have been. I have
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therefore not gone through an analysis of the systems in section 8.2 with a partial
rotation. Instead, I have concentrated on the simpler system of a rotated sphere
interacting with a plane surface. The interface force as a function of rotation angle
gives interesting patterns, as seen in section 8.1.2.

With this and the previous chapters, I have elaborated on how all quantities in my
simulations are calculated. Perhaps more importantly, I have explained how real-
world systems are approximated and represented with discrete mathematics. The
most important approximations presented in this chapter are the ones eliminating
the degrees of freedom of objects in the vicinity of the system. Other atoms are
responsible for compressing and stretching the system and for conducting heat in
and out. In addition, we assume by using PBC that thermal fluctuations in position
and velocity vary periodically in the crystal. In reality, atoms outside the simulation
cell have different thermal fluctuations, and contribute in a slightly different way to
fracture processes than atoms inside the simulation box. But including millions of
atoms which independently have very small effects on the system is computationally
infeasible. Therefore these degrees of freedom are incorporated into the simple
boundary conditions and applied deformations presented in this chapter. This
is an attempt to capture the behaviour of the surroundings of the system in a
computationally cheap fashion.
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Program details

My MD simulation program is written in C++, contains 10 classes and a total of
about 5700 source code lines. I will not include any portion of the code itself, as
it is mostly composed of traditional MD techniques implemented in standard ways.
Instead, I attempt to describe the main concepts and skeleton of the program.

In addition to the main programming language and the programs mentioned in
the visualization section, some Unix tools have been very useful. Makefiles and shell
scripts are used for automating tasks connected to the code, the thesis and file type
conversion.

Below, I will elaborate on some methods which are not part of the main numerical
calculations. The mathematics and discretization of continuous functions is presen-
ted in earlier chapters, and the implementation of this consists mostly of for-loops
including elementary mathematical operations. Appendix A contains descriptions of
the classes and functions of the program. The adjustable input parameters defining
the setup for a simulation are also listed there.

6.1 Physical units

The physical units used for input and output, so-called external units, are chosen so
that the magnitude of the values will be close to and usually larger than 1. These
units must be converted to and from an additional set of units used for calculations
internally in the program. The most prominent reason for using a different set of
units when calculations are done is that equations will be simpler and require fewer
multiplications with constants. It also makes it possible to extract multiple data
sets from one simulation by rescaling the internal units. For example, if mass, length
and time are rescaled, one can predict how much faster particles with a smaller mass
would move.

Variables in internal units A are related to the corresponding variables in external
units A in this way: A = AgA. Since position and velocity are the most frequently
output variables, I use the same units externally and internally for length and
time. I have also decided to put the most important constant in force calculations,
the Coulomb force constant, to 1. The charge of particles will be measured in
elementary charges, e = 1.602176487 - 10~1°C. The Coulomb force law will give rise
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to a constraint in the following way:

27 —
4142 = €7q142
F=p 2 o pp_p20® 6.1
r2 0 a2 (6.1)
= 4142 ke€2 keezt(Q)
o reFy mord (6.2)

This determines the mass conversion factor, mg. Other conversion factors are
combinations of rq, tg, e and mg. Table 6.1 gives a detailed list of used units.

External Internal

Length A ro = 1A

Time fs to = 1fs

Charge e Qo =¢€
Mass amu | mg = ket2e?/ry = 0.138935459 amu

Force eV/A Fy = moro/t2 = 14.399645 eV /A
Energy eV Eo = morg/t3 = 14.399645 eV

Temperature K To = moré/kpt? = 1.6710075 - 10°K

Table 6.1: Physical units for I/O and calculations in the program.

6.2 Random numbers

Randomly distributed numbers are required for generating velocity values from the
canonical distribution and using stochastically driven thermostats. For numerical
simulations, deterministic pseudo-random number generators are sufficient. My
program uses a complex long period generator developed by L’Ecuyer and Bays-
Durham. The implementation from Numerical Recipes [29], which I have copied,
contains some added safeguards. The generator gives me uniformly distributed
values in the open interval (0, 1).

Normally distributed random numbers are obtained by performing a Box-Muller
transform on the uniformly distributed numbers. Let v and v be uniform numbers in
the interval (—1,1). These numbers will only be accepted for the transformation if
s = u?+v% is in the interval (0,1). In that case, we obtain two normally distributed
numbers ny; and ny by multiplying v and v with a constant,

—Ins

(6.3)

ny = Su, ng = Sv, S =
s

ny and ny will have standard deviations of 1, but multiplying all generated numbers
with a constant will give a distribution with that constant as the standard deviation.

6.3 Parallelization

As my program requires a considerable amount of CPU time for the systems I
am simulating, parallel computations with several processor cores are required. I
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therefore use MPI to pass data between the processor cores (called nodes) involved
in the calculations.

For the most CPU-intensive tasks, calculations are split into work lists for each
node. Quantities which are calculated by double (triple) sums over particles are the
most important ones to parallelize. Each node performs its own sum and returns
the result to a master node. The master node, which also does calculations, sums
up the partial sums and broadcasts total results to all nodes.

The most important section of the program that is parallelized is the computation
of forces. Especially with the very intensive Ewald summations, this has a high
degree of parallel efficiency. The force terms that must be computed constitute an
upper triangular matrix. The indices of this matrix is 7 and j, the indices of the
two particles in an interaction. The rows of this matrix are put into work lists so
that each node gets an equal amount of force terms F;; to calculate. The exception
is the last node, which gets “what is left”. Figure 6.1 shows this way of splitting
the workload schematically. The same procedure is used in calculating the total
potential energy of the system.
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Figure 6.1: Matrix showing how the calculation of forces between 20 particles (matrix
elements F;;) is divided amongst four nodes. The numbers specify the node numbers, or
“ranks”.

A similar system of work splitting is used in the calculation of three-body forces.
The work lists consist of the interactions of particles ¢ with low and high indices. For
short-ranged potentials, there will be many holes in the interaction matrix. Only
terms corresponding to neighbour pairs/triplets are included, making the matrix
sparse in big systems.

The BDP thermostat requires the sum of many squared random numbers. These
numbers are found distributively, with different seeds for the random generators.



60 Chapter 6 Program details

The calculation of the random numbers for the initial velocities are not parallelized,
but drawn from random generators with the same seed, producing the same numbers
for all nodes.

Everything that is not parallelized, like performing the Verlet time integration
of positions and velocities, is done simultaneously at all nodes. This reduces the
amount of communication between different memory registers. On heterogeneous
clusters, this could cause slight deviations between the nodes induced by unequal
round-off errors. Output is done only from the master node (of rank 0).

For small systems, parallelization will require too much time for communication
between nodes in comparison with the actual computations. The force calculations
must therefore be quite extensive for parallelization to give an increased efficiency.
Figure 6.2 shows the CPU usage on a quad-core computer running a 15581 Si atom
simulation. The calculations involved in one time step takes about 25 seconds. 20
seconds of the time, all the cores are busy with force calculations, and the last
5 seconds are apparently spent at communication, output and waiting for other
cores. Multiplying the calculation time by four gives a rough estimate of the time
which would be used by a single node. One time step would be completed in about
4 - 20 = 80 seconds, while four nodes uses 25 seconds per time step. This gives a
parallelization efficiency of 80/(4-25) = 80% for 4 nodes. Simulations with the more
demanding NaCl systems on a various number of cores give similar numbers when
the time usage is compared.

CPU History

CPU1: 100.0% @ CPUZ: 100.0% CPU3: 100.0% @ CPU4: 100.0%

Figure 6.2: CPU usage for the simulation of a big silicon system on four CPU cores.

The neighbour list update process is another program segment which could gain
a speed-up from parallelization. This would involve big difficulties and require much
communication between nodes. Therefore it continues to be a O(N?) bottleneck for
very big systems. This could be fixed by creating a hierarchy of different sized
neighbour lists or adding a domain decomposition algorithm, which is well suited
for parallelism.

The reason why I am not normally using parallelization in Si experiments is
that I make these physically big (like the one just mentioned), which require a
significant amount of memory. This memory amount is still small enough so that
the most frequently accessed data can be stored in the CPU cache, which enables
the program to work about ten times faster than it would otherwise. The cores of
the CPU have their individual memory registers, so a four-core parallel run would
require four times as much memory, and the most frequently used variables and
arrays will not fit in the cache, slowing the program down. This problem does not
not occur for the smaller NaCl systems.
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6.4 Visualization

For visualization of atom trajectories, I use the program ParaView. It is a general
purpose visualization program built on the C++ code VTK (Visualization toolkit).
My output class writes to files of the legacy .vtk format.

Plotting of atom positions is performed using POLYDATA with simple vertices.
Scalar values for each atom includes electric charge, potential energy and recent
motion. They also have velocity and force vectors associated with them, which can
be easily visualized in ParaView. For the images included in this report, I use both
orthographic (parallel) and perspective projections.

Recent motion is an ad hoc quantity for seeing “where things happen”. For one
particle, I define Eover = Ek — nUEthermal, where Ethermal = 3kBTbath- If Eover is
negative, I put it to zero. This way, it gives a measure of how much the kinetic
energy F) of a particle exceeds a certain number of standard deviations in the
Maxwell-Boltzmann distribution for the heat bath temperature. Good values are
ny = 2-3. Recent motion is then defined as

recmot = Z N Egver (t — iAL), (6.4)

1=0

where A is a decay parameter, set to e.g. A = 0.98. The quantity will be mostly zero
when the particles are in equilibrium, and significant if particles have moved recently,
as in dynamical processes like fracture. When visualizing, this gives a better picture
of what is happening than the magnitude of the instantaneous velocity.

Field values are stored as STRUCTURED_POINTS in the .vtk files. The types of
fields I have been working with is potential energy, density and temperature. The
volume of the system is cut into cells where these quantities are approximately
evaluated. Fields can be viewed as three-dimensional scalar functions or two-
dimensional slices. These provide excellent supplementary information about local
dynamics, but are excluded from the simulation plots in this thesis. On paper, two-
dimensional still images of the fields are less useful than coloured particle positions
for the small systems I am working with.

In some cases, atom positions can also be output as files of the simpler .xyz
format for visualization in VMD (Visual Molecular Dynamics). Macroscopic quant-
ities for the whole system, like energy, temperature, stress and strain, are output to
a file for each time step for later plotting with Matlab.

6.5 Algorithm overview

Figure 6.3 shows a flowchart of procedures in the program. A simulation is divided
into phases, for example an equilibration phase, a dynamics phase forcing the system
into a desired state and a data gathering phase. These phases are again divided
into thousands of time steps, which constitute the time loop. The letters next to
the flowchart boxes are used for showing where the execution of the functions in
appendix A takes place.
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I have presented the programming language and additional external programs I use
for simulations and data analysis. The programming itself has been demanding the
most effort in this project. From the start, when the program only contained a
crystal arranger and an Euler-Cromer integrator, it has gone through many severe
structural changes before finding my preferred way of arrangement with respect to
flexibility and efficiency. The majority of the results in the following sections are
found with simulations differing only by their input parameters (appendix A.3).

Read input parameters, initialize MPI
declare objects, allocate memory

|
B Start a new simulation phase I‘
v

C [ Apply mechanical deformations ]

Time integration of the
dynamical equations

Phase loop Time loop

Temperature adjustment, |
neighbour list update, etc

Calculation and output of
global quantities of interest

Output of trajectory frame
and atom-specific quantities

'

H End of simulation phase I

1 Output of time-averaged quantities

and memory clearing

‘ Time usage summary I

Figure 6.3: Flowchart for execution of the MD program.



Chapter 7

Bulk fracture results

The energy required to break a perfect crystal is very high, comparable to the
energies associated with chemical bonds. A crystal with defects will have some
atoms which are not saturated with electrons, that is, they have fewer chemical
bonds than a stable bulk atom. I attempt to model bulk fracturing for cases with
and without defects to study how much say they have in the fracture process for the
two materials I consider. I will state some observations from my fracture simulations,
starting with equilibrium properties of bulk NaCl and Si.

7.1 Equilibrium properties and general notes

As a test of my Ewald summation technique implementation, I have tried to repro-
duce the lattice energy of NaCl. The energy required to sublimate a NaCl crystal
into a gas of Na™ ions and Cl~ ions is 787 kJ/mol = 4.079 eV per particle [32].
This is, by a good approximation, the potential energy of an atom in the crystal
(with a sign change). With an MD simulation with 4096 ions, the potential energy
of the perfect crystal lattice measures —4.076 eV per particle. The energy deviation
is negligible upon a change in system size. At a temperature of 300 K, the total po-
tential energy fluctuates around —4.036 eV per particle with a standard deviation of
0.001 eV per particle. The average result is only 1% higher than the experimentally
measured energy, which is a very good agreement. More specifically, the energies
from the Lennard-Jones interaction, the short ranged Coulomb interaction and the
long range Coulomb interaction including the self-energy correction is:

UM = 40432 ¢V,  USY=-3.024¢V, U = —1.445¢V. (7.1)

All the numbers are stated per atom.

The experimentally measured cohesive energy of the silicon lattice is —4.638
eV per particle [33]. My simulation using the Stillinger-Weber potential gives the
6.5% higher number —4.337 ¢V. With a temperature of 300 K and 4096 silicon
atoms, the average potential energy is —4.2967 eV. This is somewhat inaccurate,
but acceptable since the SW potential is believed to produce a qualitatively correct
dynamical behaviour for silicon. The measured 300 K energy is distributed among
the force terms in this way:

UY = —-06938 eV, U® =-36238¢V, U =+0.0209 eV. (7.2)
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Again, these numbers denote potential energy per atom. In the diamond structure,
all atoms are able to have an equilibrium angle of 70.53° between their neighbours
simultaneously, giving a low energy contribution from the three-body interaction
term. For both NaCl and Si, the deviation in energy between a 3D PBC system and
a 2D PBC system with fixed particles is insignificant.

The BDP thermostat does a good job cooling down the z-edges of the bulk
material after a fracture. As a lot of energy is dissipated in the process, it takes
time to conduct all the energy out of the system. Most of the kinetic energy arising
is in the form of elastic waves which slowly lose energy to heat inside the crystal.
Such collective motions make temperature measurements inaccurate. Either way,
temperature is a quantity associated with thermal equilibrium and will generally
be estimated inaccurately in non-equilibrium situations. In the equilibration phase
before any deformation is applied, the BDP thermostat is used with a coupling to
all atoms.

7.2 Tensile stress

I have performed several simulation runs of a system with the tensile stress deform-
ation described in section 5.2.1. The rate at which the simulation box is stretched
is normally set to 0.002 A/fs. I will first present observations from fractures in
defect-free crystals.

7.2.1 Silicon

Figure 7.1 shows a simulation of a silicon crystal under tensile stress and at a starting
temperature of 260 K. Two fracture spots are visible. The first fracture occurs when
the strain € is about 43%, which is extremely high. After the fractures, elastic waves
of great energy hit the sides of the simulation box and are reflected back. This
is physically unrealistic, as the fixed atoms should be in just the same situation
as the dynamical ones. I have not implemented energy transfer by such collective
phenomena because the interesting dynamics happens before and during a fracture,
and only in the fracture region.

If thermal fluctuations are neglected, we are dealing with a perfect crystal of
atoms being stretched. In my simulations of this system, fractures always start out
by the breaking of single bonds. Normally, an atom in a perfect diamond structure
will have four neighbours. This means four two-body force and energy terms for
each particle. At the moment this number decreases to three for some atom, this
and nearby atoms start to show signs of rapid motion. What happens is that the
thermal motion kicks two atoms further apart than the SW interaction range. A
growing sphere of vacuum with its center at the point of the bond breakage appears
inside the material. This is how a fracture starts in a silicon crystal, in all the cases
I have observed. An example of this is visible at the right side of the crystal in Fig.
7.1.

Figure 7.2 shows a set of output macroscopic quantities from a typical silicon
tensile stress simulation. The oscillations in the potential energy are caused by the
elastic waves of compression and expansion occurring in the two crystal parts after
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Figure 7.1: Tensile stress fracture of a crystal with 5488 Si atoms at 260 K. The colouring
shows the values of the recent motion quantity. The fixed particles are shown in black.

fracture. The same goes for the kinetic energy and therefore also the temperature.
The fact that silicon builds up a lot of elastic energy before suddenly breaking makes
it a very brittle material. The thermostat acting on the edges of the simulation box
is responsible for damping the elastic waves, due to outgoing heat. The collective
motion of the side particles is subtracted from the speed vectors when side temper-
atures are measured and adjusted. Thus, the energy has to transform to actual heat,
independent particle motion, before leaving the system. This is seen to happen in
great amounts right after the fracture, some of which is caused by the unphysical
reflection of elastic waves.

The breaking stress of the crystal structure is estimated as its highest achieved
stress. Long before this point, it is clear that Hooke’s law of linear stress-strain rela-
tionships fails. For small strain, when the law is usually a good approximation, we
see a close to linear stress-strain relationship, and Young’s modulus F is measurable.
From Fig. 7.2(d), I read the value

E = (0.670 £ 0.004) eV/A’, (7.3)

Silicon is an anisotropic material, and different sources mention differing experi-
mental results for its Young’s modulus. The web page [34] states an experimentally
measured [100] direction Young’s modulus of 130 GPa (0.812 ¢V/A?) at a temper-
ature of 300 K. My measurement, although also performed in the [100] direction,
differs from this value by 17%. The main limiting factor for precision in this kind of
numerical measurement is the interatomic potential form, which could be improved
by methods briefly mentioned in chapter 4.

The vertical lines beneath the stress graph are artifacts of the simulation. Neigh-
bour lists have a certain cutoff range in space and is updated after a specified number
of time steps. When a critical event like a fracture occurs, atoms are moving very
fast, and formations of new chemical bonds are not discovered quickly enough be-
cause of the limited neighbour list update frequency. This creates a small shift in
potential energy. The reason why I have not fixed this is that the CPU time usage
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Figure 7.2: How macroscopic quantities evolve when a silicon crystal with 4096 atoms
fractures. The temperature is estimated with 7" = 2Uy /3kg.
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increases greatly with cutoff range and update frequency, and these parameters are
at sufficient values to simulate what happens until the fracture occurs. For the par-
ticular case of tensile stress, stress measurements are unreliable after this point in
any case.

The importance of defects was illustrated well by a bug in my program for the
initial silicon simulations. One two-body force term for interaction with one fixed
particle was not taken into account. This resulted in a significantly lower breaking
stress, and that the fracture always started where this missing bond was located.

When defects of particle deficiency grow larger, the breaking stress lowers. Figure
7.3 shows measurement of the constant in Griffith’s relation, Eq. (2.1). The initial
number of particles (before introduction of the defect) is 4096. The relation is
reproduced well, with a mean of 0.2657 eV/\/K and a standard deviation 0.0087
eV/VA.

0.4

T T T
+  Cylindrical flaw with thickness 4.0 A
O Spherical flaw
0.351 Mean value (0.2657)

0.3F
= + 0 &
B 0.251 e 6 +
g
[
g 02f
x
<
3
= 0.151-
@
<4
]

0.1t

0.05-
0 L L L L L L L
4.5 5 55 6 6.5 7 75 8 8.5
Flaw size [A]

Figure 7.3: The breaking stress times the square root of the flaw size o¢/a as a function
of a for silicon. The “flaw sizes” a are the radii of the spherical and cylindrical voids.

In these simulations, the upper bound for the flaw size is the size of the simulation
box. When this size is approached, Griffith’s relation is expected to break down
because the void will touch its own edges. The smallest possible void removes just
one atom, and this void can correspond to many different small flaw sizes. The
range of flaw sizes in Fig. 7.3 avoids these upper and lower limits with safe margins.

7.2.2 Sodium chloride

When a crystal of sodium chloride is stretched, it does not build up potential energy
and fracture in the same violent fashion as the silicon crystal. As there are both
strong attractive and repulsive forces which cancel each other, it does not take
much energy to break a sodium chloride crystal. Regardless, I observe a fracture at
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Figure 7.4: Tensile stress fracture of a NaCl crystal with 4096 atoms (minus atoms removed

by a spherical defect) at 300 K.
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a very high strain, € &~ 63%, in simulations with perfect crystals. Before a fracture,
the atoms float about lazily in a NaCl substance of decreasing density. There is,
however, evidence of crystal structure under the whole simulation, so the system
does not seem to undergo a local phase transition.

The NaCl crystal breaks as soft material, often cut straight into two pieces
separated by a y-z-plane. The two pieces stay charge neutral, which is energetically
favourable. The velocities of the ions make a less considerable jump than the silicon
atom velocities when the pieces drift apart. In many cases, the fracture occurs close
to the edge of the simulation box, probably because of the constant distance between
the fixed atoms, making this a special location. In Fig. 7.4, a spherical void of radius
7 A is inserted in the middle of the box. This causes the fracture to occur at this
point, although this is not always the case with flawed NaCl crystals. Threads or
flakes of ions are often seen connecting the two pieces right after a fracture, but
these disintegrate easier than corresponding silicon “surface bridges”.

The small build-up of potential energy seems to happen because of the long-range
part of the Coulomb interaction. In a simulation without the Ewald summation
over k-vectors, the crystal breaks in the same fashion, but at a lower strain. The
potential energy has a deviation of roughly 2.5% during the course of the simulation,
as can be seen in Fig. 7.5(a). Figure 7.5(b) shows the stress-strain graph, which is
characteristic for a ductile material. The stress is kept at the same level for a long
period, bearing signs of the stretching process being quasistatic. Defect size does
not seem to influence the breaking stress of the NaCl crystal. The dynamics stays
the same for differently sized spherical and cylindrical voids, but a greater defect
has a bigger probability of influencing where the fracture will occur.

Right after fracture, negative stress values are caused by particles of high kinetic
energy compressing both parts of the crystal. There are some oscillations caused
by elastic waves, though not as strong as those in a newly fractured Si crystal.
The negative initial stress is a small mystery. It seems the crystal is more stable
at 10% strain than in its supposed stable state. The pressure caused by the finite
temperature is one possible explanation.

7.3 Shear stress

When shear stress is applied to a crystal, in the way explained in section 5.2.2, the
atomic layers will be skewed and the potential energy will build up. At some critical
point, this energy will be converted into a great amount of kinetic energy.

Silicon crystals clearly experience a phase transition at some points in the sim-
ulation box. In the simulation visualized in Fig. 7.6, these areas emerge at the side
of the box, making the energy distribution symmetric along the = axis. This phase
transition can also happen in only one area, in the middle of the box. The areas
that do not become liquid keep their crystal structure. A collection of disordered
(liquid) silicon atoms has more bonds per atom. Therefore, their potential energy is
higher, which is visible in Fig. 7.6(b). The deformation normally occurs at a shear
strain of v ~ 36%.

Sodium chloride shows a quite different behaviour when deformed with shear
stress. The atomic layers become increasingly skewed before the layers slip vertically
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at an y-z-plane in the middle of the box. The system again looks like a crystal in
equilibrium, but the temperature is risen because of the internal friction created by
the slip motion. The cycle of skewing and atomic layer slipping repeats itself as long
as the fixed particles are kept in motion. There are big temperature fluctuations,
but a mean temperature of about 650 K is established as, in average, all the heat
generated from the deformation is conducted out. This applies to a fixed particle
speed of 0.002 A/fs. The shear strain on deformation is quite similar to that of
silicon, v ~ 34%.

There is little difference in the dynamics for a simulation without long-range
Coulomb interactions. The potential and total energy graphs look rugged in both

(a) Right before fracture (b) Right after fracture

Figure 7.6: Shear stress on a crystal with 4096 Si atoms at 260 K. The colouring shows the
potential energy per particle. In the lower half of the box, temperature values are shown.
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Figure 7.7: Shear stress during fracturing of perfect crystals composed of 2744 atoms at
300K.
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cases. There is a slight spring-like effect when the atomic planes slip with all types of
interactions turned on. This is a process which happens simultaneously everywhere
in the middle y-z-planes. The long-range forces seem resistant to the slip motion,
which is a large-scale displacement from a metastable state.

Again, defects lower the breaking strain, but the effect is less prominent for
shear fractures. Little change is observed in the dynamics, but the energy barrier
for the deformations is of course lowered, so that less heat is generated upon shear
fracturing.

Shear stress graphs are shown in Fig. 7.7. Silicon reacts more strongly to the
deformation at first, because of the angular dependence in its interatomic potential.
The maximum shear stress reached is surprisingly close for the two materials, lying
at about 7 = 0.12 eV /A3, In contrast to the tensile stress experiments, the volume
of the simulation box is now constant, and stress measurements after fracture can
provide more relevant information. The shear stress is fluctuating, oscillating for
NaCl and varying more or less randomly for Si. This gives supplementary insight
about the post-fracture behaviour. NaCl needs to pass energy barriers for each
slip motion, but after the temperature is increased in the first slip, successive slips
require much less applied stress. The stress in a Si crystal becomes even lower,
owing to the layers of atoms which is displaying liquid lubricant-like behaviour.

The results in this chapter give a feel for the qualitative differences between the
materials under study. Sodium chloride is ductile and transforms via slip motions
when the crystal structure is forced to alter. This is a characteristic it shares with
metals. The ionic potential is surprisingly effective at keeping the double fcc lattice
structure intact, both upon stretching and fracturing. Silicon, on the other hand,
breaks with a snap, like brittle glass. In both the investigated types of deformations,
areas where the atoms display liquid-like behaviour appear. The transition to this
phase does not require much energy. As also seen when looking ahead in this thesis,
the effects of tensile stress can be summarized in this way: Silicon is easy to compress
and hard to stretch, while sodium chloride is hard to compress and easy to stretch.






Chapter 8

Contact and adhesion results

8.1 Sphere-surface contact

I have performed computational contact experiments for the systems described in
section 5.2.4. I will first present the results from the sphere-surface systems, on
which I have spent the most time. For the calculations to be executed in a reasonable
amount of time, I normally limit the system size to 4232 dynamical and 1600 fixed
atoms for silicon, and 2106 dynamical and 2048 fixed atoms for sodium chloride.
The pseudo-gravitational force has been varied logarithmically in the interval from
0.01 eV/A to 30.0 eV/A. The spheres start one extra atomic layer above the plane
surfaces of fixed particles, for the contact forces to be negligible at simulation start.
The equilibration proceeds as described in section 3.3. An example simulation is
visualized in Fig. 8.1.

8.1.1 Deformations and contact area

Results for the measured contact area [using Eq. (5.12)] are presented in Fig. 8.2.
In addition, the center of mass = coordinate for the sphere atoms is measured in
the same simulation runs and plotted in the same figure. The force affecting the
top halves do not seem to compress the spheres significantly. In a rather large force
interval, spheres are pushed towards the surface and the bottom atoms rearrange
only slightly. This is a small plastic deformation, but the added energy from the
external potential is mostly stored as elastic (compression) energy. When the force
reaches a certain threshold, a sphere will collapse under its own “weight”. The center
of mass z coordinate and the measured contact area confirm that this happens quite
abruptly. The force threshold varies slightly between simulations as their dynamical
nature introduces great fluctuations. Nevertheless, pushing an asperity towards a
surface creates a binary situation where the material either has undergone a greater
plastic deformation or not. The two materials act similar in this respect, but the
microscopic processes responsible for the effect are different.

In the silicon sphere, the lowermost atoms display a liquid-like behaviour, as
expected from the property of higher liquid density than solid density. The sodium
chloride sphere compacts itself vertically and extends horizontally, not mainly by
elastic compression. The slip mechanism occurring in the earlier mentioned shear
stress experiments is responsible for reducing the number of atomic layers in the
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Figure 8.1: A ball of silicon pushed against a silicon surface with a force of 30.0 eV/A.
Atoms are coloured by potential energy. The discontinuity in this colouring is caused by
the fact that only the upper half of the particles are subject to the fictitious gravitational
force.

vertical direction. The configurations preceding and following a slip are shown in
Fig. 8.3.

When measuring the stress between a sphere and a plane surface of similar
materials, the system size has to be big to get a clear image of what the stress
distribution looks like. This is especially the case for silicon, where the particles
close to the surface arrange quite arbitrarily. Therefore, I have not only averaged
the stress measurements over time, but over 8 different initial configurations (random
seeds) when producing the silicon results. This makes the structure of the stress
graph in Fig. 8.4(a) more apparent. The graphs for the different runs contain trends
also found for the bent crystal in Fig. 2.3. The figure is from Luan and Robbins’
article [12] where a harmonic potential is used. My graphs for silicon also contain
a great deal of noise, because the bottom sphere particles arrange randomly. The
outer moat of attraction is caused by adhesive forces between atoms at the edge of
the interface. These are not pushed close enough together to repel. Around 20000
dynamic particles were used in the simulations for creating the stress graph.

The stress graph for the NaCl system is very different. The sign of the stress
has an opposite character: The middle particles attract each other slightly while
the outer particles repel each other [see Fig. 8.4(b)|. The graph looks the same
for different initial conditions, with the exception that the sphere may be displaced
one atomic distance in some direction on the surface. The sphere particles arrange
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Sphere-surface contact
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Figure 8.3: The deformed NaCl sphere before and after an internal slip motion. A height
difference is evident. The atoms are coloured by potential energy, excluding long range
(reciprocal sum) electrostatic energy.
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Figure 8.4: Contact stress between a ball and surface composed of the two different
materials in study.

themselves very regularly. Weak, regular zigzag patterns in the stress graph are
caused by the duality of attraction and repulsion in the Coulomb potential. Around
7000 dynamical particles were used in the simulation. The reason for the odd surface
stress graph is investigated in section 8.2.

In both the Si and NaCl cases, the sum of forces between the sphere and surface
particles lie within 1% of the applied pseudo-gravitational force. This validates the
results by assuring that Newtons second law is fulfilled for the entire sphere.

8.1.2 Dependence on relative rotation

Up to this point, all experiments have been performed using commensurate surfaces.
I am also interested in investigating the forces between relatively rotated surfaces.
This has no effect for silicon, due to its liquifying behaviour, but sodium chloride
crystals are strongly affected by rotations.

An arbitrary rotation angle of § = 65.9° is used for an example simulation. As
expected, the potential energy of the initial configuration is now higher when the
sphere and surface start in contact. In fact, the interface forces are strong enough
to send the sphere away, so it must be kept down with a pseudo-gravitational force,
which I set to as much as 50 €V /A. The sphere must start in contact with the plane
surface, to avoid violent dynamics. Strong vibrations occur, but the contact stress
graph does not show regular plateaus as in Fig. 8.4(b). Instead, more irregular spikes
of stress appear, as the charge distributions of the two surfaces now look relatively
different at the same y-z-points.

An important question is how the contact force varies with the rotation angle. I
investigate this only for the initial (non-equilibrated) state of the sphere-surface sys-
tem. This is because the sphere would have to be pushed down during equilibration
and measurement phases, making force measurements difficult. Figure 8.5 shows the
resulting contact force for systems rotated with an angle of § = n° for n € {0,90}.
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As expected, the graph is symmetric about § = 45°. When the sphere is rotated
further, the graph repeats itself with a period of 90°. I read the top angles of the two
first peaks to 6 ~ 14° and 0 = 31°. These peaks are most probably associated with
the special angles 15° and 30°. The potential energy graph has a similar behaviour,
but with much smaller deviations. It is unlikely that the form of a corresponding
time-averaged contact force from an equilibrated system would look much different.
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Figure 8.5: Force between a NaCl surface and a rotated NaCl sphere. The peaks are
located at 14°, 31°, 59°, and 76°.

In a macroscopic solid, the crystal structure of asperities on two rough surfaces
will be relatively rotated. It is a reasonable assumption that the rotation angles
is uniformly distributed, since all asperities cannot fall into the lowest energy state
(the commensurate state with § = 0°) at the same time. Therefore, the mean of the
graph in Fig. 8.5 is more representative than the contact forces measured earlier.
In this case, the mean is about 7 times larger than the force in the commensurate
state. Given the problems of rotating structures with PBC, I will not pursue the
matter further, but these results are useful as a side note.

8.2 Sphere segment-surface contact

When the forces behind the NaCl stress graph are examined more carefully, the
Lennard-Jones potential appears to be the culprit behind the great repulsion at
the edges of the contact area. The ionic interactions are actually fully adhesive,
and counteract the repulsion at the edges. The short-range part of the Coulomb
force does all the work, while the long ranged part does not contribute significantly.
Natural oscillations are nearly certainly the reason behind the stress spikes at the
edges of Fig. 8.4(b). As seen in particle trajectories and center of mass plots, the
sphere tips back and forth in both directions tangential to the plane surface. This
periodically causes the contact particles at the edges to come closer to the surface
and experience a vastly bigger Lennard-Jones (LJ) force (see section 4.1). A peak



78 Chapter 8 Contact and adhesion results

is created, significantly taller than the mean stress across the contact area. At the
same time, adhesive forces give a negative stress around the center. When averaged
over time, this effect is the prominent feature of the stress graph.

When the sphere is truncated and instead pushed down by fixed particles, the
most important difference is that the dynamical particles are held strongly in place
at the positive = side of the simulation box (the top). Therefore, global oscillations
are avoided. The sphere segment is slightly compressed between two plane surfaces,
and a more uniform stress than before is measured. Figure 8.6 shows such a stress
graph, with a total contact force of 131 ¢V /A. This number may seem very high
in comparison with previous results, but the force is applied in a more gradual
manner than before, and the sphere is still not collapsed. The upper fixed layers
move downwards with a constant speed of 2- 104 A /fs. With a little more applied
compressive strain (longer indentation time), the sphere segment will deform in a
slip motion as before, creating a bigger contact area and lowering the total force.
NaCl has a much stiffer crystal structure than Si, which in the absence of a sudden
impact makes it more durable.

Stress normal to surface [eV/A%]

I I I j
10 20 30 40 50 60 70
Surface y-position [A]

Figure 8.6: Contact stress between a NaCl sphere segment and a NaCl surface. The applied
compressive strain is 4.1%.

In another attempt to explain the strange sphere-surface stress graph in Fig.
8.4(b), I observed a deformation in the lower part of the sphere for large applied
forces. However, this deformation is too small to create such a big effect, and it also
occurs in the sphere segment system. I refer to the deformation, which is clearly
visible in Fig. 8.7, as the bow phenomenon. The figure is from the same simulation
run as Fig. 8.6. The effect of the bow phenomenon can be seen in the stress graph
as a small ring outside the main plateau. The bow phenomenon is bound to happen
in real systems, but the effect should not be very noticeable with respect to surface
stress. Earlier studies [12] show a similar phenomenon occurring, visible in the
rightmost part of Fig. 2.3.

The stress graph of the silicon system still has stability issues, but the results
from sphere-surface interactions are reproduced.

In summary, the stresses I have found for the different materials carry information
on the microscopic structure of the compressed asperity. The article [12], which
works only with LJ and harmonic spring potentials, describes similar results for the
corresponding microscopic structures (bent/random for Si and stepped for NaCl).
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Figure 8.7: Arrangement of one z-y-layer of NaCl sphere segment ions. The applied
compressive strain is 4.1%. Straight horizontal lines are added as eye guides.

Different potential symmetries will induce differing reactions to an asperity-surface
interaction, leading to either destruction or some form of conservation of the default
bulk crystal structure of the material.

8.2.1 Adhesive energy

Contact forces between a plane surface and a model asperity in contact have now
been investigated. The energy involved in the squeezing process is also of great
interest. The sphere segment setup is again used, using the same propagation speed
of the upper surface, this time both for pushing the surfaces together and pulling
them apart. The sphere segment will not start in slight contact with the lower fixed
particles, as in Fig. 5.6. Instead, I place a gap of 4 A under the sphere segment,
leaving the surfaces are approximately out of interaction range. This must be done
in order to measure the energy required to stick the surfaces together. The visualized
trajectories also give a clearer picture of how the adhesion process takes place when
using this initial condition.

I will refer to how far the upper fixed layer is forced down from its default position
as the indentation depth, denoted d. This should not be confused with the center
of mass x coordinate xconm, which is measured in section 8.1. When the sphere
segment undergoes a plastic deformation, d and zcoy will differ. When the surfaces
are pulled apart, d becomes negative. In the initial position, the indentation depth
is defined as d = —4 A. The energy required to push the surfaces together is called
indentation energy, and the energy required to separate them is called separation
energy. These are found by integrating Eq. (5.11).

Silicon is the material displaying the most interesting behaviour in this case. I
use a sphere segment with a height of 5 unit cells and upper radius of 15 unit cells,
constituting 3963 atoms. The adhesive forces start to pull the lowermost layer of
the sphere segment in quite a violent fashion at d = —2.1 A. Notice that this will
contribute negatively to the indentation energy. At d = 0.4 A, the forces from the
bottom fixed particles change sign so the interaction becomes repulsive. If pushed
further, the sphere segment is deformed, as in the pure contact experiments, and
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this requires a lot of energy. When pulled apart again, the interaction does not turn
repulsive before d ~ —7 A, and the strings of atoms between the surfaces do not
break completely until d &~ —30 A. These numbers are for a maximum indentation
depth of 3.2 A. Figure 8.8 shows a snapshot of this simulation run.

The sodium chloride system is again made much smaller than the silicon system,
with a sphere segment height of 3 unit cells and upper diameter of 9 unit cells.
Only 840 dynamical particles are simulated, but this seems to be enough to get a
qualitative picture of what is happening and approximate numerical results. The
material reacts in a very different way from silicon to indentation and separation,

“((“‘;q‘iu‘
€

Figure 8.8: An Si asperity pushed into and separated from a Si surface. dp.x = 3.2 and
deurrent = —12.0 A. The atoms are coloured from blue to red by their potential energy.

Figure 8.9: A NaCl asperity pushed into and separated from a NaCl surface. dpax = 2.4
A and deurrent = —4.0 A A “carpet” of ions stick to the lower surface.
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as expected. The earlier contact and fracture experiments both give clues to its
behaviour. The adhesive forces in the interface are small, not very noticeable in
an animation of the trajectories, and they change to a small repulsion already at
d = —1.3 A. Tt seems more energetically favourable for two plane surfaces to be in
contact than for one plane and one curved surface.

If compressed enough, the sphere segment will deform by a slip motion. In rare
cases, this can form a multicrystal, a structure composed of lattices with different
axes. | have only observed one such case, with a maximum indentation depth of
d = 2.4. This run was discarded because this effect alters the energy state.

In all my simulations with dp,., > 1.2 A, a plastic deformation occurs. When the
surfaces are separated, one horizontal monolayer of NaCl connects the two surfaces
until about d = —9 A. This layer hangs between the surfaces like a carpet, in much
the same way as the torn flakes in NaCl fracture simulations (see the top of Fig.
7.4). This makes the separation energy much higher. Without this effect, the energy
loss in the process is in fact very small, as found out from simulations where the
Coulomb interaction strength between dynamical ions is increased.
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Figure 8.10: The energy required to bring the surfaces in contact and pull them apart
again, respectively. For various maximum values of the indentation depth d. The system
sizes are different, so the absolute values cannot be compared between Si and NaCl.

Figure 8.10 shows the numerical data from adhesion runs with the two materials.
For Si, a lot of energy is needed to pull the surfaces apart, and not as much for
pushing them together. It is reasonable that the magnitudes of both the indentation
and separation energies increase with maximum indentation depth and maximum
interface contact area achieved. The second of these quantities can explain the
apparent plateaus in separation energy for silicon. As the sphere segment is pushed
downwards, the second layer, third layer and so on of Si atoms will start to feel
interactions with the fixed particles and eventually adhere to the lower surface.
This is not so apparent in the indentation energy. The probable reason is that
adhesive forces drag atoms down and induce great velocities, which is transformed
to heat and conducted out. The indentation itself does not provide much energy in
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the adhesion process.

In the far left of Fig. 8.10(b), the NaCl system experiences only a small adhesion
effect. It gains energy by attaching the two surfaces and input energy is required
to break them apart again, as in the Si system. A beautiful symmetry between
adhesion and repulsion reduces these energies to approximately zero when d,,,, = 0,
that is, the surfaces are brought to one regular atom distance apart. When pushed
further, the sphere segment stores elastic energy before a plastic deformation occurs
at d ~ 1 A. This deformation brings the system to a preferable energy state. The
deformation itself requires a higher indentation energy, and more energy is required
to pull the system out of this low energy state. At dy.x > 2, an increasing amount of
elastic energy is stored. In short, an elastic deformation lowers the separation energy,
while a plastic one increases it. In bigger systems, several stages of deformation will
be possible. I then expect the concave form of the separation energy to repeat itself
for higher indentation depths.

Heat plays a central role in the adhesion process. In addition to the energy
needed for deforming the systems to higher potential energy states, heat is what
is responsible for the apparent hysteresis in the process. 1 will not present the
amounts of heat dissipation systematically, but will give some estimates. In the
silicon system, almost all the energy that is gained from adhesion and roughly half
the applied separation energy is lost as heat. Meanwhile, the NaCl system goes
into a higher potential energy state when compressed elastically. When separated
again, this energy is forced lower, and the system actually gains extra heat from
the outside. The temperature is kept at 300 K, as in most of my simulations. If
heat was not conducted out of the systems, the indentation and separation energies
would have been closer to having equal values with opposite signs.
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Figure 8.11: The total force between the lower surface and the sphere segment during
adhesion simulations.

The last figures I want to present from these experiments are two example plots
of the total interface force as a function of time (Fig. 8.11). On the silicon graph, it
is visible how suddenly the adhesive forces are turned on. The force varies almost
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linearly (elastic Hook-spring-like) when the sphere segment is pushed further in,
except for some irregularities bearing signs of plastic deformations. The skewed
plateau corresponds to an equilibration phase when d is at its maximum. The
adhesive forces are very strong for a long period when the surfaces are separated
again.

On the sodium chloride graph (Fig. 8.11(b)), a small adhesive force is visible in
the entry phase. The force varies roughly linearly with time (and thus displacement),
only interrupted by a sudden, grand deformation. In the NaCl simulations where
such a deformation does not occur, the force graph is quite symmetric. The squeezing
process is then close to reversible. This can be seen by summing the two energies in
Fig. 8.10(b) for dyax < 1.2, resulting in zero energy difference.

Dependence on parameters

Some simulations have been performed to see how much the adhesion and separation
energies vary when different conditions are changed. I have tried changing three
different parameters from a reference Si simulation: the radius of curvature R for the
sphere segment (creating a system with more or fewer atoms), the base thermostat
relaxation time 7 and the speed of indentation and separation v. The parameters of
the reference simulation are labelled by a 0 subscript. Table 8.1 shows the energies
measured in simulations with differing parameters.

Changes Indentation energy [eV]| | Separation energy [eV]
Reference (Ry, 79, vo) 11.0 405.8
R=12R, 2.6 529.3
R=14R, 7.5 540.7
T =479 10.3 397.5
7 =407 17.1 374.5
v = 2vg 18.81 407.3
v = 4 23.8 410.4

Table 8.1: Energies measured in Si adhesion simulations using singly different parameters
than the set used for previous results. The value of dpayx is 3.2 A.

The separation energy increases with the radius of curvature, as expected. A
flatter upper surface will give an increased area of contact and more atoms stick
to the lower surface. The energy will also depend on the exact structure of the
tip, so it is difficult to find a general relationship between radius of curvature and
separation energy in systems of this small size. This is probably also the cause of
the fluctuations in indentation energy. Reduced heat conduction causes less heat
dissipation during the separation, while the cause of the increased indentation energy
is less clear.

The driving speed of the fixed particles is almost negligible in comparison with
thermal speeds, as mentioned before. Altering this speed therefore makes no big
differences in the energies. Though, the sphere is forced faster into a lower energy
state on indentation. This causes a lower need for transformations from potential
to kinetic energy by the dynamical particles, leading to reduced heat loss. The snap
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when the surfaces are separated are not as violent, so the effect is barely visible in
the separation energy.

As an additional test, I have run ionic lattice adhesion simulations where the Na™
ions are switched with KT ions. The potassium atom has a mean mass of 39.0983
amu [14], where the mass and binding energy of a missing electron is neglected, as
before. The mass of the K atom is close to that of the Cl atom, which might give
differing microscopic dynamics from that of NaCl. The LJ parameters for potassium
can be found in Table 4.1. The lattice has greater oscillation amplitudes, caused
in part by weaker LJ interactions. However, I see no difference in the adhesion
dynamics, and all measured macroscopic data, including contact stress and adhesion
energy, do not differ in behaviour from the NaCl data.

8.3 Friction experiments

Measuring quantities related to friction from simulations on the atomic scale is a
very ambitious task. The length and time scales which are required for accurate
measurements is difficult to achieve, and the external forcing of the system must
be carefully adjusted in order to reproduce a realistic situation. My numerical
framework lacks the efficiency needed for large-scale simulations. I have only made
a few attempts to produce stable dynamics where two surfaces slide in contact in a
small system.

In initial attempts, I used the sphere-surface contact system. The sphere, which
inevitably begins to roll, may do a poor job at describing a rough macroscopic surface
asperity in a time-dependent situation. While the sphere rolls/slips across the
infinite layers of fixed plane surface atoms, more sphere particles become attached
to the surface, tearing off more and more atoms from the sphere. Data for the
relation between contact area and frictional force is therefore not reliable after a
certain period of time.

The data contains great fluctuations, but large-scale shapes of the Ac-Fhiction-
distribution are visible. For NaCl, the frictional force seems to be distributed equally
around zero at all times and has no distinguished pattern. As in the low-day
adhesion simulations, there seems to be little energy loss. Interestingly, the silicon
data indicates a linear relationship between A¢ and Fiiction, though the fluctuations
are of the same size as the increased friction force from small to large contact area
(see Fig. 8.12). The proportionality factor ¢ introduced in Eq. (2.7) takes a value
around 0.007 eV/ A3, For different values of the driving velocity and the pseudo-
gravitational force, I see no trend of change in the frictional force (fluctuations
dominate).

Using the sphere-segment system with a stepwise load balancing method [Eq.
(5.14)], T also get inconsistent results for Ficion as a function of L. In the Si system,
the time development of frictional force is very similar to the one earlier measured
and plotted in Fig. 8.12. The frictional force decays to zero once the sphere segment
has disintegrated into two parts sticking to each fixed particle surface. (The load
balancing stops after sideways movements are induced. If I continue the balancing,
the sphere segment is eventually flattened and a system similar to that from section
5.2.2 is produced.)
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Figure 8.12: Fiiction VS Ac for a silicon friction experiment with about 4000 particles in a
sphere. One data point per time step.

The result from a big simulation with 6790 dynamical and 10368 fixed particles
is a friction force Fiiction =~ 35 eV/A for a load L = 7.0 eV/ A. Thus the friction
coefficient, which is meant to lie in the range [0, 1], is measured to pu = 5 with a
driving speed of 0.002 A/ fs. This is plausible as we are studying a single asperity.
As stated in section 2.2, only a few asperities make contact between two surfaces.
This ensures the total friction coefficient for two silicon surface rubbed together to
be less than 1.

The simulation of the NaCl sphere segment system also shows a plastic deforma-
tion. When held in place, the system is stable. When moved, the lower layer of the
sphere segment hangs on to the lower fixed ions. We see a slip phenomenon similar
to the one in Fig. 8.3, creating a larger contact surface. The friction force is even
harder to measure in this case.

When the electrostatic forces between only the dynamical ions is increased by
a factor of 4, the dynamics are more interesting. This was initially the result of
an error in the program code. Figure 8.13 shows how the friction force oscillates
when the sphere segment slips across the fixed ions in the lower surface. Because
of the increased forces inside the sphere segment, it is harder to deform and stays
intact during the simulation. By friction force microscopy, oscillations similar to
these have been discovered in actual experiments [2]. There seems to be almost no
total energy loss to friction between NaCl surfaces in my erroneous experiment. I
am unable to reproduce this effect with real force strengths, but it might occur in
other ionic lattices if the conditions are right.

Interactions between a spherically shaped asperity and a plane surface have been
the main subject of study in this chapter. Both similarities and differences between



86 Chapter 8 Contact and adhesion results

20+

15r:

TRy P

e o 200 © ahot -
gl
PP ¢ o Ppinry. =

10

! R s )
e SNPGRS LW e

we s

Friction force [eV/A]
o
=gy

Sichiy )
Yot
TR
9 giaaes ¢ anTm——"- ¢

10 i3
¥
-15r .
.

5 5.5 6 6.5 7 7.5 8 8.5
Time [fs]

L+ w4

oo WAL
.

Figure 8.13: Firiction Vs t for an erroneous NaCl sphere segment friction experiment with
840 dynamical and 2592 fixed ions. The strength of the interactions between dynamical
ions are increased fourfold.

systems of silicon and sodium chloride have been uncovered. Though the reactions
to applied compressive stress are different, sudden plastic deformations occur in
both cases, compacting the asperity and lowering the potential energy. Before the
deformation, the stress distribution between the surfaces is characteristic for the
surface structure of the asperity. Silicon has the results of a bent/random surface
while the sodium chloride stress graph looks like that of a stepped crystal surface.
The reference for these characterizations is Fig. 2.3.

The two materials also have their own adhesion mechanisms, seen in Figs. 8.8
and 8.9. The lattice energies of the two materials are very similar, but much more
energy is still required to break a silicon crystal. This is in part due to the short
range of the interatomic potentials, which gives a large change of energy for small
deviations from the stable crystal structure (that is, large forces). This again induces
rapid motion of silicon atoms when critical phenomena occur, which leads to heat
loss. Such effects are not as visible for NaCl. The long-range dual-signed Coulomb
interactions even out and create a weaker mean field potential close to a periodic
structure. This is the most important difference between the two potentials with
respect to the dynamics of solids. The contact and adhesion results provide insights
important for friction, although complete sliding friction simulations are troublesome
to create on this scale.
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Concluding remarks

Molecular dynamics (MD) has proven to be a stable and cost-efficient (with regard
to computing power) method. By developing and applying an MD program, I have
extracted atom trajectories and averaged quantities of systems out of equilibrium.
The project has given insight about fractures and interactions between surfaces, and
how the types and symmetries of chemical bonds influence these processes.

In the fracture simulations, we have seen that Si crystals break with a much
higher stress than NaCl crystals. This is the case for solids both with and without
defects. Much of the breaking energy is excessive, which means that it will transform
into heat and sound, but also continued motion. If you bend a silicon slab with your
hands, it snaps and two pieces fly apart. Meanwhile, sodium chloride is softer and
more ductile, and will fracture more easily and with less fuzz.

I stated in chapter 2 that ductile materials dissipate more energy in fracture
processes. This is because of plastic deformations, which become more important
than heat at larger scales. The energy is dissipated more gradually than in brittle
materials, causing the dissipation to be less noticeable when performing macroscopic
experiments. The quite different behaviour of the two material classes owes almost
exclusively to the range and symmetries of the interatomic potentials.

In numerical surface contact experiments, I have investigated the response of a
nanoscale surface tip (an asperity) to compressive stress. The stress is meant to
simulate a load (weight) of a piece of material. Fig. 8.2 indicates a sudden plastic
deformation upon an increased applied load. The threshold for deforming is very
similar in value for Si and NaCl. On a macroscopic surface, earlier experiments have
shown that the real contact area A¢ increases continuously with the applied load
L. One can draw lines between my results and this behaviour by stating that the
increase in Ag is due to the deformation of asperities. The contact area reflects
how many asperities have undergone this process, which can be called the degree of
asperity deformation.

The form of the surface stress between a sphere and plane surface does not vary
drastically between different forms of interatomic potentials, for given atomic posi-
tions. However, the potentials produce differing atomic position configurations upon
surface contact, which gives radically different stress distributions. The absolute val-
ues are greater for NaCl than for Si, displaying a higher resistance to compression
(compressive bulk modulus). This behaviour is odd, seeing that silicon has the
highest resistance to tensile stress. This is observed both in fracture and adhesion
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experiments.

Amontons’ law, first shown in Eq. (2.6), is not reproduced in the numerical
friction experiments. Only single asperities are simulated, and plastic deformations
are seen to change the contact area, and thereby contact stress, significantly. Thus
Ac is far from varying linearly with L. On the macroscopic scale, however, the
degree of asperity deformation should be able to vary such that Ag is proportional
to L when averaging over the whole surface of a material. The second condition
that must be fulfilled is Fiiction X Ac. Even for a single asperity, this is seen to be
approximately satisfied for silicon (Figure 8.12).

Asperities are seen to disintegrate quickly in the friction experiments. This
deformation is not mainly due to the applied load, but the shear forces resulting from
the sliding. Asperities of two materials in contact must be deformed before relative
sliding can occur. Consequently, the magnitude of static friction is dependent on
both the adhesive properties and the shear strength of a material.

The dissipation behaviour of materials in contact is the same as in the fracture
experiments. Silicon has the highest heat loss, while it may require great amounts
of energy to deform the two sodium chloride surfaces. These very different processes
of energy dissipation are again caused fundamentally by the differing forms of the
interatomic potentials. A model covering a larger scale and thus including many
asperities is required for finding out which type of material experiences the largest
friction force for the same surface geometry.

The dynamics investigated in this project can be made more accurate both
by scaling the system size up and down. Vast parallelization improvements are
possible (by e.g. the method of domain decomposition [18]), enabling the program
to run on computer clusters with thousands of CPU cores. This allows for a larger
number of interacting particles, so that fracture propagation can be studied and
surface asperities can be enlarged for better detail. What I here refer to as down-
scaling means taking “smaller” phenomena into account, by describing quantum
mechanical effects more accurately. The electronic degrees of freedom may be taken
into account using density functional theory (DFT) calculations [16]. These can be
coupled to MD calculations in order to simulate the motion of atomic nuclei without
requiring effective interactomic potentials. This approach requires great amounts of
computing power.

Extending my program to include such a DF'T coupling will enable the simulation
of corrosion (oxidizing chemical reactions) and its effect on fracture mechanisms,
similar to the work of Vashishta et al. [7]. A more composite system including
foreign chemical elements will show a more complex behaviour, introducing realistic
effects. In addition to providing increased accuracy, DF'T is able to handle metals,
where (conduction) electrons can have widespread wave functions.



Appendix A

Code structure

Details regarding the code are provided in this appendix. As the program uses
object-orientation, I present the classes the code is naturally divided into, and the
functions these contain. Adjustable simulation parameters are also listed.

The main() function, which is executed on program start, reads parameters from
a file, acts as a stopwatch, manages and backs up the files in the output folder
and outputs most of the terminal messages. It contains the phase and time loops,
and administers what is happening and what is being measured through the public
methods of a dynamics object. Some error checks are performed, and great increases
in kinetic energy (implying a critical event) are reported. A high-level view of the
algorithmic steps were presented earlier, in Fig. 6.3. The methods of all classes
having to do with physical entities are listed in the next subsection, and the public
ones are designated letters to show where in the flowchart they are executed.

A.1 Molecular dynamics classes

e class dynamics: Master class which contains most of the essential calculations.
Contains pointers to objects of most classes below.

— set_parameters() (A): Transfers all parameters needed at simulation start
from the input file to this class and determines Ewald summation parameters
(see section A.3).

— initialize() (A): Allocates all required objects, arrays and output files. Also
sets the initial positions and velocities of the particles.

— velocity_verlet_1() (D): Calculates half-step velocities and new positions
[see Egs. (3.3) and (3.4)].

— velocity_verlet_2() (A,D): Calculates new velocities [see Eq. (3.6)]. Run
after the first force evaluation, causing the initial Maxwell-Boltzmann-velocities
to be treated as half-step velocities.

— position_pbc() (A,D): Applies periodic boundary conditions to dynamic and
fixed particle positions. Called at each time step.

— define_equilibrium() (B): Defines equilibrium values for some quantities. In
minimal use.
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Appendix A Code structure

calc_properties() (F): Calculates some macroscopic quantities, e.g. stress
and strain, and the recent motion of particles.

forces_potentials() (A): Calculates forces and potential energy between all
pairs and triplets of atoms, also between fixed and non-fixed particles. Contains
all loops over atoms and reciprocal lattice vectors, and calls the fpot functions.
The formulas are found in chapter chapter 4.

update_neighbours() (A,E): Updates the neighbour lists of all particles.
Called e.g. every 10 time steps.

rescale_temperature() (E): Simple temperature rescaling, as in Eq. (3.16).
Normally not in use.

andersen_thermostat() (E): Adjusts the temperature using the Andersen
thermostat (see section 3.2.2). Used for equilibration in specific cases.

bdp_thermostat() (E): Adjusts the temperature using the BDP thermostat,
as in Eq. (3.18).

bdp_thermostat_sides() (E): Adjusts the temperature of the simulation box
sides using the BDP thermostat (see section 5.1.3).

dissipative_force() (D): Adds a friction force term proportional to velocity
to all dynamical atoms. Used for damping oscillations.

expand_volume() (C): Expands the simulation box in the z direction with a
specified length. Used every time step in tensile stress and sphere segment
contact simulations.

displace_lattice() (C): Displaces the fixed particles constituting the perfect
crystal layers on the sides of the simulation box. Used every time step in shear
stress and friction simulations.

insert_gap() (A): Inserts a gap between crystal layers in the = direction.

add_force() (D): Adds a constant force on specific particles and adds up
a corresponding potential energy term. Used for simulating a homogeneous
gravitational field.

adjust_vcoll() (D): Forces the collective velocity components to have certain
values by adding a correction term to all dynamical atoms.

adjust_load() (C): Function for moving the particle stepwise until a desired
normal force is acquired. Uses expand_volume().

output_pos() (G): Outputs the positions of all atoms, including the vector and
scalar values mentioned in section 6.4.

output_field() (G): Outputs the temperature and density fields. Rarely used.

output_xyz() (G): Outputs the positions of the simulated particles to a simple
.xyz file for visualization with VMD.

kin_energy(): Calculates the kinetic energy of the particles.

temperature(): Calculates the average temperature of atoms belonging to a
specific type, subtracting the collective velocity.

fpot_short(): Adds up short range forces and potentials, including LJ and
short range Ewald terms.
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fpot_coulomb(): Adds up LJ and direct Coulomb forces and potentials, for
systems with no PBC.

fpot_long(): Adds up 3D long range Ewald forces and potentials.
fpot_long_2d_1(): Adds up k # 0 2D long range Ewald forces and potentials.
fpot_long_2d_2(): Adds up k = 0 2D long range Ewald forces and potentials.

potential_constant(): Calculates the constant correction term in the Ewald
summation. Only called in the initialize() function.

fpot_sw_2b(): Adds up SW potential two-body forces and potentials.
fpot_sw_3b(): Adds up SW potential three-body forces and potentials.

e class phase: The main() function reads phase-specific parameters like the num-
ber of time steps, thermostat type and temperature, output level and parameters
concerning dynamic processes. These parameters are stored in objects of the phase
class. It also contains timer objects for timing the execution of each phase.

e class atom_type: Contains information about chemical elements, like mass,
charge and LJ parameters.

e class atom: Contains the position, velocity, and force on an individual atom. The
methods are used basically everywhere, so the flowchart positions are not shown.

dist2(): Calculates the squared distance between two atoms, taking PBC into
account.

dist_vector(): Calculates the distance vector between two atoms, which is
especially useful in three-body force calculations.

dotted_dists(): Calculates the scalar product r;; - rj; for particles i, j and &,
for use in three-body force calculations.

update_recmot(): Updates the recent motion quantity of an atom (see section
6.4).

flush_neighbours(): Clears the neighbour list of an atom.

add_neighbour_si(): Adds a neighbour which has a lower index than this
atom.

add_neighbour_1i(): Adds a neighbour which has a higher index than this
atom. Required only for three-body force calculations.

e class lattice: Generates a lattice with the chosen geometry and chemical ele-
ments.

generate_positions() (A): Fills a two-dimensional array with position values
for all atoms in a lattice. These positions are used to initialize atom objects.

spherical_void() (A): Removes particles inside a sphere with a specific center
position and radius.

cylindrical_void() (A): Removes particles inside a cylinder with a specific
center position, radius and height.

sphere() (A): The “opposite” of spherical_void(). Cuts the crystal to a
sphere, can leave atomic layers of dynamical particles on top of the fixed ones.
Preserves charge neutrality.
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— remove_particle(): Used by the particle removal functions to remove pointers
to a particle and assure that all particle indices stay correct.

e class ewald: Generates the k-vectors and some functions of them which are
needed in Ewald summations. Has two subclasses, ewald3d and ewald2d.

— find_vectors() (A): Finds the required k-vectors by using a spherical or
circular cutoff in reciprocal space. Tabulates some quantities depending on
only k-vectors, like ||k|%.

— calculate_h() (A): Finds the required values of the integration variable h and
tabulates some values depending on only k and h. Only for ewald2d objects.

— find_structure_factor() (A,D): Calculates the structure factor S(k) or
S(k, h) of the ions which experience PBC.

— update_structure_factor() (C): Corrects the 2D structure factor of the fixed
particles by multiplying it with exp (ik - Ar + ihAx) for constant fixed particle
displacements, as described in section 4.2.3.

A.2 Utility classes

Some extra classes and collections of functions are required for the program to work.
In addition to the tools provided by the C++ standard library, these are the utilities
I have written:

e class complex: Custom class for complex number arithmetic. Works in the same
fashion as the C++ standard complex type.

e class parameters: Class for reading parameters from a file. Reads both integers
and floating-point numbers. The parameters must be sorted in a predefined order.

e class random_generator: Generation of uniformly and normally distributed ran-
dom numbers.

e class vtkwriter: Class for output of positions, field values, etc. to .vtk files.
e array: Functions for easy allocation and deallocation of multidimensional arrays.

e gots: Function for displaying physics quotes while the program is running.

A.3 Parameters

A parameters file defines a setup for a numerical experiment, and is taken into the
program as the first of two input arguments. The second argument is the folder
where all output files are produced. Parameters are divided into two types, global
and phase-specific ones. The global parameters contain both initial values and
parameters used in calculation during the whole simulation. Some of the parameters
will be irrelevant to certain types of simulations, but they are all always included in
the file.

Some parameters used in the program were only modified during the testing
process until I found a suitable value. These are defined as constants in the code
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and are not adjustable outside the compiled code. Examples are the number of
measurement bins for contact stress and 3D field values. The h integration interval
and step size from section 4.2.2 are never changed, but take the values given in
section 4.2.3. The heat conduction cutoff point from section 5.1.3 is always set
to 20% of the system size in the x direction L,. As L, may vary, this automatic
parameter choice is highly unphysical, but is expected to give no significant change
in simulation dynamics.

Following is a list of what the parameters file contains. Every vector component
parameter ending with _x has corresponding parameters ending with _y and _z for
the other two vector components.

A.3.1 Global parameters

e system_id : Flag for specifying material. 1: Argon (for testing only), 2: Sodium
chloride, 3: Silicon.

e N_x : The number of conventional crystal unit cells in each direction.

e PBC_x : PBC flags deciding whether the dynamical atoms should experience PBC
in each of the directions.

e fixed flag : Flag for the existence of fixed particles at the z-sides. 0: No fixed
particles, 1: Left side only, 2: Right side only, 3: Both sides.

e fixed_layers : The number of fixed particle unit cell layers.
e density : Initial particle density [A_g]. Used to set the lattice constant.

e T_init : Initial temperature [K]. Used in the initial Maxwell-Boltzmann velocity
distribution.

e tau : Relaxation time parameter 7 for the Andersen and BDP thermostats [fs].
e dt : Time integration step length At [fs].

e tspvf : Time steps per visualized frame.

e tsptr : Time steps per temperature rescaling.

e tspnlu : Time steps per neighbour list update.

e 1j_cutoff : Minimal neighbour list cutoff and LJ interaction cutoff [A].

. ewalchonstant : Proportionality constant C for the Gaussian smearing parameter
o [A77]. See section 4.2.3.

e accuracy : The round off error in the Coulomb force and potential calculations will
be € = 1073°°"3%Y See section 4.2.3.

e gap_position : A cuboidal gap at * = gap position is inserted at simulation
start [A]. Not used if negative.

e gap_width : The width of the inserted gap [A].
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void_size : The radius of the spherical or cylindrical void removing atoms in the
middle of the simulation box [A]. Not used if negative.

sphere_flag : Determines the sphere cutting mode. 0: Cuboidal lattice, 1: Spher-
ical cut, radius %Lx, 2: Sphere segment cut, radius %Ly.

phases : The number of simulation phases. The phase-specific parameters must
have this many values each.

A.3.2 Phase-specific parameters

timesteps : Number of time steps for one phase.
T_bath : Heat bath temperature [K]. Used with a thermostat.

temp_flag : Temperature adjustment flag. 0: No adjustment (microcanonical en-
semble), 1: Global BDP thermostat adjustment, 2: z-side BDP thermostat adjust-
ment, 3: Andersen thermostat adjustment.

dissipation : Dissipative force parameter v = —F/v [ers/AZ]. Not used if
negative.

expand_rate_x : The rate of constant volume expansion in the x direction [A /fs].

left_displace_lattice : The y direction speed of the fixed particles on the left
z-side of the simulation cell [A /fs].

right_displace_lattice : The y direction speed of the fixed particles on the right
z-side of the simulation cell [A /fs].

force_x : Constant force in the z direction on upper sphere particles [eV/ A]

vcoll_x : The collective velocity in the x direction will be adjusted to this number
each time step, unless the number if negative [A /fs].

target_load : The desired normal force in friction experiments [eV /A].

beta : Parameter for tuning the speed of fixed particle movement when aiming for
a target normal force. The feature is turned off with a negative value.

output_level : Flag for output levels. 0: No output, 1: Macroscopic quantities
(MQ) only, 2: MQ and .vtk positions, 3: MQ, .vtk positions, and .vtk field values,
4: MQ and .xyz positions.

A.3.3 Parameter file example

The following example of a parameters file is used for two of the data points in Fig.
8.10(b). The system starts out as a 3 x 7 x 7 unit cell cuboid of dynamical NaCl
ions with 2 x 7 x 7 unit cell cuboids of fixed ions on each z-side. The dynamical
ions are cut to a sphere segment, and a 4.0 A gap between it and the lower fixed
particle layers are created. Phases of equilibration, indentation, re-equilibration and
separation follow.
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system_id

===
N < ™

PBC_x

PBC_y

PBC_z
fixed_flag
fixed_layers

density
T_init
tau

dt
tspvf
tsptr
tspnlu

1j_cutoff
ewald_constant
accuracy

gap_position
gap_width
void_size
sphere_flag

phases

timesteps
T_bath
temp_flag
dissipation

expand_rate_x
expand_rate_y
expand_rate_z

left_displace_rate
right_displace_rate

force_x
force_y
force_z
vcoll_x
vecoll_y
vcoll_z
target_load
beta

output_level

N WOOONNW

0.045
300.0
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o

N O O
o
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300.0

-1.0
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16000
300.0
2
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