
Characterisation and calibration
of Optical tweezers

av

René Christian Castberg

MASTER THESIS

for the degree

Master in Condensed Matter Physics

(Master of Science)

Det matematisk- naturvitenskapelige fakultet

Universitetet i Oslo

June 2008

Faculty of Mathematics and Natural Sciences
University of Oslo

René C. Castberg June 23, 2008

Contents

1 Introduction 2

2 Theory of Optical tweezers 2
2.1 Initial development of the Optical tweezer 2
2.2 Single Beam Gradient Trap 3

2.2.1 Mie theory of trapping 3
2.2.2 Rayleigh Scattering . 6

2.3 Brownian Motion . 8
2.4 Langevin Equation . 9

2.4.1 Using the Langevin equation of motion to obtain an
expression for the power spectrum for a trapped particle. 10

2.5 Obtaining the power spectra via the Wiener-Khintchine and
equipartition . 11

2.6 Obtaining force constant from the power spectrum 13
2.6.1 Determination with prior knowledge of viscosity 13
2.6.2 Determination by using only the power spectra 14

2.7 Review of Paper: “Calibration of optical tweezers with posi-
tional detection in the back focal plane” 14
2.7.1 Introduction . 14
2.7.2 Equation of Motion . 14
2.7.3 Fourier transform of response functions 18
2.7.4 Power spectrum of the response functions 20
2.7.5 Calibration . 25
2.7.6 Using the experimentally determined data 26

3 Dynamic Light Scattering 27
3.1 Theory, Dynamic light scattering 27

3.1.1 Diffusion . 27
3.1.2 Dynamic Light Scattering 28

3.2 Experimental setup . 31
3.2.1 Particle size and settling time 32
3.2.2 Effect of salt on viscosity and refractive index 33

3.3 Results . 34

4 Equipment review 37
4.1 Introduction . 37
4.2 Laser . 37

4.2.1 Laser Controller . 39
4.2.2 Powering up the laser 39

i

René C. Castberg June 23, 2008

4.2.3 Laser beam stability 40
4.2.4 Laser power and noise 41

4.3 Optics . 43
4.3.1 Optical Losses . 45

4.4 Microscope . 45
4.5 Quadrant Photo diode (QPD) 47
4.6 Data Acquisition Card . 49
4.7 Optical Alignment . 49

4.7.1 Course alignment . 49
4.7.2 Fine alignment . 51
4.7.3 Walking the beam . 52

4.8 Piezo Electric Stage . 52

5 Experimental Procedure 53
5.1 Data capture — “optimising” sampling 53
5.2 Data Processing . 54
5.3 Cell preparation . 56
5.4 Verifying program code . 58

5.4.1 Frequency accuracy . 58
5.4.2 Amplitude accuracy 58

5.5 Power spectrum analysis . 63
5.6 Power spectrum for a trapped 1.54µm particle 63
5.7 Using sinusoidal stage movement for calibration 65
5.8 Measuring trap parameters by measuring particle position in

a flow . 67
5.8.1 Theory for calculating experimental parameters 67
5.8.2 Experimental method 68

5.9 Experimental data for sinusoidal stage movement 73

6 Characterisation of noise 75
6.1 DAQ Card . 75

6.1.1 Using a different DAQ 75
6.1.2 DAQ linearity . 76
6.1.3 Aliasing due to sampling frequency and filters 76
6.1.4 Frequency matching with piezo stage 77

6.2 Quadrant photo diode . 78
6.2.1 QPD Linearity . 78
6.2.2 Power supply . 78
6.2.3 Signal level . 79

6.3 Laser problems . 82
6.3.1 Signal variations . 82

ii

René C. Castberg June 23, 2008

6.3.2 Low frequency noise 82
6.4 Problems associated with the sample cell 83

6.4.1 Changes in salt concentration 83
6.5 External sources of noise . 84

6.5.1 Vibration . 84

7 Flow cell Design 86
7.1 Initial flow cell design . 86
7.2 Flow cell revisions . 86

7.2.1 Characterisation of Flow cell 87
7.3 Flow cell use . 89

8 Discussion of project results 90

A Computer Code 93
A.1 Automatic laser blocker . 93
A.2 Code for taking compressed data and making a power spectrum 96
A.3 Code used to verify Fast Fourier transform coefficients 106
A.4 Labview code . 108

A.4.1 Code for viewing live data 108
A.4.2 Code for acquiring experimental data set 108
A.4.3 Code for initialising DAQ 109

A.5 Matlab code . 112
A.5.1 Code for finding physical properties of system 112
A.5.2 Code for importing Labview HWS data 114

B Micelle preparation 114
B.1 Preparation of Entangled Worm like Micells 114
B.2 Calculations: . 115

B.2.1 Molecular Masses: . 116
B.2.2 Preparation of the Worm like micells: 116

Bibliography 119

1

René C. Castberg June 23, 2008

1 Introduction

The initial goal of this masters project was to use the optical tweezer as
a tool to probe the rheological properties of sponge like micells. As the
optical tweezer setup was new the plan was to verify that the calibration
worked, and then start using the tweezers. Unfortunately the calibration
procedure was not as straight forward as expected and a substantial amount
of time was spent learning the basics of the theory behind the trapping
process. During the attempts to calibrate the system each component was
checked, this resulted in numerous different experiments, swapping the laser
and adding extra sensors like a photo diode. The end result is that we still
haven’t been able to calibrate it properly although given more time I am sure
that we could get the “flow method” to work.

2 Theory of Optical tweezers

2.1 Initial development of the Optical tweezer

During the early part of the 17th century J. Kepler suggested that the reason
a comet’s tail points away from the sun was due to the radiation pressure of
light. It wasn’t until 1873 when J. C. Maxwell made an order of magnitude
prediction of the forces involved in radiation pressure. Attempts at showing
the radiation pressure prior to these calculations had been off by 4–5 orders
of magnitude. This is rather unsurprising considering that the forces being
measured are of a couple of pico-newtons, preventing real world applications
until the discovery of the laser in the 1960’s. The introduction of the laser
provided a coherent and spectrally pure ray of light which could be focused
to a spot approximately the size of a single wavelength. Focusing the beam
allowed for extremely high intensities, on the order of 10,000 times the inten-
sity at the surface of the sun. By using order of magnitude calculations A.
Ashkin[2] realised that the radiation pressure from a laser would be sufficient
to accelerate a 0.5µm dielectric particle at one million g1, where g represents
the acceleration due to gravity. This acceleration is possible even though
only 10% of the light is reflected by the particle.

Initial experiments showed that the radiation pressure in the beam was
sufficient to overcome the force of gravity and cause a particle to move with a

1This was by: Frad = 2qP/c, where q is the reflectivity (0.1), P is the laser power (1W)
giving Frad = 6.6 · 10−10N .
Using the mass of a neutrally buoyant 1µm particle (5.7 · 10−19 kg) the acceleration is
found as 1.15 · 106m/s

2

René C. Castberg June 23, 2008

constant velocity. Once in motion it would travel until it reached the far side
of the cell where it remained until the beam was interrupted. The particle
would start wandering due to Brownian motion, but the moment the laser
was switched on the particle would snap back to the centre of the beam, as
described in Figure 1.

A similar technique is possible using two opposing lasers. This setup is
called an “Optical Bottle” as the lasers are focused to a spot slightly off from
the centre of the cell as can be seen in Figure 2

Any particles in the centre of the cell would be trapped by the radiation
pressure from the two lasers, although any alignment errors quickly causes
problems as the particle would not be in a stable trap and forced off to one
side.

2.2 Single Beam Gradient Trap

Both the previous methods for trapping particles relied on either multiple
lasers or gravity to keep the particle trapped. For this reason the single
beam gradient trap was developed. This simple design uses a strongly focused
laser beam to create a particle trap which is stable in both axial and radial
directions.

Trapping theory falls into two distinct categories which depends on the
particle diameter (d) and trapping wavelength (λ), Mie theory (d � λ)
and Raleigh theory (d � λ). The particles used in this project are of the
same order as the wavelength (d ≈ λ), this implies that neither theory accu-
rately explains the forces on particles, Mie is usually associated with particles
around 10λ while for Raleigh theory particles are of the order 0.1λ. Theo-
retical calculations for d ≈ λ fall in neither category and thus require a more
complete electromagnetic theory[4, 5].

2.2.1 Mie theory of trapping

When the particle to be trapped satisfies d � λ we are in the Mie regime
and the forces in the optical trap can be calculated using ray optics. The
trapping forces will fall into two parts; the axial and lateral trapping forces.
Light entering the particle will undergo refraction, this causes a change in the
momentum which in turn corresponds to a force in the opposite direction.
This is easily understood by looking at Newtons second and third law.

2 : F = dp
dt

3 : “Every action has an equal and opposite reaction”

3

René C. Castberg June 23, 2008

P
1

P
2

Fa

Fb

FT

P
1

FaP2

a

b

Figure 1: Radiation force on a dielectric sphere, displaced from the central axis.
Two parallel beams a and b with differing intensities enter the parti-
cle causing a total force of FT = Fa + Fb. Each force is the sum of
the radiation pressure due to refractions when light enters or leaves the
particle.

F 1. F 2.

Laser 1 La
se

r
2

Microscope

Figure 2: ”Optical bottle” with two counter-propagating laser beams, showing the
restoring force for the two dark blue particles towards the equilibrium
position, light blue particle. F1 and F2 are the focal points for the two
beams

4

René C. Castberg June 23, 2008

where p is the momentum and t is the time. As the momentum of light
is given by p = U

nc
, where U is the energy, n the index of refraction and c

is the speed of light, we can quickly see that moving into a medium with
a different refraction index will change the momentum, and hence apply a
force. For a particle in a suspension, the direction of the force, depends on
the surrounding medium; if it has a lower index of refraction the force on
the bead will be in the direction of the gradient, otherwise it will be away
from the gradient. Hence a particle like silica (n=1.37) with a higher index of
refraction than water (n=1.33) will move towards the centre of the Gaussian
beam, while an air bubble (n=1.00) will move out of the beam[2].

Lateral Trapping Lateral trapping is the trapping that occurs perpendic-
ular to the direction of propagation of the laser beam. Figure 3 shows the
forces involved in axial trapping. The forces are due to the two rays Fa and
Fb, where Fb represents the more intense ray. The rays are in the directions
of propagation and hence have a component pushing the bead away from
the laser, this is represented by FScatter. FGradient represents the force due to
the larger gradient in the Fb direction, resulting in a movement towards the
centre of the beam (negative y direction in Figure 3).

La
se

r
B

ea
m

a

b

Fa

FbFGradient

FScatter

T
E

M
00

P
ro

fil
e

y

x

Figure 3: Lateral trapping of a particle, illustrated by two incident rays of different
intensities striking the particle symmetrically about its centre.

Axial Trapping Axial trapping is the trapping that occurs in the direction
of propagation of a focused beam. Figure 4 shows the forces involved in axial
trapping, these forces arise due to:

• Scattering due to gradient of laser comes from two components Fg1 and
Fg2, resulting in a force FGradient=Fg1 +Fg2 in the negative x direction.

• Scattering of reflected light. As the light reflects from the particle, it

5

René C. Castberg June 23, 2008

will result in an equal and opposite force due to the change in momen-
tum. FScatter=FR1 + FR2

For transparent dielectric particles the end result is that the reflected light
applies a smaller force than the scattered light, FScatter < FGradient, thus
pulling the particle in towards the centre of the trap (negative x). Due to
the reflected light, it is clear that force required to pull the particle away
from the trap in the positive x direction will be less than pulling it away
from the trap in the negative x direction, for the same reason the particle
will be offset in the direction of propagation (positive x) direction.

La
se

r B
ea

m

FScatter

FGradient R1F

FR2

Fg1

Fg2

TE
M

00
P

ro
fil

e

y

x

Figure 4: Axial trapping showing two highly focused rays striking a particle sym-
metrically about its centre. The particle is shown below the focus point.

2.2.2 Rayleigh Scattering

Rayleigh scattering involves particles with diameters smaller than the wave-
length (d << λ) and we can treat the particle as an induced dipole. Once this
assumption has been made we can treat the particle with standard electro-
magnetic theory. The following section uses the derivations found at [28, 13].

Gradient force The gradient force is due to the Lorenz force acting on
the dipole. For a point charge (q), the force (F) is given by:

F = q(E +
dx

dt
×B), (1)

where E is the electric field, q the electric charge, dx/dt the velocity of the
particle and B the magnetic field. Inserting for a dipole of two opposite
charges (q = q1 = q2), separated by distance (x1 − x2) gives

F = q(E1 −E2 +
d(x1 − x2)

dt
×B), (2)

6

René C. Castberg June 23, 2008

rewriting E2 in terms of the averaged field, E, and E1 gives,

F = q(E1 −E1 + ((x1 − x2) · ∇)E +
d(x1 − x2)

dt
×B), (3)

F = q(((x1 − x2) · ∇)E +
d(x1 − x2)

dt
×B), (4)

and multiplying through with the charge,

F = (p · ∇)E +
dp

dt
×B. (5)

Using p = αE, where α is the polarizability gives

F = α(E · ∇)E +
dE

dt
×B, (6)

and then substituting the following vector analysis identity,

∇E2 = 2(E · ∇)E + 2E × (∇×E), (7)

gives

F = α(
1

2
∇E2 −E ×

(
−dB
dt

)
+
dE

dt
×B). (8)

Where we used Maxwell’s equation ∇×E = −dB
dt

. Thus the last two terms
can be combined,

F = α

(
1

2
∇E2 +

d

dt
(E ×B)

)
. (9)

The last term is dependent on the variation in intensity of the laser, which
in our case remains constant. Therefore this term can be dropped,

F =
1

2
α∇E2. (10)

The resulting force on the particle is in the direction of the gradient.

Scattering force Taking a standard spherical particle, the Rayleigh
cross-sectional area is:

σs =
8π

3

(
2πnmed
λ0

)4

r6

(
m2 − 1

m2 + 2

)
.[1] (11)

Where r is the radius, λ0 is the wavelength in vacuum and nmed is the re-
fractive index of the surrounding medium, m = nparticle/nmed is the ratio of

7

René C. Castberg June 23, 2008

refractive index of the particle to that of the surroundings. We know that
the momentum is given by p = U/c, and that pressure is given by P = 1

A
dp
dt

,
putting these together gives:

P =
1

A

dp

dt
=

1

A

d

dt

(
U

c

)
=

1

c

dU/dt

A
, (12)

where dU/dt
A

is the rate at which energy is arriving at a surface per unit time,
which is also the time averaged Poynting vector (< S >). Thus the radiation
pressure, which is a force per unit area is given by:

Prad =
F

σ
=
< S >

c
. (13)

Rewriting this to take into account different mediums, and hence different
refractive indexes gives,

Fscat =
mσ < S >

c
, (14)

where m is the refractive index of the particle divided by the refractive index
of the medium.

Thus for a focused beam we have two forces Fscat and Fgrad, one pushing
the particle in the direction of propagation and the other pulling the particle
towards the centre of the trap.

2.3 Brownian Motion

One of the central theories applicable to optical tweezers is that of Brownian
motion. Initially Brownian motion was discovered by observing the move-
ment of small particles in water. With what seems like no external force the
particles would wander around as if they were colliding with other objects.
The term Brownian motion is a credit to the botanist Robert Brown who is
traditionally acknowledged with the discovery of this process.

As can clearly be seen from Figure 5 of 2d Brownian motion it would
be impossible to make deterministic predictions of particle positions and we
therefore have to take a probabilistic route.

To create a mathematical model of Brownian motion the Wiener process
(Wt) was developed, this model is a continuous time stochastic process with
the following properties:

• W (t = 0) = 0, Initially the particle is at zero and defined for all times
greater than zero.

• W (t) is a continuous function of time.

8

René C. Castberg June 23, 2008

−20 −10 0 10 20 30 40
−10

−5

0

5

10

15

20

25

30

35

40

Figure 5: Example simulation of 2D Brownian motion, particle started out at {0,0}
and took 1000 steps. Each step direction is determined by a random
number, and another random number determines the length of the step.

• W (t) has independent increments with a normal distribution, and hence
an expectance of value µ and variance of σ2

Using the Wiener process it is possible to prove[25] the Einstein relation
relating the mobility (µ) to the diffusion constant, D = µkBT . For the
derivation of the power spectrum we will be using the random properties of
Brownian motion by linking it to the auto correlation function by means of
the equation of motion.

2.4 Langevin Equation

The equation of motion for a free particle in a solution can be written as:

mẍ = m
d2x

dt2
= F . (15)

Where m is the mass, x is the position, t is the time and F is the force.
By splitting up the force into a frictional term and a random force we can
rewrite this as:

mẍ = −mγẋ+R(t), (16)

where γ is the drag coefficient, and R is a random force. The stochastic
differential equation above is also known as a Langevin equation.

Now if the particle is placed in a force field with potential V, the equation
becomes

mẍ = −∇ · V −mγẋ+R(t), (17)

9

René C. Castberg June 23, 2008

By approximation of the potential and random force in the expression above
it is possible to solve these equations for trapped particles in solution.

2.4.1 Using the Langevin equation of motion to obtain an expres-
sion for the power spectrum for a trapped particle.

For a more physical description, see the alternative method in the next sec-
tion. Particles trapped in an optical trap will undergo a Brownian motion
but with a restoring force pulling them back to the centre of the trap. The
theory presented here will show how we can use the power spectrum to de-
termine physical properties of the system. The theory for this section has
been derived in [14]

The theory is presented for the one dimensional case but should work well
for both 2 and 3 dimensional cases. From the Einstein-Ornstein-Uhlenbecktheory
of Brownian motion we get a Langevin equation describing the motion of a
bead trapped in a potential, in this case we will assume a harmonic potential,

mẍ(t) + γ0ẋ(t) + κx(t) = (2kBTγ0)1/2η(t), (18)

where x(t) is the x displacement of the Brownian particle, γ0 is the viscous
drag, κ is the harmonic force constant, and (2kBTγ0)1/2η is the random force
with a Gaussian distribution. Since η has a Gaussian distribution we know
the following:

< η(t) >= 0 and < η(t)η(t′) >= δ(t− t′).[14] (19)

Since the trapping will mostly occur at low Reynolds numbers we can drop
the inertial term as long as the experiments last longer than the characteristic
timescales2.

Eq. (18) is thus reduced to:

γ0ẋ(t) + κx(t) = (2kBTγ0)1/2η(t), (20)

Additionally we can simplify this equation by introducing the corner fre-
quency fc = κ/(2πγ0) and the Einstein relation D = kBT/γ0, where D is
the diffusion coefficient, kB the Boltzmann constant and T the temperature.
Hence we get:

ẋ(t) + 2πfcx(t) = (2D)1/2η(t). (21)

2This can be seen by looking at Eq. (41) in section 2.5, where the auto correlation
function has the expression e−|τ |κ/γ where we can define a characteristic time, τ0 = κ/γ
which is of order 1ms for a typical trap.

10

René C. Castberg June 23, 2008

We define the Fourier transform as:

x̂(f) =

∫ ∞
−∞

dtx(t) e−i2πft (22)

x(t) =

∫ ∞
−∞

dfx̂(f) ei2πtf (23)

Taking the Fourier transform of Eq. (21) with fk = k/Tmsr, where Tmsr is
the measurement time, results in,

x̃k =
(2D)1/2η̃k

2π(fc − ifk)
. (24)

From Eq. (19) we can define a similar set of equations for the Fourier trans-
formed η̃

< η̃k >= 0 and < η̃∗kη̃l >= Tmsrδk,l. (25)

The power spectra Sk is defined as

Sk ≡ |x̃k|2/Tmsr, (26)

inserting the expression for x̃(f) gives

Sk =
D|η̃(f)|2

Tmsr2π2(f 2
c + f 2

k)
. (27)

Taking the average and going to the continuous f leads to

Sk =
DTmsrδk,l

Tmsr2π2(f 2
c + f 2

k)
, (28)

=
Dδk,l

2π2(f 2
c + f 2

k)
, (29)

hence

< S(f) >=
D

2π2(f 2
c + f 2)

. (30)

2.5 Obtaining the power spectra via the Wiener-Khintchine
and equipartition

The theory presented in this section is based on the derivation at [6]. For a
particle trapped in a harmonic potential we can write the equation of motion
as:

mẍ(t) + γẋ(t) + κx(t) = η(t), (31)

11

René C. Castberg June 23, 2008

where m is the mass, x the displacement from equilibrium, γ the drag coeffi-
cient, κ the force constant and η the random force due to Brownian motion.
For the large time scales, such as those used in this project the damping of
the inertial term isn’t significant and thus we drop this term. This gives an
equation that is easier to solve:

ẋ(t) +
κx(t)

γ
=

1

γ
η(t). (32)

As η will be a random driving force, we can solve Eq. (32) using an integrating
factor,

Y (t) =
1

IF

∫
Q(t)IFdt, where IF = e

R
P (t)dt. (33)

Choosing P (t) as κ/γ gives an integrating factor IF = etκ/γ and Q(t) =
1
γ
η(t), then substituting this into Eq. (33) gives

x(t) = e−tκ/γ
∫ t

−∞

1

γ
η(t′) et

′κ/γdt′ (34)

The correlation function from t to t+ τ can then be written:

x(0)x(τ) =
e−τκ/γ

γ2

∫ 0

−∞
η(t′′) et

′′κ/γdt′′
∫ τ

−∞
η(t′) et

′κ/γdt′ (35)

The auto correlation function can then be found by taking the ensemble
average

< x(0)x(τ) >=
e−τκ/γ

γ2

∫ 0

−∞
dt′′
∫ τ

−∞
< η(t′)η(t′′) > e(t′+t′′)κ/γdt′ (36)

as η’s are the only stochastic terms. We assume that the random term η has
a Gaussian distribution we can therefore write < η(t′)η(t′′) >= rδ(t′ − t′′),
where r is an amplitude and δ is a Dirac delta function.

< x(0)x(τ) > =
r e−τκ/γ

γ2

∫ 0

−∞
dt′′
∫ τ

−∞
δ(t′ − t′′) e(t′+t′′)κ/γdt′ (37)

=
r e−τκ/γ

γ2

∫ 0

−∞
e(2t′′)κ/γdt′′ (38)

=
r e−τκ/γ

γ2

γ

2κ
(39)

=
r

2κγ
e−τκ/γ (40)

12

René C. Castberg June 23, 2008

from equipartition we know < x2 >= kBT/κ, setting τ = 0 and substituting
this into Eq. (40) we see that r = 2kBTγ, giving the auto correlation function
as:

φ(t) =< x(t)x(t+ τ) > =
kBT

κ
e−|τ |κ/γ (41)

The Wiener-Khintchine[25] theorem states that the Fourier transform of an
auto correlation function is the power spectral density of a stationary random
process, and defined as follows:

S(f) =

∫ ∞
−∞

φ(t) e−2iπftdt (42)

φ(t) =

∫ ∞
−∞

S(f) e2iπftdf (43)

Substituting our auto correlation function into the Wiener-Khintchine theo-
rem we get:

S(f) =
kBT

κ

1

2π

∫ ∞
−∞

dτ e−|τ |κ/γ e−iωτ (44)

=
kBT

κ

2κ/γ

(κ/γ)2 + ω2
(45)

=
2D

(κ/γ)2 + ω2
(46)

=
D

2π2(f 2
c + f 2)

, (47)

where we have used definitions for fc = κ/(2πγ).

2.6 Obtaining force constant from the power spectrum

When a particle is trapped whether, it has an externally driven force on it
or not, as long as fluid particles collide with the trapped particle we will
see fluctuations in the light intensity. Recording these with a QPD we can
obtain a power spectrum with a Lorentzian form. Fitting this curve with
Eq. (30) will provide us with two variables, the corner frequency (fc) and
diffusion coefficient (DV). Using these values it is possible to determine the
trap stiffness and drag constant for the system.

2.6.1 Determination with prior knowledge of viscosity

Once we have made a fit of Eq. (30) we should have a value for the corner
frequency,fc. In our original definition we set the corner frequency to fc =

13

René C. Castberg June 23, 2008

κ/(2πγ), thus by rearranging this expression we obtain an expression for the
force constant κ.

κ = 2fcπγ. (48)

2.6.2 Determination by using only the power spectra

Alternatively we can find the force constant using only the power spectrum.
Rearranging Eq. (30) and putting in the definition for diffusion constant (Eq.
(146)) we can find an expression for γ,

γ =
kBT

2S(f)π2(f 2
c + f 2)

. (49)

Using Eq. (49) we can solve for γ by setting the frequency to zero. The
resulting S(0) is the height of the plateau.

γ =
kBT

2S0π2f 2
c

. (50)

Adding this expression to Eq. (48) we arrive at,

κ =
kBT

πS0fc
. (51)

This method wasn’t used much as it would only give the value of κ in
terms of volts as we had no method for converting the voltage to distance.

2.7 Review of Paper: “Calibration of optical tweezers
with positional detection in the back focal plane”

2.7.1 Introduction

The following section is based on the paper titled, “Calibration of optical
tweezers with positional detection in the back focal plane”[27], which is a
method to calibrate the optical tweezer and at the same time get a mea-
surement of the viscosity. This gives an indication of the accuracy of the
calibration. I will only be treating sections I-IV, as the hydrodynamical
corrections are a refinement of these principles.

2.7.2 Equation of Motion

Ignoring hydrodynamical effects we can write a Langevin equation of motion
for a spherical bead in a trap as:

γ [ẋ(t)− vdrive(t)] + κx(t) = FT (t). (52)

14

René C. Castberg June 23, 2008

This equation contains a contribution of three parts, γ [ẋ(t)− vdrive(t)]
represents the drag force, κx(t) represents the trapping force, and finally
FT (t) represents the random thermal force.

Having assumed that the equation of motion (EOM) Eq. (52) is linearly
independent for both the thermal (FT (t)) and driving force (γvdrive), we can
write the solution of the equation of motion,

x(t) = xT (t) + xresponse(t). (53)

The thermal response xT (t) and the driving force response are found by
solving Eq. (52) when vdrive and FT are respectively set to zero.

Thermal fluctuations Setting the driving force equal to zero

γẋT (t) + κxT (t) = FT (t) (54)

ẋT (t) +
κ

γ
xT (t) =

FT (t)

γ
=
√

2Dξ(t), (55)

where we assumed the statistical properties of white noise to apply to the
thermal force,

FT (t) =
√

2γkBTξ = γ
√

2Dξ. (56)

Using κ/γ we find the integrating factor e
κt
γ and integrate the right hand

side

e
κ
γ

[
ẋT (t) +

κ

γ
xT (t)

]
=

d

dt

[
xT (t) e

κt
γ

]
= γ
√

2Dξ(t) e
κt
γ (57)

xT (t) =
1

e
κ
γ
t

√
2D

∫ t

−∞
e
κt′
γ ξ(t′)dt′. (58)

We define the corner frequency fc as

fc =
κ

2πγ
(59)

xT (t) = e−2πfct
√

2D

∫ t

−∞
e2πfct′ξ(t′)dt′

xT (t) =
√

2D

∫ t

−∞
e−2πfc(t−t′)ξ(t′)dt′ (60)

15

René C. Castberg June 23, 2008

Driving motion We start by writing an expression for the stage po-
sition with respect to time. This is represented by Eq. (61), differentiating
this with respect to time we can also obtain the velocity of the stage, which
enters in the equation of motion.

xdrive(t) = A sin(2πfdrivet) (61)

ẋdrive(t) = 2πfdriveA cos(2πfdrivet) (62)

In a similar manner to section 2.7.2 above, the thermal force can be set to
zero and a solution can be found for the equation of motion. Substituting
vdrive for Eq. (62) and κ

2πγ
with fc, 2πfdrive with ωd and finally 2πfc with ωc

we obtain

γ [ẋ(t)− vdrive(t)] + κx(t) = FT (t) = 0

ẋ(t)− vdrive(t) +
κ

γ
x(t) = 0

ẋ(t)− 2πfdriveA cos(2πfdrivet) + ωcx(t) = 0

ẋ(t)− Aωd cos(ωdt) + ωcx(t) = 0. (63)

Taking the Laplace transform of Eq. (63)

sX(s)− Aωds

s2 + w2
+ ωdX(s) = 0

where X(s) = L(x(t)), and solving for X(s) we obtain:

X(s) =
Aωds

(s2 + w2)(s+ ωd)
. (64)

In order to perform an inverse Laplace transform we choose to split the
right hand side of Eq. (64) into two partial fractions. We make the ansatz

P

s+ ωc
+
Qs+R

s2 + w2
d

=
Aωds

(s+ ωc)(s2 + ω2
d)
,

where P ,Q and R are to be found. Rearranging terms,

Ps2 + Pw2
d +Qs2 +Rs+Qsωc +Rωc = Aωds,

and grouping coefficients for each power of s:

s2 : P +Q = 0 ⇒ Q = −P (65)

s1 : Qωc +R = Aωd (66)

s0 : Pω2
d +Rωc = 0 ⇒ R =

−Pω2
d

ωc
=
Qω2

d

ωc
. (67)

16

René C. Castberg June 23, 2008

Substituting R in Eq. (66) with Eq. (67)

Qωc +Q
ω2
d

ωc
= Aωd (68)

Qω2
c +Qω2

d = Aωdωc (69)

Q
(
ω2
c + ω2

d

)
= Aωdωc. (70)

Rewriting Eq. (70) with the help of Eq. (65) gives

Q =
Aωdωc
ω2
c + ω2

d

, L =
Aωdω

2
d

ω2
c + ω2

d

, and P =
−Aωdωc
ω2
c + ω2

d

.

Defining α = fc
fdrive

= ωc
ωd

we can simplify this to:

Q =
Aα

1 + α2
, P =

−Aα
1 + α2

, L =
Aωd
α2 + 1

. (71)

This allows us to write the transformed Laplace equation (Eq. (64)) as

X(s) =
−Aα

(α2 + 1)(s+ αωd)
+

A(sα + ωd)

(α2 + 1)(s2 + ω2
d)
. (72)

Looking up these terms in tables allows us to quickly rewrite Eq. (72) as

xresponse(t) =
−αAe−αωdt

α2 + 1
+
αA cos(ωdt) + A sin(ωdt)

α2 + 1
. (73)

We are interested in finding the behaviour of this function once the transient
behaviour has passed, therefore taking t to be large the exponential term
falls away and we can write this as

xresponse(t) =
αA cos(ωdt) + A sin(ωdt)

α2 + 1
. (74)

In order to simplify Eq. (74) we will need a couple of identities:

sin(ωdt+ φ) = sin(ωdt) cos(φ) + cos(ωdt) sin(φ) (75)

cot(φ) =
cos(φ)

sin(φ)
(76)

tan(θ − π

2
) = − cot(θ) (77)

Starting with Eq. (74) and choosing3 cos(φ) = 1√
1+α2 and sin(φ) = α√

1+α2

one obtains

xresponse(t) =
A sin(φ) cos(ωdt) + A cos(φ) sin(ωdt)√

α2 + 1
. (78)

17

René C. Castberg June 23, 2008

Using Eq. (76) and the formula’s for sin and cos selected above we can easily
show that cot(φ) = 1

α
and along with Eq. (77) this gives

cot(φ) =
cos(φ)

sin(φ)
=

1√
1 + α2

√
1 + α2

α
=

1

α
1

α
= cot(φ) = − tan(φ− π

2
),

taking arctan and substituting for α

arctan(
1

α
) = −φ+

π

2

arctan(
fdrive
fc

)− π

2
= −φ.

We then define the phase difference φ
ωd

to be a lag time tlag and end up

with the expression in Eq. (79)

tlag =
−φ
ωd

=
arctan(fdrive

fc
)− π

2

2πfdrive
. (79)

Taking Eq. (78) and making the substitution with Eq. (75) and inserting
Eq. (79) we arrive at

xresponse(t) =
A sin(ωdt+ φ)√

1 + α2
=
A sin(ωdt− ωdtlag)√

1 + α2
. (80)

And finally using Eq. (61) and substituting for α we arrive at the desired
expression

xresponse(t) =
xdrive(t− tlag)√
1 + (fc/fdrive)2

. (81)

2.7.3 Fourier transform of response functions

We could fit Eq. (81) to an experimentally attained waveform, but this has
shown not to be very accurate and we therefore wish to take the power
spectrum of Eq. (60) and Eq. (81). This can in turn be compared with the
experimental power spectrum.

3We are able to make this assignment as we still meet the requirement that cos2 φ +
sin2 φ = 1

18

René C. Castberg June 23, 2008

Thermal response Taking the Fourier transform (defined as Eq. (23))
of xT (Eq. (60))

F(xT (t)) = F
(√

2D

∫ t

−∞
dt′ e−2πfc(t−t′)ξ(t′)

)
(82)

x̂T (f) =
√

2D

∫ ∞
−∞

dt

∫ t

−∞
dt′ e−2πfc(t−t′)ξ(t′) e−i2πft. (83)

As the first integration over t′ is from minus infinity to t, while the second
integration goes from minus infinity to plus infinity, covering the shaded area
in Figure 6. This means that we can change the integration order and simplify
the integral in Eq. (83) resulting in

x̂T (f) =
√

2D

∫ ∞
−∞

dt′
∫ ∞
t′

dt e−2πfc(t−t′) e−i2πftξ(t′), (84)

reordering the exponential and integrating

x̂T (f) =
√

2D

∫ ∞
−∞

dt′
∫ ∞
t′

dt e−2π(fc+if)t e2πfct′ξ(t′) (85)

=
√

2D

∫ ∞
−∞

dt′
[

−1

2π(fc + if)
e−2π(fc+if)t

]∞
t′
e2πfct′ξ(t′) (86)

=
√

2D

∫ ∞
−∞

dt′
−1

2π(fc + if)

[
e−2π(fc+if)t′ − e−∞

]
e2πfct′ξ(t′) (87)

=
√

2D

∫ ∞
−∞

dt′
1

2π(fc + if)
e2πift′ξ(t′) (88)

=

√
2D

2π(fc + if)
ξ̂(f). (89)

Drive response Taking the Fourier transform of xresponse Eq. (80) one
gets

F(xresponse(t)) = F

(
xdrive(t− tlag)√
1 + (fc/fdrive)2

)
. (90)

Substituting Eq. (61) for xdrive and writing the sine as a sum of two expo-
nential gives

x̂res(f) =
A√

1 + (fc/fdrive)2

∫ ∞
−∞

dt e−i2πft sin(2πfdt− 2πfdtlag) (91)

=
A

2i
√

1 + (fc/fdrive)2

∫ ∞
−∞

dt e−i2πft
(
ei2πfd(t−tlag) − e−i2πfd(t−tlag)

)
.

(92)

19

René C. Castberg June 23, 2008

Figure 6: Plot showing the integration domain

Rearranging the exponentials and writing only the integrals gives

Int =

∫ ∞
−∞

dt
(
e−i2π(f−fdrive)t e−i2πfdrivetlag − e−i2π(f+fdrive)t ei2πfdrivetlag

)
.

(93)

We can immediately see that we have a Fourier representation of a delta
function[26, p106] around (f ± fdrive), allowing us to rewrite the integral as

Int =
[
δ(f − fdrive) e−i2πfdrivetlag − δ(f + fdrive) e

i2πfdrivetlag
]
. (94)

As each delta function selectively selects negative and positive frequencies
at f = ±fdrive this can be further simplified by pulling out the exponential
term

x̂resp(f) =
Aei2πftlag

2i
√

1 + (fc/fdrive)2
[δ(f + fdrive)− δ(f − fdrive)] . (95)

Giving the final form of Fourier transformed response functions as

x̂(f) =

√
2D

2π(fc − if)
ξ̂(f) +

Aei2πftlag

2i
√

1 + (fc/fdrive)2
[δ(f + fdrive)− δ(f − fdrive)]

(96)

2.7.4 Power spectrum of the response functions

We now have the Fourier transform of the response, the definition[24, p498]
that we will use for the power spectrum is:

P (f) =
2 < |x̂(f)|2 >

tmsr
(97)

20

René C. Castberg June 23, 2008

We should note that taking the square of Eq. (96) will result in a cross

terms containing < ξ̂ > this has the statistical properties of white noise and
therefore will be equal to zero. This simplifies matters and allows us to use
Eq. (97) on Eq. (89) and Eq. (95) independently.

Thermal Power Spectrum Starting with Eq. (89)

PT (f) =
2 < |

√
2D

2π(fc+if)
ξ̂(f)|2 >

tmsr

=
2 < 2D

4π2(fc−if)(fc+if)
ξ̂(f)ξ̂∗(f) >

tmsr

=
D < ξ̂(f)ξ̂∗(f) >

π2(f 2
c + f 2)tmsr

(98)

=
D

π2(f 2
c + f 2)

, (99)

where we have used the fact that < ξ̂k(f)ξ̂l(f) >= tmsrδkl and in going from
Eq. (98) to Eq. (99) k and l are equal thus giving us the first part of total
power spectrum.

Drive response Power spectrum Unfortunately squaring Eq. (95)
gives a double delta function, which is not defined, therefore we have to do
a discrete Fourier transform of Eq. (81) for a finite time

x̂resp(fk) =

∫ tmsr
2

−tmsr
2

dt e−i2πfktx(t) =

∫ tmsr
2

− tmsr
2

dt e−i2πfkt
xdrive(t− tlag)√
1 + (fc/fdrive)2

.

Using Eq. (61),

x̂resp(fk) = A√
1+(fc/fdrive)2

∫ tmsr
2

− tmsr
2

dt e−i2πfkt sin(2πfdrive(t− tlag))

= A

2i
√

1+(fc/fdrive)2

∫ tmsr
2

− tmsr
2

dt e−i2πfkt (100)[
e−i2πfdrive(t−tlag) − ei2πfdrive(t−tlag)

]
.

21

René C. Castberg June 23, 2008

Rearranging the exponentials gives

x̂resp(fk) =
A

2i
√

1 + (fc/fdrive)2

∫ tmsr
2

− tmsr
2

dt
[
e−i2πfdrivetlag e−i2π(fk+fdrive)t

− ei2πfdrivetlag e−i2π(fk−fdrive)t
] (101)

=
A

2i
√

1 + (fc/fdrive)2

[e−i2πfdrivetlag e−i2π(fk−fdrive)t

i2π(fk + fdrive)

− ei2πfdrivetlag e−i2π(fk+fdrive)t

i2π(fk − fdrive)

] tmsr
2

− tmsr
2

(102)

=
A

2i
√

1 + (fc/fdrive)2[
e−i2πfdrivetlag

[
ei2π(fk−fdrive) tmsr2 − e−i2π(fk+fdrive)

tmsr
2

]
i2π(fk + fdrive)

−
ei2πfdrivetlag

[
e−i2π(fk−fdrive) tmsr2 − e−i2π(fk+fdrive)

tmsr
2

]
i2π(fk − fdrive)

]
.

(103)

Using the exponential definition for sine we can rewrite this as

x̂resp(fk) =
A

2i
√

1 + (fc/fdrive)2

[
e−i2πfdrivetlag sin(2π(fk − fdrive) tmsr2

)

π(fk + fdrive)

−
ei2πfdrivetlag sin(2π(fk + fdrive)

tmsr
2

)

π(fk − fdrive)

]
.

(104)

At this point we can return to the definition of the power spectrum, Eq.
(97) and insert x̂resp(f)

Presp(fk) =
2 < |x̂resp(f)|2 >

tmsr
(105)

Presp(fk) = A2

2(1+(fc/fdrive)2)tmsr

[
sin2(2π(fk−fdrive) tmsr2

)

π2(fk−fdrive)2

− sin(2π(fk+fdrive)
tmsr

2
) sin(2π(fk−fdrive) tmsr2

)
[
e
i4πfdrivetlag+ e

−i4πfdrivetlag
]

π2(fk+fdrive)(fk−fdrive)

+
sin2(2π(fk+fdrive)

tmsr
2

)

π2(fk+fdrive)2

]
.

(106)

22

René C. Castberg June 23, 2008

The cross term will typically be several orders of magnitude smaller than
the other two terms and is therefore ignored

Presp(fk) =
A2

2(1 + (fc/fdrive)2)tmsr

[
sin2(π(fk + fdrive)tmsr)

π2(fk + fdrive)2

+
sin2(π(fk − fdrive)tmsr)

π2(fk − fdrive)2

]
.

(107)

We can define part of the equation above as a term rk

rk =
1√
2

sin(π(fk ± fdrive)tmsr)
(fk ± fdrive)tmsr

. (108)

This almost contains a Dirac delta function definition,

δ(f ± fdrive) =
1

π
lim

tmsr→∞

[
sin(πtmsr(fk ± fdrive))

fk ± fdrive

]
=

√
2 tmsr
π

rk. (109)

Since rk comes close to a Dirac delta function for normal sampling times,
we can simplify Eq. (107) as we are only interested in the positive half of
the power spectral density (PSD) and Dirac delta functions filter out either
the positive or negative frequencies. Therefore we drop the negative half
δ(fk + fdrive).

Presp(fk) =
A2

2π2(1 + (fc/fdrive)2)

sin2(π(fk − fdrive)tmsr)
(fk − fdrive)2tmsr

(110)

=
A2r2

ktmsr
π2(1 + (fc/fdrive)2)

(111)

=
A2r2

ktmsrf
2
drive

π2(f 2
drive + f 2

c)
. (112)

If we choose the measurement time tmsr to be an integer stage period we
can set fk = fdrive, which allows us to write

rk =
π√
2
δfkfdrive . (113)

Inserting this into Eq. (112) give

Presp(fk) =
A2f 2

drive

2(f 2
k + f 2

c)
tmsrδfkfdrive . (114)

23

René C. Castberg June 23, 2008

From this equation it is clear that the spike will increase linearly in size as
the measurement time is increased, if we let tmsr →∞ the spike will become
infinitely sharp and therefore we have,

tmsrδfkfdrive → δ(f − fdrive), t→∞ (115)

Using this equation in the continuous limit,

Presp(f) =
A2f 2

drive

2(f 2 + f 2
c)
δ(f − fdrive). (116)

Taking Eq. (99) and Eq. (116) gives us the power spectrum.

P (f) =
D

π2(f 2
c + f 2)

+
A2f 2

drive

2(f 2 + f 2
c)
δ(f − fdrive). (117)

A typical spectra for a trapped particle is shown in Figure 7.

100 101 102 103 104
10−12

10−11

10−10

10−9

10−8

10−7

10−6

Frequency (Hz)

P
ow

er
 (V

2 s)

Power Spectrum for with 20Hz stage drive

100 101 102 103 104
10−12

10−11

10−10

10−9

10−8

10−7

10−6

Frequency (Hz)

P
ow

er
 (V

2 s)

Power Spectrum for with no stage drive

Figure 7: Power spectra for a trapped particle with and without stage movement

Alternative method for obtaining drive response spectrum Ini-
tially we follow a similar procedure as in secion 2.7.4, but when we arrive at
Eq. (107) we can directly use a definition for a delta function[9, p224],

δ(f ± fdrive) =
1

π2
lim

tmsr→∞

sin2(πtmsr(f ± fdrive))
tmsr(f ± fdrive)2

, (118)

24

René C. Castberg June 23, 2008

giving

P (f) =
A2f 2

drive

2(f 2 + f 2
c)

[δ(f − fdrive) + δ(f + fdrive)] . (119)

Here again we can disregard the negative frequencies, thus ignoring δ(f +
fdrive), this brings us straight to Eq. (116) where we follow on from there.
Although it must be noted that this method does not highlight the procedure
for obtaining the experimental power as clearly.

2.7.5 Calibration

In order to calibrate the tweezer we need to assume that the Quadrant photo
diode voltage is linear with position,

x(t) = βxvoltage(t). (120)

This allows us to write the PSD for the response as

Presp(f) = β2P voltage
resp (f). (121)

Theoretical power We can determine β from the experimental peak
and we know the drive amplitude and frequency from the experimental pa-
rameters. By rearranging Eq. (121) and integrating over f to obtain the
power we can obtain an expression for β

β =
√
Wth/Wex. (122)

Here Wth and Wex are the expressions for the power of the theoretical and
experimental peaks in the spectral density. For the theoretical movement, we
know that the spectral density will have the shape as in Eq. (116), therefore
we can find the power by integrating this over the measured frequency range:

Wth =

∫ FNyq

0

Presp(f)df =
A2

2(1 + f 2
c /f

2
drive)

. (123)

Experimental power Following on from Eq. (114) we saw that if fdrive
is an integer multiple of fk the spike will consist of a single datum, when this
happens the spike should represent only the power at the drive frequency,
hence we can write

Wex =
[
P voltage(fdrive)− P voltage

T (fdrive)
]

∆f. (124)

Where we have subtracted the thermal background, and multiplied by the
width of the spike (∆f in this case, as we have a single datum), although it
is worth to note that in many cases it might not be necessary to subtract the
thermal background as it will often be several orders of magnitude smaller.

25

René C. Castberg June 23, 2008

2.7.6 Using the experimentally determined data

From the fit we obtain in Eq. (99) obtain values for Dvolt and fc while the
spike in Eq. (116) gives a value for β. Dvolt is quickly converted to its standard
units by multiplying by β2,

D = β2Dvolt. (125)

Using the Einstein relation and the definition of fc (Eq. (59))

fc =
κ

2πγ0

⇒ γ0 =
κ

2πfc

D =
kBT

γ0

.

Putting these two together along with Eq. (125)

D =
kBT
κ

2πfc

=
kBT2πfc

κ

κ =
2πkBTfc

D
.

(126)

Gives us an expression for κex

κex =
2πfckBT

β2Dvolt
. (127)

By taking the Einstein relation we can also find a value for the γ and
hence the viscosity (η) which is independent of any tabulated values and
hence obtain a check on the experimental results,

D =
kBT

γ0

(128)

γ0 =
kBT

D
. (129)

Which gives us an expression for γex

γex =
kBT

β2Dvolt
. (130)

Using the stokes Einstein relation,

γ = 6πηr (131)

(132)

26

René C. Castberg June 23, 2008

we arrive at an expression for the viscosity,

η =
γ

6πr
. (133)

3 Dynamic Light Scattering

3.1 Theory, Dynamic light scattering

3.1.1 Diffusion

As we already know small enough particles undergo Brownian motion, mov-
ing randomly due to the thermal forces applied to them by the surrounding
fluid. We will make use of this by applying Dynamic light scattering to mea-
sure the fluid viscosity and particle size by use of the Einstein and Stokes
relations. The theory was taken from lectures on experimental physics, [18]

Calculating the diffusion coefficient We assume that particles are in
a potential field (U) where the density is given by a Boltzmann distribution:

ρeq = ρ0 e
− U
kBT . (134)

In a steady state the flux of the particles due to diffusion and forces
resisting diffusion will be equal,

JD + JF = 0. (135)

Where JD, the flux due to diffusion is given by,

JD = −D∇ρeq, (136)

and JF , the flux due to forces on the particles as

JF = vρeq. (137)

Inserting the expression for the potential we arrive at:

JD = −Dρ0 e
− U
kBT (−∇ U

kBT
) = −ρDeq

kBT
(−∇U), (138)

JF = vρ0 e
− µ
kBT = vρeq. (139)

Setting these equal and solving for the diffusion constant.

JD + JF = −Dρeq
kBT

(−∇U) + vρeq = 0 (140)

D =
vkBT

−∇U
(141)

27

René C. Castberg June 23, 2008

We know that we can write F = −∇U and that µ = v/F ,

v

F
= µ, (142)

v = −µ∇U, (143)

allowing us to write an expression for the potential

µ =
D
kBT

. (144)

Using Eq. (142) and the stokes relation,

F = 6πvηr. (145)

we arrive at an expression for the diffusion coefficient,

D =
kBT

6πηR
. (146)

3.1.2 Dynamic Light Scattering

To perform the experiment we will be using the auto correlation function.
We know that a planar wave can we written as:

E = E0R(ei(k·r−ωt)). (147)

We also know that we can write the intensity as the energy flux < s >, and
can therefore easily prove that

< s >=
< E2 >

µc
∝ E0

2 = EE∗. (148)

When a single particle scatters light we will see something similar to Figure 8.
Where the wave number Ki = n2π

λ
and with the refraction index n and

wavelength λ. From this it is possible to determine that:

Es ∝
Ei(t0)

|R− r|
. (149)

t0 = t− |R− r|
c

. (150)

Where Eq. (150) shows the retarded time.

28

René C. Castberg June 23, 2008

PD
|R-r|

R
r

Ki

.
O

Figure 8: Scattering of an incoming wave, where O a point of reference

Es ∝
E0

|R− r|
R(ei(ki·r(t0)−ωt0)). (151)

Substituting in |R− r| = R− R
R
· r and using the retarded time gives an

expression for the scattered field:

Es ∝=
E0

|R− r|
eiKRei(q·r(t0)−ωt). (152)

Where q is the scattering vector Ki −Ks which can be written as

q =
4πn

λ
sin(

θ

2
), (153)

n is the refractive index of the solution and λ is the wave length of the
incident light. Assuming that R >> r and hence r

R
<< 1,

Es =
E0

R
eiKRei(q·r(t0)−ωt). (154)

Using this information we can now determine the auto correlation function:

G(τ) =
< I(t)I(t+ τ) >

< I(t) >
. (155)

We know from Eq. (148) that I(t) ∝ EE∗ which means that we can set up
and equation for I(t)I(t + τ) knowing that E0 will be the same for all the
particles

< I(t)I(t+ τ) >∝ h(τ) = <
∑
ij

eiq(ri(t0)−rj(t0))
∑
lm

eiq(rl(t0+τ)−rm(t0+τ)) >,

since rx(t0 + τ) = rx(t0) + ∆rx(τ) = rx + ∆rx, (156)

h(τ) = <
∑
ijlm

eiq(ri−rj+rl−rm)eiq(∆rl−∆rm) > . (157)

29

René C. Castberg June 23, 2008

Since the particles are statistically independent in position their contributions
will only count when ri − rj + rl − rm = 0, when one of the terms i,j,l,m
is different from the rest the overall contribution will be 0. Counting up
the contributions from all these terms, there are N2 terms for i=j, l=m and
eiq(∆rl−∆rm) gives 1 as l=m.

h(τ)i=j,l=m = N2. (158)

There are (N2 −N) terms for which i = m, j = l and m 6= l,

h(τ)i=m,j=l,m6=l = (N2 −N) < eiq(∆rl) >< eiq(∆rm) > . (159)

Assuming that the particles are completely independent allows us to write
Eq. (157) as:

h(τ) = (N2 −N) < eiq(∆rl) >< eiq(∆rm) > +N2. (160)

Assuming an ergodic system we can rewrite the time average as an ensemble
average, where P (∆r, τ) is the probability that a particle had diffused a
length ∆r in time τ :

< eiq∆r > =

∫
P (∆r, τ)eiq∆rd3∆r, (161)

< eiq∆r > =

∫
1

(4πDτ)
3
2

e
−∆r2

4Dτ eiq∆rd3∆r, (162)

< eiq∆r > = e−Dq2τ . (163)

Integrating this gives Eq. (163) Since these are two completely independent
particles we can rewrite h(t) as:

h(τ) = N2 + (N2 −N)e−2Dq2τ . (164)

Using the fact that < I(t) >= N we can find G(τ), and with the assumption
that N is large (N2 >> N) this can be simplified to Eq. (167)

G(τ) =
< I(t)I(t+ τ) >

< I(t) >
=
N2 + (N2 −N)e−2Dq2τ

N2
, (165)

G(τ) = 1 +
(N2 −N)

N2
e−2Dq2τ , (166)

G(τ) = 1 + e−2Dq2τ . (167)

Since the correlation function is measured and we know the scattering
vector q from Eq. (153) we can determine D. This can be done by noticing
that the decay time is 1/2DQ2 something that can easily be measured from
a plot. And hence using Eq. (146) we can determine the viscosity of the fluid
or the particle size.

30

René C. Castberg June 23, 2008

3.2 Experimental setup

In Figure 9 we can see the experimental setup measurement of the correlation
function. Briefly it consists of:

• The laser is a Helium-Neon laser with a relatively stable signal without
too much interference.

• Half-wave plate, The maximum interaction between the particle and
laser will occur parallel with the polarisation of the laser. As the laser
is vertically polarised the maximum scattering was vertical. Placing the
half-wave plate in place rotated the interaction towards the sensors.

• Two lenses for focusing purposes (focal length ≈ 10cm).

• A sample cell containing silica beads, the concentration of beads was
increased until the beam was visible and the count rate was just high
enough, ensuring that multiple scattering was not an issue.

• Thermistor, a thermistor is placed in contact with the cell in order to
obtain an accurate temperature reading for each run.

• A single slit and aperture (turned down to its smallest opening) are
placed in the beam path to ensure that the projection from the sample
allows only a small spot of light through. Allowing too much light
to pass allows widely spaced particles to contribute to the correlation
function, lowering the accuracy of this technique.

• A red filter is placed in front of the photo diode preventing most ex-
ternal sources of the stray light from entering.

• As the photo diode is extremely sensitive it requires shielding from as
many external sources of light as possible.

• The photo diode is connected to an auto correlator which is read and
analysed by a computer.

Measurements of 60 seconds were made for a total of 15 data sets for a
suspension of particles with and without salt (NaCl) added. The salt was
added in order to determine if adding a small amount of positively charged
ions changed the shielding length and consequently reduce the particle size.

The data for the experimental setup is shown in Table 1.

31

René C. Castberg June 23, 2008

Figure 9: Experimental setup

Data Value
Laser Wavelength (λ) 632.8 nm
Refractive index of suspension (n) 1.33
Particle Diameter (2r) 1.54µm
Slit size 0.5µm
Viscosity Water at 20◦C (η) 1.001·10−3 Pa s
Density Water (ρw) 1·103 kg/m3

Density Silica (ρp) 1.96·103 kg/m3

Table 1: Experimental parameters

3.2.1 Particle size and settling time

As this experiment was usually performed with a particle size of 0.05µm a
quick calculation ensured that the 1.54µm particles fall slowly enough for this
to be a viable technique. Balancing the force of gravity with the bouncy of
the particles it is possible to determine the terminal velocities of the particles,
and hence calculate the time it takes to fall a distance of one wavelength.

F g = (ρp − ρw)Vpg, (168)

FDrag = −γu, (169)

γ = 6πηr. (170)

32

René C. Castberg June 23, 2008

Where Fg is the force due to gravity, ρp,w is the density of the particle and
water respectively, g the acceleration due to gravity,γ is the drag coefficient, u
the velocity, η is the viscosity of the water, Vp the volume of the particle and
finally r is the radius of the particle. Replacing the volume with an equation
for the volume of a sphere and calculating the total force (FT), which during
free fall should be zero gives:

F T = F g + FDrag = (ρp − ρw)Vpg − 6πηru, (171)

(ρp − ρw)Vpg = 6πηru, (172)

u =
(ρp − ρw)4

3
πr3g

6πηr
. (173)

(174)

Setting the velocity (u) to distance (λ)/time (τ),

λ

τ
=

(ρp − ρw)4
3
πr3g

6πηr
, (175)

τ =
9λη

2(ρp − ρw)r2g
. (176)

Using the values tabulated in Table 1, where λ is assumed to be the laser
wavelength, gives a settling time of 0.5s for a 1.54µ m bead. This number is
much larger than the time between collisions and does not hinder the use of
this method.

3.2.2 Effect of salt on viscosity and refractive index

Adding salt to the suspension of particles in water will have an effect on
the viscosity of water. For the Dynamic light scattering experiment a mass
concentration of 0.25% was used, assuming a linear response4 of viscosity to
a change in mass concentration we can interpolate the data in Table 3.2.2 to
obtain the viscosity of the salt solution.

η = ηA +
(m−ma)(ηb − ηa)

(mb −ma)
, (177)

= 1.001 · 10−3 +
(0.25− 0)(1.011 · 10−3 − 1.001 · 10−3)

0.5− 0
, (178)

= 1.0065 · 10−3Pa s. (179)

Similarly adding salt will change the refractive index of the solution, again
we assume a linear response5 to change in mass concentration. Interpolating

4This is a reasonable assumption of the viscosity, and can be clearly seen when data is
plotted for small mass concentrations[17]

5This can be clearly seen when data is plotted[17]

33

René C. Castberg June 23, 2008

for a mass concentration of 0.25%,

η = ηA +
(m−ma)(ηb − ηa)

(mb −ma)
, (180)

= 1.3330 · 10−3 +
(0.25− 0)(1.3339 · 10−3 − 1.3330 · 10−3)

0.5− 0
, (181)

= 1.3336 · 10−3Pa s. (182)

This gives a very small correction to the particles size and viscosity, the
calculations used for results will take this change into account.

Mass Concentration Viscosity Refractive index
% by mass NaCl 10−3Pa s
0 1.002 1.3330
0.5 1.011 1.3339

Table 2: Viscosity for Sodium Chloride solution.[17]

3.3 Results

In total 15 data sets were measured for the particles with and without NaCl
(0.04M solution), these were averaged and fitted with the function 1+Ae−Bτ

where B is 2Dq2.
The fitting parameters A and B are listed in Table 3.3. Using these in

conjunction with B = 2Dq2. We can find a value for D and hence obtain a
value for either the viscosity or particle size.

Viscosity; η =
kBT

6πrD
(183)

Radius; r =
kBT

6πηD
(184)

These equations require either the particle radius or fluid viscosity and hence
do not allow both to be obtained simultaneously. To allow an easy compari-
son the values for both have been listed in Table 3.3 using tabulated values
from Table 1 for the unknowns.

In order to get an idea for the stability of the measurements the two data
sets were split up into two halves, the results are tabulated in the Table 3.3.
These clearly show that there is a large separation between the Salted and
Unsalted data sets of at least 0.04µm.

34

René C. Castberg June 23, 2008

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time/[s]

G
(t
)

G(t) vs Time with exponential fit (Without NaCl)
Correlated Data
Standard Deviation of Data
Fitted Function

Figure 10: Correlation function for a sample without added Salt

Fit Parameters Particle Diameter Viscosity Temp
A B µm Pa s K

Unsalted 0.7190(5) 204.22(4) 1.614(3)·10−6 9.38(2)·10−4 297.93
Salted 0.6826(7) 212.39(7) 1.545(5)·10−6 9.02(3)·10−4 297.73

Table 3: Experimental results for Dynamic light scattering with and without salt

These results are consistent with the manufacturers specifications of 1.54µ
m ± 10% standard deviation. Both the Unsalted and Salted samples fall
within 10% of the expected results. Although it should be noted that the
angular alignment of this experiment is complicated to perform accurately.
Errors up to a couple of degrees are very likely, resulting in a minimum
uncertainty 4–5%. The diffusion coefficients for Unsalted and salted were
2.92·10−13 m2/s and 3.04·10−13 m2/s respectively, these are very close to
.the calculated value of 3.01·10−13.

35

René C. Castberg June 23, 2008

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time/[s]

G
(t
)

G(t) vs Time with exponential fit (With NaCl)
Correlated Data
Standard Deviation of Data
Fitted Function

Figure 11: Correlation function for a sample with added Salt[0.04M]

Particle Diameter First 7 Last 7
µm µm µm

Unsalted 1.614(3)·10−6 1.618(4)·10−6 1.614(3)·10−6

Salted 1.545(5)·10−6 1.523(6)·10−6 1.573(5)·10−6

Table 4: Experimental results showing stability of measurements

36

René C. Castberg June 23, 2008

4 Equipment review

4.1 Introduction

In the following section I will describe the equipment used for trapping a
single particle in the optical tweezer lab. I will also go into detail on alignment
procedure, a requirement for getting good data.

4.2 Laser

The laser used for this setup is a water cooled LEXEL 95–3 argon ion laser,
capable of delivering up to 3 W in a multi line setup. Although for our
purposes it will be limited to a maximum of 1070 mW at the 514.5 nm line
in a TEM00 mode (see Figure 12). An external controller is used to control
the emitted power of the laser and ensures that the water cooling is running
before the laser is switched on. The laser itself has very few adjustments,
they consist of a height adjust at each of the four corners and an adjustment
for the rear mirror. Adjusting the height allows us to control the way that the
beam travels along the table. Adjusting the mirror allows us to choose the
wavelength that the laser operates at and adjusts the beams position with
respect to the output aperture. This argon ion laser is capable of operating

- 3

- 2

- 1

0 y

1

3

0.0

2

x

2

1 0 - 1

0.25

- 2 - 3

3

0.5

0.75

1.0

Figure 12: TEM00 mode, X and Y axis show spatial position, Z shows light inten-
sity (where 1 is the maximum)

at the wavelengths listed in Table 5. The laser is capable of delivering most
of the power at 514.5 nm, and this is also the wavelength that the optics have
been optimised for. To choose the wavelength a dial on the rear of the laser
is adjusted until the desired wavelength is visible and the expected power is
measured. Mirror adjustment works by reflecting a chosen wavelength back
through the prism along the optical path as shown in Figure 13.

37

René C. Castberg June 23, 2008

Prism

Second laser
mirror

High Reflective
Mirror

Prism wave
selector

Figure 13: Prism Wavelength selector

Wavelength Power
nm mW

1092.3 100
528.7 250
514.5 1200
501.7 200
496.5 400
488.0 700
476.5 400

Table 5: Tabulated specifications for laser power levels[16]

38

René C. Castberg June 23, 2008

4.2.1 Laser Controller

The Controller provides the laser with a stable power supply and a source
of cooling. The power supply operates from 208 V and requires a 3 phase
electrical service capable of supplying a minimum of 35 amps, the unit itself
is protected using a 30 amp fuse. The water supply should have a flow rate of
7.6 litres per minute at a pressure of 1.7 atmospheres. The laser will operate
in two modes:

• Current control: In current control the plasma-tube current is kept
at a constant level which results in a constant power. Unfortunately
it does not compensate for changes in the internal optics, resulting in
fluctuations in output power. Stability is generally attained after 60
minutes (see Section 4.2.3).

• Light control: In light control a small portion of the laser light is
split from the main beam and measured. A feedback regulator cir-
cuit compares the output intensity to a value set by the operator, and
maintains a constant intensity by varying the current in response to
the measured error. See Figure 14 for a diagram of the setup. When
operated at the maximal current a drift can occur as the laser will not
be able to compensate for changes in the optics.

4.2.2 Powering up the laser

Powering up the laser requires a number of steps to be taken:

• Cooling water has to be switched on, the laser will not power up unless
a steady stream of water at a minimum rate of 7.6 l/min at a pressure of
1.7 atmospheres. If the laser is already in operation it will automatically
shut down to prevent damage from overheating.

• The main power switch is switched on, this should light the “line” and
“fuse” indicators.

• Key switch should be switch on, this should light the “INTLK” indi-
cator, assuming that all covers are closed, water flow and temperature
are adequate, and regulator temperature are within bounds. Should
any of these items not pass the test their respective indicator will not
light.

• The method of power control is chosen, this can be either current or
light control

39

René C. Castberg June 23, 2008

• The power on button is pressed, this will cause the power supply to
activate and will start warming the cathode in the laser, this will also
light the laser radiation emission indicator.

• Once the cathode has obtained operating temperature (this takes ap-
proximately 30 seconds) a ready indicator should light.

• At this point the laser is ready to lase and will do so once the laser
start button is pressed.

• The power control should then be adjusted using the respective dial.

4.2.3 Laser beam stability

In order to test the stability of the laser a series of output intensity measure-
ments were made. The measurements were made using a Thorlabs PM100
with a 50 mW (S120A) laser power sensor. The sensor contains correction
factors which are internally applied in the PM100 to deliver a calibrated re-
sult to the display and via a serial connection. All stability measurements
were made after the beam splitter and before the beam expander. The laser
was set to a power of approximately 350mW which was reduced to 28mW
using the half wave plate and beam splitter in order to remain below the
50mW limitation of the laser power meter.

Short term intensity stability Current and light control both aim
to provide a stable beam with minimal fluctuations, to verify this a series of
measurements over a 3 minute period were made, this was short enough so
that no significant amount of heating would be measured in the power sensor
but should provide a good representation of the power fluctuations. Figure 15
shows that the light control is better able to correct the plasma-tube current
so that a stable beam is observed. Light control had a peak-to-peak stability

Power Supply Unit
Photocell

Plasma Tube

Beam splitter

Figure 14: Laser internal diagram for light control

40

René C. Castberg June 23, 2008

of less than 0.05 mW, while the current control had a peak-to-peak stability
of approximately 0.15 mW.

Long term intensity Stability In order to characterise the long term
stability of the laser a set of power measurements were made over a period
of a several hours. The heating of the sensor due to the laser meant that
we had a continual drift during initial measurements. To overcome this a
programmable beam blocker was set up to allow the beam to pass for ten
seconds for every minute. This was done using a microchip PIC12F629 micro
controller which was programmed to control a hobby servo motor using pulse
width modulation. The micro controller sent a full left pulse for 10 seconds
and then a full right pulse for the next 50 seconds, allowing the beam to
pass for ten seconds in every minute. For full details on the controller see
appendix A.1. The setup is shown in Figure 16.

Figure 17 shows the measured power as a function of time for light and
current control. Both plots clearly show that the laser requires some time to
warm up and stabilise. The manual recommends waiting at least 30 minutes
when using current control, but from the figure it is clear that it might be
advisable to wait at least 1 hour in order to avoid the rapid change in intensity
seen in both modes. Light control does not have as large fluctuations but
takes longer to stabilise, requiring close to two hours before it levels off. After
one hour the change in intensity varied only by 0.25 mW for light control,
while it is just over 0.5 mW for current control in the following 4 hours.

Beam stability In general the beam is sufficiently stable so as not
to effect the measurements by any substantial amount, this is especially
true because the quadrant photo diode measures variations in the spacial
power and should not be effected as much by the temporal fluctuations.
Additionally any fluctuations seen in the X and Y channels are normalised
by dividing by the total intensity Z.

4.2.4 Laser power and noise

During attempts at measuring movement of a particle in the trap it was
noticed that there was a slight bump in the positional power spectrum, the
source was identified as coming from the laser, furthermore it was noted
that the amount of noise was dependent on the operating power of the laser
and independent of the power in the trap. In order to verify this a series
of measurements were made by varying the laser power and keeping the
trapping beam at constant intensity (by using the half wave plate and beam
splitter). A constant power of approximately 21.3 mW was kept throughout

41

René C. Castberg June 23, 2008

0 10 20 30 40 50 60 70 80
33.75

33.8

33.85

33.9

33.95

Light Control

Time (s)

Po
w

er
 (
m

W
)

0 10 20 30 40 50 60 70 80
33.5

33.55

33.6

33.65

33.7

Current Control

Time (s)

Po
w

er
 (
m

W
)

Figure 15: Measured laser intensity for current and light Control modes, plotted
on same scale with a reduced time period for clarity

Figure 16: Setup used to block laser beam in order to avoid heating the laser power
sensor. The servo motor rotates a disc up to block the laser beam at
pre-programmed intervals

42

René C. Castberg June 23, 2008

0 50 100 150 200 250 300
28

28.25

28.5

28.75

29

L
as

er
 P

ow
er

 (
m

W
)
fo

r
L
ig

ht
 C

on
tr
ol Light Controled (300mW)

Current Controled (300mW)

0 50 100 150 200 250 300
28

28.25

28.5

28.75

29

L
as

er
 P

ow
er

 (
m

W
)
fo

r
L
ig

ht
 C

on
tr
ol Light Controled (300mW)

Current Controled (300mW)

0 50 100 150 200 250 300
28

28.25

28.5

28.75

29

L
as

er
 P

ow
er

 (
m

W
)
fo

r
L
ig

ht
 C

on
tr
ol

0 50 100 150 200 250 300
31

31.5

32

32.5

33

33.5

L
as

er
 P

ow
er

 (
m

W
)
fo

r
C

ur
re

nt
 C

on
tr
ol

Time (minutes)

Laswer power vs Time
Light Controled (300mW)
Current Controled (300mW)

Figure 17: Measured laser power plotted against time for light and current control

the experiment with the laser intensity varying from 28 mW to 1 W, the
results of which can be seen in 18. From these results it is clear that if
possible a power of around 200mW should be chosen to have as low a noise
floor as possible.

4.3 Optics

The optical path between the laser and the microscope are described in Fig-
ure 19.

• Halfwave Plate The Laser light first passes through the half wave
plate (Thorlabs WPH05M-514), this allows the rotation of the polari-
sation of the Laser light as the light emitted is vertically polarised.

• Beam splitter Together with the half wave plate, the polarising beam
splitter (Thorlabs GL10-A) allows the power of the beam to be varied.
Any light which is polarised parallel to the prism will pass through while
the rest is reflected vertically, eventually hitting the beam stopper.
It should be noted that the polarisation should be selected so as to
maximise reflection in the dichroic mirror in the microscope, in our
case vertically polarised.

• Beam expander The beam expander is a Linos 7x expander. Its main

43

René C. Castberg June 23, 2008

10
2

10
3

10
4

10
5

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Frequency (Hz)

S
pe

ct
ra

l P
ow

er
 (

V2)

Power spectral density of trapped 1.86µm paticle
Trapping power ~21.5mW

1 W
500 mW
300 mW
200 mW
51 mW

Figure 18: Power spectrum for the laser beam at selected intensities (for clarity)

purpose is to enlarge the cross-section of the laser beam (about 1.3 mm)
to overfill the back aperture of the microscope (about 7 mm) such that
we maximise the light gradient in the axial direction of the beam for
maximal trapping. This is done so as to obtain the largest convergence
angle (φ) possible, tanφ = rmax /l, where rmax is the rear aperture
of the lens and l is the distance from the lens to the focus, for a more
detailed overview see[3]. It is important to get the correct size as when
the diameter of the incoming beam is approximately the same as the
objective results in the strongest trap. Should the beam overfill the
objective the trap beam will have a short trapping depth and because
all the light is not transmitted the trapping intensity will be lower.

• Mirrors These mirrors (Thorlabs RS99/M) are placed in a periscope
setup to allow steering of the beam and allow the beam to enter the
microscope through the epi-fluorescence port at the correct height.

• Telescope Lenses The first of these two lenses (Thorlabs LA1509–9,
100mm focal length) is mounted on a stage, this allows an accurate
adjustment of the trap position within the sample cell. Together with
the second lens they can accurately steer the beam so as to get a parallel
beam hitting the microscope objective.

44

René C. Castberg June 23, 2008

LASER

Halfwave
plate

Beam
Splitter

Beamstopper

7x Beam
expander

M
irr

or
 1 Microscope

Telescope
lenses

M
irr

or
 2

Le
ns

 1

Le
ns

 2

Figure 19: Optical path between Laser and microscope

4.3.1 Optical Losses

To characterise the optical losses, measurements were made by placing the
PM100 laser power meter between each stage in the optics. The measure-
ments have been presented in Figure 20. The results indicate that there is a
loss of approximately 17% between the beam splitter and to the point where
it enters the objective. This is something that will have to be taken into
account when a desired trapping intensity is required.

4.4 Microscope

The microscope used for the optical tweezers is an inverted compound mi-
croscope, Leica DM IRB. A simplified diagram of the microscope internals
is shown in Figure 21. The parallel laser light entering the microscope hits
a dichroic mirror and is reflected into the objective lens. The focused beam
passes through the slide containing the particles to be trapped and then
through the condenser lens. Once through the condenser lens it will reflect
off a second dichroic mirror, and then hits a quadrant photo diode. Light
from the microscope is used to illuminate the sample and passes through both
the dichroic mirrors and can be observed by either a person or a camera.

• Filter Cube The filter cube (Chroma Technology corp, Z514RDC)
blocks a selective band of light from approximately 500 nm to 520 nm.
This ensures that no laser light can damage the eyes of anybody viewing
the trap.

• Objective The objective is a Leica 63x magnification 1.2 Numerical
Aperture water immersion objective, part number 11506213

• Condenser The condenser is a Leica 1.4 Numerical Aperture oil im-
mersion lens

45

René C. Castberg June 23, 2008

0

5

10

15

20

25

Loss in beam intensity when travelling along optical path

In
ten

sit
y o

f o
rig

ina
l b

ea
m

(m
W

)

0

20

40

60

80

100

Percentage Intensity of original beam (%
)

Beam Splitter Beam Expander Mirrors Lens Lens +
Microscope miror

Figure 20: Loss in intensity as beam travels from the beam splitter (measured as
100%) passing though optics until it reaches the microscope objective

Microscope
Model: Leica DM IRB
Tube length (L): 200mm

Objective
Leica part number: 11506213
Magnification (m): 63x
Numerical Aperture: 1.2

Condenser
Leica part number: 11551004
Numerical Aperture: 1.4

General
Latteral Resolution: 261.5nm[21]
Max Working distance: 220µm[15]
Focal length L/m: 3.17mm
F Number (f#): 0.554
Diffraction limited Spot diameter:6 0.174µm

Table 6: Microscope specifications

46

René C. Castberg June 23, 2008

[21]

4.5 Quadrant Photo diode (QPD)

The QPD is a set of four photo diodes (Figure 22) made from a single silicon
chip, this is to ensure uniform sensitivity and similar performance between
the diodes. The photo diode module (Pacific Silicon, QP50–6SD2) contains
an integrated circuit which performs difference and summation of the 4 diode
voltages. The voltage on the photo diodes are proportional to the incident
intensity and are used to provide three signals Vx,Vy and Vz which are inde-
pendently measured by the DAQ.

Vx = (VA + VB)− (VC + VD) (185)

Vy = (VA + VC)− (VB + VD) (186)

Vz = VA + VB + VC + VD (187)

<->
Gap:42 m

< 7.98mm >

A B

C D

Figure 22: QPD

The QPD will be used to sense the position of the
particles as the fluctuations in the laser beam inten-
sity causes changes in the measured voltage. The
photo diode module has two modes of operation:

• Zero bias mode; no external potential is ap-
plied to the amplifier. In this mode the photo
diode operates in a photovoltaic mode, causing
a current to flow across the device when light
is incident on it.

• Reverse bias mode; by applying a voltage
(Vpad1) of up to +15V to the amplifier via
pad 1. This will apply a bias voltage to the
photo diode of 0.91 times Vpad1 In contrast
to zero bias mode a current is applied to the
photo diode causing a widening in the deple-
tion layer and hence a strengthened photocur-
rrent. This in turn leads to a higher sensitivity
for light and a lower capacitance improving the

response time. Unfortunately this comes at the cost of more noise com-
pared to zero bias mode.

In our setup the QPD will be used with a reverse bias of ±0V . The technical
details of the photo diode are giving in Table 7[22]

6The spot diameter is given by 1.22f# λ
2

47

René C. Castberg June 23, 2008

To QPD

Camera

Microscope light

Condenser

Objective
Dichroic Mirror

Dichroic Mirror

Sample Slide

From Laser
+ optics

Aperture diaphragm

To eyepeice via
series of lens

Series of lenses to
focus for image for
camera

514nm
 Filter

Luminous field
diaphragm

Figure 21: Microscope internals

48

René C. Castberg June 23, 2008

Power Supply ±4.5V to± 18V
Maximum slew rate 10V/µS

Theoretical noise 15nV/
√
Hz

Bandwidth 257kHz

Table 7: Specifications for QPD

4.6 Data Acquisition Card

A National Instruments PCI-6120 DAQ card is used to capture data for these
experiments. The technical specifications can be seen in Table 8. This DAQ
was set up so that only the 3 channels from the QPD are used as inputs
while the remaining channels have been terminated to ensure that there is
no interference. When a second device (laser power meter) was connected
we saw a shift in the signals, indicating that the signals were not properly
isolated. Labview is used to acquire the data from the card allowing complete
control of the settings for data capture.

4.7 Optical Alignment

The alignment of the optical tweezer should be done in a number of stages,
stating with course alignment and moving to progressively finer alignment[8]:

4.7.1 Course alignment

1. Table The optical tweezer is mounted on a passive vibration isolation
table (Melles Griot 070T1063). It is important that the table is flat

Number of analog input channels 4
Input resolution 16 bits
Maximum sampling rate 1 MS/s
Voltage Input range ±0.2V to ±42V
Range sensitivity 6.1µV to 20.5mV
Range Accuracy 344µV to 87.47mV
Anti Aliasing Filter Frequency 5 pole Bessel at 100kHz
Sample Buffer 64MS

Table 8: Technical parameters for DAQ[19]

49

René C. Castberg June 23, 2008

LASER

Halfwave
plate

Beam
Splitter

Beamstopper

7x Beam
expander Mirrors Microscope

Telescope lenses

<--2f-->

Figure 23: Optics that are adjusted during alignment

and level. This is done to make sure the beam is perpendicular to the
optics and a horizontal surface for the microscope. In our case this
required adjusting the air pressure of the feet, this is done by checking
the surface against a highly accurate spirit level.

2. Laser mirror As discussed in section 4.2, the wavelength of light is de-
termined by the angle of the laser’s rear mirror. The mirror is adjusted
so as to give the brightest spot, this corresponds to the wavelength
(514.5 nm) that we will be working with.

3. Laser Alignment The laser is situated upon 4 feet that allow vertical
adjustment, these are rotated to allow the beam to have a constant
height over the whole length of the table. The laser is powered up at
its lowest intensity setting and a reference point is marked on a screen,
this will serve as a centre point for further alignment.

4. Microscope The microscope is placed in the desired position so that
the beam can be steered into the epi-fluorescence hole. The objective
is removed to make initial alignment easier.

5. Half-wave plate and beam splitter First the half-wave plate is
placed in the beam, and centred in such a way that the beam remains
on the mark. Additionally we try to make sure that the reflected beam
hits the side of the lasers aperture so as not to cause any interference.
The beam splitter is then added in the same way as the half-wave plate.

6. Beam expander The beam expander is placed in the beam path, here
it is important to ensure that the beam enters and exits the centre of
this device. The beam should be as large as possible but still converging
slightly to ensure effective trapping. The projection of the beam is
examined on a screen and ensure that the centre is still on the reference
point and that no aberrations have been introduced.

50

René C. Castberg June 23, 2008

7. Mirror 1 This mirror reflects the beam vertically, and the only align-
ment that need doing is ensuring that it is vertical.

8. Mirror 2 The second mirror is placed above the first and the beam is
directed into the epi-fluorescence port. This mirror together with mir-
ror 1 is adjusted until the beam travels vertically out of the microscope
and passes through the centre of the objective hole.

9. Lens 2 The second lens is placed in the beam path, it is aligned such
that the beam continues to pass though the microscope vertically and
though the centre of the objective hole. It should also be verified that
the beam should come into focus somewhere behind the objective hole.

10. Microscope Objective The objective is re-attached to the micro-
scope and a slide is placed over the lens, the two mirrors are adjusted
so that the beam is centred.

11. Lens 1 The first lens is inserted into the optical path at a distance
(z position) of 2f (2x focal length of the lens) from lens 2 and centred
vertically and horizontally on the beam (x and y position), it is adjusted
such that the beam hits the centre of the back aperture on the objective
lens. Leaving the mirrors untouched the x and y position are adjusted
until the beam emerges vertically and centred from the microscope.

4.7.2 Fine alignment

1. Lens 1 adjustment With the objective and condenser lens in place
the beam emerging from the condenser is observed. This should be a
uniform disc of light, if this is not the case adjust the x and y position
of Lens 1 until it is.

2. Centring The microscope is focused on a glass slide, you should be
able to see a bright spot, indicating the point that the beam reflects
off the glass slide. The x and y position of lens 1 is adjusted so as to
centre the beam on the glass slide. The z position is used to minimise
the diameter of the spot on the slide.

3. Focus The microscope is focused on the lower water/glass interface of
a sample cell containing silica beads, and the x and y position of lens
1 is adjusted such that the beam is centred in the field of view.

4. QPD The dichroic mirror is adjusted so that the beam is reflected
to the centre of the QPD, if the beam is too large or too small a lens

51

René C. Castberg June 23, 2008

should be placed in the path so as to fill the QPD. If the beam is less
than 1 mm in diameter it will show a pronounced effect when on the
borders of each quadrant, something that we wish to avoid.

4.7.3 Walking the beam

Once the optical path has been aligned we need to adjust the beam so that
it is perfectly coaxial with the optical axis of the objective. The microscope
is focused to the lower glass-water interface. On either side of the interface
the beam spot will expand, if this spot isn’t uniform it should be corrected
using a procedure that is called “Walking the beam”. The adjustment is
made using Lens 1 and mirror 2.

Initially the beam is focused slightly above the cover slide, such that a
set of concentric rings are visible. The spot is first moved away from the
centre of field using either the mirror or the lens, and then brought back to
the centre using the lens or the mirror (depending on what was used first)
For example, the lens is adjusted so that the spot is moved to the upper
right, the mirror is then adjusted to bring the spot to the centre of the field
of view. If everything was done in the correct direction the spot should be
more symmetric. If the wrong order was used the adjustments would have
worsened the uniformity of the spot, when this happens adjustment should
be done in the opposite direction. This same procedure is repeated for both
the x and y axis. You should now have a symmetric spot, and can verify
this by moving the particle above and below the water/air interface. You are
now ready to trap a particle.

4.8 Piezo Electric Stage

The microscope stage has been fitted with a piezo electric sample stage and
controller (PI-PS17.3CD and a PI E-710.p3D). Together these devices al-
low for precision control of any samples placed under the microscope. The
controller accepts data from software running on the computer (in our case
Nanocapture) and acts on this data so as to adjust the piezo stage to the
required position. The stage has been fitted with three parallel capacitive
sensors ensuring linearity and allows correction of errors by adjusting each of
the 3 piezo actuators. Nanocapture has a tool to generate simple waveforms,
“generate waveform”, this allows for simple adjustments of both the ampli-
tude and frequency of the stage. “Generate waveform” takes 3 parameters:

Amplitude The distance travelled from the zero point.

Offset Offset from the piezo’s zero to our initial starting point.

52

René C. Castberg June 23, 2008

Frequency Frequency of the movement.

Apply to X, Y or Z Which axis to this movement should be applied to,
in our case this was generally the X.

Once the desired waveform has been entered, pressing “generate” will create
the waveform, choosing “Run Continuously” will move the piezo stage in the
desired motion.

5 Experimental Procedure

Using a trapped particle to investigate materials requires that we know the
properties of the trap, one of the most important properties is the trap stiff-
ness (κ). The trap stiffness is essentially a spring constant, giving a relation-
ship between the displacement and force applied to the system, such that
once we know the trap stiffness it is possible to calculate the forces involved.
In theory this is simple but the Quadrant photo diode (QPD) measures a
voltage in all the spacial dimensions (two horizontal X and Y and vertical Z).
Each of the three voltage signals are linear with position, which for a basic
calibration will not be an issue. If on the other hand we wish to avoid as-
suming the viscosity of water, the calibration method quickly becomes quite
more complex.

5.1 Data capture — “optimising” sampling

When capturing the data, it is important to try and optimise the DAQ
parameters, so that data can be processed easily.

Frequency A frequency which is an integer power of 2 should be chosen,
this ensures that fast Fourier transform method can be used. Although
in practise this results in faster data processing.

Active axes 3 (X, Y, Z)
Travel (µm) 100,100,20
Closed loop Resolution (nm) 1,1,0.1
Open Loop Resolution (nm) 0.3,0.3,0.1
Closed Loop Linearity (%) 0.03
Full-Range repeatability (nm) ±5,±5,±1
Resonant Frequency, 500g load (Hz) 250

Table 9: Technical parameters for P-517.3CD sample stage[23]

53

René C. Castberg June 23, 2008

Measurement time If calibration procedure involves moving the piezo stage
with a sinusoidal motion with frequency fd, we should ensure that
tmsrfd = integer. If this is not done there will be a signal leakage,
resulting in a underestimation of the power at that frequency.

Drive frequency and amplitude This is the frequency that the piezo stage
is driven at when we use a drive frequency for calibration. The drive
frequency and amplitude should be chosen so that they do not excite
any resonance in the system.

Figure 24 shows the effect of time and sampling rate on the peak in a power
spectrum.

5.2 Data Processing

Before any analysis of raw data can be done, it needs to be processed cor-
rectly. During the project a C++ program was made to perform these tasks,
see appendix A.2 for the program code. The following tasks are performed
on the data set:

Data centring The data is read into memory and the X and Y data
is averaged, this will provide us with the baseline for each data set. This
average is then subtracted from the data, centring it around zero. This is
necessary as it is very difficult to align the QPD such that the signal varies
exactly around zero.

Data Normalisation This data is then normalised by dividing by the
Z signal to remove noise from the laser or signal acquisition system.

Windowing As the signal never returns to exactly the same values as
the starting point we need to use a windowing function to prevent signal
leakage when doing a Fast Fourier transform. The windowing function takes
the data and lets it slowly decay to zero at the ends of the data set. There
are many different functions to choose from, each with there own character-
istics. A couple of different windows were chosen and the resulting viscosity
was compared to tabulated values. The best windows were the triangular,
rectangular and Hann[12]. A triangular window resulted in a viscosity value
which was not far off the tabulated value, but resulted in a number of side
lobes. This improved by using a rectangular window, but resulted in a peak
that wasn’t as sharp. Choosing a Hann window gave a sharp peak and max-
imised the value of viscosity and the force constant. A detailed reference on
windowing can be found in a paper by F. J. Harris[12]

54

René C. Castberg June 23, 2008

19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8

10
−7

10
−6

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum

32780Hz
65540Hz
131080Hz
262160Hz
526300Hz

(a) Dependence of peak height on
frequency, with constant sampling
time

19 19.5 20 20.5 21 21.5 22

10
−9

10
−8

10
−7

10
−6

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum

1s at 131080Hz
4s at 131080Hz
20s at 131080Hz

(b) Dependence of peak height on
sampling time, with constant fre-
quency

Figure 24: Dependence of peak height on acquisition parameters, it should be noted
that the height is a function of the sampling time, see section 2.7.4

Converting data to power spectrum A fast Fourier transform is
taken of the normalised data and multiplied by the conjugate of itself. The
resulting power spectrum is then ready for analysis.

By taking the Fourier transform, the resolution and lowest frequency of
the processed data is determined by the length of the data set, more specif-
ically δf = 1/Tmsr where δf is the frequency resolution and Tmsr is the
measurement time. Similarly the lowest frequency is given by flow = 1/Tmsr
This means that a choice has to be made on the sampling rate and length
of the raw data, ideally we would want to make infinitely long measure-
ments and infinitely large sampling rate, thus getting a high resolution in
the raw data and power spectrum. The high sampling rate is necessary in
order to obtain accurate raw data and have a higher Nyquist frequency (see
section 6.1.3). Due to the limitations of computational power and time at
our disposal, most of the measurements were made with a sampling rate of
128kHz for a period of 1–4 seconds.

Binning These experiments often produced large amounts of data, even
after the power spectrum has been made. To make further analysis easier,
logarithmic binning is applied to the power spectrum. This procedure takes
data blocks which get exponentially larger with larger frequency and averages
them to a single data point. This has no effect on the shape or height of the
power spectrum and will only result in data which is easier to work with. It
should be noted, if we are driving the piezo stage to obtain a spike in the
power spectrum the height of the raw spike should be recorded as averaging

55

René C. Castberg June 23, 2008

with the plateau will lower the power by a considerable amount, resulting in
an underestimation of both the force constant and viscosity.

5.3 Cell preparation

For all the experiments discussed in this section, a sample cell needs to be
made to hold the suspension of silica beads in water. The basic design
involved a microscope slide with a small piece of tape with a well cut out of
it and covered with a cover slip (Figure 25).

Once the well has been cut in the tape and mounted on the microscope
slide, the suspension of silica beads in water is placed in the well and covered
with the cover slip. It is important to ensure that there is no trapped air in
the slide as this could allow the fluid to move around. This is achieved by
lowering the cover slip onto a sample cell which is slightly overfilled, thereby
expelling the excess and completely filling the cell. An alternative method
is to create a cell with two strips of tape, one on either side and sealing the
cell with vacuum grease.

56

René C. Castberg June 23, 2008

Top View

Side View

2
5
m

m

75mm

0.14mm
0.26mm

(a) Schematic view (b) Photo of sample cell

Figure 25: Sample cell used for trapping of particles. Yellow represents the mi-
croscope slide, purple represents the tape and blue represents the cover
slip. For clarity the top view shows the cell without the cover slip.

57

René C. Castberg June 23, 2008

5.4 Verifying program code

5.4.1 Frequency accuracy

To verify the program code (section A.2) a signal generator was attached to
the DAQ inputs and a 20Hz sine signal was measured (Figure 26). Addition-
ally a couple of waveforms were generated using Matlab (Figures 27 and 28).
Comparing the code to the built-in functions in Matlab and Labview, re-
sulting in almost identical power spectrum with only a small shift in height.
This is probably due to the different FFT implementations.

5.4.2 Amplitude accuracy

There was some concern on whether the power estimate for a Fourier trans-
form is accurate. Starting with a Gaussian function y(t) = e−λt

2
, taking the

Fourier transform results in another Gaussian with the form:

y(f) =

√
π

λ
e−

(πf)2

λ . (188)

Therefore if we generate a data set for the initial Gaussian function and take a
fast Fourier transform on this data set we should obtain the expression in Eq.
(188). A data set was made (Figure 29) using the code listed in section A.3
for a sampling rate of 2048Hz and for 400 seconds. From Figure 29(b) it is
clear that the prefactor is not correct. This can easily be explained by noting
that the relation between the discrete Fourier transform and the continuous
transform sampled at a rate FS is given by Eq. (189).

H(fn) ≈ Hn

FS
.[24] (189)

As the raw data set only represents half of a Gaussian function, we will need
to fit the function shown in Eq. (190)

y(f) =
1

2

√
π

λ
e−x

2/b (190)

Figure 30 shows that the amplitude information has been conserved through
the Fourier transform. This implies that the FFT algorithm uses same defini-
tion (Eq. (23)) as the form used to derive the power spectral density. Similar
the second fitting parameter b is scaled due to the sampling of data, so far
i have been unable to find a reference for this scaling but by changing the
sampling rate and time i came to Eq. (191)

b =
t2λ

F 2
s π

2
. (191)

58

René C. Castberg June 23, 2008

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

X: 19.95
Y: 0.00619

20Hz signal from function generator

Frequency (Hz)

P
ow

er
 (

V
2 /H

z) X: 60
Y: 8.299e−09

X: 39.5
Y: 1.203e−10

Figure 26: Plot showing a 20Hz sine wave acquired from a signal generator through
the DAQ. The signal is clearly visible at 19.95Hz along with higher har-
monics and (39.5 and 60Hz) and some other undefined noise (e.g. 50Hz
mains). The deviation from 20Hz is most likely due to the accuracy of
the signal generator.

59

René C. Castberg June 23, 2008

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−40

10
−30

10
−20

10
−10

10
0

X: 1999
Y: 0.03974

P
o
w
e
r

(
V

2
/
H
z
)

Fr equency (Hz)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−1

−0.5

0

0.5

1

V
o
l
t
a
g
e

(
V
)

Ti me (s)
10

0
10

1
10

2
10

3
10

4

10
−30

10
−20

10
−10

10
0

X: 20
Y: 1.458

Fr equency (Hz)
P
o
w
e
r

(
V

2
/
H
z
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−3

−1

−0.5

0

0.5

1

Ti me (s)

V
o
l
t
a
g
e

(
V
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
X: 0.01213
Y: 1.997

X: 0.01236
Y: 0.02033

X: 0.03789
Y: −1.991

Ti me (s)

V
o
l
t
a
g
e

(
V
)

10
−1

10
0

10
1

10
2

10
3

10
4

10
−30

10
−20

10
−10

10
0

X: 20
Y: 1.458

X: 1999
Y: 0.03974

P
o
w
e
r

(
V

2
/
H
z
)

Fr equency (Hz)

20Hz

2kHz

20Hz +2kHz

Figure 27: Plots showing Matlab generated waveforms which were converted to a
power spectrum. Figures represent sine wave at 20Hz, Sine Wave at
2kHz and a Sine wave at 20Hz with a 2kHz added on top. We can
clearly see that the power spectrum is accurate, picking out the correct
frequencies.

60

René C. Castberg June 23, 2008

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−1.5

−1

−0.5

0

0.5

1

1.5

V
o
l
t
a
g
e

(
V
)

Ti me (s)
10

−1
10

0
10

1
10

2
10

3
10

4
10

−10

10
−5

10
0

X: 20
Y: 1.459

Fr equency (Hz)

P
o
w
e
r

(
V

2
/
H
z
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−2

−1

0

1

2

V
o
l
t
a
g
e

(
V
)

Ti me (s)
10

0
10

1
10

2
10

3
10

4

10
−5

10
0

X: 20
Y: 1.459

Fr equency (Hz)
P
o
w
e
r

(
V

2
/
H
z
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−3

−2

−1

0

1

2

3

V
o
l
t
a
g
e

(
V
)

Ti me (s)
10

0
10

1
10

2
10

3
10

4

10
−5

10
0

X: 20
Y: 1.459

Fr equency (Hz)

P
o
w
e
r

(
V

2
/
H
z
)

Figure 28: Plots showing Matlab generated waveforms which were converted to a
power spectrum. Figures represent, Sine waves at 20Hz with a vary-
ing amount of Gaussian distributed white noise applied to them. The
amount of noise doubles between each of the plots. The signal at 20Hz
is still clearly visible and retains the same power as in Figure 27

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Fourier Transform of Gaussian

Time (s)

V
ol

ta
ge

 (
V

)

(a) Raw data set

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500

1000

1500

2000

2500

Fourier Transform of Gaussian

Frequency (Hz)

M
ag

ni
tu

de
 (

V
/H

z)

(b) Fast Fourier transformed data
set

Figure 29: Raw and Fast Fourier transformed Gaussian signal. Parameters, λ =
0.5, Sampling frequency FS = 2048Hz and Sampling time t = 400s.

61

René C. Castberg June 23, 2008

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

Frequency (Hz)

M
ag

ni
tu

de
 (

V
/H

z)

Fourier Transform of Gaussian

data1

fit (data1)

y(x) = sqrt((π / a)) exp(− x^2 / b)
a = 0.49987
b = 0.0019334
R = 1 (lin)

Figure 30: Fast Fourier transform of Gaussian function, normalised according to
Eq. (189)

Initial Gaussian parameters, t = 400, Fs = 2048 and λ = 0.5. Fitting a
Gaussian with Eq. (190) gives, λ = 0.5 and b = 0.0194.

62

René C. Castberg June 23, 2008

Using this to check the parameter in Figure 30, gives a value for λ of 0.5,
which is consistent with the input value.

The final form of the fitting function becomes:

y(f) =
1

2

√
π

λ
e
−F2

s π
2x2

t2λ (192)

From these results we can verify that the power spectral density generated
using the code listed in appendix A.2 and A.3 accurately converts the raw
data. This test also verified that the FFT code transforms the raw data using
the same Fourier transform (Eq. (23) used to calculate the many equations
in this project.

5.5 Power spectrum analysis

One of the most widely used methods of calibrating optical tweezers is done
by using the power spectrum that arises due to the Brownian motion of the
particle in the trap. The theory for this is given in section 2.4. A typical
power spectrum will have a Lorentzian shape, and therefore has a plateau at
lower frequencies due to the confinement of the particle. At higher frequencies
the power spectrum will have a slope of −2, which is a characteristic of free
diffusion as the particle will not “feel” the trap. The split between the two
regions in the power spectra will occur at a characteristic frequency called
the corner frequency. It is only possible to calibrate the trap from the power
spectrum resulting from thermal motion if the bead is of known size and the
surrounding fluid viscosity is known.

5.6 Power spectrum for a trapped 1.54µm particle

The experimental data presented here was taken from two 4 second measure-
ments, which were independently Fourier transformed and averaged. The fit
was obtained using Matlab’s least squares fitting algorithm.

Figure 31 shows a fit of Eq. (193) to the data.

S(f) =
D

(2π2)(f 2
c + f 2)

(193)

By checking the literature[14, 11] the force constant found (3.82·10−2

pN/nm) with this data set is of comparable size and a plausible result.

63

René C. Castberg June 23, 2008

10
0

10
1

10
2

10
3

10
4

10
5

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Frequency (Hz)

Po
w

er
 (

V
2 /H

z)

Power spectrum for 1.54µ m bead

Figure 31: Lorentzian fit (red) to an experimentally obtained data set (blue)

Measured and tabulated data

Temperature 21.57◦Ċ
Sampling Frequency 131080 Hz
Total Sampling Time 8s
Laser power 100.0mW
Particle Size 1.54µm
Tabulated water viscosity 9.699 Pa s

Calculated Data
Corner Frequency 431.82Hz
Diffusion constant in volts (DV) 1.74·10−2 V2/s
Power at f=0 (S0) 9.45 · 10−9 V2/Hz
Force constant (κ) 3.82 · 10−2 pN/nm
Voltage Conversion (β) 1.57·10−6 m/V
Diffusion constant (D) 2.88·10−13 m2/s

Table 10: Experimental data and Fit parameters for trapped particle without an
external drive.

64

René C. Castberg June 23, 2008

5.7 Using sinusoidal stage movement for calibration

Ideally we wanted to be able to calibrate the optical tweezer without knowing
the viscosity of the fluid that the bead was trapped in. One of the quickest
experimental methods of doing this is outlined in Section 2.7.1. This method
involves moving the glass slide in a sinusoidal motion and recording the
spectra. Once the spectra has been obtained it is fit with the standard
equation for the power spectrum, Eq. (30). We can then use Eq. (124) to
determine the experimental power from the height of the peak at our driving
frequency (fd). Using Eq. (122) the Voltage to distance conversion factor (β)
is found. From the standard fit as outlined in section 5.5 we have a value
for the corner frequency and diffusion coefficient. Then it is just a matter
of plugging the values into Eq. (127), Eq. (130) and Eq. (133) to find the
values for the force constant (κ), the drag coefficient (γ) and the viscosity of
surrounding fluid (η).

The results obtained using this method varied from just a couple of per-
cent to close to 100% for the viscosity of water. The data set shown above
is one of the better data sets, with an almost perfect (96%) result. Some of
the more typical data sets are in section 5.9.

65

René C. Castberg June 23, 2008

10
0

10
1

10
2

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum

Figure 32: Power spectrum for sinusoidal stage movement of a 1.54µm particle
trapped in water. The peak is at 20Hz, the drive frequency for this
experiment

Tabulated data
Particle Size 1.54µm
Temperature 294.5K
Viscosity of Water 9.70·10−4 Pa s

Experimental data
Total Sampling time 20s
Drive frequency 20Hz
Drive amplitude 208nm
Peak Height 7.24·10−6 V 2/Hz
Corner frequency (fc) 564 Hz
Diffusion Coefficient (D) 3.08·10−13 m2/s
Power at f=0 (S0) 3.76·10−8 V 2/Hz
Voltage conversion factor (β) 1.60·10−6 m/V
Force constant (κ) 4.82·10−2 pN/nm
Viscosity (η) (% of tabulated) 9.39·10−4 Pa s (96.8%)

Table 11: Table showing experimental data and results for sinusoidal stage move-
ment, from an average of 20 one second data sets.

66

René C. Castberg June 23, 2008

5.8 Measuring trap parameters by measuring particle
position in a flow

As the sinusoidal stage movement did not give reliable results, an attempt
was made by moving the stage at a steady velocity while keeping the particle
fixed. The voltage for the particle deviation from the centre of the cell was
measured.

5.8.1 Theory for calculating experimental parameters

Using the Einstein relation, relating the mobility to the diffusion constant,
the definition for the corner frequency, Hookes law and stokes drag we can
find a set of three equations and solve for each of the three unknowns.

Finding an expression for distance voltage conversion factor
Using Hookes law,

F = −κx, (194)

where κ is the force constant and x is the displacement. And an equation for
stokes drag

F = −γu = 6πηru, (195)

where γ is the drag coefficient, u is the velocity, η the viscosity and r is the
radius of the particle. Combining these equations and expressing them in
terms of γ,

F = −κx = −γu (196)

γ =
κx

u
(197)

γ =
κβV

u
. (198)

Where in Eq. (198) we used an expression for the position (x) in terms of
voltage (V). x = βV . We also have an expression for the corner frequency,

fc =
κ

2πγ
. (199)

Substituting in the expression for the drag coefficient gives:

fc =
κ

2π

u

κβV
. (200)

Rearranging to get an expression

V = u
1

fc2πβ
. (201)

67

René C. Castberg June 23, 2008

Where the voltage, velocity and corner frequency are terms that we are able
to find and can obtain a value for β.

Finding the viscosity The Einstein relation is given by

D = β2DV =
kBT

γ
. (202)

Where D is the diffusion constant, β is the conversion factor found in the
previous section, kBT the Boltzmann constant time. We have already found
a value for the diffusion constant (in volts, DV) and from the previous section
have a value for the conversion factor, and can therefore obtain an expression
for the viscosity.

D = β2DV =
kBT

6πηr
(203)

η =
kBT

6πrβ2DV

(204)

Finding the force constant As we now have an expression for the
conversion factor (β) and the viscosity we can also determine the force con-
stant (κ).

fc =
κ

2πγ
(205)

κ =
2πγ

fc
(206)

5.8.2 Experimental method

Obtaining the data is done in two stages, the first stage involves capturing
a regular power spectrum as was done in section 5.5 while the second stage
involves moving the piezo stage with particular velocities and noting the po-
sition (voltage).This then provides all the information necessary to calibrate
the tweezers.

Data set for standard calibration Using a 1.54µm trapped in a
100mW laser beam, a power spectrum was recorded. This was analysed in
the usual way and results presented in Figure 33 and Table 12.

68

René C. Castberg June 23, 2008

10
0

10
1

10
2

10
3

10
4

10
5

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum

Figure 33: Power spectrum for Flow calibration of a 1.54µm particle trapped by a
100mW laser beam.

Corner frequency (fc) 98.4Hz
Diffusion coefficient (DV) 6.17·10−2 V 2/Hz
Temperature (K) 296.6K
Measurement time 5s
Sampling rate 128kHz

Table 12: Experimental results for Lorentzian fit.

Data set for flow The same particle is then used to measure the po-
sition in volts with different flow rate. The piezo stage is set up to make one
triangle wave moving 50µm each way. The frequencies were adjusted such
that the water surrounding each particle will have increasingly large veloci-
ties relative to the particle. For each frequency we are presented with a plot
similar to that shown in Figure 34.

Measurements were made for a number of different frequencies, the aver-
age shift for each was calculated and presented in Table 13

Figures 35 and 36 show a plot of the voltage for different stage velocities.
From these figures there is clearly a problem with the last data set with a
velocity of 1.125m/s as both of these are not on the linear curve. This is
believed to be because the particle is not trapped properly as the flow of the
water is almost enough to dislodge it.

69

René C. Castberg June 23, 2008

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Raw data for particle posistion

Time (s)

V
ol

ta
ge

 (
V

)

Figure 34: Raw data of a trapped 1.54µm particle with water flowing past.

Analysis of data Using the equations listed in section 5.8.1 we find
the results listed in Table 14. Unfortunately the conversion factor seems
to be an order of magnitude larger than what it should be, this has severe
repercussions for the calculation of the remaining results. Due to lack of time
I was unable to repeat these experiments and they will have to be verified at
a later date.

70

René C. Castberg June 23, 2008

Frequency Velocity Negative position Positive position
(Hz) (m/s) (V) (V)
0.50 5.00·10−5 -0.1340 0.1340
0.75 7.50·10−5 -0.2080 0.2010
1.00 1.00·10−4 -0.2903 0.2710
1.25 1.25·10−4 -0.3490 0.3370
1.50 1.50·10−4 -0.4380 0.4040
2.00 2.00·10−4 -0.5950 0.6120
2.25 2.25·10−4 -0.2400 0.3370

Table 13: Experimental results for different flow rates. The negative displacement
is the displacement of the particle in the backward direction of the piezo
stage and the positive is the displacement in the forward direction. The
total piezo stage amplitude was 50µm thus a total movement of 100µm
for each of the frequencies.

Parameter Negative flow Positive flow Units
Slope of fit -3083.80 3126.6 Vs/m
Conversion factor (β) 5.25·10−7 5.17·10−7 m/V
Conversion factor from PSD

and tabulated values 2.55·10−6 m/V
Viscosity (η) 1.7·10−2 1.7·10−2 Pa s
Tabulated viscosity 9.6·10−4 Pa s
Force constant (κ) 1.57·10−4 1.570·10−4 pN/nm
Diffusion Coefficient (D) 1.7·10−14 1.65·10−14 m2/s

Table 14: Experimental results for flow method. Tabulated value for β were ob-
tained by fitting the Lorentzian and using the tabulated values for water
viscosity

71

René C. Castberg June 23, 2008

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
−4

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1
Displacement voltage vs Velocity

Velocity (m/s)

V
ol

ta
ge

 (
V

)

−3083.8 x + 0.023461

Figure 35: Linear fit to voltage vs position for flow into the negative direction

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
−4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Displacement voltage vs Velocity

Velocity (m/s)

V
ol

ta
ge

 (
V

)

3123.6 x −0.026843

Figure 36: Linear fit to voltage vs position for flow into the positive direction.

72

René C. Castberg June 23, 2008

5.9 Experimental data for sinusoidal stage movement

The following three figures (Figure 37–39) are representative of all the ex-
periments performed using the optical tweezers.

10
0

10
1

10
2

10
3

10
4

10
5

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)
Power spectrum

Figure 37: Data set for a 1.54µm particle, trapped with 20mW laser sampled at
128kHz for 5 seconds. Resulting trap force (κ) is 1.02·10−2pm/nm, and
a viscosity (η) of 5.19·10−4 Pa s (54% of tabulated).

From these results we can clearly see that there is a problem with the
spectra obtained as the viscosity for water was at 50% of the tabulated
values.

73

René C. Castberg June 23, 2008

10
0

10
1

10
2

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum

Figure 38: Data set for a 1.54µm particle, trapped with 100mW laser sampled at
64kHz for 10 seconds. Resulting trap force (κ) is 5.01·10−2pm/nm, and
a viscosity (η) of 5.09·10−4 Pa s (53% of tabulated).

10
0

10
1

10
2

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum

Figure 39: Data set for a 1.54µm particle, trapped with 100mW laser sampled at
64kHz for 10 seconds. Resulting trap force (κ) is 2.18·10−2pm/nm, and
a viscosity (η) of 5.03·10−4 Pa s (52% of tabulated).

74

René C. Castberg June 23, 2008

6 Characterisation of noise

As there seemed to be a large problem with the amount of noise in the power
spectrum an attempt was made to characterise these. The noise varied from
large areas raising the plateau to sharp peaks at well defined frequencies.

6.1 DAQ Card

As all data is measured through the DAQ, initial suspicion was on this instru-
ment. There were a number of possible sources of problems like a voltage
drop at certain frequencies somewhere between the QPD and DAQ, noise
from the surroundings or the DAQ card itself. To investigate this, a number
of experiments were performed.

6.1.1 Using a different DAQ

To rule out problems with the DAQ and eliminate some of the ground sources,
a National instruments “DAQCard-6024E” was connected to a battery oper-
ated laptop. This shortened the length of cable that the signal has to travel
through, from 6m to approximately 1m. As the laptop could be placed right
next to the QPD, a minimum length of cable was required to make measure-
ments. A power spectrum for a particle was made using both desktop and
laptop DAQs, the resulting power spectrum is shown in Figure 40 It is clear

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

X: 3.101e+04
Y: 4.84e−12

Power spectrum

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

X: 1.554e+04
Y: 2.53e−11

Portable Computer
Desktop

Figure 40: Laptop and Desktop computer captured data of a 1.54µm bead.

from these plots that there is no significant difference between the two cards

75

René C. Castberg June 23, 2008

with the exception of the final frequency which is somewhat lower due to
lower sampling rate. The desktop shows a small amount of additional noise
at low frequencies, but this is not relevant as at frequencies of around 1 Hz
surrounding conditions play an important role are hard to control.

6.1.2 DAQ linearity

To ensure that the DAQ measured voltages linearly a signal generator was
connected to the DAQ inputs and a triangular wave was measured for ap-
proximately 1.6 V peak to peak and 0.08V peak to peak, see Figure 41. This

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Raw triangular waveform from signal generator

Time (s)

V
ol

ta
ge

 (
V

)

Figure 41: Triangle wave from signal generator, 1.6V peak to peak

resulted in a triangle waveform with perfectly straight lines, and concluded
that the DAQ does in fact make linear measurements.

6.1.3 Aliasing due to sampling frequency and filters

In all measurements where data is sampled we are limited by the Nyquist
frequency, in order to measure a frequency accurately we should have a sam-
pling rate twice as high. For the power spectral density analysis this simply
implies that we need to choose a frequency which is large enough to be able to
accurately fit the Lorentzian. Unfortunately close to the Nyquist frequency
the data will level off slightly. The reason for this is that a high frequency
signal (f) can create a false image at ffalse = nFsample − f , where n is an
integer, Fsample is the sampling frequency and f is the new lower false fre-
quency. This effect is similar to seeing a wheel go backwards in old movies.

76

René C. Castberg June 23, 2008

To completely avoid aliasing the sampling rate would have to be at least 10
times higher than the frequency you wish to measure.[20]

10
3

10
4

10
5

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

Power spectrum

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

32780Hz
65540Hz
131080Hz
262160Hz
526300Hz

Figure 42: Lower part of a power spectrum for a 1.54µm bead trapped by a 100mW
laser.

These two effects can be clearly seen in Figure 42. For the higher fre-
quencies we can clearly see the upward curve deviating from the ideal curve
(black dashed lines). In addition we can see the 100kHz filter in the DAQ
kick in by observing the sharp drop in the 256kHz and 512kHz curves. Nei-
ther the sampling frequency or aliasing had any effect on the outcome of
measurements for the force constant and viscosity.

6.1.4 Frequency matching with piezo stage

As the internal clocks on the piezo stage and computer ran at different speeds,
there was a chance that the leakage in power was due to a mismatch between
the sampling frequency and stage frequency. A number of measurements
were made using different stage frequencies. These data are presented in
Figure 43.

The largest power registered was at 16.0256Hz which is the closes to the
drive frequency of 16Hz (where the sampling rate is an integer multiple of
the drive frequency). Taking the three neighbouring frequencies on each
curve, and summing them up can give an estimate for the total power under
the assumption that we have a leakage in the power spectrum. Summing
the peak at 16.1290Hz and comparing to the peak at 16.0256Hz indicates a
slight increase in power (3.01·10−6 V 2/Hz versus 2.63·10−6 V 2/Hz). Further

77

René C. Castberg June 23, 2008

15.6 15.8 16 16.2 16.4 16.6

10
−8

10
−7

10
−6

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum

15.9236
15.9744
16.0256
16.0772
16.1290
16.1812

Figure 43: Blow-up of spike in power spectra for a 1.54µm bead trapped by a
100mW laser. The drive frequency for the piezo stage was 16Hz
(marked with red dotted line) and sampling frequency was at 128kHz

investigation at 20Hz drive frequency showed that this was not consistent
throughout the remaining data sets.

6.2 Quadrant photo diode

6.2.1 QPD Linearity

In order to access the linearity of the QPD a silica bead was fixed onto the
surface of the cover slip. This was done by using an excess of salt in the sus-
pension. The laser power was lowered and the piezo stage was programmed
to make a sinusoidal wave.

Figure 44 shows the recorded sine wave, although it does not return to
the same voltage after each cycle. This could be due to the fact that the
particle is not properly fixed and is able to move at the turning point.

6.2.2 Power supply

As the QPD seemed to behave correctly with respect to linearity, measure-
ments were made using a battery as the supply voltage instead of the standard
mains power supply.

Both signals in Figure 45 are relatively similar in shape, the mains signal
has a slightly higher noise floor, as would be expected. There was a very
slight improvement on the low frequency but overall no significant difference.
Figure 46 shows a similar experiment where “no signal” and a LED light was
used to create a 16Hz. This shows us that the noise from the dark QPD only
has a real effect at the lower and upper frequencies that were measured. It
should be noted that light coming from the laser is going to be more intense
and should show a larger difference in magnitude.

78

René C. Castberg June 23, 2008

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (s)

V
ol

ta
ge

 (
V

)

Raw waveform of fixed bead

data1
fit (data1)

Figure 44: 1.54µm bead fixed to cover slip, laser of 2.5mW shining through the
particle. The particle was moved a distance of 408nm peak to peak at
16Hz.

6.2.3 Signal level

Through experience from previous experiments with National Instruments
DAQ cards there was some concern on the ability of the cards to measure
low voltages. In order to verify if this was the case a signal amplifier was
acquired and placed between the QPD and the DAQ. The power of the peaks
in Figure 47 remain unchanged although the corner frequency has increased
resulting in a better estimate for the force constant and viscosity. Unfor-
tunately this was not a repeatable experiment and the resulting viscosity’s
varied from 95% to 50% of the tabulated values.

79

René C. Castberg June 23, 2008

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

10
5

Power spectrum

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Mains powered
Battery powered

Figure 45: Power spectrum for dark signal on covered QPD.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

X: 15.95
Y: 0.007071

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum
Dark
16Hz flashing light

Figure 46: Power spectrum for a dark signal and a 16Hz flashing LED

80

René C. Castberg June 23, 2008

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Power spectrum

Unamplified

50x Amplified

704 Hz

489 Hz

Figure 47: Power spectrum for two different trapped 1.54µm beads, trapped using
a 100mW laser. The two frequencies indicate the corner frequency fc

81

René C. Castberg June 23, 2008

6.3 Laser problems

6.3.1 Signal variations

The Z channel on the QPD not only measures variations in height of the
particle but also measures any fluctuations in the laser beam intensity. In
order to be able to distinguish between the two, a photo diode was purchased
and attached to the fourth channel on the DAQ. A glass cover slip was used
to reflect a very small percentage of the beam onto the diode. This signal
was recorded in parallel for the X, Y and Z axis’s. Dividing the data sets for
X, Y and Z by this new signal would give a normalised signal which should
be less dependent on laser intensity fluctuations. Figure 48 shows the power

10
0

10
1

10
2

10
3

10
4

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Power spectrum

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

X data
Normalized X data

Figure 48: A 1.54µm particle trapped using a 100mW beam, with the piezo state
driving a sine wave at 20Hz. The normalised signal is shifted to a
slightly lower power but has an identical shape to the unnormalised

spectrum for a 1.54µ bead trapped by a 100mW laser beam. The plot shows
two signals, the X signal and the signal normalised using the other photo
diode. Both signals have also been normalised using the Z axis of the photo
diode. The difference is very small, amounting only to a couple of percent,
which could easily be due to small variations of other external parameters.

6.3.2 Low frequency noise

As there was a substantial amount of low frequency noise the laser was
swapped out with a red laser we had available. This laser is substantially
weaker, around 20mW, and is just enough power to trap a particle. The

82

René C. Castberg June 23, 2008

noise was reduced by an insignificant amount and didn’t show any marked
improvements in viscosity calculations.

6.4 Problems associated with the sample cell

6.4.1 Changes in salt concentration

In section 3.2 we saw that adding a low concentration of a counter ion like
sodium chloride can result in an improvement in the estimate for viscosity.
It is believed this is due to the sodium ions increasing the shielding with the
result that there are fewer water molecules attached to each bead, effectively
decreasing its radius. A salt concentration similar to section 3.2 was added to
a sample cell and measurements were made and compared with an unsalted
solution. In Figure 49 it is clear that there is no significant difference in

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Power spectrum

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

KCl added
No KCl

Figure 49: Two power spectra of a 1.54µm bead trapped by a 100mW laser driven
using the piezo stage at 20Hz. The spectra are essentially identical with
the exception of low frequency noise, probably due to external sources.

the spectra. Although there is a slight increase in low frequency noise which
doesn’t affect the data fit. The two spectra only differ by a couple of percent,
which is well within the experimental error.

83

René C. Castberg June 23, 2008

6.5 External sources of noise

6.5.1 Vibration

When a particle is trapped it is essentially floating in water, this implies that
any vibrations will be transmitted to the bead, resulting in low frequency
noise. Figure 50 shows an example of this. During the project it quickly

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ow

er
 (

V
2 /H

z)

Frequency (Hz)

Power spectrum

Figure 50: Example of low frequency noise, the power spectrum shows a 1.54µm
bead trapped by a 100mW laser. Measurement time was 900s at 10kHz.
This clearly shows that frequencies lower than 5Hz have no significance
in the measurements as the Lorentzian is usually fit from around 10–
100Hz.

became apparent that measurements would contain a large amount of low
frequency (around 10Hz and less) noise when vehicles drove outside the lab.
To gauge the effect of this a number of experiments were performed.

Figures 51 and 52 show the effect of vibrations in the building and from
sources on the optical vibration damping table.

84

René C. Castberg June 23, 2008

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Power spectrum

Frequency (Hz)

P
ow

er
 (

V
2 /H

z)

Trapped bead
Trapped bead + Syring Pump on

Figure 51: A 1.54µm particle trapped using a 100mW laser. The vibrational noise
was generated by a syringe pump that was placed on the table was
switched on.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Power spectrum

P
ow

er
 (

V
2 /H

z)

Frequency (Hz)

Trapped bead
Trapped bead + Walking in room

Figure 52: A 1.54µm particle trapped using a 100mW laser while walking around
the room.

85

René C. Castberg June 23, 2008

7 Flow cell Design

Initial plans for the project consisted of measuring the rheological properties
of sponge like micells. The micelles will orientate themselves depending on
the flow history. If we transport the fluid through a narrow channel the
micells will arrange themselves so that they are parallel with the direction of
flow. This would allow us to study the deformation and flow of the micells
when a pressure was applied using the optical tweezers. For this reason
we required a flow cell where the micelles could be aligned, which should
therefore fulfil the following criteria.

Volume: The volume had to be small enough so that there was not too
much wasted material.

Transparent: As light would be passing through the flow cell, transparency
was essential, preferably with as low absorption as possible.

Thickness: The microscope objective posed a limit on the thickness of the
glass, in our case we are limited to 0.14–0.18mm.

Control: As the micell solution is pushed through the flow cell they align
themselves with the flow, upon stopping the flow, the micells should
ideally come to a complete standstill without reorienting themselves.

7.1 Initial flow cell design

The initial idea (Figure 53) was to use standard microscopy glassware as
this would be clear and thin enough not to cause any problems with the
microscope. The microscope slide and cover slip were glued together using
a layer of double sided tape with a channel cut into it. Two tubes designed
for gas chromatography were used to deliver the micell solution into the flow
cell by way of a nipple.

7.2 Flow cell revisions

This initial design (Figure 54(a) and Figure 56(a)) worked but suffered from
some problems, the nipples would loosen, double sided tape would loosen and
we had some elasticity which caused the fluid to flow even after the syringe
pump was stopped.

A new design (Figure 54(b)) involved exchanging the nipples by widening
the hole and placing the tubing directly into the glass microscope slide. The
surface around the tube was roughened and a dab of silicone glue placed

86

René C. Castberg June 23, 2008

Top View

Side View
75mm

0.38mm

Figure 53: Initial Flow cell design, yellow shows the microscope slide, blue shows
cover slip, red shows tubing, purple shows the tape and finally light blue
shows a plastic nipple. The cover slip is not shown in the top view for
clarity.

around the tubing, see Figure 54(d). This held up very well, even under
relatively high flow rates (thus pressure) without any leaks.

The second issue encountered was that the tape was unable to hold the
glass plates together when a larger flow rate was applied. Initially different
tape was used and this alleviated the problem for a short while, but in the
process of making measurements on the channel size a leak formed. An
attempt was made using microscope slides and Ultraviolet activated glass
glue as in Figure 55 and Figure 56(b) but the glue was unable to completely
seal the channel. For this reason as well as the complexity this design was
dropped.

For the final design a hole was drilled at both ends of a glass slide, and
tubing was placed into each of the holes then sealed off with a drop of silicone
glue. Taking a piece of Parafilm R©M (thickness 127µm) a small channel was
cut into the centre such that when placed onto the glass slide a channel
between the two holes was formed (Figure 56(c)). Heating the flow cell with
a hot plate for a couple of seconds caused the Parafilm to melt and seal the
channel.

7.2.1 Characterisation of Flow cell

In order to determine the volume of the final flow cell two different methods
used. These consisted of using measurements of the channel geometry and
using a syringe pump.

Volume by channel size Measurements of the length and width were
made using a vernier calliper. The height was measured using a micrometre,

87

René C. Castberg June 23, 2008

(a) Initial design with nip-
ple

(b) Silicone glue

(c) Initial design with nip-
ple

(d) Silicone glue

Figure 54: Two different designs for connecting tubing to the flow cell

by comparing the height of a microscope slide and cover slip with and without
a layer of parafilm
The volume measurements aren’t very accurate due to the large variance in

width. For this reason a direct volumetric measurement of the channel was
made.

Volume using syringe pump. Using the syringe pump, water was
run through the setup until it first entered the Flow cell. Once inside the
Flow cell the pump was set to a very slow speed and the volume required to
move the front from one side to the other was measured. This resulted in a

75mm

0.18mm

Figure 55: Side view showing design using ultraviolet activated glue. 3 glass cover
slips (purple) placed on top of each other to create a channel through
the centre together with the microscope slide (yellow).

88

René C. Castberg June 23, 2008

(a) Flow cell using double
sided sticky tape

(b) 3 glass cover slips de-
sign

(c) Final flow cell design

Figure 56: Different Flow cell designs

Length: 44.6mm± 0.2mm
Width: 1.1mm± 0.5mm
Height: 0.130mm± 0.05mm
Volume: 6.378µl ± 1.5µl

Table 15: Flow cell properties by means of length measurements

volume measurement of 7.61µl. The uncertainty in the volume is very low
as a 250µl Hamilton µl syringe was used, hence flow rates of less then 0.01µl
per minute were possible.

7.3 Flow cell use

A clean flow cell is mounted in the microscope in the usual way, with the
syringe pump mounted within reach of the tubing. A syringe filled with
a suspension containing silica beads is placed into the syringe pump and
attached to the tubing. The other tube is placed level with the slide so there
will be little to no flow due to gravity. The syringe pump is programmed
with the syringe specifications and flow rate. Initially the flow rate can be
quite large as we are only filling the tubing and there will be no pressure on
the flow cell. Once inside the cell the flow rate was decreased. After it has
reached the other side the flow can be stopped and should result in almost
no continued flow.

89

René C. Castberg June 23, 2008

8 Discussion of project results

This project initially started out with a goal of measuring the rheological
properties of sponge like micelles, unfortunately due to problems calibrating
the optical tweezers this goal was never achieved. The standard technique
of calibrating optical tweezers using the Lorentzian curve worked quite well,
this is rather unsurprising as we are not given any independent variables
with which we can compare the accuracy of this calibration. This method
would be sufficient in situations where relative measurements are made. For
this reason a great deal of time and effort was spent on trying to get the
sinusoidally driven calibration to work.

One of the greatest problems we encountered with this method was con-
sistency, most of the time the experimental results would lie around 30–50%
with occasional readings at close to 90%. There are a couple of likely roots
of the problem.

• Leakage: As the data is obtained in a finite time with a finite sam-
pling rate there will be some spectral leakage, causing neighbouring fre-
quencies to gain some amplitude and the drive frequency to loose some
power. In all the measurements made the signal was always spread over
3 frequencies. One of the methods used to try and correct this was to
sum all three frequencies, although this could be seen as a incorrect
way of making measurements. If we assume we have an infinitely sharp
peak centred around our drive frequency, any leakage would “leak” to
the neighbouring frequencies. On the other hand if the peak is spread
out over a couple of frequencies, taking each of the neighbouring peaks
might represent another part of the curve, in this case it would not be
correct to sum the peaks in the spectrum.

• Fourier transform: As detailed in section 5.4 and A.3 there may have
been an issue with the coefficients in the Fourier transform. Although
the FFT algorithm used seems to give the correct response when fed
with a Gaussian function. Unfortunately due to limited time I have
been unable to do a similar test by starting with a known data set.

• Low frequency noise: One of the major issues during the project
was that of low frequency noise. The low frequency noise was at times
so large that it was necessary to tweak the fitting parameters for the
Matlab fitting function in order to get a fit. In the final stages of the
project I came across one possible solution, which would be to increase
the laser power. This should create a stronger trap and hopefully pre-
vent the particle moving too much. Additionally increasing the power

90

René C. Castberg June 23, 2008

would increase the plateau, pushing the corner frequency to higher val-
ues. Increasing the power will also lead to the inertial term becoming
less important and should increase the adherence to the equation that
have been derived. The effect of the beam stability should be accessed
to ensure that it does not introduce more noise.

• Unidentified peaks: A large number of the data sets have a large
peak at a frequency that I was unable to identify, it occurred at around
24–26Hz, attempts to find the source of this noise, detailed in sec-
tion 5.9, failed to identify any particular source that could be respon-
sible.

• Alignment: Errors in alignment can lead to a noisy signal and weak
trap. This occurred on one occasion, but a simple realignment solved
this problem.

As final attempt to calibrate the optical tweezer was made using the
flow method (detailed in section 5.8.1). This looked quite promising, with a
constant slope in the velocity-voltage curve. Unfortunately due to an error
that I have been unable to find, the calibration results are at least an order
of magnitude out. Had there been a bit more time, it would have been a
good idea to try this calibration method using the green laser, which was
unavailable at the time this calibration technique was tested.

I did notice that if there were any alignment errors, there would be a
considerable amount of low frequency noise. These alignment errors are
generally a simple fix but take a considerable amount of time to correct.
considerable amount.

One method to eliminate some of the issues encountered in determining β
the conversion factor would be to make voltage-displacement measurements
using a video system. This could give an indication to where the calibration
issues could reside.

Comparing the diffusion coefficients of the dynamic light scattering and
the various calibration methods shows that we are very close to the tabulated
values (Table 16).

It is clear that the flow method is a long way off, but considering the
simplicity of the method and that almost no time was available to use this
method I strongly believe that given more time this would prove to be a
reliable method.

91

René C. Castberg June 23, 2008

Tabulated 3.01·10−13

Dynamic light scattering 2.98·10−13

Basic Lorentzian fit 2.88·10−13

With external drive (best) 3.08·10−13

With external drive (mean) 5.52·10−13

Flow method 1.67·10−13

Table 16: Diffusion coefficients for the various experiments performed in this
project. All values is in m2/s .

92

René C. Castberg June 23, 2008

A Computer Code

All the following code is available either from the original PDF or through
the site listed in the references[10].

A.1 Automatic laser blocker

The code presented below compiles in BoostC and is compatible with ei-
ther the microchip PIC-12F675 or PIC-12F629. Schematics can be seen in
Figure 57. The timing choices are adjusted using jumper switch S1.
#inc lude <system . h>

// Target PIC16F84 c o n f i g u r a t i o n word
#pragma DATA CONFIG, CPD OFF & PWRTE OFF & WDT OFF & CP OFF&

BODEN OFF & MCLRE OFF & PWRTE ON & INTRC OSC NOCLKOUT
// Set c l o ck f requency
#pragma CLOCK FREQ 4000000

void main (void) {
// I n i t i a l i z e microchip and s e t por t s to zero
i n t loops =0, delay1 =0, delay2 =0,p , mult=1;
t r i s i o =111010b ;
gpio=0x00 ;
ans e l = 0x00 ;
cmcon = 0x07 ;

//Do a power up f l a s h with LED to s h a l l a l l ok
f o r (p=0;p<2;p++){

gpio .2=1;
delay ms (5 0 0) ;
gpio .2=0;
delay ms (500) ;}

de l ay s (4) ;

//Check Jumper s e t t i ng s , and s t o r e s e t t i n g s
i f (gpio . 3 && ! gpio . 4 && ! gpio . 5)

mult=1;
e l s e i f (! gpio . 3 && gpio . 4 && ! gpio . 5)

mult=2;
e l s e i f (gpio . 3 && gpio . 4 && ! gpio . 5)

mult=3;
e l s e i f (! gpio . 3 && ! gpio . 4 && gpio . 5)

mult=4;
e l s e i f (gpio . 3 && ! gpio . 4 && gpio . 5)

mult=5;
e l s e i f (! gpio . 3 && gpio . 4 && gpio . 5)

mult=8;
e l s e i f (gpio . 3 && gpio . 4 && gpio . 5)

mult=0;
e l s e

mult=99;

// Blink LED To i n d i c a t e s e t t i n g
f o r (p=0;p<mult ; p++){

gpio .2=1;
delay ms (1500) ;
gpio .2=0;
delay ms (1000) ;}

//Manual c o n t r o l l
i f (mult==0)

f o r (p=0;p<10;p++){
gpio .2=1;
delay ms (3 0 0) ;
gpio .2=0;
delay ms (1 0 0) ; }

delay1 =730∗mult ;
de lay2 =155∗mult ;

// Repetat iv ly l i f t and lower beam block
whi le (1){

i f (mult !=0){
whi le (loops<delay1){

93

René C. Castberg June 23, 2008

(a) Schematics for laser blocker (b) Image of finished laser blocker

Figure 57: Schematics for PWM laser blocker, servo sens is connected to pin 2 of
JP1, S1 is used to select timing

S1 S2 S3 Blocked Open
X 12.5s 2.5s

X 25s 5s
X X 37.5s 7.5s

X 50s 10s
X X 62.5 12.5s

X X 100s 20s
X X X I/O I/O

Table 17: Timing choices for beam blocker. The columns represent the jumpers.
I/O represents a computer controlled sensing on port GP1, where 1
blocks and 0 is open.

94

René C. Castberg June 23, 2008

de lay 100us (1 9 0) ;
gpio .0=1;
de lay 100us (1 0) ;
gpio .0=0;
loops++;}

l oops =0;
whi le (loops<delay2){

de lay 100us (1 8 0) ;
gpio .0=1;
gpio .2=1;
de lay 100us (2 0) ;
gpio .0=0;
loops++; }

gpio .2=0;
loops =0; }

e l s e {
whi le (1){

i f (gpio . 1){
de lay 100us (1 9 0) ;
gpio .0=1;
gpio .2=1;
de lay 100us (1 0) ;
gpio .0=0; }

e l s e {
de lay 100us (1 8 0) ;
gpio .0=1;
gpio .2=0;
de lay 100us (2 0) ;
gpio .0=0; }

}
}

}
}

95

René C. Castberg June 23, 2008

A.2 Code for taking compressed data and making a
power spectrum

The following code was used to make power spectra as on larger data sets
Matlab was unable to cope with 1Gb of ram. The program uses the ”Fastest
Fourier Transform in the West”, and HDF5 libraries to take a Fourier trans-
form and import the data.
/∗∗∗
∗ ∗
∗ Take the FFT of a data s e t and export as a power spectrum ∗
∗ ∗
∗ to compile : ∗
∗ g++ pspectra Vx . cpp − l h d f 5 h l −l hd f5 −Wall −pedant ic \ ∗
∗ − l f f t w 3 readinput . cpp ∗ ∗
∗ ∗
∗ v5 . 2 Changed formula f o r binning ∗
∗ v5 . 1 Added labview v3 f i l e f o r m a t support ∗
∗ v5 . 0 Attempt to add welch windowign ∗
∗ added f l a t top window ∗
∗ v4 .10 Removed longdouble ∗
∗ v4 . 9 Introduced longdouble ∗
∗ v4 . 8 Added max checking and output ∗
∗ v4 . 8 Added max checking and output ∗
∗ v4 . 7 C l a r i e f i e d help s e c t i o n a b i t ∗
∗ v4 . 6 Fix bug with f r e q ca l cu l a t i on , add log b inn ig ∗
∗ v4 . 5 Attempt at adding hdf5 output , added a couple o f ∗
∗ window func t i on s and s e t Hamming d e f a u l t ∗
∗ Run through va lg r ind ∗
∗ v4 . 4 Added s i n e window ∗
∗ V4.3 Modif ied code to accept a double time , added no window ∗
∗ V4.2 Added co lour and s h i f t o f data , d e f a u l t no normal ize ∗
∗ V4.1 Changed d e f a u l t to not normal ize or bin ∗
∗ V4 Checked working with var iance = sum(S(f)∗ df) ∗
∗ Matlab var (test raw windowed) , sum(t e s t p s d (2 : end , :) ∗ 0 . 1) ∗
∗ V3 Small c o r r e c t i o n s and cho i c e o f windowing func t i on ∗
∗ V2 History ∗
∗ V1 Ancient History ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗∗∗/

#inc lude <iostream>
#inc lude <cmath>
#inc lude <complex>
#inc lude ” f f tw3 . h”
#inc lude <hdf5 . h>
#inc lude <H5LT. h>
#inc lude ” readinput . h”

//Add co lour output to make th ings more readab le
//Check i f in cygwin , and a l t e r co loura app ro r i a t e l y .
#i f de f ined (GNUC) && de f ined (CYGWIN)
#de f i n e redc ”\033 [22 ;31m”
#de f i n e normc ”\033 [01 ;37m”
#de f i n e b luec ”\033 [22 ;34m”
#de f i n e ye l lowc ”\033 [01 ;33m”
#e l s e
#de f i n e redc ”\033 [22 ;31m”
#de f i n e normc ”\033 [01 ;37m”
#de f i n e b luec ”\033 [22 ;34m”
#de f i n e ye l lowc ”\033 [01 ;33m”

#end i f
//Max vo l tage be f o r e warning
#de f i n e maxV 9.98

// Al l o ca t e a 2d array compatible with hdf5 l i b r a r y
us ing namespace std ;

template < typename T >
T ∗∗Allocate2DArray (i n t nRows , i n t nCols)
{

T ∗∗ppi ;
T ∗pool ;
T ∗ curPtr ;

96

René C. Castberg June 23, 2008

//(step 1) a l l o c a t e memory f o r array o f e lements o f column

ppi = new T∗ [nRows] ;

//(step 2) a l l o c a t e memory f o r array o f e lements o f each row
pool = new T [nRows ∗ nCols] ;

// Now point the po in t e r s in the r i g h t p lace
curPtr = pool ;
f o r (i n t i = 0 ; i < nRows ; i++)
{

∗(ppi + i) = curPtr ;
curPtr += nCols ;

}
re turn ppi ;

}

// Dea l l o ca te the 2d array
template < typename T >
void Free2DArray (T∗∗ Array)
{

d e l e t e [] ∗Array ;
d e l e t e [] Array ;

}

// I n i t i a l i z e func t i on d e f i n i t i o n s
long in t power (i n t x , i n t n) ;
long c o u n t l i n e s (s t r i n g f i l ename) ;
double average (double ∗ array , i n t i , i n t f) ;
i n l i n e double hann (i n t n , i n t N) ;
void ve r s i on (void) ;
void help (s t r i n g f i l ename) ;
i n l i n e double t r i ang l ew (i n t n , i n t N) ;
i n l i n e double sinew (i n t n , i n t N) ;
i n l i n e double bar t l e t thann (i n t n , i n t N) ;
i n l i n e double fourtBlackHarr (i n t n , i n t N) ;
i n l i n e double fourtBlackHarr90db (i n t n , i n t N) ;
i n l i n e double Hamming(i n t n , i n t N) ;
i n l i n e double f l a t t o p (i n t n , i n t N) ;
double window (in t n , i n t N, i n t argc , char∗ argv []) ;
i n l i n e void coutr (s t r i n g red) ;

i n t main (i n t argc , char∗ argv []) {
cout << endl<<endl ;
// Check input f o r ve r s i on c a l l
i f (readinputb (argc , argv , ”V”)){

ve r s i on () ;
}
bool showHelp=f a l s e ;
//Check input f o r help c a l l
i f (readinputb (argc , argv , ”H”) | | readinputb (argc , argv , ” h”))

showHelp=true ;
// I n i t i a l i z e a l l v a r i a b l e s
long warn=0;
i n t b ins =0;
bool Force=f a l s e ;
i n t nan=0;
s t r i n g f i l ename , outf i l ename , in f o f i l ename , xf i lename , yf i lename , z f i l ename ;
bool s h i f t = ! readinputb (argc , argv , ” S ”) ;
bool welch = true ;
i n t segments = 1 ;
i n t over lap= 0 ;
i f (welch){

segments = read input i (argc , argv , ” s ” , 1) ;
over lap=read input i (argc , argv , ” l ” , 0) ;

}
double s h i f t x =0, s h i f t y =0;
//Make f i l ename v a r i a b l e s and s e t up program depending on number o f inputs
i f (2 == argc){

f i l ename=argv [1] ;
i n f o f i l e n a m e=f i l ename + ” . txt ” ;
i f (! f i l e e x i s t s (i n f o f i l e n a m e))

help (argv [0]) ;
out f i l ename=f i l ename ;
x f i l ename=f i l ename + ” x . hws ” ;
y f i l ename=f i l ename + ” y . hws ” ;
z f i l ename=f i l ename + ” z . hws ” ;
b ins =0;

}
e l s e i f (5>argc)

showHelp=true ;
e l s e {

bins=read input i (argc , argv , ” b ” , 0) ;

97

René C. Castberg June 23, 2008

Force = readinputb (argc , argv , ”F”) ;
f i l ename=read inputs (argc , argv , ” i ” ,” i n f i l e ”) ;
out f i l ename=read inputs (argc , argv , ” o ” ,” o u t f i l e ”) ;
i n f o f i l e n a m e = f i l ename + ” . txt ” ;
x f i l ename =f i l ename +” x . hws ” ;
y f i l ename =f i l ename +” y . hws ” ;
z f i l ename =f i l ename +” z . hws ” ;

}
s t r i n g ou t i f i l ename=out f i l ename+” psd . txt ” ;
i f (showHelp)

help (argv [0]) ;
// Set v a r i a b l e s from std in
bool normal ize = ! readinputb (argc , argv , ” n ”) ;
bool nocomment = readinputb (argc , argv , ”D”) ;
i n t f ind max = readinputb (argc , argv , ”M”) ;
// Check a l l f i l e s e x i s t
i f (! f i l e e x i s t s (i n f o f i l e n a m e)){

cout <<”Please s p e c i f y a va l i d input in format ion f i l e ”<<endl<<
”e . g . E01 . txt ” <<endl ;

e x i t (EXIT FAILURE) ;
}
i f (! f i l e e x i s t s (x f i l ename) | | ! f i l e e x i s t s (x f i l ename)

| | ! f i l e e x i s t s (x f i l ename)){
cout <<”Please v e r i f y va l i d data f i l e s ”<<endl<<

”e . g . E01 x . txt , E01 y . txt and E01 z . txt ” <<endl ;
e x i t (EXIT FAILURE) ;

}
FILE ∗ I n f o F i l e ;
I n f o F i l e = fopen (i n f o f i l e n a m e . c s t r () , ” r ”) ;
cout << ”Reading i n f o f i l e :”<< i n f o f i l ename<<endl ;
// Create a v a r i a b l e to hold exper imenta l i n f o
char t e s t [2 0 0] ;
//Read l a s t l i n e (b i t s i l l y but works)
f o r (i n t i =0; i <99; i ++){

f g e t s (t e s t , 99 , I n f o F i l e) ;
}
// i n i t i a l i z e v a r i a b l e s used in data a n a l y s i s
i n t samples , v e r s i on =−1;
double tempavg , tempi , tempf , bandwidth , time , p a r t i c l e s i z e , d r i v e f r eq , d r i v e d i s t

, power , samples d ;
char v e r s i o n a s c i i =0;
// Determine length o f l i n e (1 s t or second ve r s i on
f o r (i n t j =0; vers ion <1; j++){

v e r s i o n a s c i i=t e s t [s t r l e n (t e s t)−1− j] ;
i f (v e r s i o n a s c i i < ’1 ’ | | v e r s i o n a s c i i > ’9 ’)

v e r s i o n a s c i i = ’0 ’ ;
v e r s i on=v e r s i o n a s c i i −48;
i f (j>5 | | vers ion >3){

cout << ”Wrong s p e c i f i c a t i o n s f i l e , p l e a s e c o r r e c t”<<endl ;
cout << ” Fina l l i n e should be:”<<endl ;
cout << ”\” Sampling Freq\” \”Time\” \”Avg Temp\” \” I temp\””

<<”\”F temp\” \” Vers ion\””<<endl ;
e x i t (EXIT FAILURE) ;

}
}
//Read input f i l e , depending on ve r s i on
i f (v e r s i on==3)

s s c an f (t e s t ,”% l e %l e %l e %l e %l e %l e %l e %l e %l e %d” ,
&samples d ,&time ,&tempavg ,&tempi ,&tempf ,& p a r t i c l e s i z e ,
&dr i v e f r eq ,& dr i v ed i s t ,&power ,& ve r s i on) ;

e l s e i f (v e r s i on==2)
s s c an f (t e s t ,”% l e %l e %l e %l e %l e %l e %l e %l e %d” ,
&samples d ,&time ,&tempavg ,&tempi ,&tempf ,& p a r t i c l e s i z e ,
&dr i v e f r eq ,& dr i v ed i s t ,& ve r s i on) ;

e l s e i f (v e r s i on==1)
s s c an f (t e s t ,”% l e %l e %l e %l e %l e %d”,& samples d ,&time ,&tempavg ,

&tempi ,&tempf ,& ve r s i on) ;
samples=(in t) samples d ;
// read from the t e s t v a r i a b l e and read i n f o
f c l o s e (I n f o F i l e) ;
// I f we are s p l i t t i n g up the d a t a f i l e s , f i nd s i z e o f segments
long o r g l i n e s =(long) (samples∗ time) ;
long l i n e s=o r g l i n e s / segments ;
long f r e q=samples ;
long o v e r l a p l i n e s=o r g l i n e s / segments∗ over lap /100 ;
long d i s ca rdedpo in t s=o r g l i n e s+o v e r l a p l i n e s ∗ segments−l i n e s ∗ segments ;
whi le (d i s cardedpo int s>l i n e s){

segments++;
d i s ca rdedpo in t s=o r g l i n e s+o v e r l a p l i n e s ∗ segments−l i n e s ∗ segments ;
cout << ”Added segment , due to over lap”<<endl ;

}

// long l i n e s=c o u n t l i n e s (f i l ename) ;

98

René C. Castberg June 23, 2008

cout << ”\n\nFFT of Opt ica l tweezer data\n”<<
”Note that the number o f b ins i s taken as an approximate\n”<<
”Sampling f requency : ” << f r e q << endl<<
” In Filename:”<< f i l ename<<”\nOutfi lename :”<<out i f i l ename<<endl<<
”Sampling ra t e :”<<samples<<” samples / s”<<endl<<
”Sampling time:”<<time<<” s”<<endl<<
” F i l e ve r s i on :”<<vers ion<<endl<<endl ;

i f (! normal ize)
cout << bluec<<”You have choosen not to normaize the data”

<<normc<<endl<<endl ;
double ∗ f r e q l i s t= new double [l i n e s / 2] ;
cout << ” Generating f requency data ” ;
f o r (i n t i =0; i<l i n e s /2 ; i ++){

f r e q l i s t [i]= samples ∗(double) i / l i n e s ;
}
cout <<”, done”<<endl<<endl ;

h i d t f i l e i d ;
h e r r t s t a tu s ;
bandwidth=(double) l i n e s ∗(double) l i n e s /(double) time / 2 . 0 ;
/∗∗
∗ ∗
∗ Import Z Data and take FFT ∗
∗ Conjugate and save to standard array ∗
∗ ∗
∗∗/

double ∗ zdata = new double [l i n e s / 2] ;
double ∗ raw z data = new double [o r g l i n e s] ;
cout << ”Loading Zdata in to memory : ” << z f i l ename ;
// Open HDF F i l e
f i l e i d = H5Fopen (z f i l ename . c s t r () , H5F ACC RDONLY, H5P DEFAULT) ;
s t a tu s = H5LTread dataset double (f i l e i d ,

”/wfm group0/ axes / ax i s1 / data vec to r /data ” , raw z data) ;
s t a tu s = H5Fclose (f i l e i d) ;
std : : complex<double>∗ i nz=new std : : complex<double> [l i n e s] ;
s td : : complex<double>∗ outz=new std : : complex<double> [l i n e s] ;
cout << ” , S ta r t i ng FFT\n ” ;
//Segment and analyze
f o r (i n t s eg s =0; segs<segments ; s eg s++){

f o r (i n t i =0; i<l i n e s ; i ++){
i nz [i] . r e a l ()= raw z data [i]∗window(i , l i n e s , argc , argv) ;
i f (raw z data [i]>9.98)

warn++;
inz [i] . imag ()=0 .0 ;

}
// Perform FFT
f f tw p l an pz = f f t w p l a n d f t 1 d (l i n e s ,

r e i n t e r p r e t c a s t<f f tw complex∗>(inz) ,
r e i n t e r p r e t c a s t<f f tw complex∗>(outz) ,
FFTW FORWARD, FFTW ESTIMATE) ;

f f tw exe cu t e (pz) ;
f o r (i n t i =0; i<l i n e s /2 ; i++)

zdata [i]= r e a l (outz [i]∗ conj (outz [i])) / bandwidth ;
f f t w d e s t r o y p l a n (pz) ;

}
d e l e t e [] inz ;
d e l e t e [] outz ;
cout << ”FFT’ d and conjugated Z data”<<endl<<endl ;
/∗∗
∗ ∗
∗ Import X Data and take FFT ∗
∗ Conjugate and save to standard array ∗
∗ ∗
∗∗/

std : : complex<double>∗ inx=new std : : complex<double> [l i n e s] ;
s td : : complex<double>∗ outx=new std : : complex<double> [l i n e s] ;
double ∗ xdata = new double [l i n e s / 2] ;
f o r (i n t i =0; i<l i n e s /2 ; i++)

xdata [i]=0;
double ∗ tempdata = new double [l i n e s] ;
double ∗ rawxdata = new double [o r g l i n e s] ;
cout << ”Loading Xdata in to memory : ” << xf i l ename ;
f i l e i d = H5Fopen (x f i l ename . c s t r () , H5F ACC RDONLY, H5P DEFAULT) ;
s t a tu s = H5LTread dataset double (f i l e i d ,

”/wfm group0/ axes / ax i s1 / data vec to r /data ” , rawxdata) ;
s t a tu s = H5Fclose (f i l e i d) ;
cout << ” , S ta r t i ng FFT\n ” ;
f o r (i n t s eg s =0; segs<segments ; s eg s++){

i n t s e g s t a r t=segs ∗ l i n e s−s eg s ∗ o v e r l a p l i n e s ;
f o r (i n t p=0;p<l i n e s ; p++)

tempdata [p]=rawxdata [p+s e g s t a r t] ;
i f (s h i f t)

s h i f t x=average (tempdata , 0 , l i n e s −1);

99

René C. Castberg June 23, 2008

i f (normal ize)
f o r (i n t i =0; i<l i n e s ; i ++){

i f (raw z data [i]==0){
cout << ” Please rerun without normal izat ion , ”

<<”d iv ide by zero”<<endl ;
e x i t (EXIT FAILURE) ;

}
inx [i] . r e a l ()=(tempdata [i]− s h i f t x)/ raw z data [i+s e g s t a r t]∗

window(i , l i n e s , argc , argv) ;
inx [i] . imag ()=0 .0 ;

}
e l s e

f o r (i n t i =0; i<l i n e s ; i ++){
inx [i] . r e a l ()=(tempdata [i]− s h i f t x)∗window(i , l i n e s , argc , argv) ;
inx [i] . imag ()=0 .0 ;

}

f f tw p l an px = f f t w p l a n d f t 1 d (l i n e s ,
r e i n t e r p r e t c a s t<f f tw complex∗>(inx) ,
r e i n t e r p r e t c a s t<f f tw complex∗>(outx) ,
FFTW FORWARD, FFTW ESTIMATE) ;

f f tw exe cu t e (px) ;
f o r (i n t i =0; i<l i n e s /2 ; i ++){

xdata [i]+= r e a l (outx [i]∗ conj (outx [i])) / bandwidth ;
}
f f t w d e s t r o y p l a n (px) ;

}
d e l e t e [] rawxdata ;
d e l e t e [] inx ;
d e l e t e [] outx ;
cout << ”FFT’ d and conjugated X data”<<endl<<endl ;
/∗∗
∗ ∗
∗ Import Y Data and take FFT ∗
∗ Conjugate and save to standard array ∗
∗ ∗
∗∗/

std : : complex<double>∗ iny=new std : : complex<double> [l i n e s] ;
s td : : complex<double>∗ outy=new std : : complex<double> [l i n e s] ;
double ∗ ydata = new double [l i n e s / 2] ;
f o r (i n t i =0; i<l i n e s /2 ; i++)

ydata [i]=0;
double ∗ rawydata = new double [o r g l i n e s] ;
cout << ”Loading Ydata in to memory : ” << yf i l ename ;
f i l e i d = H5Fopen (y f i l ename . c s t r () , H5F ACC RDONLY, H5P DEFAULT) ;
s t a tu s = H5LTread dataset double (f i l e i d ,

”/wfm group0/ axes / ax i s1 / data vec to r /data ” , rawydata) ;
s t a tu s = H5Fclose (f i l e i d) ;
tempdata [0]=5 ;
cout << ” Sta r t i ng FFT\n ” ;
f o r (i n t s eg s =0; segs<segments ; s eg s++){

i n t s e g s t a r t=segs ∗ l i n e s−s eg s ∗ o v e r l a p l i n e s ;
f o r (i n t p=0;p<l i n e s ; p++)

tempdata [p]=rawydata [p+s e g s t a r t] ;
i f (s h i f t)

s h i f t y = average (tempdata , 0 , l i n e s −1);
i f (normal ize)

f o r (i n t i =0; i<l i n e s ; i ++){
i f (raw z data [i]==0){

cout << ” Please rerun without normal izat ion , d iv ide by zero ”
<<endl ;

e x i t (EXIT FAILURE) ;
}
iny [i] . r e a l ()=(tempdata [i]− s h i f t y)/ raw z data [i+s e g s t a r t]

∗window(i , l i n e s , argc , argv) ;
iny [i] . imag ()=0 .0 ;

}
e l s e

f o r (i n t i =0; i<l i n e s ; i ++){
iny [i] . r e a l ()=(tempdata [i]− s h i f t y)∗window(i , l i n e s , argc , argv) ;
iny [i] . imag ()=0 .0 ;

}

f f tw p l an py = f f t w p l a n d f t 1 d (l i n e s ,
r e i n t e r p r e t c a s t<f f tw complex∗>(iny) ,

r e i n t e r p r e t c a s t<f f tw complex∗>(outy) ,
FFTW FORWARD, FFTW ESTIMATE) ;

f f tw exe cu t e (py) ;
f o r (i n t i =0; i<l i n e s /2 ; i++)

ydata [i]+= r e a l (outy [i]∗ conj (outy [i])) / bandwidth ;
f f t w d e s t r o y p l a n (py) ;

}
d e l e t e [] tempdata ;

100

René C. Castberg June 23, 2008

d e l e t e [] rawydata ;
d e l e t e [] iny ;
d e l e t e [] outy ;
cout << ”FFT’ d and conjugated Y data”<<endl<<endl ;
f o r (i n t i =0; i<l i n e s /2 ; i ++){

ydata [i]=ydata [i] / segments ;
xdata [i]=xdata [i] / segments ;

}

FILE ∗ o u t f i l e ;
o u t f i l e = fopen (ou t i f i l e name . c s t r () , ”w”) ;
double xmax freq =0,xmax value =0;
double ymax freq =0,ymax value =0;

/∗∗∗
∗ Find Max
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i f (f ind max){
f o r (i n t i =0; i<l i n e s /2 ; i ++){

i f (f r e q l i s t [i]>12 && f r e q l i s t [i]<42){
i f (xdata [i]>xmax value){

xmax freq=f r e q l i s t [i] ;
xmax value=xdata [i] ;

}
}

}
f o r (i n t i =0; i<l i n e s /2 ; i ++){

i f (f r e q l i s t [i]>12 && f r e q l i s t [i]<42){
i f (ydata [i]>ymax value){

ymax freq=f r e q l i s t [i] ;
ymax value=ydata [i] ;

}
}

}
p r i n t f (”XMax at %g Hz with %g\n” , xmax freq , xmax value) ;
p r i n t f (”YMax at %g Hz with %g\n” , ymax freq , ymax value) ;

}

/∗∗∗
∗
∗ Write comments to f i l e
∗
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i f (! nocomment){
i f ((warn>0) && normal ize)

f p r i n t f (o u t f i l e ,”%%WARNING NORMALIZATION MAY NOT BE CORRECT,”
<<”VOLTAGE Exceeded %gV %ld times (%ld%%)\n” ,
maxV, warn , warn∗100/ l i n e s) ;

f p r i n t f (o u t f i l e ,”%%%s %s\n” ,” Source f i l e name : ” , FILE) ;
f p r i n t f (o u t f i l e ,”%%%s %s %s %s %s ” ,” Compiled at : ” , DATE ,

” ” , TIME ,” with GNU g++ ”) ;
f p r i n t f (o u t f i l e ,”%%%d.%d.%d\n” , GNUC , GNUC MINOR ”

<<”, GNUC PATCHLEVEL) ;
f p r i n t f (o u t f i l e ,”%%%s %s\n” ,”FFTW Version : ” , f f t w v e r s i o n) ;
f p r i n t f (o u t f i l e ,”%%%s %d.%d.%d.%s\n” ,”HDF5 Vers ion : ” ,

H5 VERS MAJOR,H5 VERS MINOR,H5 VERS RELEASE,H5 VERS SUBRELEASE) ;
i f (Force)

f p r i n t f (o u t f i l e ,”%%Input ve r s i on not co r r ec t , user ove r r i d e \n ”) ;
i f (normal ize)

f p r i n t f (o u t f i l e ,”%%Data was normal ized us ing Z\n ”) ;
i f (f ind max)

f p r i n t f (o u t f i l e ,”%%Max at %g Hz with %g\n” , xmax freq , xmax value) ;
switch (read inputc (argc , argv , ”W” , ’Q’)) {

case ’H’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : Hann\n ”) ;
break ;

case ’T ’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : Tr iang le \n ”) ;
break ;

case ’ 9 ’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : 4term BlackmannHarris (90db)\n ”) ;
break ;

case ’ 4 ’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : 4term BlackmannHarris (72db)\n ”) ;
break ;

case ’B ’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : Bar le t t−Hann\n ”) ;
break ;

case ’ 1 ’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : None/ r e c tangu la r \n ”) ;
break ;

101

René C. Castberg June 23, 2008

case ’S ’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : Sine\n ”) ;
break ;

case ’A’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : Hamming\n ”) ;
break ;

case ’F ’ :
f p r i n t f (o u t f i l e ,”%%Windowing Function : Flat top\n ”) ;
break ;

d e f a u l t :
f p r i n t f (o u t f i l e ,”%%Windowing Function : Hamming(Defau l t)\n ”) ;

}
i f (nan >0)

f p r i n t f (o u t f i l e ,”\n\nWARNING ENCOUNTERED NaN’ s , %d times\n\n” , nan) ;
}

/∗∗
∗
∗ Put data in c o r r e c t array f o r wr i t i ng to f i l e .
∗
∗ ∗∗∗/

double ∗ fxdata = new double [l i n e s / 2] ;
double ∗ fydata = new double [l i n e s / 2] ;
double ∗ f zdata = new double [l i n e s / 2] ;
double ∗ f f d a t a = new double [l i n e s / 2] ;
i n t numlines =0;
f o r (i n t i =0; i<l i n e s /2 ; i++)

fxdata [i]= fydata [i]= fzdata [i]= f f d a t a [i]=0 . 0 ;
i f (b ins ==0){

i f (! nocomment)
f p r i n t f (o u t f i l e ,”%%Binning was not performed\n\n ”) ;

numlines=l i n e s /2 ;
f o r (i n t i =0; i<l i n e s /2 ; i ++){

f f d a t a [i]= f r e q l i s t [i] ;
fxdata [i]=xdata [i] ;
fydata [i]=ydata [i] ;
f zdata [i]= zdata [i] ;

}
}
e l s e {

double min=f r e q l i s t [1] ;
double max=l i n e s /2 ;
double de l t a=log (max/min)/ b ins ;
i n t ∗ count=new in t [l i n e s / 2] ;
f o r (i n t i =0; i<l i n e s /2 ; i ++){

count [i]=0;
}
i n t bin =0;
f f d a t a [0]= f r e q l i s t [0] ;
fxdata [0]= xdata [0] ;
fydata [0]= ydata [0] ;
f zdata [0]= zdata [0] ;
count [0]=1 ;
i n t i ;
i f (d r i v e f r e q <= 0)

d r i v e f r e q =20;

f o r (i =1; f f d a t a [i−1]<d r i v e f r e q +4; i ++){
f f d a t a [i]= f r e q l i s t [i] ;
fxdata [i]=xdata [i] ;
fydata [i]=ydata [i] ;
f zdata [i]= zdata [i] ;
count [i]++;

}
f o r (; i<l i n e s /2 ; i ++){

bin=(in t) (l og ((double) i /min)/ de l t a) ;
f f d a t a [bin]+= f r e q l i s t [i] ;
fxdata [bin]+=xdata [i] ;
fydata [bin]+=ydata [i] ;
f zdata [bin]+=zdata [i] ;
count [bin]++;

}
i n t j =0;
f o r (i n t i =0; i<l i n e s /2 ; i ++){

f f d a t a [j]= f f d a t a [i] / count [i] ;
i f (i snan (f f d a t a [j]))

j−−;
e l s e {

fxdata [j]= fxdata [i] / count [i] ;
fydata [j]= fydata [i] / count [i] ;
f zdata [j]= fzdata [i] / count [i] ;

}
j++;

102

René C. Castberg June 23, 2008

}
numlines=j ;
// i f (! nocomment)
// f p r i n t f (o u t f i l e ,”%%Binning was performed with %d s p e c i f i e d ”

<<”r e s t u l t i n g in a binning c o e f f i e n t o f %g\n\n” ,
bins , b in coe f) ;

}
d e l e t e [] xdata ;
d e l e t e [] ydata ;
d e l e t e [] zdata ;
d e l e t e [] raw z data ;
d e l e t e [] f r e q l i s t ;

/∗∗∗
∗
∗ Write to f i l e
∗
∗ ∗∗/

cout << ” Saving data ...”<< endl ;
i f (readinputb (argc , argv , ” t ”)){

f o r (i n t i =0; i<numlines ; i ++){
i f (f f d a t a [i]−0.00001> f f d a t a [i −1])

f p r i n t f (o u t f i l e ,”%20.9 e ,%20.9 e ,%20.9 e ,%20.9 e\n” ,
f f d a t a [i] , fxdata [i] , fydata [i] , f zdata [i]) ;

}
}
e l s e {

h id t f i l e o i d , dataspaceo , da t a s e t o i d ;
h s i z e t dimso [2] ;
h e r r t s ta tuso ;
double ∗∗ datx=Allocate2DArray<double >(4 , numlines) ;
f o r (i n t i =0; i<numlines ; i ++){

datx [0] [i]= f f d a t a [i] ;
datx [1] [i]= fxdata [i] ;
datx [2] [i]= fydata [i] ;
datx [3] [i]= fzdata [i] ; / / f r e q l i s t [i] ;

}
s t r i n g h 5 f i l e=out f i l ename+” psd . hdf5 ” ;
f i l e o i d=H5Fcreate (h 5 f i l e . c s t r () ,H5F ACC TRUNC,H5P DEFAULT,H5P DEFAULT) ;
dimso [0]=4 ;
dimso [1]= numlines ;
dataspaceo=H5Screate s imple (2 , dimso ,NULL) ;
da t a s e t o i d=H5Dcreate (f i l e o i d , ” dset ” ,H5T IEEE F64BE , dataspaceo ,

H5P DEFAULT) ;
s ta tuso=H5Dwrite (data se t o id ,H5T NATIVE DOUBLE, H5S ALL , H5S ALL ,

H5P DEFAULT,&datx [0] [0]) ;
s t a tuso=H5Dclose (da t a s e t o i d) ;
s ta tuso=H5Sclose (dataspaceo) ;
s ta tuso=H5Fclose (f i l e o i d) ;
Free2DArray (datx) ;

}
/∗∗

Delete s t u f f
∗∗/

d e l e t e [] f f d a t a ;
d e l e t e [] fxdata ;
d e l e t e [] fydata ;
d e l e t e [] f zdata ;
f c l o s e (o u t f i l e) ;
i f (warn && normal ize)

cout << redc
<< ”\n\nWARNING NORMALIZATION MAY NOT BE CORRECT, VOLTAGE EXceeded ”
<<maxV<< ”V ”<<warn<<” times (”<<warn∗100/ l i n e s
<< ”%%)\n\n”<<normc ;

i f (nan >0)
cout << redc << ”\n\nWARNING ENCOUNTERED NaN’ s , ”<< nan

<< ” times\n\n”<<normc ;
re turn 0 ;

}

//Custom power func t i on which takes two i n t e g e r s
long in t power (i n t x , i n t n) {

long i n t s o l=x ;
f o r (i n t i =1; i<n ; i ++){

s o l∗=x ;
}
re turn s o l ;

}

//Find how many f i l e s a f i l e conta in s
long c o u n t l i n e s (s t r i n g f i l ename)

103

René C. Castberg June 23, 2008

{
FILE ∗wcdata ;
wcdata = fopen (f i l ename . c s t r () , ” r ”) ;
i n t c ;
unsigned long num lines = 0 ;

whi le ((c = getc (wcdata)) != EOF)
i f (c == ’\n ’)

num lines++;
f c l o s e (wcdata) ;
re turn num lines ;

}

// Average an array
double average (double ∗ array , i n t i , i n t f){

double sum=0;
f o r (i n t x=i ; x<=f ; x++){

sum+=array [x] ;
}
sum/=(f−i +1);
re turn sum ;

}

//Return windowed func t i on
double window (in t n , i n t N, i n t argc , char∗ argv []) {

/∗ window with the appropr ia te windowing func t i on ∗/
switch (read inputc (argc , argv , ”W” , ’Q’)) { //No d e f a u l t re turn

case ’H’ :
r e turn hann (n ,N) ;
break ;

case ’T ’ :
r e turn t r i ang l ew (n ,N) ;
break ;

case ’B ’ :
r e turn bar t l e t thann (n ,N) ;
break ;

case ’R ’ :
r e turn 1 ;
break ;

case ’S ’ :
r e turn sinew (n ,N) ;
break ;

case ’ 4 ’ :
r e turn fourtBlackHarr (n ,N) ;
break ;

case ’ 9 ’ :
r e turn fourtBlackHarr90db (n ,N) ;
break ;

case ’A’ :
r e turn Hamming(n ,N) ;
break ;

case ’F ’ :
r e turn f l a t t o p (n ,N) ;
break ;

d e f a u l t :
r e turn Hamming(n ,N) ;

}
}

/∗∗
∗ ∗
∗ Windowing func t i on s ∗
∗ ∗
∗∗∗/

i n l i n e double Hamming(i n t n , i n t N){
re turn 0 .54 −0.46∗ cos (2∗M PI∗n/N) ;

}
i n l i n e double fourtBlackHarr (i n t n , i n t N){

re turn 0.40217 −0.49703∗ cos (2∗M PI∗n/N)+0.09392∗ cos (4∗M PI∗n/N)
−0.00183∗ cos (6∗M PI∗n/N) ;

}

i n l i n e double fourtBlackHarr90db (i n t n , i n t N){
re turn 0.35875 −0.48829∗ cos (2∗M PI∗n/N)+0.14128∗ cos (4∗M PI∗n/N)

−0.01168∗ cos (6∗M PI∗n/N) ;
}
i n l i n e double hann (i n t n , i n t N){

/∗ c a l c u l a t e s the hann c o e f f i e n t s
∗ w(n)=0.5∗(1− cos (2∗ pi ∗n/N)) ∗/

return 0.5∗(1− cos (2∗M PI∗(double)n /((double)N))) ;

}

104

René C. Castberg June 23, 2008

i n l i n e double sinew (i n t n , i n t N){
/∗ Calcu la te the s i n e window
∗ w(n) = s in (p i ∗n/(N−1)) ∗/

return s i n (M PI∗n/(N−1)) ;
}
i n l i n e double t r i ang l ew (i n t n , i n t N){

/∗ Calcu la te the t r i a n g l e window c o e f f i e c n t e s
∗ w(n)=2/N∗(N/2−abs (n−(N−1)/2)) ∗/

return 2 .0/N∗(N/2.0− f abs (n−(N−1 . 0) / 2 . 0)) ;

}

i n l i n e double bar t l e t thann (i n t n , i n t N){
/∗ c a l c u l a t e the ba r l e t t−hann window
∗ w(n)= 0.62−−0.48∗ abs (n/(N−1)−0.5)−0.38∗ cos (2∗ pi ∗n/(N−1)) ∗/

return 0.62−0.48∗ f abs (n/(N−1)−0.5)−0.38∗ cos (2∗M PI∗n/(N−1)) ;
}

i n l i n e double f l a t t o p (i n t n , i n t N){
/∗ Calcu la te the f l a t t o p window
∗ w(n) = a0 − a1 cos (2 p i n/(N−1)) +a2 cos (4 p i n/(N−1))

−a3cos (6 p i n)/(N−1))+a4 cos (8 p i n/(N−1)) ∗/
return 1 −1.93∗ cos (2∗M PI∗n/(N−1))+1.29∗ cos (4∗M PI∗n/(N−1))

+0.388∗ cos (6∗M PI∗n/(N−1))+0.032∗ cos (8∗M PI∗n/(N−1)) ;
}

//Return ve r s i on in format ion
void ve r s i on (){

cout <<
” Source f i l e name : ”<< FILE <<endl<<
”Compiled at : ”<< DATE <<” ”<< TIME << ” with GNU g++ ”

<< GNUC << ” .” << GNUC MINOR << ” .”
<< GNUC PATCHLEVEL << endl << endl<<

”FFTW Version : ”<< f f tw ve r s i on<<endl<<
”HDF5 Vers ion : ”<<H5 VERS MAJOR<<”.”<<H5 VERS MINOR<<”.”

<<H5 VERS RELEASE<<”.”H5 VERS SUBRELEASE<<endl<<endl ;
e x i t (EXIT SUCCESS) ;

}

//Return help in format ion
void help (s t r i n g f i l ename){

cout << ”Minimum c a l l : ”<< f i l ename<< ” − i i n f i l e −o o u t f i l e . txt ”
<< endl << endl <<

” General :\n”<<
” − i input f i l e name , without extens ion or channel\n”<<
” −o output f i l e name , where the psd w i l l be placed ”

<<” i t w i l l be appended by psd\n”<<
” −t do not wr i t e hdf5 f i l e , wr i t e to txt f i l e \n”<<
” −F Force us ing data even i f v e r s i on can ’ t be conf irmed\n”<<
” −H Show help\n”<<
” −V Vers ion i n f o”<<
endl<<
”Options Raw data :\n” <<
” −n do not normal ize the output with z vo l tage \n”<<
” −S do not cente r around 0\n”<<
” −W Window func t i on s :”<<
” H hann window\n”<<
” B ba r t l e t t−Hann window\n”<<
” T t r i a n g l e window \n”<<
” 1 no window func t i on \n”<<
” S s i n e window\n”<<
” 4 4 term blackmannHarris (72db)\n”<<
” 9 4 term blackmannHarris (90db)\n”<<
” A Hamming\n”<<
” F Flat−top\n”<<
” −S # Segmented windowing\n”
” − l # with # segments and #%% over lap \n”<<
endl<<
”Options PSD Data\n”<<
” −b Number o f b ins to use , 0 mean no binning , ”

<<t h i s i s used as an appoximate\n”<<
” −D make output d a t a f i l e comment f r e e \n”<<
” −M repor t the maximum frequency and value \n”<<
endl ;

e x i t (EXIT SUCCESS) ;
}

/∗ ∗∗
∗ St r ing c o l o r s :
∗ 033 [22 ; 30m − black

105

René C. Castberg June 23, 2008

\033 [22 ;31m − red
\033 [22 ;32m − green
\033 [22 ;33m − brown
\033 [22 ;34m − blue
\033 [22 ;35m − magenta
\033 [22 ;36m − cyan
\033 [22 ;37m − gray
\033 [01 ;30m − dark gray
\033 [01 ;31m − l i g h t red
\033 [01 ;32m − l i g h t green
\033 [01 ;33m − ye l low
\033 [01 ;34m − l i g h t blue
\033 [01 ;35m − l i g h t magenta
\033 [01 ;36m − l i g h t cyan
\033 [01 ;37m − white
∗∗∗/

i n l i n e void coutr (s t r i n g red){
cout << redc <<red <<normc ;

}

A.3 Code used to verify Fast Fourier transform coeffi-
cients

Due to some uncertainty about mixing of the Fourier coefficients, a small
segment of the power spectral density code was taken and its own program
was made. It creates an array of the Gaussian function, y(x) = e−λx

2
and

Fourier transforms it. The program creates 3 files, Raw.txt which contains
the raw waveform, FFT.txt which contains the fast Fourier transform of the
raw wave, and finally PSD.txt which contains the power spectral density
calculated in the same way as section A.2

/∗
∗ Program to c r ea t e a Four ie r transform us ing the FFTW l i b r a r y
∗ 3 parametes that can be adjusted
∗ time : sampling time
∗ s r a t e : sampling ra t e
∗ alpha : the parameter alpha f o r the gauss ian
∗
∗ To compile :
∗ g++ f f t . c −g −O0 − l f f t w 3 −o f f t
∗/

#inc lude <iostream>
#inc lude <complex>
#inc lude <cmath>
#inc lude ” f f tw3 . h”
#de f i n e time 400
#de f i n e s r a t e 2048
#de f i n e alpha 0 .5
us ing namespace std ;
i n t main (i n t){

i n t l i n e s=s r a t e ∗ time ;
double ∗ x = new double [l i n e s] ;
double ∗ t = new double [l i n e s] ;
double ∗ f = new double [l i n e s / 2] ;
// Create the gauss ian wave y=exp(−alpha xˆ2)
f o r (i n t i =0; i<l i n e s ; i ++){

t [i]=(double) i / s r a t e ;
x [i]= sq r t (M PI/ alpha)∗ exp(−alpha∗ t [i]∗ t [i]) ;

}

// Calcuate the Four ie r transform
complex<double>∗ i nz=new complex<double> [l i n e s] ;
complex<double>∗ outz=new complex<double> [l i n e s] ;
f o r (i n t l =0; l<time∗ s r a t e ; l ++){

i nz [l] . r e a l ()=x [l] ;
i nz [l] . imag ()=0;

}
f f tw p l an pz = f f t w p l a n d f t 1 d (l i n e s , r e i n t e r p r e t c a s t<f f tw complex∗>(inz) ,

r e i n t e r p r e t c a s t<f f tw complex∗>(outz) ,

106

René C. Castberg June 23, 2008

FFTW FORWARD, FFTW ESTIMATE) ;
f f tw exe cu t e (pz) ;
f o r (i n t m=0;m<l i n e s /2 ;m++){

f [m]=1.0∗(double)m/ s r a t e ;
}

// Write the o r i g i n a l s i g n a l to f i l e :
FILE ∗ o u t f i l e ;
o u t f i l e = fopen (”RAW. txt ” ,”w”) ;
f o r (i n t k=0;k<l i n e s ; k++){

f p r i n t f (o u t f i l e ,”%e %e\n” , t [k] , x [k]) ;
}
f c l o s e (o u t f i l e) ;

// Write Four ie r transform to f i l e
FILE ∗ o u t f i l e 2 ;
o u t f i l e 2 = fopen (”FFT. txt ” ,”w”) ;
f o r (i n t k=0;k<60000;k+=1){

f p r i n t f (o u t f i l e 2 ,”%e %e\n” , f [k] , r e a l (outz [k])) ;
}
f c l o s e (o u t f i l e 2) ;

// Write power spectrum to f i l e
double bandwidth=(double) l i n e s ∗(double) l i n e s /(double) time / 2 . 0 ;
FILE ∗ o u t f i l e 3 ;
o u t f i l e 3 = fopen (”PSD. txt ” ,”w”) ;
f o r (i n t k=0;k<60000;k+=1){

f p r i n t f (o u t f i l e 3 ,”%e %e\n” , f [k] , r e a l (outz [k]∗ conj (outz [k]))) ;
}
f c l o s e (o u t f i l e 3) ;

}

107

René C. Castberg June 23, 2008

A.4 Labview code

Labview was chosen as the primary program for data acquisition as it is able
to provide a live view of any signals captured as well as being able to process
the data before exporting it for further processing.

A.4.1 Code for viewing live data

The code for live data acquisition can be seen in Figure 58. The user enters
a sampling rate, typically quite low as the computer has problems keeping
up with larger sampling rates, and the number of samples to acquire before
showing a data updates. The user will be presented with a power spectral
density along with live waveforms of the signals.

Choose sampling
properies

If choosen
Normalize data

Create statistics,
average and standard
deviation

Calculate the
power spectral density

Aquire data

Figure 58: Labview code for viewing live data

A.4.2 Code for acquiring experimental data set

The code for continuous acquisition can be seen in Figure 59. The user
specifies the time, and sample rate and optionally can provide additional

108

René C. Castberg June 23, 2008

experimental data. This information along with the temperature for the
experiment are written to an information file. The experimental data is
written to a binary data file, of type HDF5, this format was chosen as Matlab
and Labview are both naively able to read and write this data and we were
able to avoid the large file size that accompanies raw ASCII files.

A.4.3 Code for initialising DAQ

Both routines listed in Section A.4.1 and A.4.2 make use of the code inFig-
ure 60 for initialising the DAQ.

109

René C. Castberg June 23, 2008

E
nt

er
 fi

le
na

m
e

E
nt

er
 e

xp
er

im
en

ta
l

no
te

s

R
ea

d
te

m
pe

ra
tu

re

fr
om

 th
er

m
is

te
r

C
ho

os
e

to

de
la

y
ex

pe
rim

en
t

st
ar

t b
y

30
 s

ec
s

S
w

itc
h

on
/o

ff
lo

w
pa

ss
 fi

lte
r

at
 1

00
kH

z

D
o

ac
tu

al
 d

at
a

ac
qu

is
iti

on

C
on

ve
rt

nu

m
be

rs

to
 fl

oa
ts

C
re

at
e

fil
en

am
es W

rit
e

Q
P

D
 d

at
a

D
o

an
ot

he
r

te
m

pe
ra

tu
re

m
ea

su
re

m
en

t
D

o
an

ot
he

r
te

m
pe

ra
tu

re
m

ea
su

re
m

en
t

C
ol

le
ct

 e
xp

er
im

en
ta

l d
et

ai
ls

 fr
om

 o
pe

ra
to

r
W

rit
e

de
ta

ils
 to

 fi
le

Figure 59: Lab view code for acquiring samples for a specified time and sample
rate

110

René C. Castberg June 23, 2008

In
ita

liz
e

x,
 in

 2
00

m
V

ra
ng

e
In

ita
liz

e
z

in
 1

0V
 r

an
ge

In
ita

liz
e

y,
 in

 2
00

m
V

ra
ng

e

S
et

 p
ro

pe
rt

ie
s

fo
r

al
l c

ha
nn

el
s,

 D
C

 C
ou

pl
in

g
an

d
a

lo
w

pa
ss

 fi
lte

r,
10

0k
H

z

Figure 60: Labview code for initialising the DAQ

111

René C. Castberg June 23, 2008

A.5 Matlab code

A.5.1 Code for finding physical properties of system

f unc t i on doana l a s i s (E, fname) ;
% E i s an array with three col lums
% 1 : Frequency
% 2 : Data
% 3 : Data with no i s e removed (f o r f i t)
% f d r i v e i s the d r i v ing frequency f o r the s tage
% sta r t t ime i s the f requency from . which to s t a r t the f i t
% p lo t
% 0 Do not p lo t data
% 1 Plot data
% 2 Plot data on cur rent f i g u r e with d i f f e r e n t co l ou r s
% plot f rom
% Plot from frequency

i f narg in < 2
help doana l a s i s
re turn

end

In fo = g e t f i e l d (importdata (fname , ’ ’ , 14) , ’ data ’) ;
Vers ion=In fo (l ength (In fo)) ;
i f Version<3

f p r i n t f (’Wrong f i l e vers ion , only compatible with ve r s i on 3\n ’) ;
r e turn

end

i f s i z e (E,2)>3
i f (s i z e (E,2)<5)

f p r i n t f (’\ nInva l id number o f col lumns\n\n ’) ;
r e turn

end
end

%Var iab l e s that should be adjusted
%Defau l t s from exp
Sf req=In fo (1) ;
tmsr=1/(E(2 ,1)−E(1 , 1)) ; % As welch w i l l change length
temp=In fo (3) ;
diameter=In fo (6)∗1 e−6;%/1.24
f d r i v e=In fo (7) ;
amplitude=In fo (8) ;
power1=In fo (9) ;

i f power1>1
power1=power1 /1000;

end

%Plot d e f a u l t s
s t a r t t ime =25;
plot f rom =1;
p lo t =1;
endtime =10000;
R cover =60.84e−6; % Distance to cover s l i p
dens i ty =1.96e−3; % Density o f bead in kg/mˆ3
d e n s i t y l i q u i d=1e−3; % Density o f water in kg/mˆ3
wavelength =628.9e−9; % Laser wavelength

% Constants
kb=1.38062e−23;
rad ius=diameter /2 ;
%temp adjusted f o r beam i n t e n s i t y
realtemp=temp+3.8∗(l og (2∗ pi ∗R cover / wavelength)−1)∗power1 ;
v i s c o s i t y=v i s c o s i t y c a l c (temp) ;
gamma=6∗pi ∗ v i s c o s i t y ∗ rad ius ;

l o r en=i n l i n e (’ beta (1) . / (p i ˆ2∗((beta (2)ˆ2+x . ˆ 2))) ’ , ’ beta ’ , ’ x ’) ;
s t a r tvo=f ind (E(: ,1)> s tar t t ime , 1 , ’ f i r s t ’) ;
endval=f i nd (E(: ,1)> endtime , 1 , ’ f i r s t ’) ;
[coe f , r , J]= n l i n f i t (E(s ta r tvo : endval , 1) ,E(s t a r tvo : endval , 3) , loren , [2 , 1 5 0]) ;
i f s i z e (E,1)>3000

f p r i n t f (’\n\nNLINFIT USED ! ! ! ! \ n\n ’) ;
e l s e

opt ions = optimset (’ TolFun ’ , 1 e−16);
[coe f , resnorm , r , e x i t f l a g , output , lambda , J]=

l s q c u r v e f i t (loren , [abs (co e f (1)) , abs (co e f (2))] ,
E(s t a r tvo : endval , 1) ,E(s t a r tvo : endval , 3) , [0 , 0] , [] , opt ions) ;

end

112

René C. Castberg June 23, 2008

Dvolt=coe f (1) ;
f c=coe f (2) ;
i f p lot>0

s t a r t v=f ind (E(: ,1)> plotfrom , 1 , ’ f i r s t ’) ;
[y f i t , d e l t a]= n lp r edc i (loren ,E(s t a r t v : end , 1) , coe f , r , J) ;
i f p l o t ˜=2

l o g l o g (E(s t a r t v : end , 1) ,E(s t a r t v : end , 2) , ’ b ’ ,E(s t a r t v : end , 1) ,
y f i t , ’ r ’ ,E(s t a r t v : end , 1) , y f i t+delta , ’ r : ’ ,E(s t a r t v : end , 1) ,
y f i t−delta , ’ r : ’) ;

e l s e
l o g l o g (E(s t a r t v : end , 1) ,E(s t a r t v : end , 2) , ’ k ’ ,E(s t a r t v : end , 1) ,

(Dvolt . / (p i ˆ2∗(f c .ˆ2+E(s t a r t v : end , 1) . ˆ 2))) , ’ c ’) ;
end

%Theor e t i c a l f i t us ing f c ;
f=E (: , 1) ;
nu=1e−6; % kinematic v i s c o s i t y mˆ2/ s
mstar= 4/3∗ rad ius ˆ2∗ dens i ty +2/3∗pi ∗ rad ius ˆ3∗ d e n s i t y l i q u i d ;
fm=gamma/(2∗ pi ∗mstar) ;
fnu=nu/(p i ∗ rad ius ˆ 2) ;
s q r t f n u=sqr t (abs (f)/ fnu) ;
Reg=1+sqr t fnu −3∗ rad ius /(16∗R cover)+3.∗ rad ius / (4 .∗ R cover) .∗

exp(−2∗R cover / rad ius .∗ s q r t f n u) .∗ cos (2∗R cover / rad ius .∗ s q r t f n u) ;
Img=−s q r t f n u +3∗ rad ius /(4∗R cover)∗ exp(−2∗R cover / rad ius .∗ s q r t f n u) .∗

s i n (2∗R cover / rad ius .∗ s q r t f n u) ;
Ph = (Dvolt /(p i ˆ2)∗Reg) . / ((f c+f .∗ Img−f . ˆ2/ fm).ˆ2+(f .∗Reg) . ˆ 2) ;
Ph resp = (Dvolt∗amplitude∗ f d r i v e ∗ sq r t (Reg.ˆ2+Img . ˆ 2)) . ˆ 2 . /

(2∗(f c+f .∗ Img−f . ˆ2/ fm).ˆ2+(f .∗Reg) . ˆ 2) ;
end

%General s t u f f
S0=Dvolt / f c ˆ2/ pi ˆ2 ; %Using P(F)=D/(pi ˆ2∗(Fcˆ2+Fˆ2) and s e t t i n g F to zero
Wth=amplitude ˆ2/(2∗(1+ f c ˆ2/ f d r i v e ˆ 2)) ;
f d r i v epo s=f ind (E(: ,1)== fdr i v e , 1 , ’ f i r s t ’) ;
peakval=E(fdr ivepos , 2) ;
peakval=peakval+E(fd r i v epo s +1 ,2) ;
peakval=peakval+E(fdr ivepos −1 ,2);
Wex=(peakval−3∗Dvolt /(f d r i v e ˆ2+ f c ˆ2)/ pi ˆ2)/ tmsr ; %Peak times f d r i v e
beta=sq r t (Wth/Wex) ;

%Lorentz ian s t u f f
gamma loren=kb∗ realtemp /(p i ∗pi ∗S0∗ f c ˆ 2) ;
gamma loren m=kb∗ realtemp /(p i ∗pi ∗S0∗ f c ˆ2)/ beta ˆ2 ;
v i s c o s i t y l o r e n=gamma loren /6/ pi / rad ius ∗2 ;
v i s c o s i t y l o r e n m=gamma loren /6/ pi / rad ius ∗2/ beta ˆ2 ;
b e t a l o r en=sq r t (gamma loren/gamma) ;
kappa1=2∗pi ∗ f c ∗gamma;
kappa loren=2∗kb∗ realtemp /(p i ∗S0∗ f c) ;
kappa loren m=2∗kb∗ realtemp /(p i ∗S0∗ f c)/ beta ˆ2 ;

% Dual c a l i b r a t i o n s t u f f

kappa2=2∗pi ∗ f c ∗1.38 e−23∗ realtemp / beta ˆ2/ Dvolt ;
gammaDC=1.38e−23∗ realtemp / beta ˆ2/ Dvolt ;
v iscos i tyDC=gammaDC/(6∗ pi ∗ rad ius) ;

f p r i n t f (’\n\n ’) ;
f p r i n t f (’ Tabulated Values :\n ’) ;
f p r i n t f (’\ tTheo r e t i c a l V i s c o s i t y : %20e Pa s (k g m 1 s 1)\n ’ , v i s c o s i t y) ;
f p r i n t f (’\ tTheo r e t i c a l gamma : %20e Ns/m\n ’ , gamma) ;
f p r i n t f (’\ tTheo r e t i c a l D : %20e mˆ2/ s\n ’ , kb∗temp/gamma) ;
f p r i n t f (’\n ’) ;

f p r i n t f (’ General :\n ’) ;
f p r i n t f (’\ tPeak he ight : %20e Vˆ2 at %10g Hz\n ’ ,

peakval , f d r i v e) ;
f p r i n t f (’\ tMeasured temp : %20e K\n ’ , temp) ;
f p r i n t f (’\ tTheo r e t i c a l Local heat ing : %20e K\n ’ , realtemp−temp) ;
f p r i n t f (’\ tAdjusted Temp : %20e K\n ’ , realtemp) ;
f p r i n t f (’\ tMeasurement time : %20e s\n ’ , tmsr) ;
f p r i n t f (’\n ’) ;

f p r i n t f (’ F i t parameters :\n ’) ;
f p r i n t f (’\ tFc : %20e Hz\n ’ , f c) ;
f p r i n t f (’\ tS0 : %20e Vˆ2/Hz\n ’ , S0) ;
f p r i n t f (’\ tBeta : %20e m/V\tWth=%20e , wex=%20e\n ’ ,

beta ,Wth,Wex) ;
f p r i n t f (’\ tBeta (from Gamma) : %20e m/V\n ’ , b e t a l o r en) ;
f p r i n t f (’\n ’) ;

f p r i n t f (’ Lorentz ian Analys i s :\n ’) ;
f p r i n t f (’\ tKappa us ing Gamma Theor e t i c a l : %20e N/m %20e pN/nm, ’+

’%20e pN/um\n ’ , kappa1 , kappa1∗1 e12 /1e9 , kappa1∗1 e12 /1 e6) ;

113

René C. Castberg June 23, 2008

f p r i n t f (’\tGamma(exp) : %20e Js /Vˆ2 %20e Ns/m\n ’ ,
gamma loren , gamma loren m) ;

f p r i n t f (’\ t V i s c o s i t y (w Gamma(exp)) : %20e Pa s %20e N/(Vˆ2 Hz)\n ’ ,
v i s c o s i t y l o r en m , v i s c o s i t y l o r e n) ;

f p r i n t f (’\ tKappa (w Gamma(exp)) : %20e N/m %20e J /Vˆ2 ’+
’%20e pN/nm\n ’ , kappa loren m , kappa loren , kappa loren m ∗1 e12 /1 e9) ;

f p r i n t f (’\n ’) ;

f p r i n t f (’ Dual c a l i b r a t i o n \n ’) ;
f p r i n t f (’\ tDvolt : %20e Vˆ2/ s\n ’ , Dvolt) ;
f p r i n t f (’\ tD(exp) : %20e mˆ2/ s\n ’ , Dvolt∗beta ˆ 2) ;
f p r i n t f (’\ tKappa : %20e N/m, %20e pN/nm ’+

’%20e pN/um\n ’ , kappa2 , kappa2∗1 e12 /1e9 , kappa2∗1 e12 /1 e6) ;
f p r i n t f (’\tGamma : %20e Ns/m\n ’ ,gammaDC) ;
f p r i n t f (’\ t V i s c o s i t y : %20e Pa s (%g %%)\n ’ , viscosityDC ,

(viscos i tyDC)/ v i s c o s i t y ∗100) ;
f p r i n t f (’\n\n ’) ;

A.5.2 Code for importing Labview HWS data

f unc t i on data=importHWS(base f i l ename , s f r eq , time)

i f narg in <3
f p r i n t f (’ Useage : importHWS(base f i l ename , sampling f req , time)\n ’) ;
r e turn

end

f p r i n t f (’ Generating Time ax i s \n ’) ;
d s i z e=s f r e q ∗ time ;
t imeincrement=1/ s f r e q ;
data (: , 1)=1 : d s i z e ;
data (: ,1)= data (: , 1)∗ t imeincrement ;
data (: ,2)= hdf5read ([base f i l ename ’ x . hws ’] ,

’/ wfm group0/ axes / ax i s1 / data vec to r /data ’) ;
f p r i n t f (’ Read X data\n ’)
data (: ,3)= hdf5read ([base f i l ename ’ y . hws ’] ,

’/ wfm group0/ axes / ax i s1 / data vec to r /data ’) ;
f p r i n t f (’ Read Y data\n ’)
data (: ,4)= hdf5read ([base f i l ename ’ z . hws ’] ,

’/ wfm group0/ axes / ax i s1 / data vec to r /data ’) ;
f p r i n t f (’ Read Z data\n ’) ;

f p r i n t f (’ Done\n ’) ;

B Micelle preparation

Initial ideas for this project involved making measurements on sponge like
micells; unfortunately due to time constraints this was not possible. The
following sections contains instructions on how the micelle solution is made.

B.1 Preparation of Entangled Worm like Micells

The surfactant solution that we will be preparing is a binary mixture made
of Cetylpyridinium chloride and sodium salicylate diluted in a 0.5M brine
solution to make a 10% solution by weight. The Sodim salicylate (NaSAL)
and Cetylpyridinium (CPyCl) chloride will be added so that there is a 1:2
molar ratio.[7] The brine solution added is a 0.5M solution, so as to keep
the electrostatic screening length constant over a whole range of mixture
concentrations.

114

René C. Castberg June 23, 2008

B.2 Calculations:

As mentioned above, we want a 2:1 ratio of [CPyCl]:[SAL]. This can be
done by calculating the number of moles required of each CPyCl and SAL,
essentially working backwardsform the final mass. Assuming we want a total
mass of Mtot and a 10% solution, and the Relative Molecular Mass (RMM)
is RMM2CPy,SAL the number of mole of 2CPy+SAL is

[2CPy, SAL] =
0.1 ∗Mtot

RMM2CPyCl +RMMNaSAL

(207)

The number of moles of each compound is then:

[CPy] = 2 ∗ [2CpyCl,NaSAL] (208)

[SAL] = [2CpyCl,NaSAL] (209)

Since each of these compounds have a one to one ratio of their ions, we
can calculate the mass of each compound simply by multiplying by their
respective RMM:

MCpyCl = [CPy] ∗RMMCPy

= 2 ∗ 0.1 ∗Mtot ∗RMMCPyCl

RMM2CPyCl +RMMNaSAL

(210)

MNaSAL = [SAL] ∗RMMSAL

=
0.1 ∗Mtot ∗RMMNaSAL

RMM2CPyCl +RMMNaSAL

(211)

We then add the 0.5M brine so as to make a 10% ratio of surfactant to brine.
We already know the number of moles for Cpy and SAL, and can easily
calculate their masses:

MCPy = 2 ∗ [2CPy, SAL] ∗RMMCPy

= 2 ∗ 0.1 ∗Mtot ∗RMMCPy

RMM2CPyCl +RMMNaSAL

(212)

MSAL = [2CPy, SAL] ∗RMMSAL

=
0.1 ∗Mtot ∗RMMSAL

RMM2CPyCl +RMMNaSAL

(213)

To find the mass of salt we find what 90% corresponds to:

MNaCLaq = MSAL+CPy ∗ 9; (214)

115

René C. Castberg June 23, 2008

B.2.1 Molecular Masses:

NaSAL has a molecular formula of HOC6H4COONa which corresponds to a
molecular mass of 160.10u. CPyCl has a molecular formula of C21H38ClN ·
H2O, which corresponds to a molecular mass of 358.00u. When in solution
the SAL and CPy have a molecular mass of 137.11u and 322.55u respectively.
Mtot will be 137.11 + 2*322.55 = 876.13.

B.2.2 Preparation of the Worm like micells:

To make roughly 90g of micells, using equations Eq. (210) andEq. (211):

MCPyCl = 2 ∗ 0.1 ∗ 100g ∗ 358.00g/mol

2 ∗ 358.00g/mol + 160.10g/mol
= 8.172g

MNaSAL =
0.1 ∗ 100g ∗ 160.10g/mol

2 ∗ 358.00g/mol + 160.10g/mol
= 1.827g

Using Eq. (212) and Eq. (213) we can find the total mass of CPy and
SAL ions:

MCPy = 2 ∗ 0.1 ∗ 100g ∗ 322.55g/mol

2 ∗ 358.00g/mol + 160.10g/mol
= 7.363g

MNaSAL =
0.1 ∗ 100g ∗ 137.11g/mol

2 ∗ 358.00g/mol + 160.10g/mol
= 1.565g

Using Eq. (214) this then gives us a mass of brine:

MNaClaq = (MCPy +MSAL) ∗ 9 = (7.363g + 1.565g) ∗ 9 = 80.352g

Making a total of 89.28g of the worm like micells

116

René C. Castberg June 23, 2008

References

[1] A. J. D. A. J. Cox and J. Linden. An experiment to measure mie
and rayleigh total scattering cross sections. The American Journal of
Physics, 70:620–625, 2002.

[2] A. Ashkin. The pressure of light. Scientific American, 226:63–71, 1972.

[3] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric
sphere in the ray optics regime. Journal of Biophysics, 61:569–582, 1992.

[4] J. P. Barton and D. R. Alexander. Fifth-order corrected electromagnetic
field components for a fundamental gaussian beam. Journal of Applied
Physics, 66(7):2800–2802, 1989.

[5] J. P. Barton, D. R. Alexander, and S. A. Schaub. Internal and near-
surface electromagnetic fields for a spherical particle irradiated by a
focused laser beam. Journal of Applied Physics, 64(4):1632–1639, 1988.

[6] J. Bechhoefer and S. Wilson. Faster, cheaper, safer optical tweezers for
the undergraduate laboratory. American Journal of Physics, 70:393–
400, 2002.

[7] J.-F. Berret, J. Appell, and G. Porte. Linear rheology of entangled
worm-like micelles. Langmuir, 9:2851–2854, 1993.

[8] S. M. Block. Cells, volume 2. Cold Spring Harbour Laboratory Press,
1994.

[9] E. Butkov. Mathematical Physics. Addison-Wesley Publishing Com-
pany, 1968.

[10] R. Castberg. Computer code used in project, 2008. http://

rene.castberg.org/OT_code.zip and http://folk.uio.no/renec/

OT_code.zip.

[11] C. F. S. Frederick Gittes. Signals and Noise in Micro mechanical Mea-
surements. Academic Press, 1998. Methods in cell Biology, Vol 55.

[12] F. J. Harris. On the use of windows for harmonic analysis with the
discrete fourier transform. Proceedings of the IEEE, 66:51–83, 1978.

[13] J. A. Käs. Optical forces. website, 2007. http://www.uni-leipzig.

de/~pwm/kas/modul_opticalforces/opticalforces.html.

117

http://rene.castberg.org/OT_code.zip
http://rene.castberg.org/OT_code.zip
http://folk.uio.no/renec/OT_code.zip
http://folk.uio.no/renec/OT_code.zip
http://www.uni-leipzig.de/~pwm/kas/modul_opticalforces/opticalforces.html
http://www.uni-leipzig.de/~pwm/kas/modul_opticalforces/opticalforces.html

René C. Castberg June 23, 2008

[14] H. F. Kirstine Berg-Sørensen. Power spectrum analysis for optical tweez-
ers. Review of Scientific Instruments, 75:594–612, 2003.

[15] Leica microsystems. Leica HCS Objectives, Version 5.3. 2006. http:

//www.leica-microsystems.com/Leica-Microsystems.

[16] LEXEL LASER. Model 95 ION LASER Manual.

[17] D. R. Lide, editor. CRC Handbook of Chemistry and Physics. CRC
Press, 84th edition edition, 2003. pages 8 & 77.

[18] K. G. Måløy. Lecture notes; experimental physics, FYS4420, 2006.

[19] National Instruments. S Series Multifunction DAQ 12 or 16-bit, 1 to
10MS/s, 4 Analog Inputs. http://sine.ni.com/nips/cds/view/p/

lang/en/nid/11943National Instruments Website.

[20] National Intruments. Aliasing and Sampling at Frequencies above the
Nyquist Frequency, 2008. http://zone.ni.com/devzone/cda/tut/p/

id/3000.

[21] Microscopyu, the source for microscopy education. Website. http:

//www.microscopyu.com/Microscopyu.com.

[22] Pacific Silicon Sensor Inc. Quad photo diode sum and difference am-
plifier specifications, QP50-6SD2. http://www.pacific-sensor.com/

pdf/QP506SD2.pdfQP50-5SD2 Data sheet.

[23] Physik Instrumente (PI) GmbH & Co. P-517 Data sheets. http://www.
physikinstrumente.comPI-Website.

[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical recipes in C (2nd ed.): the art of scientific computing. Cam-
bridge University Press, New York, NY, USA, 1992.

[25] N. H. R. Kubo, M. Toda. Statistical Physics II. Springer-Verlag, Berline,
1985.

[26] K. Rottmann. Matematisk Formelsamling. Spektrum forlag, 2006.

[27] S. F. Tolic-Norrelykke, E. Schaeffer, J. Howard, F. S. Pavone,
F. Juelicher, and H. Flyvbjerg. Calibration of optical tweezers with
positional detection in the back-focal-plane. Review of Scientific Instru-
ments, 2006.

118

http://www.leica-microsystems.com/
http://www.leica-microsystems.com/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11943
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11943
http://zone.ni.com/devzone/cda/tut/p/id/3000
http://zone.ni.com/devzone/cda/tut/p/id/3000
http://www.microscopyu.com/
http://www.microscopyu.com/
http://www.pacific-sensor.com/pdf/QP506SD2.pdf
http://www.pacific-sensor.com/pdf/QP506SD2.pdf
http://www.physikinstrumente.com
http://www.physikinstrumente.com

René C. Castberg June 23, 2008

[28] Wikipedia. Optical tweezers. http://en.wikipedia.org/wiki/

Optical_tweezers, 2008. [Online; accessed 12-July-2008].

119

http://en.wikipedia.org/wiki/Optical_tweezers
http://en.wikipedia.org/wiki/Optical_tweezers

René C. Castberg June 23, 2008

A huge thanks goes to:

My supervisor Knut Jørgen Måløy.
Grunde Løvoll, Henning Knudsen and Bjørnar Sandnes

For their advice and taking the time to proof read this thesis.

Gunnar, Louisa and Peter
Castberg

For taking the time to proof read this thesis.

And to the rest of the Complex group for their support and
advice.

120

	Introduction
	Theory of Optical tweezers
	Initial development of the Optical tweezer
	Single Beam Gradient Trap
	Mie theory of trapping
	Rayleigh Scattering

	Brownian Motion
	Langevin Equation
	Using the Langevin equation of motion to obtain an expression for the power spectrum for a trapped particle.

	Obtaining the power spectra via the Wiener-Khintchine and equipartition
	Obtaining force constant from the power spectrum
	Determination with prior knowledge of viscosity
	Determination by using only the power spectra

	Review of Paper: ``Calibration of optical tweezers with positional detection in the back focal plane''
	Introduction
	Equation of Motion
	Fourier transform of response functions
	Power spectrum of the response functions
	Calibration
	Using the experimentally determined data

	Dynamic Light Scattering
	Theory, Dynamic light scattering
	Diffusion
	Dynamic Light Scattering

	Experimental setup
	Particle size and settling time
	Effect of salt on viscosity and refractive index

	Results

	Equipment review
	Introduction
	Laser
	Laser Controller
	Powering up the laser
	Laser beam stability
	Laser power and noise

	Optics
	Optical Losses

	Microscope
	Quadrant Photo diode (QPD)
	Data Acquisition Card
	Optical Alignment
	Course alignment
	Fine alignment
	Walking the beam

	Piezo Electric Stage

	Experimental Procedure
	Data capture --- ``optimising'' sampling
	Data Processing
	Cell preparation
	Verifying program code
	Frequency accuracy
	Amplitude accuracy

	Power spectrum analysis
	Power spectrum for a trapped 1.54um particle
	Using sinusoidal stage movement for calibration
	Measuring trap parameters by measuring particle position in a flow
	Theory for calculating experimental parameters
	Experimental method

	Experimental data for sinusoidal stage movement

	Characterisation of noise
	DAQ Card
	Using a different DAQ
	DAQ linearity
	Aliasing due to sampling frequency and filters
	Frequency matching with piezo stage

	Quadrant photo diode
	QPD Linearity
	Power supply
	Signal level

	Laser problems
	Signal variations
	Low frequency noise

	Problems associated with the sample cell
	Changes in salt concentration

	External sources of noise
	Vibration

	Flow cell Design
	Initial flow cell design
	Flow cell revisions
	Characterisation of Flow cell

	Flow cell use

	Discussion of project results
	Computer Code
	Automatic laser blocker
	Code for taking compressed data and making a power spectrum
	Code used to verify Fast Fourier transform coefficients
	Labview code
	Code for viewing live data
	Code for acquiring experimental data set
	Code for initialising DAQ

	Matlab code
	Code for finding physical properties of system
	Code for importing Labview HWS data

	Micelle preparation
	Preparation of Entangled Worm like Micells
	Calculations:
	Molecular Masses:
	Preparation of the Worm like micells:

	Bibliography

/* This is the source code for the laser block, its made using sourceboost boostc
 compiler, version 6.89. Built for either the PIC16F629 or the PIC16F675 */

#include <system.h>	

#pragma DATA _CONFIG, _CPD_OFF & _PWRTE_OFF & _WDT_OFF & _CP_OFF&_BODEN_OFF & _MCLRE_OFF &_PWRTE_ON & _INTRC_OSC_NOCLKOUT
//Set clock frequency
#pragma CLOCK_FREQ 4000000

void main(void) {
	int loops=0,delay1=0,delay2=0,p,mult=1;
	trisio=111010b;
 gpio=0x00;
	ansel = 0x00;
	cmcon = 0x07;
	
	for(p=0;p<2;p++){
		gpio.2=1;
		delay_ms(500);
		gpio.2=0;
		delay_ms(500);
	}
	delay_s(4);
	
	//Check Jumper settings
	if(gpio.3 && !gpio.4 && !gpio.5)
		mult=1;
	else if(!gpio.3 && gpio.4 && !gpio.5)
		mult=2;
	else if(gpio.3 && gpio.4 && !gpio.5)
		mult=3;
	else if(!gpio.3 && !gpio.4 && gpio.5)
		mult=4;
	else if(gpio.3 && !gpio.4 && gpio.5)
		mult=5;
	else if(!gpio.3 && gpio.4 && gpio.5)
		mult=8;
	else if(gpio.3 && gpio.4 && gpio.5)
		mult=0;
	else
		mult=99;

	//Blink LED To inducate setting
	for(p=0;p<mult;p++){
		gpio.2=1;
		delay_ms(1500);
		gpio.2=0;
		delay_ms(1000);
	}
	//Manual controll
	if(mult==0)
		for(p=0;p<10;p++){
		gpio.2=1;
		delay_ms(300);
		gpio.2=0;
		delay_ms(100);
		}
	delay1=730*mult;
	delay2=155*mult;
	
while(1){
	if(mult!=0){
		while(loops<delay1){
			delay_100us(190);
			gpio.0=1;
			delay_100us(10);
			gpio.0=0;
			loops++;
		}
		loops=0;
		while(loops<delay2){
			delay_100us(180);
			gpio.0=1;
			gpio.2=1;
			delay_100us(20);
			gpio.0=0;
			loops++;
		}	
		gpio.2=0;
		loops=0;
	}	
	else{
		while(1){	
			if(gpio.1){
				delay_100us(190);
				gpio.0=1;
				gpio.2=1;
				delay_100us(10);
				gpio.0=0;
			}
			else{
				delay_100us(180);
				gpio.0=1;
				gpio.2=0;
				delay_100us(20);
				gpio.0=0;
			}	

		}
	}
}
}

 pspectra_hsw_v5.2.cpp

pspectra_hsw_v5.2.cpp/***
 * *
 * Take the FFT of a dataset and export as a power spectrum *
 * *
 * to compile: *
 * g++ pspectra_Vx.cpp -lhdf5_hl -lhdf5 -Wall -pedantic \ *
 * -lfftw3 readinput.cpp * *
 * *
 * v5.2 Changed formula for binning *
 * v5.1 Added labview v3 fileformat support *
 * v5.0 Attempt to add welch windowign *
 * added flat top window *
 * v4.10 Removed longdouble *
 * v4.9 Introduced longdouble *
 * v4.8 Added max checking and output *
 * v4.8 Added max checking and output *
 * v4.7 Clariefied help section a bit *
 * v4.6 Fix bug with freq calculation, add log binnig *
 * v4.5 Attempt at adding hdf5 output, added a couple of *
 * window functions and set Hamming default *
 * Run through valgrind *
 * v4.4 Added sine window *
 * V4.3 Modified code to accept a double time,added no window *
 * V4.2 Added colour and shift of data,default no normalize *
 * V4.1 Changed default to not normalize or bin *
 * V4 Checked working with variance = sum(S(f)*df) *
 * matlab var(test_raw_windowed),sum(test_psd(2:end,:)*0.1)*
 * V3 Small corrections and choice of windowing function *
 * V2 History *
 * V1 Ancient History *
 * *
 * *
 * *
 * *
 * *
 ***/

#include <iostream>
#include <cmath>
#include <complex>
#include "fftw3.h"
#include <hdf5.h>
#include <H5LT.h>
#include "readinput.h"

//Add colour output to make things more readable
//Check if in cygwin, and alter coloura approriately.
#if defined(__GNUC__) && defined(__CYGWIN__)
#define redc "\033[22;31m"
#define normc "\033[01;37m"
#define bluec "\033[22;34m"
#define yellowc "\033[01;33m"
#else
#define redc "\033[22;31m"
#define normc "\033[01;37m"
#define bluec "\033[22;34m"
#define yellowc "\033[01;33m"

#endif
//Max voltage before warning
#define maxV 9.98

//Allocate a 2d array compatible with hdf5 library
using namespace std;
 template < typename T >
T **Allocate2DArray(int nRows, int nCols)
{
 T **ppi;
 T *pool;
 T *curPtr;
 //(step 1) allocate memory for array of elements of column

 ppi = new T*[nRows];

 //(step 2) allocate memory for array of elements of each row
 pool = new T [nRows * nCols];

 // Now point the pointers in the right place
 curPtr = pool;
 for(int i = 0; i < nRows; i++)
 {
 *(ppi + i) = curPtr;
 curPtr += nCols;
 }
 return ppi;
}

//Deallocate the 2d array
template < typename T >
void Free2DArray(T** Array)
{
 delete [] *Array;
 delete [] Array;
}

//Initialize function definitions
long int power(int x, int n);
long count_lines (string filename);
double average(double * array,int i,int f);
inline double hann(int n,int N);
void version(void);
void help(string filename);
inline double trianglew(int n,int N);
inline double sinew(int n, int N);
inline double bartletthann(int n,int N);
inline double fourtBlackHarr(int n,int N);
inline double fourtBlackHarr90db(int n,int N);
inline double Hamming(int n,int N);
inline double flattop(int n, int N);
double window(int n,int N, int argc, char* argv[]);
inline void coutr(string red);

int main(int argc, char* argv[]) {
 cout << endl<<endl;
 // Check input for version call
 if (readinputb(argc,argv,"V")){
 version();
 }
 bool showHelp=false;
 //Check input for help call
 if (readinputb(argc,argv,"H") || readinputb(argc,argv,"h"))
 showHelp=true;
 //Initialize all variables
 long warn=0;
 int bins=0;
 bool Force=false;
 int nan=0;
 string filename,outfilename, infofilename, xfilename, yfilename, zfilename;
 bool shift = !readinputb(argc,argv,"S");
 bool welch = true;
 int segments = 1;
 int overlap= 0;
 if(welch){
 segments = readinputi(argc,argv,"s",1);
 overlap=readinputi(argc,argv,"l",0);
 }
 double shiftx=0,shifty=0;
 //Make filename variables and set up program depending on number of inputs
 if(2 == argc){
 filename=argv[1];
 infofilename=filename + ".txt";
 if (!file_exists(infofilename))
 help(argv[0]);
 outfilename=filename;
 xfilename=filename + "_x.hws";
 yfilename=filename + "_y.hws";
 zfilename=filename + "_z.hws";
 bins=0;
 }
 else if (5>argc)
 showHelp=true;
 else{
 bins=readinputi(argc,argv,"b",0);
 Force = readinputb(argc,argv,"F");
 filename=readinputs(argc,argv,"i","infile");
 outfilename=readinputs(argc,argv,"o","outfile");
 infofilename = filename + ".txt";
 xfilename =filename +"_x.hws";
 yfilename =filename +"_y.hws";
 zfilename =filename +"_z.hws";
 }
 string outifilename=outfilename+"_psd.txt";
 if(showHelp)
 help(argv[0]);
 //Set variables from stdin
 bool normalize = !readinputb(argc,argv,"n");
 bool nocomment = readinputb(argc,argv,"D");
 int find_max = readinputb(argc,argv,"M");
 // Check all files exist
 if(!file_exists(infofilename)){
 cout <<"Please specify a valid input information file"<<endl<<
 "e.g. E01.txt " <<endl;
 exit(EXIT_FAILURE);
 }
 if(!file_exists(xfilename) || !file_exists(xfilename) || !file_exists(xfilename)){
 cout <<"Please verify valid data files"<<endl<<
 "e.g. E01_x.txt, E01_y.txt and E01_z.txt " <<endl;
 exit(EXIT_FAILURE);
 }
 FILE * InfoFile;
 InfoFile = fopen(infofilename.c_str(),"r");
 cout << "Reading infofile:"<<infofilename<<endl;
 // Create a variable to hold experimental info
 char test[200];
 //Read last line (bit silly but works)
 for(int i =0;i<99;i++){
 fgets(test,99,InfoFile);
 }
 // initialize variables used in data analysis
 int samples,version=-1;
 double tempavg,tempi,tempf,bandwidth,time,particlesize,drivefreq,drivedist,power,samples_d;
 char version_ascii=0;
 //Determine length of line (1st or second version
 for(int j=0;version<1;j++){
 version_ascii=test[strlen(test)-1-j];
 if(version_ascii<'1' || version_ascii>'9')
 version_ascii='0';
 version=version_ascii-48;
 if (j>5 || version>3){
 cout << "Wrong specifications file, please correct"<<endl;
 cout << "Final line should be:"<<endl;
 cout << "\"Sampling Freq\" \"Time\" \"Avg Temp\" \"I temp\" \"F temp\" \"Version\""<<endl;
 exit(EXIT_FAILURE);
 }
 }
 //Read input file, depending on version
 if(version==3)
 sscanf(test,"%le %le %le %le %le %le %le %le %le %d",&samples_d,&time,&tempavg,&tempi,&tempf,&particlesize,&drivefreq,&drivedist,&power,&version);
 else if(version==2)
 sscanf(test,"%le %le %le %le %le %le %le %le %d",&samples_d,&time,&tempavg,&tempi,&tempf,&particlesize,&drivefreq,&drivedist,&version);
 else if (version==1)
 sscanf(test,"%le %le %le %le %le %d",&samples_d,&time,&tempavg,&tempi,&tempf,&version);
 samples=(int)samples_d;
 //read from the test variable and read info
 fclose(InfoFile);
 //If we are splitting up the datafiles, find size of segments
 long orglines=(long)(samples*time);
 long lines=orglines/segments;
 long freq=samples;
 long overlaplines=orglines/segments*overlap/100;
 long discardedpoints=orglines+overlaplines*segments-lines*segments;
 while(discardedpoints>lines){
 segments++;
 discardedpoints=orglines+overlaplines*segments-lines*segments;
 cout << "Added segment, due to overlap"<<endl;
 }

 //long lines=count_lines(filename);
 cout << "\n\nFFT of Optical tweezer data\n"<<
 "Note that the number of bins is taken as an approximate\n"<<
 "Sampling frequency : " << freq << endl<<
 "In Filename:"<<filename<<"\nOutfilename :"<<outifilename<<endl<<
 "Sampling rate:"<<samples<<" samples/s"<<endl<<
 "Sampling time:"<<time<<" s"<<endl<<
 "File version:"<<version<<endl<<endl;
 if(!normalize)
 cout << bluec<<"You have choosen not to normaize the data"<<normc<<endl<<endl;
 double * freq_list= new double[lines/2];
 cout << "Generating frequency data";
 for(int i=0;i<lines/2;i++){
 freq_list[i]=samples*(double)i/lines;
 }
 cout <<", done"<<endl<<endl;

 hid_t file_id;
 herr_t status;
 bandwidth=(double)lines*(double)lines/(double)time/2.0;
 /**
 * *
 * Import Z Data and take FFT *
 * Conjugate and save to standard array *
 * *
 **/
 double * zdata = new double[lines/2];
 double * raw_z_data = new double[orglines];
 cout << "Loading Zdata into memory: " << zfilename;
 // Open HDF File
 file_id = H5Fopen (zfilename.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
 status = H5LTread_dataset_double(file_id,"/wfm_group0/axes/axis1/data_vector/data",raw_z_data);
 status = H5Fclose (file_id);
 std::complex<double>* inz=new std::complex<double> [lines];
 std::complex<double>* outz=new std::complex<double> [lines];
 cout << ", Starting FFT\n";
 //Segment and analyze
 for(int segs=0;segs<segments;segs++){
 for(int i=0;i<lines;i++){
 inz[i].real()=raw_z_data[i]*window(i,lines,argc,argv);
 if(raw_z_data[i]>9.98)
 warn++;
 inz[i].imag()=0.0;
 }
 //Perform FFT
 fftw_plan pz = fftw_plan_dft_1d(lines,reinterpret_cast<fftw_complex*>(inz),
 reinterpret_cast<fftw_complex*>(outz),
 FFTW_FORWARD, FFTW_ESTIMATE);
 fftw_execute(pz);
 for(int i=0;i<lines/2;i++)
 zdata[i]=real(outz[i]*conj(outz[i]))/bandwidth;
 fftw_destroy_plan(pz);
 }
 delete [] inz;
 delete [] outz;
 cout << "FFT'd and conjugated Z data"<<endl<<endl;
 /**
 * *
 * Import X Data and take FFT *
 * Conjugate and save to standard array *
 * *
 **/
 std::complex<double>* inx=new std::complex<double> [lines];
 std::complex<double>* outx=new std::complex<double> [lines];
 double * xdata = new double[lines/2];
 for(int i=0;i<lines/2;i++)
 xdata[i]=0;
 double * tempdata = new double[lines];
 double * rawxdata = new double[orglines];
 cout << "Loading Xdata into memory: " << xfilename;
 file_id = H5Fopen (xfilename.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
 status = H5LTread_dataset_double(file_id,"/wfm_group0/axes/axis1/data_vector/data",rawxdata);
 status = H5Fclose (file_id);
 cout << ", Starting FFT\n";
 for(int segs=0;segs<segments;segs++){
 int segstart=segs*lines-segs*overlaplines;
 for(int p=0;p<lines;p++)
 tempdata[p]=rawxdata[p+segstart];
 if(shift)
 shiftx=average(tempdata,0,lines-1);
 if(normalize)
 for(int i=0;i<lines;i++){
 if(raw_z_data[i]==0){
 cout << "Please rerun without normalization, divide by zero"<<endl;
 exit(EXIT_FAILURE);
 }
 inx[i].real()=(tempdata[i]-shiftx)/raw_z_data[i+segstart]*window(i,lines,argc,argv);
 inx[i].imag()=0.0;
 }
 else
 for(int i=0;i<lines;i++){
 inx[i].real()=(tempdata[i]-shiftx)*window(i,lines,argc,argv);
 inx[i].imag()=0.0;
 }

 fftw_plan px = fftw_plan_dft_1d(lines,reinterpret_cast<fftw_complex*>(inx),
 reinterpret_cast<fftw_complex*>(outx),
 FFTW_FORWARD, FFTW_ESTIMATE);
 fftw_execute(px);
 for(int i=0;i<lines/2;i++){
 xdata[i]+=real(outx[i]*conj(outx[i]))/bandwidth;
 }
 fftw_destroy_plan(px);
 }
 delete [] rawxdata;
 delete [] inx;
 delete [] outx;
 cout << "FFT'd and conjugated X data"<<endl<<endl;
 /**
 * *
 * Import Y Data and take FFT *
 * Conjugate and save to standard array *
 * *
 **/
 std::complex<double>* iny=new std::complex<double> [lines];
 std::complex<double>* outy=new std::complex<double> [lines];
 double * ydata = new double[lines/2];
 for(int i=0;i<lines/2;i++)
 ydata[i]=0;
 double * rawydata = new double[orglines];
 cout << "Loading Ydata into memory: " << yfilename;
 file_id = H5Fopen (yfilename.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
 status = H5LTread_dataset_double(file_id,"/wfm_group0/axes/axis1/data_vector/data",rawydata);
 status = H5Fclose (file_id);
 tempdata[0]=5;
 cout << "Starting FFT\n";
 for(int segs=0;segs<segments;segs++){
 int segstart=segs*lines-segs*overlaplines;
 for(int p=0;p<lines;p++)
 tempdata[p]=rawydata[p+segstart];
 if(shift)
 shifty = average(tempdata,0,lines-1);
 if(normalize)
 for(int i=0;i<lines;i++){
 if(raw_z_data[i]==0){
 cout << "Please rerun without normalization, divide by zero"<<endl;
 exit(EXIT_FAILURE);
 }
 iny[i].real()=(tempdata[i]-shifty)/raw_z_data[i+segstart]*window(i,lines,argc,argv);
 iny[i].imag()=0.0;
 }
 else
 for(int i=0;i<lines;i++){
 iny[i].real()=(tempdata[i]-shifty)*window(i,lines,argc,argv);
 iny[i].imag()=0.0;
 }

 fftw_plan py = fftw_plan_dft_1d(lines,reinterpret_cast<fftw_complex*>(iny),
 reinterpret_cast<fftw_complex*>(outy),
 FFTW_FORWARD, FFTW_ESTIMATE);
 fftw_execute(py);
 for(int i=0;i<lines/2;i++)
 ydata[i]+=real(outy[i]*conj(outy[i]))/bandwidth;
 fftw_destroy_plan(py);
 }
 delete [] tempdata;
 delete [] rawydata;
 delete [] iny;
 delete [] outy;
 cout << "FFT'd and conjugated Y data"<<endl<<endl;
 for(int i =0;i<lines/2;i++){
 ydata[i]=ydata[i]/segments;
 xdata[i]=xdata[i]/segments;
 }

 FILE * outfile;
 outfile = fopen(outifilename.c_str(),"w");
 double xmax_freq=0,xmax_value=0;
 double ymax_freq=0,ymax_value=0;

 /***
 * Find Max
 * **************************************/

 if(find_max){
 for(int i=0;i<lines/2;i++){
 if(freq_list[i]>12 && freq_list[i]<42){
 if(xdata[i]>xmax_value){
 xmax_freq=freq_list[i];
 xmax_value=xdata[i];
 }
 }
 }
 for(int i=0;i<lines/2;i++){
 if(freq_list[i]>12 && freq_list[i]<42){
 if(ydata[i]>ymax_value){
 ymax_freq=freq_list[i];
 ymax_value=ydata[i];
 }
 }
 }
 printf("XMax at %g Hz with %g\n",xmax_freq,xmax_value);
 printf("YMax at %g Hz with %g\n",ymax_freq,ymax_value);
 }

 /***
 *
 * Write comments to file
 *
 * **************************************/

 if(!nocomment){
 if((warn>0) && normalize)
 fprintf(outfile,"%%WARNING NORMALIZATION MAY NOT BE CORRECT, VOLTAGE Exceeded %gV %ld times (%ld%%)\n",maxV,warn,warn*100/lines);
 fprintf(outfile,"%%%s %s\n","Source file name: ",__FILE__);
 fprintf(outfile,"%%%s %s %s %s %s","Compiled at: ",__DATE__," ",__TIME__," with GNU g++ ");
 fprintf(outfile,"%%%d.%d.%d\n", __GNUC__ ,__GNUC_MINOR__ ,__GNUC_PATCHLEVEL__);
 fprintf(outfile,"%%%s %s\n","FFTW Version: ",fftw_version);
 fprintf(outfile,"%%%s %d.%d.%d.%s\n","HDF5 Version: ",H5_VERS_MAJOR,H5_VERS_MINOR,H5_VERS_RELEASE,H5_VERS_SUBRELEASE);
 if (Force)
 fprintf(outfile,"%%Input version not correct, user override\n");
 if(normalize)
 fprintf(outfile,"%%Data was normalized using Z\n");
 if(find_max)
 fprintf(outfile,"%%Max at %g Hz with %g\n",xmax_freq,xmax_value);
 switch (readinputc(argc,argv,"W",'Q')){
 case 'H':
 fprintf(outfile,"%%Windowing Function: Hann\n");
 break;
 case 'T':
 fprintf(outfile,"%%Windowing Function: Triangle\n");
 break;
 case '9':
 fprintf(outfile,"%%Windowing Function: 4term BlackmannHarris(90db)\n");
 break;
 case '4':
 fprintf(outfile,"%%Windowing Function: 4term BlackmannHarris(72db)\n");
 break;
 case 'B':
 fprintf(outfile,"%%Windowing Function: Barlett-Hann\n");
 break;
 case '1':
 fprintf(outfile,"%%Windowing Function: None/rectangular\n");
 break;
 case 'S':
 fprintf(outfile,"%%Windowing Function: Sine\n");
 break;
 case 'A':
 fprintf(outfile,"%%Windowing Function: Hamming\n");
 break;
 case 'F':
 fprintf(outfile,"%%Windowing Function: Flat top\n");
 break;
 default:
 fprintf(outfile,"%%Windowing Function: Hamming(Default)\n");
 }
 if(nan >0)
 fprintf(outfile,"\n\nWARNING ENCOUNTERED NaN's, %d times\n\n",nan);
 }

 /**
 *
 * Put data in correct array for writing to file.
 *
 * ***/
 double * fxdata = new double[lines/2];
 double * fydata = new double[lines/2];
 double * fzdata = new double[lines/2];
 double * ffdata = new double[lines/2];
 int numlines=0;
 for(int i=0;i<lines/2;i++)
 fxdata[i]=fydata[i]=fzdata[i]=ffdata[i]=0.0;
 if(bins ==0){
 if(!nocomment)
 fprintf(outfile,"%%Binning was not performed\n\n");
 numlines=lines/2;
 for(int i=0;i<lines/2;i++){
 ffdata[i]=freq_list[i];
 fxdata[i]=xdata[i];
 fydata[i]=ydata[i];
 fzdata[i]=zdata[i];
 }
 }
 else {
 double min=freq_list[1];
 double max=lines/2;
 double delta=log(max/min)/bins;
 int * count=new int[lines/2];
 for(int i=0;i<lines/2;i++){
 count[i]=0;
 }
 int bin=0;
 ffdata[0]=freq_list[0];
 fxdata[0]=xdata[0];
 fydata[0]=ydata[0];
 fzdata[0]=zdata[0];
 count[0]=1;
 int i;
 if (drivefreq <= 0)
 drivefreq=20;

 for(i=1;ffdata[i-1]<drivefreq+4;i++){
 ffdata[i]=freq_list[i];
 fxdata[i]=xdata[i];
 fydata[i]=ydata[i];
 fzdata[i]=zdata[i];
 count[i]++;
 }
 for(;i<lines/2;i++){
 bin=(int)(log((double)i/min)/delta);
 ffdata[bin]+=freq_list[i];
 fxdata[bin]+=xdata[i];
 fydata[bin]+=ydata[i];
 fzdata[bin]+=zdata[i];
 count[bin]++;
 }
 int j=0;
 for(int i=0;i<lines/2;i++){
 ffdata[j]=ffdata[i]/count[i];
 if(isnan(ffdata[j]))
 j--;
 else{
 fxdata[j]=fxdata[i]/count[i];
 fydata[j]=fydata[i]/count[i];
 fzdata[j]=fzdata[i]/count[i];
 }
 j++;
 }
 numlines=j;
 //if(!nocomment)
 // fprintf(outfile,"%%Binning was performed with %d specified restulting in a binning coeffient of %g\n\n", bins, bincoef);
 }
 delete [] xdata;
 delete [] ydata;
 delete [] zdata;
 delete [] raw_z_data;
 delete [] freq_list;

 /***
 *
 * Write to file
 *
 * **/
 cout << "Saving data..."<<endl;
 if(readinputb(argc,argv,"t")){
 for(int i=0;i<numlines;i++){
 if(ffdata[i]-0.00001>ffdata[i-1])
 fprintf(outfile,"%20.9e,%20.9e,%20.9e,%20.9e\n", ffdata[i],fxdata[i],fydata[i],fzdata[i]);
 }
 }
 else{
 hid_t file_oid,dataspaceo,dataset_oid;
 hsize_t dimso[2];
 herr_t statuso;
 double ** datx=Allocate2DArray<double>(4,numlines);
 for(int i=0;i<numlines;i++){
 datx[0][i]=ffdata[i];
 datx[1][i]=fxdata[i];
 datx[2][i]=fydata[i];
 datx[3][i]=fzdata[i];//freq_list[i];
 }
 string h5file=outfilename+"_psd.hdf5";
 file_oid=H5Fcreate(h5file.c_str(),H5F_ACC_TRUNC,H5P_DEFAULT,H5P_DEFAULT);
 dimso[0]=4;
 dimso[1]=numlines;
 dataspaceo=H5Screate_simple(2,dimso,NULL);
 dataset_oid=H5Dcreate(file_oid,"dset",H5T_IEEE_F64BE,dataspaceo,H5P_DEFAULT);
 statuso=H5Dwrite(dataset_oid,H5T_NATIVE_DOUBLE,H5S_ALL,H5S_ALL,H5P_DEFAULT,&datx[0][0]);
 statuso=H5Dclose(dataset_oid);
 statuso=H5Sclose(dataspaceo);
 statuso=H5Fclose(file_oid);
 Free2DArray(datx);
 }
 /**
 Delete stuff
 **/

 delete [] ffdata;
 delete [] fxdata;
 delete [] fydata;
 delete [] fzdata;
 fclose(outfile);
 if(warn && normalize)
 cout << redc << "\n\nWARNING NORMALIZATION MAY NOT BE CORRECT, VOLTAGE EXceeded "<<maxV<< "V "<<warn<<" times ("<<warn*100/lines << "%%)\n\n"<<normc;
 if(nan >0)
 cout << redc << "\n\nWARNING ENCOUNTERED NaN's, "<< nan<< " times\n\n"<<normc;
 return 0;
}

//Custom power function which takes two integers
long int power(int x, int n) {
 long int sol=x;
 for(int i=1;i<n;i++){
 sol*=x;
 }
 return sol;
}

//Find how many files a file contains
long count_lines (string filename)
{
 FILE *wcdata;
 wcdata = fopen(filename.c_str(),"r");
 int c;
 unsigned long num_lines = 0;

 while ((c = getc (wcdata)) != EOF)
 if (c == '\n')
 num_lines++;
 fclose(wcdata);
 return num_lines;
}

//Average an array
double average(double * array,int i,int f){
 double sum=0;
 for(int x=i;x<=f;x++){
 sum+=array[x];
 }
 sum/=(f-i+1);
 return sum;
}

//Return windowed function
double window(int n,int N, int argc, char* argv[]){
 /* window with the appropriate windowing function */
 switch (readinputc(argc,argv,"W",'Q')){ //No default return
 case 'H':
 return hann(n,N);
 break;
 case 'T':
 return trianglew(n,N);
 break;
 case 'B':
 return bartletthann(n,N);
 break;
 case 'R':
 return 1;
 break;
 case 'S':
 return sinew(n,N);
 break;
 case '4':
 return fourtBlackHarr(n,N);
 break;
 case '9':
 return fourtBlackHarr90db(n,N);
 break;
 case 'A':
 return Hamming(n,N);
 break;
 case 'F':
 return flattop(n,N);
 break;
 default:
 return Hamming(n,N);
 }
}

/**
 * *
 * Windowing functions *
 * *
 ***/

inline double Hamming(int n,int N){
 return 0.54 -0.46*cos(2*M_PI*n/N);
}
inline double fourtBlackHarr(int n,int N){
 return 0.40217 -0.49703*cos(2*M_PI*n/N)+0.09392*cos(4*M_PI*n/N)-0.00183*cos(6*M_PI*n/N);
}

inline double fourtBlackHarr90db(int n,int N){
 return 0.35875 -0.48829*cos(2*M_PI*n/N)+0.14128*cos(4*M_PI*n/N)-0.01168*cos(6*M_PI*n/N);
}
inline double hann(int n,int N){
 /* calculates the hann coeffients
 * w(n)=0.5*(1-cos(2*pi*n/N)) */
 return 0.5*(1-cos(2*M_PI*(double)n/((double)N)));

}

inline double sinew(int n, int N){
 /* Calculate the sine window
 * w(n) = sin(pi*n/(N-1)) */
 return sin(M_PI*n/(N-1));
}
inline double trianglew(int n,int N){
 /* Calculate the triangle window coeffiecntes
 * w(n)=2/N*(N/2-abs(n-(N-1)/2)) */
 return 2.0/N*(N/2.0-fabs(n-(N-1.0)/2.0));

}

inline double bartletthann(int n,int N){
 /* calculate the barlett-hann window
 * w(n)= 0.62--0.48*abs(n/(N-1)-0.5)-0.38*cos(2*pi*n/(N-1)) */
 return 0.62-0.48*fabs(n/(N-1)-0.5)-0.38*cos(2*M_PI*n/(N-1));
}

inline double flattop(int n, int N){
 /* Calculate the flattop window
 * w(n) = a0 - a1 cos(2 pi n/(N-1)) +a2 cos(4 pi n/(N-1))-a3cos(6 pi n)/(N-1))+a4 cos(8 pi n/(N-1)) */
 return 1 -1.93*cos(2*M_PI*n/(N-1))+1.29*cos(4*M_PI*n/(N-1))+0.388*cos(6*M_PI*n/(N-1))+0.032*cos(8*M_PI*n/(N-1));
}

//Return version information
void version(){
 cout <<
 "Source file name: "<< __FILE__ <<endl<<
 "Compiled at: "<< __DATE__ <<" "<< __TIME__<< " with GNU g++ " << __GNUC__ << "." << __GNUC_MINOR__ << "." << __GNUC_PATCHLEVEL__ << endl << endl<<
 "FFTW Version: "<<fftw_version<<endl<<
 "HDF5 Version: "<<H5_VERS_MAJOR<<"."<<H5_VERS_MINOR<<"."<<H5_VERS_RELEASE<<"."H5_VERS_SUBRELEASE<<endl<<endl;
 exit(EXIT_SUCCESS);
}

//Return help information
void help(string filename){
 cout << "Minimum call: "<< filename<< " -i infile -o outfile.txt" << endl << endl <<
 "General:\n"<<
 " -i input file name, without extension or channel\n"<<
 " -o output file name, where the psd will be placed it will be appended by _psd\n"<<
 " -t do not write hdf5 file, write to txt file\n"<<
 " -F Force using data even if version can't be confirmed\n"<<
 " -H Show help\n"<<
 " -V Version info"<<
 endl<<
 "Options Raw data:\n" <<
 " -n do not normalize the output with z voltage\n"<<
 " -S do not center around 0\n"<<
 " -W Window functions:"<<
 " H hann window\n"<<
 " B bartlett-Hann window\n"<<
 " T triangle window \n"<<
 " 1 no window function\n"<<
 " S sine window\n"<<
 " 4 4 term blackmannHarris (72db)\n"<<
 " 9 4 term blackmannHarris (90db)\n"<<
 " A Hamming\n"<<
 " F Flat-top\n"<<
 " -S # Segmented windowing\n"
 " -l # with # segments and #%% overlap\n"<<
 endl<<
 "Options PSD Data\n"<<
 " -b Number of bins to use, 0 mean no binning, this is used as an appoximate\n"<<
 " -D make output datafile comment free\n"<<
 " -M report the maximum frequency and value \n"<<
 endl;
 exit(EXIT_SUCCESS);
}

/* **
 * String colors :
 * 033[22;30m - black
 \033[22;31m - red
 \033[22;32m - green
 \033[22;33m - brown
 \033[22;34m - blue
 \033[22;35m - magenta
 \033[22;36m - cyan
 \033[22;37m - gray
 \033[01;30m - dark gray
 \033[01;31m - light red
 \033[01;32m - light green
 \033[01;33m - yellow
 \033[01;34m - light blue
 \033[01;35m - light magenta
 \033[01;36m - light cyan
 \033[01;37m - white
 ***/

inline void coutr(string red){
 cout << redc <<red <<normc;
}

#include <system.h>	

//Target PIC16F84 configuration word
#pragma DATA _CONFIG, _CPD_OFF & _PWRTE_OFF & _WDT_OFF & _CP_OFF&_BODEN_OFF & _MCLRE_OFF &_PWRTE_ON & _INTRC_OSC_NOCLKOUT
//Set clock frequency
#pragma CLOCK_FREQ 4000000

void main(void) {
	int loops=0,delay1=0,delay2=0,p,mult=1;
	trisio=111010b;
 gpio=0x00;
	ansel = 0x00;
	cmcon = 0x07;
	
	for(p=0;p<2;p++){
		gpio.2=1;
		delay_ms(500);
		gpio.2=0;
		delay_ms(500);
	}
	delay_s(4);
	
	//Check Jumper settings
	if(gpio.3 && !gpio.4 && !gpio.5)
		mult=1;
	else if(!gpio.3 && gpio.4 && !gpio.5)
		mult=2;
	else if(gpio.3 && gpio.4 && !gpio.5)
		mult=3;
	else if(!gpio.3 && !gpio.4 && gpio.5)
		mult=4;
	else if(gpio.3 && !gpio.4 && gpio.5)
		mult=5;
	else if(!gpio.3 && gpio.4 && gpio.5)
		mult=8;
	else if(gpio.3 && gpio.4 && gpio.5)
		mult=0;
	else
		mult=99;

	//Blink LED To inducate setting
	for(p=0;p<mult;p++){
		gpio.2=1;
		delay_ms(1500);
		gpio.2=0;
		delay_ms(1000);
	}
	//Manual controll
	if(mult==0)
		for(p=0;p<10;p++){
		gpio.2=1;
		delay_ms(300);
		gpio.2=0;
		delay_ms(100);
		}
	delay1=730*mult;
	delay2=155*mult;
	
while(1){
	if(mult!=0){
		while(loops<delay1){
			delay_100us(190);
			gpio.0=1;
			delay_100us(10);
			gpio.0=0;
			loops++;
		}
		loops=0;
		while(loops<delay2){
			delay_100us(180);
			gpio.0=1;
			gpio.2=1;
			delay_100us(20);
			gpio.0=0;
			loops++;
		}	
		gpio.2=0;
		loops=0;
	}	
	else{
		while(1){	
			if(gpio.1){
				delay_100us(190);
				gpio.0=1;
				gpio.2=1;
				delay_100us(10);
				gpio.0=0;
			}
			else{
				delay_100us(180);
				gpio.0=1;
				gpio.2=0;
				delay_100us(20);
				gpio.0=0;
			}	

		}
	}
}
}

All plain text code pressented here is in UNIX format,

this means that in order to read the text in windows,

you will need to open it in either wordpad or a more

 advanced text editing tool.

