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Introduction

I would say that the starting point of this thesis was the course ‘Classical mechanics and electrody-
namics’ taught by my supervisor Jon Magne Leinaas the final semester of my Bachelor studies. This
was the first time I was exposed to electrodynamics in a relativistic framework, and I was very fasci-
nated by the transformation properties of the electromagnetic field under a change of reference frame.
To develop a better understanding for the interplay between electrodynamics and special relativity, I
considered a special case with a static charge distribution and two observersO andO′. In my example
O was at rest relative to the charge distribution, while O′ was moving. Accordingly only observer O′

experiences a magnetic field since there is no current in the reference frame of O. Since the observers
“see” different electromagnetic fields, they will not agree on the (measured) acceleration of a charged
particle in the field. At the pioneering days of electrodynamics this apparent paradox was explained
by introducing a so called “aether”. In the shed of special relativity however, we all know today that
electrodynamics makes perfectly sense without any aether. In the simple example I considered I was
able to calculate that the electromagnetic field transforms exactly like it should in order to secure a
relativistic correct transformation of the path of the particle. This simple calculation taught me to
appreciate the view of magnetism as a relativistic (second order) effect. Later that semester I found a
paper claiming that all of electrodynamics can be derived from Coulomb’s law (which describes the
electric force between two charged particles at rest) and special relativity alone.

At that time I had no good understanding of general relativity and curved spacetimes. To me,
given the obvious analogy between Coulomb’s law and Newton’s gravitational law, it should be pos-
sible to apply exactly the same idea to the phenomenon of gravitation. Accordingly I was convinced
that there had to be a gravitational counterpart to magnetism. A search in Google soon verified that
I was right, gravito-magnetism was a theoretically undisputed part of general relativity and even in
the final stage of being experimentally verified! Today however, two years later, I realize that I was
right for the wrong reason. Gravitation, as described by general relativity, is a manifestation of curved
spacetime, and special relativity is only valid locally. My reasoning starting with Newton’s law of
gravitation and special relativity was certainly not compatible with the view of gravitation as a geomet-
ric phenomenon. Nevertheless, it turns out that general relativity predicts effects which qualitatively
resembles that of magnetism.

In theoretical physics there is a well known analogy between general relativity and electrodynam-
ics which is based on a linearization of Einstein’s field equation. The linearization of general relativity
is reviewed in chapter 2, while the gravito-electromagnetic analogy is spelled out in chapter 3. Such
a kind of analogy is interesting since Einstein’s equation (on component form) is extremely compli-
cated mathematically and hard to gain physical insight into. It turns out though, that a lot of papers
in the rich literature on the topic are in lack of a systematic method. My idea was therefore to study
the analogy in a more consistent way using state of the art perturbative methods. This led me to the
PPN-formalism and so-called post-Newtonian methods which provides a systematic way to expand
any metric theory of gravity, and which also takes account for non-linear effects. After having learned

1
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the methods, I introduced suitable variables and gauge (coordinate) conditions, and reformulated the
post-Newtonian limit of general relativity in a way which was appropriate for my discussion. I also
applied the same kind of systematic expansion to electrodynamics. This enabled me to compare the
theories in a consistent way beyond their lowest order approximations. This work, described in chap-
ter 4, is basically just a comparison of the mathematical structure of the considered approximations of
the theories. In the following chapter I extend the perspective by exploring the huge conceptual differ-
ence between the theories. Based on calculations I investigate the geometric significance of curvature
in the post-Newtonian approximation of general relativity.

I will not come up with any excuses for having written such a voluminous thesis. Rather I will
tell you how to come through it in a reasonable time. Chapter 1 bears the title ‘A brief introduction
to gravitational theory’. Allthough it is a brief introduction compared to a text-book treatment, I do
not consider it as particularly brief in the context of a thesis. This chapter became a bit longer than
first anticipated as it turned out being difficult for me just to write down a lot of equations without
explaining how they hang together. In the process I learned a lot though (as I usually took another
approach to the material than when I first learned it), and for completeness I have chosen to include it
all. This makes my thesis pretty self-contained, and I frequently refer back to the introduction chapter.
With a satisfactory basic understanding of general relativity chapter 1 can be dropped all together (but
be aware that the material is really obligatory for the following chapters). The following two chapters
is about linearization and the gravito-electromagnetic analogy respectively. I think these chapters
should be read quickly through even by a reader familiar with the material, at least in order to see
my approach. Chapter 4 and 5 constitute the original part of my thesis. They cover the part of my
work over the last year which I actually accomplished to complete (for every idea that worked I had
several which failed). In the conclusion, chapter 6, I give a brief summary of my main results, which
are discussed more thoroughly in the relevant chapters.

Have an enjoyable reading!



Part I

Preliminaries
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Chapter 1

Brief introduction to gravitational theory

In this chapter I will introduce the necessary maths and concepts for my thesis. Even though I have
tried to make this chapter fairly self-contained, it is by no means meant as a complete introduction to
(the basic concepts of) general relativity. Rather, I focus on those parts of the theory which will be
important for my sub sequent work. The moral has been to introduce the formalism needed (in a fairly
self contained way), neither less nor more. This means that several topics which are usually included
in good courses of general relativity will not be discussed here. Examples are Cartan’s formalism,
differential forms, and strategies for finding exact solutions of the field equations. On the other hand,
concepts which are really important for my thesis will be treated in greater detail than it is usually
made time for in a course. Much effort is put to explain for example the arbitrariness of coordinates in
general relativity, which is often referred to as the “gauge” invariance of the theory. Allthough these
ideas are really elementary parts of the theory, they are conseptually demanding for students who are
primarily trained for physics in flat spacetime. We also discuss tensor fields (and their bases) in the
general context of an arbitrary manifold before specializing to spacetime. These basic consepts lays
the foundation for understanding gravity as Einstein saw it.

In this chapter originality is not a goal in itself. I am not the inventor of general relativity(!) and
this chapter is to a large extent a synthesis of things I have learned other places. In particular the
textbooks [1], [2], [3], [4], [5], [6], [7], [8] and [9] has been important sources of knowledge and
inspiration for me in my strives to learn general relativity.

1.1 Spacetime and coordinates

As conscious beings we know that spacetime has four dimensions, one time-dimension and three
space dimensions. Physicists likes to characterize points in spacetime by what happens there, and
therefore usually refer to them as events. An event can be uniquely labeled by four numbers, a four-
tuple. More formally we can designate a function φ : S → R4, which for each point P in spacetime
S gives a unique four-tuple φ(P) = (x0, x1, x2, x3). Such a function is said to provide a one-to-one
map from S to R4. If φ is a continues function with a continues inverse, such four-tuples are called
coordinates. In spacetime coordinates have four components xµ, although we will often write x as an
abbreviation for xµ when it cannot be misunderstood. We will use the standard convention that Greek
letters, like µ, run from 0 to 3, while Latin letters, like i, run from 1 to 3. The component µ = 0 is the
time component, while i are the spatial components, ie:

xµ = (ct, x, y, z). (1.1)

5



6 CHAPTER 1. BRIEF INTRODUCTION TO GRAVITATIONAL THEORY

To understand general relativity it is important to realize the arbitrary nature of the coordinates. The
smooth function φ is not a unique function. Another smooth function φ2 : S → R4 will give another
set of coordinates xµ

′
, and the new coordinates will be some (smooth) function of the old ones:

xµ → xµ
′

= xµ
′
(x). (1.2)

This transformation is called a coordinate transformation. Notice from (1.2) that we denote the new
set of coordinates by using a primed index, ie. we write xµ

′
rather than x′µ. This convention is known

as kernel index notation, and has, as we shall see, the main advantage that transformation laws of
tensors become particularly easy to memorize.

Allthough coordinates are completely arbitrary, there exists spacetimes with special symmetries
where some certain coordinates are preferred because they make things simple. A particular simple
and important special case is the flat spacetime, where the preferred coordinates, which we shall call
Lorentz coordinates, are related by the well known Lorentz transformations1

xµ
′

= Lµ
′
ν (v)xν . (1.3)

What is it that makes Lorentz coordinates preferred in flat spacetime? Consider two events PA and
PB in spacetime, and an inertial observer O equipped with a meter-stick and a clock. According to
special relativity there exists coordinates xµ which coincide with the physical distances measured by
O. More precisely we can say that if PA and PB , according toO’s measurements are separated by the
time interval ∆t, and the space interval ∆r, then the preferred coordinates (the Lorentz coordinates)

satisfy x0
B−x0

A = c∆t, and
√

(x1
B − x1

A)2 + (x2
B − x2

A)2 + (x3
B − x3

A)2 = ∆r. The preferred coor-

dinates xµ
′

of another inertial observerO′ with velocity v = dx
dt relative toO, are given by the Lorentz

transformation (1.3). Allthough Lorentz coordinates are not unique, they are preferred because they
have an immediate physical interpretation (as proper time and proper distances). Moreover, the sig-
nificance of the coordinates as a measure of distances is not restricted to specific areas of spacetime,
but have a global character. In a spacetime of arbitrary curvature however, it is never possible to intro-
duce coordinates with this property globally. As we will see later, the best we can do is to introduce
coordinates which locally, around a given point P , has significance as a measure of distances. The
point P is totally arbitrary, and everywhere else the coordinates looses their physical significance. In
a spacetime of arbitrary curvature, it is therefore best to accept that coordinates have no immediate
physical significance, and choose coordinates which takes advantage of the present spacetime sym-
metries (if any). As an example we can mention the spacetime outside a black whole, which is called
the Schwartzschild spacetime. Such a spacetime has rotational symmetry. A popular choice of coor-
dinates which takes advantage of this symmetry, are the so called Schwartzschild-coordinates. They
are used because the geometry of spacetime can be written compactly in terms of these coordinates,
and not because they have any special physical significance.

The important message from this section is of course that coordinates are only artifices used in
physics and does not exist a priori in the nature. This simple idea applies equally well to flat spacetime
as curved of course; it is simply a matter of convenience that we usually limit ourselves to the Poincare
group in special relativity. Because of this arbitrariness, all laws in general relativity are written on a
form which does not depend on the choice of coordinates. The invariance of the form of physical laws
under coordinate transformations is called general covariance.

1When we also include translations (change of origin) the transformation group is called the Poincare group.
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1.2 The equivalence principle

In this section we shall briefly discuss the equivalence principle. This principle led Einstein to realize
that gravitation was a geometric phenomenon and put him on track towards his theory of general
relativity.

An early version of the equivalence principle was used already by Isac Newton in his 1686 work
Principia. Newton argued that the mass mg in his gravitational law F = mgg, was the same as the
inertial mass mi in his second law of mechanics F = mia, ie. that mg = mi for any body. A con-
sequence of this is that all bodies fall in a gravitational field with the same acceleration regardless of
their mass or internal structure. Today this principle is generally referred to as the weak equivalence
principle. Einstein realized that a consequence of this principle was that for an observer in a freely
falling elevator in a gravitational field, the laws of mechanics are just the same as for an inertial ob-
server far from gravitational fields. To Einstein this was not a coincidence, and he added a key-element
to the principle. According to Einstein should not only the laws of mechanics behave in the usual way
in such an elevator, but any law of nature, including for example the laws of electromagnetism. Today
this extension of the weak equivalence principle is generally referred to as the Einstein equivalence
principle. For simplicity however, and since the Einstein equivalence principle is the only one needed
in this thesis, we shall just refer to it as the equivalence principle.

There is also a long tradition for formulating the equivalence principle in an “opposite” way. A
physicist in an elevator experiencing a fictious force cannot decide whether it is due to a gravitational
field or not. For example, experiments performed inside an elevator at rest on the earth gives similar
results as if the elevator was accelerated in a region where gravity is absent. This formulation of the
equivalence principle will be useful in chapter 5.

It should be stressed that in the above discussion, it is assumed that inhomogeneities in the gravi-
tational field can be neglected, ie. that the elevator is sufficiently small to make detection of inhomo-
geneities impossible. The above mentioned experiments are thus local of character.

1.3 Vectors, dual-vectors and tensors

In this section we shall discuss geometrical objects like vectors and dual-vectors in a general context.
For convenience we will use Greek letters to denote components of such objects. Greek letters are
usually supposed to run from 0 to three 3, but the discussions in this section is neither limited to
spacetime nor four dimensions. Therefore the reader is encouraged to read the Greek letters as “any
symbol” in this section. In the next section we will generalize the discussion to fields of such objects
living on a curved manifold.

A vector is a geometric object which can be represented graphically as a quantity with magnitude
and direction. We will denote vectors with boldface, for example v. A vector space V is a collection
of vectors. The rigor definition and axioms of a vector space is a subject of linear algebra and is not
necessary here, but we should remember that if a and b are vectors in V , then any linear combination
c1a+c2b is also a vector in V . Let us consider a set of vectors {vk} in a vector space V . {vk} is said
to be a linearly independent set if the only solution of the equation a1v1+a2v2+· · ·+akvk = 0 is the
trivial solution where all the coefficients are zero, ie. ak = 0 for all k. A vector basis for V is defined
as a linearly independent set of vectors, denoted {eµ}, which span the space V . The dimension of
the space V equals the number of basis-vectors. The definition of a basis implies that there exists
coefficients aµ such that an arbitrary vector a in V can be expressed as a linear combination of the
basis vectors: a = aµeµ. The vector itself is an abstract geometric object, while the coefficients aµ
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are the components of a relative to the basis {eµ}. As a matter of convenience, we will often loosely
refer to the “vector aµ”, although we know it is just the components relative to a given basis.

Since there exist an infinite number of possible bases for a vector space, we should consider
change of basis transformations. Allthough these relations follows naturally from what is stated above,
it is rewarding to formalize and summarize them, as it turns out that we will make use of them quite
often. If {eµ} is a basis for a vector space V, than a new basis {eµ′}must be some linear-combination
of the vectors eµ:

eµ′ = eνM
ν
µ′ . (1.4)

The coeffisiens Mν
µ′ can be thought of as elements of a transformation matrix. The inverse transfor-

mation matrix is simply written Mµ′
µ and defined by:

Mµ
µ′M

µ′
ν = δµν . (1.5)

The inverse transformation is then written:

eµ = eν′M
ν′
µ . (1.6)

Since the vector a = aµeµ is invariant under a change of basis, it follows that the components trans-
forms inversely:

aµ
′

= Mµ′
ν a

ν . (1.7)

With these definitions the invariance of a vector under a basis transformation follows naturally:

a = aµ
′
eµ′ = Mµ′

µ a
µeνM

ν
µ′ = δνµa

µeν = aνeν . (1.8)

We will now introduce the concept of dual vectors which are entities in a dual vector space V ∗

which is associated with and has the same dimension as the ordinary vector space V . This idea is
also used in quantum mechanics where a quantum state can be represented either as bra or a ket. In
quantum mechanics a bra 〈ψ| acts on a ket |φ〉 to produce a complex number 〈ψ|φ〉 ∈ C. In the context
useful for relativity, a dual vector is defined as a linear function which maps vectors to real numbers.
Such dual vectors are also called one-forms. We will denote dual vectors with boldface and underline,
for example a. A one-form a acting on a vector v to give a number is written a(v) = r ∈ R. Let
us now formalize the mentioned properties of a dual vector. The fact that the dual vector is a linear
function means that they map linear combinations of vectors in the following way:

α(k1v1 + k2v2) = k1α(v1) + k2α(v2). (1.9)

If α and β are dual-vectors in a space V ∗, it follows that the linear combination k1α + k2β is also a
dual vector, defined by:

(k1α+ k2β)(v) = k1α(v) + k2β(v). (1.10)

The basis one-forms are written wµ and defined by

wµ(eν) = δµν , (1.11)

where the Kronecker symbol is defined by

δµν =

{
1 , if µ = ν
0 , if µ 6= ν

(1.12)
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An arbitrary one-form a can be written as a linear combination of the basis one-forms: aµwµ. The
coefficients aµ are the components of the one-form a relative to the basis wµ. From (1.11) we see that
the components aµ are given by letting a act on the vector basis eµ:

a(eµ) = aνw
ν(eµ) = aνδ

ν
µ = aµ. (1.13)

Change of basis transformations for dual vectors are written:

wµ′ = Mµ′
ν wν ,

wµ = Mµ
ν′w

ν′ ,
(1.14)

while the components aµ must transform inversely:

aµ′ = Mν
µ′aν ,

aµ = Mν′
µaν′ .

(1.15)

Notice that transformation is inverse compared to the case with ordinary basis vectors. This is natural
from the point of view of notation and placement of indices, but it is also mathematically required
such that definition (1.11) holds in an arbitrary basis:

wµ′(eν′) = Mµ′
ν wν(eαM

α
ν′) = Mµ′

νM
α
ν′w

ν(eα)

= Mµ′
νM

α
ν′δ

ν
α = Mµ′

νM
ν
ν′ = δµ

′

ν′ .
(1.16)

Finally we note that the action of a dual vector acting on vector can be written in a simple and useful
way in terms of the components:

α(v) = αµw
µ(vνeν) = αµv

νwµ(eν) = αµv
νδµν = αµv

µ. (1.17)

We shall now see that vectors and dual-vectors are special cases of a more general geometric
object, called a tensor. A function f of several variables are called a multi-linear function if it is
linear in all its arguments. A tensor of rank

(
m
n

)
is defined as a multi-linear function which maps m

dual vectors and n vectors to R. A tensor of rank
(

0
n

)
is called a covariant tensor of rank n, while a

tensor of rank
(
m
0

)
is called a contravariant tensor of rank m. Hence we can recognize a vector as a

contravariant tensor of rank 1 and a dual vector as a covariant tensor of rank 1. A tensor
(
m
n

)
which

maps both dual vectors (m 6= 0) and vectors (n 6= 0) is called a mixed tensor. To define a basis for an
arbitrary tensor we must introduce the tensor product denoted ⊗. If T is a tensor of rank

(
m
n

)
and U

is a tensor of rank
(
p
q

)
, then T ⊗ U is a tensor of rank

(
m+p
n+q

)
defined by

T ⊗ U(a1,a2, . . . ,am+p,v1,v2, . . . ,vn+q)

= T (a1,a2, . . . ,am,v1,v2, . . . ,vn)U(am+1,am+2, . . . ,am+p,vn+1,vn+2, . . . ,vn+q).
(1.18)

This definition tells us how the
(
m+p
n+q

)
tensor T ⊗ U maps m + p dual vectors and n + q ordinary

vectors to R. The definition give a three point algorithm for calculating the map: 1) calculate the
number given by putting the first m dual vectors and the first n vectors of the argument into T , 2)
calculate another number by putting the last p dual vectors and the last q vectors of the argument into
U , 3) multiply these two numbers. Note that T ⊗U 6= U ⊗T since the map is sensitive to the order of
the arguments. We can now use the definition to construct a basis for an arbitrary tensor of rank

(
m
n

)
:

eµ1 ⊗ eµ2 ⊗ · · · ⊗ eµm ⊗wν1 ⊗wν2 ⊗ · · · ⊗wνn . (1.19)
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In a space of dimension d the basis consists of dm+n basis tensors. For example in spacetime
(

1
1

)
tensors lives in a space with 41+1 = 16 basis tensors:

e1 ⊗w1, e1 ⊗w2, e1 ⊗w3, e1 ⊗w4, e2 ⊗w1, . . . (1.20)

Thus the tensors will also have dm+n components Tµ1...µmν1...νn , one for each basis tensor. In a given
basis an arbitrary

(
m
n

)
tensor T can be written:

T = Tµ1...µmν1...νneµ1 ⊗ · · · ⊗ eµm ⊗wν1 ⊗ · · · ⊗wνn . (1.21)

The components of the tensor are found by using the basis for the vectors and the dual vectors as
argument for the map:

Tµ1...µmν1...νn = T (wµ1 , . . . ,wµm , eν1 , . . . eνn). (1.22)

This can be viewed as a generalization of (1.13) and can be verified using definitions (1.11) and
(1.18). Such a calculation is cumbersome for a tensor of arbitrary rank, but, to provide an example,
let us consider the special case of a

(
1
1

)
tensor T :

T (wα, eβ) = Tµνeµ ⊗wν(wα, eβ)

= Tµνeµ(wα)wν(eβ)

= Tµνδ
α
µδ

ν
β

= Tαβ.

(1.23)

The transformation properties for tensor components under a change of basis is a straight forward
generalization of the relations for vectors and dual vectors:

T
µ′1...µ

′
m

ν′1...ν
′
n

= (M
µ′1
µ1 . . .M

ν1
ν′1
. . . )Tµ1...µmν1...νn . (1.24)

This definition ensures that the tensor T is invariant under a change of basis:

eµ1 ⊗ · · · ⊗wν1 ⊗ . . . → eµ′1 ⊗ · · · ⊗wν′1 ⊗ . . .

= (eµ1M
µ1
µ′1

)⊗ · · · ⊗ (M
ν′1
ν1 wν1)⊗ . . .

(1.25)

A tensor of particular importance for us, is of course the metric tensor, which is a symmetric covariant
tensor of rank 2. The inner product, is per definition a symmetric map from two vectors to R: u ·v =
v · u. The metric tensor is defined:

g(u,v) = u · v. (1.26)

Thus the components of the metric tensor becomes

gµν = g(eµ, eν) = eµ · eν . (1.27)

In an n dimensional space the metric tensor has n2 components, but since gµν = gνµ, only (n2 +n)/2
of them are independent. The inverse metric operator has components defined by

gµαgαν = δµν . (1.28)

Notice that although gµν are the components of a covariant tensor while gµν are components of a
contravariant tensor, we have chosen to give them the same name, namely the symbol ‘g’. We will
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often call gµν the covariant components of the metric tensor, and gµν the contravariant components,
although, strictly speaking, they are components of different (but accociated) tensors2.

Allthoug a tensor T of rank
(
m
n

)
is defined as a map from from m one-forms and n vectors to

R, it is no problem to leave some of the arguments of T open (unused) by letting T act on fewer
than m one-forms and n vectors. If T act on m′ one-forms and n′ vectors (assuming m′ < m and
n′ < n), then it follows from definition (1.18) that the resulting map is a new tensor of rank

(
m−m′
n−n′

)
.

Such an operation is called a contraction . As an example consider the operation where T is a
(

2
1

)
tensor mapping a vector u and a one-form a. The operation is not well-defined before we choose
which argument of T to be un-used/open. Choosing the second argument, we can write this operation
T (a, ,u). It is easy to show from definition (1.18) that the resulting map is a

(
1
0

)
tensor (vector):

T (a, ,u) = Tµ1µ2ν1eµ1 ⊗ eµ2 ⊗wν1(aαwα, , uβeβ)

= Tµ1µ2ν1aαu
βeµ1(wα)eµ2( )wν1(eβ)

= Tµ1µ2ν1aαu
βδαµ1δ

ν1
β eµ2( )

= Tµ1µ2ν1aµ1u
ν1eµ2( )

≡ Sµ2eµ2( ).

(1.29)

Hence the new tensor, named S, has components

Sµ2 = Tµ1µ2ν1aµ1u
ν1 . (1.30)

The generalization to arbitrary tensors is obvious. The metric tensor for example, maps a vector v
to a one-form v ≡ g(v, ), while the inverse metric maps the one form back to vector, ie. v =
g(v, ). Notice that we have given the one-form the same name as the vector, namely the symbol
v. This notation is due to the fact that, since they are related by the metric tensor, v and v are just
different representations of the same physical content. In terms of components the map is written in
the following way:

gµνu
µ = uν . (1.31)

Using uν as argument for the inverse metric we get:

gανuν = gανgµνu
µ = δαµu

µ = uα. (1.32)

Observe from (1.31) and (1.32) that the covariant components of the metric tensor acts as a lowering
operator, while the contravariant vectors act as a raising operator.

This section contains a lot of equations with the bases written out explicitly. The purpose was to
show various tensor properties from first principle. From now on however, when a basis is chosen, we
will rarely care to write it out, and instead we will write tensors and tensor equations in terms of their
components. We will also usually refer to the “tensor” Tµ1µ2ν1 , although it is just the components of
the tensor T .

1.4 Tensor fields on manifolds

In the previous section we introduced the mathematics of tensors. In this section we will broaden the
perspective to fields of tensors. This is necessary since, in spacetime, the physics is always represented
by some kind of tensor field. To get there we will need to introduce some new ideas, such as the
concept of a manifold.

2As we shall see in a moment, this is not a special convention for the metric tensor, but holds for any kind of tensor.
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1.4.1 Differentiable manifolds

A differentiable manifold is a manifold on which calculus can be used. For applications in physics
manifolds are, almostly without exception, always differentiable. We shall therefore follow the tradi-
tion to just call it a manifold (instead of a differentiable manifold). Before giving the rigor definition
of a manifold, let us mention a few well known examples. The Euclidean plane R2 and the four-
dimensional Minkowski spacetime are examples of manifolds without curvature. The surface S2 of
a three dimensional sphere is an example of a curved manifold. Informally, a manifold M is a space
of arbitrary dimension and curvature which can be coordinatised. Accordingly, for a space to be a
manifold, it must be possible to introduce coordinate-systems to every part of M . With mathematical
rigor a manifold can be defined in the following way:

Manifold: The n dimensional space M is a manifold if it is possible to divide M into overlapping
and open regions Mi such that for each region there exist a continuous one-to-one function fi (with a
continuous inverse f−1

i ) which maps points P ∈Mi to Rn, fi : Mi → Rn.

In this definition it is assumed that the union of Mi covers the entire manifold (
⋃
iMi = M ), and

that in regions with overlapping functions there exist smooth functions (coordinate transformations)
which relates the coordinates to each other. The actual maps fi(P ) of the region Mi is of course what
we usually refer to as coordinates (or the coordinate system). The reason why the definition consider
different regions Mi with its own coordinates fi(P ), is simply that it is often impossible to describe
the entire manifold with a single coordinate system.

Consider for example the sphere S2 in the usual (θ, φ) coordinates. These coordinates are not
well-behaved at the north-pole (and the south-pole) where the φ coordinate is undefined and there
exist an infinite number of coordinates (0, φ), which all represent the same point. Therefore the
function f : M → Rn is not a one-to-one function. This problem can be overcome by introducing
two sets of coordinates (θ1, φ1) and (θ2, φ2). On the earth we could for example choose θ1 = 0 at the
north-pole and θ2 = 0 at Blindern. The sphere can therefore be coordinatised by two functions f1

and f2. At the north-pole and at Blindern one of the coordinate systems are well-behaved, and at all
other places there exist a smooth coordinate transformation between the coordinate systems. Thus the
sphere S2 is a manifold.

Intrinsic and extrinsic properties of a manifold To introduce the ideas of intrinsic and extrinsic
properties of a manifold we shall discuss the notion of curvature. The mathematical definition of
curvature, ie. the Riemann curvature tensor, will be saved for section 1.6.5. It is convenient being able
to use the term curvature in a more vague way before we come to section 1.6.5 though, so here we will
introduce it in a more loose way. There are two different concepts of curvature which are important
to keep distinct, namely intrinsic and extrinsic curvature. As an example of the latter consider the
two dimensional surface of a cylinder. Embedded in the three dimensional euclidean space R3 the
cylinder looks like an object with curvature. This kind of curvature however, is concerned with the
actual embedding in R3 and is not an intrinsic property of the manifold itself. To see this, simply
unroll the cylinder and observe that the geometry is the same as the two dimensional Euclidean plane.
All intrinsic properties of the manifold, such as distances measured along curves on the manifold,
remain unchanged by the action of unrolling. An observer living on the surface of the cylinder can
therefore not distinguish the geometry of the surface from the geometry of the flat plane. The surface
of a cylinder is therefore an example of a manifold with extrinsic curvature, but with no intrinsic
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curvature. The surface of a sphere S2 however, is a manifold with intrinsic curvature. An inhabitant
of S2 will for example find the circumference of a circle divided by its diameter to be less than π.
This is a characteristic of curved spaces, and the inhabitant can thus conclude that he lives in a world
with a non-Euclidean geometry.

The curvature of spacetime as described by general relativity is intrinsic of nature. Therefore it
is important to define entities (such as tensor fields) on curved manifolds M in terms of things that
are intrinsic to M . For example, the vector space S2 must be defined without reference to the basis
vectors ex, ey, ez of the Cartesian coordinate system R3. In the next section we shall see how to
define vectors from the intrinsic point of view.

1.4.2 The coordinate basis

Going from the notion of a vector in itself, as discussed in chapter 1.3, to a field of vectors on a
manifold M , requires some new ideas. First of all, to each point x on M we must define a vector
space associated with exactly that point. The vector space at a given point is called the tangent space
Tp. Vectors at different places belong to different tangent spaces. Thus it is not possible to define
operations between tensors defined at different places on the manifold. This is natural since on a
curved manifold, vectors cannot be moved carelessly around like in Euclidean spaces. We know that
parallel transporting3 a vector around in a curved space will change the vector. The change when
moving from a point to another is not well defined though, but will depend on the chosen path. This
is not a controversy, but perhaps the clearest characteristic of curvature, and gives a clear motivation
why each point on a manifold is associated with its own vector space.

Next we must define the tangent spaces Tp in terms of something that is intrinsic to M . The new
idea is to associate vectors with derivative operators, but first we need some new definitions. A path
on M is defined as a series of connected points. A curve is defined as a path parametrized by a scalar
which varies smoothly along the path. Thus there is a unique number ∈ R associated with every point
on the curve, and a curve on M is simply a continuous one-to-one map from R to M . In spacetime
the curve is defined by the four functions xµ(λ), where λ is some scalar quantity. The scalar is by
definition an invariant quantity which do not depend on the coordinates. For every path then, there
exist an infinite number of curves, one for each choice of parameter.

We are now ready to give a definition of vectors in terms of things which are intrinsic to the
manifold. We claim that any vector v at a point P can be represented by the directional derivative d

dλ
associated with some curve xµ(λ) passing through P . The tangent space Tp is then simply defined
as the space of directional derivatives associated with all possible curves going through P . A very
natural basis for Tp suggests itself from the chain rule for derivatives:

d

dλ
=
dxµ

dλ

∂

∂xµ
. (1.33)

We see that an arbitrary directional derivative d
dλ can be written as a linear combination of the partial

derivatives ∂µ with coefficients uµ = dxµ

dλ . Thus the partial derivatives constitute a natural basis for
Tp. This basis is so important that it is given its own name, coordinate basis:

Coordinate basis for the tangent space: The coordinate basis for Tp is the set of partial deriva-
tives {∂µ}.

3The reader not familiar with the concept of parallel transport must be patient and wait until section 1.6.3.
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For convenience we will often refer to the coordinate basis vectors as eµ, but this should only be
interpreted as short notation for ∂µ. Usually we like to think of a vector as a quantity with a mag-
nitude and a direction. The new definition of vectors as directional derivatives formalizes this view
in a neat way. To the operator d

dλ the associated direction is simply the direction of the curve at the
point p. The magnitude, on the other hand, is determined by the choice of parameter. For example
if we want a vector which point in the same direction as d

dλ , but with three times the magnitude, we
choose a new parameter λ2 ≡ (1/3)λ such that d

dλ2
= dλ

dλ2
d
dλ = 3 d

dλ . Also notice that the differential
operator d

dλ can be interpreted as the tangent vector to the accociated curve xµ(λ). This can be seen
by comparing (1.33) to the usual definition of the tangent vector u of the curve xµ(λ):

u =
dxµ

dλ
eµ. (1.34)

The vector space Tp of a point p is then spanned by the infinite set of tangent vectors associated with
all possible curves going through p, hence the name ‘tangent space’.

In chapter 1.3 we saw that bases for tensors of arbitrary rank could be constructed from the vector
bases and the dual vector bases. Thus, to be able to construct the coordinate basis for arbitrary ranked
tensors, we will also need to identify the coordinate basis for one-forms (like we identified partial
derivatives as the coordinate basis for vectors). This is found by demanding that the usual relation
wµ(∂ν) = δµν also holds in the coordinate basis. Let us rewrite this relation slightly:

wµ(∂ν) = δµν =
∂xµ

∂xν
=
∂xµ

∂xα
δαν =

∂xµ

∂xα
wα(∂ν). (1.35)

Remember that the gradient df of a scalar field f(x) is defined by4:

df =
∂f

∂xµ
wµ. (1.36)

The ‘d’ is called the exterior derivative operator, and is used to differentiate anti-symmetric covariant
tensors of arbitrary rank. Since the only anti-symmetric covariant tensor5 we will need to differentiate
are scalar fields, we will take (1.36) as our definition of d. Since coordinates are scalar fields, (1.35)
can now be rewritten

wµ(∂ν) = dxµ(∂ν). (1.37)

The coordinate basis for the dual space T ∗p of one-forms is therefore represented by the set of exterior
derivatives of coordinates:

Coordinate basis for the dual space: The coordinate basis for T ∗p is the set of exterior deriva-
tives of the coordinates: {dxµ}.

We have now identified the coordinate basis of vectors and dual vectors, and can construct bases
for tensors of arbitrary rank.

The coordinate basis is a natural and very important kind of basis in general relativity. It can be
thought of as the formal way to set up the basis vectors to point along the coordinate axes, which

4Note that the gradient of a scalar field actually is a one-form field, not a vector field, as often taught when restricted to
Euclidean spaces. In Euclidean spaces the components of the metric tensor are just the unity matrix, which means that the
components of a one-form is equal to the components of the corresponding vector.

5A covariant tensor of rank p which is anti-symmetric in all its indices is called a p-form. Scalars and one-forms have
too few indices to interchange the order of indices, and are just defined as 0-forms and 1-forms respectively.
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is the usual way to think of a coordinate system. Also note that, given a coordinate system, the
coordinate basis is a unique basis. Therefore a coordinate transformation necessarily induce a change
of the coordinate basis. The transformation law is given directly by the chain rule. Hence, under a
coordinate transformation xµ → xµ

′
, the coordinate basis vectors transform in the following way:

∂µ → ∂µ′ =
∂xµ

∂xµ′
∂µ. (1.38)

In chapter 1.3 we summarized the transformation properties of tensors under arbitrary basis transfor-
mations in terms of a transformation matrix Mµ

µ′ defined in (1.4). It is convenient to use the same
notation also for transformations between coordinate bases. The transformation matrix for coordinate
transformations is defined

Mµ
µ′ =

∂xµ

∂xµ′
, (1.39)

such that the transformation of the coordinate basis vectors can be written on the generic form eµ′ =
Mµ

µ′eµ. Since the matrix

Mµ′
µ =

∂xµ
′

∂xµ
(1.40)

is the inverse of Mµ
µ′ , the components of vectors transforms as

uµ
′

= Mµ′
µ u

µ. (1.41)

For one-forms, and arbitrary tensors, the transformation properties are also just like the formulas given
in chapter 1.3, with Mµ

µ′ and Mµ′
µ defined by (1.39) and (1.40). In particular, the transformation of

the metric tensor under a coordinate transformation becomes:

gµ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
gµν . (1.42)

Also note that for non-linear coordinate transformations, the transformation matrices will depend on
the position, Mµ

µ′ = Mµ
µ′(x).

Allthough it can be argued that the coordinate basis is the most natural kind of basis on a manifold,
there is nothing that prevents us from choosing another kind of bases. In general relativity all calcu-
lations are usually done in coordinate basis (because that is the simplest way). When the calculations
are done, however, it might be convenient to change basis. For example, we will see that orthonormal
bases has a special physical significance and are associated with observers and their measurements.
It is therefore often useful to change basis without changing the coordinates (the new basis is then
certainly not a coordinate basis). An arbitrary basis can be written as a linear combination of the
coordinate basis vectors, eµ′ = Mµ

µ′∂µ, where the coefficients Mµ
µ′ = Mµ

µ′(x) may depend on the
position.

1.4.3 The metric and path lengths

As explained, there can be various reasons for choosing another kind of bases than the coordinate
basis, when studying tensor fields on manifolds. Each basis has an associated metric where the com-
ponents are defined in the usual way gµν = eµ · eν , as stated in chapter 1.3 (where we discussed
tensors in a given space). The only difference here, where we discuss the metric on a manifold (where
tensor spaces are defined on each point), is of course that the metric is a function of the position, a
tensor field. However, when we simply refer to the metric without referring to a particular basis, we
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always mean the metric associated with the coordinate basis. We will see in this section that a given
coordinate system together with the associated metric defines the geometry of the manifold, in the
sense that path lengths on the manifold are well defined.

Associated with the metric there is a line element defined by

ds2 = (u · u)dλ2 = gµν
dxµ

dλ

dxν

dλ
dλ2, (1.43)

where uµ = dxµ

dλ is the tangent vector of a curve xµ(λ). The line element is usually written on the
form

ds2 = gµνdx
µdxν , (1.44)

and has an interpretation as the square of the infinitesimal path length between two neighboring points
λ and λ + dλ along the curve xµ(λ). The form (1.44) shows explicitly that the path length of a line
segment does not depend on the particular choice of parametrization. Personally, when I see a line
element on the form (1.44) I prefer to read it on the equivalent form

ds2 = (eµ · eν)dxµdxν . (1.45)

Roughly speaking, I think of the line-element in the following way: “the (physical) distance between
two neighboring points is given by the length of the basis vector times the coordinate separation”.
This view is of course only correct for orthogonal spacetimes (eµ · eν = 0 when µ 6= ν), but most
spacetimes are orthogonal or at least very close too. Mathematicians however, deny to use infinitesi-
mal entities like the coordinate separation dxµ. Instead they read it as the one-form dxµ. So when a
mathematician see a line-element written on the standard form (1.44) they read it as

ds2 = gµνdx
µ ⊗ dxν . (1.46)

The right hand side of this equation is exactly the metric tensor written out in the basis dxµ ⊗ dxν .
Thus, mathematicians treat the symbol ds2 simply as a name for the metric tensor, and does not
read anything out of the power of two. According to this view, the line element and the metric
tensor is exactly the same mathematical structure, and the words ‘line-element’ and ‘metric’ are often
used interchangeably. The words are also often used interchangeably in papers written by physicists,
although physicists most often I suppose, think of the metric as a tensor and associate the line-element
with distances.

We can now define the path-length between two points of finite separation ∆λ along the curve
xµ(λ). For space-like curves it is defined

∆s =

∫ λ0+∆λ

λ0

dλ

√
gµν

dxµ

dλ

dxν

dλ
, (1.47)

while for time-like curves we have

∆s ≡ ∆τ =

∫ λ0+∆λ

λ0

dλ

√
−gµν

dxµ

dλ

dxν

dλ
. (1.48)

The definition of time-like, light-like and space-like curves is just like in special relativity6. For time-
like paths the path-length ∆s is related to the proper time interval ∆τ by ∆s = c∆τ , where the

6Time-like curves have tangent vectors satisfying u · u < 0, while for light-like and space-like curves they satisfy
u · u = 0 and u · u > 0 respectively.
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proper time is defined as the time interval measured on a comoving standard clock7. Accordingly, for
time-like curves we can relate the line-element to the infinitesimal proper time interval dτ :

ds2 = gµνdx
µdxν = −c2dτ2. (1.49)

We will reserve the name four-velocity for tangent vectors which are parametrized by the proper time
τ , ie. dxµ

dλ is called the four-velocity only if λ = τ . From (1.49) we get the useful four-velocity
identities

u · u =

{
−c2 , for time-like vectors
0 , for light-like vectors.

(1.50)

Let us finally look at the metric and the line element of a few manifolds. The line element of the
Euclidean volume in Cartesian coordinates reads

ds2 = dx2 + dy2 + dz2, (1.51)

hence the metric is gij = diag(1, 1, 1). A coordinate transformation from the Cartesian coordinates
(x1, x2, x3) = (x, y, z) to spherical coordinates (x1′ , x2′ , x3′) = (r, θ, φ) defined by

x = r sin(θ) cos(φ), y = r sin(φ)sin(θ), z = r cos(θ), (1.52)

gives the new metric

gµ′ν′ =
∂xα

∂xµ′
∂xβ

∂xν′
gαβ = diag(1, r2, r2sin2(θ)), (1.53)

and hence the line element
ds2 = dr2 + r2dθ2 + r2sin2θ dφ2. (1.54)

Another familiar manifold is of course the flat spacetime, called the Minkowski spacetime, which in
Cartesian coordinates has line element

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.55)

The associated metric ηµν = diag(−1, 1, 1, 1) is called the Minkowski metric. Note that the name
‘Minkowski metric’ and the associated symbol ηµν , is reserved for a particular choice of coordinates
(Cartesian). Thus, if we choose to describe the Minkowski spacetime in spherical coordinates, we will
neither use the symbol ηµν nor call the metric gµν = diag(−1, 1, r2, r2sinθ) the ‘Minkowski metric’.

1.4.4 Example: coordinates and path lengths on a two dimensional curved manifold

In this example, we will study the geometry of a two dimensional curved manifold which can be
embedded in the Euclidean space R3. We will analyze the geometry both from the extrinsic and
intrinsic point of view and imagine a physicist living in the two dimensional world of the plane. This
makes it possible to illustrate how the notion of coordinates are equally meaningful from the intrinsic
point of view. In particular we will see that our friend living inside the manifold will need what we
shall call an operational definition of the coordinates in order to be able to associate them with actual
points in his world. The main purpose of this section is to illustrate some ideas which are important to
gain insight into the notion of curved spacetime, where the intrinsic observers are us (unless you are
reading my thesis from a higher dimensional space...).

7A standard clock is what the name suggests, ie. a standard clock like the one hanging on the wall.
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The three dimensional Euclidean manifold (R3) in Cartesian coordinates (x1, x2, x3) = (x, y, z)
has line element

ds2 = dx2 + dy2 + dz2. (1.56)

By introducing cylindrical coordinates (x1′ , x2′ , x3′) = (r, φ, z) defined by

x = r cos(φ), y = r sin(φ), x3′ = x3 = z, (1.57)

the line element takes the form
ds2 = dr2 + r2dφ2 + dz2. (1.58)

The coordinate transformation of the metric from (1.56) to (1.58) is geometrically obvious, but can
also be verified by the standard transformation rule of course. The curved plane we shall discuss has
rotational symmetry around the z axis and is defined by the equation8

z = −r 3
2 . (1.59)

The line element (1.58) can be rewritten

ds2 =

(
1 + (

dz

dr
)2

)
dr2 + r2dφ2, (1.60)

which for the curved plane gives

ds2 =

(
1 +

9

4
r

)
dr2 + r2dφ2. (1.61)

This is the line element of the curved two-dimensional world which our friend lives in. What is the
significance of the coordinates (r, φ) in the line element? From the extrinsic point of view, where the
plane is embedded in R3, r is of course still the distance from the z axis, while φ is still the angle
between the x axis and the projection down to the x− y plane. More formally we can say that r and φ
are the polar coordinates of the projection plane z = 0. From the intrinsic point of view however, we
cannot refer to the embedding in R3, and the significance of the coordinates must be found directly
from the line element (1.61), which works as a “definition” of the coordinates. First we observe that
the r coordinate has no immediate significance as distance. Along a path of constant φ (dφ = 0) the

infinitesimal distance ds between two points with coordinates r and r+dr is dr
√

1 + 9
4r. Integrating

we find that the length of a (radial) path from r = 0 to r is

∆s =
8

27

[
(
9r

4
+ 1)3/2 − 1

]
. (1.62)

The inverse expression is:

r =
4

9

[
(
27

8
∆s+ 1)2/3 − 1

]
. (1.63)

This equation can be taken as a definition of the r coordinate for the inhabitant of the plane. If he
wonder about the r coordinate of a given point, he can just measure the distance ∆s along a radial
path to the origin of the coordinate system, and then insert ∆s into (1.63). Thus we have found

8I chose this condition because it gives simple calculations. I have avoided the much more discussed two-sphere S2

(which also give simple calculation) because there are no preferred origin (on the surface of a sphere). Simply too much
symmetry to illustrate a few points!
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an operational definition of the r coordinate from the intrinsic point of view. This is perhaps not the
simplest way to define the r coordinate. Along a path with constant r coordinate the line element reads
ds2 = r2dφ2. The path length of circles with origin at r = 0 is therefore 2πr, just like in Euclidean
space. This suggests that our friend may use another operational definition for the r coordinate. If he
wonder about the radial coordinate of a given point P , he can just simply measure the circumference
∆s of the circle with origin in r = 0 passing through the point P . The r coordinate is then given by
the formula r = ∆s/2π.

We have seen that in the chosen coordinates, the r coordinate is not a measure of the distance
from the origin, but is defined such that the circumference of circles around the origin satisfy the
same expression as in Euclidean space. These coordinates are of course just one example out of the
unlimited space of possibilities. The chosen coordinates are very convenient though, since they take
advantage of the symmetry around the z axis and since there is a simple operational definition of
the radial coordinate. Another natural choice is to introduce a new radial coordinate ρ which has
significance as the distance from the origin measured along a radial path (dφ = 0). Equation (1.62)
then suggests that we define:

ρ =
8

27

[
(
9r

4
+ 1)3/2 − 1

]
. (1.64)

The inverse expression is found by replacing ∆s with ρ in (1.63). An immediate consequence of the
new coordinate is that gρρ = 1. This can be stated without calculations since the new radial coordinate
is a direct measure for path lengths along radial line segments. The metric element gφφ is unchanged
since we use the same φ coordinate. We therefore still have gφφ = r2, but r must be rewritten in terms
of ρ. The off-diagonal elements of the metric tensor is still zero. All this reasoning can be verified, of
course, by the formal transformation rule (1.42) with xµ = (r, φ) and xµ

′
= (ρ, φ). The line element

associated with the new coordinates is therefore

ds2 = dρ2 +
42

92

(
(
27

8
ρ+ 1)2/3 − 1

)2

dφ2. (1.65)

We have now seen two different sets of coordinates which might be useful for our friend living on
the curved manifold. Both coordinate systems have some similarities to the polar coordinates r̂, φ̂ of
the Euclidean plane with line element

ds2 = dr̂2 + r̂2dφ̂2. (1.66)

I have added the “hats” in order to avoid confusing the flat spacetime coordinates with those of the
curved manifold. Comparing (1.61) with (1.66), we see that the line element for a path with dr = 0
is on exactly the same form as in the Euclidean case. Comparing (1.65) with (1.66) though, we see
that it is instead the line element of a path with constant φ that is on the same form. Thus we have
showed that it is possible to introduce coordinates on the curved manifold such that, along a special
line, distances are related to the coordinates in the same way as in Euclidean space. It is however
not possible to choose coordinates such that the line element takes the same form as (1.66) for a
general path. On curved manifolds, we must therefore accept that coordinates are nothing more than
numbers, ie. maps from the manifold to Rn, which can be related to distances and path lengths only
after calculations (which involves the metric).

1.5 Spacetime as a differentiable manifold

So far we have focused on the notion of coordinates, tensor fields and their transformation properties
in the general context of an arbitrary manifold. The next logical step is to discuss the relevance for
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spacetime physics. We have not yet established the kinematics of general relativity, and have therefore
not yet demonstrated how the tensors are computed in the first place. A reader not familiar with
general relativity should therefore, at this point, only accept that physical quantities are represented
by tensors of various sorts (just like in special relativity), which can be calculated using strategies to
be introduced later.

A physical theory is a mathematical model which is supposed to describe processes in the nature.
The model can be thought of as a mathematical representation for (some aspect of) the physical
system under consideration. In some kind of theories, and especially in gauge theories, a single
physical state may have several different (but somehow related) representations. Since a successful
physical theory predicts the outcome of experiments, the formalism must establish a well defined
relation between the representation and the associated physical measurable quantity. In spacetime
physical quantities are usually represented in terms of tensor fields. For example the path of a particle
may be represented by the field of tangent vectors. The physical measurable quantities must then be
the components of the tensor relative to some basis. But what basis? Obviously not the coordinate
basis, since this one depends on the chosen coordinates. Measurable quantities can obviously not rely
on the arbitrary choice of coordinates! One of the fundamental axioms of general relativity, is that
the physical quantities are given by the tensor components relative to orthonormal bases which are
oriented in a direction defined by the motion of the observer. For this reason, orthonormal frames are
also sometimes called physical bases. The details are explained in the next section.

Why then care about the coordinate basis at all, if orthonormal bases are so important? We have
seen that the geometry of a manifold, in the sense of distances measured along paths on it, is well
defined first when it is equipped with a metric9. In general relativity, the metric is the solution of the
field equation. All calculations are usually simplest when done in the coordinate basis. Changing to
an orthonormal basis is therefore usually done after all calculations are finished, and when the only
remaining question is how the result relates to measurements.

1.5.1 Orthonormal bases

Let us start with some definitions. An orthogonal basis satisfies:

eµ · eν = gµν = 0 if µ 6= ν. (1.67)

An orthonormal basis is an orthogonal basis which is normalized, such that gµν = (−1, 1, 1, 1). The
Minkowski metric is therefore per definition an orthormal basis. As the only two kinds of bases we
will work with turns out to be coordinate bases and orthonormal bases, we shall use the convention
that eµ̂ denotes basis vectors of an orthonormal frame, while eµ denotes coordinate basis vectors. We
use the same notation for components of vectors, such that uµ̂ and uµ denotes components of the
vector u relative to an orthonormal basis and a coordinate basis respectively. In the special case of
Minkowski spacetime, where the coordinate basis is orthonormal, we shall use the coordinate basis
notation. We are then ready to define the physical basis associated with a particular observer:

Physical basis: The physical basis {eµ̂} for a particular observer with four velocity u satisfy e0̂ = u
c

and eµ̂ · eν̂ = ηµ̂ν̂ .

9Remember that when only saying “a metric”, we for sure mean the metric associated with a coordinate basis. If a
particular coordinate system is already established we say “the metric”, which then for sure mean the metric associated with
the coordinate basis of the chosen coordinates.
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The observer can be thought of as carrying a laboratory, whose time direction and spatial directions
are defined by the orthogonal unit vectors eµ̂, along the world line. There are many possibilities for
the spatial basis vectors. This ambiguity corresponds to the observer’s freedom to orient the spatial
axes of his laboratory. The time basis vector e0̂ however, is fixed. Since a particle with the same
velocity as the observer will move only in the time direction according to the laboratory frame, e0̂

must be parallel to the observer’s four velocity u. The factor of 1/c in e0̂ = u
c is a normalization

factor ensuring e0̂ · e0̂ = −1, see (1.50). Consider now a particle with the same four-velocity u as the
observer. We can find the components relative to the laboratory frame by writing the vector in both
bases:

u = uµeµ = uµ̂eµ̂ = u0̂ u

c
, (1.68)

which implies
uµ̂ = (c, 0, 0, 0). (1.69)

Notice that uµ̂ has exactly the same components as it would if spacetime was flat. This is just what we
should expect of a physical basis, since in a sufficient small region spacetime always look flat. For two
observers with different velocity, but at the same location (at one particular moment) the components
of tensors relative to their physical bases are related by the Lorentz transformations. In other words,
special relativity is valid locally also in curved spacetime.

The orthonormal basis can be constructed as a linear combination of the coordinate basis vectors
in the usual way: eµ̂ = Mµ

µ̂eµ ≡ Mµ
µ̂∂µ, where Mµ

µ̂ is the coordinate basis component µ of the
orthonormal basis vector eµ̂, ie. Mµ

µ̂ = (eµ̂)µ. When the basis transformation is written on the
generic form in terms of the matrix Mµ

µ̂, the standard transformation law for (the components of)
arbitrary tensors, see (1.24), can be employed.

1.5.2 Local Lorentz frames

In the previous section we discussed the transformation from a coordinate basis to a (globally) or-
thonormal basis. This is an example of a basis transformation which is not associated with a coordi-
nate transformation. However, recall that there is always an unique coordinate basis associated with
a given coordinate system, ie. eµ ≡ ∂

∂xµ . Thus, associated with a coordinate transformation there is
always a corresponding transformation of the coordinate basis. In this section we shall see that it is
always possible to change to a coordinate system such that locally, at a point P , the coordinate basis is
orthonormal, ie. gµν(P ) = ηµν . This assertion is part of a larger theorem which is sometimes called
the local flatness theorem. It states that the coordinates can be chosen such that in addition to being
orthonormal locally, the partial derivatives of the metric vanish:

Local flatness theorem: For any spacetime, there exists coordinates such that at an arbitrary point
P , the coordinate basis satisfies: gµν(P ) = ηµν and ∂αgµν(P ) = 0.

The local flatness theorem can be proved by Taylor expanding the standard transformation law for
the metric, see for example [8, ch.6.2]. The proof also shows that in general it is not possible to find
coordinates where also all the second order derivatives ∂α∂βgµν vanish. From special relativity we
know that a global Lorentz frame is associated with a coordinate system where gµν = ηµν everywhere.
The local flatness theorem shows that this is not possible in a curved spacetime. In curved spacetime
the closest we can get to a global Lorentz frame around a point P is therefore to introduce a coordinate
system where gµν(P ) = ηµν and ∂αgµν(P ) = 0. In this thesis I will refer to the coordinates of such a
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coordinate systems as geodesic coordinates10. This coordinate system is said to define a local Lorentz
frame. The local Lorentz frame represents the closest one can come to the global Lorentz frame of
special relativity (where gµν = ηµν everywhere). Later we will show that test particles only affected
by gravity has no acceleration in a local Lorentz frame. Thus, in general relativity, where gravity is
not interpreted as a force, the local Lorentz frame actually is a local inertial reference frame. This
means that the local Lorentz frame is the reference frame associated with freely falling (inertial) ob-
serverers. The local flatness theorem is conceptually interesting and important for the understanding
of spacetime geometry. It shows us that locally, in the infinitesimal neighborhood of a given point,
spacetime appear to be flat. This should not be a big surprise, as the equivalence principle tells us that
it is not possible for an un-accelerated observer by means of local experiments, to decide whether he
is in free fall in a gravitational field or in an inertial rest frame in flat spacetime.

It should be stressed that there is no unique local Lorentz frame associated with a given point.
Once a local Lorentz frame is chosen there is still freedom left to perform (local) Lorentz transforma-
tions. This ensures that the principle of relativity holds, ie. that physical laws are equal in all inertial
frames (which is local Lorentz frames in curved spacetime) and that the speed of light is invariant11.

We have seen that there are two ways to transform to orthonormal bases: pure basis transforma-
tions (section 1.5.1) and coordinate transformations. If you change to an orthonormal basis in order
to see the physical content of a tensorial quantity, it does not matter what method you choose, but the
former is often preferable as they can be done globally (while the latter only locally). If you want to
see the physical content of a non-tensorial quantity however, the latter method must be chosen. The
physical content of non-tensorial quantities can be found by changing to a special kind of coordinate
system associated with the proper reference frame of the observer. The local Lorentz frame is the
proper reference frame of an inertial observer. In chapter 5 we will see examples of more general
proper reference frames, where the observer may be accelerated or even rotating. It should be stressed
that for a tensorial quantity it does not matter whether the measurement is performed by an inertial
observer or not. The accelerated observer will measure the same as an inertial observer with the same
(instantaneous) velocity.

As a concluding remark, let us comment on the role of coordinates again. In special relativity the
terms ‘observer’, ‘coordinates’ and ‘reference frame’ are often used interchangeably. In flat spacetime
they, roughly speaking, describe the same thing. This is at least correct when we restrict ourselves
to the Poincare group (which we, practically speaking, always do in special relativity). Given an
observer there is automatically an associated coordinate system. This coordinate system defines the
global Lorentz/inertial frame of the observer. In curved spacetime however, coordinates are in general
not associated with observers and their reference frames, but the local flatness theorem tells us that it
is at least always possible to introduce a coordinate system which locally defines an inertial frame of
reference (ie. a local Lorentz frame).

10Some authors call it Riemannian normal coordinates.
11Please note that the principle of relativity is not more general in general relativity than in special relativity. There is

only one principle of relativity! The only difference in curved spacetime is that reference frames can only be defined locally.
The principle of relativity is therefore a local principle in curved spacetime, while it is a global principle in flat spacetime.
The only thing that is more ‘general’ in general relativity is that it accounts for more general geometries than the Minkowski
geometry. Several relativists actually do not like the name ‘general relativity’, and argue that geometrodynamics would be a
much better name. This name reflects the essence of Einteins theory: the dynamic interaction between of matter fields and
spacetime geometry.
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1.5.3 Coordinate time versus proper time

We have already defined the proper time as the time measured on a comoving standard clock. The
proper time should not be confused with the time coordinate x0 = ct in the line element. The “clock”
related to the x0 coordinate is often called the coordinate clock. The coordinate clock can be adjusted
such that it ticks at another rate of course, this is simply a coordinate transformation. Thus the time
measured on a coordinate clock has no significance as a measure of proper time intervals. Standard
clocks however, can by definition never be adjusted, their fate is to give the proper time along a par-
ticular path. It is still possible to give the coordinate time a physical interpretation though. Very often
coordinates are chosen such that limr→∞ gµν = ηµν . Spacetimes where there exist such coordinates
are called asymptotic Minkowskian spacetimes. In such spacetimes we therefore have the limit

−c2dt2 + dx2 + dy2 + dz2 = −c2dτ2 (1.70)

far away from the gravitational system. For standard clocks at rest in the coordinate system we have
dx = dy = dz = 0 and the line-element gives dt = dτ . Thus, for asymptotic Minkowskian
spacetimes (such as the Schwarzschild spacetime), the time coordinate clock can be interpreted as the
time measured on a standard clock at rest at infinity in the coordinate system.

1.6 Curvature

As soon as the manifold was defined, we where able to define functions, tensors, and parametrized
paths on it. The geometry of the manifold, in the sense of well defined path lengths, needed additional
structure, namely the metric tensor, to be well defined. Now the time has come to introduce more
mathematical structure, the curvature tensor. First we need to introduce the connection, a mathemati-
cal structure which depends on the metric, but is not a tensor.

1.6.1 Covariant differentiation

Consider the partial derivative ∂νV µ, where V µ is a
(

1
0

)
tensor. This looks like a mixed tensor of rank(

1
1

)
since there is one upper and one lower index. It actually fails to be a tensor though, since it does

not transform as a tensor:

∂ν′V
µ′ =

∂xν

∂xν′
∂ν

(
∂xµ

′

∂xµ
V µ

)

=
∂xν

∂xν′
∂xµ

′

∂xµ
∂νV

µ +
∂xν

∂xν′
∂2xµ

′

∂xν∂xµ
V µ.

(1.71)

The last term (in the last line) would not have appeared if ∂νV µ was a tensor. When formulating
physical laws in curved spacetime we can therefore not use the partial derivative in equations. This is
forbidden by the principle of general covariance, which states that the formulation of a physical law
shall not depend on the choice of coordinates. What we need is the covariant derivative, an operator
which transforms as a tensor an reduces to the usual derivative operator in Cartesian coordinates in
flat spacetime. The covariant derivative operator D maps a

(
k
l

)
tensor to a

(
k
l+1

)
tensor. Thus DV is

a
(

1
1

)
tensor with components (DV)µν ≡ DνV

µ, one contravariant index specifying which component
of the vector, and one covariant index specifying the direction of the derivative. The components of
the covariant derivative of the vector field V is defined

DνV
µ ≡ ∂νV µ + ΓµνλV

λ, (1.72)
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where ΓµνλV
λ is called the connection coefficients. Since the covariant derivative transform according

to the standard transformation law for a tensor

Dν′V
µ′ =

∂xµ
′

∂xµ
∂xν

∂xν′
DνV

µ, (1.73)

the connection coefficients must transform as

Γµ
′

ν′λ′ =
∂xν

∂xν′
∂xµ

′

∂xµ
∂xλ

∂xλ′
Γµνλ −

∂xν

∂xν′
∂xλ

∂xλ′
∂2xµ

′

∂xν∂xλ
, (1.74)

which is easy to show by inserting (1.71) and (1.72) into (1.73) and solving the equation for Γµ
′

ν′λ′ .
This is clearly not the transformation law for a tensor, due to the appearance of the last term on the
right hand side of (1.74), which shows that the connection coefficients are not the components of a
tensor object. It is the combination of the partial derivative and the connection coefficients, ie. the
covariant derivative defined by (1.72), which becomes a true tensor. The transformation law for the
connection coefficients can be reformulated

Γµ
′

ν′λ′ =
∂xν

∂xν′
∂xµ

′

∂xµ
∂xλ

∂xλ′
Γµνλ +

∂xµ
′

∂xµ
∂2xµ

∂xν′∂xλ′
, (1.75)

by solving (1.74) for Γµνλ and then interchanging the convention for which coordinates to be written
with primed indices12.

The (components of the) covariant derivative of a tensor of rank
(
k
l

)
is defined

DαT
µ1µ2...µk

ν1ν2...νk
= ∂αT

µ1µ2...µk
ν1ν2...νk

+ Γµ1αλT
λµ2...µk

ν1ν2...νk
+ Γµ2αλT

µ1λ...µk
ν1ν2...νk

+ . . .

− Γλαν1T
µ1µ2...µk

λν2...νk
− Γλαν2T

µ1µ2...µk
ν1λ...νk

− . . .
(1.76)

Hence the covariant derivative equals the partial derivative plus one term for each free index. Notice
the minus sign in the terms associated with the covariant indices of T . For example, the covariant
derivative of a one form has components

Dνuµ = ∂νuµ − Γλνµuλ. (1.77)

The covariant derivative of a scalar field, which is a object with no free indices, equals the partial
derivative. All this follows naturally from the transformation law of tensors, see for example [5, ch.3]
for more details. In the following we will usually consider the special case of a vector field, but the
generalization to a tensor field of arbitrary rank is given by proper index placement together with
(1.76).

So far we have only considered the covariant derivative along the coordinate axes. We will now
generalize to covariant derivatives along an arbitrary curve xµ(λ). Just like the ordinary directional
derivative along xµ(λ) is dV µ

dλ ≡ uν∂νV µ, we define the covariant directional derivative

DV µ

dλ
≡ uνDνV

µ, (1.78)

where uν ≡ dxµ

dλ is the tangent vector field to the curve. Note that the covariant directional derivative
of a vector defines another vector field along the curve xµ(λ). In general we have that the covariant

12It is totally arbitrary, of course, what we choose as primed indices. The essential point is that the primed and the
unprimed indices refer to different coordinate systems.
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directional derivative of a tensor T of rank
(
k
l

)
is a new tensor of the same rank. This is contrary to

the covariant derivative of T , which is a
(
k
l+1

)
tensor. What we have called the covariant derivative

of T , denoted DT, actually is the gradient of T . The covariant derivative, like any gradient, can
be thought of as a derivative in an unspecified direction. A particular curve needs to be specified
before the gradient becomes a derivative13. We see that the relation between the covariant derivative
(1.72) and the covariant directional derivative (1.78) simply is that the latter is the result when the
former is contracted with respect to the tangent vector uµ. It may be rewarding to introduce abstract
notation also for the covariant directional derivative. We simply state that that D

dλT
α1...αk

β1...βl
are the

components of the tensor DuT , just like DµT
α1...αk

β1...βl
are the components of DT . The relation

between DT and DuT is then defined

DuT ≡ DT ( , , . . . ,u), (1.79)

ie. DT is the tensor which take the tangent vector u as input and has the corresponding covariant
directional derivative DuT as output. Note that (1.78) can be rewritten

DuV ≡ (uνDνV
µ) eµ. (1.80)

1.6.2 The Christoffel connection

So far we have just analyzed the transformation properties of the connection coefficients without giv-
ing an explicit definition of them in terms of the metric. The transformation law in itself is not enough
to give an unique definition of the connection coefficients. It is possible to give several different def-
initions of the connection coefficients which all transform according to (1.74). What we would like
though, is an unique definition. To get rid of the ambiguity we must impose a new condition. In flat
spaces, the partial derivatives transform as tensors if we choose Cartesian coordinates. Thus the con-
nection coefficients are all zero in Cartesian coordinates in flat spaces. We now impose the condition
that in curved spacetime the same should hold in a local Lorentz frame, ie. that Γµνλ(P ) = 0 in a
coordinate system where gµν(P ) = ηµν and ∂σgµν(P ) = 0. This is a natural condition from the
point of view that the local Lorentz frame is the closest we can get to the global Lorentz frames of flat
spacetime. The condition is implemented by demanding

Dg = 0, (1.81)

which is called the condition of metric compability. The metric tensor is therefore sometimes called
‘covariant constant’. Equation (1.81) is an example of a coordinate independent statement, and the
notation is sometimes called abstract notation. In a coordinate basis, the statement (1.81) takes the
form of a component equation:

Dαgµν = 0. (1.82)

From this condition we will now derive an unique expression for the connection coefficients, and
verify that they all vanish in a local Lorentz frame. It turns out that the expression for the connection
coefficients simplifies much in a coordinate basis. In my subsequent work I will not make use of the
most general expression, therefore I will restrict the derivation to coordinate bases. Actually, what I
will derive is the Christoffel connection, which is the name for the connection in a coordinate basis.

13Some texts, for example [1], consequently use the name ‘gradient’ on the object we call covariant derivative, and the
name ‘covariant derivative’ on the object we call a covariant directional derivative. More often than not though, authors just
tend to call it ‘covariant derivative’ altogether, and the context determines what is meant.
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It turns out that the Christoffel connection, in contrast to the general case, is symmetric in the lower
indices, ie. Γλµν = Γλνµ. This follows straight away from the condition that the Christoffel symbol
vanish in a local Lorentz frame. Transforming from geodesic coordinates (where Γλµν(P ) = 0) to
arbitrary coordinates we get

Γµ
′

ν′λ′(P ) =
∂xµ

′

∂xµ
∂2xµ

∂xν′∂xλ′
, (1.83)

according to (1.75). Since partial derivatives commute, ie. ∂ν′∂λ′ = ∂λ′∂ν′ , and the point P is
arbitrary, the symmetry is shown explicitly. We will make use of this symmetry property in the
derivation of the Christoffel symbol. The symmetry should therefore be regarded as an axiom of the
derivation14.

By using (1.76) equation (1.82) can be rewritten

Dαgµν = ∂αgµν − Γλαµgλν − Γλανgµλ = 0. (1.84)

Solving this equation for the Christoffel connection we get the unique expression we have sought
after. By permuting indices (1.84) can also be written:

Dµgνα = ∂µgνα − Γλµνgλα − Γλµαgνλ = 0,

Dνgαµ = ∂νgαµ − Γλναgλµ − Γλνµgαλ = 0.
(1.85)

Subtracting the second and third of these permutations from (1.84) and using that the metric is sym-
metric (always), and that the connection coefficients are symmetric in the lower indices (only in coor-
dinate basis) we get

2Γλµνgαλ = ∂µgνα + ∂νgµα − ∂αgµν . (1.86)

By multiplying the equation with gασ and using gαλgασ = δσλ we finally get our sought after expres-
sion

Γλµν =
1

2
gλα (∂µgαν + ∂νgµα − ∂αgµν) . (1.87)

In a local Lorentz frame all partial derivatives of the metric vanish. Hence also (all components of)
the Christoffel connection vanish in a local Lorentz frame according to (1.87). Thus we have shown
that metric compability is equivalent to the desired condition of vanishing Christoffel connection in
a local Lorentz frame. The desired condition have given us a unique definition of the (Christoffel)
connection which is the one that is always used in general relativity (when working in a coordinate
basis).

1.6.3 Parallel transport

As pointed out in section 1.4.2, tensors at different locations belongs to different tangent spaces. It is
therefore not possible to define vector operations, such addition or the scalar product, between vectors
at different locations. What we need is parallel transport, which describes the change in a vector
when it is moved along a curve xµ(λ). Vectors at different locations can be compared first when they

14Our desired condition is of course that the Christoffel symbols vanish in a local Lorentz frame. Mathematically though,
I derive this as a consequence of metric compability. Since I also need to use the symmetry property in this derivation, it
should be taken as an axiom, and not as a consequence of what I am deriving! This axiom is related to the choice of a
torsion free connection in general relativity, a property often discussed in more detailed texts. Some authors prefer to pick
the condition of vanishing Christoffel symbols as the fundamental axiom. The point though, is that all this hang together,
metric compability (and a torsion free connection) is equivalent to vanishing Christoffel symbols in local Lorentz frames.
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are parallel transported to a common event in spacetime. With the Christoffel connection at hand, it
turns out that simple reasoning will lead us to the mathematical definition of parallel transport.

In flat spacetime with Cartesian coordinates, parallel transport is trivial. Just keep the components
of the vector constant as you move the vector around. The local Lorentz frames have showed us that
curved spacetime looks flat locally. Therefore we should expect that also in a local Lorentz frame,
parallel transport is given by keeping the components of the vector constant. Consider now parallel
transport of a vector V along a curve xν(λ), and let uν ≡ dxν

dλ be the field of tangent vectors to the
curve. We choose a point P along the curve with coordinates xν(λP ), and pick a coordinate system
which defines a local Lorentz frame at P , ie. gµν(P ) = ηµν and ∂αgµν(P ) = 0. The condition that
V µ is constant for an infinitesimal movement of the vector around P along the curve is satisfied if

dV µ

dλ

∣∣∣∣
λ=λP

= ∂νV
µuν |λ=λP

= 0. (1.88)

This is not a tensor expression and is only valid in this very special coordinate system. The coordinate
independent version of this expression is given by replacing the ordinary derivative with the covariant
derivative:

DV µ

dλ

∣∣∣∣
λ=λP

= DνV
µuν |λ=λP

= 0. (1.89)

In the considered coordinate system this expression is just the same as (1.88) as all the Christoffel
coefficients vanish at P . The big difference between (1.88) and (1.89) though, is that the latter is
valid in any coordinate system. Since the point P along the curve was arbitrary we get the following
definition of parallel transport:

DV µ

dλ
= uνDνV

µ = 0. (1.90)

This definition is the unique covariant expression which follows when demanding that parallel trans-
port have the same meaning in a local Lorentz frame as in flat spaces15. The procedure we followed is
actually given its own name, principle of minimal coupling. It states that a covariant equation valid in
flat spacetime, can be generalized to curved spacetime by the substitutions ∂µ → Dµ and ηµν → gµν .

Parallel transport defines a unique continuation of a vector along a given curve. Starting with a
vector V µ at a given point P this continuation along a curve xµ(λ) (with tangent vector field uν) is
defined by (1.90). The change of the vector when moving from a given point to another is not well
defined, but will depend on the chosen curve between the events. If a vector is parallel transported
along a closed curve back to the starting point, it may actually have changed depending on the path.
This is not a controversy, but as we shall see, perhaps the clearest characteristic of curvature.

An important consequence of choosing a metric compatible connection, is that the metric is always
parallel transported:

D

dλ
gµν =

dxα

dλ
Dαgµν = 0. (1.91)

The nice thing about this, is that inner products is always preserved when two vectors are parallel

15We motivated the definition of parallel transport from the pictorial idea of moving a vector around on the manifold.
From a mathematical point of view this might sound fuzzy. Some authors prefer to start with the definition itself rather than
the physical ideas behind. Parallel transport along xµ(λ) of a vector V at a point P is then just defined as the continuation
of V given by equation (1.90).
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transported along a common curve16:

D

dλ
(U ·V) =

D

dλ
(gµνU

µV ν)

=

(
D

dλ
gµν

)
UµV ν + gµν

(
D

dλ
Uµ
)
V ν + gµνU

µ

(
D

dλ
V ν

)
= 0.

(1.92)

On the second line, the first term vanish since the Christoffel connection is metric compatible, while
the second and the third term vanish since we consider parallel transport of the vectors. This means
that the norm of a vector (

√
U ·U), and the sense of orthogonality (U ·V = 0) is preserved under

parallel transport.
Equipped with the concept of parallel transport, we can now make a geometric interpretation of

the covariant directional derivative which is due to the mathematician Levi-Civita. Consider a vector
field V and a curve xµ(λ). Let V(λ) be short hand notation for V(xµ(λ)). Let V‖(λ + ∆λ) be the
vector V(λ+ ∆λ) parallel transported to xµ(λ) along the curve. The covariant derivative can then be
interpreted geometrically as

D

dλ
V(λ) = lim

∆λ→0

V‖(λ+ ∆λ)−V(λ)

∆λ
. (1.93)

The only difference from the definition of the ordinary derivative, is that the two vectors V(λ) and
V(λ+∆λ), which belong to different tangent planes, are parallel transported to the same event before
subtracted. In a local Lorentz frame the components of the vector remains constant under parallel
transport, and the definition becomes equal to the definition of the ordinary directional derivative.

With the concept of parallel transport at hand we can also give a geometric interpretation of the
connection coefficients. So far we have discussed them from a rather formal point of view, defining
them as the contribution which makes the covariant derivative transform as a tensor. Some authors
prefer to introduce the connection coefficients in terms of the following definition:

Dνeσ = Γµνσeµ. (1.94)

This shows that the connection coefficient is a measure of the change (ie. the twisting, turning,
expansion and contraction) of the basis vector field relative to parallel transport17. More precisely we
see from (1.94) that “Γµνσ is the eµ-direction-component of the change of the basis vector eσ in the
eν-direction”. The geometric interpretation of the connection also have consequences for our view of
covariant differentiation of course. Written out explicitly (1.80) becomes

DuV = uν∂νV
µeµ + uνV λΓµνλeµ. (1.95)

Inserting (1.94) this can be rewritten

DuV = uν∂νV
µeµ + V λuνDνeλ. (1.96)

This shows explicitly that the covariant derivative not only derivate the components of the vector,
but also takes account for the change of the basis vectors relative to parallel transport. The covariant
derivative may therefore be viewed as a generalized derivative operator which derivates tensors rather
than components.

16I have not showed that the usual product rule of differentiation applies to the covariant derivative of a contraction. But
I can ensure you it actually does, see for example [5, ch.3].

17Remember that if the covariant derivative of the basis vectors where zero they would be related by parallel transport
(along an arbitrary curve). The covariant derivative is thus a measure of the change relative to parallel transport.
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1.6.4 The geodesic equation

A test particle is a point particle not contributing to the gravitational field (spacetime curvature). A
(mass) distribution can be idealized as a test particle if its spatial extension and mass is small enough to
be neglected. According to general relativity, a test-particle only affected by gravity is a free moving
particle. Its motion is called geodesic motion. The observed three acceleration of such a particle is
just a manifestation of spacetime curvature.

A particle not influenced by any force follows a “straight line”. In Euclidean spaces a path xi(s)
defines a straight line if

d2xi

ds2
= 0, (1.97)

where the parameter s is the path length of the curve. Consider a parameter λ related to the path length
by λ = c1s+ c2, where c1 and c2 are constants. Equation (1.97) then implies

d

dλ

dxi

dλ
= 0. (1.98)

Thus we can say that in Euclidean space, a curve xi(λ) defines a straight line if the tangent vectors dxi

dλ
are constant (as long as the parameter λ is related to the path length as explained above). Generalizing
this equation to curved spacetime means that the ordinary derivative must be replaced by the covariant
(directional) derivative. Thus a straight line is a path whose tangent vectors are related by parallel
transport:

D

dλ

dxµ

dλ
= 0. (1.99)

This can be rewritten
d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
, (1.100)

which is called the geodesic equation. The invariant parameter λ in this equation must be related to
the proper time τ by λ = c1τ + c2. A parameter related to the proper time in this way, is called an
affine parameter. These are the only parameters suited to solve the geodesic equation on the standard
form of (1.100). Note that the derivation of the geodesic equation is not restricted to a time-like path
(although these are of particular interest since they define the paths of free moving test particles). The
geodesic equation can therefore also be used to calculate space-like geodesics as long as the parameter
λ relates to s, which is a measure of the path length, in the same way as it relates to the proper time τ
for a time-like curve18.

Note that if all the connection coefficients vanish the geodesic equation gives d2xµ

dλ2
= 0, ie. no

coordinate acceleration. Thus, in a local Lorentz frame, where all the components of the Christoffel
connection is zero, there is no observed acceleration. In general relativity, an inertial frame is a
reference frame where the three-acceleration of a test particle only influenced by gravity is zero.
An inertial frame is therefore a freely falling frame. Metric compatibility is therefore equivalent to
demanding that the local inertial frames of curved spacetime actually is the local Lorentz frame. The
equivalence principle suggests that there should be a local inertial frame also in curved spacetime.
Now we have identified the local inertial frame as the local Lorentz frame. It is quite pleasant that
the local Lorentz frame, which is the closest thing we can get to the global Lorentz frame of flat
spacetime, actually is the same thing as the local inertial frame! Metric compability is therefore the
natural condition when searching for a unique definition for the connection in general relativity!

18It should be noted that there also exist a family of parameters such that the geodesic equation solves light-like geodesics.
These parameters are not related to the distance though, since the path length of a light-like curve is vanishing by definition.
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In special relativity the vector d2xµ

dτ2
is called the four acceleration. It should be stressed that in

curved spacetime d2xµ

dλ2
is not a vector at all, since it is a linear combination of the tangent vector

uµ = dxµ

dλ (which is a vector) and the Christoffel connection (which is not a vector). In curved
spacetime the vector quantity associated with the acceleration is Aµ = D

dλ
dxµ

dλ , or in abstract notation
Duu. In curved spacetime it is the vector Aµ which is called the four-acceleration, not d

2xµ

dλ2
19. The

tangent vector uµ = dxµ

dλ though, is a vector both in curved and flat spacetime. The reason for this
is just that the coordinates are scalars, and from (1.76) we see that the ordinary derivative of scalars
coincide with the covariant derivative (since a scalar has no free indices)20. It should also be noted that
the deeper reason for d

2xµ

dλ2
being a tensor in special relativity, is that the transformations are restricted

to the Poincare group, ie. transformations between inertial frames. It then follows from first principle
that d

2xµ

dλ2
transforms as a tensor:

d2xµ
′

dλ2
=

d

dλ

dxµ
′

dλ
=

d

dλ

(
∂xµ

′

∂xµ
dxµ

dλ

)
=
∂xµ

′

∂xµ
d2xµ

dλ2
, (1.101)

where in the last step has used the fact that the Poincare transformation is constant in spacetime, ie.
d
dλ

∂xµ
′

∂xµ = 0. Sometimes more general transformations is studied even in flat spacetime21. In that case

the transformation matrix ∂xµ
′

∂xµ may not be constant. This means that also in flat spacetime, d
2xµ

dλ2
is

only a vector under the transformations of the Poincare group. If one chooses to study more general
coordinate transformations, the four-acceleration must be generalized to Aµ = D

dλ
dxµ

dλ , just like in
curved spacetime22.

Lagrangian formalism There is also another route to the kinematics of curved spacetime. As shown
in any textbook of general relativity, the geodesic equation can also be derived from the variational
principle (ie. δs′ = 0) by varying the action

s′ =

∫ λ2

λ1

dλ
√
−gµν ẋµẋν , (1.102)

where ẋµ = dxµ

dλ . Note that s′ is the path length of the curve xµ(λ) from λ1 to λ2. Varying the action
s′ gives the same result as varying the action

s =

∫ λ2

λ1

L, (1.103)

19Note that according to (1.99) a free particle has vanishing four acceleration, ie. Aµ = 0.
20To avoid confusion it should be stressed that even though the coordinates xµ is written with an upper index, it is by

no means any
(
1
0

)
tensor. It is a scalar, a

(
0
0

)
tensor. xµ should be thought of as four different functions of the spacetime

position, not as the components of a position vector. Remember that the notion of a position vector is only meaningful in
flat spaces, not in curved, where all vectors live in tangent spaces (actually they live in tangent spaces in flat spaces to, but
the concept of a position vector is nevertheless a useful concept in flat spaces)). In the language of differential forms it is a
0-form.

21In the literature an often studied example are so called hyperbolically accelerated reference frames
22There is no general agreement whether general coordinate transformations in Minkowski spacetime belongs to general

relativity or special relativity. I prefer to classify it as special relativity, since general relativity really is about how matter
fields creates spacetime curvature, and how the matter fields in the next turn respond to the curvature. Allthough it is
correct that a general coordinate transformation demands the introduction of some tools which characterize the framework
of general relativity (like a non vanishing connection), the spacetime remains flat, and I call it special relativity.
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where
L = L(xµ, ẋµ) =

1

2
u · u =

1

2
gµν ẋ

µẋν . (1.104)

We prefer the latter convention since it simplifies calculations. Varying the action s leads to the
covariant Euler-Lagrange equations:

∂L

∂xµ
− d

dλ

∂L

∂ẋµ
= 0. (1.105)

Solving this equation gives back the geodesic equations. This means that geodesics are paths of ex-
tremal length, ie. that the particle follow the path between two events which give (local) maxima for
the proper time. Covariant Lagrange dynamics give us another strategy to calculate particle trajecto-
ries. Instead of solving the geodesic equation, which is a second order non-linear differential equation,
we can use standard strategies for solving the covariant Lagrange equations. A specific coordinate xµ

is called a cyclic coordinate if it satisfy ∂L
∂xµ = 0. If xµ is a cyclic coordinate it follows from the

Euler-Lagrange equation that the conjugate momentum

pµ ≡
∂L

∂ẋµ
(1.106)

is a constant of motion. Covariant Lagrange dynamics is therefore well suited for situations with
symmetries in the Lagrangian. When solving the equations, the four-velocity identities (1.50) may
be useful. Finally note that the Lagrangian (1.104) can be written down almost directly from the line
element:

ds2 = gµνdx
µdxν = gµν ẋ

µẋνdλ2 = 2Ldλ2. (1.107)

Note that we have only considered material particles so far. For completeness let me briefly
comment on the situation for a photon. The geodesic equation is also valid for a photon as far as we
choose a suitable invariant parameter λ (we cannot choose the proper time in the case of a photon,
since the path length of a light like geodesic is zero). Regarding the Euler-Lagrange equations, the
Lagrangian 1.104 must be replaced by

L =
1

2
P ·P =

1

2
gµνP

µP ν , (1.108)

where P is the four momentum of the photon which in an orthonormal basis have components

P µ̂ = (
E

c
,p), (1.109)

where E is the energy and p is the three momentum of the photon in that frame.

1.6.5 The Riemann curvature tensor

With the Christoffel connection defined, we are now ready to introduce a new piece of mathematical
structure to the manifold, the Riemann curvature tensor. Curvature is characterized by this tensor.
This section is not very detailed, and instead of writing out all derivations, I will refer to a few textbook
references. As with the connection, everything here is restricted to a coordinate basis.

In a coordinate basis the Riemann curvature tensor is defined by

R( ,A,u,v) = (DuDv −DvDu) A, (1.110)
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From this equation we see that the Riemann tensor is a map from three vectors to a new vector, ie. a(
1
3

)
tensor. We find the components of the Riemann tensor by the usual method. Writing the the tensor

out on the generic form

R = Rµναβeµ ⊗wν ⊗wα ⊗wβ, (1.111)

and letting it act on basis vectors, we find

Rµναβeµ = (DαDβ −DβDα) eν . (1.112)

Carrying out the differentiation23 one gets

Rµναβeµ =
(

ΓρνβΓµρα − ΓρναΓµρβ + ∂αΓµνβ − ∂βΓµνα

)
eµ. (1.113)

Thus the components of the Riemann tensor is

Rµναβ = ΓρνβΓµρα − ΓρναΓµρβ + ∂αΓµνβ − ∂βΓµνα. (1.114)

Equipped with the Riemann tensor the previously mentioned characteristics of curvature can be ex-
pressed quantitatively. We have for example mentioned that a vector parallel transported around a
closed path on a curved manifold will change. It is a standard textbook example to consider a vector
V µ at P parallel transported along a closed loop of infinitesimal size. It can then be shown that the
change in V µ is characterized by the Riemann tensor at P :

∆V κ =
1

2
∆AαβRκµβαV

µ, (1.115)

where ∆Aαβ is the area of the projection of the loop on the plane spanned by the coordinate lines xα

and xβ .
Another significance of the Riemann tensor, is that it is accociated with tidal forces arising from

inhomogeneities in the gravitational field. Consider two particles with four velocity uµ = dxµ

dτ which
are separated by the infinitesimal separation vector sµ. It can then be showed, see for example [4,
ch.21], that the acceleration four vector is given by

D2

dτ2
sµ = −Rµνσρuνsσuρ. (1.116)

The Riemann tensor, like any tensor, cannot be transformed away. If the tensor has no-vanishing
components in one coordinate system, it will have so in all coordinate systems. Similarly, if all com-
ponents of the tensor are zero in one coordinate system, it will be so in every coordinate system. This
follows directly from the fact that the new components are linear combinations of the old components
according to the transformation law for tensors. Tidal forces can therefore not be transformed away.
Gravitational (three) acceleration, however, which is associated with the Christoffel connection, can
be transformed away due to the fact that the connection is not a tensor. This corresponds to going into
a freely falling frame, ie. a local Lorentz frame.

23The first derivative is simply given by (1.94). The next derivative goes much like (1.96). See for example [7] for more
details.
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1.7 The Einstein field equation

Einstein’s insight was that gravitation is not a force, in the conventional sense, but a manifestation of
curved spacetime. In general relativity the source of spacetime curvature is matter and radiation fields.
The part of the theory describing the production of spacetime curvature we refer to as the dynamics
of general relativity. Matter and radiation fields in the next turn responds back to the curvature of
spacetime. The part of the theory defining the motion of fields (and particles) in a curved spacetime
background, we refer to as the kinematics of the theory. General relativity is founded on a single
equation, the Einstein field equation, which defines both the dynamics and the kinematics of the
theory. By geometric methods we have already found the kinematics of a test particle, ie. the geodesic
equation. The Einstein field equation however, is not restricted to the special case of a test particle, but
defines the evolution of an arbitrary system which might even be massive enough to be self gravitating.
We will see that in the special case of a test particle, Einstein’s field equation can be used to derive the
geodesic equation.

The previous chapters have been quite detailed. The purpose was to give a good introduction to
the conceptual and mathematical foundation of the theory. These chapters are actually not only the
prerequisites for general relativity, but in fact for any theory explaining gravity from the geometric
point of view. The best known alternative to general relativity is the Brans-Dicke theory. The sim-
ilarities between these competing theories, is that neither of them introduce a conventional force to
explain the kinematics, but explain it as a manifestation of spacetime curvature. The difference lays
in the dynamics, ie. the theories do not agree on the curvature produced by a given field. Among
these theories, general relativity has become the standard theory, not because of uniqueness, but be-
cause of its simplicity. It is by far the simplest theory consistent with observations so far. We can
say that the previous chapters outline the basic prerequisites for understanding gravity as a geometric
phenomenon, while this chapter introduce the simplest realization of these ideas. From the concep-
tual point of view, the previous chapters can therefore be regarded as more important than this one.
For this reason we will take a much more pragmatic approach here, focusing on what will be really
necessary for my subsequent work.

1.7.1 The energy-momentum tensor

Like the gravitational field couples to the scalar quantity mass in Newton’s theory, it couples to a
symmetric tensor of rank 2 which is called the energy-momentum tensor in Einstein’s theory. The
energy-momentum tensor describes material characteristics as energy density, energy flux, shear
forces, pressure and stress. In a local reference frame (with basis vectors eµ̂) the components of
the energy-momentum tensor

T µ̂ν̂ ≡ T (eµ̂, eν̂) (1.117)

have the following physical significance:

T 0̂0̂ = energy density.

T 0̂̂i = energy flux in direction i.

T ij = the ith component of the force per unit area exerted

across a surface with normal in the j direction.

(1.118)

Notice that the spatial components T ij is just the stress tensor of classical mechanics. The diagonal
elements of T ij are called normal stress, while the off-diagonal elements shear stress. The normal
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stress is called pressure if it is independent of direction, ie. if all diagonal components are equal in
the rest-frame of the fluid. Allthough material fields are usually build up by particles, we idealize
them as fluids, ie. a continuous matter distribution. We will now take a look at the energy-momentum
tensor of some fluids which will be important in my later work. A perfect fluid is a fluid which can be
characterized completely by its pressure and energy content. Dust is defined as a pressure-less perfect
fluid.

Dust Since there are no internal forces in dust, it is characterized solely by its energy content. We
define ρ to be the mass density, and hence ρc2 the energy density, of the fluid as measured (locally) in
the rest-frame of the fluid. In this frame the only non-vanishing component of the energy-momentum
tensor is T 0̂0̂ = ρc2. We need a coordinate independent expression though. Since the four velocity
has components uµ̂ = (c, 0, 0, 0) in this special Lorentz frame (see (1.69)), we have T µ̂ν̂ = ρuµ̂uν̂

and hence the covariant expression for the energy-momentum tensor for dust becomes

Tµν = ρuµuν . (1.119)

Let us consider a local reference frame not comoving in the fluid, and verify that the physical signif-
icance of the components still is as defined by (1.118). If the fluid has velocity v in the x direction
according to this local reference frame, the four velocity will have components24 uµ̂ = (γc, γv, 0, 0),
where γ = 1/

√
1− v2/c2. In this frame the energy-momentum tensor will have components

T µ̂ν̂ =


γ2ρc2 γ2ρcv1 0 0
γ2ρcv1 γ2ρv1v1 0 0

0 0 0 0
0 0 0 0

 . (1.120)

This is just the components we are expecting. Consider for example the component T 0̂0̂. In a comov-
ing Lorentz frame the energy density is ρc2. In this non-comoving frame however, there must be an
additional factor of γ2. One of them is due to the relativistic energy formula (E = γmc2), while the
other one comes from length contraction of the volume (remember we are considering energy density,
energy content divided by volume).

Perfect fluid A perfect fluid can be characterized completely by its energy content and pressure.
Such a fluid looks isotropic in its rest frame, ie. in a comoving local reference frame. It can be shown
that a perfect fluid has no heat transport or viscosity25. Defining p to be the pressure measured in the
rest frame of the fluid, the energy-momentum tensor have components

T µ̂ν̂ = diag(ρc2, p, p, p) (1.121)

in this frame. The covariant expression is

Tµν =
(
ρ+

p

c2

)
uµuν + pgµν . (1.122)

24In a local reference frame, expressions from special relativity hold. This follows directly from the fact that gµν = ηµν
locally in this coordinate system. Consider for example the four velocity uµ ≡ dxµ

dτ
. In an arbitrary coordinate system it

holds that uµ = dxµ

dt
dt
dτ

. Assuming dy
dt

= dz
dt

= 0, we get (from the line element) dt
dτ

= 1√
−g00−g11 v

2

c2

, where v = dx
dt

.

In a local reference frame we have g00 = −1 and g11 = 1, which gives the familiar expression from special relativity, ie.
uµ̂ = (γc, γv, 0, 0).

25Viscosity characterize the “thickness” of a fluid, ie. a measure of its resistance.



1.7. THE EINSTEIN FIELD EQUATION 35

In the following work I will use the perfect fluid as model for matter. This is a good model for fluids
with negligible shear stress, heat transport and viscosity. The model is an average of the considered
properties (ρ and p) over scales that are large compared to atomic scales.

Energy and momentum conservation In flat spacetime energy and momentum conservation is
defined by the four equations

∂µT
µν = 0, (1.123)

where the zero component express energy conservation and the other momentum. This can be proved
for each kind of field individually by applying the relevant dynamic equation. We can generalize this
law to curved spacetime, by the standard procedure. First make use of the equivalence principle to
claim that the conservation law should take the same form in a local Lorentz frame as in the global
Lorentz frame of flat spacetime. Then use the fact that the Christoffel connection vanish locally in this
frame, to rewrite from partial derivative to covariant derivative. This gives an expression valid in an
arbitrary coordinate system. As already explained, all these steps are implemented simply by replacing
partial derivatives with covariant derivatives, and the Minkowski metric with a general metric. Hence
in curved spacetime we have the covariant expression

DµT
µν = 0. (1.124)

It should be commented that this only expresses a local conservation law for energy and momentum
(since it reduces to (1.123) only in a local Lorentz frame). In flat spacetime the equation can be
integrated up to give a global conservation law. Not so in curved spacetime where there is in general
no conservation law for energy and momentum. The energy and momentum will change in response
to a dynamic spacetime curvature, and this evolution is defined by (1.124).

1.7.2 Einstein’s field equations

Einstein’s field equation read:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.125)

where Rµν and R are called the Ricci tensor and Ricci scalar respectively. These tensors are formed
out of contraction of the Riemann curvature tensor, and defined by

Rµν ≡ Rαµαν (1.126)

and
R ≡ gµνRµν . (1.127)

The sum of tensors on the left-hand side of (1.125) is often referred to as Einstein’s curvature tensor
or only Einstein’s tensor:

Eµν = Rµν −
1

2
gµνR. (1.128)

The field equation can also be re-formulated on an equivalent form which is often convenient. Taking
the trace of (1.125) we get

R = −8πG

c4
T. (1.129)

Inserting this back into (1.125) we get

Rµν =
8πG

c4
(Tµν −

1

2
gµνT ). (1.130)
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I will make use of this formulation of the field equation in my sub-sequent work.
Einstein’s field equation relates the curvature of spacetime, represented by the left-hand side of

(1.125), to the energy-momentum tensor. All kinds of matter and radiation contributes to the energy-
momentum tensor. The energy associated with the gravitational field itself however, does not con-
tribute. Indeed, the common perception today, is that it is impossible to set up a covariant expression
for the energy-momentum tensor of the gravitational field. Finding a covariant expression for the
energy-momentum tensor of the gravitational field was the subject of intense research for several
decades. This expression was supposed to be included on the right-hand side of the field equation
together with -and on equal footing as- the energy-momentum tensors for matter and radiation fields.
The (possible) non-existence of such an expression does not mean that there is no contribution to the
gravitational field from the energy of the gravitational field itself though. The common view today is
that the field equation itself automatically takes account of such non-linear self coupling.

The Einstein equation is ten non-linear partial differential equations for the symmetric metric ten-
sor gµν . Non-linear differential equations are usually extremely hard to solve analytically. Einstein’s
field equation is no exception, and there exist no (known) general solution. Analytic solutions only
exist in simple special cases with much symmetry. This is the reason why perturbation theory is so
important in general relativity.

The ten equations are not all independent, but related by the four equations:

Dµ

(
Rµν − 1

2
gµνR

)
= 0. (1.131)

These equations follows from an important relation in differential geometry called Bianchi’s second
identity26. This means that Einstein’s equation’s are really only 10 − 4 = 6 independent equations
for the 10 independent components of the symmetric metric tensor. The four degrees of ambigu-
ity, corresponds exactly to the freedom in choice of coordinates27. Note that (1.131) can be written
DµE

µν = 0. A direct consequence of this is that the local law for energy and momentum conservation
-equation (1.124)- follow as an consequence of the field equation (1.125). Einstein demanded that this
law should follow as an consequence of the field equations, and (1.125) is by far the simplest28 -and
therefore most natural- alternative.

1.7.3 The geodesic equation derived from the field equation.

In the previous section we noticed that DµT
µν = 0 follows as a consequence of Einstein’s field

equation. This equation do not only imply a local conservation law for energy and momentum, but
also defines the kinematics of general relativity. In this section I will show that in the special case of
a test-particle, modeled as dust, this equation is reduced to the geodesic equation. At this point the
reader may wonder why I choose to do this in full detail when the rest of section 1.7 is so “sketchy”.
The reason is that I will make use of it in a later chapter, to show that linearized gravity cannot be
regarded a self-consistent theory of gravitation.

Inserting the energy-momentum tensor for dust (1.119) into (1.124) we get

uνDµ (ρuµ) + ρuµDµu
ν = 0. (1.132)

26The Bianchi identity is included in every textbook of differential geometry or general relativity. I will not bother with
it here though, since I make no use of it in my following work.

27Full freedom in choice of coordinates demands four degrees of freedom corresponding to the four coordinate transfor-
mations xµ → xµ

′
(x) possible in spacetime.

28Einstein initially tried Rµν ∝ Tµν as a possible candidate for a field equation, but soon rejected it since it was not
consistent with the local law for energy and momentum conservation.
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This begins to look like the geodesic equation on the form (1.99). What we need to show is that the
first term on the left-hand side is zero. Multiplying this equation with uν and using the four identity
uνuν = −c2 we get

−c2Dµ (ρuµ) + ρuµuνDµu
ν = 0. (1.133)

Covariant differentiation of the four velocity identity gives

uµDνu
µ + uµDνuµ = 0. (1.134)

It is easy to show that both terms on the left hand side are equal:

uµDνuµ = uµDν (gαµu
α) = uαDνu

α = uµDνu
µ, (1.135)

where in the second term we have used that the metric tensor is covariant constant, ie. Dνgαµ = 0.
Equation (1.134) therefore implies

uµDνu
µ = 0. (1.136)

Inserting this into (1.133) we get
Dµ (ρuµ) = 0. (1.137)

Inserting this back into (1.132) and dividing by ρ we get

uµDµu
ν = 0 (1.138)

which is equivalent to (1.99) -the geodesic equation!

1.7.4 The Schwartzschild solution

Most of my following work will make use of perturbative methods. It will be very convenient to
test my calculations (for sloppy errors) against known exact solutions. Here I will present, with no
derivation, such an solution.

In 1916, only a few months after Einstein’s field equation where published, Karl Schwarzschild
found the solution outside a non-rotating black hole. Today, this solution is known as the Schwarzschild
spacetime. In the so called Schwartzschild-coordinates, the line element takes the form

ds2 = −(1− Rs
r

)c2dt2 +
dr2

1− Rs
r

+ r2(dθ2 + sin2 θdφ2), (1.139)

where Rs ≡ 2GM
c2

is the so called Schwarzschild radius, and where M is the mass of the black
hole. Notice the coordinate singularity at the sphere r = Rs

29, which is called event-horizon of the
black whole. The Schwarzschild spacetime does not only describe the solution for a black whole,
but is the exterior solution, ie. the solution outside the mass distribution, of any spherical symmet-
ric non-rotating mass distribution. Let us comment on the significance of the coordinates, ie. the
Schwartzschild coordinates. Note that the Scwarzschild solution is asymptotic Minkowskian, which
means that -see chapter 1.5.3- the time coordinate ticks at the same rate as a standard clock at infinity
which is at rest in the coordinate system (ie. r → ∞ and dx = dy = dz = 0). Also note that the
radial coordinate r is not a measure of the proper distance from the origin, but rather is defined such
that the proper circumference of a circle at r is simply 2πr.

29This is a coordinate singularity, and not a physical singularity, which can be transformed away by a coordinate trans-
formation.
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The line element (1.139) is the Schwarzschild spacetime described on the standard form. It turns
out that these coordinates are not suited for comparison against my approximate solutions which
are isotropic in the spatial coordinates30. Therefore we will need to re-express the Schwarzschild
spacetime in isotropic coordinates. This can be implemented by a coordinate transformation of the
radial coordinate:

r → ρ =
1

2
(r − Rs

2
+
√
r2 −Rsr). (1.140)

Inverting this equation we get

r = ρ

(
1 +

Rs
4ρ

)2

, (1.141)

and hence

1− Rs
r

=

(
1− Rs

4ρ

)2

(
1 + Rs

4ρ

)2 . (1.142)

From (1.141) and (1.142) we get:

dr2

1− Rs
r

=

(
1 +

Rs
4ρ

)4

dρ2. (1.143)

Accordingly the line-element takes the form:

ds2 = −

(
1− Rs

4ρ

)2

(
1 + Rs

4ρ

)2 c
2dt2 +

(
1 +

Rs
4ρ

)4

(dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2). (1.144)

In coordinates x = ρ sin θ cosφ, y = ρ sin θ sinφ, and z = ρ cos θ this is written

ds2 = −

(
1− Rs

4ρ

)2

(
1 + Rs

4ρ

)2 c
2dt2 +

(
1 +

Rs
4ρ

)4

(dx2 + dy2 + dz2), (1.145)

where ρ2 = x2 + y2 + z2.
So far, there is no general solution the Einstein equation, but solutions can be obtained under

special circumstances, involving high degree of symmetry. Fortunately, a great part of the spacetimes
we want to describe, actually involves the needed symmetry, like the field outside a symmetric object
like a planet. However, a lot of interesting phenomenas can not be solved analytically and need to be
solved numerically. In the next chapter, we will discuss an approximation to the field equations, valid
in the weak-field regime (like in our solar system), which indeed have a general analytic solution.
This is the linear approximation.

30Isotropic spatial coordinates means coordinates where the spatial metric components are all equal.



Chapter 2

Linearized gravity

As exact analytic solutions to Einstein’s field equations are known only in simple special cases, pertur-
bative methods are very important in gravitational theory. In this chapter we shall introduce the very
simplest strategy for obtaining approximate solutions, namely linearization. By neglecting the non-
linear terms in the field equation, we will obtain the so called linearized field equation. By a suitable
choice of coordinates this equation takes the form of an inhomogeneous wave equation, the Helmholtz
equation, which has a general analytic solution. It turns out that this equation is precisely what follows
from a (quantum) field theoretical approach to gravity, if one demands a linear field equation and a
massless spin-2 particle (the graviton). This perspective was investigated by Feynmann, Gupta and
others in the early 60’s, see for example [10]. The resulting formalism is therefore often called the
linearized theory of gravity. It is not regarded as a serious candidate for a quantum theory of gravity
though, since such a theory is believed to be of non-linear nature1. After the formalism is derived,
we will explicitly show that linearized theory cannot be regarded as a self-consistent theory of gravity
(even not on the classical level). The name ‘linearized theory of gravity’ is therefore, at best, mislead-
ing. In our approach however, linearized theory is only an approximation to general relativity which
gives good accuracy in the case of weak gravitational fields. Nevertheless, we will adopt the standard
terminology of linearized theory (which is also often used in the full theory) which is clearly inspired
by the field-theoretical approach to gravity. As an example of such terminology we can mention the
standard (coordinate) transformation law for the metric which is called the ‘gauge symmetry’ of the
theory.

In my subsequent work, we will go beyond the accuracy provided by the linearized field equation,
but it will still play an important role as a tool for calculations.

2.1 Expansion around flat spacetime

The starting point of linearized theory is to expand the Einstein equation around the flat spacetime
metric. We therefore write:

gαβ(x) = ηαβ + hαβ(x). (2.1)

Notice that all the space and time dependence belongs to the function h(x), since the Minkowski
metric is constant. The basic idea is now to rewrite the Einstein equation in terms of hαβ and neglect

1From a quantum field perspective the linear nature of electrodynamics comes from the fact that the mediating boson,
the photon, does not couple back to the electromagnetic field since it is charge-less. In the gravitational case however, the
gravitational field bears the gravitational charge, which is energy. This non-linear nature of gravity is the field theoretical
reason for the Einstein equation being non-linear.

39
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all terms that are non-linear. The result is the so called linearized field equation. In general we can say
that the solutions to the linearized field equation are accurate to first order in hαβ . They are therefore
good approximations only in regions where hαβ � 1. It should be stressed that the linearized field
equation can be used in regions of the spacetime where the gravitational field is weak regardless of
whether the gravitational field is globally weak or not. Indeed, it is not possible, by measuring the
distant spacetime geometry of a given source, to discover whether that source has strong internal
gravity, or weak. See [1, ch.19.3] for details and further discussions.

Basically we treat hαβ as a perturbation of the Minkowski metric, and assume that |hαβ| � 1
(and |∂νhαβ| � 1). This assumption clearly restricts both the physical situation (ie. the gravitational
field must be weak enough to ensure that there exist some coordinate frame where hαβ � 1) and the
choice of coordinates (ie. we must, if it exists, choose a coordinate frame where hαβ << 1).

As we will show later, the perturbation hαβ does actually not transform according to the standard
transformation law for a covariant tensor of rank 2. It is therefore not a real tensor. Hence we must
clarify how to raise and lower the indices of hαβ . If the perturbation was a real tensor we would raise
and lower it with the metric, for example:

hαν = gαµhµν = ηαµhµν + hαµhµν . (2.2)

In linearized theory however, we would neglect the last term which is quadratic in the perturbation,
and the background metric ηµν (ηµν) would act as a raising (lowering) operator. Even though hµν
is not a real tensor, we follow the textbook tradition and define the background metric to act as a
raising/lowering operator:

hµν ≡ ηανhαµ = ηαµhαν . (2.3)

A consequence of this definition is that we cannot simply write the contravariant components of the
metric as gµν = ηµν + hµν . To find out how to expand the contravariant components of the metric
around the flat background, we write

gµν = ηµν +Xµν , (2.4)

where Xµν is a not yet determined function (of the same smallness as hµν of course). We then
determine Xµν from the relation which defines the contravariant components of the metric:

gµαgαν = δµν . (2.5)

Inserting (2.4) into (2.5) we get

δµν +Xµαηαν + ηµαhαν +O(h2) = δµν

Xµαηαν + ηµαhαν = 0

Xµ
ν + hµν = 0.

(2.6)

In the first step we have used that quadratic terms in the perturbation (O(h2)) are neglected in lin-
earized theory, and in the second step we have used the background to raise and lower the perturbation
(as defined above). Raising the indices again we get Xµν = −hµν , where hµν = ηµαηνβhαβ accord-
ing to our definition. We can therefore (see (2.4)) conclude that the contravariant expansion must be
defined by:

gµν = ηµν − hµν . (2.7)

This definition is consistent with the tradition to raise and lower the perturbation with the Minkowski
metric.
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2.2 Symmetries of linearized theory

In this section we will review the symmetries of linearized theory, and we will see that there is a clear
analogy to electrodynamics. As a reminder, we know that the full theory is invariant2 under arbitrary
coordinate transformations

xµ → xµ
′
(x), (2.8)

where xµ
′
(x) is an invertible and differentiable function of the old coordinates, and with a differen-

tiable inverse. Also remember the transformation law for the metric:

gµν → gµ′ν′ =
∂xα

∂xµ′
∂xβ

∂xν′
gαβ. (2.9)

Inspired by standard field theory, some authors calls this the gauge symmetry of general relativity.
This terminology suggests that there should be an associated conserved quantity. However, far as I
know, the only invariance under the transformations (2.9) is the form of tensors (and therefore co-
variant equations), ie. their functional dependence is preserved, while the numerical values of their
components will change. As far as I can see, there is therefore really no good reason at all to call (2.9)
a gauge symmetry. In the linearized theory however, there is a corresponding invariance, as we shall
soon see.

Let us now work out the relations in linearized theory corresponding to (2.8) and (2.9). We
have already imposed some condition on the coordinates by assuming a coordinate-frame where the
perturbation is small. This condition does however not uniquely fix the coordinates, and we can still
make small changes in the coordinates that leave ηµν unchanged, but makes small changes in hµν .
Linearized theory is invariant under so called infinitesimal coordinate transformations:

xµ → xµ
′
(x) = xµ + εµ(x), (2.10)

where εµ(x) are four arbitrary functions with partial derivatives ∂αεµ small enough to leave |hµ′ν′ | �
1 and |∂α′hµ′ν′ | � 1. From (2.9) we can now find the gauge symmetry of linearized gravity. First
note that

∂xα

∂xµ′
=

∂

∂xµ′
(xα

′ − εα(x)) = δαµ −
∂

∂xµ′
εα(x) = δαµ −

∂xβ

∂xµ′
∂

∂xβ
εα(x) = δαµ −

∂εα

∂xµ
, (2.11)

where the last step is correct to linear accuracy in εµ3. Inserting this into (2.9) we find, to linear order
in εµ:

gµ′ν′ = gµν −
∂εα

∂xµ
δβν gαβ −

∂εβ

∂xν
δαµgαβ = gµν −

∂εν
∂xµ

− ∂εµ
∂xν

. (2.12)

Thus the transformation of hµν under infinitesimal coordinate transformations is given by

hµν → hµ′ν′ = hµν −
∂εν
∂xµ

− ∂εµ
∂xν

. (2.13)

This is called the gauge transformation of linearized theory. Notice that hµν is not a real tensor, ie.
it does not transform according to the transformation law for a covariant tensor of rank two. Indeed,
if you insert hµν into the standard transformation law for a tensor, what you find, after neglecting all

2Here ‘invariant’ refers to the invariance of the form of all equations in general relativity, ie. it is a covariant theory.
3Notice that, in linearized theory, we can replace ∂µf and ∂µ′f by each other whenever f is a function of the same

smallness as hµν and the coordinates xµ and xµ
′

are related by infinitesimal coordinate transformations.
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higher order terms in the small quantities hµν and εα, is that hµν is invariant, ie. hµν → hµ′ν′ = hµν .
This is clearly not consistent with the result in equation (2.13), and hµν is not a real tensor.

The invariant quantity corresponding to the gauge transformation (2.13) is the linearized Riemann
tensor. This tensor has components

R
(1)
αβσρ =

1

2
(∂σ∂βhαρ + ∂α∂ρhβσ − ∂σ∂αhβρ − ∂β∂ρhασ) , (2.14)

see for example [1, eq.18.9]. It is a straightforward exercise to show that the components of this tensor
are unaffected by gauge transformations of the form (2.13). Since the exercise contains considerably
(but simple) algebra, let me just briefly give the recipe. First substitute ∂µ → ∂µ′ and hµν → hµ′ν′

into (2.14). There will be 8 terms on the form ∂σ′∂β′∂αερ (notice that one of the partial derivatives are
with respect to the old coordinates). To linearized accuracy this term can be replaced by ∂σ∂β∂αερ
(notice that now every partial derivatives are with respect to the old coordinates), which is accurate to
linearized order4. When this is done you can interchange the order of the partial derivatives, and as it
happens, the eight terms cancel exactly. Thus we have

R
(1)
αβσρ(x) = R

(1)
α′β′σ′ρ′(x

′). (2.15)

To linearized accuracy there is a real invariance5; the numerical values of the components of the
Riemann tensor are invariant! This justifies the terminology used in linearized theory, ie. calling (2.13)
a gauge transformation. In section (2.6) we shall see that there is a clear analogy to electrodynamics.

In the full theory, Poincare transformations have no special significance since there is (in gen-
eral) no global Minkowski background. In the linearized theory of gravity however, the coordinate
system is almost Minkowskian. It is therefore interesting to discuss the transformation properties of
hµν under Poincare transformations. Linearized theory is clearly not invariant under arbitrary Lorentz
transformations, but must be restricted to infinitesimal coordinate transformations, ie. those that does
not spoil the condition hµν � 1. Rotations never spoil this condition. Boosts however, can have arbi-
trary large gamma-factors, and must be limited to those that preserves the smallness of hµν . Also note
that nothing in the derivation is changed if we add a translation (a constant coordinate transforma-
tion), which means that linearized theory is invariant under the Poincare group (but with a restriction
on the boost). Having clarified these restrictions, let us consider the transformation properties of the
perturbation under Lorentz transformations:

gαβ(x) = ηαβ + hαβ(x)→ gα′β′(x
′) = Lαα′L

β
β′gαβ(x)

= Lαα′L
β
β′ηαβ + Lαα′L

β
β′hαβ(x)

= ηα′β′ + Lαα′L
β
β′hαβ(x).

(2.16)

Accordingly the perturbation transforms as an ordinary tensor under Lorentz transformations:

hαβ → hα′β′ = Lαα′L
β
β′hαβ. (2.17)

It turns out that the perturbation hµν , which in general is not a tensor, transform as a tensor in the
special case where the infinitesimal coordinate transformation is a Lorentz transformation.

4See footnote 3.
5In the full theory there is only an invariance of the form of the Riemann tensor, ie. its functional dependence on the

metric remains unchanged, but here, in linearized theory, there is a real invariance in the sense of numerical invariance of
the components.
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2.3 The linearized field equation

In this section we will derive the linearized field equation. First we introduce the notation

Γγαβ = Γ
γ(1)
αβ + Γ

γ(2)
αβ , (2.18)

where Γ
γ(1)
αβ is linear in hαβ and Γ

γ(2)
αβ is quadratic. According to the definition of the Christoffel

connection (1.87), we see that

Γ
γ(1)
αβ =

1

2
ηγδ [∂βhδα(x) + ∂αhδβ(x)− ∂δhαβ(x)] , (2.19)

since the Minkowski metric is constant. We will of course not need Γ
γ(2)
αβ in linearized theory, but for

later use we note that

Γ
γ(2)
αβ = −1

2
hγδ [∂βhδα(x) + ∂αhδβ(x)− ∂δhαβ(x)] , (2.20)

where the minus sign comes from the definition (2.7). Using the same kind of notation the linearized
Einstein equation can be written

E(1)
µν = R(1)

µν −
1

2
ηµνR

(1) =
8πG

c4
Tµν . (2.21)

What we need is therefore to linearize the Ricci tensor and the Ricci scalar. We start with the former.
From (1.114) and (1.126) we see that the Ricci tensor has components

Rαβ = ∂γΓγαβ − ∂βΓγαγ + ΓγαβΓδγδ − ΓγαδΓ
δ
βγ . (2.22)

The last two terms do not contribute toR(1)
αβ since Γ

γ(1)
αδ multiplied by itself is quadratic in hαβ . Hence

the linearized Ricci tensor has components

R
(1)
αβ = ∂γΓ

γ(1)
αβ − ∂βΓγ(1)

αγ

= −1

2
ηγδ∂γ∂δhαβ +

1

2
∂γ∂αη

γδhδβ +
1

2
∂β∂δη

γδhαγ −
1

2
ηγδ∂β∂αhδγ .

(2.23)

In the first term we recognize the d’Alembertian operator, ηγδ∂γ∂δ = − 1
c2
∂2
t +∇2 ≡ �. We also in-

troduce the notation h ≡ hγγ = ηγδhγδ, and refer to h as the ‘trace’ of hµν . Inserting the d’Alembertian
and raising indices with the background metric gives

R
(1)
αβ = −1

2
�hαβ +

1

2
∂γ∂αhγβ +

1

2
∂β∂

γhαγ −
1

2
∂α∂βh. (2.24)

The linearized Ricci scalar then becomes

R(1) ≡ ηαβR(1)
αβ = −�h+ ∂µ∂νhµν , (2.25)

and according to (2.21) the linearized Einstein tensor becomes:

E
(1)
αβ = −1

2
�hαβ +

1

2
∂γ∂αhγβ +

1

2
∂β∂

γhαγ −
1

2
∂α∂βh+

1

2
ηαβ�h−

1

2
ηαβ∂

µ∂νhµν . (2.26)
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We now introduce the so called “trace-reversed tensor”

hαβ = hαβ −
1

2
ηαβh. (2.27)

Notice that the inverse relation is similar, ie.

hαβ = hαβ −
1

2
ηαβh, (2.28)

which is easy to show by taking the trace of (2.27) and inserting the result back into the equation. In
this notation the linearized Einstein tensor simplifies to:

E
(1)
αβ = −1

2
�hαβ −

1

2
ηαβ∂

ρ∂σhρσ +
1

2
∂ρ∂βhαρ +

1

2
∂ρ∂αhβρ, (2.29)

which is straight forward to confirm by inserting (2.27). Finally we insert this into (2.21) and get

�hαβ + ηαβ∂
ρ∂σhρσ − ∂ρ∂βhαρ − ∂ρ∂αhβρ = −16πG

c4
Tαβ, (2.30)

which is the linearized field equation.

2.4 Lorentz gauge

In section 2.2 we figured out the gauge symmetry of linearized theory, see (2.13). As we will soon
proof, this gauge freedom can be used to choose the condition

∂νhµν = 0. (2.31)

We will follow the tradition to call this condition the Lorentz gauge, a name which comes from
the analogy to the condition with the same name in electrodynamics (∂µAµ = 0). In the Lorentz
gauge, the linearized field equation (2.30) simplifies considerably as three of the terms on left-hand
side vanish. Nothing happens on the right-hand side though, since the energy-momentum tensor
never depends explicitly on partial derivatives of the metric (see for example the energy-momentum
tensor for a perfect fluid (1.122)). Hence, in the Lorentz gauge, the linearized field equation (2.30) is
simplified to an inhomogeneous wave equation:

�hαβ = −16πG

c4
Tαβ. (2.32)

This is a very common differential equation in physics. The factor 1/c2 in the operator � tells that
the speed of gravity equals the speed of light c. The special retarded solution of (2.32) is

hαβ = 4
G

c4

∫
Tαβ(t−,x

′)

|x− x′| d3x′, (2.33)

where t− is short-hand notation for the retarded time

t− = t− |x− x′|
c

. (2.34)

It should be noted that the special retarded solution is not the only mathematical solution to the wave
equation (2.32). There is also an “advanced solution” where t− is replaced by t+ = t + |x−x′|

c in
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(2.33). The full mathematical solution of the wave equation (2.32) is a linear combination of the
special retarded solution (2.33) and the advanced solution. The latter is not acceptable as a physical
solution though, since it tells that the geometry of spacetime depends on the matter distribution in the
future! The special retarded solution on the other hand, is consistent with the principle of causality
and is therefore the physical interesting part of the mathematical solution.

Equations (2.30), (2.31) and (2.32) summarizes the formalism of linearized theory, and will be
much used in the following chapters. In my subsequent work I will also need the wave equation (2.32)
rewritten in terms of the perturbation hµν rather than the trace-reversed tensor hµν = hµν − 1

2ηµνh.
We use a bar to imply a corresponding operation on any other tensor. Notice that

hαβ = hαβ −
1

2
ηαβh = hαβ −

1

2
ηαβh = hαβ −

1

2
ηαβh−

1

2
(ηαβ −

1

2
ηαβ4)h = hαβ. (2.35)

The wave equation (2.32) can thus be rewritten6

�hαβ = −16πG

c4
Tαβ. (2.36)

This form of the linearized field equation is sometimes convenient as it is a differential equation for
hαβ rather then hαβ . We will make use of this later. Notice that (2.36) is the linearized theories’
version of (1.130).

Then, let us prove that it is always possible to choose a coordinate system where the Lorentz gauge
is satisfied, ie. a coordinate system where the linearized field equation takes the form of a simple wave
equation. In section 2.2 we showed that the gauge transformation of hµν under the symmetry group
of linearized theory is

hµν → hµ′ν′ = hµν −
∂εν
∂xµ

− ∂εµ
∂xν

. (2.37)

Acting on this relation with ηµν we find that the trace of hµν transforms as

h→ h′ = h− 2∂ρε
ρ, (2.38)

and therefore, in terms of hµν , the gauge transformation becomes

hµν → hµ′ν′ = hµν −
∂εν
∂xµ

− ∂εµ
∂xν

+ ηµν∂ρε
ρ. (2.39)

We now assume that, in a given coordinate system, ∂νhµν does not vanish, ie. the Lorentz gauge
condition is not satisfied. From (2.39) we see that an infinitesimal coordinate transformation xµ → xµ

′

changes this to

∂ν
′
hµ′ν′ = ∂νhµν − ∂ν

∂εν
∂xµ

−�εµ + ∂µ∂ρε
ρ = ∂νhµν −�εµ. (2.40)

Assuming that the Lorentz gauge condition is satisfied in the new coordinate system (ie. ∂ν
′
hµ′ν′ =

0), we get the condition
�εµ = ∂νhµν . (2.41)

This is just the inhomogeneous wave equation again! As already discussed, this equation always
admits solutions. Thus we have showed that it is always possible to choose coordinates such that the
linearized field equation takes the form of a simple (inhomogeneous) wave equation.

6The Minkowski metric ηαβ commutes with �.
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2.5 The Newtonian limit

As we have obtained the linearized field equation from the Einstein equation, we are ready to check
that there exists a Newtonian limit of general relativity. In terms of the gravitational potential U and
the mass density ρ of the source, Newton’s law of gravitation can be summarized as follows:

1. Mass generates gravitational potential according to (Poisson’s equation)

∇2U = 4πGρ. (2.42)

2. Gravitational potential generates motion according to

d2x

dt2
= −∇U. (2.43)

We know that Newtonian gravity must be valid in the non-relativistic limit of general relativity;
the limit where the fields are weak and the motion of test-particles and sources are neglectible (ie.
small compared to the speed of light). Hence, the linearized field equations and the geodesic equation
should agree with Newtonian gravity when we neglect all velocity dependent terms and assume a
stationary metric. To identify the gravitational potential U in terms of the metric, we consider the
spatial part of the geodesic equation:

ẍi = −Γiµν ẋ
µẋν

≈ −Γi00c
2.

(2.44)

The last line is a lowest order approximation which follows from assuming weak fields and slow
motion (v � c) such that we can use the limits dt

dτ → 1 and v
c → 0. Inserting the linearized

Christoffel-connection, see (2.19), and neglecting all time-derivatives we are left with

ẍi = −1

2
c2∂ih00, (2.45)

or as a vector equation

ẍ = −1

2
c2∇h00. (2.46)

Correspondence with Newtonian gravity (2.43) requires

U = −1

2
c2h00. (2.47)

As we have now identified the gravitational potential in terms of the metric, we need to check whether
the Newtonian field equation are reproduced from the linearized field equation:

�hµν = −16π
G

c4
Tµν . (2.48)

A very realistic model for the energy-momentum tensor is the perfect fluid. However, as we will show
in a later chapter, the contribution in the metric from the pressure p, is suppressed by a factor ∼ p

ρc2

relative to the contribution from the energy ρ. Under “normal” astrophysical conditions the pressure
can thus be neglected, and it is sufficient to use dust as a model for the energy-momentum tensor, ie.
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Tµν = ρẋµẋν . Inserted into (2.48) we see that h00 is the only non-zero component of hµν when we
neglect the speed of the source. The relevant part of (2.48) is therefore

∇2h00 = −16π
G

c2
ρ. (2.49)

From (2.28) we see that h00 = h00 − 1
2η00h ≈ h00 + 1

2h
0
0 = h00 − 1

2h00 = 1
2h00, which means that

U = −1
2c

2h00 = −1
4c

2h00. Inserting this into the above equation we obtain Poisson’s equation

∇2U = 4πGρ, (2.50)

and we have confirmed that Newtonian gravity is the non-relativistic limit of general relativity. Notice
that if we did not know the (arbitrary) constant in the Einstein equation (and hence in the linearized
field equation), the Newtonian limit would have determined it.

2.6 Perspectives on linearized gravity.

As we have worked out the basic of linearized theory, it is well worth to pause for a moment and reflect
on the results. We have seen that the transformation of hµν under the coordinate transformations of
linearized theory, can be viewed as a gauge transformation where the associated invariant quantity is
the linearized Riemann tensor. The perturbation hµν is then viewed as a basic potential which can be
“gauged”, and the linearized Riemann tensor is the associated invariant field quantity. There is a clear
analogy to electrodynamics where the basic potential is the four-vector Aµ and the conserved field
quantity is the electromagnetic field tensor Fµν . Recall that the components of Fµν are the standard
electric and magnetic fields E and B. The analogy is spelled out in table 2.1. Allthough this seems like
an obvious analogy there are some important differences which should not be overlooked. In particular
it should be stressed that in gravitational theory, there is no unique field quantity corresponding to the
electric and magnetic fields in electrodynamics7. To justify this I will quote from chapter 16.5 of the
celebrated textbook Gravitation (Misner, Thorne, Wheeler (1972), see [1]):

Many different mathematical entities are associated with gravitation: the metric, the Rie-
mann curvature tensor, the Ricci curvature tensor, the curvature scalar, the covariant
derivative, the connection coefficients, etc. Each of these play an important role in grav-
itation theory, and none is so much more central than others that it deserves the name
“gravitational field”. Thus it is that (...) the terms “gravitational field” and “gravity”
refer in a vague, collective sort of way to all of these entities.

Why then is the linearized Riemann tensor chosen as the field quantity in linearized theory? The
simple answer is of course that the linearized Riemann tensor turns out to be the invariant quantity8.
The analogy to the field theory of electromagnetism is therefore not a very deep one, but depends on
the arbitrary choice of the linearized Riemann tensor as the “gravitational field”. The reader should
also be aware of an important difference in the equation of motion, see the last line of table 2.1.
Notice that it is just in electrodynamics that the equation of motion is written in terms of the field

7It should be commented that a lot of authors, see for example [3], defines the metric as the gravitational field. There is
no deep reason for this convention, and it is really just a matter of terminology what one chooses to call the gravitational
field.

8Since the Ricci tensor, the Ricci scalar and the Einstein tensor are contractions of the Riemann tensor, the linearized
versions of these tensors are also invariant under the gauge transformation. The linearized Christoffel connection (2.19)
however is not invariant. Needless to say, the metric is not invariant as it is hµν that is being gauged.
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quantities E and B (or Fµν in the covariant formulation). This ensures physical invariance under
gauge transformations, ie. the physical acceleration is unaffected by the transformation of potentials.
In linearized theory the equation of motion is written in terms of the linearized Christoffel connection
Γ
µ(1)
αβ , see (2.19). This one is clearly not invariant under the gauge transformation of linearized theory9.

The (coordinate) acceleration is therefore not invariant under the gauge transformations of linearized
theory. This should not surprise you as the gauge transformation of linearized theory corresponds
to a change of coordinate system! The physical acceleration of the particles though, is certainly not
affected by the choice of coordinate system.

As a conclusion we may say that the analogy between linearized gravity and electrodynamics is
only a formal one. There is clearly a very strong analogy between the basic equations of the theories,
as summarized in table 2.1, but the foundations of the theories are very different. Electrodynamics is a
standard field theory where the fields lives on a (fixed) spacetime background, while general relativity
is the field theory of the dynamics of the background itself. Linearized gravity is just an approximation
to general relativity, and hµν should, strictly speaking, not be interpreted as an ordinary field living on
a flat spacetime background ηµν . Nevertheless, this view-point is actually still quite common, also in
the main-stream literature, see for example box 18.2 (part D) in [1]. Of course, I agree that this view
point make some sense since the coordinate-system is almost Minkowskian, but taking it too literary
necessarily leads to self-contradictions. One of them is the fact that the coordinate acceleration,
as given by the geodesic equation, is not, as we have seen, invariant under gauge transformations.
As explained above this can be understood by recalling that the gauge transformations of linearized
gravity corresponds to a change of coordinate systems, ie. from a coordinate system where the metric
is gµν = ηµν + hold

µν to a new coordinate system where it is gµν = ηµν + hnew
µν . In the viewpoint

where hµν is an ordinary field living on the flat spacetime background however, there is no associated
change of coordinate systems under the transformation hold

µν → hnew
µν , ie. both hold

µν and hnew
µν belongs to

the same coordinate system with metric gµν = ηµν .

2.7 Linearized theory and the equation of motion

In this section we shall study a consistency problem of the linearized theory. In the previous section
we stated that the equation of motion for a particle in linearized theory is:

duµ

dτ
= −Γ

µ(1)
αβ uαuβ. (2.51)

Recall from chapter 1.7.3 that in the full theory, the equation of motion, ie. the geodesic equation,
follows from the Einstein equation. We shall now follow the same procedure for linearized theory and
check whether (2.51) is reproduced. The result of these calculations are mentioned in most textbooks
on general relativity, but they do not care about showing you the calculations. I will therefore show
the calculations in full detail; the procedure is just like in chapter 1.7.3, but the details somewhat
different. You may want to review that chapter again before reading further.

First we act on the linearized field equation (2.32) with the partial differential operator:

∂ν�h
µν

= �

=0︷ ︸︸ ︷
∂νh

µν
= −16πG

c4
∂νT

µν , (2.52)

9A similar exercise as the one used to obtain (2.15) shows that the transformation of the Christoffel connection under
the coordinate transformation (2.13) becomes Γ

γ(1)
αβ (x)→ Γ

γ′(1)
α′β′ (x′) = Γ

γ(1)
αβ (x)− 2∂α∂βε

γ(x).
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LINEARIZED GRAVITY ELECTRODYNAMICS
POTENTIALS hµν Aµ

FIELD EQUATION �hαβ + ηαβ∂
ρ∂σhρσ − ∂ρ∂βhαρ �Aµ − ∂µ∂αAα = −µ0j

µ

−∂ρ∂µhνρ = −16πG
c4

Tαβ

GAUGE hµν → hµν − ∂εν
∂xµ −

∂εµ
∂xν Aµ → Aµ + ∂µχ

TRANSFORMATION

INVARIANT FIELD R
(1)
µναβ Fµν

QUANTITIES

PREFERRED GAUGE ∂µh
µν = 0 ∂µA

µ = 0
(LORENTZ GAUGE)

FIELD EQUATION IN �hαβ = −16πG
c4

Tαβ �Aµ = −µ0j
µ

PREFERRED GAUGE

EQUATION OF MOTION duµ

dτ = −Γ
µ(1)
αβ uαuβ duµ

dτ = q
mF

µνuν
FOR PARTICLE

Table 2.1: Analogy between linearized gravity and electrodynamics.

and hence

∂νT
µν = 0. (2.53)

According to [2, ch.4.4a] this relation is not gauge dependent, and therefore valid to linearized accu-
racy in an arbitrary coordinate system admitting hµν � 1. To check the consequences of (2.53) for a
free particle we insert the energy-momentum tensor for dust, ie. Tαβ = ρuαuβ , and get

uβ∂α(ρuα) + ρuα∂αu
β = 0. (2.54)

Multiplying with uβ and using the four-velocity identity uβuβ = −c2 we get

−c2∂α(ρuα) + ρuαuβ∂αu
β = 0. (2.55)

Some effort is now needed to show that the second term on the left-hand side of (2.55) is zero. First
note that from the four-velocity identity it follows that

uµ∂νu
µ + uµ∂νuν = 0. (2.56)

Then we need to show that both terms on the left-hand side of this equation are identical. It turns
out that they are identical also in the full theory, and I will show this by starting from the definition
of the covariant derivative of a one-form, see (1.77), and using that the metric is covariant constant
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(Dαgµν = 0):

uµ∂νuµ ≡ uµDνuµ + uµΓλµνuλ

= uµDν(gµσu
σ) + uµΓλµνuλ

= uµgµσDνu
σ + uµΓλµνuλ

= uµDνu
µ + uµΓλµνuλ

= uµ∂νu
µ − uµΓµλνu

λ + uµΓλµνuλ

= uµ∂νu
µ.

(2.57)

Thus we have showed that
uµ∂νuµ = uµ∂νu

µ, (2.58)

and (2.56) therefore implies
uβ∂αu

β = 0. (2.59)

It then follows that the second term on the left-hand side of (2.55) is zero and we get

∂α(ρuα) = 0. (2.60)

Inserting this into (2.54) we get
uα∂αu

β = 0. (2.61)

This can be written
dxν

dτ

∂uµ

∂xν
, (2.62)

or
duµ

dτ
= 0. (2.63)

Thus the linearized field equation predicts that particles will move on straight lines! This is a well-
known consistency problem of linearized theory. It means that aspects of the full non-linear10 theory
must be involved to obtain a meaningful framework. In particular one needs to make use of (a lin-
earized version of) the geodesic equation. This shows that linearized theory should not be thought of
as a consistent theory of gravity in itself.

10The geodesic equation is here viewed as an aspect of the full non-linear theory (since it can be derived from the full
theory).



Chapter 3

The gravito-electromagnetic analogy

In the history of gravitational physics there is a long tradition for drawing analogies to electromag-
netism. The obvious similarities between Newton’s law of gravity and Coulomb’s law of electricity
has led many authors into exploring further analogies between gravity and electromagnetism. After
the foundation for relativity and electrodynamics were laid at the beginning of the 20th’ century, it was
clear that Newton’s theory of gravity was inconsistent with causality, and in need of modifications.
Maxwell himself [11] actually considered the possibility of formulating gravity analogous to electro-
dynamics already in 1865. In 1900 Hendrik Lorentz [12] tried to explain gravity as an electromagnetic
effect by suggesting that the attraction of oppositely charged particles where slightly stronger than the
repulsion of equally charged particles. On large scale the net effect would manifest itself as a phe-
nomena of universal attraction between masses, which is the usual signature of gravity. However,
after Einstein introduced his theory of general relativity in 1916, it became clear that the phenomena
of gravity and electromagnetism was not as similar as anticipated. Both the physical concepts and the
mathematical formalism where very different. Electrodynamics is the theory of how charged particles
interacts via forces, while general relativity claims that gravity is no force at all, and describes how
fields produce spacetime curvature and how objects (fields) move (propagate) in that curved space-
time background. Electrodynamics is described by linear field equations (Maxwell’s equations) with
a known general solution, while general relativity provides a set of complicated non-linear differential
equations with, even today, only a few known exact solutions. Nevertheless, in 1918 Josef Lense and
Hans Thirring [13] showed that general relativity predicts phenomena with behaveour analogous to
magnetic effects. They considered the predictions of general relativity in the case when the gravita-
tional field is generated by a rotating spherical symmetric object, and found an effect which suggested
an interpretation where spacetime itself was dragged around by the rotating object. The effect is today
known as the frame-dragging effect, or the Lense-Thirring effect. For weak gravitational fields, lin-
earized theory can be used to derive a generalized framedragging effect. This formulation shows that
frame-dragging effects are very similar to magnetic phenomena in electrodynamics, where charge
flow produces a magnetic field with a velocity dependent influence on the motion of test-particles.
For this reason, the frame-dragging effect is often referred to as gravitomagnetism. This effect is
clearly a well-established and undisputed theoretical part of general relativity, and to some extent also
experimentally verified [14].

In this chapter we will review an approximation-scheme to general relativity which suggests that
in the weak-field slow-motion limit of the theory there exist a formal analogy to Maxwell’s theory of
electrodynamics. This approximation starts from the linearized field equation, and leads to a formula-
tion where the Einstein equation is written on a form similar to Maxwell’s equations and the geodesic

51
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equation takes the same form as the Lorentz force law. In this formulation the gravitational field is de-
scribed in terms of a gravito-electric field Eg and a gravito-magnetic field Bg analogous to the vector
fields in electrodynamics. The formalism is often referred to as the GEM framework, where GEM is
short hand for gravito-electromagnetic (or gravito-electromagnetism).

3.1 The gravito-electromagnetic (GEM) framework

In this section we shall briefly review how the GEM framework is obtained from general relativity.
The purpose here is to present the standard treatment in the literature and not to discuss the validity,
completeness or the consistency of the derivation in great detail. Apart from being more detailed, we
will follow the line of papers like [15], [16] and the textbook [6]. When I later in this chapter simply
refer to ‘the literature’, these references are representative for what I have in mind.

In chapter 2 we studied a formal analogy between linearized gravity and electromagnetism, based
on the gauge-theory-like structure of linearized theory spelled out in table 2.1. In this chapter the
perspective is different, we shall specialize to the Lorentz gauge and study physical analogies between
the theories. The advantage of choosing the Lorentz-gauge is that it turns out being possible under
certain circumstances to describe the metric in terms of an entity with four components, much like
the four-potential Aµ of electrodynamics. It should be stressed though that this necessarily breaks the
gauge-like analogy summarized in table 2.11.

The starting point for the analogy is the obvious analogy, reviewed in section 2.6, between the
linearized field equation in Lorentz gauge and the (covariant) Maxwell equations also in Lorentz
gauge:

�hαβ = −16π
G

c4
Tαβ, ∂βh

αβ
= 0, (linearized gravity) (3.1)

�Aµ = −µ0j
µ, ∂µA

µ = 0, (electromagnetism). (3.2)

Focusing on the components, the equations are on exactly the same form. The energy-momentum
tensor mimics the electromagnetic four-current jµ, while the tensor hαβ plays the role of the electro-
magnetic four potential Aµ. In the weak-field limit, where the linearized field equation gives good
accuracy, this suggests an analogy between the dynamics of gravitational and electromagnetic phe-
nomenas.

Although there is a clear analogy between linearized gravity and electromagnetism, the formalism
is quite different since the gravitational field is a rank 2 tensor field, while the electromagnetic field is
of rank 1. However, as we shall see, in the interesting special case when the speed of the source (of
the gravitational field) is small compared to the speed of light, we only need to consider four of the
components in (3.1), and hence only four of the metric components. In that case, the four significant
components of hαβ can be organized in a four-potential just like in electrodynamics.

We assume that the source of the gravitational field can be described by a non-relativistic pres-
sureless perfect fluid, ie. non-relativistic dust. By ‘non-relativistic’ we mean that the relative speed
of the fluid is small enough to allow for a coordinate system where the coordinate speed is small
compared to the speed of light, ie. vi ≡ dxi

dt � c. Since we have also assumed a weak gravitational
field, this means that we can write dxµ

dτ = dxµ

dt
dt
dτ ≈ dxµ

dt = (c, vi). Using this approximation, the

1Once we have written the metric in terms of a four-potential it is no longer possible to change gauge condition.
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energy-momentum tensor takes the form

Tµν = ρ
dxµ

dt

dxν

dt
, (3.3)

where ρ is the mass-density measured by an observer in rest relative to the fluid. Notice that T 00 =
ρc2, T 0i = ρcvi and T ij = ρvivj , and hence

T 00 � T 0i � T ij . (3.4)

From the retarded solution of (3.1)

hαβ = 4
G

c4

∫
Tαβ(t−,x

′)

|x− x′| d3x′, (3.5)

we see that (3.4) implies
|h00| >> |h0i| >> |hij |. (3.6)

This means that for a non-relativistic source we can neglect the spatial components hij . In this ap-
proximation the formalism can be described solely by the four components h0µ since the metric tensor
is symmetric. From here the GEM framework follows easily by introducing GEM potentials φ̂ and
Â. The scalar potential is defined by

φ̂ ≡ −c
2h00

4
, (3.7)

and the components of the three vector potential are defined by

Âi ≡
ch0i

4
. (3.8)

The linearized field equation then takes the form

�φ̂ = 4πGρ, �Â =
4πG

c2
j, (3.9)

where j = ρv is the mass flow. The significant part of the Lorentz gauge condition ∂µhµν = 0, which
actually is four conditions (one for each ν), is the ν = 0 component, which in terms of the potentials
is written

1

c2

∂φ̂

∂t
+∇ · Â = 0. (3.10)

The field equations (3.9) and the Lorentz gauge condition (3.10) should now be compared to the
corresponding equations in electrodynamics:2

�φ = −µ0c
2ρq,

�A = −µ0jq,

1

c2

∂φ

∂t
+∇ ·A = 0 (Lorentz gauge condition),

(3.11)

where ρq is the charge density, and jq is the charge flow (charge current density)3.

2The equations (3.2), which are written on covariant form, are rewritten by using that the four-potential has components
(Aµ) = (φ/c,A) and that the four-current has components (jµq ) = (cρq, jq).

3I have added a ‘q’ in ρq and jq since I want to reserve ρ and j to the corresponding quantities in gravity (mass-density
and mass-flow).
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Observe that by imposing a restriction on the speed of the source, the analogy has become a perfect
one. Mass density ρ mimics charge density ρq, mass flow j mimics current flow jq, and the magnetic
permeability is replaced by the constant 4πG/c2. So far we have not showed that this formal analogy
is a physical one though. To do this we must consider the kinematics, and check whether the potentials
φ̂ and Â has the same kind of influence on the motion of a test-particle as in the electromagnetic case.
In electrodynamics the force on a test-particle with charge q is given by the Lorentz force law:

F

q
= −∇φ− ∂A

∂t
+ v × (∇×A). (3.12)

Starting from the geodesic equation, we will now work out a similar expression for the gravitational
case. We will then see that the vector-potential Â has the same kind of velocity-dependent influence
on a test-particle in a gravitational field as the magnetic potential A has on a charged test-particle in
the electromagnetic case.

To linearized accuracy the geodesic equation (1.100) reads

duµ

dτ
= −Γ

µ(1)
αβ uαuβ, (3.13)

where Γ
µ(1)
αβ is defined in (2.19). We have already assumed slow-motion in the source of the grav-

itational field. Now we impose a further physical condition, and assume slow-motion also for the
test-particle. The spatial part of the geodesic equation can then be written

dvi

dt
= −Γ

i(1)
αβ v

αvβ

= −c2Γ
i(1)
00 − 2cΓ

i(1)
j0 vj − Γ

i(1)
jk vjvk,

(3.14)

where vi ≡ dxi

dt . The literature claims that it will be sufficient to go only to first order in vi

c , which
means that the last term in (3.14) can be neglected. The justification of this choice is of course that
second order terms will be suppressed for non-relativistic speeds. This sounds like fair reasoning at
first, but in chapter 4 we will examine the consistency of this treatment4. For now we will just follow
the literature, as promised in the introduction, and neglect terms which are second order in the speed
of the test-particle. Inserting the linearized Christoffel symbols, see (2.19), we have to first order in
vi

c :

dvi

dt
= −c2∂0h

i
0 +

1

2
c2∂ih00 + c∂ihj0v

j − c∂jhi0vj . (3.15)

If we, like in the literature, also assume the metric is stationary, then the first term on the right-hand
side of (3.15) is zero. A stationary metric is not preferable when we want to study dynamics (although
it allows sources with spherical mass distribution to rotate). I will therfor keep things more general,
and check how things turn out.

Next we need to express the components hαβ in terms of the potentials. In chapter 2.3 we showed
that

hαβ = hαβ −
1

2
ηαβh. (3.16)

4We will find that by neglecting terms which are second order in the velocity of the test particle, we will neglect
corrections to the equation of motion of the same magnitude as the Lense-Thirring effect.
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Inserting the definitions φ̂ ≡ − c2h00
4 and Âi ≡ ch0i

4 we get

hαβ =


−2φ̂
c2

4Â1
c

4Â2
c

4Â3
c

4Â1
c −2φ̂

c2
0 0

4Â2
c 0 −2φ̂

c2
0

4Â3
c 0 0 −2φ̂

c2

 . (3.17)

Equation (3.15) can then be reformulated

dvi

dt
= −∂iφ̂− 4

∂Âi

∂t
+ 4vj

(
∂iÂj − ∂jÂi

)
. (3.18)

This equation can be written as a vector equation. For arbitrary vectors a and b we have (a × b)i =
εijka

jbk and (∇× b)k = εklm∂
lbm , where εijk is the Levi-Civita symbol defined by

εijk =


+1 , if (i, j, k) = (1, 2, 3) or (2, 3, 1) or 3, 1, 2
−1 , if (i, j, k) = (1, 3, 2) or (2, 1, 3) or 3, 2, 1
0 , if indices are repeated.

(3.19)

It then follows that
(v× (∇× Â))i = εklmε

i
jkv

j∂lÂm. (3.20)

Inserting the identity5

εklmε
i
jk = δilδjm − δimδjl, (3.21)

and working out the summations we get

(v× (∇× Â))i = vj(∂iÂj − ∂jÂi). (3.22)

Using this, we can rewrite (3.18) as a vector equation:

dv

dt
= −∇φ̂− 4

∂Â

∂t
+ 4(v× (∇× Â)). (3.23)

We have now collected the equations of the GEM-framework. In table 3.1 the formalism is sum-
marized together with the corresponding equations of electrodynamics6. Notice that the analogy is
perfect only for the field equations. For the equation of motion the analogy is not perfect, as there
appear a curious factor of 4 in the terms with the vector-potential Â. It should also be commented
that in the gravitational case q/m is unity, since the gravitational charge in the GEM framework is the
mass.

The usual treatment in the literature is not to summarize gravito-electromagnetism in terms of the
GEM-potentials, like in table 3.1, but to introduce vector fields Eg and Bg analogous to electrody-
namics. These vector fields are defined by

Eg = −∇φ̂− ∂Â

∂t
, Bg = ∇× Â. (3.24)

5See for example Mathematical methods in the physical sciences, ch. 10.
6Note that to first order in v/c, we have F/m = a, where F = d

dt
(γmv).
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GEM FRAMEWORK ELECTROMAGNETISM

�φ̂ = 4πGρ �φ = −µ0c
2ρq

�Â = 4πG
c2

J �A = −µ0jq

dv
dt = −∇φ̂− 4∂Â∂t + 4(V × (∇× Â)) F

m = − q
m∇φ−

q
m
∂A
∂t + q

m(v × (∇×A))

Table 3.1: GEM-framework in terms of potentials compared to electrodynamics in the Lorentz-gauge.

GEM FRAMEWORK ELECTROMAGNETISM

GAUSS LAW ∇ ·Eg = −4πGρ ∇ · E =
ρq
ε0

AMPERES LAW ∇×Bg − 1
c2
∂Eg

∂t = − 4
c2
πGJ ∇× B − 1

c2
∂E
∂t = µ0jq

SOURCE FREE GAUSS LAW ∇ ·Bg = 0 ∇ · B = 0

FARADAY’S LAW ∇×Eg +
∂Bg

∂t = 0 ∇× E + ∂B
∂t = 0

LORENTZ FORCE LAW dV
dt = Eg + 4(V ×Bg) F

m = q
m(E + V × B)

Table 3.2: GEM-framework in terms of vector fields EG and BG compared to electrodynamics.

Using these definitions together with the field equations (3.9) and the Lorentz gauge condition (3.10)
we can reformulate all equations of table 3.1 in terms of Eg and Bg fields. This involve some calcu-
lation though, and a more direct approach7 is just to perform the substitutions µg = −4πG

c2
, ρq → ρ,

jq → j, E → Eg and B → Bg into Maxwell’s equations. The result is summarized in table 3.2
together with the equation of motion. Notice that to formulate the equation of motion in terms of Eg

and Bg one must assume that the magnetic field is stationary, ie. ∂Â
∂t = 0. In the next section I will

show in a detailed manner that this is not due to our choice of definitions for φ̂, Â, Eg and Bg. It is
not possible to define these variables such that both the field equations and the equation of motion can
be formulated in terms of Eg and Bg without assuming a stationary Â field. This condition clearly
places strict limitations on the choice of coordinate frame as well as on the physical setting which
can be handled by the formulation. The only interesting special case which the Eg-Bg-formulation
can deal with, if gravitomagnetic effects are present, is in fact the gravitational field set up by an
object which is rotating with constant angular velocity. The formulation in terms of potentials is
therefore much more general, and for this reason it is the equations of table 3.1 I will refer to as the
GEM-framework in the following chapters8.

The gravito-electromagnetic analogy reviewed here has influenced a lot of papers in the gravita-

7The more cumbersome way to do it is showed in section 3.2.
8This is contrary to usual approach in the literature, where the potentials φ̂ and Â are introduced just as an intermediate

step on the way to the formulation in terms of Eg and Bg.
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tional literature. See for example [17] for a list of some hundred articles; a large part of them deals,
in some way, with the analogy to Maxwell’s theory reviewed here. It is interesting that there is an
analogy between gravitational and electrical phenomenas which are deeper then the obvious analogy
between Newton’s gravitational law and Coulomb’s law of electricity. It is however also important to
figure out the limitations of such an analogy. In chapter 4 we will carefully analyze the slow-motion
weak-field limit of general relativity and electrodynamics in a consistent way and sort out the scope
and limitations of this analogy.

3.2 GEM-potentials with free parameters

In the previous section we noticed that it was not possible to formulate the GEM equations in terms
of Eg and Bg without assuming stationary potential Â. In this section I will show that this is not due
to the arbitrary choice of constants in the definitions of φ̂, Â, Eg and Bg. This section is not needed
in preparation for later chapters. If the reader trust the claims previously made, this section might be
skipped without any problems.

We start by introducing free parameters ι, κ and λ into the definitions (3.7), (3.8) and (3.24):

h00 = −ι4φ̂
c2
,

h0i =
κÂi
c2

,

Eg = −∇φ̂− λ∂Â

∂t
,

Bg = ∇× Â.

(3.25)

I have not inserted any free parameter into the definition of Bg, since this would just give rise to a not
interesting over-all factor in the equation of motion. Notice that our definitions in the previous section
corresponds to ι = 1, κ = 4c and λ = 1. This convention have the following benefits:

• (ι = 1) ensures that we have the standard expression φ̂ = −GM
r outside a spherical symmetric

mass distribution.

• (λ = 1) ensures that the definition of Eg is the same one as the corresponding field in electro-
dynamics.

• (κ = 4c) ensures that the Lorentz gauge condition is similar in both gravity and electrodynam-
ics.

Allthough I had fairly good reasons to choose my definitions as I did, there are no standard conventions
in the literature. For example [6] uses definitions corresponding to (ι, κ, λ) = (1, 2, 1

2c), while [16]
uses (ι, κ, λ) = (−1,−2, 1

2c), [15] uses (ι, κ, λ) = (−1, 2,− 1
2c) and finally [18] uses (ι, κ, λ) =

(1, 4c, 1). In my opinion the above mentioned benefits suggests that (ι, κ, λ) = (1, 4c, 1) should be
the standard convention.

My intention by introducing these parameters however, is not to dwell on aesthetic aspects of the
definitions, but to demonstrate that there exist no set of parameters such as the formulation in terms of
Eg and Bg is valid also in the non-stationary case. To do this we will need to redo the derivation in the
previous section. To demonstrate how Maxwell’s equations follow from the covariant formulation, I
will not use the substitution-strategy of the the previous section.
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The source-free Maxwell equations follows directly from the definitions of EG and BG by use of
the vector identities∇ · (∇× Â) = 0 and ∇×∇φ̂ = 0. The first one of these equations is

∇ ·BG = ∇ · (∇× Â) = 0, (3.26)

while the next one is

∇×EG = ∇×
(
−∇φ̂− λ∂Â

∂t

)

= −
=0︷ ︸︸ ︷

∇×∇φ̂−λ ∂
∂t

BG︷ ︸︸ ︷
(∇× Â)

= −λ∂BG

∂t
.

(3.27)

Notice that the source-free Maxwell equations do not put any constraints on the parameters. The two
remaining equations however, which follows from the Lorentz gauge condition and the field equations
for φ̂ and Â, do. In terms of the new definitions (3.25) these equations becomes

�φ̂ =
1

ι
4πGρ, �Â =

16πG

κc
j,

ι

c

∂φ̂

∂t
+
κ

4
∇ · Â = 0. (3.28)

Working a little on the left hand side of the field equation for φ̂, using the Lorentz gauge condition,
we get:

�φ̂ = − 1

c2

d2φ̂

dt2
+∇2φ̂

= ∇2φ̂− 1

c2

∂

∂t

(−κc
4ι
∇·Â)︷ ︸︸ ︷(
∂φ̂

∂t

)

= ∇ ·
(
∇φ̂+

κ

4ιc

∂Â

∂t

)
= −∇ ·EG,

(3.29)

where the last step give the following constraint on the parameters:

λ =
κ

4ιc
. (3.30)

Inserting this into the field equation we arrive at Gauss law:

∇ ·EG = −1

ι
4πGρ. (3.31)

The last equation is obtained from the field equation for Â which reads

�Â =
16πG

κc
j, (3.32)

or

∇2Â =
1

c2

∂2Â

∂t2
+

16πG

κc
j. (3.33)
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To progress, we will need to take the gradient of the Lorentz gauge condition:

−∇(∇ · Â) =
4ι

κc

∂

∂t
(∇φ̂). (3.34)

Adding −∇(∇ · Â) to the left hand side of (3.33), and 4ι
κc

∂
∂t(∇φ̂) to the right hand side, we get

−∇(∇ · Â) +∇2Â =
4ι

κc

∂

∂t
(∇φ̂) +

1

c2

∂2Â

∂t2
+

16πG

κc
j. (3.35)

The left hand side is identified as −∇× (∇× Â) which equals −∇×Bg. Multiplying the equation
by −λc2 it reads

λc2∇×Bg =
∂

∂t

(
−4ιλc

κ
∇φ̂− λ∂

2Â

∂t2

)
− 16πGλc

κ
j. (3.36)

We then obtain an equation corresponding to Amperes law in electromagnetism

λc∇×BG =
1

c

∂EG

∂t
− 16λ

κ
πGj (3.37)

if we require 4ιλc/κ = 1. But this constraint is the same as the one obtained from the field equation
for φ, ie. (3.30). Re-deriving the equation of motion we find

dv

dt
= ι

(
−∇φ− κ

ιc

∂A

∂t

)
+
κ

c
(v× (∇×A)), (3.38)

and hence, to rewrite it in terms of Eg and Bg, we must require λ = κ
ιc . But this is not compatible

with the constraint λ = κ
4ιc (eq. 3.30), which followed from the field equations. Thus we have proved

that in the case of non-stationary fields, it is not possible to formulate gravity in terms of Eg and
Bg (at least not without doing something radically more creative than changing the constants in the
definitions).

3.3 The Lense-Thirring effect

In the previous section we reviewed an approximation-scheme to general relativity which lead to a
Maxwell-like theory (the GEM framework). The gravito-electric part is the Newtonian contribution,
while the gravito-magnetic part is the (generalized) frame-dragging effect. In the next chapter I will
question the validity and completeness of this approximation-scheme. I will conclude that the GEM-
framework is not valid as an approximation of general relativity in the weak-field slow-motion limit,
in the sense that it does not give a complete description. This does however not affect the fact that
gravitomagnetism is a well-established and theoretically undisputed part of general relativity. My
criticism is directed against the framework of gravito-electromagnetism, not the phenomenon of grav-
itomagnetism.

In this section we will briefly review the physical significance of the gravito-magnetic effect. No
detailed derivations will be shown, the purpose is only to give some sense of the physical significance
of the effect, such as its order of magnitude and interpretation from a relativistic point of view. For
derivations of formulas found in this section, see for example the textbook [19, page 234] or [9, ch.
6.2].
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Gravitomagnetic field outside the earth First let us consider the impact of the magnetic field on
a test particle in the gravitational field of the earth. It can be shown that the gravito-magnetic field
outside a spherical symmetric rotating object is given by

Bg =
G

2c2r3
(J− 3

J · r
r2

r), (3.39)

where J is the angular momentum of the object. The earth is of course to good approximation a
spherical symmetric rotating object. To find an estimate for the earth’s angular momentum we can
use that the moment of inertia of a solid sphere with mass M , radius R and constant mass density is
I = 2

5MR2. For the earth this gives |J| = I|w| ≈ 1034kgm2/s. Let us now consider a freely falling
test-particle at equator moving in the radial direction (towards the center of mass of the earth) with
speed 1000m/s. The Newtonian acceleration is of course |Eg| = 9.8m/s2. Let us now estimate the
impact of the gravito-magnetic field on the particle. At equator J · r = 0 so Bg is pointing in the J
direction with magnitude Bg = G

2c2R3J ≈ 10−14s−1. Thus the gravitomagnetic field gives an accel-
eration in the easterly direction with magnitude |4v ×Bg| ≈ 10−10m/s2. Hence the Lense-Thirring
effect is suppressed by a factor 10−11 compared to the Newtonian acceleration in this example. This
demonstrates how good the Newtonian approximation is in non-extreme gravitatational scenarios.

Galactic kinematics It would be interesting to estimate the gravito-magnetic correction to Newto-
nian gravity also on galaxy scales. One of the major challenges in modern cosmology is to explain
the rotation-speed versus radius behavior for galaxies. The rotation speed of the outer regions are
far larger than expected from the observed mass and standard gravitational theory. Galaxy kinemat-
ics is usually modeled using Newtonian gravity since there seems to be consensus that corrections
from general relativity are negligible. There have been two main approaches to this problem. The
main-stream approach is to postulate dark matter, an un-observed un-known kind of matter which
must make up about 90% of the total mass of the galaxy to explain the velocity pattern. The other
approach has been to search for alternative theories of gravity which can explain the kinematics with-
out need of dark matter. Recently, however, the assumption that corrections from general relativity
are neglectible has been challenged, see for example [20]. On this basis, let us make a simple order
of magnitude estimate for the gravito-magnetic effect for a simpliefied modell of a galaxy. As modell
for the galaxy we will use a rigid rotating sphere with the same mass (M = 1012Msun = 1042kg) and
radius (R = 105ly = 1021m) as the Milkyway. This is of course not a realistic modell for a galaxy,
but it is sufficient for an order of magnitude estimate like this. The Newtonian acceleration just out-
side the sphere is Eg = GM

R2 . Consider now a test-particle just outside the surface of the sphere. The

test-particle has has speed V =
√

GM
R = 105m/s in the tangential direction, and will therefore9

follow a circular orbit around the sphere. We assume that the orbit of the test-particle coincides with
the equator line of the rotating sphere. Let us assume that the sphere rotates with just the right angular
velocity to ensure that the speed at the surface of the sphere is equal to the speed of the test particle:
ω = V

R . In this manner we ensure that the considered test-particle has the same motion as the (rest
of the) galaxy. Calculating the angular momentum for the sphere in the same way as above, we get
|J| = I|ω| = 2

5MRV = 1068kgm2/s. At equator Bg points in the same direction as J and has
magnitude Bg = G

2c2R3J ≈ 10−23s−1 according to (3.39).

9Here, of course, I have just used Newton’s law of gravity as well as his second law. Contributions from gravitomag-
netism are neglected.
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Inserting the numbers into (3.39) we get the following results:

|Eg| ≈ 10−10m/s2,

|4v ×Bg| ≈ 10−17m/s2.

This shows that on galaxy scales the gravito-magnetic acceleration can be assumed to be suppressed
approximately by a factor 1/107. This is slightly more significant than in the above example, but it
still supports the conventional assumption that contributions from general relativity can be neglected.
Finally notice that the vector v×Bg points in the opposite direction of Eg. As far as we can say from
this simple analysis, this mean that you will need slightly more dark matter if you take account for the
gravito-magnetic effect.

Spin precession The gravito-magnetic field causes precession of gyroscopes, and since it can be
measured, this is perhaps the most interesting effect. The satellite experiment Gravito-Probe B has
measured the precession of gyropsopes orbiting the earth. The data from the experiment are still being
analyzed, but the effect is now verified to an accuracy of ±10%10. We shall now pay attention to the
effect of spin precession.

The spin precession formula for a gyroscope with spin S is

dS

dt
= Ω× S. (3.40)

This equation tells that the spin S is constant in magnitude and precesses at a rate |Ω| around the
direction of Ω. The spin formula accounts for more than the frame-dragging effect. It also accounts
for the so-called geodesic precession and Thomas precession (the last one familiar from special rel-
ativity). This section is about gravito-magnetic effects, but I will also briefly discuss the two other
contributions to the spin precession. The reason for this is that precession of gyroscopes are of concep-
tual interest in Einstein’s theory of gravity. In general relativity gyroscopes plays the role of defining
the spatial directions of non-rotating reference frames. Consider an observer which is transporting
three gyroscopes, spinning in mutually orthogonal directions, along his world-line. If the observer is
accelerating (in the relativistic sense), he must act on the gyroscope with forces applied to the center
of mass (no torque!). We will refer to gyroscopes transported in this way as inertial-guidance gyro-
scopes. It can be shown that three mutually orthogonal gyroscopes transported like this will remain
mutually orthogonal all along the world line of the observer. This is the reason why it is natural to let
inertial-guidance gyroscopes define the spatial directions of an accelerating, but non-rotating, refer-
ence frame. So in the relativistic sense, we can say that a non-rotating reference frame is one where
the spatial axis precesses like the axis of an inertial-guidance gyroscope. In a later chapter on physical
reference frames we will need the complete spin precession formula. It is therefore convenient to
associate one spin-vector for each effect:

Ω = Ωframe-dragging + Ωgeodesic + ΩThomas. (3.41)

The formulas for the precession vectors are

Ωframe-dragging = −2∇× Â = −2Bg,

Ωgeodesic = −3

2
v ×∇ φ̂

c2
,

ΩThomas = − 1

2c2

F

m
× v.

(3.42)

10See the web-page for the experiment: http://einstein.stanford.edu/
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Here v is the center of mass velocity of the gyroscope and m is its mass. F denotes non-gravitational
forces which acts against the center of mass of the gyroscope, ie. no torque. This means that for freely
falling gyroscopes, as those in the Gravito-Probe B experiment, there is no Thomas precession. For the
Gravito Probe B gyroscopes the geodesic precession dominates over the frame-dragging precession,
< |Ωprecession| >= 8.4arc seconds/year while < |Ωframe-dragging| >= 0.048arc seconds/year. Notice
that the geodesic-precession and the Thomas-precession both depends on the motion (ie. v) of the
gyroscope, while the framedragging effect does not.

Physical interpretation The effect discussed in this section has three different names: ‘gravitomag-
netism’, ‘the Lense-Thirring effect’ or finally ‘the frame-dragging effect’. The first name is of course
due to the obvious analogy to magnetic phenomenas in Maxwell’s theory, while the second is in honor
of the pioneers of the theoretical discovery. The name frame-dragging on the other hand, needs more
explanation. The name originates from Schiff (1960), see [21], who introduced a theoretical fluid
which is dragged along by rotating bodies (like the earth), and which in the next turn “dragges” gy-
roscopes. Gyroscopes defines the precession of non-rotating reference frames, and thereby the name
‘frame-dragging’. This idea has influenced much of the literature, since it gives a simple pictorial ex-
planation of the phenomenon. Consider for example the gravito-magnetic field Bg around the earth,
see (3.39). From (3.41) and (3.42) we see that gyroscopes at the north-pole will precess in the same
direction as the rotation of the earth (since Ωframe-dragging is parallel to J), while a gyroscope at equator
will precess in the opposite direction (since there Ωframe-dragging is anti-parallel to J). Schiff’s analogy
to fluid mechanics gives a nice pictorial explanation of this behavior. The earth drags the fluid in the
same direction as it rotates. Above the north-pole this causes the spin to precess in the same direction
as the rotation of the earth, but at equator the fluid is dragged faster closer to the earth since the grav-
itational field falls off with increasing radius, and therefore the gyroscope precesses in the opposite
direction of the rotation of the earth/fluid.
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Chapter 4

Post-Newtonian methods

In chapter 2 we noted a formal analogy between the linearized theory for gravitation and electrody-
namics based on the view of the former as a “gauge theory”. In chapter 3 we saw that, in the weak-field
slow-motion approximation of general relativity, there is also a deep physical analogy to phenomena
in electromagnetism. In particular we noticed that the frame-dragging effect can be viewed as a mag-
netic kind of phenomenon. As stressed before, this effect, often referred to as gravitomagnetism, is a
well-established and undisputed theoretical part of general relativity. As reviewed in section 3.1, this
analogy has led several authors to consider an approximation-scheme to general relativity which starts
from the linearized field equation and leads to a Maxwell-like theory for gravitation, often referred to
as the framework of gravito-electromagnetism (the GEM framework).

It is of course very interesting that there is an analogy between gravitational and electrical phenom-
enas which is deeper than the obvious analogy between Newton’s gravitational law and Coulomb’s
law of electricity. It is however also important to figure out the limitations of such an analogy. Is it
really correct that Einstein’s field equation takes an Maxwell-like form in the weak-field slow-motion
approximation, and that the geodesic equation becomes similar to the Lorentz force law? Does this
framework provide a complete description of gravitational phenomenas in the weak-field slow-motion
regime? In this chapter we will answer such questions. The entire chapter is reserved for a systematic
study of the weak-field slow-motion approximation of general relativity and how it relates to the field
theory of electrodynamics. Hopefully this can provide the needed clarifications and give some new
insights.

In section 4.1 I will start with the full theory and explore how things turn out when following a
systematic method to the weak-field slow-motion approximation of general relativity. Then, in 4.2,
I will employ the same systematic method to electrodynamics. This consistent approach, employed
to electrodynamics as well as general relativity, will enable us to see the limitations of the gravito-
electromagnetic analogy. Finally, in section 4.3 I will, based on the work in 4.1 and 4.2, show that
general relativity, in the weak-field slow-motion approximation, can be formulated in a framework
very similar to electrodynamics. This demands that we define the gravitational charge to be a particular
combination of rest-mass, kinetic energy, pressure and gravitational binding energy.

Before getting to all this, let me motivate why there are several good reasons to question the va-
lidity and completeness of the GEM framework. As we saw many examples of in section 3.3, the
physical significance of the Lense-Thirring effect is, under non-extreme conditions, extremely tiny
compared to the Newtonian part. Recall that in the GEM framework, dust is used as model for the
energy-momentum tensor. Why is pressure neglected? If the GEM framework follows from a sys-
tematic method, it should be neglected only if the physical effect of the pressure of the source on a
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(free) test particle is suppressed compared to the (not neglected) Lense-Thirring effect. Furthermore,
recall that the derivation of the GEM framework starts from the linear field equation. Are non-linear
contributions suppressed compared to the tiny Lense-Thirring effect? A good derivation should defini-
tively answer questions like this. In the next section we will address all these questions, and several
others, and we will see that the phenomenon of gravitation is far richer than suggested by the GEM
framework once we choose to go beyond the Newtonian limit.

4.1 The post-Newtonian approximation of general relativity

The purpose of this section is to apply perturbation theory to general relativity and study the weak-
field slow-motion approximation. Let me start by discussing the methods and some of the terminology
used in this chapter. First of all, the phrase weak-field slow-motion approximation of general relativity,
refers to any (consistent) approximation of the theory which gives good accuracy when the gravita-
tional field is weak and the relative speed of the source is small compared to the speed of light. Thus,
as we have seen, the Newtonian limit is an example of such an approximation. It is however not the
only example, but rather, as we shall see, the lowest order solution of a perturbative method to be intro-
duced in this chapter. This method has long traditions in gravitational theory, and is usually referred to
as the post-Newtonian approximation-scheme to general relativity. This scheme leads to approximate
solutions which encompasses all physical effects up to a given level of accuracy. As we shall see, it
can be viewed as an iteration process where the solutions converges towards the exact solution as the
number of iterations increase. The first iteration gives back the Newtonian limit, while the next one
gives the so called post-Newtonian approximation, sometimes also called the post-Newtonian limit (I
will use both phrases interchangeably). The method is consistent in the sense that each iteration gives
(approximate) solutions which takes account for all physical effects up to a given level of accuracy
which is characteristic for that solution/iteration. The iteration can therefore be stopped at any desired
level. We need a minimum of formalism before we can specify the characteristic accuracy of the post-
Newtonian limit in a precise way, but the reader may appreciate to know that, according to [22], it is
"sufficiently accurate to encompass most solar-system tests that can be performed in the foreseeable
future".

This approximation scheme lays the foundations for the parametrized post-Newtonian (PPN) for-
malism, which is the standard framework for calculating experimental consequences of, and distin-
guishing between, metric theories of gravity. I will follow methods of the standard reference [3].
However, since our perspective is gravito-electromagnetism, and not experiments, I will make the
necessary adjustments. I will keep using the Lorentz gauge condition, which is slightly different from
the coordinates used in [3]. This is required for formulating the generalized frame-dragging effect
analogous to magnetism. I will also use different conventions and define different variables whenever
it is appropriate for the discussion of the gravito-electromagnetic analogy. Finally I will formulate
the equation of motion in a completely different way. In [3] the equation of motion is formulated in
terms of a defined effective mass, while our formulation is inspired from electrodynamics and written
in terms of potentials.

Some of the calculations in this chapter demands a lot of effort. Since the standard reference [3],
at least from the perspective of a student, is written in an extremely compact style, I will provide a lot
of details. Allthough I use different coordinates, define my own variables and so on, I hope this can
be useful for students and others who wants to gain skills in doing calculations in the PPN-formalism
or gravitational perturbation theory. Some of the calculations are placed in the appendix. This is not
because they are less important, but is done in order to secure a minimum of “flow” in my text.
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Before starting let me discuss the coordinate system and summarize the basic equations needed in
this chapter. As in chapter 3 we will use assymtotical Minkowskian coordinates, such that we have
Minkowski metric gµν = ηµν far from gravitational systems. We will also expand the metric arround
the Minkowski metric in the usual way, ie. gµν = ηµν + hµν . Even though we will not linearize our
equations, this expansion will be very useful also in this chapter.

To post-Newtonian accuracy (see [3] for a complete discussion) it will be sufficient to use the
perfect fluid as model for the energy-momentum tensor:

Tµν = (ρ+
p

c2
)uµuν + pgµν . (4.1)

It should be stressed that ρ is the total energy density as measured in the rest frame of the fluid. This
is different from the convention in [3] where the total energy is ρ(1 + Π), where ρ is the rest mass
energy of the atoms in the fluid and ρΠ is the internal kinetic and thermal energy.

We will work with the Einstein equation on the form

Rµν =
8πG

c4
Tµν , (4.2)

where Tµν = (Tµν − 1
2gµνT ) and T = gµνT

µν . In section 1.7.2 I showed that this form of the field
equation is equivalent to the usual one.

Allthough, as it turns out, the full theory is needed to find the post-Newtonian approximation, the
linearized field equation may still be used to simplify some calculations. We use it on the form of
(2.36)1:

�hµν = −16πG

c4
Tµν . (4.3)

4.1.1 The post-Newtonian book-keeping system

Our goal, as explained above, is to find approximate solutions which takes account for all physical
effects up to a given level of accuracy. In order to know which terms to neglect in the expansion
of the field equation, it is therefore necessary to keep track on the relative size of quantities like the
pressure, mass density, Newtonian potential and so on2. Order of magnitude estimates for the relative
size of these quantities can be found from Newtonian considerations. In the literature these estimates
are referred to as the post-Newtonian book-keeping system.

Consider a self-gravitating system with a typical mass density ρ and a typical pressure p. The
system produces a Newtonian gravitational potential U which satisfy the Poisson’s equation

∇2U = 4πGρ. (4.4)

We will use U ≈ −GM
r as an estimate3 for U , where M is the total mass of the gravitational system

and r is the distance to the center of mass of the system. Non-extreme gravitational systems tends to be
stable (neither collapsing nor exploding). This means either that the gravitational system constitutes
of bodies in bound trajectories, or that the gravitational force is canceled by pressure. Galaxies are

1In the linearized field equation gµν → ηµν in the definitions of Tµν and T .
2The Newtonian potential enters the scene because, as we saw in section 2.5, it gives an approximate solution for the

component h00.
3This is the monopole term in the multipole expansion of U . This term gives a good approximation to the true potential

far away from the source.



68 CHAPTER 4. POST-NEWTONIAN METHODS

examples of the former, while planets are examples of the latter. In the former case Newton’s second
law gives us the estimate GM

r2
∼ v2

r or by using the estimate for U :

|U | ∼ v2. (4.5)

In the latter case we consider a spherical object with constant mass density ρ, radius R and total mass
M . It is a straight forward exercise to show that in order to cancel the gravitational attraction the body
must have pressure p = 2

3πGρ
2(R2 − r2) which means that

p ∼ Gρ2R2. (4.6)

Using that |U | ∼ GM
R ∼ GρR2 we see that (4.6) implies

p ∼ ρ|U |. (4.7)

Equations (4.5) and (4.7) relates the pressure and velocity to the Newtonian potential:

(
v

c
)2 ∼ U

c2
∼ p

ρc2
∼ O(2). (4.8)

The symbol O(2) denotes the size of the above small quantities. A quantity of smallness O(m)
multiplied with a quantity with smallness O(n) is O(m+ n). As (vc )2 is O(2), we also have

v

c
∼ O(1). (4.9)

The book-keeping system also needs to tell us what happens when we differentiate with respect
to coordinate time t. Time evolutions are related to the motion of the sources v by ∂

∂t ∼ v · ∇, which
give us our final relation

|∂0|
|∂i|
∼ O(1). (4.10)

This relation follows from the assumption that time variations in the gravitational field are due to the
motion of its source. Thus we have neglected gravitational waves which propagates with the speed of
light and where ∂0/∂i ∼ O(0)4. It turns out though that wave phenomena do not enter the scene in
the post-Newtonian approximation5 so (4.10) will be sufficient for our business.

Equations (4.8), (4.9) and (4.10) constitute the post-Newtonian book-keeping system. It turns out
that the post-Newtonian approximation-scheme will involve expansion in small quantities like v/c,
p
ρc2

and U/c2. The book-keeping relates these expansions to each others and will be invaluable help
in this chapter. Note that since v2, U and p/ρ are small compared to c2 (in the weak-field small-motion
approximation), we essentially have an expansion in the single parameter c.

Our freedom in choice of reference frame is restricted by the small-motion condition, ie. v << c.
This means that the book-keeping system also can be used in coordinate systems where the source of
the potential U is moving, and that the relations holds also when the speed v denotes the speed of an
external test-particle rather than the constituents of a self-gravitating body.

4Consider for example the wave function f(t, x) = cos(kx − ωt), where k = ω/u and u is the speed of the wave
form (ie. u = c for a gravitational wave). We have ∂f

∂t
= −Aωsin(kx − ωt) and ∂f

∂t
= −Aksin(kx − ωt) and hence

∂0
∂i

= ∂t
c∂i
∼ u

c
= 1 ∼ O(0).

5Wave phenomena are suppressed by a factor O(3) relative to post-Newtonian effects, see [3, p.90].
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4.1.2 Notation and conventions

We will use the convention that hµν [O(P )] and Tµν [ρc2O(P )] are estimates for hµν and Tµν accurate
to smallness O(P ) and ρc2O(P ) respectly. In general the next order corrections to the quantities
are of (at least) one order of magnitude smaller, so we have hµν = hµν [O(P )] + O(P + 1) and
Tµν = Tµν [ρc2O(P )] + ρc2O(P + 1). The exact metric gµν = ηµν + hµν is given by the limit

hµν = lim
P→∞

hµν [O(P )], (4.11)

and can in principle be found after an infinite number of iterations.
We will denote the accuracy in the estimates for the coordinate acceleration a, a three vector with

components ai = d2xi

dt2
, in a similar way. For example a[O(2)∇U ] denotes an estimate for a where

all effects suppressed by a factor O(2) compared to the Newtonian acceleration are taken account for.
Effects of smallness O(P )∇U , where P > 2, however, are neglected.

We will also keep using the notation introduced in section 2.3, for example Γµαβ = Γ
µ(1)
αβ + Γ

µ(2)
αβ ,

where Γ
µ(1)
αβ is linear in hαβ and Γ

µ(2)
αβ is quadratic. As always, Greek letters run from 0 to 3, while

Latin letters run from 1 to 3. Repeated indices are summed over (Einstein summation convention).
For Greek repeated letters one is always upper (contravariant), while the other one is lower(covariant).
For Latin letters we also sum over repeated indices regardless of position, for example hii ≡ h11 +
h22 + h33. We use the notation of field theory in flat spacetime where spatial indices are placed up
or down equivalently. This notation must be used very carefully though, since the raising/lowering
operator in curved spacetime is the full metric gµν and not ηµν (this will be discussed more thoroughly
in a moment). For convenience we also introduce a somewhat unusual notation with = or 6= written
between indices. For example hi=j refers to any spatial diagonal element of hµν (that is h11,h22 OR
h33), while hi 6=j refers to any spatial off-diagonal element.

We should also comment on the raising and lowering of indices. In linearized theory we defined
ηµν (ηµν) to be the lowering (raising) operator for the perturbation hµν . In this chapter we want to
describe all post-Newtonian effects regardless of whether they may be linear or not in hµν . We will
therefore always start out with the full metric gµν as raising/lowering operator, but sometimes, after a
careful analysis of the loss of precision, it will be possible to replace gµν with ηµν .

4.1.3 The method

As we have introduced the post-Newtonian book-keeping system and defined our notation, we can
now give a more detailed account on the method. The main idea of the approximative-scheme is to
determine the coordinate acceleration a = d2x

dt2
consistently to a given accuracy, say a[O(P )∇U ].

The equation of motion is therefore used to define the accuracy needed in hµν (and Tµν) to obtain
the desired accuracy in a. This is necessary to obtain a consistent description at each iteration, ie.
predicting all physical effects at the considered precision.

The spatial components of the geodesic equation we can be written out as

d2xi

dt2
=

1

2
c2

[
∂ih00 − 2∂0hi0 − 2

vk

c
∂khi0 − 2

vk

c
∂0hik + 2

vk

c
∂ih0k

−v
m

c

vn

c
∂nhim −

vm

c

vn

c
∂mhin +

vm

c

vn

c
∂ihmn +O(h2)

]
.

(4.12)

All terms contributes to the motion of the particle of course, but some terms are suppressed since
they include time derivatives instead of spatial derivatives or include factors v/c. To get a consistent
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description, it is therefore not necessary to operate with the same accuracy in all the components of
hµν . Now, recall from section section 2.5 that to lowest order we have h00 = −2U

c2
∼ O(2). Using

the post-Newtonian book-keeping system, it is then easy to verify that determining a to accuracy
O(P )∇U , requires knowledge of

h00 to accuracy O(P + 2),

h0i to accuracy O(P + 1),

hij to accuracy O(P ).

(4.13)

For example if we demand Newtonian accuracy (P = 0), it is easy to verify that all terms in 4.12 will
be accurate to (at least) order∇UO(0) if we know h00 to O(2), h0i to O(1) and hij to O(0).

As we shall soon verify there are no corrections to a of order O(1)∇U in general relativity. The
post-Newtonian limit therefore requires knowledge of

h00 to accuracy O(4),

h0i to accuracy O(3),

hij to accuracy O(2).

(4.14)

We will refer to (4.14) as the post-Newtonian accuracy of the metric. It determines the acceler-
ation to accuracy O(2)∇U , which means that the post-Newtonian limit properly accounts for all
effects suppressed by a factor O(2) compared to the Newtonian acceleration. If one demands an
even better precision than that, one would have to calculate the post-post-Newtonian limit of gen-
eral relativity, which determines a[O(4)∇U ]. Such accuracy is not necessary in our discussion of
the gravito-electromagnetic analogy, but are important for example in the strong field around neutron
stars (see [23] for a discussion of calculations beyond the post-Newtonian approximation).

We have stressed that the approximation scheme can be viewed as an iteration process starting
from Newtonian theory and giving the post-Newtonian limit at the second step. Each iteration starts
with the Einstein equation and gives improved estimates for the metric. The new estimate for gµν is
then inserted into the energy-momentum tensor which gives an improved estimate for Tµν . Then one
starts over again with the Einstein equation, inserts the improved estimate for Tµν , and get a further
improved estimate for the metric. The first iteration starts with the lowest order solution for the metric
(gµν ≈ ηµν) and the linearized field equation. However, already at the second iteration, giving the
post-Newtonian approximation, the full non-linear field equation is needed. That is basically the
systematics of the method.

4.1.4 The first iteration

The starting point for the first iteration is the lowest order solution for the metric, ie. gµν ≈ ηµν . To
lowest order (4.1) give T 00 ≈ ρc2, T 0i ≈ ρcvi, T ij ≈ ρvivj + pδij and hence T ≡ Tµµ ≈ ηµνT

µν ≈
−ρc2. After lowering the indices with ηµν -which is sufficient to find the lowest order estimates- we
get:

Tµν ≈


1
2ρc

2 , if (µ = ν)
−ρcvi ∼ −ρc2O(1) , if (µ, ν) = (i, 0)
ρvivj ∼ ρc2O(2) , if (µ, ν) = (i, j) and i 6= j.

(4.15)

We observe that T i 6=j ∼ O(1)T 0k ∼ O(2)T 00 and that T i=j ∼ T 00. Hence (4.3) implies that
hi=j ∼ O(2), h0i ∼ O(3) and hi 6=j ∼ O(4), where we have used h00 ∼ O(2) (which follows from
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the Newtonian limit). Hence, linearized theory gives us a very useful estimate of the smallness of the
components hµν , which is well worth summarizing:

hµν ∼


O(2) , if µ = ν
O(3) , if (µ, ν) = (0, i)
O(4) , if (µ, ν) = (i, j) and i 6= j.

(4.16)

Inserting (4.15) into (4.3) and using (4.10) to neglect small terms in the differential equations, we get

h00[O(2)] = −2
U

c2
∼ O(2),

h0i[O(3)] = 4Ãi/c ∼ O(3),

hij [O(2)] = −2
U

c2
δij ∼ O(2),

(4.17)

where U is defined by Poisson’s equation (4.4) and Ãi is defined by the equation

∇2Ãi =
4πG

c2
ρvi. (4.18)

The first iteration has thus given us estimates for h00 to accuracy O(2), h0i to O(3) and hij to O(2).
Actually, the components hi 6=j could have been determined to O(4) (according to (4.16)), but this is
not necessary neither in the Newtonian nor the post-Newtonian limit. From (4.13) and (4.14) we see
that the first iteration has determined all components of the metric to Newtonian accuracy, and the
components h0i and hij to post-Newtonian accuracy.

From (4.17) we have h00[O(2)] = −2U
c2

, h0i[O(1)] = 0 and hij [O(0)] = 0, which is the accuracy
needed for the Newtonian limit (see (4.13)). Inserting this back into (4.12) we get a[O(0)∇U ] =
−∇U . Thus we have checked that the method gives back Newtonian theory in the first iteration.

4.1.5 The second iteration

The starting points for the second iteration are the results from the first iteration, ie. (4.17), which are
used to find improved estimates for the energy-momentum tensor. The new estimate for Tµν is then
inserted into the full non-linear field equation to find improved estimates for the metric. However, as
already observed, the only component of the metric we need an improved estimate for is h00, which
must be determined to accuracy O(4). Hence it is only the zero-zero component of the field equation
which needs to be considered:

R00 =
8πG

c4
T 00. (4.19)

When we where calculating h00 to O(2) we needed knowledge of T 00 to accuracy ρc2O(0).
This time we shall calculate h00 to O(4) and we will need T 00 to ρc2O(2). Our strategy is first
to calculate the contra-variant components Tµν [ρc2O(2)], and then find Tµν and T = gµνT

µν to
accuracy ρc2O(2) by lowering indices. Finally we use these results to calculate

T 00 = T00 −
1

2
g00T (4.20)

to accuracy ρc2O(2). All calculations make extensively use of the book-keeping system, (4.16) and
the relation

uµ

c
∼
{
O(0) , if µ = 0
O(1) , if µ = i

(4.21)
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to determine which terms can be neglected. After neglecting terms, lower order solutions for the
metric (4.17) is used to replace the hµν’s.

Then, let’s get started. From the line-element ds2 = gµνdx
µdxν = −c2dτ2 we find (see appendix

A.1)
u0

c
[O(2)] = 1− U

c2
+

1

2
(
v

c
)2, (4.22)

and
ui

c
[O(2)] =

vi

c
. (4.23)

From this follows
uµ

c
∼
{

1 +O(2) , for µ = 0
vi

c +O(3) , for µ = i,
(4.24)

which is an improvement of (4.21) that will be useful in the following. Inserting (4.22) and (4.23) into
(4.1) and neglecting terms smaller than ρc2O(2) we get (see appendix A.2):

Tµν [ρc2O(2)] =


ρc2
(
1− 2 U

c2
+ (vc )2

)
, for (µ, ν) = (0, 0)

ρc2
(
vi

c

)
, for (µ, ν) = (i, 0)

ρc2
(
vi

c
vj

c + p
ρc2
δij
)

, for (µ, ν) = (i, j).

(4.25)

When calculating Tµν = gµαgνβT
αβ and T = gµνT

µν we must start with the full metric gµν as low-
ering operator and then neglect all terms smaller than the desired accuracy. It is simply not consistent
to use ηµν as a lowering operator at this level of accuracy. When finding which terms to neglect, the
estimate

Tµν ∼


ρc2O(0) , for (µ, ν) = (0, 0)
ρc2O(1) , for (µ, ν) = (0, i)
ρc2O(2) , for (µ, ν) = (i, j),

(4.26)

which follows from (4.25), will be useful. The result (see appendix A.3) is

Tµν [ρc2O(2)] =


ρc2
(
1 + 2 U

c2
+ (vc )2

)
, for (µ, ν) = (0, 0)

−ρc2
(
vi

c )
)

, for (µ, ν) = (i, 0)

ρc2
(
vi

c
vj

c + p
ρc2
δij
)

, for (µ, ν) = (i, j)

(4.27)

and

T [ρc2O(2)] = −ρc2

(
1− 3

p

ρc2

)
. (4.28)

Inserting (4.27) and (4.28) into (4.20) we finally get what we have been working hard for:

T 00[ρc2O(2)] =
1

2
ρc2

(
1 + 2

v2

c2
+ 2

U

c2
+ 3

p

ρc2

)
. (4.29)

Then we compute R00 to O(4). To order O(4) we do not need the terms which are cubic and quartic
in hµν , and we write

Rµν [O(4)] = R(1)
µν [O(4)] +R(2)

µν [O(4)], (4.30)

where R(1)
µν (see (2.24)) is linear in hµν :

R(1)
µν =

1

2
(∂α∂µhνα + ∂α∂νhµα − ∂α∂αhµν − ∂ν∂µh) , (4.31)
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and R(2)
µν is quadratic in hµν :

R(2)
µν =

1

2
hαβ∂µ∂νhαβ −

1

2
hαβ∂α∂µhνβ −

1

2
hαβ∂α∂νhµβ +

1

4
∂µhαβ∂νh

αβ

+
1

2
∂βhαν ∂βhαµ −

1

2
∂βhαν ∂αhβµ +

1

2
∂βh

βα∂αhµν

+
1

2
hαβ∂α∂βhµν −

1

4
∂αhµν∂

αh− 1

2
∂βh

αβ∂µhνα

−1

2
∂βh

αβ∂νhµα +
1

4
∂αh∂µhνα +

1

4
∂αh∂νhµα.

(4.32)

We showed how to findR(1)
µν from the definition of the Riemann tensor in chapter 2.3. The components

of R(2)
µν are found by following a similar procedure.

Inserting µ = 0 and ν = 0 we easily find

R
(1)
00 [O(4)] = −1

2
∇2h00[O(4)] + ∂0∂kh0k[O(3)]− 1

2
∂0∂0hkk[O(2)]− 1

2
∂0∂0h00[O(2)], (4.33)

and after a lot of work we also get

R
(2)
00 [O(4)] =

1

2
hkj [O(2)]∂k∂jh00[O(2)]− 1

4
|∇h00[O(2)]|2

+
1

2
∂jh00[O(2)]

(
∂khjk[O(2)]− 1

2
∂jhkk[O(2)]

)
.

(4.34)

In these expressions we have used the notation ∇2h00 ≡ ∂k∂
kh00 and |∇h00|2 = ∂kh00∂

kh00.
Obtaining the expression for R(1)

00 is easy algebra starting from R
(1)
µν . We have used the fact that to

accuracy O(4) we can write ∂0∂0h
k
k = ∂0∂0hkk, ∂0∂

kh0k = ∂0∂kh0k and ∂0∂
0h00 = −∂0∂0h00

6.
The expression for R(2)

00 [O(4)] is found after a long, but straight forward, calculation where all terms
smaller than O(4) is neglected.

The results found in section 4.1.4 satisfy the Lorentz gauge condition since they where obtained
from the linearized field equation in that gauge. For consistency we must therefore expressR(1)

00 [O(4)]

and R(2)
00 [O(4)] in the same gauge: ∂µhµν = 0. The ν = 0 component of this condition can be

rewritten ∂kh0k = −1
2∂

0(h+2h00), where we have used the definition hµν = hµν− 1
2ηµνh. Inserting

this into (4.33) we get an expression for R(1)
00 to O(4) in the Lorentz gauge:

R
(1)
00 [O(4)] = −1

2
�h00[O(4)]. (4.35)

R
(2)
00 [O(4)] will automatically fulfill the Lorentz gauge condition if we insert the lower order solutions

for hµν given by (4.17), since these solutions follows from the linearized field equation in this gauge.
The result (see appendix A.4) is

R
(2)
00 [O(4)] = −∇2

(
U

c2

)2

+
16πG

c4
ρU. (4.36)

6To avoid confusion: gµν = ηµν + hµν is the lowering operator, but the contribution from hµν is neglected as the terms
are evaluated only to accuracy O(4).
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Adding R(1)
00 and R(2)

00 we get

R00[O(4)] = −1

2
�h00[O(4)]−∇2

(
U

c2

)2

+
16πG

c4
ρU. (4.37)

Inserting this together with (4.29) into (4.19) we get the equation

−�h00[O(4)]− 2∇2

(
U

c2

)2

=
8πG

c2
ρ

(
1 + 2

v2

c2
− 2

U

c2
+ 3

p

ρc2

)
. (4.38)

This differential equation gives us h00 to accuracy O(4) using standard techniques for solving equa-
tions perturbatively, see appendix A.5. Combined with the results in (4.17), we have finally deter-
mined the metric to post-Newtonian accuracy:

h00[O(2)] = −2
U

c2
,

h00[O(4)] = −2
U

c2
− 8

Uk
c4
− 8

Ug
c4
− 2

Up
c4
− 2

Ut
c4
− 2(

U

c2
)2,

h0i[O(3)] = 4
Ãgi
c
,

hij [O(2)] = −2
U

c2
δij ,

(4.39)

where the potentials are defined by

U = −G
∫
d3x′

ρ′

|x− x′| , Uk = −G
∫
d3x′

1
2ρ
′v′2

|x− x′| ,

Ug = −G
∫
d3x′
−1

2ρ
′U ′

|x− x′| , Up = −G
∫
d3x′

3p′

|x− x′| ,

Ut = − 1

4π

∫
d3x′

∂2U ′

∂t2

|x− x′| , Ãgi = −G
c2

∫
d3x′

ρ′v′i

|x− x′| .

(4.40)

The corresponding field equation are stated in table 4.1. The potentials are defined such that they all
have a special physical significance. For example, the Newtonian kinetic energy density 1

2ρv
2 plays

the same role for the potential Uk as the energy density ρ for U . In the special case of a static spherical
mass distribution it can be shown that −1

2ρU = 3p can be interpreted as the gravitational potential
energy density (see exercise 23.7 in [1]). Therefore, in this special case, the gravitational potential
energy density plays the same role for Ug and Up as the energy density ρ for U . The potential Ut has
significance as the retardation effect associated with U . To see this note that7 U + Ut

c2
= Ũ + O(6),

where Ũ satisfy the wave equation �Ũ = 4πGρ, while U satisfy the causality violating Poisson
equation ∇2U = 4πGρ. Note that the retardation effect is a O(4) effect, ie. the retardation effect
associated with U is suppressed by a factor O(2). This is a general property of the slow-motion
approximation where |∂2

0 |/|∂2
i | ∼ O(2), which means that the retardation effects associated with the

potentials Uk, Ug, Up and Ãgi is of smallness O(6) and therefore neglected.

7Use the technique of appendix A.5.
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4.1.6 The equation of motion

We have calculated the metric to the desired accuracy, and we will now find an expression for the
coordinate acceleration ai = d2xi

dt2
in terms of the introduced potentials. Allthough we have used

different coordinates/gauges and defined our own potentials, we have so far followed the methods of
the standard reference [3] fairly tight. In this section however, we will no longer follow the standard
methods of the the PPN-formalism. The reason for this is that (in the PPN formalism) the source of
the gravitational field is modeled as an discrete n-body system and the equation of motion is written
as a sum over effective masses. Our motivation for dealing with post-Newtonian methods however, is
a discussion of the gravito-electromagnetic analogy, and therefore we will formulate the equation of
motion in the same fashion as in chapter 3, namely in terms of our defined potentials.

In chapter 3.1 we used the approximations dxi

dτ ≈ dxi

dt and d2xi
dτ2
≈ d2xi

dt2
when writing out the equa-

tion of motion. In this chapter we start by finding an exact relativistic expression for the coordinate
acceleration, and determine which terms to be neglected after a careful analysis which makes use of
the book-keeping system. The coordinate acceleration can be rewritten

ai =
d2xi

dt2
=

(
dt

dτ

)−1 d

dτ

[(
dt

dτ

)−1dxi

dτ

]
=

(
dt

dτ

)−2d2xi

dτ2
−
(
dt

dτ

)−3 d2t

dτ2

dxi

dτ
. (4.41)

From the geodesic equation
d2xµ

dτ2
= −Γµαβ

dxα

dτ

dxβ

dτ
, (4.42)

we find expressions for d
2xi

dτ2
and d2t

dτ2
which can be inserted into (4.41) to give

ai = −c2Γi00 − 2cΓi0nv
n − Γimnv

mvn + cviΓ0
00 + 2viΓ0

0nv
n +

vi

c
Γ0
mnv

mvn. (4.43)

This is an exact relativistic expression for the (spatial) coordinate acceleration d2xi

dt2
in terms of the

coordinate velocity dxi

dt and the Christoffel connection. We will use the notation from section 2.3 and
write

Γµαβ = Γ
µ(1)
αβ + Γ

µ(2)
αβ , (4.44)

where Γ
µ(1)
αβ was defined

Γ
γ(1)
αβ =

1

2
ηγδ [∂βhδα(x) + ∂αhδβ(x)− ∂δhαβ(x)] , (4.45)

and

Γ
µ(2)
αβ [O(4)] = −1

2
hµδ [∂βhδα + ∂αhδβ − ∂δhαβ] . (4.46)

The first expression (4.45) is exact while the second (4.46) is only accurate to O(4) since gµν =
ηµν − hµν is only accurate to linear order in hµν as we saw in section 2.3. Then we can write the
coordinate acceleration in a corresponding way

ai = ai(1) + ai(2), (4.47)
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where ai(1) is defined as (4.43) with Γµαβ replaced by Γ
µ(1)
αβ and similarly for ai(2). Inserting the

Christoffel symbols into ai(1), and then replacing the hµν’s with φg and Agi according to (4.39) we get

ai(1)[O(2)∇U ] =− ∂iU − 4∂i
Uk
c2
− 4∂i

Ug
c2
− ∂iUp

c2
− ∂iUt

c2
− ∂iU

2

c2

+ 4vj
(
∂iÃgj − ∂jÃig

)
+ 4

vi

c

vk

c
∂kU −

v2

c2
∂iU

+
3

c2
vi
∂U

∂t
− 4

∂Ãig
∂t

,

(4.48)

(see appendix A.6 for details). A similar calculation for ai(2) gives

ai(2)[O(2)∇U ] = −∂iU
2

c2
, (4.49)

(see appendix A.7). Adding ai(1) and ai(2), and rewriting the sum as a vector equation we get an
expression accurate to order O(2)∇U :

a =−∇U −∇Ut
c2
− 4

∂Ãg

∂t
+ 4v ×

(
∇× Ãg

)
+ 4v(v · ∇U

c2
)− v2∇U

c2

+ G,

(4.50)

where

G = −2∇U
2

c2
+ 3

v

c

∂U

∂t
− 4∇Uk

c2
− 4∇Ug

c2
−∇Up

c2
. (4.51)

Equation (4.50), together with the field equations for the potentials, forms a framework for predicting
the post-Newtonian trajectory of a free particle in curved space-time. The results are summarized
in table 4.1. The reason for introducing the vector G, defined in (4.51), will become clear when
we concider the electromagnetic case in section 4.2. To estimate the error of the post-Newtonian
framework, one must calculate the post-post-Newtonian framework and consider the size of the new
terms that appear in the acceleration. It turns out that there are no corrections of smallness O(3)∇U
to dv

dt in general relativity (see chapter 4.1 of [3]), which means that the error is of smallness ∼
O(4)∇U ∼ (vc )4∇U ∼ ( U

c2
)2∇U .
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FIELD EQUATIONS SOURCE

∇2U = 4πGρ ENERGY DENSITY

∇2Uk = 4πG(1
2ρv

2) KINETIC ENERGY

∇2Ug = 4πG(−1
2ρU) GRAVITATIONAL POTENTIAL ENERGY

∇2Up = 4πG(3p) PRESSURE

∇2Ut = ∂2U
∂t2

EXPLICIT TIME-DEPENDENCE

∇2Ãg = 4πG
c2
ρv ENERGY FLOW

Condition satisfied by solutions:

∂
∂t
U
c2

+∇ · Ãg = 0

Equation of motion:

dv
dt = −∇U − 4∇Uk

c2
− 4∇Ug

c2
−∇Up

c2
−∇Ut

c2
− 2∇U2

c2

+4v ×
(
∇× Ãg

)
+ 4v(v · ∇ U

c2
)− v2∇ U

c2

+3v
c
∂U
∂t − 4

∂Ãg

∂t

Error-estimate: ∼ v4

c4
∇U or ∼ U2

c4
∇U

Table 4.1: Post-Newtonian limit in Lorentz-gauge.
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4.1.7 Order of magnitude estimates

Allthough we know that the corrections to Newtonian gravity in the equation of motion (4.50) all are
of the same (maximum) smallness (O(2)∇U ), it would be interesting to sort out how the magnitude
relates to physical characteristics of the system. In this section we shall characterize the magnitude of
post-Newtonian effects in terms of physical properties of the source such as its speed, pressure, mass
density and interior Newtonian potential (read: U ). Exact calculations are possible in special cases,
but we are more interested in the general case which means that we will make order of magnitude
estimates (loss of precision is the cost for generality).

We assume that the source (of the gravitational field) can be characterized by a fluid with a typical
speed vs, a typical internal potential Us, a typical mass density ρs and a typical pressure ps. We let
vp denote the speed of the test particle. In terms of these typical quantities we give a rough estimate
for the smallness of each effect (read: each term in (4.50)). The results are summarized in the two
leftmost columns in table 4.2 (the two rightmost columns are discussed in the next section). The
leftmost column indicates what effect (which term in (4.50)), while the second column indicates how
much that effect is suppressed compared to the Newtonian gravitational acceleration.

Let me give an example on how these estimates are calculated. Consider the term +4v×(∇×Ãg)
in (4.50), which you will find in row 8 of the table. The velocity of the source vi(x) can be related to
the typical speed of the source vs by writing vi(x) = f i(x)vs, where f i(x) is a dimensionless vector
field to which the norm (

√
(f1)2 + (f2)2 + (f3)2) varies around the value 1. Inserting this into the

definition (4.40) of the potentials we get

Ãig = −vs
c2
G

∫
d3x′

ρ′f ′i

|x− x′| , (4.52)

while the Newtonian potential is

U = −G
∫
d3x′

ρ′

|x− x′| . (4.53)

Putting f i(x) = 1, ie. neglecting the variation in the speed of the source, we get Ãgi ∼ vs
c2
U which

means that
4vp × (∇× Ãg)

∇U ∼ vp
c

vs
c
. (4.54)

Thus we have showed that the effect 4vp × (∇ × Ãg) is suppressed by a factor vp
c
vs
c compared to

the Newtonian term. This shows explicitly that the frame-dragging effect is a second order effect in
velocity; first order in the test particle velocity and first order in the velocity of the source. Hence
there was no good reason to neglect second order effects in the particle velocity in section 3.1, see the
discussion following equation (3.14).

The other estimates in table 4.2 are worked out in a similar manner, and there is no need for
further details. The exceptions however, are the effects depending on (partial) time derivatives. These
are the terms−∇Ut

c2
, +3v

c
∂U
∂t and−4

∂Ãg

∂t in (4.50). Concerning the first one, there is a time derivative
involved in the definition of Ut, see (4.40). Time evolutions are related to the motion of the sources v
by ∂

∂t ∼ vs · ∇. We made use of this in section 4.1.1 to introduce the post-Newtonian book-keeping
system. This is a bit too simple though, since we can have a stationary system where vs 6= 0 if the
source is rotating, but with no translational velocity. Hence we write ∂t . vs∂x, where . can be
replaced by ∼ or < depending on whether vs is mainly due to center of mass motion or rotation. This
explains the use of the symbol ‘.’ in table 4.2.
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It should be commented on that although the post-Newtonian effects all have roughly the same
magnitude (O(2)∇U ), they do not have the same chance to be measured by actual experiments. The
potentials Uk, Ug and Up all have the same 1/r dependence as the Newtonian potential U . Hence,
from measurements of satellite trajectories one can only deduce an effective gravitational potential
which goes like 1/r. The contribution from kinetic energy, gravitational binding energy, pressure
and mass density to this effective potential is model dependent and cannot be discovered by studying
satellite orbits in the external field. The Lense-Thirring effect however, has qualitatively different
behavior and can therefore be measured (the experiment is mentioned in chapter 3.3). The non-linear
effect ∇U2 also has great experimental significance since it falls off faster than the other potentials
with increasing distance (U2 ∝ 1/r2). This term is the reason why linearized theory fails to predict
the perihelion-shift of Mercury (see box 7.1 in [1]).
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EFFECT SURPRESSED DERIVED FROM COMMENT

BY A FACTOR

∇U 1 LINEARIZED THEORY SOURCED BY (REST) MASS

∇Uk ∼ (vs/c)
2 LINEARIZED THEORY SOURCED BY KINETIC ENERGY

∇Ug ∼ Us/c2 FULL THEORY SOURCED BY GRAVITATIONAL

POTENTIAL ENERGY

∇Up ∼ ps/(ρsc2) LINEARIZED THEORY SOURCED BY PRESSURE

∇Ut . (vs/c)
2 LINEARIZED THEORY RETARDATION EFFECT

∇U2 ∼ Us/c2 FULL THEORY NON-LINEAR EFFECT

v ×
(
∇× Ãg

)
∼ (vs/c)(vp/c) LINEARIZED THEORY LENSE-THIRRING EFFECT

v(v · ∇U) ∼ (vp/c)
2 LINEARIZED THEORY

v2∇U ∼ (vp/c)
2 LINEARIZED THEORY

v
c
∂U
∂t . (vs/c)(vp/c) LINEARIZED THEORY EXPLICIT TIME DEPENDENCE

∂Ãg

∂t . (vs/c)
2 LINEARIZED THEORY EXPLICIT TIME DEPENDENCE

Table 4.2: Overview of physical effects in the post-Newtonian limit. The leftmost coloumn indicates
which effect in the equation of motion (4.50) which is being considered. The next coloumn indicates
how much that effect is suppressed compared to the Newtonian acceleration ∇U . The third coloumn
tells whether elements from the full non-linear theory is needed in order to derive that effect (‘lin-
earized theory’ means that the effect could have been derived starting with the linear field equation).
The last coloumn gives a short comment on the origin or the characteristics of the effect.
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4.1.8 Discussion

Comparing the post-Newtonian framework (table 4.1) to the GEM-framework , it is clear that the latter
is far from a complete description regardless of whether we consider the time-independent case given
by table 3.2 or the potential formulation given by table 3.1. The GEM-framework lacks several terms
of the same smallness as the Lense-Thirring effect. This is obviously partly due to the fact that the
GEM-framework is derived from linearized theory assuming a pressureless fluid. However, observe
from equations (4.2), (2.32) and (4.37) that the only difference if starting from linearized theory, is that
it is not possible to deal properly with the term U2 and the potential Ug. Accordingly, most effects in
the post-Newtonian limit can actually be derived from linearized theory. In the third column of table
4.2 we have indicated which effects that could8 have been derived from linearized theory alone, and
which one that demands the full non-linear field equation.

Why does the GEM-framework lack so many terms that can be derived from the linearized field
equation with dust as model for the energy-momentum tensor? The missing terms is due to several
inconsistencies in the approximations performed to obtain the GEM-framework. Firstly there are no
good reasons for neglecting terms which are second order in v/c in the geodesic equation. As observed
in the previous section, the Lense-Thirring effect is also a second order effect in velocity (see the
discussion following equation (4.54)). Secondly, it is not consistent to naively use d2xi

dτ2
≈ d2xi

dt2
. The

correct approach is first to perform an exact relativistic calculation, like (4.41), and then subsequently
neglect terms which are at least one order of magnitude smaller then the desired accuracy. Thirdly,
the significance of the kinetic energy of the source is missed because one naively use T 00 ≈ ρc2,
T 0i ≈ ρcvi and T ij ≈ ρvivj ≈ 0 rather than developing an expression to the needed accuracy, as we
did in (4.25).

Hence, we have showed that the GEM-framework is not even a proper approximation of the lin-
earized field equation. The derivation of the GEM-framework has no foundations in a systematic
method, but is motivated by a strong desire to write the field equations analogous to Maxwell’s equa-
tions and the geodesic equation analogous to the Lorentz force law.

We have found the post-Newtonian limit of general relativity, and formulated it in a way that fits
our discussion of the gravito-electromagnetic analogy (used appropriate coordinates/gauge, defined
our own potentials and formulated the equation of motion in terms of the potentials). The next logical
step in our project is to apply the same systematic method to electrodynamics, which is the subject of
the next section.

4.2 The post-electrostatic limit of electrodynamics

In the previous chapter we studied general relativity in the weak-field slow-motion approximation. For
the equation of motion we found that the post-Newtonian limit includes two terms which are second
order in v/c. Here we will show that the same sort of effects also exist in electrodynamics.

Our approach will be to apply the same systematic method of section 4.1 to electrodynamics.
This will enable us to compare the field theories for gravitation and electromagnetism in a consistent
way beyond their lowest order approximations. In 4.1 we explored the post-Newtonian limit of general
relativity. Now we shall find the corresponding limit of electrodynamics. For reasons that will become

8We have used the full non-linear field equation, of course, as the starting point for going to the post-Newtonian limit.
It should therefore be stressed that also the effects labeled ‘linearized theory’ in the ‘derived from’-column in table 4.2, are
clearly, in our approach, derived from the full theory. The point though, is that the result would have become similar if we
actually had started from the linearized field equation. The effects labeled ‘full theory’ however, can not be derived from
the linearized field equation.
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clear we shall name this limit the ’post-electrostatic limit’ of electrodynamics (in flat space-time). We
will find that in this limit the Lorentz force law leads to an expression for the acceleration which in
addition to the magnetic-effect also includes the above mentioned second order effects in v/c.

In the case of gravity we introduced a book-keeping system to keep track on the size of terms in
the expansions. This system was founded on the assumptions of slow motion and weak fields. We
shall now introduce an analogous book-keeping system for electrodynamics. We will obviously not
need to assume weak fields since Maxwell’s equation and the Lorentz force-law are linear and exact
laws. Instead, we will make another assumption about the fields:

c|∇ ×A| . |∇φ|. (4.55)

Subsequently, we will refer to this as the weak-magnetic-field assumption. In the gravitational case,
the slow-motion assumption guarantees that an analogous relation is always satisfied9. However,
in electromagnetism slow motion does generally not imply that magnetic effects are suppressed10,
which is the reason why we need to assume this explicitly. Notice however, that if there are no electric
cancellation effects (all charges of same sign), then c|∇×A|

|∇φ| ∼ O(1), ie. (4.55) is satisfied to good
margin. Like in gravity, we will assume the speed of the source as well as the test-particle to be small:

v

c
∼ O(1). (4.56)

Once again, this implies the relation
|∂0|
|∂i|
∼ O(1), (4.57)

where we have neglected wave phenomena just like in the gravitational case (see the discussion below
(4.10)). Equations (4.55), (4.56) and (4.57) constitute the book-keeping system for electrodynamics
in the slow-motion weak-magnetic-field approximation. Applying the system to Maxwell’s equations
in Lorentz-gauge and the Lorentz force law (see table 3.1 on page 56), we find that the lowest order
solution is

dv

dt
= − q

m
∇φ, (4.58)

where φ satisfy the field equation
∇2φ = −µ0c

2ρq. (4.59)

This is the basic relations of electrostatics. Accordingly, we will refer to the lowest order solution
as the electrostatic limit, while the next iteration give us the post-electrostatic limit. Note that the
electrostatic limit is a perfect formal analogy to the Newtonian limit of gravity, as all equations are on
the same form and since the gravitational field couples to the invariant quantity ρ in the same manner
as the electrical field couples to the invariant quantity ρq.

In the post-electrostatic limit Maxwell’s equations can be written

�φ = −µ0c
2ρq (4.60)

and
∇2A = −µ0jq. (4.61)

9From the book-keeping system we find c|∇ ×Ag|/|∇φg| ∼ O(1) which implies that the analogous relation to (4.55)
-that is c|∇ ×Ag| . |∇φg|- is satisfied to good margin!

10For example the magnetic field around a current carrying wire is usually not suppressed compared to the electric field
even if the speed of the electrons are slow. The reason is of course the fact that electric charge can be both positive and
negative, which usually implies that the electric field cancels out.
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The expression for the acceleration however, demands a little more effort. It is found by applying
(4.55) and (4.56) to the Lorentz force law:

F = q(E + v ×B). (4.62)

If we naively use the Newtonian approximation F ≈ ma, we will miss the second order effects in the
test-particle velocity v/c. However, in situations where (4.55) and (4.56) holds, the second order ef-
fects in v/c are generally not suppressed compared to magnetic phenomenas and cannot be neglected.
Therefore, like in the gravitational case, we will need to make an exact relativistic calculation before
determining which terms to neglect. According to special relativity we have

F =
dp

dt
=

d

dt
(γmv). (4.63)

Inserting this into the Lorentz force law we get

γ̇v + γa = U, (4.64)

where U is the vector
U =

qE

m
+

q

m
v ×B. (4.65)

Inserting

γ̇ =
d

dt
(1− v · v

c2
)−1/2 =

1

2c2
γ3 d

dt
(v · v) =

1

c2
γ3a · v (4.66)

into (4.64) and defining β = v/c we get:

γ3(β · a)β + γa = U. (4.67)

This is the equation we want to solve for a to post-electrostatic accuracy, which turns out to be
∼ O(2)∇φ. To second order in β we get the solution

dv

dt
= U− 1

2
(β · β)U− β(β ·U), (4.68)

see appendix A.8 for details. Writing out the vectors β and U and then replacing E and B with
potentials φ and A using (4.55) we get:

dv

dt
=

q

m

[
−∇φ− ∂A

∂t
+ v × (∇×A)

+
1

2
v2∇ φ

c2
+ v(v · ∇ φ

c2
)

]
.

(4.69)

We have obtained the post-electrostatic limit of electrodynamics and the results are summarized in
table 4.3. Discussion and comparison with the post-Newtonian limit of general relativity follows
below.

4.2.1 The post-electrostatic limit of electrodynamics compared to the post-Newtonian
limit of general relativity

As we have calculated the post-electrostatic limit of electrodynamics as well as the post-Newtonian
limit of general relativity, we are enabled to compare the theories beyond their lowest order approxi-
mations in a consistent way. Let us compare the equation of motion in the electromagnetic case (4.69)
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FIELD EQUATIONS SOURCE

�φ = −µ0c
2ρq CHARGE

∇2A = −µ0jq CHARGE FLOW

Condition satisfied by solutions:

∂
∂t

φ
c2

+∇ ·A = 0

Equation of motion:

dv
dt = q

m

[
−∇φ− ∂A

∂t + v × (∇×A)

+1
2v

2∇ φ
c2

+ v(v · ∇ φ
c2

)
]

Error-estimate: ∼ (vc )4|∇φ| or ∼ (vc )3c|∇ ×A|

Table 4.3: The post-electrostatic limit of electrodynamics summarized.

to the gravitational case (4.50). Notice that for each term in (4.69) there is a corresponding term in
(4.50). We see that the second order effects in v/c exists in both gravity and electrodynamics, and
apart from the coefficients the behavior is identical. We also observe that there are effects in both the
gravitational and the electromagnetic case which depends on (partial) time derivatives of the vector
potential. Even though there are several common effects/terms, there are also important differences.
In particular note that there are no counter parts to any of the five terms in G in (4.50) (this was
the reason for introducing the vector G in (4.50)). The first one of these terms is quadratic in the
Newtonian potential U . This effect is a consequence of the fact that general relativity is a non-linear
theory. The second term depends on (partial) time derivative of the scalar potential U . Something
similar does not exist in the electromagnetic case. The three last terms in G are effects associated
with the kinetic energy, gravitational binding energy and pressure of the source of the gravitational
field. Hence, already at the second order approximations, the physics is considerably richer in the
gravitational case than in the electromagnetic. These important differences where not captured by the
formalism we reviewed in chapter 3.

We can conclude that there are important differences between gravity and electromagnetism once
we choose to go beyond the lowest order solutions. However, we have also showed that there are
important similarities. We have seen that physical analogies between gravity and electromagnetism
goes further than the much considered analogies between Newtonian gravity and Coulomb’s law, and
the Lense-Thirring effect versus magnetism.

4.3 A new framework

In chapter 4.1 we showed that the GEM-framwork is actually not a valid approximation to general
relativity in the weak-field slow-motion approximation. The GEM-framework includes only effects
with obvious counter-parts in electrodynamics, which is the Newtonian acceleration, frame-dragging
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and retardation effects, but lacks several of the effects summarized in table 4.2. In the previous chapter
we applied the same systematic methods to electrodynamics, and showed that the analogy between
gravity and electromagnetism is not limited to the above mentioned effects. In this chapter we will
reformulate the post-Newtonian limit from section 4.1 to a framework as similar as possible to the
post-electrostatic limit of electrodynamics. We demand from our framework that it includes all post-
Newtonian effects summarized in table 4.2. Within this restriction we formulate gravity in a language
which mimics the post-electrostatic limit of electrodynamics as much as possible.

The greatest part of the job is already done in chapter 4.1, where we formulated the post-Newtonian
limit of general relativity in the Lorentz gauge, as summarized in table 4.1. However, the obtained
framework includes several scalar potentials U , Uk, Ug, Up, Ut, contrary to electrodynamics where
there are only one scalar potential φ. We will now show that also gravity -to post-Newtonian accuracy-
can be formulated in terms of only one scalar potential φg and one vector potential Ag, which obeys
field equations similar to Mawells equations in Lorentz-gauge. This requires (as we will soon verify)
that we define the ’gravitational charge’ ρg as a special combination of rest-mass energy, kinetic-
energy, gravitational binding-energy and pressure:

ρg ≡ ρ+ 2ρ
v2

c2
− 2ρ

U

c2
+ 3

p

c2
. (4.70)

We define the gravitational scalar potential φg by the wave equation

�φg = 4πGρg, (4.71)

and the vector potential Ag by Poisson’s equation

∇2Ag =
4πG

c2
jg, (4.72)

where jg = ρgv.
The plan is now basically to follow the procedure from chapter 4.1: first formulate h00[O(4)],

h0i[O(3)] and hij [O(2)] in terms of φg and Ag
11, and then rewrite the geodesic equation in terms

of the same potentials. Remember that the notation hµν [O(p)] = fµν means that fµν is an estimate
for hµν of accuracy O(p), that is hµν = fµν + O(p + 1). So if we have another function f̂µν which
are equal to fµν to accuracy O(p), we have freedom to choose f̂µν as an estimate for hµν instead of
fµν . Starting with (4.17) and (4.38), it is now possible to express the metric to the desired accuracy in
terms of the potentials φg and Ag (see appendix A.9):

h00[O(2)] = −2
φg
c2
,

h00[O(4)] = −2
φg
c2
− 2

φ2
g

c4
,

h0i[O(3)] = 4
Agi
c
,

hij [O(2)] = −2
φg
c2
δij .

(4.73)

11The definitions of ρg , φg and Ag where chosen in order to make this possible. I found the definition of the gravitational
charge after a little trial and error. However, for pedagogic reason it is better just to define them, and verify that they are
appropriate by showing that the post-Newtonian metric (4.14) can be formulated in terms of them.
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It will be useful to note that in terms of φg and Ag the Lorentz gauge condition ∂µh
µν

= 0 reads 12:

∂

∂t

φg
c2

+∇ ·Ag = 0. (4.74)

Following the same procedure as in chapter 4.1 we get the following expression for the acceleration
to post-Newtonian accuracy13:

dv

dt
=−∇φg − 2∇

φ2
g

c2

+ 4v × (∇×Ag) + 4v(v · ∇φg
c2

)− v2∇φg
c2

+ 3v
∂

∂t

φg
c2
− 4

∂Ag

∂t
.

(4.75)

The framework is summarized in table 4.4. Note the clear similarity to electrodynamics in the post-
electrostatic limit (table 4.3). I have collected the most important relations from table 4.3 and 4.4
and summarized them in table 4.5. In the last mentioned table it is easy to compare the theories as
I have written each term in the equation of motion for the gravitational case on the same line as the
corresponding term in the electromagnetic case. Notice that ρg has exactly the same role in the field
equations as the charge density ρq in Maxwell’s equation, which is the reason why we have named it
the gravitational charge. However, unlike electric charge, ρg is not an invariant quantity. The mass-
density ρ and the pressure p are invariants by definition, ie. defined as the quantities measured by an
observer comoving with the fluid. The kinetic energy density ρv2 and the gravitational binding energy
ρU are however not invariants since both v2 and U depends on the gauge/coordinates.

The field equations are on exactly the same form due to the definition of the gravitational charge
density ρg. It should be pointed out though, that there are no physical reason for the appearance of the
gravitational charge flow jg ≡ ρgv rather than j = (rest-mass flow) in the field equation for Ag, see
(4.72). In the post-Newtonian limit, where hoi must be accurate to O(3), it does not matter whether
Ag is sourced by jg or j. We have chosen to define it in terms of jg because of our desire to write
the post-Newtonian limit of general relativity as similar as possible to the post-electrostatic limit of
electrodynamics. The potential φg however, must be sourced by the gravitational charge in order to
determine h00 to O(4) as required in the post-Newtonian approximation.

For the equation of motion however, it is not possible to write it on exactly the same form as
the post-electrostatic limit. "Only" five out of seven terms are similar. The effects in gravity with

no counterpart in electrodynamics, is the quadratic one in φg (which is −2∇φ2g
c2

) and the term with
explicit time-dependence on φg (which is +3v ∂

∂t
φg
c2

). The other effects exist in both gravity and
electrodynamics. Quantitatively they are not identical due to different coefficients, but the behavior
is similar. Also observe that each term in the equation of motion for electrodynamics has a factor
q
m , where q =

∫
d3xρq is the total charge of the test-particle. As expected, there is no similar term

in the gravitational case which is due to the equivalence principle, ie. all objects fall with the same
acceleration.

Thus we have showed that the post-Newtonian limit can be written in a language very similar to
electrodynamics. However, the formal analogy to the post-electrostatic limit is not perfect. This is

12Notice that only the zero component of ∂µh
µν

= 0 which can be rewritten in terms of φg and Ag . The spatial
components are suppressed, and not significant to post-Newtonian accuracy.

13Note that all terms in the first two lines of (4.50) is oriented along φg or v. Different decompositions might be useful,
see appendix A.10.
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due to the fact that the gravitational charge is not invariant, and because there exist effects with no
counterparts in electrodynamics. However, for the lowest order solutions of the approximation, which
we found to be Newtonian gravity and electrostatics, the formal analogy is really perfect, since all
equations are on the same form and since the gravitational field couples to the invariant quantity ρ in
the same manner as the electrical field couples to the invariant quantity ρq14. This perfect analogy
is summarized in table 4.6. As mentioned in the introduction, there exist a paper [18], where the
standard GEM-framework is used to propose a coupling between gravitation and electromagnetism
based on the fact that (most) particles carry both energy/mass and charge. This sort of coupling can
however only exist for the lowest order solutions in the approximation, which is Newtonian gravity
and electrostatics, since only at this level there is a perfect analogy.

In chapter 4.1 and 4.2 we studied approximations of general relativity and electrodynamics using
perturbation theory. In this chapter we used the results to introduce a new framework where the post-
Newtonian limit is formulated in a language as similar as possible to the post-electrostatic limit of
electrodynamics. This has clarified the limitation and power of the analogy between gravitational
and electromagnetic phenomenas. The analysis can however not yet be considered as complete. In
the case of electrodynamics the acceleration is an observable, in the sense that the numerical values
of ai = d2xi

dt2
equals the result of measurements performed by an observer at rest in the coordinate

system. In the gravitational case however, the coordinate system is not Minkowskian15 and it is not
obvious that the acceleration is an observable in the same sense. This problem is the subject of chapter
5. First, however, we need to verify that my calculations in this chapter are correct.

14It should be mentioned that there is a difference since elecrical charge may have different signs, while mass is always
positive.

15It is however very close to Mincowskian: gµν = ηµν + hµν .
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FIELD EQUATIONS SOURCE

�φg = 4πGρg GRAVITATIONAL CHARGE

∇2Ag = 4πG
c2

jg GRAVITATIONAL CHARGE FLOW

Condition satisfied by solutions:

∂
∂t
φg
c2

+∇ ·Ag = 0

Gravitational charge:

ρg ≡ ρ+ 2ρv
2

c2
− 2ρ U

c2
+ 3 p

c2

Equation of motion:

dv
dt = −∇φg − 2∇φ2g

c2

+4v × (∇×Ag) + 4v(v · ∇φg
c2

)− v2∇φg
c2

+3v ∂
∂t
φg
c2
− 4

∂Ag

∂t

Error-estimate: ∼ v4

c4
∇φg ∼ U2

c4
∇φg

Table 4.4: Reformulation of the post-Newtonian limit of general relativity.
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GRAVITY ELECTRODYNAMICS

�φg = 4πGρg �φ = −µ0c
2ρq

∇2Ag = 4πG
c2

jg ∇2A = −µ0jq

ρg ≡ ρ+ 2ρv
2

c2
− 2ρ U

c2
+ 3 p

c2
ρq = CHARGE DENSITY

jg ≡ ρgv jq ≡ ρqv

dv
dt = −∇(φg + 2

φ2g
c2

) dv
dt = q

m [−∇φ

+4v × (∇×Ag) +v × (∇×A)

+4v(v · ∇φg
c2

) +v(v · ∇ φ
c2

)

−v2∇φg
c2

+1
2v

2∇ φ
c2

−4
∂Ag

∂t −∂A
∂t ]

+3v ∂
∂t
φg
c2

Table 4.5: The post-Newtonian limit of general relativity compared to electrodynamics in the post-
electrostatic limit. Notice that each term in the gravitational acceleration is written on the same num-
ber of line as the corresponding term in electrodynamics.

NEWTONIAN LIMIT ELECTRO-STATIC LIMIT

∇2φg = 4πGρ ∇2φ = −µ0c
2ρq

dv
dt = −∇φg dv

dt = − q
m∇φ

Table 4.6: Newtonian limit of general relativity compared to the electro-static limit of electrodynam-
ics. A perfect analogy.
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4.4 Checking the calculations

In this chapter we have worked with the post-Newtonian limit of general relativity. Allthough we have
used standard methods with a long tradition in gravitational theory, we need to verify that my calcula-
tions are correct. The reason for this is, as pointed out several times allready, that I have formulated the
post-Newtonian limit in a way appropriate for our discussion of the gravito-electromagnetic analogy.
In particular I have used different coordinates/gauge, introduced my own variables and potentials, and
written the equation of motion in terms of potentials. It should be commented that there is a very rich
litterature on the subject and that I am obviously not the first one to use the Lorentz gauge. However,
I learned post-Newtonian methods from the textbook [3], which uses a different gauge. My approach
was first to understand all steps in that textbook, before specializing to my own choice of coordinates
and definitions.

The most obvious way to verify that my calculations are correct is to compare against exact solu-
tions or to find relevant journal articles for comparison. I will start with the former alternative.

4.4.1 Comparison with the Scwarzschild solution

We shall compare the kinematics as predicted by the framework introduced in chapter 4.3 to the kine-
matics of the Schwartzschild spacetime. The Scwarzschild line element in the usual coordinates (r, θ,
φ) (the socalled Schwarzschild coordinates) was given in (1.139). It turns out that these coordinates
are not appropriate for comparison against my approximate solution which is isotropic in the spatial
directions, ie. all the spatial diagonal components of the metric are equal. Therefore we will need to
compare against the Scwarzschild solution in isotropic coordinates:

ds2 = −
(
1− Rs

4r

)2(
1 + Rs

4r

)2 c2dt2 +

(
1 +

Rs
4r

)4

(dx2 + dy2 + dz2) = −c2dτ2, (4.76)

where r2 = x2 + y2 + z2. It was shown how this line element follows from the usual form in chapter
1.7.4. We will now apply the standard Lagrangian methods reviewed in chapter 1.6.4 to calculate the
acceleration of a test particle with motion in the radial direction. From the line-element (4.76) we see
that the Lagrangian becomes

L ≡ 1

2
gµν ẋ

µẋν

= −1

2

(1− Rs
4r )2

(1 + Rs
4r )2

c2ṫ2 + . . . ,
(4.77)

where the dots denotes terms which does not depend on ṫ ≡ dt
dτ . Since the metric is stationary it

follows from the Euler-Lagrange equations (1.105) that the time component of the conjugate momen-
tum:

pt ≡
∂L

∂ṫ

= −(1− Rs
4r )2

(1 + Rs
4r )2

c2ṫ,
(4.78)

is a constant of motion. From the line element (4.76) we see that

ṫ =
1√

(1−Rs
4r )

2

(1+Rs
4r )

2 −
(
1 + Rs

4r

)4 v2

c2

, (4.79)
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where in general v2 = (dxdt )
2 + (dydt )

2 + (dzdt )
2, but in our special case with radial motion v2 = (drdt )

2.
Inserting (4.79) into (4.78) we get

pt = −
(1−Rs

4r
)2

(1+Rs
4r

)4
c2√

(1−Rs
4r )

2

(1+Rs
4r )

6 − v2

c2

. (4.80)

Then we calculate the total time derivative dpt
dt , insert it into dpt

dt = 0, solves for the acceleration
a = d2r

dt2
and after tons of simple algebra we get:

a =− 1

4
c2 (1− Rs

4r )2

(1 + Rs
4r )7

Rs
r2
− 1

4
c2 1− Rs

4r

(1 + Rs
4r )6

Rs
r2

+
1

2
c2 1

1− Rs
4r

Rs
r2

v2

c2
+ c2 1

1 + Rs
4r

Rs
r2

v2

c2
.

(4.81)

This expression can be expanded in power of the small quantitiesRs/r and v/c. Going only to second
order in these small quantities we are left with:

a = −c2Rs
r2

[
1

2
− 3

2

v2

c2
− Rs

r

]
. (4.82)

Recall that Rs ≡ 2GM
c2

where M is the total gravitatinal mass. To get (4.82) on a form more similar
to our formulation of the post-Newtonian limit we introduce the potential φ = −GM

r . Using that
Rs
r = −2 φ

c2
and φ

r = −GM
r2

= −|∇φ|, equation (4.82) can be rewritten as a vector equation:

a = −∇φ
(

1− 3
v2

c2

)
− 2∇φ

2

c2
. (4.83)

How does this fit with the equation of motion in chapter 4.3? The (exterior) Scwartzschild solution
describes the spacetime outside a non-rotating stationary spherical mass distribution. Hence we have
∂
∂tφg = 0 and Ag = 0 in the equation of motion (4.75). For radial motion we we have v(v · ∇φg

c2
) =

v2∇φg
c2

. Hence the equation of motion for the post-Newtonian limit (4.75) simplifies to

a = −∇φg
(

1− 3
v2

c2

)
− 2∇

φ2
g

c2
, (4.84)

exactly on the same form as (4.83)! Once again I stress the importance of using isotropic coordinates
in the Scwartzschild solution. If we had used the ordinary Schwarzschild coordinates instead of
isotropic coordinates the factor of 2 in front of ∇φ2

c2
in (4.83) would have been replaced by a factor

1, which does not fit with (4.84). This was very confusing to me the first time I tried to check
my formalism in chapter 4.3 against the Scwarzschild spacetime. After a while I realized that I was
dealing with two non-compatible coordinate systems (the radial coordinate in the usual Schwartzschild
coordinates is not similar to the radial coordinate in the isotropic coordinates).

It is nice of course that our formalism reproduces a known solution. However, this is only a special
case of a special case, namely radial motion in the Scwartzschild spacetime. It would of course be
nice with a more general check than this one. In the next section I will compare against a journal
paper which will provide a much more general check. The reason why I have included this section
is that such calculations was important for me before I came aware of the PPN formalism and post-
Newtonian methods. I compared against exact solutions to convince myself that the GEM-framework
was not a complete description.
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4.4.2 Comparison with Soffel et al.(1987)

We shall now compare the formalism of section 4.3 against the journal article [24]. This article deals
with the two-body problem in the post-Newtonian approximation, ie. the kinematics of a two-body
system. Equation (6) of this article gives an expression for the relative motion of two bodies:

dv

dt
=− Gm

r2
n̂ +

Gm

c2r2
n̂

(
Gm

r
(2(β + γ) + 2ν)− v2(γ + 3ν) +

3

2
ν(n̂ · v)2

)
+
Gm

c2r2
v(n̂ · v)(2γ + 2− 2ν),

(4.85)

where m is the total mass (m1 + m2), v is the relative velocity, ν = m1m2
m2 and γ and β are the so-

called PPN parameters which takes the values γ = β = 1 in the case of general relativity. To compare
against the framework in section 4.3, let us assume that body 2 is a test particle (ie. m2 = 0) such
that m = m1 and ν = 0. In that case the preferred (convenient) coordinate system is the one where
body 1 (the source of the gravitational field) is at rest. In this coordinate system the metric will be
stationary, and the test particle is moving in a stationary spacetime. Let us also introduce the potential
φ = −Gm1

r such that −Gm1
r2

n̂ = −∇φ. In the case of general relativity (γ = β = 1), equation (4.85)
can then be rewritten

dv

dt
= −∇φ− 2∇φ

2

c2
+ 4v(v · ∇ φ

c2
)− v2∇ φ

c2
. (4.86)

In the preferred coordinate system this equation gives the acceleration of the test particle (which is
similar to the relative acceleration). In the case of a static source the equation of motion (4.75) takes
the form

dv

dt
= −∇φg − 2∇

φ2
g

c2
+ 4v(v · ∇φg

c2
)− v2∇φg

c2
. (4.87)

Thus our results are compatible with [24]. This gives a much more general test of the framework in 4.3
than in 4.4.1 since the test particle is no longer restricted to radial motion. The only terms in (4.75) not
checked is then only those depending on the vector potential Ag, and the one including a partial time
derivative of φg. However, I am sure that the terms depending on Ag are correct, since this potential
is associated with the Lense-Thirring effect, discussed in any paper of the gravito-electromagnetic
analogy. I miss an independent check of the ∂

∂tφg term though.
It should be commented that the gauge used in [24] is the same as the one used in [3]. This is not

the same as the Lorentz gauge (which I have used). However, it turns out that in the stationary case the
difference in gauge has no consequences for the scalar potential φg. The reason for this is that if we had
chosen the gauge of [3], the operator � in the field equation for φg (see equation (4.71)) would have
been replaced by ∇2. Hence, in the stationary case, the potential φg is invariant under the concidered
change of gauge. You can verify all this by studying equation 5.28 in [3]. For the components g0i

though the change of gauge have significance, but we are not testing the Lense-Thirring effect here
(as mention above I am convinced that the terms depending on Ag is correct).



Chapter 5

Proper reference frames

In chapter 4 we compared the post-Newtonian limit of general relativity with the corresponding limit
of electrodynamics in a consistent way. We verified that there is a deep analogy between gravitational
and electromagnetic phenomenas, but also showed that there are important differences. Our analysis
can however not yet be regarded as a complete one, since what we have done is essentially just to
compare the mathematical structure of two theories which are conseptually very different.

In this chapter we shall study the geometric significance of curvature in the post-Newtonian limit
of general relativity. It was a very simple question concerning the interpretation of the equation of mo-
tion (for the gravitational case) which lead me to the work described in this chapter. We have worked
out expressions for the coordinate acceleration d2x

dt2
both for the electromagnetic and the gravitational

case. In the former case we considered the phenomenon of electromagnetism in a flat spacetime
background. Electrodynamics is then formulated in terms of the usual Lorentz coordinates, where the
time coordinate has significance as proper time (as measured by an observer at rest in the coordinate
system), and the spatial coordinates have significance has proper lengths/distances1. The coordinate
acceleration therefore equals the physical acceleration measured by an observer equipped with a mea-
suring rod and a clock at rest in the coordinate system. We therefore call the coordinate acceleration,
in the electromagnetic case, an observable.

Throughout this chapter I will keep using the term observable in this very specific way. A quantity
describing the state of a physical system is defined2 as an observable only if the numerical value of
its components equals the actual measured values. Hence, if T is a tensor describing a physical state
with components Tµν relative to a coordinate basis, and T µ̂ν̂ relative to an orthonormal basis, it is
T µ̂ν̂ which we shall call the observable, not Tµν . In flat spacetime this is not an issue of course, since
coordinates are chosen such that Tµν = T µ̂ν̂ globally. Since the measured values also depend on the
motion of the observer, it should be stressed that we always implicit assume an observer at rest in the
considered coordinate system3.

The gravitational case is far more subtle as spacetime is necessarily curved wherever gravitational
phenomena exist. In curved spacetime it is not possible to introduce a globally Minkowskian co-
ordinate system, and hence the coordinates has no immediate significance as proper time or proper

1Electrodynamics can also be formulated in terms of more general coordinates, but for practical reasons this is only
done when it is really necessary, which is when spacetime is curved. We have only considered electromagnetism in a flat
spacetime background however, and as alway, Lorentz coordinates are always implicit assumed.

2It turns out that the term observable is very rarely used in gravitational literature. I therefore needed to find an appro-
priate definition in line with traditions from other areas of physics.

3In the gravitational case there will also be a restriction on the position of the observer, since measurements are only
well defined locally.
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length. The coordinate acceleration d2x
dt2

is therefore not equal to the physical measured acceleration,
and hence not an observable according to our definition. However, in the weak-field slow-motion
approximation, which we are considering, the coordinate system is almost Minkowskian. Further-
more, we have only operated with post-Newtonian accuracy, where the acceleration is accurate up
to O(2)∇U . This suggests an interesting question: is the coordinate acceleration an observable to
post-Newtonian accuracy? This question can of course be answered by calculating the physical mea-
sured acceleration, and then check whether there are corrections of order O(2)∇U to the coordinate
acceleration. However, we will first, in section 5.1, take a more direct approach, and show that the
coordinate acceleration being an observable (to post-Newtonian accuracy) is incompatible with the
equivalence principle. This allows us to conclude that the coordinate acceleration is not equal to the
physical measured acceleration without having calculated the latter! Then, in section 5.2, we go on
and find the actual expression for the measured acceleration in our post-Newtonian language. As the
coordinate acceleration is not a tensor quantity4, this expression can not be found in the usual way
by calculating the components relative to an orthonormal basis. To find the measured acceleration we
will introduce a special kind of coordinate system which is associated with the proper reference frame
of the observer. To calculate the measured acceleration in our post-Newtonian language, we first make
use of a result from the text-book [1]. Then I derive the same expression in a different way by taking
a much geometric/visual approach. After having established the measured acceleration, we show, in
section 5.3, that it can be used to gain insight into the kinematical differences between gravitation and
electromagnetism.

In the following, in order to avoid too long sentences, we shall simply call the physical measured
acceleration the measured acceleration. This is the physical measured acceleration of a particle with
an arbitrary velocity. It should not be confused with the proper acceleration, which is defined as the
physical acceleration measured in the instantaneous rest frame of the particle.

5.1 An accelerated observer in flat spacetime

In this section we shall make use of the equivalence principle, see section 1.2, to show that the co-
ordinate acceleration cannot be an observable in the specific sense explained above. Recall that the
equivalence principle can be formulated in two different ways. The first one states that a freely falling
observer in curved spacetime cannot use local experiments to figure out whether he actually is freely
falling in a gravitational field, or in an inertial frame in flat spacetime. The second formulation says
that an observer at rest in a gravitational field doing local experiments will get similar results as an
observer in an accelerated reference frame in a flat spacetime5. Here we will make use of the latter
formulation.

Let us start by deciding what kind of experiment to consider. Imagine two observers, A and B.
For simplicity we assume that A is at rest in a static gravitational field, while B is in an accelerated,
but non-rotating reference frame in flat spacetime. In the gravitational case, since the field is static,

4Since it depends on the Christoffel connection. The tensor quantity associated with acceleration is not d
2xµ

dt2
, but the

covariant derivative of the four-velocity D
dτ

dxµ

dτ
.

5In the relativistic sense both observers are accelerated as they both have a non-vanishing four-acceleration Duu.
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we have Ag = ∂
∂tφg = 06, and the coordinate acceleration, see (4.75), is simplified to

dv

dt
= −∇φg − 2∇

φ2
g

c2
+ 4v(v · ∇φg

c2
)− v2∇φg

c2
. (5.1)

To post-Newtonian accuracy this is equivalent to

dv

dt
= a0 − 4

v

c

(v

c
· a0

)
+
v2

c2
a0, (5.2)

where

a0 = −∇φg − 2∇
φ2
g

c2
. (5.3)

Thus we have written the coordinate acceleration a as a function of the coordinate velocity v and a0,
the coordinate acceleration of a particle at rest.

We assume that our observers perform a very simple experiment of relativistic mechanics. They
simply measure the acceleration of the test particles at a given point, and plot the measured accelera-
tion a as a function of v and a0, where v is the measured velocity and a0 is the measured acceleration
of a particle at rest (ie. v = 0). From the plot they write down an analytic best-fit function for the
acceleration as a function of v and a0:

a = f(v,a0). (5.4)

The equivalence principle then states that A and B will evaluate the same function f(v,a0). If not,
our suggestion would imply that it is (principial) possible to distinguish between the effects of a
gravitational field and an accelerated reference frame by means of a local experiment, ie. a violation
of the equivalence principle, the corner stone of gravitational physics!

We assume that the observers can measure all post-Newtonian effects, but no post-post-Newtonian
effects7. If the coordinate acceleration is an observable, it then follows from 5.2 that A will find the
following functional dependence from his plot:

f(v,a0) = a0 − 4
v

c

(
v

c
· a0

)
+
v2

c2
a0. (5.5)

It is then easy to check whether the coordinate acceleration is an observable to post-Newtonian ac-
curacy or not. We simply compute the acceleration of a freely falling test-particle relative to an
accelerated, but non-rotating, reference frame in a flat spacetime background and check whether the
functional dependence on v and g is similar to (5.5).

It should be stressed that it is only due to simplicity that we have chosen a static gravitational field
for A and a non-rotating accelerated reference frame for B. We could have done the analysis in full
generality, but this is not necessary to solve our problem. To show that the coordinate acceleration
(4.75) is not an observable, it is indeed enough to find a single example showing that this is not
compatible with the equivalence principle!

6Static gravitational fields are those produced by non-moving sources. For example a stationary non-rotating mass
distribution produces such a field. The field outside a rotating spherical mass-distribution is an example of a stationary field
which is not static.

7Recall that post-Newtonian effects are of smallness O(2)∇U , while post-post-Newtonian effects are of smallness
O(4)∇U
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Figure 5.1: The world line xµ(τ) of the origin of accelerated reference frame traces out a hyperbola
in the inertial system (T,X). The event P has time coordinate t = 5 since it lays in the simultaneity
space of the event (t, z) = (5, 0), ie. along the direction defined by the basis vector eẑ.

5.1.1 Hyperbolically accelerated reference frame

The accelerated, non-rotating reference frame in flat spacetime is a well-studied case in the literature.
It is called a hyperbolically accelerated reference frame when the proper acceleration8 of the origin
of the accelerated reference frame is constant because the path (of the origin of the reference frame)
then traces out a hyperbola in the inertial system. Such reference frames often serves as introductory
material in first courses of general relativity, and will not be derived here. We shall rather give a brief
review of the basic results.

Consider an inertial frame S with (Lorentz) coordinates T,X, Y, Z and Minkowski metric

ds2 = −c2dT 2 + dX2 + dY 2 + dZ2. (5.6)

We denote the coordinates of the hyperbolically accelerated reference frame t, x, y, z. One assumes
that the origin of the coordinate systems (X = Y = Z = 0 and x = y = z = 0) coincide at time
T = t = 0, and let the accelerated reference frame move along the Z axis of S, see figure 5.1. The
proper acceleration g of a particle at rest at the origin of the accelerated reference frame is constant.

8Recall from special relativity that for linear acceleration the proper acceleration â is related to the coordinate accelera-
tion a by â = γ3a.
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The coordinates t, x, y, z are then related to the Lorentz coordinates by the coordinate transformations:

T =
c

g
sinh

gt

c
+
z

c
sinh

gt

c
,

X = x,

Y = y,

Z =
c2

g
(cosh

gt

c
− 1) + z cosh

gt

c
,

(5.7)

see chapter [7, ch.4.2] for a detailed derivation. Let us now discuss the significance of the coordinates.
The time coordinate t is the proper time as measured by a standard clock at rest at the origin of the
accelerated reference frame. The spatial coordinates (x, y, z) have significance as proper lengths. This
means for example that the point (0, 0, z0) lays a proper distance z0 from the origin of the accelerated
reference frame as measured by a measuring rod at rest relative to this frame. Accordingly, at the
origin of the accelerated reference frame, a = d2x

dt2
is the measured acceleration, ie. the acceleration

of a freely falling test particle as measured by an observer at rest at the origin equipped with a standard
clock and a measuring rod. We shall therefore assume that the observer B in the discussion above
performs his experiment at the origin of the hyperbolically accelerated reference frame. What we need
to do, is finding an expression for a in terms of g and the velocity v = dx

dt of the test particle. My
approach is to calculate the metric associated with the accelerated reference frame and then compute
the acceleration from the geodesic equation in the usual way.

Applying the standard transformation law for the metric to the coordinate transformation (5.7) we
find

ds2 = −
(

1 +
gz

c2

)2
c2dt2 + dx2 + dy2 + dz2, (5.8)

and accordingly

g00 = −
(

1 +
gz

c2

)2
,

g11 = g22 = g33 = 1.
(5.9)

The contravariant components defined by gµαgαν = δµν becomes

g00 = − 1(
1 + gz

c2

)2 ,
g11 = g22 = g33 = 1.

(5.10)

The non-zero components of the Christoffel connection (see definition (1.87)) become

Γ0
03 = Γ0

30 =
g

c2

1

1 + gz
c2

(5.11)

and
Γ3

00 =
g

c2

(
1 +

gz

c2

)
. (5.12)

From the geodesic equation
d2xµ

dτ2
= −Γµαβ

dxα

dτ

dxβ

dτ
(5.13)
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we find
a = g

(
1 +

gz

c2

)
− 2

1

1 + gz
c2

g · v
c2

v, (5.14)

where v and a are the vectors with components dxi

dt and d2xi

dt2
respectively. For details see appendix

A.12. At the origin this simplifies to
a = g − 2

g · v
c2

v. (5.15)

5.1.2 Discussion

We have calculated that the (physical) acceleration of a freely falling test-particle as measured in an
accelerated, but non-rotating reference frame in flat spacetime is

a = g − 2
g · v
c2

v, (5.16)

while the coordinate acceleration of a particle in a static gravitational field, ie. (5.2), is

dv

dt
= a0 − 4

a0 · v
c2

v +
v2

c2
a0 (5.17)

in the post-Newtonian approximation. An observer able to perform measurements of the accelera-
tion to post-Newtonian accuracy would therefore be able to distinguish between a real gravitational
field and an accelerated reference frame, if the coordinate acceleration where an observable. This
clearly shows that the coordinate acceleration being an observable is incompatible with the equiva-
lence principle. Thus we have showed that the coordinate acceleration is not an observable. It is quite
fascinating that it is possible to show this without calculating the actual expression for the measured
acceleration.

For later reference let us briefly review the general case. If the accelerated reference frame in
flat spacetime is also allowed to rotate with an angular velocity ω, an observer at the origin of the
reference frame will measure an acceleration

a = g − 2
g · v
c2

v − 2ω × v, (5.18)

see [1, ch 6.6] for a derivation.

5.2 Proper reference frames in curved spacetime

By making use of the equivalence principle, we have showed that the coordinate acceleration in the
post-Newtonian approximation is not an observable; not the acceleration measured by an observer
at rest in the coordinate system. In this section we shall find an expression for the the measured
acceleration of a (freely falling) test particle in terms of our post-Newtonian language. First however,
we will need to introduce the concept of a proper reference frame in curved spacetime.

5.2.1 The proper coordinate system

We will follow the treatment of [1, ch.13.6] to introduce the proper reference frame of an accelerated
observer in curved spacetime.

We let xµ denote the coordinates associated with the proper reference frame, while xµ, as usual,
denotes the original coordinate system. We let τ be the proper time of the observer, ie. the time
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Figure 5.2: The origin of the proper reference frame moves along the world line xµ(τ). The point
P is intersected by the geodesic starting out from the origin at proper time τ = 5 with the (initial)
direction n = 1√

2
(ex̂ + eŷ) at proper distance s = 4 from the origin. Thus the point P has proper

coordinates t = 5 and x = y = 4/
√

2.

measured on a comoving standard clock, and uµ ≡ dxµ

dτ the tangent vector to the observer’s world
line. As we are considering an observer at rest in the coordinate system, all spatial components of
uµ are zero. Remember from section 1.5.1 that associated with an observer there is a physical basis
eµ̂ which satisfy e0̂ = u

c and eµ̂ · eν̂ = ηµ̂ν̂ . These orthonormal vectors, from now on referred to as
a tetrad, defines the time direction and the spatial directions of the laboratory which the observer is
carrying with himself along his world line. This tetrad is the starting point for the construction of the
proper reference frame and the associated coordinates xµ.

The proper reference frame of an accelerated observer in curved spacetime is essentially a straight
forward generalization of the accelerated reference frame in flat spacetime. The construction of the
coordinates xµ are visualized in figure 5.2 and can be summarized in three steps:

1. From each point on his world line the observer sends out a continuum of purely spatial geodesics
which covers the space around him. Each geodesic can be specified uniquely by the proper
time τ , which denotes the starting point of the geodesic, and a pure spatial unit vector n =
n1e1̂ + n2e2̂ + n3e3̂ which specifies the (initial) direction of that geodesic relative to the tetrad
vectors.

2. Each event near the observer’s world line is intersected by precisely one of the geodesics. We
let the parameter s be the proper length measured along the geodesic from the starting point, see
figure 5.2. Each event near the observer is then uniquely specified by τ , n and s. The first two
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parameters specifies which geodesic that is intersecting the event, while the last one specifies
where on that geodesic the event is located.

3. An event P specified by the the the entities τ , n and s is then assigned the following coordinates
in the proper reference frame:

(x0, x1, x2, x3) = (cτ, sn1, sn2, sn3). (5.19)

Thus we have introduced the coordinates associated with the proper reference frame. The accel-
eration ai = d2xi

dt
2 of a particle at the origin of this coordinate system is the measured acceleration9.

There are several things to comment concerning the points above. A geodesic is a curve whose tan-
gent vectors are related by parallel transport. A spatial geodesic will therefore in general not follow
a straight line in the original coordinate system xµ, ie. d2xµ

ds2
6= 0 along the geodesic. The geodesic

equation may be used for a space like geodesic if the parameter τ is replaced by the parameter s:

d2xµ

ds2
= −Γµαβ

dxµ

ds

dxν

ds
. (5.20)

Concerning point 2 above, it must be stressed that it is only near the world line of the observer that
there is a unique geodesic which intersects the event. Far away from the observer the geodesics may
cross due to the curvature of spactime or because of the (time varying) acceleration of the observer
(concerning the latter, see [1] ch. 6.3 for more details). Accordingly the coordinate system xµ breaks
down far away and can only be used close to the observer.

A reader familiar with the treatment in [1], may have noticed that we have not mentioned the
‘transport law for the observer’s tetrad’10. This is a relation describing the change of the observer’s
tetrad along his world line in terms of his four velocity, four acceleration and rotation relative to
inertial-guidance gyroscopes. From this relation one can find expressions for the Christoffel coef-
ficients, which can be used to find an expression for the measured acceleration of a freely falling
particle. These calculations gives an exact expression for the measured acceleration in terms of the
acceleration and rotation of the observer and the measured particle’s velocity. The approach in [1] is
formally correct of course, but does not provide any insight into why the expression for the measured
acceleration is on a different form than the coordinate acceleration. I will try to derive the measured
acceleration in a very different way which will provide much more insight into this. As I only consider
an observer at rest in the original coordinate system, I will not need to introduce the transportation
law for the tetrad. First however, in section 5.2.2, I will start with the result in [1], and reformulate
it in terms of our post-Newtonian language. Then, in section 5.2.3, I derive the same result in a very
different, and possibly new, way.

5.2.2 The measured acceleration

The result for the measured acceleration (d
2xj

dt
2 ) given by equation 13.75 in [1] is:

d2xj

dt
2 eĵ = −A + 2(A · v

c
)
v

c
− 2ω × v, (5.21)

where A ≡ Duu is the four acceleration of the observer, ω is the rotation of the spatial part of the
observer’s tetrad relative to comoving inertial-guidance gyroscopes, and v = dxi

dt
eĵ is the measured

9Outside the origin this does not hold, since the standard clock defining the t coordinate is attached to the origin of the
proper reference frame.

10See eq. 13.60 in [1].
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velocity of the freely falling test particle. The four acceleration A of the observer will in general have
a non-vanishing zero component. The zero component of A relative to the observer’s orthonormal
basis however, is vanishing, ie. A0̂ = 0, since the four acceleration is orthogonal to the four velocity
(recall that e0̂ = u/c, such that uî = 0 and hence it follows from uµAµ = uµ̂Aµ̂ = 0 that A0̂ = 0).
This explains how it can be that there are only spatial vectors (orthonormal basis) on the left-hand
side of (5.21) while there are (in general) also time vectors (coordinate basis) on the right-hand side.
Notice that (5.21) is on the same form as (5.18), which shows that the expression for the measured
acceleration in curved spacetime is compatible with the equivalence principle.

What we are interested in, are the components d2xj

dt
2 which has significance as the measured accel-

eration. Therefore we introduce the (ordinary) three vector a, whose components are d2xi

dt
2 , and write

(5.21) as

ai = −Aî + 2(A · v
c

)
vî

c
− 2(ω × v)î. (5.22)

Our task is to find the measured acceleration a associated with an observer at rest in the original
coordinate system and with no rotation relative to the grid lines of the original coordinate system.
Hence we must find the four acceleration and the rotation relative to inertial-guidance gyroscopes of
such an observer. We start with the former.

An observer at rest in the original coordinate system has four velocity

uµ ≡ dxµ

dτ
= (c

dt

dτ
, 0, 0, 0). (5.23)

Thus the components of the four acceleration relative to the coordinate basis of the original coordinate
system becomes:

Aα =
D

dτ
uα

= uβDβu
α

= u0D0u
α

= u0(∂0u
α + Γα0βu

β)

= u0(∂0u
α + Γα00u

0),

(5.24)

where I have used the definition of the covariant directional derivative (1.78) in the second line, (5.23)
in the third line, the definition of the covariant derivative (1.72) in the fourth line and (5.23) once again
in the last line. The space components of A becomes

Ai = (u0)2Γi00. (5.25)

Instead of calculating the zero-component from (5.24), which is also possible, we use the fact that the
four-acceleration Aµ is orthogonal to the four velocity uµ, ie. gµνuµAν = 0. To lowest order11 this
gives

A0 = gi0A
i, (5.26)

where we have used that ui = 0. Our goal is to formulate the measured acceleration in terms of our
post-Newtonian language. Hence we must formulate u0 and Γi00 in terms of the potentials φg and Ag

11We have used that to lowest order g00 = −1.
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introduced in section 4.3. By using results from appendix A.6 and the definition of φg and Ag, see
(4.71) and (4.72), we get

Γi00 = ∂i
φg
c2

+ 4
φg
c2
∂i
φg
c2

+
4

c2

∂

∂t
Aig. (5.27)

As our observer is at rest in the (original) coordinate system (dx = dy = dz = 0), the line element
becomes

g00c
2dt2 = −c2dτ2,

(−1− 2
φg
c2
− 2

φ2
g

c4
)c2dt2 = −c2dτ2,

(5.28)

which means that

(u0)2 = (c
dt

dτ
)2 =

c2

1 + 2
φg
c2

+ 2
φ2g
c4

. (5.29)

Inserting (5.27) and (5.29) into (5.25) and evaluating to post-Newtonian accuracy we get

Ai = ∂iφg + 2
φg
c2
∂iφg + 4

∂

∂t
Aig. (5.30)

Inserting (5.30) into (5.26) and rewriting as a vector equation we find the lowest order solution for the
zero component:

A0 =
4

c
Ag · ∇φg. (5.31)

What we need, according to (5.22), is to find the spatial components of A12 relative to the or-
thonormal basis eµ̂. This can be done by expressing the coordinate basis vectors eµ as a linear combi-
nation of the orthonormal basis vectors eµ̂. The orthonormal basis eµ̂ is the physical basis associated
with the observer, which means that e0̂ = u/c. As the observer is at rest in the coordinate system
(ui = 0), we also know that u is parallel to e0. Accordingly, the vector e0̂ is parallel to e0, and it
follows that

e0̂ =
e0√
|e0 · e0|

=
e0√
|g00|

= e0(1− φg
c2

), (5.32)

or

e0 = e0̂

(
1 +

φg
c2

)
. (5.33)

A little more effort is needed for the spatial basis vectors. We start by writing

ei = e⊥i + e‖i, (5.34)

where e⊥i is the component of ei orthogonal to e0, ie. e⊥i · e0 = 0, and e‖i is the component of ei
parallel to e0:

e‖i =
ei · e0

e0 · e0
e0 =

gi0
g00

e0. (5.35)

Thus we have
e⊥i = ei − e‖i = ei −

gi0
g00

e0. (5.36)

12WARNING: Do not confuse the four acceleration A with the gravito-magnetic potential Ag. I will promise to write
the correct one!
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The spatial vectors of the observer’s tetrad (eî) are found by normalizing the vectors e⊥i
13:

eî =
e⊥i√
|e⊥i · e⊥i|

=
ei − gi0

g00
e0√

|(ei − gi0
g00

e0) · (ei − gi0
g00

e0)|
=

ei − gi0
g00

e0√
|gii − gi0gi0

g00
|
. (5.37)

Rewriting in terms of our potentials, neglecting contributions suppressed by O(4), and solving for ei
yields:

ei = (1− φg
c2

)eî −
4

c
Agie0. (5.38)

Combining (5.30), (5.31), (5.33) and (5.38) we get

A = A0e0 +Aiei =

(
∂iφg +

φg
c2
∂iφg + 4

∂

∂t
Aig

)
êi. (5.39)

Notice that the time-component of A vanish, just as it should in the orthonormal basis! From (5.39)
we see that the components of A relative to the observer’s tetrad are:

Aî = ∂iφg +
φg
c2
∂iφg + 4

∂

∂t
Aig. (5.40)

We also need an expression for the rotation frequency ω of the observer’s proper reference frame
relative to inertial-guidance gyroscopes. At this point the reader may want to review the discussion
following equation (3.40), where it is explained why it is natural, in general relativity, to let inertial-
guidance gyroscopes define the axis of a non-rotating reference frame. As already mentioned, we
consider an observer with no rotation relative to the grid lines of the original coordinate system. The
total precession is in general, see (3.41) and ( 3.42 on page 61), a combination of the Lense-Thirring
effect, geodesic precession and Thomas precession. In our case however, there is neither geodesic-
nor Thomas precession since we consider an observer at rest in the coordinate system, ie. v = 0 in
(3.42). Thus, the precession of an inertial-guidance gyroscope carried by our observer becomes:

Ω = −2∇×Ag. (5.41)

Hence the rotation of the observer’s tetrad relative to an inertial-gyroscope becomes

ω = 2∇×Ag. (5.42)

According to (5.22), we need an expression for (ω×v)î. To post-Newtonian accuracy the orthonormal
components are equal to the coordinate basis components:(ω×v)î = (ω×v)i. Then we insert (5.40)
and (5.42) into (5.22), neglecting terms in the usual way, and get our sought after expression, valid to
post-Newtonian accuracy, for the measured acceleration:

ai = −∂iφg −
φg
c2
∂iφg + 4v × (∇×Ag)i + 2(∂jφg

vj

c
)
vi

c
− 4

∂

∂t
Aig, (5.43)

or as a vector equation

a =−∇φg −
φg
c2
∇φg

+ 4v × (∇×Ag) + 2v(v · ∇φg
c2

)

− 4
∂

∂t
Ag.

(5.44)

13There is no summation over repeated indices in this expression!
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Thus we have reformulated equation (5.21) in terms of our post-Newtonian potentials φg and Ag.
Note that the term 4v × (∇ × Ag) in (5.44) corresponds to the term −2ω × v in (5.18). This
shows that locally, the gravito-magnetic effect is equivalent to a rotating reference frame, just like the
gravito-electric effect locally is equivalent to an accelerated reference frame (in flat spacetime). It
should be mentioned that, to post-Newtonian accuracy, the coordinate velocity v = dx

dt in (5.44) can
be replaced by the measured velocity v = dx

dt
. The measured acceleration (5.44) should be compared

to the coordinate acceleration (4.75):

dv

dt
=−∇φg − 4

φg
c2
∇φg

+ 4v × (∇×Ag) + 4v(v · ∇φg
c2

)− v2∇φg
c2

+ 3v
∂

∂t

φg
c2
− 4

∂Ag

∂t
.

(5.45)

Note that there are corrections to several of the coefficients in the measured acceleration relative to
the coordinate acceleration. In the following section, we shall look at a special case and derive the
measured acceleration from first principle. This will provide insight into the differences between the
measured acceleration (5.44) and the coordinate acceleration (5.45).

5.2.3 Geometric derivation of the proper acceleration

In the previous section we did not derive the proper acceleration, but only reformulated a result in [1],
in terms of our post-Newtonian language. In this section we shall look at a special case and derive
the measured acceleration from the expression for the coordinate acceleration, and the knowledge of
how the coordinates xµ relates to xµ. This will provide geometric insight into the differences between
the measured acceleration and the coordinate acceleration. The formal derivation of the measured
acceleration in [1] is mathematically rigorous, but does not provide this kind of insight.

The difference between the proper acceleration and the coordinate acceleration is of course due
to the different nature of the coordinate systems. I will now try to spell out more concretely which
aspects of the proper reference frame these differences are due to. I claim that the reasons for a not
being equal to a can be divided into the following parts:

1. The standard clock defining the proper time coordinate t is attached to the origin of the proper
reference frame, while the coordinate time t ticks at the same rate as a standard clock at infinity
(far away from the gravitational system). We shall refer to this as the clock effect.

2. The grid lines of the proper coordinate system are stretched and squeezed relative to the grid
lines of the original coordinate system. We shall refer to this as the stretching/squeezing effect.

3. The grid lines of the proper coordinate system are bent relative to the grid lines of the original
coordinate system. We shall refer to this as the bending effect.

I will soon define mathematically what I mean by stretching/squeezing and bending of grid lines,
but let us first try to visualize the idea. In figure 5.3 I have drawn the grid lines x1 = x and x2 = y into
the x-y plane of the original coordinate system. Notice that the grid lines of the proper coordinates are
represented in the original coordinate system as bent lines14. This is so because the tangent vectors to

14In the relativistic sense, where a straight line is a line whose tangent vectors are related by parallel transport, it is the
grid lines of the original coordinate system which are bent, and the grid lines of the proper coordinates which are straight.
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s=1 s=2

s=1

s=2

s=3

s=3

s=4

s=4

s=5

s=5

s=6

s=7

s=8

s=8s=6
s=7

Figure 5.3: The grid lines of the proper coordinates x and y represented in the x − y plane of the
original coordinate system. The bending of the grid lines is what I call the bending effect, while
the different spacing between the points s = 1,s = 2 and so on along the grid lines, is the stretch-
ing/squeezing effect.

the grid lines of the proper coordinates are related by parallel transport. I should stress that the figure
only shows the projection of the proper grid lines x and y onto the x− y plane. Allthough the tangent
vector to the grid line has a vanishing time component at the origin15, it will in general, as we shall see,
have a non-vanishing time component other places. Thus it is not only the projection of the geodesic
onto space-space planes which appear to be “bent”, but also the projection onto space-time planes (for
example the projection of the grid line y onto the (t, y) plane will be represented as a bent line). In the
following, I shall refer to the bending of geodesics onto space-space planes simply as spatial bending.
Thus, if I say that a given geodesic has no spatial bending, I mean that the projection of the geodesic
onto any space-space plane is represented as a straight line (but the projection onto a time-space plane
may not be straight). Notice also from the figure that the grid lines of the proper coordinates have a
different scaling than the original coordinates. This is so because the proper coordinates represents
proper distances, and this is what I refer to as the stretching/squeezing effect.

Point 3 in the list above is what make a derivation of a from a geometric point of view tricky.
This has so far prevented me from doing this derivation in full generality. We will therefore consider
a special case where the particle moves in a direction where the grid lines are straight, ie. no spatial
bending relative to the grid lines of the original coordinate system. Apart from that we shall be quite
general. We will consider an example with a non-stationary metric, and we shall take into account for
the stretching and squeezing of the grid lines.

We shall now make the above talk more mathematically precise. We start by studying the ge-
ometry of the geodesics radiating out from the observer, in a more mathematical, and hopefully less
confusing16, manner. We let nµ(s) = dxµ

ds be the field of tangent vectors to a geodesic starting out in

15It is relative to the observer’s tetrad that the geodesics starts out in a pure spatial direction. As we shall soon see, there
will be a non-zero time component relative to the coordinate basis, also at the origin.

16The purpose of the above discussion was of course not to confuse you, but giving you a qualitative sense of the ideas
before we start with the maths. If things above are unclear it should be read again after going through the maths.
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the pure spatial direction nµ̂(0) = (0,n), where n is the pure space vector introduced in section 5.2.1.
Since the the proper length s along the grid line is used as parameter, the tangent vector will have unit
length all along the geodesic, which is easily demonstrated by considering the inner product:

gµνn
µnν = gµν

dxµ

ds

dxν

ds
=
ds2

ds2
= 1. (5.46)

The first step in my derivation is to find the direction where a geodesic will have zero spatial
bending (my plan is to align the coordinate system with this special direction). It is possible to realize
from symmetry arguments that this direction must be parallel with ∇φg. However, as we shall now
see, it is not hard, and quite instructive, to show how this follows from calculations. The total change
of the tangent vector nµ along the geodesic is given by the geodesic equation

dnµ

ds
= −Γµµνn

µnν . (5.47)

For the moment, we are only interested in the spatial part of the change of the tangent vector nµ, ie.
the space components of the above equation:

dni

ds
= −Γiµνn

µnν

= −Γikln
knl.

(5.48)

In the second line we have used the approximation n0 = 0, which is a good approximation in a region
near the origin. It is convenient to work with 3-vector notation, and we introduce the ordinary three
vector N defined by nµ = (n0,N)17. We formulate the connection coefficients to lowest order in
terms of our potentials φg and Ag (defined in (4.71) and (4.72)), insert it into (5.48) and get

dN

ds
= −∇φg

c2
+ 2N

(
N · ∇φg

c2

)
, (5.49)

see appendix (A.11) for details. This equation describes the space part of the change of the total
tangent vector nµ along the geodesic. Our interest though, is to find the direction where there is no
(spatial) change/bending in the geodesic. We therefore need to find the part of dN

ds orthogonal to N,
which we shall denote

(
dN
ds

)
⊥. The part

(
dN
ds

)
⊥ represent what I called (spatial) “bending” above,

while
(
dN
ds

)
‖ = dN

ds −
(
dN
ds

)
⊥ is the (spatial) stretching/squeezing component. Using that N is a unit

vector (near the origin) we get:(
dN

ds

)
⊥

=
dN

ds
−N

(
N · dN

ds

)
= −∇φg

c2
+ N

(
N · ∇φg

c2

)
.

(5.50)

Notice that when N is parallel to∇φg we have
(
dN
ds

)
⊥ = 0. Thus we have formally showed that in the

direction parallel to∇φg there is no spatial bending of the geodesic relative to the original coordinate
system.

We shall now consider an example where the test particle’s velocity and acceleration are limited
to a single spatial direction, ie. one dimensional motion. We assume that the original coordinate

17Notice that N relates to the vector n, introduced previously, in the following way: N(0) = n.
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Figure 5.4: The source and the test particle are both restricted to motion along the x axis. The observer
is at rest somewhere along the coordinate axis (at the moment of measurement the test particle and the
observer are located at the same point of course). The source of the field is a non-rotating spherical
symmetric mass distribution which moves with the center of mass always on the x axis. Along the x
axis the gravito-magnetic vector potential Ag is aligned with the axis. The gradient of the potential
φg is also parallel to the x-axis all along the axis.

system xi = (x, y, z) is aligned such that the motion is directed along the grid line x1 = x. Since
the acceleration is limited to the same line, we know that ∇φg must point in the x-direction as well.
Thus there are no spatial bending of the geodesic starting out in the direction x, ie

(
dN
ds

)
⊥ = 0. This

assumptions ensures that also in the proper coordinates the motion is one-dimensional, ie. the velocity
v and the acceleration a points along the grid line x. We shall not, however, restrict ourselves to a
stationary case, but allow for a time varying metric, ie φg = φg(t, x) and Ag = Ag(t, x). It may be
instructive to visualize what kind of source which can produce such a field. In figure 5.4 we consider
such an example, where the source of the field is a non-rotating spherical symmetric mass distribution
which is allowed to move along the x axis (the center of mass always on the x axis.). The motion
of the source produces a gravito-magnetic potential Ag as well. All along the x-axis the vector Ag

is parallel to the velocity of the source, while ∇ × Ag = 0. It is therefore easy to realize from the
equation of motion (5.45) that the acceleration induced by Ag is also directed along the x axis18.

Then, it is time to start doing calculations. My idea is to write the (proper) coordinates (t, x) as
a function of the original coordinates (t, x). By carrying out the differentiations v = dx

dt
and a = dv

dt
,

we shall reproduce the expression for the proper acceleration, see (5.44), in the special case when v
is parallel to∇φg. The coordinates xµ = (t, x) represent the position and time of the test particle at a
point P along it’s world line, ie. an event P . To figure out the corresponding proper coordinates, we
must consider the geodesic which is intersecting P , see figure 5.5 a). The event where the geodesic
is sent out from the origin of the proper reference frame we denote P0. We assign P0 the (original)
coordinates xµ0 = (t0, x0). We define the curve C as the portion of the geodesic from P0 to P (a

18The term ∂Ag

∂t
in (5.45) will be aligned with the x-axis since Ag always points along this axis. The term 4v × (∇ ×

Ag) = 0 since a moving particle produce a gravito-magnetic field of magnitude |∇ ×Ag| ∼ sin θ, where θ is the angle
between the velocity of the source and the position of the field (φ = 0 in our example).
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P0

P0

P

P

C

ct

ct

x

x

xµ0 = (t0, x0)

xµ0 = (t, x0)

xµ = (t, x)

xµ = (t, x)

xµ = (t, x)

xµ = (t, x)

xµ0 = (t, 0)

xµ0 = (t, 0)

a)

b)

Figure 5.5: Figure a) shows an event P which is assigned the original coordinates (t, x) and proper
coordinates (t, x). P is intersected by a geodesic which also intersects the world line of the observer
at the event P0. The curve C is the portion of the geodesic between P0 and P (a closed interval). The
tangent vector to the geodesic at P0 coincide with the observer’s orthonormal vector ex̂ (not being
displayed in the figure). Figure b) shows how things are simplified if we assume that the component of
the tangent vectors to C in the e0 direction is neglectible. P0 and P then has the same time coordinate
also in the original coordinate system, ie. t0 = t.
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closed interval). The event P has proper coordinates xµ = (ct, x). By definition (see section 5.2.1)
the proper coordinates of P0 becomes xµ0 = (ct, 0).

Having clarified these conventions we set out to calculate the coordinates xµ as a function of the
original coordinates xµ. For simplicity we assume that the time coordinates t and t are synchronized
at time zero, ie. the event xµ = (0, 0) has time coordinate t = 0. Since we consider an observer at
rest in the original coordinate system (dx=dy=dz=0), it follows from the line element that the proper
time coordinate is given by

t =

∫ t0

0
dt′
√
|g00(t′, x0)| =

∫ t0

0
dt′(1 +

φg(t
′, x0)

c2
). (5.51)

Note that the potential φg in the integrand has no position dependence, ie. φg = φg(t, x0). This is
due to the facts that the observer’s standard clock (which is defining the t coordinate) is attached to
the origin of the proper reference frame and that the origin of the proper reference frame is at rest in
the original coordinate system. The proper space component is the proper distance of the space-like
curve C which is given by the curve integral

x =

∫
C
dλ

√
gµν

dxµ

dλ

dxµ

dλ
, (5.52)

see (1.47). Equations (5.51) and (5.52) defines the proper coordinates t and x. It is not easy however
to find the functional dependence on t and x from these definitions. The problem is that in general
t0 6= t. If we could use t0 ≈ t however, things would simplify considerably. In the integral defining
the t coordinate we could replace the t0 in the upper integral limit with t, and the curve integral
defining the x coordinate would become a simple one dimensional integral along the line t=constant,
see figure 5.5 b). The magnitude of t− t0 can be determined from the zero component of (5.47). We
should therefore consider this equation to check whether it is possible to use the approximation t0 ≈ t
in the post-Newtonian approximation.

Near the origin of the proper reference frame the zero component of (5.47) yields

c
d2t

ds2
= −Γ0

kln
knl. (5.53)

The Christoffel connection in terms of the metric is given in appendix A.6. Formulating it in terms of
our potentials φg and Ag and rewriting (5.53) as a vector equation (in the notation introduced prior to
(5.49)) we get

d2t

ds2
=

4

c2
N · (N · ∇)Ag +

N2

c2
∂t
φg
c2
. (5.54)

By comparing d2t
ds2

with the post-Newtonian effects summarized in table 4.2 we can make the following
order of magnitude estimate:

d2t

ds2
∼ 1

c3
O(1)∇U, (5.55)

where U is the Newtonian potential as usual. This shows that the acceleration of the curve C in the
time direction is very small. We shall now show that it gives rise to a correction in the measured
acceleration a which is of order O(4)∇U , ie. four order of magnitudes smaller than the Newtonian
acceleration, and therefore neglectible in the post-Newtonian approximation (where the precision is of
order O(2)∇U ). To make a lowest order estimate of the contribution we shall treat d

2t
ds2

as a constant
k along the curve C, ie. d2t

ds2
= k ∼ 1

c3
O(1)∇U . Integrating with respect to s we get

dt

ds
= ks+ k2. (5.56)
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n = ex̂
e0

ex

C

P0

Figure 5.6: This figure is a “zoom-in” of figure 5.5 a) around P0. Unlike figure 5.5a however, it also
displays the vector n = ex̂ (which defines the initial direction of the curve C) and the coordinate basis
vectors ex and e0 (at P0).

The integration constant is found by evaluating dt
ds at s = 0:

k2 =
dt

ds
(s = 0). (5.57)

Hence we must evaluate the difference coefficient of the curve C at the origin P0 to determine k2.
Figure 5.6 shows the area around the origin and is basically a “zoom in” of figure 5.5a around P0.
Unlike figure 5.5a however, it also displays the vector n = ex̂ which defines the initial direction of the
curve C, and the coordinate basis vectors ex and e0 at P0

19. We have already worked out an expression
for how ex̂ relates to the coordinate basis vectors e0 and ex (see (5.38)):

ex̂ = (1 +
φg
c2

)ei +
4

c
Age0, (5.58)

where we have used that the x component of Ag, ie. Agx, is equal to the magnitude of Ag, ie.
Agx = |Ag| = Ag. From this equation together with figure 5.6 it is readily seen that to lowest order20

the difference coefficient of C at P0 becomes

d(ct)

dx
=
d(ct)

ds
=

4

c
Ag(x0), (5.59)

and according to (5.57) we get

k2 =
4

c2
Ag(x0) ∼ 1

c
O(3). (5.60)

Hence we have showed that k2 is of the same order of magnitude as k. Integrating (5.56) yields

t = t0 +
1

2
ks2 + k2s. (5.61)

Inserting this into (5.51) we see that

t =

∫ t− 1
2
ks2−k2s

0
dt′(1 +

φg(t
′, x0)

c2
), (5.62)

19It should be mentioned that displaying coordinate basis vectors in a coordinate system as we have done in figure 5.6
necessarily becomes misleading, as the coordinate vectors e0 and ei appear to be orthogonal, but it is ex̂ which really is
orthogonal to e0, not ex.

20The first step is correct to lowest order.
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which to lowest order yields

t =

∫ t

0
dt′(1 +

φg(t
′, x0)

c2
)− 1

2
ks2 − k2s. (5.63)

To show that the contribution from the extra terms on the right-hand side of (5.63) can be neglected,
we need (in principal) to keep them in all our calculations and check what kind of contribution it gives
rise to in the final expression for a. To avoid too long calculations however, I will rather use

t =

∫ t

0
dt′(1 +

φg(t
′, x0)

c2
), (5.64)

in the following, and the contributions from the “extra” term −(1
2ks

2 + k2s) will be commented in
appendix A.13. The result turns out to be that the extra term gives rise to a contribution in the measured
acceleration of smallness O(4)∇U . This is two order of magnitudes beyond the post-Newtonian
accuracy, which means that 5.64 is a correct estimate for t in the post-Newtonian approximation.

Next we evaluate the curve integral (5.52) which is defining the x coordinate in the same manner.
Writing out the components, (5.52) can be written:

x =

∫
C
dλ

√
g00

d(ct)

dλ

d(ct)

dλ
+ 2g0x

d(ct)

dλ

dx

dλ
+ gxx

dx

dλ

dx

dλ
. (5.65)

Using the x coordinate as parameter21, ie. putting λ = x, (5.65) becomes

x =

∫
C
dx

√
g00

d(ct)

dx

d(ct)

dx
+ 2g0x

d(ct)

dx
+ gxx. (5.66)

To evaluate the curve integral we shall make use of the same simplification as above, namely that the
acceleration d2t

ds2
= k is a constant. This will provide good accuracy around the origin. From (5.56)

we get to lowest order
d(ct)

dx
= c(kx+ k2), (5.67)

where we have used the lowest order approximations d(ct)
dx ≈

d(ct)
ds and s ≈ x. Inserting (5.67) into

(5.66) and replacing the metric with our potentials in the usual way we get

x =

∫
C
dx

√
1− 2

φg
c2
− c2(kx+ k2)2 + 8Ag(kx+ k2), (5.68)

or

x =

∫
C
dx

(
1− φg

c2
− 1

8

(
φg
c2

)2

− 1

16

(
φg
c2

)3

− c2(kx+ k2)2 + 8Ag(kx+ k2)

)
. (5.69)

The second term in the integrand is of smallnessO(2), the third is of smallnessO(4) and the remaining
ones are roughly speaking of smallness O(6) (around the origin). Notice from (5.69) that to lowest

21A parameter of a curve must satisfy two conditions; it must provide an unique mapping from the curve to R1 and it
must be invariant. The coordinate x provides an unique mapping since the curve has monotonically increasing x coordinate.
When we use the x coordinate as an invariant parameter we must remember that under a change of coordinate system
the curve parameter does not change (ie. the parameter is still the x coordinate of the old coordinate system). We shall
however not consider change of coordinate systems (we only operate with one set of coordinates xµ, in addition to the
proper coordinates xµ of course), so this is not going to be an issue.



112 CHAPTER 5. PROPER REFERENCE FRAMES

order we have x = x − x0. It turns out that the post-Newtonian approximation requires knowledge
of x to accuracy O(2)(x − x0). Hence we can drop all but the two first terms in (5.69) to find the
measured acceleration to post-Newtonian accuracy:

x =

∫ x

x0

dx′
(

1− φg(t(x
′), x′)

c2

)
. (5.70)

Notice that the time coordinate t in the argument of φg in the expression above depends on the param-
eter x′, ie. t = t(x′). At P0 and P we have t(x′0) = t0 and t(x′) = t respectively. From (5.61) we see
that near the origin22 t− t0 is of smallness O(4), and hence (5.70) may be replaced with

x =

∫ x

x0

dx′
(

1− φg(t, x
′)

c2

)
, (5.71)

to great accuracy. Hence we have replaced the curve integral (5.69) with a simple integral along the x
axis. The error generated in the measured acceleration by using (5.71) instead of (5.69) is of smallness
O(4)∇U . We shall now start doing calculations using (5.64) and (5.71) as our definitions of t and
x respectively. These definitions corresponds to neglecting the time-space “bending” of the geodesic
from P0 to P , see figure 5.5 b).

We are finally ready to calculate vi = dxi

dt
and ai = dvi

dt
from equations (5.64) and (5.71). It will

be useful to note from (5.64) that
dt

dt
= 1− φg(t, x0)

c2
. (5.72)

We split the total time derivative into an implicit and explicit part:

d

dt
=
dxj

dt
∂j + ∂t. (5.73)

Using (5.71), (5.72) and (5.73) we calculate the measured velocity:

dx

dt
=
dt

dt

d

dt
x

=

(
1− φg(t, x0)

c2

)(
dx

dt
(1− φg(t, x)

c2
)−

∫ x

x0

dx′
∂

∂t

φg(t, x
′)

c2

)
,

(5.74)

or to post-Newtonian accuracy:

dx

dt
=
dx

dt
(1− φg(t, x0)

c2
− φg(t, x)

c2
)−

∫ x

x0

dx′
∂

∂t

φg(t, x
′)

c2
. (5.75)

For later use note that at the origin the measured velocity becomes particularly simple:

dx

dt
=
dx

dt
(1− 2

φg(t, x0)

c2
). (5.76)

Even though we are interested in the acceleration at the origin (where it has significance as the mea-
sured acceleration), it is of vital importance that we calculate the derivative of dx

dt
on the form given

22Near the origin we can use s = O(0).
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by (5.75). In the end however, when all calculations are performed, we shall evaluate the answer at
the origin. Using (5.72) and (5.75) we see that:

d2x

dt
2 =

dt

dt

d

dt

dx

dt

=

(
1− φg(t, x0)

c2

)[
d2x

dt2

(
1− φg(t, x0)

c2
− φg(t, x)

c2

)
− dx

dt

d

dt

(
φg(t, x0)

c2
+
φg(t, x)

c2

)
− d

dt

∫ x

x0

dx′
∂

∂t

φg(t, x
′)

c2

]
.

(5.77)

This expression contains several total time derivatives which must be evaluated using (5.73):

d

dt
φg(t, x0) =

∂

∂t
φg(t, x0), (5.78)

d

dt
φg(t, x) =

dxj

dt
∂jφg(t, x) +

∂

∂t
φg(t, x), (5.79)

and
d

dt

∫ x

x0

dx′
∂

∂t

φg(t, x
′)

c2
=
dx

dt

∂

∂t

φg(t, x)

c2
+

∫ x

x0

dx′
∂2

∂t2
φg(t, x

′)

c2
. (5.80)

Inserting (5.78),(5.79) and (5.80) into (5.77) we get, to post-Newtonian accuracy:

d2x

dt
2 =

d2x

dt2

(
1− 2

φg(t, x0)

c2
− φg(t, x)

)
− dx

dt

(
∂

∂t

φg(t, x0)

c2
+ 2

∂

∂t

φg(t, x)

c2
+
dxj

dt
∂j
φg(t, x)

c2

)
−
(

1− φg(t, x0)

c2

)∫ x

x0

dx′
∂2

∂t2
φg(t, x

′)

c2
.

(5.81)

Evaluated at the origin (x = x0) equation (5.81) is simplified to

d2x

dt
2 =

d2x

dt2

(
1− 3

φg(t, x0)

c2

)
− 3

dx

dt

∂

∂t

φg(t, x0)

c2
− dx

dt

dxj

dt
∂j
φg(t, x)

c2
, (5.82)

or as a vector equation:

a = a

(
1− 3

φg(t, x0)

c2

)
− 3v

∂

∂t

φg(t, x0)

c2
− v(v · ∇φg

c2
). (5.83)

Inserting the coordinate acceleration a (see (4.75)) into (5.83), and as always evaluating to post-
Newtonian accuracy, yields:

a =−∇φg −
φg
c2
∇φg

+ 3v(v · ∇φg
c2

)− v2∇φg
c2

− 4
∂Ag

∂t
+ 4v × (∇×Ag) .

(5.84)
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In our one-dimensional case we have v(v · ∇φg
c2

) = v2 φg
c2

and ∇×Ag = 0, so (5.84) can be written

a =−∇φg −
φg
c2
∇φg

+ 2v(v · ∇φg
c2

)− 4
∂Ag

∂t
.

(5.85)

This is in perfect agreement with (5.44)! Thus we have found a simple geometric way to derive the
measured acceleration to post-Newtonian accuracy. My derivation is (fairly) rigorous, but, unfortu-
nately, the derivation is restricted to a special case. However, if the reader allows me to use some
loose and intuitive arguments, ie. to speculate, I will show how to obtain the most general expression.
Let us consider the general case where the test particle pass through the origin of the proper reference
frame with an arbitrary velocity v (which is not necessarily parallel with∇φg). My hypothesis is that
(5.84), also in that case, correctly accounts for the clock effect and the stretching/squeezing effect,
but miss the bending effect. Let us consider a non freely falling particle following a world line with
vanishing acceleration in the proper reference frame, ie. zero measured acceleration. For the moment,
let us simplify the discussion and assume that the metric is stationary (which means that two geodesics
radiating out from origo in the same direction, but at different times, have the same projection onto
any space-space plane). If the measured acceleration is zero, it means that the projection of the par-
ticles world line onto the three space must coincide with the projection of a given geodesic onto the
same space (if the world line of the particle intersects different geodesics, it means that the the vector
n is changing, and hence the measured acceleration is not zero). In the original coordinates however,
there will be spatial acceleration as the geodesic draws a curved/bent path in the coordinate system.
We assume the particle passes through the origin (along the geodesic) in a direction U with a speed
v, and hence velocity v = vU. From (5.50) we realize that the “bending-acceleration” of this particle
must be

dv

dt
= −v2∇φg

c2
+ v

(
v · ∇φg

c2

)
. (5.86)

This term gives a contribution to the coordinate acceleration in the original coordinate system, but is
not observed in the proper reference frame. Hence, if we want to take into account the bending of the
proper grid lines, (5.86) must be subtracted from (5.84), which yields:

dv

dt
=−∇φg −

φg
c2
∇φg

+ 4v × (∇×Ag) + 2v(v · ∇φg
c2

)

− 4
∂

∂t
Ag.

(5.87)

This is in perfect agreement with the measured acceleration found in section 5.2.1, see (5.44). Of
course, I don’t consider this as a proper derivation for the general case. In the mathematical sense,
it should be regarded as pure speculation, but hopefully the reeder agrees that the arguments are
quite reasonable. A rigor geometric derivation, in the general case, would be a generalization of the
procedure for the one dimensional case, ie. writing the coordinates xµ as a function of the original
coordinates xµ and then perform the derivations. I have not figured out yet how to do this in practice,
but the special case considered here certainly provide a good starting point for further work. I think
it would be very interesting to work it out for the general case because it would enable us to discuss
the relation between coordinate effects and (locally) measurable effects in a more concrete and visual
manner than I have seen anywhere else. In particular we would be able to point out exactly the
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origin of the difference between the coordinate acceleration and the measured acceleration, as I will
demonstrate below.

The difference between the measured acceleration and the coordinate acceleration is

a− a = 3
φg
c2
∇φg − 2v(v · ∇φg

c2
) + v2∇φg

c2
− 3v

∂

∂t

φg
c2
. (5.88)

If it turns out that my speculation is correct, which is quite reasonable I think, we can specify more
precisely what kind of effects these differences are due to. As I claimed in the beginning of this
section the difference between a and a is due to a combination of what I called the clock effect, the
stretching/squeezing effect and the bending effect. We therefore write:

(a− a) = (a− a)clock + (a− a)stretch/squeeze + (a− a)bending. (5.89)

Studying equations (5.72), (5.74), (5.77)-(5.83) and (5.86) we realize that

(a− a)clock = 2
φg
c2
∇φg − v

∂

∂t

φg
c2
, (5.90)

(a− a)stretch/squeeze =
φg
c2
∇φg − 2v

∂

∂t

φg
c2
− v(v · ∇φg

c2
), (5.91)

and

(a− a)bending = v2∇φg
c2
− v(v · ∇φg

c2
). (5.92)

5.2.4 Discussion

It is now time to pause for a moment and reflect on the obtained results. In the previous section we
provided a visual kind of insight into the difference between the coordinate acceleration and the locally
measured acceleration. This was an unexpected additional result, a bit on the side of the main scope
of this thesis perhaps, which followed from my attempt to derive the measured acceleration from a
geometric point of view. Here we shall go back to our primary purpose and discuss the measured
acceleration in the context of the gravito-electromagnetic analogy.

For convenience, let me start by repeating the equations of motion for the post-Newtonian limit of
general relativity (4.75)

dv

dt
=−∇φg − 4

∂Ag

∂t
+ 4v × (∇×Ag) + 4v(v · ∇φg

c2
)− v2∇φg

c2

− 4
φg
c2
∇φg + 3v

∂

∂t

φg
c2
,

(5.93)

and the equation of motion in the post-electrostatic limit of electrodynamics (4.69)

dv

dt

m

q
= −∇φ− ∂A

∂t
+ v × (∇×A) + v(v · ∇ φ

c2
) +

1

2
v2∇ φ

c2
. (5.94)

As discussed in section 4.3 there are two important qualitative kinds of differences between these
equations. In particular there are no effects in electromagnetism corresponding to the terms on the
second line in (5.93). These are the quadratic term in φg and the term with explicit time-dependence
on φg (which is +3v ∂

∂t
φg
c2

). The former one is an important characteristic of general relativity and is
due to the fact that it is a non-linear theory. It is harder, however, to explain the origin of the latter
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effect. It is interesting, however, to note that in the measured acceleration there is no term with explicit
time-dependence on φg:

a =−∇φg − 4
∂

∂t
Ag + 4v × (∇×Ag) + 2v(v · ∇φg

c2
)

− φg
c2
∇φg.

(5.95)

Thus the rate of change of the scalar potential is not locally observable, neither in the gravitational nor
in the electromagnetic case. Hence we have discovered that the gravito-electromagnetic analogy be-
comes even stronger when one evaluates gravitational phenomena in a proper reference frame, which
is quite interesting since in that case the theories are treated on a more equal footing conceptually (the
equation of motion describes the measured acceleration in both cases). It is really interesting to clarify
whether there is some kind of deep reason for this, or whether it should be viewed as a coincidence.
This discussion will be saved for the conclusion, chapter 6.

Comparing (5.93) and (5.94) we note that there is a numerical difference of order O(2)∇U be-
tween the coordinate acceleration and the locally measured acceleration. This shows that curvature
has geometric significance also for weak fields when demanding post-Newtonian accuracy. For the
first iteration in the approximation-scheme however, which predicts the acceleration to O(0)∇U and
give back Newtonian theory, this smallness has no significance. Conceptually this means that in New-
tonian theory gravity can be interpreted as an ordinary force co-existing with electromagnetism and
other forces in a flat spacetime background. This is of course just how Newton’s theory of gravity
usually is interpreted, but now we have justified the perspective by means of detailed calculations.
The same calculations also show that beyond Newtonian theory there is no room for such an inter-
pretation. The difference between the coordinate acceleration and the locally measured acceleration
which appear already in the post-Newtonian approximation, is a characteristic of curved spacetime.
Thus it is not completely satisfying just to compare the mathematical structure of the theories in a
discussion of the gravito-electromagnetic analogy.

This chapter has extended and complemented the discussion of the gravito-electromagnetic anal-
ogy. In chapter 4 we only compared the mathematical structure of the theories (in a consistent way),
and showed that a perfect formal analogy only exist between the lowest order approximations, ie.
between Newtonian gravity and electrostatics. Our results from this chapter shows that the analogy is
also perfect conceptually at this level since there is no difference between the measured acceleration
and the coordinate acceleration (to Newtonian accuracy). Beyond the lowest order approximations
however, ie. the post-Newtonian and the post-electrostatic approximations, we have showed that the
perfect analogy breaks down both formally (the mathematical structure is not quite on the same form)
and conceptually (curvature has geometric significance in the post-Newtonian approximation).

5.3 Energy considerations

In chapter 4 we compared the post-Newtonian limit of general relativity to the post-electrostatic limit
of electrodynamics. Allthough we found several kind of similarities, there was also important differ-
ences, both qualitatively and quantitatively. In this section we shall see that the expression for the
measured acceleration can provide insight into some of these differences. We shall study kinematics
in the special case of radial motion outside a spherical static mass/charge distribution, since in that
case energy considerations are particularly simple.
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For radial motion outside a static mass/charge distribution we have23 v(v ·∇ φ
c2

) = v2∇ φ
c2

, A = 0

and ∂
∂tφ = 0. Thus the equation of motion (4.69) becomes

dv

dt
=

q

m

(
−∇φ+

3

2

v2

c2
∇φ
)

(5.96)

in the electromagnetic case, and

dv

dt
= −∇(φg + 2

φ2
g

c2
) + 3

v2

c2
∇φg (5.97)

in the gravitational case (see (4.75)). Notice that the coefficient in front of the velocity dependent term
is 3 in the gravitational case while it is 3/2 in the electromagnetic case. Our project will be to show
that in both cases, this coefficient is determined by energy conservation. This will not only provide
insight into why the velocity dependence is different in the gravitational case, but also shed light on
the huge conceptual differences between the theories. We therefore write equation (5.96) as

dv

dt
=

q

m

(
−∇φ+ k1

v2

c2
∇φ
)

(5.98)

and (5.97) as
dv

dt
= −∇(φg + 2

φ2
g

c2
) + k2

v2

c2
∇φg. (5.99)

Then I claim that k1 and k2 can be derived by demanding energy conservation. It is not hard to imagine
how this can be done in the electromagnetic case. We consider two equally charged test particles with
the same mass starting at rest from r1 and traveling to r0 along a radial path in the electric field. The
first particle is only influenced by the electric field and the motion is determined by (5.98), see figure
5.7. In addition to the potential energy, this particle will have a non-vanishing kinetic energy E0 at
r0. The second particle is, in addition to the electric field, influenced by another force F (r) which
has the same magnitude as the electric force all along the path, but acts in the opposite direction.
We assume that F (r) cancels the electric force almostly perfect such that the particle moves quasi
statically from r1 to r0. It may be instructive to imagine a continuum of power plants along the path
of the (second) particle, each with a turbine and a battery, see figure 5.8. The force F (r) originates
from the turbines of the local power plant at r. As F (r) acts in the opposite direction compared to the
motion of the particle, the turbine does a negative work on the particle: dW = F(r) · dr < 0. The
energy dE = |dw| is stored in the local battery. Since the particle moves quasi-statically, it will have
no kinetic energy at r0, but the same potential energy as the first particle. As both particles started
from r1 with the same energy, there must be a total energy E0 stored in the batteries.

Hence we have two different ways to calculate the energy E0. The first one depends on the
coefficient k1 since the motion is determined by (5.98), while the second one does not since the motion
is quasi static. Thus we have proposed an energy argument which will determine the coefficient k1.

We will apply exactly the same idea for the gravitational case. We consider two test particles
with the same mass starting at rest from r1 and moving to r0 along a radial path. The first particle is
freely falling, and the motion is determined by (5.99). The second particle moves quasi-statically and
gives energy to the local batteries. Allthough the basic idea is the same one as in the electromagnetic
case, it will be much more challenging, at least conseptually, to apply the idea. The kinetic energy
of the first particle at r0, we denote E0̂, where the ‘hat’ reminds us that E0̂ is the locally measured

23In the gravitational case φ→ φg and A→ Ag of course.
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Figure 5.7: A freely falling test particle starts at rest from r1 and is accelated towards the static source.
The source is a spherical symmetric distribution of charge in the electromagnetic case, and a spherical
symmetric mass distribution in the gravitational case. The total charge(mass) of the source is Q(M)
(and q(m) for the test particle). The energy of the freely falling test particle is measured by an observer
at r0.

Figure 5.8: The test particle moves quasi statically from r1 to r0. There is a (infinite) continuum
of local proper reference frames between r1 and r0 (three of them are represented explicitly in the
figure). It is instructive to imagine a local power plant associated with each local proper reference
frame, here represented by a turbine and a battery.
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kinetic energy. To calculate the energy stored in a local battery, we must consider the associated local
proper reference frame. Hence the term ‘local power plant’ gets a more literal meaning, and we will
need the expression for the measured acceleration found in section 5.2 to determine the local force F̂ .
Furthermore, the total energy stored in all the batteries can not be assumed to equal E0̂. The reason
for this is that the energy stored in the batteries itself couples to the gravitational field. It is instructive
to imagine that the energy in all the local batteries is inverted into light and propagated down to r0

where it is stored as energy in a single battery. It is the total energy stored in this single battery at r0

which should equal E0̂. Hence we cannot simply integrate over the continuum of local batteries, but
must take into account the Doppler shift. This is not necessary in the electromagnetic case, since the
energy stored in the batteries does not couple to the electric field (only charge couples to the electric
field). We shall see that, by taking all this into account, it will be possible to derive the coefficient
k2. First however, as a warm-up exercise and in order to check that our idea works, we shall do the
calculations for the electromagnetic case.

5.3.1 The electromagnetic case

We assume that the electric field φ is produced by (a static) point charge with charge Q:

φ =
1

4πε0

Q

r
. (5.100)

We shall start by calculating E0, the kinetic energy of the “freely” falling particle at r0. We need to
find the speed of the particle at r0 by solving the differential equation (5.98) with initial condition
v(r1) = 0. It will be convenient to introduce the variable

R =
−Qq

4πε0mc2
, (5.101)

where q and m are the charge and mass of the test particle. Since the charge q is attracted towards
the charge Q, we have qQ < 0 and hence R > 0. Also note that R has dimension length. A charged
particle at distance R must have a speed comparable to the speed of light in order to escape from the
field24. So, loosely speaking, we may say that R is to electrodynamics what the black-hole horizon
Rs is to general relativity. In the following we shall assume that R

r1
� 1 and R

r0
� 1.

We reformulate the vector equation (5.98) to a differential equation in the variable v = dr
dt :

dv

dt
+ f(r)v2 + g(r) = 0, (5.102)

where f(r) = −k1
R
r2

and g(r) = c2 R
r2

. This is a first-order, ordinary, non-linear differential equa-
tion. It is non-linear due to the quadratic term in v. Non-linear differential equations are in general
notoriously hard, and often impossible, to solve. This one however, can be transformed to a linear
differential equation by a change of variable25: w(r) = v2. Notice that

d

dr
w(r) = 2v

d

dr
v = 2v

dt

dr

dv

dt
= 2

dv

dt
, (5.103)

24The binding energy of a test particle with charge q at radius R is qφ(R) = −mc2. So in order to escape the particle
must have kinetic energy mc2, which means that the speed is comparable to the speed of light.

25I “found” this solution by reading trough a long list of exactly solve-able differential equations at the website:
http://eqworld.ipmnet.ru/.
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and hence (5.102) becomes
dw

dr
+ 2f(r)w(r) + 2g(r) = 0. (5.104)

This is an ordinary, non-linear differential equation which can be solved by standard strategies, and
the solution with initial condition w(r1) = 0 is

w(r) =
c2

k1

[
1− e−2k1(R

r
− R
r1

)
]

(5.105)

or
v2

c2
=

1

k1

[
1− e−2k1(R

r
− R
r1

)
]
. (5.106)

We let v0 = v(r0) and γ0 = 1/

√
1− v20

c2
. The kinetic energy E0 of the particle at r0 becomes

E0

mc2
= γ0 − 1

=
R

r0
− R

r1

+ (
3

2
− k1)(

R

r0
)2 + (

3

2
− k1)(

R

r1
)2 + (2k1 − 3)

R

r0

R

r1

+O(
R

r
)3,

(5.107)

where we have expanded the exponential function in (5.106) to second order in R
r1

and R
r0

.
Then let us consider the second particle which is moving quasi statically. In order to cancel the

electric force the turbines must act on the particle with a force F with magnitude

F = |qE| = |q∇φ| = 1

4πε0

qQ

r2
=
R

r2
mc2. (5.108)

The total work performed by the turbines on the particle can be found by integrating the force from
r1 to r0:

W =

∫ r0

r1

F · dr = Rmc2

∫ r0

r1

dr
1

r2
= −mc2(

R

r0
− R

r1
). (5.109)

Hence the amount of energy stored in the batteries is −W . As both particles started from r1 with the
same energy, it follows from energy conservation that

E0 = −W = mc2(
R

r0
− R

r1
). (5.110)

This is in agreement with (5.107) for the value k1 = 3
2 . Thus we have successfully showed how the

velocity dependent term in the equation of motion can be derived from an energy argument.

5.3.2 The gravitational case

We assume that the gravitational field φg is produced by spherical symmetric mass distribution with
total mass M :

φg = −GM
r

= −1

2
c2Rs

r
, (5.111)



5.3. ENERGY CONSIDERATIONS 121

where Rs = 2GM
c2

is the Schwarzschild radius. Needless to say, we shall assume that Rsr0 � 1 and
Rs
r1
� 1. As in the previous section we shall start by considering the kinetic energy of the freely

falling particle. The differential equation (5.99) can be reformulated

dv

dt
+ f(r)v2 + g(r) = 0, (5.112)

where v = dr
dt , f(r) = −1

2k2
Rs
r2

and g(r) = 1
2c

2Rs
r2
− c2R

2
s
r3

. This differential equation is on exactly
the same form as (5.102), and can be solved in the same manner. The solution with initial condition
v(r1) = 0 is

v(r)2

c2
=

1

k2
2

[
2 + k2 − 2k2

Rs
r

+ e
k2
(
Rs
r1
−Rs

r

)(
−2− k2 + 2k2

Rs
r1

)]
. (5.113)

Expanding this expression to second order in Rs
r and Rs

r1
we get

v(r)2

c2
=c2

(
Rs
r
− Rs
r1

)
− c2

(
Rs
r

)2

(1 +
1

2
k2) + c2

(
Rs
r1

)2

(1− 1

2
k2) + c2k2

Rs
r

Rs
r1

+O(
Rs
r

)3.

(5.114)

Thus we have found an expression for the coordinate velocity squared. From this it is possible to
calculate the energy E0̂. At this point however, we must start being careful. We have defined E0̂ as
the kinetic energy measured by an observer at rest at r0. The coordinate velocity v = dr

dt however, is
not similar to the measured velocity v = dr

dt
. The idea is now to make use of the fact that in curved

spacetime, all laws from special relativity are valid locally. Hence we can use the standard expression
for the kinetic energy,Ek = (γ−1)mc2, but the coordinate velocity must be replaced by the measured
velocity:

E0̂

mc2
= γ0 − 1, (5.115)

where
γ0 =

1√
1− (v0c )2

(5.116)

and v0 is the measured velocity at r0, ie. dr
dt

∣∣∣
r=r0

. We calculated the measured velocity in section

5.2.3. From (5.76) we see that the measured velocity squared at r0 becomes

v2
0

c2
=
v2

0

c2
(1− 4

φg0
c2

) =
v2

0

c2

(
1 + 2

Rs
r0

)
. (5.117)

Using (5.114) we rewrite v20
c2

in terms of r0 and r1. Inserting this into (5.115) and expanding to second
order in Rs

r0
and Rs

r1
we get:

E0̂

mc2
=

1

2

(
Rs
r0
− Rs
r1

)
+

1

4
(
7

2
− k2)

(
Rs
r0

)2

+
1

4
(
7

2
− k2)

(
Rs
r1

)2

+
1

2
(k2 −

7

2
)
Rs
r0

Rs
r1

+O(
Rs
r

)3.

(5.118)
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Then, let us consider the quasi static particle. We start by considering the physics in a local proper
reference frame. Since the local observer is considering a particle moving quasi statically, he can
model the gravitational “force” F g like an ordinary force26, and apply Newton’s second law

Fg = ma, (5.119)

to determine the effective gravitational force. Inserting the measured acceleration, see (5.44), with
v = 0 into (5.119) we get

Fg = −m(∇φg +
φg
c2
∇φg), (5.120)

or

F g = −1

2
mc2Rs

r2
+

1

4
mc2R

2
s

r3
. (5.121)

In order to cancel the gravitational force the turbines will have to apply a force F = −Fg. It is
instructive to imagine that for each line segment dr there is one battery storing an amount dE of
energy:

dE = |F · dr| =
∣∣∣∣−1

2
mc2Rs

r2
+

1

4
mc2R

2
s

r3

∣∣∣∣ (1 +
1

2

Rs
r

)
dr =

1

2
mc2Rs

r2
dr. (5.122)

As explained in the introduction, we can not simply integrate over all the batteries and expect it to add
up to E0̂. Indeed, this would have been a violation of energy conservation, as the kinetic energy of
the freely falling particle is measured at the end of the path (r0). Thus we must take into account the
Doppler shift of the energy. We let dE0̂ denote the value of the energy dE at r0. Using the standard
Doppler shift formula for light in a stationary gravitational field, we get

dE0̂ = dE
|g00(r)|
|g00(r0)|

= dE(1 +
1

2

Rs
r0
− 1

2

Rs
r

)

= dr

(
1

2

Rs
r2

(1 +
1

2

Rs
r0

)− 1

4

R2
s

r3

)
mc2.

(5.123)

The total energy stored in the single battery at r0 becomes

E0̂

mc2
=

∫ r1

r0

dE0̂/mc
2

=
1

2

(
Rs
r0
− Rs
r1

)
+

1

8

(
Rs
r0

)2

+
1

8

(
Rs
r1

)2

− 1

4

Rs
r0

Rs
r1
.

(5.124)

Comparison with (5.118) gives k2 = 3. Thus we have derived the velocity dependent term in the
equation of motion from an energy argument by using insight into the conceptual foundations of
general relativity.

26If you compare the measured acceleration for gravitation with the equation of motion in electrodynamics, you will see
that the velocity dependent terms are different. For quasi-static motion however, we can neglect these terms, and gravity
can be modeled as an ordinary force by a local observer.
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5.3.3 Comments

There are a couple of things from this section which deserves comments. First of all, the calculations
done here are done in a post-Newtonian like manner, ie. neglecting small terms in a consistent way.
For stationary spacetimes however, energy conservation should hold exactly. I have done the same
calculations by using exact methods with the full non-linear Schwarzschild metric. This calculation
verifies, boringly enough, what any introduction book to general relativity teach us, namely that energy
is conserved in Schwarzschild spacetime since the time coordinate is a cyclic coordinate.

I think it is very fascinating that it is possible to derive the velocity dependent term in the equation
of motion, like we have done here, by considering the physics from a local special relativistic perspec-
tive. By integrating over the continuum of local reference frames, taking into account how they are
related to each others (Doppler shift), we have derived something of a global character, namely the
velocity dependence in the equation of motion. I think box 6.1 in [1], with the title ‘General relativity
is built on special relativity’, shed some light onto our work:

A tourist in a powered interplanetary rocket feels “gravity”. Can a physicist by local
effects convince him that this “gravity” is bogus? Never, says Einstein’s principle of the
local equivalence of gravity and accelerations. But then the physicist will make no errors
if he deludes himself into treating true gravity as a local illusion caused by acceleration.
Under this delusion, he barges ahead an solves gravitational problems by using special
relativity: if he is clever enough to divide every problem into a network of local ques-
tions, each solvable under such a delusion, then he can work out all influences of any
gravitational field. Only three basic principles are invoked: special-relativity physics,
the equivalence principle, and the local nature of physics. They are simple and clear. To
apply them, however, imposes a double task: (1) take spacetime apart into locally flat
pieces (where the principles are valid), and (2) put these pieces together again into a
comprehensible picture. To undertake this dissection and reconstitution, to see curved
dynamic spacetime inescapably take form, and to see the consequences for physics: that
is general relativity.
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Chapter 6

Conclusion

The very simple starting point for this thesis was the so-called gravito-electromagnetic framework
reviewed in chapter 3. As this framework strongly resembles Maxwell’s equations and the Lorentz
force law of electrodynamics, it has received some attention, and a lot is written about this and similar
kinds of analogies. The reason for the interest has probably little to do with the physicist’s dream
about unifying gravity with the ordinary forces of nature. A more probable explanation is that the
approximation is written on a form which facilitates physical intuition. The gravito-electromagnetic
framework is immediately familiar to any person who has studied electrodynamics. Given the math-
ematically extremely complicated form of the full theory, it is not surprising that such a formulation
has become popular. For a physicist with experience from serious approximation schemes to general
relativity though, it should be clear that the framework is not based on a systematic method. It takes
account for the leading term, ie. the Newtonian contribution, but for the second order effects it only
includes frame-dragging and retardation effects. Nevertheless, in several papers, as those referred to
in chapter 3, it is presented as a result of an approximation scheme where the only assumptions are
weak fields and slow motion. For students and physicists not specializing in gravitational perturba-
tion theory this may lead to misinterpretations and confusion. It may give rise to a myth that there
exist a formal analogy between general relativity and electrodynamics which is much stronger than it
deserves.

I have no doubt that physicists will continue to explore different kinds of analogies between the
field theories for gravitation and electromagnetism. Such analogies may be interesting and sometimes
they provide new insights into the phenomenon of gravitation. I hope however, that this thesis has
demonstrated the need for a careful approach. In particular I hope that the authors will analyze, and
share with us, the limitations of their proposed analogies. This is at least important for readers in lack
of “hands on” experience with the methods being used.

My idea was to study the gravito-electromagnetic analogy in a systematic way using the frame-
work referred to as the post-Newtonian approximation scheme. In chapter 4 we employ these methods
to electrodynamics as well as gravitation, and compare the mathematical structure of the approxima-
tions in a consistent way. For electrodynamics the lowest order solution gives back the equations
characterizing electrostatics. I therefore give the name ‘the post-electrostatic limit of electrodynam-
ics’ to the approximation corresponding to the post-Newtonian limit of general relativity. Employing
the same systematic method to both theories enabled me to compare the phenomenas in a consistent
way beyond the lowest order approximations, see section 4.2.1. To put it short, we found that for each
term/effect in the equation of motion for the electromagnetic case, there is a corresponding term/effect
in the gravitational case. This can however not be put the other way around as there are several effects
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in the gravitational case, such as non-linearities and contributions from pressure, kinetic energy and
gravitational binding energy, with no counter-part in electrodynamics. Despite interesting similarities,
we must conclude that the physics is far richer in the gravitational case, which becomes clear when
going beyond the lowest order approximations. I am not aware of any papers where this has been
studied and clarified in a consistent way like here, and as far as I know it is a new approach.

In chapter 4.3 I reformulate the post-Newtonian limit of general relativity in a form which re-
sembles Maxwell’s equations. I show that the post-Newtonian limit can be formulated in terms of
one scalar potential φg and one vector potential Ag, just like electrodynamics. This demands that the
gravitational “charge” is defined as a special combination of rest mass energy, pressure, kinetic energy
and gravitational binding energy. Recently (April 2010) I have become aware that the idea of writing
the post-Newtonian limit on a Maxwell-like form is not new. In 1991 T. Damour, M. Soffel and C. Xu
wrote the post-Newtonian approximation in a Maxwell-like form, see [25]. Their results are extracted
on a more readable form in [26]. Their formulation is actually in terms of two vector fields g and H1

which corresponds to the electric and magnetic fields E and B in electrodynamics. This is not similar
to my formulation which corresponds to the potentials φ and A of electrodynamics. It is, however,
easy to show that the potentials which g and H are derived from in [26] are similar to my potentials
φg and Ag to the required accuracy (compare (2.4a) and (2.4b) in [26] with (4.71) and (4.72)). This
verifies that my formulation is viable.

The rest of my work (4.3 and all of chapter 5) is in terms of the above mentioned potentials φg
and Ag. In section 4.3 we notice that the equation of motion takes a form which is very similar to
the equation of motion in the post-electrostatic limit of electrodynamics when it is written in terms of
these potentials. The only qualitative differences are the appearance of two terms in the gravitational
case with no counterpart in the electromagnetic case. One of these terms are quadratic in φg, while
the other depends explicitly on the rate of change of φg (that is ∂tφg). The former term is due to the
fact that general relativity is a non-linear theory. It is harder to explain why the latter term is absent in
electrodynamics, but I will try to clarify this, in a moment, based on the results from chapter 5.

The work described in chapter 5 is motivated by a question concerning the interpretation of the
equation of motion in the gravitational case. In particular I want to clarify whether the coordinate
acceleration is numerically equal to the locally measured acceleration (to post-Newtonian accuracy).
By taking a direct approach, making use of the equivalence principle, I show in 5.1 that the answer
is definitely “no”; to post-Newtonian precision the coordinate acceleration is not the same as the
locally observable acceleration. Then, in section 5.2, I make use of a result in [1] and find an actual
expression for the measured acceleration in terms of our post-Newtonian language. The expression has
several quantitative differences compared to the coordinate acceleration. This observation makes me
conclude that curvature has geometric significance in the post-Newtonian approximation of general
relativity. For the lowest order approximations however, there is no difference between the coordinate
acceleration and the locally observable acceleration, so the curvature has no geometric significance.
This observation gives a perturbation theory based justification for the view, in the Newtonian limit,
of gravity as an ordinary force co-existing with ordinary forces in a fixed background spacetime.
Taken together with the results from chapter 4, we conclude that there is an almost perfect analogy
between the lowest order approximations of general relativity and electrodynamics both formally (the
mathematical structure is on the same form) and conseptually (the background spacetime can be
viewed as fixed and flat in both cases). Beyond the lowest order approximations however, my work
shows that the perfect analogy breaks down both formally (the mathematical structure is not quite

1This formulation is not perfectly successful however since the equation of motion in addition to g and H also includes
the scalar potential which g is defined in terms of.
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on the same form) and conceptually (curvature has geometric significance in the post-Newtonian
approximation). I have not seen any papers where the significance of curvature in the context of the
gravito-electromagnetic analogy has been discussed and clarified in this way.

The single most interesting result from chapter 5, in my view, is that the analogy becomes stronger
when the phenomenas are treated on a more equal footing conceptually. In particular, I showed that
the term with explicit time dependence on φg in the coordinate acceleration does not show up in the
expression for the locally measured acceleration. This means that the rate of change of the scalar
potential is neither locally observable in the gravitational nor in the electromagnetic case. I am not
sure there is a deep reason for this, but it seems reasonable that the appearance of the term ∂tφg in
the equation of motion is a manifestation of curvature. Since, according to the equivalence principle,
curvature is not locally observable, it makes sense that the term is absent in the expression for the
measured acceleration. Concerning the numerical value of the potential, we can almost say it is a
general principle of field theory that it is not observable (it is its gradient which has significance, and
the zero point for the potential can be chosen arbitrarily). One can wonder if it might be a general
principle of field theory also that the rate of change of the scalar potential is not locally observable. Is it
really just a coincidence that it is neither locally observable in the gravitational nor the electromagnetic
case?

It should also be mentioned that the derivation of the measured acceleration showed in 5.2.3
gives a geometric/visual kind of insight into the difference between the coordinate acceleration and
the measured acceleration. I think this approach is entirely new, but as explained in that section
more effort is needed before I am completely satisfied. Another highlight from the same chapter was
the energy considerations in section 5.3 where I gave an example on how local special relativistic
physics can provide insight into some of the (quantitative) differences between the kinematics in the
gravitational and the electromagnetic case.

Let me finally comment on the role of the gravito-electromagnetic analogy in the education of
physicists. As pointed out in [27], most universities treat gravity and electromagnetism as two com-
pletely separated topics. The authors advocates the view that in general students should have a glimpse
to the interplay between classical electromagnetism and general relativity. After one year of work on
a related topic I do not completely agree. Lecturers should certainly comment on analogies to elec-
trodynamics when teaching frame-dragging effects. They could also comment on analogies when
teaching gravitational perturbation theory, although this is usually not part of the curriculum in a first
course on general relativity. I think it would be wise however to stop there. For students being taught
general relativity for the first time focusing too much on electrodynamics would probably rather lead
to mis-interpretations than real insight. I am at least very happy that my lecturer in general relativity
mainly focused on the essence of the theory and helped us appreciating the view of gravitation as a
geometric phenomenon.
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A Appendix

A.1

Here we will compute u0/c and ui/c to O(2). We start with the former. From the line element

ds2 = gµνdx
µdxν = −c2dτ2, (A.1)

or equivalently

gµνu
µuν = −c2, (A.2)

we can write

(
u0

c
)2[O(2)] = − 1

g00
− 2

g0i

g00

u0

c

ui

c
− gi=j

g00

ui

c

uj

c
− gi 6=j

g00

ui

c

uj

c

= − 1

g00
− gi=j

g00

ui

c

uj

c
+O(4)

= 1− 2
U

c2
+ (

v

c
)2.

(A.3)

The first line is a simple re-formulation of the line-element (A.2). In the second line we have made
use of the fact that the first term on the right hand side of the first line isO(0), while the second term is
O(4), the third term O(2) and finally the last term (still on the first line in the same equation) is O(6).
In the third line we have simply inserted lower order solutions for gµν and uµ. Taking the square root
of (A.3) we get our solution:

u0

c
[O(2)] = 1− U

c2
+

1

2
(
v

c
)2. (A.4)

Using this result, it is straight forward to calculate the components ui to O(2):

ui

c
=

1

c

dxi

dτ
=

1

c

dt

dτ

dxi

dt
=
vi

c

u0

c
=
vi

c
(1 +O(2))

=
vi

c
+O(3),

(A.5)

and hence
ui

c
[O(2)] =

vi

c
. (A.6)
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A.2

Here we shall compute the contravariant components of the energy-momentum tensor. We start with
the time-time component:

T 00 = (ρ+
p

c2
)u0u0 + pg00

= ρc2

(
(
u0

c
)2 +

p

ρc2
(
u0

c
)2 +

p

ρc2
g00

)
= ρc2

(
(
u0

c
)2 +O(4)

)
,

(A.7)

which give

T 00[O(2)] = ρc2

(
1− 2

U

c2
+ (

v

c
)2

)
. (A.8)

Then we calculate the time space components:

T 0i = (ρ+
p

c2
)u0ui + pg0i

= ρc2

(
u0

c

ui

c
+

p

ρc2

u0

c

ui

c
+

p

ρc2
g0i

)
= ρc2

(
vi

c
+O(3)

)
.

(A.9)

In the last step we have used (4.24) and the post-Newtonian book-keeping system to evaluate the order
of magnitude of the terms in the second line. From (A.9) we see that

T 0i[ρc2O(2)] = ρc2 v
i

c
. (A.10)

Finally we calculate the space space components:

T ij = (ρ+
p

c2
)uiuj + pgij

= ρc2

(
ui

c

uj

c
+

p

ρc2

ui

c

uj

c
+

p

ρc2
gij
)

= ρc2

(
vi

c

vj

c
+

p

ρc2
δij +O(4)

)
,

(A.11)

and we can write1:

T ij [ρc2O(2)] = ρc2

(
vi

c

vj

c
+

p

ρc2
δij
)
. (A.12)

We have worked out all the contravariant components Tµν to the desired accuracy, and can summarize
our results:

Tµν [ρc2O(2)] =


ρc2
(
1− 2 U

c2
+ (vc )2

)
, if (µν) = (0, 0)

ρc2
(
vi

c

)
, if (µν) = (i, 0)

ρc2
(
vi

c
vj

c + p
ρc2
δij
)

, if (µ, ν) = (i, j).

(A.13)

1In this case T ij [ρc2O(2)] = T ij [ρc2O(3)], but terms of smallness ρc2O(3) are not relevant to us and we do not need
this information.
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A.3

We will here calculate Tµν and T to accuracy ρc2O(2). We start with the former. The calculations of
the components T00, T0i and Tij have a repetive character and goes like this: a) write out the Einstein
summation convention, b) replace gµν with ηµν + hµν , c) analyze what terms can be neglected using
(4.8), (4.16) and (4.26) , d) replace the hµν’s with lower order solutions given in (4.16), e) insert the
contravariant components Tµν . First we perform step a),b),c) and d) for each of the components

T00 = g0µg0νT
µν

= g00g00T
00 + 2g00g0iT

0i + g0ig0jT
ij

= (−1 + h00)(−1 + h00)T 00 + 2(−1 + h00)h0iT
0i + h0ih0jT

ij

= (1 + 4
φ

c2
)T 00 +O(4)ρc2,

(A.14)

T0i = g0µgiνT
µν

= g00gi0T
00 + g0jgi0T

j0 + g00gijT
0j + g0kgilT

kl

= (−1 + h00)hi0T
00 + h0jhi0T

j0 + (−1 + h00)(ηij + hij)T
0j + h0k(ηil + hil)T

kl

= −ηijT 0j + ρc2O(3),

(A.15)

and finally

Tij = giµgjνT
µν

= gi0gj0T
00 + gikgj0T

k0 + gi0gjkT
0k + gikgjlT

kl

= hi0hj0T
00 + (ηik + hik)hj0T

k0 + hi0(ηjk + hjk)T
0k + (ηik + hik)(ηjl + hjl)T

kl

= ηikηjlT
kl + ρc2O(4).

(A.16)

Then we insert the contravariant components (step e)) and get:

Tµν =


ρc2
(
1 + 2 U

c2
+ (vc )2 +O(4)

)
, if (µν) = (0, 0)

−ρc2
(
vi

c +O(3)
)

, if (µν) = (i, 0)

ρc2
(
vi

c
vj

c + p
ρc2
δij +O(4)

)
, if (µ, ν) = (i, j).

(A.17)

Then we calculate T using the same strategy:

T = gµνT
µν

= g00T
00 + 2gi0T

i0 + gijT
ij

= (−1 + h00)T 00 + 2hi0T
i0 + (ηij + hij)T

ij

= (−1 + h00)T 00 + ηijT
ij + ρc2O(4)

= −ρc2
(

1 + (
v

c
)2 +O(4)

)
+ ηijρc

2

(
vi

c

vj

c
+

p

ρc2
δij +O(4)

)
+ ρc2O(4)

= −ρc2

(
1− 3

p

ρc2
+O(4)

)
,

(A.18)

thanks God for all the cancellations! So we get:

T [ρc2O(2)] = −ρc2

(
1− 3

p

ρc2

)
. (A.19)
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A.4

We will show how (4.36) follows from (4.34) by inserting (4.17). Let us take it term by term:

1

2
hkj [O(2)]∂k∂jh00[O(2)] = 2

U

c2
δkj∂k∂j

U

c2

= 2
U

c4
∇2U

=
8πG

c4
ρU,

(A.20)

1

2
∂jh00[O(2)]

(
∂khjk[O(2)]− 1

2
∂jhkk[O(2)]

)
= 2δjk∂j

U

c2
∂k
U

c2
− ∂kk(∂j

U

c2
)(∂j

U

c2
)

= −(∂j
U

c2
)(∂j

U

c2
)

= −|∇U
c2
|2,

(A.21)

and finally

−1

4
|∇h00|2 = −|∇U

c2
|2. (A.22)

Adding terms we get:

R
(2)
00 =

U

c4
8πGρ− 2|∇U

c2
|2

= −∇2(
U

c2
)2 +

16πG

c4
ρU.

(A.23)

In the second line we have used

2|∇U
c2
|2 = ∇2(

U

c2
)2 − 8πG

c4
ρU, (A.24)

which follows from the calculation

∇2(
U

c2
)2 = ∇

(
2
U

c2
∇(

U

c2
)

)
= 2

U

c4
∇2U + 2|∇U

c2
|2

=
8πG

c4
ρU + 2|∇U

c2
|2.

(A.25)

A.5

Here we will determine h00 to O(4) from (4.38) using standard techniques from perturbation theory.
Let us write h00 = h1+h2+h3 . . . , where h1 is the solution of the lowest order part of (4.38), h2 is the
solution of the next lowest order part and so on. According to our notation this means h00[O(2)] = h1

and h00[O(4)] = h1 + h2. Using the book-keeping system we find that to lowest order (4.38) yields

−∇2h1 =
8πG

c2
ρ, (A.26)
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or
∇2(−1

2
h1c

2) = 4πGρ. (A.27)

Accordingly h1 = h00[O(2)] = −2 U
c2

in agreement with (4.17). To next order (4.38) yields

−∇2h2 + ∂2
0h1 − 2∇2U

2

c4
=

8πG

c2
ρ

(
2
v2

c2
− 2

U

c2
+ 3

p

ρc2

)
. (A.28)

Inserting for h1 and rewriting we get

∇2

(
−1

2
c2h2 −

U2

c2

)
= 4πGρ

(
2
v2

c2
− 2

U

c2
+ 3

p

ρc2

)
+

1

c2

∂2U

∂t2
. (A.29)

Integrating this equation we get

−1

2
c2h2 −

U2

c2
= −G

∫
d3x′

1

|x− x′|

[
ρ′
(

2
v2

c2
− 2

U

c2
+ 3

p

ρc2

)
+

1

4πc2

∂2U

∂t2

]
. (A.30)

Replacing the integral with the potentials given by (4.40) we get

h2 = −8
Uk
c4
− 8

Ug
c4
− 2

Up
c4
− 2

Ut
c4
− 2(

U

c2
)2. (A.31)

Using h00[O(4)] = h1 + h2 we get the result in (4.39).

A.6

Here we will show how to obtain equation (4.48). The components Γ
µ(1)
αβ defined by (4.45) are

Γ
0(1)
00 = −1

2
∂0h00, Γ

0(1)
0k = −1

2
∂kh00, Γ

0(1)
km = −1

2
∂mh0k −

1

2
∂kh0m +

1

2
∂0hkm,

Γ
i(1)
00 = ∂0h

i
0 −

1

2
∂ih00, Γ

i(1)
m0 =

1

2
∂0h

i
m +

1

2
∂mh

i
0 −

1

2
∂ihm0,

Γi(1)
mn =

1

2
∂nh

i
m +

1

2
∂mh

i
n −

1

2
∂ihmn.

Inserting this into ai(1) we get

ai(1) = c2[ +
1

2
∂ih00 − ∂0h

i
0

− ∂0h
i
j

vj

c
− ∂jhi0

vj

c
+ ∂ihj0

vj

c

− 1

2
∂kh

i
j

vj

c

vk

c
− 1

2
∂jh

i
k

vj

c

vk

c
+

1

2
∂ihjk

vj

c

vk

c

− 1

2

vi

c
∂0h00 −

vi

c

vk

c
∂kh00 −

vi

c
∂kh0m

vk

c

vm

c
+

1

2

vi

c
∂0hkm

vk

c

vm

c
].

(A.32)

The first term is of size ∼ O(0)∇U , the last two terms are ∼ O(4)∇U while the rest is ∼ O(2)∇U .
Replacing the hµν’s with potentials according to (4.39) and neglecting terms of smallness∼ O(4)∇U
we get the expression for ai(1)[O(2)∇U ] given by (4.48).
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A.7

Here we will show how to obtain equation (4.49). To determine ai(2) to O(2)∇U , we need an expres-

sion for Γ
µ(2)
αβ to O(4). Since Γ

µ(2)
αβ is quadratic in hµν we only need to consider hµν’s of size O(2).

From (4.39) we see that

hµν [O(2)] = −2
U

c2
δµν . (A.33)

Inserting this into (4.46) we get

Γ
µ(2)
αβ [O(4)] = −2

U

c2

[
∂β
U

c2
δµα + ∂α

U

c2
δµβ − ∂δ

U

c2
δµδδαβ

]
, (A.34)

where δµν , δµν and δµν all are, by definition, components of the unit-matrix I4 (and are therefor not
tensors since they cannot be raised or lowered with the metric). From (4.43) (with Γµαβ replaced by

Γ
µ(2)
αβ ) we see that to accuracy O(2)∇U in ai the only component we need to consider is Γ

i(2)
00 :

Γ
i(2)
00 = 2

U

c2
∂i
U

c2
, (A.35)

and hence

ai(2)[O(4)] = −2U∂i
U

c2
= −∂iU

2

c2
. (A.36)

A.8

Here we will show that the solution of (4.67) to second order in β is given by (4.68). To second order
in β (4.67) simplifies to

(β · a)β + (1 +
β2

2
)a = U. (A.37)

In terms of components this vector equation can be written

(akβ
k)βi + (1 +

1

2
βkβk)ai = Ui. (A.38)

This is a set of three equations (one for each i) with three unknowns ai. In principle the set of equations
can be written out explicitly (i = 1, 2, 3) and solved by standard high-school strategies. However, in
order to avoid too much cumbersome algebra we take another approach. The above expression can be
written

ai(1 + β2
i +

1

2
βkβk) = Ui − βi(akβk − aiβi). (A.39)

Notice that all terms on the left-hand side includes ai, while the right-hand side does not include ai at
all (when the summations are written out explicitly the ai-terms cancel). Hence, to second order in β,
we get the following equation for ai in terms of the other unknowns:

ai = Ui(1− β2
i −

1

2
βkβ

k)− βi(akβk − aiβi). (A.40)

Notice that all terms on the right-hand side which includes components of a, are second order in β.
Since we only go to second order in β we must insert the zero-order expression for the acceleration,
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which is ai = Ui. Inserting this we get:

ai = Ui(1− β2
i −

1

2
βkβ

k)− βi(Ukβk − Uiβi)

= Ui −
1

2
Uiβkβ

k − βiUkβk.
(A.41)

Rewriting this as a vector equation we get (4.68).

A.9

Here we will justify that the post-Newtonian metric can be written in terms of φg and Ag as in 4.73.
First observe that to lowest order (4.71) reads

∇2U = 4πGρ, (A.42)

which shows that φg = U to lowest order. This justifies the expressions for h00[O(2)] and hij [O(2)]
in (4.39). Then observe that to lowest order (4.72) reads

∇2Ag = 4πGj, (A.43)

where j ≡ ρv is the mass-flow. Comparing with (4.18) we see that Agi = Ãi to lowest order, which
justifies the expression for h0i[O(3)]. The expression for h00[O(4)] is derived from (4.38). Adding a
term 2∂0∂0( U

c2
)2 to the left hand side of the equation, it can be rewritten

�

(
−c

2

2
h00[O(4)]− U2

c2

)
= 4πGρg. (A.44)

This is also a valid differential equation for h00[O(4)] since the added term is of smallness O(6).
Comparing (4.71) and (A.44) we identify

−c
2

2
h00[O(4)]− U2

c2
= φg. (A.45)

To lowest order we have U2

c4
=

φ2g
c4

. Inserting this into the above equation we get the wanted expression
for h00 to O(4):

h00[O(4)] = −2
φg
c2
− 2

φ2
g

c4
. (A.46)

A.10

All terms in 4.75 which includes φg is oriented either along the direction ∇φg or v. Depending on
preferences it might be useful to decompose the vector v into one direction parallel with∇φg and one
direction orthogonal to∇φg:

v = ∇φg
(v · ∇φg)
(∇φg)2

+∇φg ×
v ×∇φg
(∇φg)2

, (A.47)

or alternatively∇φg decomposed onto the directions v‖ and v⊥:

∇φg =
v

v2
(v · ∇φg) +

v

v2
× (∇φg × v). (A.48)

These relations follows directly from the vector identity ab2 = b(a · b) + b× (a× b).
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A.11

Here we shall show how (5.48) follows from (5.49). The connection coeffisients Γimn can be found in
appendix A.6. Rewriting it to lowest order in terms of the potential φg defined in (4.71), we find that
the only non-vanishing components are:

−Γ1
11 = Γ1

22 = Γ1
33 = ∂1

φg
c2
,

Γ2
11 = −Γ2

22 = Γ2
33 = ∂2

φg
c2
,

Γ3
11 = Γ3

22 = −Γ3
33 = ∂3

φg
c2
,

Γ2
21 = Γ3

31 = −∂1
φg
c2
,

Γ1
12 = Γ3

32 = −∂2
φg
c2
,

Γ1
13 = Γ2

23 = −∂3
φg
c2
.

(A.49)

Inserting this into (5.48) we find for the component i = 1:

dU1

ds
= −∂1

φg
c2

+ 2U1

(
∂1
φg
c2
U1 + ∂2

φg
c2
U2 + ∂3

φg
c2
U3

)
, (A.50)

and similar for the other components. As a vector equation this can be written on the form (5.49).

A.12

From the geodesic equation
d2xµ

dτ2
= −Γµαβ

dxα

dτ

dxβ

dτ
(A.51)

we find that the only non-zero components of d
2xµ

dτ2
are

d2t

dτ2
= −2

g

c2

1

1 + gz
c2

dt

dτ

dz

dτ
(A.52)

and
d2z

dτ2
= −g(1 +

gz

c2
)

(
dt

dτ

)2

. (A.53)

A test particle (initially) at rest in origo will have dt
dτ = 1 and therefore d2z

dt2
= −g. The vector

g = −gez is therefore the 3-acceleration of a freely falling test particle initially at rest in origo, ie.
the same vector as the g in (5.4).

We introduce the notation

Uµ ≡ dxµ

dτ
= (U0,U), (A.54)

Aµ ≡ d2xµ

dτ2
= (A0,A), (A.55)
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v =
dxi

dt
ei, (A.56)

and

a =
d2xi

dt2
ei. (A.57)

Our goal is to determine the functional dependence of a on g and v, ie. determining a(g,v). We start
by calculating A0(g,v) and A(g,v) as an intermediate step. The line element (5.8) can be written

−
(

(1 +
gz

c2
)2 − v2

c2

)
c2dt2 = −c2dτ2, (A.58)

which gives
dt

dτ
=

1√(
1 + gz

c2

)2 − v2

c2

. (A.59)

Equations (A.52) and (A.53) can then be written

A0 = 2c
g · v
c2

1(
1 + gz

c2

) ((
1 + gz

c2

)2 − v2

c2

) (A.60)

and

A =
(1 + gz

c2
)(

1 + gz
c2

)2 − v2

c2

g, (A.61)

where we have used that g dzdt = −g · v. To find a(g,v) from (A.60) and (A.61) we need two more
equations to eliminate A0 and A. We find the needed relations from the definitions of Uµ and Aµ, ie.
(A.54) and (A.55). First note that

Uµ ≡ dxµ

dτ
=
dt

dτ

dxµ

dt
, (A.62)

which means that
U0 =

c√(
1 + gz

c2

)2 − v2

c2

(A.63)

and
U =

1√(
1 + gz

c2

)2 − v2

c2

v. (A.64)

Derivation of Uµ with respect to t gives:

dU0

dt
= c

(
1 + gz

c2

) g·v
c2

+ v · a((
1 + gz

c2

)2 − v2

c2

)3/2
(A.65)

and
dU

dt
=

1√(
1 + gz

c2

)2 − v2

c2

a +

(
1 + gz

c2

) g·v
c2

+ v · a((
1 + gz

c2

)2 − v2

c2

)3/2
v, (A.66)

where we have used that d
dtv

2 = 2v · a and that g dzdt = −g · v. Accordingly we get

A0 =
dt

dτ

dU0

dt
= c

(
1 + gz

c2

) g·v
c2

+ v · a((
1 + gz

c2

)2 − v2

c2

)2 (A.67)
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and

A =
dt

dτ

dU

dt
=

1(
1 + gz

c2

)2 − v2

c2

a +

(
1 + gz

c2

) g·v
c2

+ v · a((
1 + gz

c2

)2 − v2

c2

)2 v. (A.68)

Notice that the last term in (A.68) is almost the same as (A.67). Hence it follows (algebraically) from
the two previous equations that:

a =

((
1 +

gz

c2

)2
− v2

c2

)(
A− A0

c
v

)
. (A.69)

By inserting (A.60) and (A.61) into (A.69) we finally get the sought after expression:

a = g
(

1 +
gz

c2

)
− 2

1

1 + gz
c2

g · v
c2

v. (A.70)

A.13

Here we shall comment on the contributions from the terms −1
2ks

2 − k2s on the right-hand side
of (5.63) to the measured acceleration. Starting with (5.63) instead of (5.64) we get an additional
contribution ksdsdt +k2

ds
dt in the expression for dt

dt
(see (5.72)). Hence we get an additional contribution

ksdsdt
dx
dt + k2

ds
dt
dx
dt to the measured velocity (see (5.75)). This gives rise to an additional contribution

d

dt

(
ks
ds

dt

dx

dt
+ k2

ds

dt

dx

dt

)
+ k2

ds

dt

d2x

dt2

to the measured acceleration. To lowest order we have ds
dt = dx

dt = v and d2x
dt2

= −∇U , where U is the
Newtonian gravitational potential. Performing the derivation in the expression above and evaluating
in the origin we find that the contributions from the negleced terms to the measured acceleration
becomes

kv3 + 3k2v∇U ∼ O(4)∇U. (A.71)

Notice that both terms above are of the same order of magnitude. Hence we have showed that the
contribution is two orders of magnitude lower than the post-Newtonian precision, and therefore neg-
ligible.
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