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Chapter 1

Results from other studies

We study the thermomechanical processes that are taking place within the Earth’s interior.
The current state of knowledge about this subject is based on interpretations of the surface
measurements done by several geophysical studies, with additional insights provided by
geodynamic modelling. We attempt to collect evidence from several disciplines: seismology,
experimental mineral physics and geodynamic modeling. In this chapter, we present an
overview over features in the lower mantle that are most robustly observed in other studies,
and outline their influence on the convective flow of the mantle.

1.1 Parameters representative for the Mantle

An overview over physical parameters that govern mantle flow and their representative
values are summarized in this section. These values are chosen from a range of results from
several experimental and seismological studies.
The radial distributions of density, pressure and gravitational acceleration, according to
the Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson, 1981), are
presented in Figure 1.1. These distributions are based on a range of values from a large set
of data from astronomic geodesy, free oscillation and long-period surface waves, and body
waves. A reference value for the dynamic viscosity of the mantle is chosen based on a study
of post-glacial rebound (Peltier, 1996). The preferred values of parameters that we use in
this study, including the dimensionless parameters, are presented in Table 1.1.

Anchor temperatures from phase transitions

Temperature values can be deduced for the depths of the mantle where seismic disconti-
nuities are observed. The pressure and temperature conditions for the solid-state phase
changes associated with these discontinuities can be estimated experimentally. The seismic

7



8 CHAPTER 1. RESULTS FROM OTHER STUDIES

Figure 1.1: Radial distributions of density, pressure and gravitational acceleration in the
Earth, based on the Preliminary Reference Earth Model (PREM) (Dziewonski and Ander-
son, 1981).

Dimensionless
Values representative for the mantle

parameters

Ra ≡ αgρ4TD3

κη g − gravitational constant ≈ 10ms−2 Ra ≈ 107

α− thermal expansivity ≈ 3 · 10−5K−1

ρ− density ≈ 4 · 103kgm−3

4T − nonadiabatic temperature variations ≈ 103K

Pe ≡ Du
κ D − depth of the convecting region ≈ 3 · 106m Pe ≈ 103

κ− thermal diffusivity ≈ 10−6m2s−1

η − dynamic viscosity ≈ 1021Pas
u− vertical velocity ≈ 10−2myr−1 = 3 · 10−10ms−1

Pr ≡ ηcp

k cp − specific heat ≈ 1kJ(kgK)−1 Pr ≈ 2.5 · 1023

k − thermal conductivity ≈ 4W (mK)−1

E −Young’s modulus ≈ 70GPa

Table 1.1: Table of the dimensionless parameters that are commonly used to characterize
mantle properties and flow. Ra is the Rayleigh number, defined as the ratio of time scales
of buoyancy forces driving convection and the dissipative effects opposing convection. Pe
is the Peclet number, defined as the ratio of time scales for the conductive and convective
heat transports. Pr is the Prandtl number, defined as the ratio of momentum diffusivity
to thermal diffusivity. Values of the constituting physical parameters, representative of
the Earth’s mantle, are also included (Davies and Christensen, 2001) and (Schubert et al.,
2001). These are the preferred values that we use for scaling analysis, the actual values may
deviate up to a few orders of magnitude within the mantle.
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Boundary Depth [km] Temperature [K] Reference

MORB generation 50 1590− 1750 † Kinsler and Grove[1992]
Olivine-Wadsleyite 410 1760± 45 Katsura et al.[2004]
Post-spinel 660 1870± 50 Katsura et al.[2003, 2004]
Core-mantle 2900 4200± 500 Alfe et al.[2002]; Labrosse[2003]

Table 1.2: Anchor points for the mantle geotherm, deduced from seismic discontinuities
and the associated solid-state phase changes (Jaupart et al., 2007). † indicates true range
of temperatures in the upper mantle.

discontinuity at the 410 km depth is linked to the olivine-wadsleyite transition. Based on
this phase change, the temperature of 1760 ± 45 K has been determined for this depth.
The discontinuity at 660 km depth is linked to the dissociation of spinel to perovskite and
magnetowustite. The temperature required for this phase change at the given depth is
1870± 50 K (Jaupart et al., 2007).
The outer core mainly consists of molten iron, while the lower mantle surrounding the core
consists predominantly of silicates and oxides. The temperature at the CMB is therefore
constrained by two conditions: it must be above the melting point of the iron alloy and
below the melting point of the silicates and oxides. Another constraint is based on the
assumption that the outer core is vigorously convecting and its geotherm is therefore an
adiabat, as will be discussed in Section 1.2.4. The temperature at the inner core-outer core
interface, inferred from the melting points, can thus be adiabatically extrapolated to the top
of the core. Using these constraints, the temperature of 4400(±600) K has been determined
for the CMB (Jeanloz and Morris, 1986). The anchor points for the temperatures in the
mantle are summarized in Table 1.2.

Rheology of the mantle

We argue that the mantle behaves like a fluid over geological time scales. An observational
evidence for this is the vertical rebound of the Earth’s surface over the last 10, 000 yr, as
the crust has been relieved from the Pleistocene ice sheets (Jeanloz and Morris, 1986).
The rheological behavior of the mantle can also be inferred from its viscoelastic relaxation
time, given by:

τve ≡ η

E
(1.1)

where η and E are the dynamic viscosity and the Young’s modulus, respectively. The
viscoelastic relaxation time characterizes the ability of a material to respond elastically
or by viscous creep to an applied stress. Elastic behavior is observed over time scales
much shorter than τve, while fluid behavior is observed over time scales much longer than
τve (Schubert et al., 2001). Using the representative values listed in Table 1.1, we obtain
τve = 450 yr. Comparing this value with the subduction time scales, which are millions of



10 CHAPTER 1. RESULTS FROM OTHER STUDIES

years, explains that the mantle behaves like a fluid over time scales appropriate for tectonic
plate motions (Hager, 1984).

1.2 Heat Transport in the Mantle

Heat loss and heat production are the main contribution to the Earth’s total energy variation
with time. Conduction, convection and radiation are the three general mechanisms for the
transfer of heat. In this section we discuss these mechanisms and their relative efficiency in
the mantle.

1.2.1 Heat budget

Comparing the amount of heat generation and heat loss in the mantle reveals that the
mantle is cooling. The dominant heat sources are the heat flux from the core and the internal
heat production by the radioactive elements, such as Uranium, Thorium and Potassium.
Evidence for the heating of the mantle from below is based on the existence of a geomagnetic
field, which implies that there are electric currents within the core. The ohmic heating
generated by these currents must be transferred to the mantle to avoid a rising temperature
within the core (Loper and Lay, 1995). These two heat sources sum up to an approximate
heat generation rate of 21 TW (Jaupart et al., 2007). Excluding the contribution of the
radioactive sources in the continental lithosphere from the total surface heat flux, the rate
of heat loss from the mantle is 39 TW. Hence, the mantle is cooling at an approximate rate
of 18 TW (Jaupart et al., 2007).

1.2.2 Convection

Convective heat transport involves motion of a fluid as response to a gravitational insta-
bility that arises when the density of the fluid changes due to temperature variations. The
occurence of convection and its intensity in the mantle can be established by considering
the Rayleigh number, which is the ratio of timescales of buoyancy forces driving convection
and the dissipative effects opposing convection (Davies and Christensen, 2001). A detailed
discussion about the Rayleigh number can be found in Section 2.2.5. For the mantle, tem-
perature is the dominant factor determining the Rayleigh number. The value of the latter
is estimated to lie between 105 and 109 (Jeanloz and Morris, 1986), as is demonstrated in
Table 1.1. This implies vigorous convection in the Earth’s mantle. The timescale of this
convective motion, inferred from plate tectonics, is 107 − 109 years (Loper and Lay, 1995).
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1.2.3 Conduction

In most of the mantle radiation has shown to be a relatively ineffective heat transport
mechanism due to the opacity of mantle minerals (Jeanloz and Morris, 1986). Combining
the radiative and conductive heat transports, however, results in an effective heat transport
mechanism in regions where convection cannot take place. An example of such location
is the core-mantle boundary (CMB). The large density difference across this interface,
4.3 x 103kg/m3, and the large viscosity ratio, 20 − 24 orders of magnitude, prohibit the
convective motions in this region (Loper and Lay, 1995). Thermal boundary layers develop
on both sides of the interface across which a changeover from conduction to convection
takes place. The temperature increase with depth is largest in these layers, compared to
the other regions of the mantle (Jeanloz and Morris, 1986).

Thermal boundary layers at CMB

Some inferences can be made about the thermal boundary layers on both sides of the
CMB, based on what is believed to be the main components of the core and the mantle.
The iron-alloy outer core is believed to be a vigorously convecting fluid with a high thermal
conductivity and a low viscosity, near that of water. The thermal boundary layer at the core-
side of the CMB is therefore presumably thin, with a relatively uniform lateral temperature
distribution within. The silicate-oxide mantle has a low thermal conductivity and a very
high, temperature-dependent viscosity. The thermal boundary layer at the mantle-side
of the CMB is therefore presumably thicker than the one inside the core, with a large
temperature increase and a substantial viscosity reduction across it, the exact magnitudes
of which are quite uncertain (Loper and Lay, 1995).

1.2.4 Efficiency of the convection and conduction

The heat transfer mechanism that dominates in the mantle may be established by consid-
ering the Peclet number, which is the ratio of conductive to advective time scales required
to transport heat over a given distance. In the mantle, the Peclet number is much larger
than one, as demonstrated in Table 1.1, implying that the convective heat transport is far
more efficient on a global scale than conduction (Jeanloz and Morris, 1986).
A parameter that is used to describe the contribution of convection to the total heat flux is
the Nusselt number, Nu. It is the ratio between the heat flux across the thermal boundary
layer, qTBL = k4TTBL

DTBL
, and the heat flux across the entire region if there were no convection,

q = k4T
D . Here, k is the thermal conductivity, 4TTBL, 4T , and DTBL, D are temperature

differences across and the depths of the thermal boundary layer and the entire region, re-
spectively. The Fourier’s law of conduction is used to express the thermal fluxes. In cases of
purely conductive heat transfer, Nu = 1. On the contrary, in case of vigorous convection,
Nu À 1. It can be shown by dimensionless analysis that, except for some deviations due
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to variable viscosity and compressibility of a fluid, the Nusselt number depends only on the
Rayleigh number (Jeanloz and Morris, 1986).

Adiabatic geotherm

The above discussion on the heat transport mechanisms allows to make inferences on the
geotherm of the mantle. The geotherm through the interior of a convecting region follows
an adiabat if the following two assumptions are satisfied: (1) There are no entropy sources
in the fluid and (2) any intial entropy variations have had time to decay. The large Peclet
number of the mantle ensures that the first assumption is satisfied, although presence of the
radioactive elements causes slight deviation from adiabadicity. The time scale for reaching
the steady state has been estimated numerically for a single-layer incompressible convection.
Adjusting this time scale for a compressible fluid infers that the second assumption is
satisfied for a single-layer flow. For a two-layer flow, however, the initial entropy variations
may still cause deviations from adiabadicity. The adiabatic geotherm of the mantle is also
supported by seismological observations (Jeanloz and Morris, 1986).

1.3 Whole-Mantle Convection

Whether the compositional discontinuity in the mantle at 660 km depth completely prohibits
convective motions across the transition zone, causing stratification into separate upper and
lower convecting systems, remains under debate. In this study we assume that there is no
stratification of the mantle flow, a case that is referred to as the whole-mantle convection.
In this section we present arguments that justify this assumption.
The whole-mantle convection is characterized by the possibility for plumes forming at the
CMB to ascend all the way to the Earth’s surface, as well as for slabs of former oceanic
lithosphere to subduct all the way down to the base of the mantle. Consequently, whole-
mantle convection implies that processes taking place in the lower mantle have some form of
manifestations at the Earth’s surface. Large igneous provinces (LIPs) and hotspot volcanos,
which eruption sites are correlated with the seismic structures at the CMB (Torsvik et al.,
2006), are possible examples of such manifestations. The continuity of negative seismic
anomalies, assumed to be denser and colder subducting slabs, from the surface to the CMB
is also suggestive of the mantle wide flow (Van der Hilst et al.). Additionally, the dynamic
topography predicted by the whole mantle flow model is in better agreement with the
observations than the one predicted by the stratified flow model (Hager et al., 1985). In
this section we elaborate on these observations by presenting results from other studies
that support whole-mantle convection model. A detailed overview of alternative convection
models may be found in (Puchkov, 2009).
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Figure 1.2: Plot of the altitude at which the gravity potential is measured for a viscous
layer with different cases of mass anomalies. The dashed line represents the altitude of
the reference geoid when no density anomalies are present. The solid line represents the
altitude at which the measured potential has the value of the reference geoid. Positive
and negative mass anomalies are marked with encircled + and − signs, respectively. Case
1: Homogeneous isoviscous layer that defines the altitude of the reference geoid. Case 2:
Positive density anomaly in an isoviscous layer with no boundary deformation, resulting in
a positive geoid anomaly. Case 3: Positive density anomaly in an isoviscous layer where
the boundaries are allowed to deform, resulting in a negative geoid anomaly. The negative
contribution to the geoid comes from the deformed top and bottom boundaries. Case
4: Positive density anomaly in a layer where the viscosity increases with depth and the
boundaries are allowed to deform, resulting in a positive geoid anomaly.

1.3.1 Dynamic topography

Earth’s geoid

An element of mass at the Earth’s surface experiences gravitational attraction towards and
centrifugal repulsion away from the Earth’s center of mass. The combined effect of these
forces is referred to as gravity. Thus, an element of mass at the Earth’s surface is positioned
in a gravity field and has a potential energy that is inversely related with its altitude above
the center of mass. We define a gravity equipotential as a surface on which the value of
the potential energy per unit mass is a constant. The geoid is an equipotential surface that
defines the sea level (Turcotte and Schubert, 2002).
Consider an idealized model of the Earth with a homogeneous density distribution in its
interior. We can derive an expression for the distance from the mass center of this model,
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the altitude rref , at which the potential value is equal to some reference value, for example
the geoid. The difference between rref and the altitude at which the measured potential is
equal to the reference potential is called the geoid anomaly (Turcotte and Schubert, 2002).

Geoid anomalies in a convecting layer

Convective flow in the mantle gives rise to geoid anomalies. Presence of internal density
contrasts and the deformation of the boundaries due to the flow induced by these density
contrasts contribute to the measured geoid (Hager, 1984). Let us consider a case with a high
density anomaly introduced in the interior of an isoviscous layer, before it induces any flow.
This is illustrated in case 2 in Figure 1.2. The altitude at which the measured potential is
equal to the geoid is higher with the density anomaly present, case 2, than without it, case
1. Hence, a positive density contrast results in a positive geoid anomaly.
Now let us consider the effect of deforming boundaries in this isoviscous layer. The sinking
positive density anomaly pulls the material behind it and pushes the material in front of it.
This results in a downward deflection of the boundaries, which changes with time until a
steady state is achieved. We only consider the configurations of boundary deformations after
the steady state has been reached. It is an appropriate approximation when applying this
model to the mantle, since the steady state is reached over time scales of the postglacial
rebound. These are essentially instanteneous compared to the time scales of subduction
(Hager, 1984). The contribution to the total geoid anomaly is stronger from the deflection
of the top boundary, because it is positioned at a higher altitude, although the magnitude
of deflections at top and bottom is the same. Downward boundary deformation gives a
negative change in the altitude at which the measured geoid is equal to the reference geoid.
This is illustrated in case 3 in Figure 1.2. Hence, the total geoid anomaly is negative for a
positive density contrast when the boundaries are allowed to deform (Hager, 1984).
We increase the complexity of the problem further by allowing the viscosity to increase
with depth. The sinking rate of the positive density anomaly is slower in this case than
in case 3, resulting in a larger deflection of the bottom than of the top boundary. As was
discussed earlier, deformation at higher altitude has most effect on the geoid. Hence, the
total negative contribution to the geoid anomaly is smaller in this case than in case 3. The
situation is illustrated in case 4 in Figure 1.2. The total geoid anomaly is positive for a
positive density contrast in a layer where the boundaries are allowed to deform and the
viscosity increases with depth (Hager, 1984).

Depth-dependent viscosity and whole-mantle convection

The magnitude of the geoid anomaly that arises due to convective flow in the mantle de-
pends on the spatial distribution of the effective viscosity and the depth of the convecting
region (Hager, 1984). The latter is directly related to whether or not the mantle is chem-
ically stratified, with a discontinuity at ca 660 km depth acting as a barrier to convection
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Figure 1.3: Radial viscosity staructure constrained by models of the geoid and the results
from mineral physics (Steinberger and Calderwood, 2006)

(Hager, 1984). Estimating the positive density anomalies in the mantle associated with
subducted slabs, the geoid anomalies can be predicted for different models of the mantle.
Comparing the predicted geoid with the one observed can place a constraint on the viscos-
ity distribution in the mantle (Hager, 1984). The observed correlation of the geoid highs
with the high density subducted slabs infers that the viscosity of the mantle increases with
depth. A viscosity ratio of at least a factor of 30 is required for a mantle that is assumed
to be a Newtonian, radially symmetrical fluid (Hager, 1984). Comparing the magnitudes
of the observed and predicted geoid anomalies suggests whole mantle convection (Hager,
1984).
Using the constraints from the modelled geoid, together with the results from mineral
physics, a model of the radial viscosity structure is obtained by (Steinberger and Calder-
wood, 2006) and presented in Figure 1.3.

1.3.2 Deep Subduction

One of the alternatives to the whole mantle convection model that has been proposed is
a layered convection model. The layered model permits no material transport across the
upper mantle transition zone at 660km discontinuity into the lower mantle. Tomography
reveals three features that, in combination, strongly support the possibility of such material
transport (Van der Hilst et al.). First, there is a continuity between the long narrow
structures of higher than average seismic velocities in the lower mantle to the slabs in the
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upper mantle. Second, there is a strong correlation between the geographical distribution of
these high velocity structures with locations at the surface of plate convergent margins in the
past 120 Ma. Finally, there is a continuation of some of these narrow downwellings all the
way to the base of the mantle, where they spread out to form a long wavelength structure.
Whole-mantle flow with substantial flux across the upper mantle transition zone into the
lower mantle provides a good explanation for these seismological observations. Additionally,
the time scale for dynamic processes is significantly longer in the lower mantle, due to its
high viscosity, compared to the upper mantle. Consequently, the strong correlation between
locations of high seismic velocity anomalies in the upper and lower mantle is hard to explain
by separate flow regimes coupled by heat exchange alone, in favor of the whole-mantle
convection model (Van der Hilst et al.).

1.3.3 Deep Mantle Plumes

Whether the material that produced large igneous provinces (LIPs) and hotspots stems
from a deep or shallow source remains a disputed subject (Sleep, 2006). Correlation of the
geographical distribution of their eruption sites with tomographically resolved structures at
the base of the mantle seems to infer a deep mantle source (Torsvik et al., 2006). Using
four different restoration methods, involving paleomagnetic as well as fixed and moving
reference frames, current locations of LIPs as old as 200Ma were rotated back to their
eruption sites (Torsvik et al., 2006). This lead to the observation that 90% of the eruption
sites project radially downwards to the margins of the two large low shear velocity provinces
(LLSVPs) close to the CMB, which were resolved by seismic tomography. The same is true
for most hotspots of arguably deep origin. Results of this study are illustrated in Figure 1.4.
These observations support the evidence that LIPs and hotspots are generated by plumes
originating at the CMB and therefor also the idea of a whole-mantle flow regime.

1.4 Structure of the lowermost mantle

Despite the whole-mantle flow regime, the planform of convection appears to be significantly
distorted in two depth intervals: 500−800km depth and 1800−2300km depth (Van der Hilst
et al.). We choose to focus on the behavior of the mantle structures that may be causing
the deepest distortion and do not discuss the influence that the transition zone has on the
mantle flow. An overview over ideas concerning reorganization of the mantle flow across
the transition zone may be found in (Dziewonski et al., 2010). Constraints on the CMB
region proposed by seismology, experimental mineral physics and numerical calculations are
presented in the following sections.

1.4.1 D” region

Pioneering studies of the Earths density variations, divided the Earth’s spherical shells into
regions named A to G (Bullen, 1940). The layer between 984 km depth and the CMB
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Figure 1.4: Original LIP eruption sites and hotspots (crosses) on the SMEAN shear wave
velocity anomaly model for 2800 km. There is a strong tendency for LIP and hotspot
eruption sites to overlie the high horizontal gradients in seismic velocity peripheral to the
’Africa’ and ’Pacific’ low-velocity regions (red) (Torsvik et al., 2006).

Figure 1.5: Tomographically derived high and low seismic shear velocity variations in
Earth’s mantle (blue and red, respectively) are shown in an equatorial cross section (right)
viewed from the south, along with an enlarged panel (left) depicting several seismic findings
in the D” region (Garnero and McNamara, 2008).
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was named D and corresponded to the lower mantle. As seismic studies revealed more
details about the structure of the lower mantle, and specifically the velocity discontinuity
in the lowermost mantle, it became convenient to further divide the D-layer. In the recent
literature, most of the lower mantle is referred to as D’, while D” represents the deepest
250-300 km of the mantle.

1.4.2 Level of heterogeneity in the lowermost mantle

One of the characteristics of the D” layer is that it is much more anomalous than the rest
of the lower mantle (Garnero and McNamara, 2008). Some of the features are illustrated in
Figure 1.5. Sharp increase in the amplitude of the lateral heterogeneity has been revealed
by tomography models for both fast- and slow-velocity regions, dominated by degrees 2 and
3 large-scale heterogeneity (Liu et al., 1998). This large-scale heterogeneity is associated
with the Large Low Shear Velocity Provinces (LLSVPs) (Dziewonski et al., 2010) and will
be discussed in more detail in the following sections.

1.4.3 Heterogeneities of non-thermal origin

Another characteristic of the D” layer is the significant decrease in the gradients of both P -
and S-wave velocities with depth into that region, some places even becoming negative. This
is a persisten result from many seismological studies. Using signals reflected or scattered
from internal structures, an approach that has the advantage in locating rapid changes in
seismic wave speed, a radial discontinuity in shear-velocity was found. The discontinuity is
of the order 2 − 3% and is located 200 − 300 km above the CMB in various parts of the
world (Liu et al., 1998). This discontinuity was confirmed by other studies to be present in
both high- and low-velocity regions of the lower mantle, with geographical variation of the
depth and velocity change across it (Garnero and McNamara, 2008).
The observed reduction in seismic velocity gradient with depth was initially iterpreted
as being caused by the rapid temperature increase within the lowermost-mantle thermal
boundary layer. However, the observed lateral heterogeneities are of much higher amplitude
that what could be expected if they were of purely thermal origin (Garnero and McNamara,
2008). Therefore, the question arises of whether the D” region is a separate layer from the
overlying lower mantle (Loper and Lay, 1995). We present some of the evidence that support
the existence of non-thermal variations.
If both P - and S- velocity variations were linearly related to variations in temperature, they
should be perfectly correlated. Similarly, if density models determined using normal modes
and S-wave tomography were only temperature-dependent, they should also be positively
correlated. However, an anti-correlation is observed in both cases (Steinberger and Holme,
2008). In addition, it is speculated that the abruptness of observed velocity increases over
no more than a few tens of kilometers requires a chemical contrast or a phase transition
(Loper and Lay, 1995).
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The origin of the anomalies in the lowermost mantle remains a disputed subject and poses
a limit for the validity of the physical models. Composition of the D” layer is crucial to
constrain the CMB topography that is predicted as part of the mantle flow computation in
the geodynamic models (Dziewonski et al., 2010).

1.4.4 Insights from mineral physics

Further insight into what constitutes the D” layer in particular, and the lower mantle in
general, has been gained from mineral physics studies. Although there is still a large range
of acceptable models for the lower mantle composition, equation-of state measurements in-
dicate that silicate perovskite ((Mg,Fe)SiO3) is the predominant mineral of that region
(Loper and Lay, 1995). The experiments performed using a laser-heated diamond anvil cell
revealed that the synthesis conditions for the perovskites (silicate perovskite and coexisting
melts) are representative of those in the lower mantle: pressures of > 50 GPa and temper-
atures of 2000− 4500 K (Knittle, 1998). In the same study it was found that upon melting
of silicate perovskite, the melting point of which remains uncertain, iron partitioning takes
place with the effect of producing a melt which is 1− 3% denser than its coexisting solid.
Occurence of these negatively buoyant melts anywhere in the deep mantle would result in
them draining down to the CMB region and could potentially explain some of the het-
erogeneities of the D” layer, for example the seismically detected ultra-low velocity zones
(Knittle, 1998).
Another mechanism that could create dense melts at the CMB, indicated by mineral physics,
is the chemical reactions between the silicate perovskite and the molten iron, assuming a
flux of the latter from the core into the mantle (Loper and Lay, 1995). To estimate the
quantity of partial melts in the hot regions of the D”, it is critical to know the melting point
of silicate perovskites. The latter could also provide an upper bound on the temperature
at the CMB, as well as the viscosity structure of the mantle, which would have a major
impact on physical models of the mantle. But, as already mentioned, the melting point
is still uncertain and ranges from less than 5000 to 8500 K (Loper and Lay, 1995). This
temperature range is comparable to the temperature estimates of the core side of the CMB
- 4000 K and temperature just above the D” - 2500 K (Torsvik et al., 2006).
Experiments also revealed that presence of water strongly influences the perovskite-iron
reactions (Loper and Lay, 1995), as well as properties of the silicate mantle such as its
viscosity and melting temperature (Murakami et al., 2002). However, the possible sites for
water in lower mantle minerals have been controversial. An experimental study has shown
that Mg-perovskite and magnesiowstite, both of which are present in the lower mantle, con-
tain about 0.2 weight percent water at a pressure of 25.5 GPa and at temperatures between
about 1850− 1900 K (Murakami et al., 2002).
Mineral physics research provides an additional argument for non-thermal heterogeneities
within the D” layer. The seismic anomalies near the CMB are mapped into thermal vari-
ations using estimates of the seismic velocity of minerals, and their thermal expansion
coefficient as function of composition, pressure and temperature. The inferred temperature
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variations exceed 1200 K, which is argued to be implausible and requires presence of chem-
ical heterogeneity in the region (Loper and Lay, 1995).
Recent experimental production of a post-perovskite phase transition in magnesium silicate
(MgSiO3) has suggested that it is likely to occur 200− 300 km above the CMB. The post-
perovskite transition may explain the seismically observed discontinuty at that depth. A
large positive Clapeyron slope was obtained for the phase change, both from experiments
and calculations, which could explain why the D” discontinuity is mainly observed in the
regions of higher than average shear wave velocities. More explicitly, faster regions have
been suggested to be colder and hence lower pressures are required to reach phase-change
conditions, compared to higher temperature regions (Torsvik et al., 2006).
The last argument for non-thermal temperature variations in the D” layer that we present
here, is based on the estimated temperatures of the plume material ascends. Using olivines
to estimate differences in mantle potential temperature of Iceland and Hawaii, it has been
indicated that at least the plumes underlying these locations are approximately 200 K hot-
ter than normal mantle (Sleep, 2006). This rather low excess temperature, compared with
the implied temperature drop across D” of > 1000 K, is easiest to explain by plumes rising
from the top of a chemically distinct layer at the base of the mantle (Torsvik et al., 2006).
A more complete overview of studies that favour the idea of D” zone having a chemically
distinct composition can be found in (Torsvik et al., 2006).

1.4.5 Large Low Shear Velocity Provinces

Based on the interpretation of the travel time anomalies, a method that has the advantage
of recovering large scale structure, it has been inferred that the seismic velocity anomaly in
the lowermost mantle is dominated by the degrees 2 and 3 spherical harmonics (Liu et al.,
1998). This signal is characterized by two antipodal regions of lower than average seismic
velocities. A study that synthesises results from the seismic constraints and considerations
of the non-hydrostatic moment of inertia tensor infers that this giant degree 2 anomaly is
long-lived and imposes control on mantle circulation (Dziewonski et al., 2010).
This large-scale structure, which begins at about 2000 km depth and increases to the CMB,
is associated with the two low velocity regions, the so-called African and Pacific Large Low
Shear Velocity Provinces (LLSVPs) (Dziewonski et al., 2010). The height of the LLSVPs is
estimated to be about 1000 km for the African anomaly and at least 500 km for the Pacific
anomaly, where the latter is less certain. The LLSVPs appear to cover nearly 50% of the
CMB, both extending about 15, 000 km across (Garnero and McNamara, 2008). Seismic
waves reveal that the boundaries between the LLSVPs and surrounding mantle are sharp,
with an outward tilt of the edge observed for the African anomaly (Ni et al., 2002).
The negative correlation between the bulk sound velocity and the shear velocity within the
LLSVPs suggests that the anomalies are of chemical origin (Ni et al., 2002). This hypothesis
is also supported by a study that used normal-mode data to resolve density heterogeneity
within the mantle, and indicated an increased density in the location of superplumes (Ishii
and Tromp, 2004). The sharp and steeply dipping edges of the African LLSVP are also
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best explained as compositionally controlled (Torsvik et al., 2006).
The fact that the seismic shear velocities are lower than average in the LLSVPs suggests that
these are hotter than the surrounding mantle. The correlation with the restored eruption
sites of hotspots and Large Igneous Provinces (Torsvik et al., 2006), as well as the anti-
correlation with regions of long term subduction, supports the evidence for higher than
average temperature in LLSVPs(Tan and Gurnis, 2005).
The observed correlation between the restored LIPs and hotspots eruption sites of the past
200 Ma and the margins of the LLSVPs suggests that the latter have occupied their current
positions for at least that long (Torsvik et al., 2006).

1.4.6 Previous numerical modeling by other authors

Chemical origin of the LLSVPs

Geodynamic models propose different scenarios for how the LLSVPs are formed and main-
tained. One of these involves mantle convection that sweeps a chemically distinct and in-
trinsically denser material in the mantle toward the upwelling regions, creating piles which
shapes resemble the LLSVPs. The origin of chemical heterogeneity is suggested to be the
accumulated subducted crust, or, alternatively, a primordial layer that have existed since
the Earth’s early differentiation (Garnero and McNamara, 2008). The former has been
shown to satisfy seismological, geodynamical, mineralogical and geochemical constraints
(Tan and Gurnis, 2005).
Formation of the thermochemical piles that satisfy the geometrical constraints inferred from
seismological observations has been studied in (McNamara and Zhong, 2005). The geomet-
rical constraints include a sharp-edged linear, ridge-like morphology for the African anomaly
and a more rounded pile-shape for the Pacific anomaly. The model used in their study in-
corporates an initial layer of dense material at the base of the mantle, which is swept into
ridges in the course of simulation. The thickness of the layer determines the areal extent and
the height of the resulting thermochemical piles. The study emphasises the importance of
a depth- and temperature-dependent rheology of the mantle model together with a realistic
plate history as surface boundary conditions. Results of the simulations with an isochemical
model of the mantle are shown to be inconsistent with observational constraints, such as
tomography maps.
Results of the numerical modeling of mantle flow in the study of (Steinberger and Holme,
2008) revealed the importance of considering the non-thermal density variations. The re-
sults of their simulations satisfied the constraints posed by the long-wavelength geoid, heat
flux profile, average viscosity based on the postglacial rebound and the CMB topography.
The study of (Ni et al., 2002) supports the evidence that the superplumes are of chemical
origin, based on the results of thermal convection modeling with presence of a dense basal
layer. Their conclusion is derived from the geodynamic models that succeed in reproducing
the seismically observed sharp interfaces and shapes of the superplumes.
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Stability of the LLSVPs

The longevity and gravitational stability of the LLSVPs are achieved if their thermal and
compositional buoyancies are roughly balanced (Garnero and McNamara, 2008). Geody-
namic models suggest that an intrinsic density elevation of a few percent for the material
constituting the heterogeneity, with respect to the surrounding mantle, is required to satisfy
this constraint. If the percent value of density elevation is too high, the structures flatten
out, while a too low value results in excessive entrainment into upwellings (Garnero and
McNamara, 2008).
The compositional viscosity difference between the dense basal layer and the ambient mate-
rial has an effect on the entrainment rate when exposed to convection. Experimental studies
suggest that a significantly lower viscosity of the basal layer counteracts the mixing with
the ambient material (Beuchert et al., 2010). Numerical studies, however, provide evidence
that the opposite is the case (Beuchert et al., 2010).
Gravitational stability of the superplumes has been investigated in (Tan and Gurnis, 2005),
using a compressible thermochemical convection model. The density contrast between chem-
ically distinct materials in their model is expressed as a sum of contributions from the ther-
mal and chemical variations. The authors suggest that a chemically distinct material with a
thermal expansion coefficient that decreases with depth has an effect of increasing the total
density contrast with depth. Structures with high topography and steep sides are unlikely
to form in this case. A compositional density difference that decreases with depth, on the
other hand, can lead to formation of metastable superplumes with high topography. The
compositional density difference between the materials depends on their shear bulk moduli,
different values of which are investigated. The study of (Tan and Gurnis, 2005) reveals a
specific range of values of bulk modulus and density contrast for which a single plume with
steep sides is formed at the base of the thermochemical model. Values outside this range
result in either too much entrainment, or a layer at the base that is too heavy to be swept
into a pile.
Geodynamic models show that the thermomechanical piles move laterally along the base
(Beuchert et al., 2010). Hence, the stability of the equatorial, antipodal positions of the
LLSVPs, suggested in (Torsvik et al., 2006), requires investigation. The centrifugal forces
have been suggested to have an effect of moving the LLSVPs towards the equator (Beuchert
et al., 2010). The study of this effect was not conclusive, however, and further investigation
is required.



Chapter 2

Equations Governing Mantle
Convection

2.1 Governing equations

We assume that the mantle deforms as a fluid on geological timescales. Further, we assume
that the mantle is a fluid continuum, since the lengthscales of changes in its properties, such
as velocity, are presumably very large compared to its atomic or molecular scale (Schubert
et al., 2001). This enables us to apply the continuum partial differential equations to com-
pute mantle flow. The equations are simplified assuming that the mantle is an infinite
Prandtl number fluid with simple Newtonian rheology and that the Boussinesq approxima-
tion applies. The validity of these approximations is discussed.

2.1.1 Conservation of mass

We first consider the law of mass conservation, known as the continuity equation. It states
that the time rate of change of the mass of a material region is zero. The mass of a
material region is given by the integral over its density, resulting in following formulation
of mass-conservation:

d

dt

∫

V (t)
ρdV = 0 (2.1)

The time rate can be evaluated inside the integral using Leibnitz’s theorem. Using Gauss’s
theorem, all terms can be combined into a single volume integral. At last, the restriction to
a material region may be eliminated, since the resulting expression applies at every point
(Panton, 1996). At the end of the day, we stand with the following relation:

∂ρ

∂t
+ O · (ρ~v) = 0 (2.2)

23
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This is the Eulerian formulation of the continuity equation, meaning that it is written for a
fixed observation point P . Each term of the Equation 2.2 is interpreted as following: ∂ρ

∂t is
the rate of accumulation of mass per unit volume at P and O · (ρ~v) is the net flow of mass
out of P per unit volume.
For a moving point of reference, the Lagrangian formulation is used (Gerya, 2010):

Dρ

Dt
+ ρO · ~v = 0 (2.3)

where the substantial derivative, which allows to evaluate the time derivative as we follow
a material particle, was introduced:

D

Dt
=

∂

∂t
+ ~v · O (2.4)

Each term of the Equation 2.3 is interpreted as following: Dρ
Dt is the rate of change of the

density of a fluid particle, ρ is the mass per unit volume and O · ~v is the particle volume
expansion rate. An incompressible flow implies that the density of the fluid doesn’t change,
reducing the continuity equation to the following form:

O · ~v = 0 (2.5)

2.1.2 Conservation of momentum

Next, we consider the law of momentum conservation, which for a fluid continuum is the
analogue of Newton’s second law for a point mass (Panton, 1996). The momentum equation
states that any imbalance of forces on an elemental fluid parcel will cause it to accelerate
(Schubert et al., 2001). We express the acceleration term as the time rate of change of the
linear momentum. Momentum within a material region is given by a volume integral of
the product of density and velocity. The momentum-conservation may thus be expressed
as following:

d

dt

∫

V (t)
ρ~vdV = net force on the material region (2.6)

Two types of forces that act on the elemental parcel need to be considered: surface forces
acting on its boundary surfaces and volume forces acting throughout its volume, denoted ~R
and ~F , respectively. Using Leibnitz’s and Gauss’s theorems, like for the continuity equation
above, the Eulerian formulation of the momentum equation can be expressed as following
(Panton, 1996):

∂

∂t
(ρ~v) + O · (ρ~v~v) = ~F + ~R (2.7)

The Lagrangian formulations is as following:

ρ
D~v

Dt
= ~F + ~R (2.8)
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Surface forces, Volume forces

The surface forces are proportional to the extent of the area on which they act. The surface
force per unit area depends on the position P in which it is evaluated and the orientation
of the surface that passes through P . Defining this surface by an outward normal vector ~n,
the stress acting on this surface is given by the product of the normal vector and the stress
tensor evaluated at point P (Panton, 1996). The stress tensor is required to be symmetric
by the torque balance (Schubert et al., 2001). The net surface forces are decomposed into
those that act independent of whether there is flow or not, the thermodynamic pressure p,
and those that arise when there is flow, the deviatoric stresses ~τ .
The volume forces are proportional to the volume of fluid on which they act and are ex-
pressed in terms of a force per unit volume, ~f . Inserting for the surface and volume forces,
we arrive at the following expression for the momentum conservation:

ρ
D~v

Dt
= −Op + O · ~τ + ρ~f (2.9)

Each term of the Equation 2.9 for a fixed point P is interpreted as following: ∂
∂t(ρ~v) is the

rate of momentum increase, O · (ρ~v~v) is the net rate at which momentum is carried into P
by fluid flow ρ~v, Op is the net pressure force, O · ~τ is the net viscous force and ρ~f is the net
body force (Panton, 1996).

Constitutive equation - Newtonian rheology

To apply the expression of momentum conservation to our problem, a constitutive equation
must be introduced. The constitutive equation relates the stress and deformation in a fluid
continuum (Kundu, 2008), and is also known as the rheological law for the fuid (Turcotte
and Schubert, 2002). The deviatoric stress tensor mentioned earlier is related to the velocity
gradient tensor. Only the symmetric part of the velocity gradient tensor, known as the strain
rate tensor eij , can generate stresses and is given by:

eij ≡ 1
2
(
∂vi

∂xj
+

∂vj

∂xi
), (2.10)

where the Einstein summation convention is adopted. We will assume that the mantle is
a Newtonian fluid. This means that the components of its strain rate tensor are linearly
related to its stress components (Turcotte and Schubert, 2002). For an isotropic fluid, two
constants of proportionality need to be considered: the viscosity µ associated with the rates
of shear deformation, and the second viscosity λ associated with the volume expansion rate
(Turcotte and Schubert, 2002). The deviatoric stress tensor can be expressed as:

τij = 2µeij + λemmδij (2.11)

where the Kronecjer delta tensor was introduced.
The normal stresses acting on a fluid parcel combine the thermodynamic pressure and the
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normal components of the viscous stresses that arise due to motion of the fluid. We define
the mechanical pressure to be the average of the normal components of the viscous stresses.
The difference between the mechanical and thermodynamic pressures, denoted as pm and
pt, respectively, is given by:

pt − pm = (
2
3
µ + λ)O · ~v (2.12)

where we replaced the notation emm to O ·~v for the volume expansion rate. The term 2
3µ+λ

is known as the coefficient of bulk viscosity, kB, and has a very small value for many fluids
(Schubert et al., 2001). Using kB = 0 is known as the Stokes assumption. Inserting kB = 0
into Equation 2.12 results in pt = pm. Hence, with the Stokes assumption there’s no need
to distinguish between the thermodynamic and the mechanical pressure. From now on, the
pressure term in the momentum equation will refer to the mechanical pressure.
Applying the incompressibility constraint O · ~v to Equation 2.11 and expressing the strain
rate tensor in terms of the velocity gradients, we obtain the constitutive equation for an
incompressible Newtonian fluid:

τij = µ(
∂vi

∂xj
+

∂vj

∂xi
) (2.13)

Stokes equation

The conservation of momentum can be expressed for a Newtonian fluid by inserting the
rheological law in Equation 2.13 into Equation 2.9:

ρ
Dvi

Dt
= − ∂p

∂xi
+

∂

∂xj

[
µ(

∂vi

∂xj
+

∂vj

∂xi
)
]

+ ρgi (2.14)

where we have also assumed that gravity is the only body force acting on the fluid.

2.1.3 Conservation of energy

In this section, we discuss the conservation of thermal energy, which describes the balance
of heat in a continuum and the related temperature changes (Gerya, 2010). The second
law of thermodynamics relates the heat added to the system, dq, and the related change in
specific entropy, ds, as following:

dq = Tds (2.15)

Hence, the entropy of the system may change due to internal heat generation, viscous
dissipation, as well as due to conductive and convective heat transport (Schubert et al.,
2001). This is summarized in the following expression for the time rate of change of the
specific entropy for a moving point of reference:

ρT
Ds

Dt
=

∂

∂xi

(
k

∂T

∂xi

)
+ Φ + ρH (2.16)
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where k is the thermal conductivity, Φ is the dissipation function and H is the rate of
internal heat production per unit mass. Here it is assumed that Fourier’s law of heat
conduction for an isotropic medium applies:

qi = −k
∂T

∂xi
(2.17)

where qi is the heat flux vector. Using the thermodynamic quantities cp, the specific heat
at constant pressure, and α, the thermal expansivity, the thermal energy conservation may
be expressed in terms of temperature and pressure, as following:

ρcp
DT

Dt
− αT

Dp

Dt
=

∂

∂xi

(
k

∂T

∂xi

)
+ Φ + ρH (2.18)

2.2 Approximate equations

2.2.1 Linearization

Density changes in the mantle are mostly due to the hydrostatic compression, but also
due to the temperature and pressure variations accompanying convection (Schubert et al.,
2001). The latter are small compared to the spherically averaged density of the mantle. It
is therefore justified to represent physical parameters in terms of a sum of a reference state
value, denoted by an overbar, and perturbations from that reference state, denoted by the
primes. The equation of state then takes the linearized form:

ρ = ρ̄(T̄ , p̄) + ρ′ = ρ̄(T̄ , p̄) + ρ̄χ̄T p′ − ρ̄ᾱT ′

T = T̄ + T ′

p = p̄ + p′

where we have assumed that the density is only a function of temperature and pressure.
The thermodynamic variables χT , isothermal compressibility, and α, thermal expansivity,
were introduced in the linearized equation of state.

2.2.2 Reference state

We choose the reference state to be steady and motionless. The form of Equation 2.14 that
satisfies such conditions gives the hydrostatic reference state pressure:

∂p̄

∂xi
= ρ̄ḡi (2.19)

Because we have a vigorously convecting system, as was described in the introductory
chapter, we choose an adiabatic reference state temperature. We choose all other physical
quantities of the reference state to be contants.
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2.2.3 Nondimensionalization

The following representative values, denoted by subscript r, are used for nondimensionaliz-
ing the governing equations and the equation of state:

ρr ≡ representative density in a convecting state
4Tr ≡ characteristic temperature difference driving thermal convection
Hr ≡ representative internal heating rate
χTr ≡ representative isothermal compressibility
αr ≡ representative thermal expansivity
µr ≡ representative viscosity
kr ≡ representative conductivity
cpr ≡ representative specific heat

κr =
kr

ρrcpr

≡ representative thermal diffusivity

νr =
µr

ρr
≡ representative kinematic viscosity, or momentum diffusivity

b ≡ depth of the convecting region

γr =
αr

ρrcvrχTr

≡ representative Gruneisen ratio

ur =
kr

ρrcprb
≡ representative velocity

pr =
µrur

b
=

µrkr

ρrcprb
2
≡ representative pressure

where in the last relation we have assumed that the pressure and viscous forces are com-
parable (Schubert et al., 2001). Using these scaling factors, we introduce the following
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dimensionless variables, denoted with an asterisk:

T ′∗ =
T ′

4Tr

ρ∗ =
ρ

ρr

p′∗ =
p′b2ρrcpr

µrkr

u∗i =
uibρrcpr

kr

x∗i =
ui

b

t∗ =
tkr

b2ρrcpr

χ̄∗T =
χ̄T

χTr

ᾱ∗ =
ᾱ

αr

Using these dimensionless variables, the linearized equation of state may be expressed as
following:

ρ∗

ρ̄∗
= 1 + χ̄∗T p′∗M2Pr − ᾱ∗T ′∗ε (2.20)

where the following dimensionless parameters were introduced:

M2 ≡ k2
rχTr

ρrc2
pr

b2
−measures influence of compressibility

Pr ≡ νr

κr
=

µrcpr

kr
− ratio of momentum diffusivity to thermal diffusivity

ε ≡ αr4Tr − fractional density change due to temperature
variations driving convection

Inserting the values representative of the mantle, introduced in the introductory chapter,
we obtain following values for the dimensionless parameters:

M2 ≈ 10−33

Pr ≈ 2.5 · 1023

ε ≈ 3 · 10−2

We will use the introduced dimensionless variables and the dimensionless form of the lin-
earized equation of state to investigate the validity of the incompressible flow assumption
for the mantle and to nondimensionalize the governing equations derived in the previous
sections.
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2.2.4 Incompressibility of the mantle

In this section we will discuss the validity of the incompressible flow assumption for the
convecting mantle. The derivation closely follows (Schubert et al., 2001).
We can discuss the validity of the incompressibility constraint by considering the change
in density with depth in an adiabatic (isentropic) model. First, we introduce the adiabatic
compressibility - precentage increase in density per unit change in pressure at constant
entropy (here shown for the reference state values, denoted by overbars):

χ̄a ≡ −1
v̄

(∂v̄

∂p̄

)
s

=
1
ρ̄

(∂ρ̄

∂p̄

)
s

(2.21)

Another thermodynamic parameter we use is the Gruneisen ratio, which is a dimensionless
parameter that describes the relative change in adiabatic temeprature with compression
(Jeanloz and Morris, 1986), and is given by:

γ̄ ≡ ᾱ

ρ̄c̄pχ̄a
(2.22)

We also need the hydrostatic relation for pressure gradient, equivalent to the motionless
and steady form of the Navier-Stokes equation, stated in Equation 2.14:

∂p̄

∂xi
= ρ̄ḡi (2.23)

Using the chain rule to rewrite the derivatives, the gradient of the reference state density
in an adiabatic model can be expressed as:

∂ρ̄

∂xi
=

(∂ρ̄

∂p̄

)
s

∂p̄

∂xi
=

(∂ρ̄

∂p̄

)
s
ρ̄ḡi = ρ̄2χ̄aḡi (2.24)

We introduce a characteristic length scale, h̄d, for the increase of reference state density
with depth:

h̄d ≡
[1
ρ̄

∣∣∣ ∂ρ̄

∂xi

∣∣∣
]−1

= (ρ̄χ̄aḡi)−1 =
γ̄c̄p

ᾱḡi
(2.25)

Incompressibility constraint implies that the density change across the mantle is small. This
implies that the density scale height, h̄d, is large compared to the depth of the mantle,b.
Hence, the following must hold:

b

h̄d
=

α∗g∗i
γ∗c∗p

(αrgirb

γrcpr

)
¿ 1 (2.26)

Which reduces to the following constraint, given that the dimensionless quantities are of
order unity:

1
γr

αrgirb

cpr

=
D

γr
¿ 1 (2.27)
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where we have introduced the dissipation number D. Inserting the values representative for
the mantle, given in the introductory chapter, we obtain following:

D

γr
∼ 0.5

1
= 0.5 (2.28)

It may be concluded that the incompressible flow assumption is only approximately valid
for the convective mantle flow. However, the influence of compressibility, measured by the
dimensionless parameter M2, is shown to be small for the mantle: M2 = 10−33. With these
considerations in mind, we adopt the incompressible flow assumption due to the resulting
simplicity of the governing equations.
The three requirements: ε → 0, M2Pr → 0 and D → 0 are known as the Boussinesq
approximation and in this study we assume that it holds for mantle convection.

2.2.5 Dimensionless form of the Navier-Stokes equation

In this section, we introduce the dimensionless form of the Navier-Stokes equation in the
Boussinesq approximation, and discuss the Rayleigh number, which is the dimensionless
parameter that governs the vigor of convection.
Inserting the dimensionless variables, gradient of the reference state pressure and the di-
mensionless linearized equation of state into Equation 2.14, results in following expression:

1
Pr

[
ρ̄∗ + ρ̄∗χ̄∗T p′∗M2Pr − ρ̄∗ᾱ∗T ′∗ε

]Du∗i
Dt∗

=

− ∂p′∗

∂x∗i
+ ḡi

∗ρ̄∗χ̄T
∗p̄′∗

D

γr

cpr

cvr

− ḡi
∗ρ̄∗ᾱ∗T ′∗Ra +

∂

∂x∗j

[
µ∗

(∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

− 2
3
δij

∂u∗k
∂x∗k

)]

(2.29)

where it has been assumed that the variations in the gravitational acceleration due to
convection are negligible. We have also introduced the dimensionless parameter Ra, which
is the Rayleigh number given by:

Ra =
grρ

2
rαr4Trb

3cpr

krµr
=

grρrαr4Trb
3

κrµr
(2.30)

The Rayleigh number is discussed in more detail later in this section. The Prandtl number,
Pr, has been shown to have a large value for the mantle. It is therefore justified to approx-
imate mantle as an infinite Prandtl number fluid and set the left side of the Equation 2.29
to zero. The consequence is that we neglect the inertial forces in the flow, which is known
as the flow in Stokes regime, and the resulting equation is known as the Stokes equation.
It has also been shown that assuming incompressible flow implies that D

γr
→ 0 and that

the continuity equation has the form ∂u∗k
∂x∗k

= 0. We assume that the dimensionless variables
are of order unity and set them to ρ̄∗ = ᾱ∗ = 1. The result is the Stokes equation in
dimensionless form:

0 = −∂p′∗

∂x∗i
− ḡi

∗T ′∗Ra +
∂

∂x∗j

[
µ∗

(∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)]
(2.31)
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Rayleigh number

We illustrate how the Rayleigh number reflects the ratio of the efficiency of heat transport by
conduction and convection by studying a problem in the regime that is just above marginal
stability. It is shown that the timescales of the Rayleigh Taylor instability and thermal
diffusion define the Rayleigh number in this regime. The derivation closely follows (Davies
and Christensen, 2001).
Rayleigh-Taylor instability refers to a fluid of lower density that wants to rise through an
overlying fluid of higher density. A buldge of height h and width w develops at the interface
between the two fluids. The rise of the lighter fluid is represented by the increasing height
of this buldge. The buoyancy forces drive this motion, while the viscous resistance opposes
it.
Buoyancy force B arises due to gravity acting on density differences:

B = −gV4ρ (2.32)

where g is gravitational acceleration, V is volume and 4ρ is the density difference. Viscous
stresses σ, and hence the resisting force R, arise due to drag acting on the buldge as it flows
through a viscous material:

σ = µ · representative velocity gradient
R = σ · length scale

where µ is the effective viscosity. We consider two extreme cases with the width of the
buldge, w, much larger and much smaller than the depth of the two fluid layers, D. The
representative velocity gradient is chosen appropriately for each case and the w is chosen to
be the length scale for the resisting force. Equating the buoyancy and the resisting forces,
as the system tries to reach balance, results in the time-dependent expression for the height
of the buldge:

h = h0exp(t/τRT ) (2.33)

where τRT is the time scale for the Rayleigh-Taylor instability. The time scale is found to
have a minimum at w = D, given by:

τRT =
µ

g4ρD
(2.34)

This implies that the perturbations at the interface between the two fluids that have width
comparable to the layer depth will grow most quickly and come to dominate.
We will now consider density difference due to higher temperature:

ρ = ρ0[1− α(T − T0)] = ρ0[1− α4T ]
4ρ = ρ0α4T
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where ρ0 is the density at reference temperature T0. Thermal diffusion tends to smear out
the buldge that arises due to the density contrast. Hence, there is a competition between
the buoyancy and the thermal diffusion. The timescale for thermal diffusion is given by:

τκ =
D2

κ
(2.35)

and characterizes the time it would take for a fluid layer to cool significantly by conduction
in the absence of convection. The competition may be characterized by the ratio of the
timescales of these two processes, which is known as the Rayleigh number:

Ra =
τκ

τRT
=

gραTD3

κµ
(2.36)

The critical Rayleigh number defines the regime when the transition from pure conductive
heat transport to onset of convection takes place. This value is usually of the order 1000.
In the case of the mantle, the Rayleigh number is in the range between 105 − 109, as was
mentioned in the introductory chapter, implying vigorous convection.

2.2.6 Dimensionless form of the thermal energy conservation equation

In this section, we derive the expression for the adiabatic temperature profile, following
(Turcotte and Schubert, 2002), and introduce the dimensionless form of the thermal energy
conservation equation in the Boussinesq approximation, following (Schubert et al., 2001).
In the introductory chapter we discussed that due to the vigorously convecting mantle, its
geotherm is given by an adiabat, and hence the temperature increases isentropically with
depth. The specific change in entropy is given by the following thermodynamic relation:

ds =
cp

T
dT − α

ρ
dp (2.37)

For an isentropic process ds = 0, and we obtain the following relation:
(dT

dp

)
s

=
α

ρcp
T (2.38)

We make use of the hydrostatic pressure gradient from Equation 2.19, that was assumed
for the reference state pressure, to obtain the following result for the adiabatic geotherm:

( dT

dxi

)
s

=
(dT

dp

dp

dxi

)
s

=
αgi

cp
T (2.39)

where we have dropped the overbars for shortness. The dimensionless form of the Equa-
tion 2.39 is given by:

dT̄ ∗

dx∗i
=

ᾱ∗Dḡi
∗

c̄p
∗ T̄ ∗ (2.40)
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Using the dimensionless expression for the geotherm and the fact that the reference temper-
ature is time-independent, we obtain the following relation for the substantial temperature-
derivative:

ρ̄∗c̄p
∗DT̄ ∗

Dt∗
= ρ̄∗c̄p

∗u∗i
dT̄ ∗

dx∗i
= ρ̄∗ᾱ∗Dḡi

∗u∗i T̄
∗ (2.41)

We can also use Equation 2.40 to derive an expression for heat conduction along the adiabat:

∂

∂x∗i

(
k̄∗

∂T̄ ∗

∂x∗i

)
=

∂

∂x∗i

( k̄∗ᾱ∗Dḡi
∗

c̄p
∗ T̄ ∗

)
=

k̄∗ᾱ∗2D2ḡi
∗2

c̄p
∗2 T̄ ∗ (2.42)

where we assumed that k̄∗, ᾱ∗, c̄p
∗ and ḡi

∗ are constants.
Inserting the dimensionless variables and the dimensionless linearized equation of state into
the thermal energy conservation, given by Equation 2.18, results in following expression:

[
ρ̄∗ + ρ̄∗χ̄∗T p′∗M2Pr − ρ̄∗ᾱ∗T ′∗ε

]
(c̄p

∗)
D

Dt∗
(T̄ ∗ + T ′∗)

− ᾱ∗(T̄ ∗ + T ′∗)
Dp′∗

Dt∗
εD

Ra
− ᾱ∗(T̄ ∗ + T ′∗)ḡi

∗u∗i ρ̄
∗D

=
∂

∂x∗i

[
k̄∗

∂

∂x∗i
(T̄ ∗ + T ′∗)

]
+ Φ∗

D

Ra

+
[
ρ̄∗ + ρ̄∗χ̄∗T p′∗M2Pr − ρ̄∗ᾱ∗T ′∗ε

]
H∗

(b2Hrρr

kr4Tr

)
(2.43)

Using Equations 2.41 and 2.42 and the limits M2Pr → 0, ε → 0, and D → 0, as is adopted in
the Boussinesq approximation, we arrive at the following dimensionless form of the thermal
energy conservation equation:

ρ̄∗c̄p
∗DT ′∗

Dt∗
=

∂

∂x∗i

(
k̄∗

∂T ′∗

∂x∗i

)
+ ρ̄∗H∗

(b2Hrρr

kr4Tr

)
(2.44)

It may be pointed out that one of the consequences of applying the limits of the Boussinesq
approximation to the linearized energy conservation equation is that the viscous dissipa-
tion effects, represented by Φ, become neglected. Remembering that all the reference state
quantities, except the temperature and pressure, are constants, we can express energy con-
servation as following:

DT ′∗

Dt∗
=

∂

∂x∗i

(
κ̄∗

∂T ′∗

∂x∗i

)
+

H∗

c̄p
∗
(b2Hrρr

kr4Tr

)
(2.45)

2.3 Summary

In this section, we presented the the differential equations that govern mantle convection:
the conservation laws of mass, momentum and thermal energy. We used linearized equa-
tions and introduced variables representative for the mantle to derive the approximate and
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dimensionless forms of these equations. We assumed that the mantle is an infinite Prandtl
number fluid with Newtonian rheology and that the Boussinesq approximation applies. The
resulting dimensionless equations are presented below, where we have dropped the asterisk
for shortness:

∂ui

∂xi
= 0 Mass conservation

0 = − ∂p′

∂xi
− ḡiT

′Ra +
∂

∂xj

[
µ
(∂ui

∂xj
+

∂uj

∂xi

)]
Momentum conservation

DT ′

Dt
=

∂

∂xi

(
κ̄

∂T ′

∂xi

)
+

H

c̄p

(b2Hrρr

kr4Tr

)
Energy conservation (2.46)
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Chapter 3

FEM Thermal Diffusion Solver

The conductive heat transport is modeled by solving the discretized equation of transient
heat diffusion. In this section we present a Finite Element Method (FEM) code that is
devised for solving this problem in two dimensions. The code is applied to model heat
diffusion on a cylindrical geometry and is benchmarked against analytical solutions. The
computational domain is partitioned using an unstructured mesh comprised of triangular or
quadratic elements. We compare the accuracy of the solution obtained using four different
element-types: first- and second-order triangles and quads.

3.1 Outline of the problem

The strong, or classical, formulation of heat diffusion without advection is given by the
following partial differential equation:

ρcp
∂T

∂t
= −(

∂

∂x
qx +

∂

∂y
qy) + ρH, (x, y) ∈ Ω (3.1)

qx = −(k
∂T

∂x
)

qy = −(k
∂T

∂y
)

where T is temperature, ρ density, cp heat capacity at constant pressure, H rate of internal
heat production per unit mass, Ω the domain in which the problem is defined, k is the
thermal conductivity, assuming that the system is isotropic, matrix that is assumed to
be symmetric positive definite and qx and qy are thermal fluxes, expressed according to
Fourier’s law.
To complete the problem formulation, initial and boundary conditions must be specified.
At the boundary, we either specify temperature values, known as the Dirichlet boundary

37
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conditions, or the normal heat flux, known as the Neumann boundary conditions. We
assume that the boundary conditions are not time-dependent and express them, together
with the intial conditions, as following:

T (x, y) = g, (x, y) ∈ Γg

−(qxnx + qyny) = h, (x, y) ∈ Γh

T (x, y, t = 0) = T0(x, y) (3.2)

where Γg and Γh are the nonoverlapping Dirichlet and Neumann boundary segments, re-
spectively, and nx and ny are components of the unit vector normal to the boundary.

3.2 Weak formulation

In FEM we use the weak formulation of the differential equations. To obtain the weak form
of Equation 3.1, two classes of functions are introduced. The first collection of functions is
called the trial solutions and consists of all functions that have square integrable derivatives,
denoted H1, and take on the value g at (x, y) ∈ Γg. Trial solutions space is expressed as
following:

S = {s|s ∈ H1, s((x, y) ∈ Γg) = g} (3.3)

The second collection of functions is called the weighting functions, or variations, and
consists of all functions that have square integrable derivatives and take on the value 0 at
(x, y) ∈ Γg. Variational space is expressed as following:

V = {w|w ∈ H1, w((x, y) ∈ Γg) = 0} (3.4)

Multiplying Equation 3.1 with a function w from variational space and integrating it over
Ω, results in following:

∫

Ω
wρcp

∂T

∂t
dΩ−

∫

Ω
wρHdΩ = −

∫

Ω
w(

∂

∂x
qx +

∂

∂y
qy)dΩ (3.5)

Using integration by parts for the right-hand-side of Equation 3.5:
∫

Ω
w(

∂

∂x
qx +

∂

∂y
qy)dΩ =

∫

Ω
(

∂

∂x
wqx +

∂

∂y
wqy)dΩ−

∫

Ω
(qx

∂

∂x
w + qy

∂

∂y
w)dΩ (3.6)

as well as result from Ostrogradsky-Gauss’ divergence theorem:
∫

Ω
(

∂

∂x
wqx +

∂

∂y
wqy)dΩ =

∫

Γ
w(qxnx + qyny)dΓ (3.7)

following relation is obtained:
∫

Ω
w(

∂

∂x
qx +

∂

∂y
qy)dΩ =

∫

Γ
w(qxnx + qyny)dΓ−

∫

Ω
(qx

∂

∂x
w + qy

∂

∂y
w)dΩ (3.8)
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Using this relation, Equation 3.5 may be rewritten as following:
∫

Ω
wρcp

∂T

∂t
dΩ−

∫

Ω
wρHdΩ−

∫

Ω
(qx

∂

∂x
w + qy

∂

∂y
w)dΩ = −

∫

Γ
w(qxnx + qyny)dΓ (3.9)

Applying Neumann boundary conditions and remembering that w((x, y) ∈ Γg) = 0, we
finally arrive at the weak formulation of Equation 3.1:

∫

Ω
wρcp

∂T

∂t
dΩ−

∫

Ω
wρHdΩ +

∫

Ω
(
∂T

∂x

∂w

∂x
+

∂T

∂y

∂w

∂y
)dΩ =

∫

Γh

whdΓh (3.10)

where the expression for thermal flux from Equation 3.1 was also used. The fact that
the Neumann boundary conditions were automatically incorporated into this formulation
through divergence theorem, is the reason why they are also called the natural boundary
conditions.
At this point, it is useful to introduce following operators to simplify further writing:

a(w, T ) =
∫

Ω
(
∂w

∂x

∂T

∂x
+

∂w

∂y

∂T

∂y
)dΩ

(w, f) =
∫

Ω
wfdΩ

(w, h)Γ =
∫

Γ
whdΓ (3.11)

These three operators are symmetric bilinear forms, meaning that they satisfy following
relations, exemplified for operator a(·, ·):

a(u, v) = a(v, u)
a(c1u + c1v, z) = c1a(u, z) + c2a(v, z) (3.12)

Using Equation 3.11, the weak form may be expressed as following:

a(w, T ) = −(w, ρcp
∂T

∂t
) + (w, ρH) + (w, h)Γ (3.13)

3.3 FEM discretization

Approximate solution of Equation 3.13 is found using FEM. The the weak form is discretized
using finite element basis functions, or shape functions, with compact support. Approximate
solution is expressed as a linear combination of these. When the weighting functions, w,
are expressed as a linear combination of the same shape functions used to approximate the
solution, the method is called the Galerkin FEM, or GFEM. In this study, we use piecewise
polynomials for the shape functions.
We denote the finite-dimensional approximations of S and V as Sh and Vh, respectively.
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Observing that the collections of functions comprising S and V only differ from each other
at the boundary Γg, we may construct a function in the solution space, sh ∈ S, for any
member of the variational space, vh ∈ V, as following:

sh = vh + gh

gh((x, y) ∈ Γg) = g (3.14)

Remembering the bilinearity of the operators in Equation 3.11, the weak form in Equa-
tion 3.13 may be rewritten as following:

a(wh, vh + gh) = −(wh, ρcp
∂(vh + gh)

∂t
) + (wh, ρH) + (wh, h)Γ

a(wh, vh) = −(wh, ρcp
∂vh

∂t
) + (wh, ρH) + (wh, h)Γ − a(wh, gh) (3.15)

where independence of boundary function gh on time was assumed.
The solution of the discretized weak form is defined in a finite number of points, or nodes,
that lie within the domain Ω and on the boundary segments Γg and Γh. We denote the
set of all nodes as η and the Dirichlet-nodes as ηg. To construct the discretized variational
space Vh, we introduce basis functions NA(x, y), where A = 1, 2..η. Each node A, with
position (xA, yA), has a shape function NA(x, y) associated with it.

NA(xB, yB) = δAB

NA((x, y) ∈ Γg) = 0, A ∈ η − ηg

NA((x, y) ∈ Γg) = 1, A ∈ ηg (3.16)

Any function wh, vh, gh ∈ Vh can thus be expressed as following linear combinations:

wh =
∑

A∈η−ηg

cANA(x, y)

vh =
∑

A∈η−ηg

TANA(x, y)

gh =
∑

A∈ηg

gANA(x, y), gA = g(xA, yA) (3.17)
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The weak form in Equation 3.15 can be expressed in terms of linear combination of shape
functions as following:

a(
∑

A∈η−ηg

cANA,
∑

B∈η−ηg

TBNB) =

− (
∑

A∈η−ηg

cANA,
∑

B∈η−ηg

ρcp
∂TB

∂t
NB)

+ (
∑

A∈η−ηg

cANA, ρH) + (
∑

A∈η−ηg

cANA, h)Γ

− a(
∑

A∈η−ηg

cANA,
∑

B∈ηg

gBNB) (3.18)

Using the bilinearity of the operators, the expression may be simplified to:

∑

A∈η−ηg

cA(
∑

B∈η−ηg

a(NA, NB)TB) =

−
∑

A∈η−ηg

cA(
∑

B∈η−ηg

(NA, ρcpNB)
∂TB

∂t
)

+
∑

A∈η−ηg

cA(NA, ρH) +
∑

A∈η−ηg

cA(NA, h)Γ

−
∑

A∈η−ηg

cA(
∑

B∈ηg

a(NA, NB)gB) (3.19)

Since the coefficients cA are arbitrary, Equation 3.19 must hold for each A. Hence, we have
the following system of η − ηg linear equations with η − ηg unknowns, namely dB’s:

∑

B∈η−ηg

a(NA, NB)TB =

−
∑

B∈η−ηg

(NA, ρcpNB)
∂TB

∂t
+ (NA, ρH) + (NA, h)Γ −

∑

B∈ηg

a(NA, NB)gB (3.20)

3.4 Matrix form

Equation 3.20 may be expressed in a matrix form. Operator a(NA, NB) forms the stiffness
matrix K, while operator (NA, ρcpNB) forms them mass-matrix M. The right-hand-side
(RHS) of Equation 3.20 is combined into the vector F. Resulting matrix form of the



42 CHAPTER 3. FEM THERMAL DIFFUSION SOLVER

Figure 3.1: 3- and 6-nodes Triangle-element and 4- and 9-nodes Quad-elements

discretized weak formulation is as following:

K = a(NA, NB) =
∫

Ω
(
∂NA

∂x

∂NB

∂x
+

∂NA

∂y

∂NB

∂y
)dΩ

M = (NA, ρcpNB) =
∫

Ω
NAρcpNBdΩ

F = (NA, ρH) + (NA, h)Γ −
∑

B∈ηg

a(NA, NB)gB =

=
∫

Ω
NAρHdΩ +

∫

Γ
NAhdΓ−

∑

B∈ηg

∫

Ω
(
∂NA

∂x

∂NB

∂x
+

∂NA

∂y

∂NB

∂y
) · gBdΩ

KT + Mv = F, v =
∂T

∂t
(3.21)

3.5 Isoparametric representation

So far, the problem has been discussed in the global point of view, with shape functions
defined everywhere in the domain. We now introduce the local, or element, point of view,
and construct K, M and F by summing the contributions of element stiffness and mass
matrices, and right hand side vector:

K =
nel∑

e=1

Ke, M =
nel∑

e=1

Me, F =
nel∑

e=1

Fe (3.22)

where nel is the number of elements. Coordinates (x, y) and node-numbering A = 1, 2, ...η
are defined in the global point of view. For the local point of view, we define coordinates
(ξ, ν) and node-numbering a = 1, 2, ...n, where n is the number of nodes in each element,
and hence the dimension of the piecewise polynomials that define shape functions. In this
study, four different element-types are investigated, as depicted in Figure 3.1. To map
elements from local to global systems, we use the same shape functions that we used to
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Figure 3.2: An unstructured triangular mesh split into quadratic elements.

discretize the weak form. This method is known as isoparametric representation. Mapping
from local to global system is thus given by:

x =
n∑

a=1

xiNi(ξ, ν)

y =
n∑

a=1

yiNi(ξ, ν)

(xi, yi) = (x(ξi, νi), y(ξi, νi)) (3.23)

where (xi, yi) and (ξi, νi) are the global and local coordinates of the element nodes, respec-
tively. After the approximate solution TA is obtained for the all the nodes, A = 1, 2, ...η,
the solution value in any point (x, y) of the domain may be estimated:

T (x, y) =
n∑

a=1

diNi(ξ, ν) (3.24)

3.6 Discretization in space

We use triangular mesh generator to construct an unstructured grid with triangular ele-
ments. The size of the elements is constrained by prescribing their maximum area. The
order of the shape functions used for these elements is determined by the number of ele-
ment nodes. To generate an unstructured mesh consisting of quads, the elements produced
by the triangular mesh generator are split into three quadratic elements, as illustrated in
Figure 3.2.
The local coordinates of the four types of elements we used for discretization in this study
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are presented in Figure 3.1. It is convenient to define the following functions of local coor-
dinates:

w = 1− ξ − ν

u = ξ

v = ν (3.25)

Shape functions for the three-node triangular elements can now be expressed as following:

N1(ξ, ν) = w

N2(ξ, ν) = u

N3(ξ, ν) = v (3.26)

For the six-node triangular elements, the shape functions are:

N1(ξ, ν) = w ∗ (2 ∗ w − 1)
N2(ξ, ν) = u ∗ (2 ∗ u− 1)
N3(ξ, ν) = v ∗ (2 ∗ v − 1)
N4(ξ, ν) = 4 ∗ u ∗ v

N5(ξ, ν) = 4 ∗ w ∗ v

N6(ξ, ν) = 4 ∗ w ∗ u (3.27)

We use Lagrange polynomials as shape functions for the quadratic elements. In one dimen-
sion the Lagrange polynomials are given by:

Pi(ξ) =
n∏

a=1,a6=i

ξ − ξa

ξi − ξa
(3.28)

and in two dimensions:
Pij(ξ, ν) = Pi(ξ)Pj(ν) (3.29)

The shape functions for the four-node quadratic elements are thus given by:

N1(ξ, ν) = P11(ξ, ν)
N2(ξ, ν) = P21(ξ, ν)
N3(ξ, ν) = P22(ξ, ν)
N4(ξ, ν) = P12(ξ, ν) (3.30)

These are also the first four shape functions for the nine-node quadratic elements, and the
other five shape functions are found analogously.
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3.7 Discretization in time

To solve Equation 3.21, a discretization in time is needed. To do this, we consider the gen-
eral trapezoidal family of methods, which are finite difference methods, stated in following
equations:

KTn+1 + Mvn+1 = Fn+1

Tn+1 = Tn +4tvn+α

vn+α = (1− α)vn + αvn+1 (3.31)

In this section we derive an implementation of the Equations 3.31 that eliminates vn’s.
Since the weak form must hold in all points in time, we consider advancing Equation 3.21
from time tn to time tn+α4t. This gives following:

KTn+α + Mvn+α = Fn+α (3.32)

Using Equations 3.31, following relations are obtained:

vn+α =
Tn+1 − Tn

4t

Tn+α = Tn + α4tvn+α = Tn + α4t
Tn+1 − Tn

4t
= (1− α)Tn + αTn+1

Fn+α = (1− α)Fn + αFn+1 (3.33)

Insertion into Equation 3.32, multiplying by4t and some rearranging results in the following
expression:

(M + α4tK)Tn+1 = (M− (1− α)4tK)Tn +4t(αFn+1 + (1− α)Fn) (3.34)

Parameter α is a value between [0, 1]. The time discretization schemes resulting from values
of α equal to 0, 1

2 and 1 are known as the forward Euler, Crank-Nicolson, and backward Euler
schemes, respectively. In this study, we choose to implement the fully implicit backward
Euler scheme. This scheme is first order accurate and is unconditionally stable. The final
linear system of equations that we implement in MATLAB to obtain the approximate
solution of the transient heat equation is as following:

(M +4tK)Tn+1 = MTn +4tFn+1 (3.35)

3.8 Testing of the FEM Thermal Diffusion solver

3.8.1 Steady-state diffusion

Thermal solver outlined above is benchmarked by applying it to problems with known
analytical solutions. Our first test-application is a steady-state problem, formulated as
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Figure 3.3: Solution of a steady state heat diffusion problem for a cylinder, with boundary
conditions given by a linear function of x. We use an unstructured grid constituted of
9-node quads. Maximum element size of the triangular grid that was used to construct the
quads is 1.5 · 10−2[R2].

following:

0 =
∂2T

∂x2
+

∂2T

∂y2
(3.36)

with boundary conditions given by:

T (x, y, t) = x, (x, y) ∈ Γg

The analytical solution to this problem is a temperature distribution that is a linear function
of x. In Figure 3.3, the solution obtained using the FEM diffusion solver is demonstrated for
an unstructured grid constituted of 3-nodes triangles. The solutions obtained using 6-nodes
triangles and 4- and 9-nodes quads is identical to this one. It may be observed that the
correct solution is, indeed, reproduced.

3.8.2 Transient diffusion

Analytical solution of a cooling cylinder problem

The transient problem we choose to study is cooling of a circular cylinder. We assume
axis symmetry and no variation in z-direction, which reduces the problem to two dimen-
sions: radius r and time t. Following derivation closely follows (Boas, 1983). In cylindrical
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coordintes the problem is stated as following:

∂T

∂t
=

1
r

∂

∂r
(r

∂T

∂r
) (3.37)

T (r = 0, t) < ∞
T (r = rb, t) = 0
T (r, t = 0) = 1

where rb is the radius of the cylinder. Separation of variables results in the following:

T (r, t) = R(r) · F (t)
1
F

∂F

∂t
=

1
rR

∂

∂r
(r

∂R

∂r
) = −K2 (3.38)

where the separation constant is expressed as −K2 since we want the temperature to tend
to zero as time goes to infinity. The function of time can be integrated to give:

F (t) = Ae−K2t (3.39)

where A is a constant. Equation for the radial component of T (r, t) can be rewritten as
following:

r
∂

∂r
(r

∂R

∂r
) + (r2K2 − 02)R = 0 (3.40)

Equation 3.40 is recognized as Bessel’s equation of zeroth order and has the general solution:

R(r) = aJ0(Kr) + bY0(Kr) (3.41)

where a and b are constants and J0 and Y0 are Bessel functions. The function Y0 is singular
at the origin, thus we must have b = 0 such that T (r = 0, t) is finite. Boundary condition
T (r = rb, t) = 0 implies that J0(Krb) = 0, and therefor possible values of Krb are the roots
of J0. We define a new parameter gm = Krb, for m = 1, 2, 3... and express the solution as
following:

T (r, t) =
∞∑

m=1

amJ0(
gm

rb
r) ·Ae

−( gm
rb

)2t (3.42)

The constants am can be determined using boundary conditions and the orthogonality of
Bessel functions of the same order and kind. Applying the last two relations of Equation 3.38
to Equation 3.42 results in the following expression:

1
A

=
∞∑

m=1

amJ0(
gm

rb
r) (3.43)

Multiplying the solution by rJ0(
gµ

rb
r), where µ = 1, 2, 3..., and integrating from r = 0 to

r = rb, such that only the terms m = µ are non-zero due to the orthogonality of Bessel
functions, allows to express the solution as following:

1
A

∫ rb

0
rJ0(

gµ

rb
r)dr = aµ

∫ rb

0
r[J0(

gµ

rb
r)]2dr (3.44)
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Equation 3.44 may be rewritten using recurrence relations of ordinary Bessel functions:
Left-hand side:

d

dr
(rJ1(r)) = rJ0(r) Recurrence relation

rb

gµ

d

dr
[(

gµ

rb
r)J1(

gµ

rb
r)] = (

gµ

rb
r)J0(

gµ

rb
r)

∫ rb

0

d

dr
[rJ1(

gµ

rb
r)]dr =

gµ

rb

∫ rb

0
rJ0(

gµ

rb
r)dr

∫ rb

0
rJ0(

gµ

rb
r)dr =

r2
b

gµ
J1(gµ) (3.45)

Right-hand side:

∫ 1

0
rJp(αr)Jp(βr)dr =

{
0 for α 6= β

1
2J2

p+1(α) for α = β
Orthogonality

∫ rb

0
r[J0(

gµ

rb
r)]2dr =

r2
b

2
J2

1 (gµ) (3.46)

Combining these two results gives the following expression for the constants aµ:

1
A

r2
b

gµ
J1(gµ) = aµ

r2
b

2
J2

1 (gµ)

aµ =
2

gµJ1(gµ)
1
A

(3.47)

Finally, the complete solution stated in Equation 3.42 may be expressed as:

T (r, t) = 2
∞∑

m=1

J0(gm

rb
r)

gµJ1(gm)
· e−( gm

rb
)2t (3.48)

Numerical solution of a cooling cylinder problem

We apply FEM diffusion solver to obtain the transient solution of a cooling cylinder problem
that is stated in Equation 3.38 and has an analytical solution given by Equation 3.48. The
intial and boundary conditions are the same as in Equation 3.38. We prescribe the cylinder
radius rb = 1. Roots of the Bessel functions, that are a part of the analytical solution, are
found numerically and it is assumed that the sum of the first 80 positive roots is a good
approximation to the infinite sum.
We compare the numerical and analytical solutions after the total simulation time of 3·10−4,
which is an early stage of cooling compared to the time it takes to reach a steady-state. The
time step we use is 4t = 1 · 10−5. The results for the 3-node triangles, 4-node quads and
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Figure 3.4: Top: Numerical and analytical solutions of the cooling cylinder problem. Scaled
values of temperature and radius are plotted. For the numerical solutions, grids consisting
of 3-node triangles, 4-node quads and 9-node quads are used. The solution obtained with a
lumped mass matrix for the 3-node triangle grid is also presented. Bottom: Relative error
of the numerically obtained solutions. The timestep size is 4t = 1 · 10−5[R

2

κ ] and the total
simulation time is 1.5 · 10−4[R

2

κ ]. Maximum element size is 2 · 10−2[R2].
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Figure 3.5: Scaling of the relative error norm with grid size for triangular and quadratic
elements. Error norm is computed after the total simulation time of 1.5 · 10−4[R

2

κ ], with
timestep size 4t = 1 · 10−5[R

2

κ ]
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9-node quads are presented in Figure 3.4. It may be observed that during the intial stage
of cooling, the numerically calculated temperature in some of the nodes actually increases.
Introducing lumping of the mass matrix in the FEM diffusion solver for the first-order el-
ements results in a monotonically decreasing temperature, as demonstrated for the 3-node
triangles in Figure 3.4.
Some temperature oscillations are observed in some of the nodes during the simulation
with second-order elements, as demonstrated for 9-node quads in Figure 3.4. The origin of
this artificial oscillation lies in the initial temperature distribution. The latter is given by a
function with rapidly changing higher derivatives at the outer boundary, where a sharp tem-
perature drop is applied as a thermal boundary condition. Using higher-order polynomials
to interpolate this function results in oscillations between the nodes. This artifact is absent
when first-order polynomials are used, which are generally better suited for interpolating
functions with rapidly changing higher derivatives.
The temperature distribution becomes smoother with time, as a result of diffusion, and
hence more accurately interpolated by the higher-order polynomials. Followingly, the oscil-
lations will dissipate earlier in the simulation when a larger timestep is used.
The oscillation of temperature values due to higher-order polynomial interpolation may be
decreased or completely avoided by prescribing a smoother initial temperature distribution.

3.8.3 Grid Refinement vs Higher-Order Shape Functions

The accuracy of the numerical solution may be improved by refining the grid or increasing
the order of the shape functions. We wish to estimate which of the approaches gives most
accuracy gain.
We use a lumped mass matrix for the first-order elements. The timestep size is4t = 1·10−6

and the total simulation time is 1.5 ·10−4. The simulation is performed for different element
types and grid sizes. For each configuration the relative error norm L2 is computed as

L2 =

√∫
Ω(Texact − Tnumerical)2dΩ∫

Ω T 2
exactdΩ

(3.49)

Scaling of the relative error norm with grid size for triangular and quadratic elements is
presented in Figure 3.5. The scaling of the error appears to be of first order for the first-
order elements, and of second and third order for the second-order quads and triangles,
respectively.
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Chapter 4

Advection solvers

Transport of material due to convective dynamics is modeled by solving the disretized ad-
vection equation. This involves numerical integration of an ordinary differential equation
(ODE). In this chapter we present comparison of three methods to solve this problem: Eu-
ler, fourth-order Runge-Kutta and fifth-order Runge-Kutta with adaptive stepsize control.
Their performance is evaluated by applying them to one- and two-dimensional initial-value
problems. The ODE-solvers are compared based on the number of integrand-evaluations
required each step and the resulting global error. Comparison is performed for different
step-sizes.

4.0.4 Outline of the problem

Given an ordinary differential equation (ODE):

d~x

dt
= ~v (4.1)

and an initial value ~xi = ~x(ti), evaluation of function ~x in point ti+1, ~xi+1 = ~x(ti+1), can
be obtained from:

~xi+1 = ~xi +
∫ ti+1

ti

~v dt (4.2)

This problem is characterized as an initial value problem. Numerical techniques for integrat-
ing Equation 4.1 as accurately as possible, while keeping the number of function evaluations
of the integrand as low as possible, are the focus of this study.

4.0.5 Outline of the methods

In the following, three different ODE-solvers are presented. The leading term of the trun-
cation error, denoted O(4tn+1), constitutes the local error. The global error, which is the

53
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accumulation of local errors at the end of the integration, is then of nth order, making the
method also an nth order method. Description of the methods closely follows (Press et al.,
2007).

Euler method

Expanding ~xi+1 in the Taylor series and truncating it at the first derivative, results in the
following expression for the updated positions:

~xi+1 = ~xi +4t~v(ti, ~xi) + O(4t2) (4.3)

where Equation 4.1 has been used. Equation 4.3 is the formula for Euler’s method. As indi-
cated in the error term, it is locally second order accurate, making Euler’s method globally
only first-order accurate. This method requires the derivative, or velocity, information at
the beginning of the time-interval in order to evaluate the function at the end of the interval.
This makes it an explicit method. The advantage of this method is that the integrand has
to be evaluated only once for each time step.

Fourth-order Runge-Kutta method

Improved accuracy in the evaluation of the integral may be obtained by introducing in-
termediate steps. This is the philosophy behind the Runge-Kutta methods. Fourth-order
Runge-Kutta method uses Simpson’s rule to evaluate the integral on the right-hand side of
Equation 4.2, but with midpoint evaluation split in two steps. The position of the interme-
diate step is found using Euler’s method. The method is outlined in the following:

k1 = 4t~v(ti, ~xi)

k2 = 4t~v(ti +
1
2
4t, ~xi +

1
2
k1)

k3 = 4t~v(ti +
1
2
4t, ~xi +

1
2
k2)

k4 = 4t~v(ti +4t, ~xi + k3)

~xi+1 = ~xi +
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4 + O(4t5) (4.4)

As indicated in the error term, it is globally fourth-order accurate and it requires four
evaluations of the integrand for each timestep.

Fifth-order Runge-Kutta method with adaptive stepsize control (RK45)

Accuracy in the evaluation of the integral may be further improved by introducing adaptive
stepsize control. The goal is to satisfy some predetermined accuracy constraint in the
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Figure 4.1: Dormand-Prince 5(4) Parameters for Embedded Runge-Kutta Method

solution with minimum computational effort, or as large timestep as possible. This is
achieved by introducing error control. Embedded Runge-Kutta formulas examplify this
approach. In the following, a fifth-order Runge-Kutta method with stepsize control, RK45,
is outlined.
As in previously described fourth-order Runge-Kutta method, a weighted combination of
function evaluations is used. There is a combination of six functions that gives a fifth-order
method, while another combination of six functions gives a fourth-order method. Difference
between the two estimates of the integral is used to estimate the truncation error and adjust
the stepsize. The general fifth-order Runge-Kutta method is as following:

k1 = 4t~v(ti, ~xi)
k2 = 4t~v(ti + c24t, ~xi + a21k1)

. . .

k6 = 4t~v(ti + c64t, ~xi + a61k1 + a62k2 + . . . + a65k5)
~xi+1 = ~xi + b1k1 + b2k2 + . . . + b6k6 + O(4t6) (4.5)

The embedded fourth-order formula is as following:

~x∗i+1 = ~xi + b∗1k1 + b∗2k2 + . . . + b∗6k6 + O(4t5) (4.6)

Hence, the truncation error estimate is given by

4 = ~xi+1 − ~x∗i+1 (4.7)

Various constants used in Equation 4.5 and Equation 4.6 are those found by Dorman and
Prince (Dormand and Prince, 1980) and are presented in Figure 4.1. The error is required
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to satisfy following:
|4| = |~xi+1 − ~x∗i+1| ≤ scale (4.8)

where the scale is given by
scale = atol + |x|rtol (4.9)

and atol and rtol are absolute and relative error tolerances, respectively, which are both
chosen to be equal to 10−6. Relative tolerance measures the error relative to the integrand-
value at the end of the step and represents a percentage of the integrands value. Absolute
tolerance is a threshold error value and represents the acceptable error as the integrands
value approaches zero. |x| is defined as max(|xi|, |xi+1|). The error after each time step is
given by the Euclidian norm:

err =

√√√√ 1
N

N∑

j=1

(
4i

scalei
)2 (4.10)

where N is the number of equations, or markers in this case. As seen from Equation 4.5
and Equation 4.6, 4 scales globally as 4t5. Error values, err0 and err1, produced by two
different step-sizes, 4t0 and 4t1, are thus related as following:

4t0 = 4t1|err0

err1
| 15 (4.11)

Taking err0 = 1 as the desired error value, Equation 4.11 provides the most efficient step-
size, in terms of originally attempted stepsize and its error. The RK45 method requires 6
evaluations of the integrand for each accepted timestep.
In this study we use RK45 solver provided by MATLAB, an inbuilt function called ode45.
As its input parameters, it takes a function handle to evaluate the integrand, an interval
over which the integral is estimated and the value of integrand at the beginning of this
interval. Optionally, one may specify the absolute and relative tolerances to control the
error. The error in ode45 is given by

ei ≤ max(rtol · |yi|, atoli) (4.12)

During each step, the solver computes the integrand value at the end of the step, as well as
the local error. The latter is then compared to the value given by equation 4.12. If local
error is greater than than ei, the stepsize is reduced and the solver tries again. Applying
ode45 to the entire integrational interval at once will ideally result in the prescribed error.
Whether this is actually the case is investigated in the next section. However, applying this
solver to the coupled advection-diffusion problem, we are forced to split the time-interval
into timesteps, since the diffusion problem is solved simultaneously with the advection.
Hence, the error prescribed to ode45 will accumulate with each timestep, resulting in lower
accuracy.
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Figure 4.2: Scaling of error with stepsize for Euler’s and fourth-order Runge-Kutta methods

Figure 4.3: Correspondence between prescribed and achieved error for RK45 method
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4.0.6 Application of ODE-solvers to a 1D problem

A simple one-dimensional problem with a known analytical solution is solved using the out-
lined ODE-solvers, to ensure that the error behaves as predicted. For Euler’s and Fourth-
order Runge-Kutta methods, the scaling of the error with stepsize is investigated and ex-
pected to be first- and fourth-order, respectively. For the RK45 method, it is investigated
wether the prescribed error tolerance is, in fact, achieved. The calculated error is given by
the difference between the analytical and numerical solutions.
The problem we wish to solve is as following:

∂y

∂x
= −200xy2 (4.13)

with initial conditions given by:

x0 = −3
xf = 0

y(x0) =
1

901
(4.14)

The value of y at the end of the interval is found analytically using separation of variables,
and the result is:

y(xf ) = 1 (4.15)

The numerically calculated value of y at the end of the interval is compared to y(xf ) to
obtain the error.
Equation 4.13 was solved using Euler’s and the Fourth-order Runge-Kutta methods with
different stepsizes. The resulted error was plotted against stepsize and the scaling was
compared to first- and fourth-order functions. The results are presented in Figure 4.2.
It may be observed that Euler’s method is highly inaccurate and achieves the first-order
scaling only for very small stepsizes. Error resulting from the Fourth-order Runge-Kutta
method satisfies the prescribed fourth-order scaling.
Solving Equation 4.13 with the RK45 method, using the inbuilt MATLAB function ’ode45’,
we varied absolute and relative tolerances, while keeping rtol = atol. Correspondence
between the prescribed and achieved errors was calculated by comparing the value given by
equation 4.12 with difference between analytical and numerical solutions. The results are
presented in Figure 4.3.

4.0.7 Application of ODE-solvers to a 2D problem

The 2D test-model consists of a marker with some given initial position, ~x(t), advecting in a
shear cell setup. The constant in time velocity field ~V = (Vx, Vy) is given by Equation 4.16:

Vx = |~V |cos(π
2

x

Lx
)sin(

π

2
y

Ly
)

Vy = −|~V |sin(
π

2
x

Lx
)cos(

π

2
y

Ly
) (4.16)
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Figure 4.4: Scaling of error with stepsize for Euler and fourth-order Runge-Kutta methods

Figure 4.5: Correspondence between prescribed and achieved error for RK45 method
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where 2Lx and 2Ly are the horizontal and vertical sizes of the domain, respectively. To
shorten the notation, we define a = π

2Lx
and b = π

2Ly
. Streamlines of this velocity field

constitute marker-trajectories. By definition, streamlines are instantaneously parallel to
the velocity field, which allows to express them as functions of spatial coordinates. Defining
a position vector:

~r = x(t)̂i + y(t)ĵ

d~r = dxî + dyĵ (4.17)

where î and ĵ are unit vectors in x- and y-directions, respectively, streamlines may be
derived as following:

~V × d~r = 0
Vxdy = Vydx

cos(ax)sin(by)dy = −cos(by)sin(ax)dx∫
tan(by)dy = −

∫
tan(ax)dx

−1
b
ln(cos(by)) =

1
a
ln(cos(ax)) + C1

1
cosa/b(by)

= cos(ax)eC1

cos(ax)cosa/b(by) = C

where C1 and C are constants. The resulting streamlines are closed curves, symmetric
about x- and y-axes and centered at origo, that are more circular closer to origo and the
form of rectangles closer to the boundaries of the domain. Followingly, each streamline
crosses the y-axes in two points and we can uniquely define a streamline by defining an
x-position at which one of the y-axes intersections occurs. We define this crossing point as
(x = x0, y = 0), which results in following expression for a streamline in the velocity field
given by Equation 4.16:

cos(ax0) = C

cos(ax)cosa/b(by) = cos(ax0) (4.18)

The time it takes for a particle to travel one cycle along its trajectory may be found using
the theory of elliptic integrals. This task is further simplified by the symmetry of the
streamlines, since we only need to integrate over a quarter of the entire trajectory. It is
convenient to choose the quarter that goes from x = 0 to x = x0, where the latter is the
x-coordinate of the crossing point, as defined earlier. The time it takes to travel quarter of
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the trajectory is given by the following integral:

Itime =
∫ x0

0

√
1 + ( dy

dx)2

V 2
x + V 2

y

dx

=
∫ x0

0

dx

Vx

=
∫ x0

0

dx

cos(ax)sin(by)

=
∫ x0

0

dx√
cos2(ax)− cos2(ax)cos2(by)

Recognizing the expression for streamline from Equation 4.18, for a case when a = b, we
may rewrite Itime as following:

Itime =
∫ x0

0

dx√
cos2(ax)− cos2(ax0)

=
∫ x0

0

dx√
sin2(ax0)− sin2(ax)

=
1

sin(ax0)

∫ x0

0

dx√
1− ( 1

sin(ax0))
2sin2(ax)

(4.19)

Equation 4.19 may be expressed in form of a complete elliptic integral of the first kind,
K(k), which equals the quarter period of an elliptic function with eccentricity k:

K(k) =
∫ 1

0

dt√
(1− t2)(1− k2t2)

, 0 ≤ k ≤ 1 (4.20)

Using following substitution:

w =
sin(ax)
sin(ax0)

dx =
dw

a
√

( 1
sin(ax0))

2 − w2

Equation 4.19 may be rewritten as:

Itime =
1

asin(ax0)

∫ 1

0

dw√
(( 1

sin(ax0))
2 − w2)(1− w2)

=
1
a

∫ 1

0

dw√
(1− w2)(1− sin2(ax0)w2)

(4.21)
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Equation 4.21 may be solved numerically using an inbuilt MATLAB-function ‘ellipke(M)’,
where M is the squared eccentricity M = k2.
After completing one cycle of its trajectory, the marker should return to its starting position.
Whether this is actually the case when the marker-trajectory is computed numerically, gives
an estimate of the global error produced by the ODE-solver. Scaling of the error resulting
from advecting a marker one full cycle, using Euler’s and the Fourth-order Runge-Kutta
methods with different timesteps, is presented in Figure 4.2. It may be observed that
Euler’s method still has first-order scaling in two dimensions and the Fourth-order Runge-
Kutta method still has fourth-order scaling. This result was found to be independent of the
starting position. Using RK45 method to advect the marker, we varied absolute and relative
tolerances, while keeping rtol = atol. Correspondence between the prescribed and achieved
errors was calculated and the results are presented in Figure 4.5. It may be observed that
the achieved error satisfies well the prescribed one for tolerances lower than 10−4. The
difference between prescribed and achieved errors grows for higher tolerance values.



Chapter 5

Benchmarking of the
thermomechanical code

5.1 Description of the physical model

To benchmark the devised thermomechanical FEM code, we apply it to model convection
in a rectangular domain. The modelled fluid is isoviscous and homogeneous. It is confined
in an impermeable box and is heated from below, with no internal heating. The geometry
of the model is presented in Figure 5.1. We assume that we have an infinite Prandtl
number fluid with Newtonian rheology and that the Boussinesq approximation applies.
The nondimensional form of the governing equations is as following:

∂ui

∂xi
= 0 Mass conservation

0 = − ∂p

∂xi
− ḡiTRa +

∂

∂xj

[
µ
(∂ui

∂xj
+

∂uj

∂xi

)]
Momentum conservation

DT

Dt
=

∂

∂xi

(
κ̄

∂T

∂xi

)
Energy conservation (5.1)

Heat transport is modelled using the diffusion and advection solvers that were presented in
detail in the preceding chapters. The mechanical solver MILAMIN (Dabrowski et al., 2008)
is utilized for solving the Stokes equation.

5.2 Description of the numerical model

5.2.1 Initial and boundary conditions

The rectangular domain is discretized using a structured grid consisting of quadratic ele-
ments. The nodes of the grid that do not have a boundary value prescribed to them are
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Figure 5.1: Initial and boundary conditions of the model for simulating thermomechanical
convection in a rectangular domain.

referred to as free nodes. The approximate solution is obtained for all the free nodes by
solving the discretized governing equations. In order to find a solution, the initial and
boundary conditions must be specified.
The mechanical boundary conditions are free slip. This implies that the normal velocity
component is equal to zero at the boundary, known as the no-penetration condition, and
that the tangential component of the traction is zero along the boundary. The free slip
boundary conditions can be formulated as following:

vn = ~v · ~n = 0

ts =
1
2

( ∂vs

∂xn
+

∂vn

∂xs

)
= 0 (5.2)

where ~n is the unit vector normal to the boundary, and xn and xs are spatial coordinates
that are normal and tangential to the boundary, respectively.
The thermal boundary conditions are given by constant temperatures at the top and bottom
surfaces and zero heat flux across the lateral boundaries. This is formulated as following:

T
∣∣∣
x,y=yT

= 0 Top surface

T
∣∣∣
x,y=yB

= 1 Bottom surface

∂T

∂x

∣∣∣
x=xL,y

= 0 Left surface

∂T

∂x

∣∣∣
x=xR,y

= 0 Right surface (5.3)

The initial temperature profile is given by TB = 1 and TT = 0 at the bottom and top
boundaries, respectively, and in the interior we have the mean temperature TI = TT +TB

2 =
0.5. The intial thermal conditions vary with the grid resolution. This is because the
temperature is prescribed in the nodes and interpolated in the interior of the element.
Coarser grid implies a larger distance between the nodes, and interpolating temperature
between them results in a smaller gradient than for a finer grid. This is illustrated for a
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Figure 5.2: Illustration of the resolution-dependence of the intial temperature distribution.
A smaller temperature gradient at the boundaries may be observed for the coarser resolution
(nodes marked with squares) than for the finer resolution (nodes marked with circles).

one-dimensional grid with linear interpolation between the nodes in Figure 5.2.
The initial and boundary conditions for our model are illustrated in Figure 5.1. We study
the evolution of the convective pattern and the Nusselt number with time for different grid
and time resolutions. The Nusselt number is given by:

Nu =
(yT − yB)q̄y

k(TT − TB)
(5.4)

where q̄y is the horizonally averaged heat flux in y-direction, and k is the thermal conduc-
tivity of the fluid.

5.2.2 Advection-diffusion equation

The thermal energy conservation equation describes the advective and conductive heat
transport in the system. Assuming no internal heat generation, neglecting heating due to
viscous dissipation, and dropping the primes for shortness of notation, the energy equation
may be expressed as following:

∂T

∂t
=

∂

∂xi

(
k̄

∂T

∂xi

)
− ui

∂T

∂xi
Energy conservation, no internal heating (5.5)

We use operator splitting to model the two heat transport mechanisms separately. In the
first half of the time step, we update the temperature according to the conductive heat
transport, assuming no advection. This is done by numerical solution of the following
equation:

∂T

∂t

∣∣∣
[t0,t0+ 1

2
4t]

=
∂

∂xi

(
k̄

∂T

∂xi

)
Diffusion (5.6)

where t0 is the time at the beginning of the time interval. The method for numerical solution
of the Equation 5.6 was described in the chapter about the FEM diffusion solver. In the
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Figure 5.3: An example of temperature distribution after a total time of 2[ w
max|V | ] for the

model that is used to study numerical diffusion of the method of shooting back characteris-
tics. The background has temperature equal to zero, and the sheared disk has temperature
equal to one.

second half of the time step, we model the convective heat transport, assuming no diffusion.
This is done by numerical solution of the following equation:

∂T

∂t

∣∣∣
[t0+ 1

2
4t,t0+4t]

= −ui
∂T

∂xi
Advection (5.7)

To solve the Equation 5.7 numerically, we use the method of shooting back characteristics.
This method is based on the fact that the temperature doesn’t change along the characteris-
tic lines that follow the flow (Baptista, 1987). We first calculate the positions of the current
temperature values one timestep ago, by tracking back characteristics. The fourth-order
Runge-Kutta method is used to perform this step, with mechanical shape functions used to
interpolate velocities at the intermediate positions. Then we interpolate the temperature
values in nodes onto the feet of characteristic lines, using thermal shape functions. The
temperature values in thermal nodes are then set equal to the temperature values at the
feet of characteristics.

5.2.3 Numerical Diffusion

Interpolating temperature values from thermal nodes to the feet of characteristics during
modelling of the advective heat transport, introduces a numerical error, commonly referred
to as numerical diffusion. To study the effect of numerical diffusion when using the method
of shooting back characteristics, we apply this method to model advection of a hot disc in
cold environment in a shear cell setup. The dimensionless width of the cell is w = 1, with
aspect ratio 1. The radius of the hot disc is r = 1

10w. We set the diffusion constant equal
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Figure 5.4: Maximum temperature monitored throughout the simulation of a hot disk
advecting in a shear cell setup. Temperature decay is only due to the numerical diffusion,
since the physical diffusion is turned off by setting the thermal diffusivity equal to zero.
Results for different space- and time-resolutions are presented. The spatial resolution used
for the plot on the left is dx = 5 · 10−2[w]. The timestep used for the plot on the right
is 4t = 1 · 10−5[ w

max|V | ]. The contours of the maximum temperature at the end of each
simulation, as a function of dx and dt, is presented in the bottom figure.
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to zero, so that any temperature decay in the system can be directly related to numerical
diffusion. An example of temperature distribution after a total time of 2[ w

max|V | ] is presented
in Figure 5.3.
We monitor the maximum temperature of the system as it evolves through time. Different
time- and space-resolutions are tested, with the time of simulation being the same for all
configurations. The results are presented in Figure 5.4. We observe that for a given grid
resolution, the numerical diffusion is higher for smaller timesteps. This is an expected result,
since smaller timestep sizes require a larger number of timesteps to reach the same simulation
time, and hence the number of interpolations of temperature is also larger, leading to more
numerical diffusion. We also observe that the amount of numerical diffusion saturates, and
refining the timestep to values smaller than around 1 · 10−4 doesn’t change the effect of
numerical diffusion. Refining the grid resolution for a given timestep leads to less numerical
diffusion. This is also an expected result, since the interpolation is more accurate when we
have more nodes in the system. The maximum temperature values at the end of simulations
preformed for the different timestep and grid sizes are also presented in Figure 5.4. The two-
dimensional contour plot shows that the numerical diffusion saturates, such that for small
enough timesteps, decreasing the timestep size doesn’t lead to more numerical diffusion.

5.2.4 Computational time

We study how the computational time required by the different parts of our code varies with
grid resolution. The parts of the code that we study are (i) assembling and factorization of
global matrices entering the Stokes solver, (ii) factorization of the global matrices entering
the thermal solver, (iii) evaluation of the right hand side (RHS) of the Stokes solver, (iv)
Uzawa iterations to compute velocity field, (v) computing temperature field with thermal
solver, and (vi) advecting the temperature field using characteristics and the fourth-order
Runge-Kutta method. We introduce two independent grids for computing velocity and tem-
perature, called mechanical and thermal grids, respectively. This allows us to independently
increase the resolution for the temperature field, without affecting the time of computation
of the mechanical field.
The scaling of the computational time as we refine the mechanical grid, while keeping the
number of thermal per mehanical elements constant, is presented in Figure 5.5. We also
study the dependence of the computation time on the number of thermal per mechanical
elements. We present the results for two different mechanical grid resolutions, with 50 and
100 mechanical elements in vertical direction, with the number of thermal per mechanical
elements varying from 1x1 to 3x3 in Figure 5.6. We observe that for a given mechanical
grid resolution, the number of thermal per mechanical elements may be increased up to 2x2
without significantly affecting the total time of simulation.
The thermal and mechanical grid resolutions are chosen depending on how frequently the
different parts of the code need to be used. For an isoviscous homogeneous material, the
assembling and factorization of global matrices entering the Stokes solver and the ones en-
tering the thermal solver only need to be evaluated once, outside the time loop. As we refine
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Figure 5.5: Computational time spent by individual components of the thermomechanical
FEM code. Results for different total numbers of thermal nodes are presented. The total
number of thermal nodes is determined by the number of mechanical elements, varying
from 10 to 100 in vertical direction in this case, and the number of thermal per mechanical
elements, 2x2 in this case.
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Figure 5.6: Computational time spent by individual components of the thermomechanical
FEM code. Results for different numbers of mechanical elements in vertical direction are
presented: 50 on the left and 100 on the right. The number of thermal per mechanical
elements varies from 1x1 to 3x3.

the thermal grid for such systems, while keeping the mechanical grid resolution the same,
the advection step becomes the limiting factor of how much we gain from independently
refining the thermal grid resolution, in terms of computaional time. If the viscosity, and/or
the diffusivity of the system are not constants, then all parts of the thermomechanical code
need to be used in order to compute each time step. In that case, the factorization of the
thermal matrices poses the limit for how much we gain from refining the thermal grid, while
keeping the mechanical grid the same, compared to refining of the mechanical grid.
Using two independent grids for temperature and velocity fields raises the question of
whether it is justified, in terms of accuracy, to have a lower resolution for one of these
fields. As is presented in the following sections, we obtain higher accuracy of the results in
our homogeneous and isoviscous model, by refining the thermal grid up to 5x5 thermal per
mechanical elements.

5.2.5 Coupled thermomechanical solver

An example of a mechanical and thermal grids used to discretize the rectangular domain is
illustrated in Figure 5.7. We use four-node quads for the elements of the thermal grid and
nine-node quads for the elements of the mechanical grid. The mechanical grid resolution
is determined by the aspect ratio and the number of mechanical elements in the vertical
direction. The thermal grid resolution is determined by the number of thermal elements
per mechanical element.
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Figure 5.7: The independent thermal (in red) and mechanical (in black) structured grids
representing the rectangular domain. Thermal elements are four-node quads and mechanical
elements are nine-node quads. The mechanical grid resolution is defined by the aspect ratio,
2 in this case, and the number of mechanical elements in the vertical direction, 3 in this
case. The thermal grid resolution is determined by the number of thermal elements per
mechanical element, 32 in this case.

Once the grid is constructed and the temperature initialized, we start computing the evolu-
tion of the system with time. First, the heat diffusion step is performed, where we update
the temperature in the nodes according to the result from the diffusion solver. Next, we
compute the velocity field in mechanical nodes using MILAMIN. Then, we model the con-
vective heat transport by advecting the temperature with the obtained velocities.
Using independent grids for the velocity and temperature values introduces some additional
steps in our algorithm. This involves transfer of information between the two grids. The
velocity is calculated based on the density variations that drive convection, which are of
thermal origin. Hence, the information about temperature field must be passed to the me-
chanical grid, or more specifically to the integration points of the mechanical elements.
Using FEM, we solve the weak, or integral, form of the differential equations. The integral
of temperature in each element need to be evaluated for the right hand side (RHS) of the
Stokes equation. We use Gaussian quadrature to evaluate the integrals numerically. This
involves sampling of the integrand in a prescribed number of integration points, which po-
sitions are given by the Gaussian integration rule. Hence, we interpolate the temperature
values from the thermal grid onto the integration points of the mechanical grid.
During convective heat transport, the temperature field advects with the velocity provided
by the mechanical solver. Hence, information about velocity field must be passed to the
coordinates along the characteristic lines, as required by the ODE solver. We interpolate
the velocity-values using the mechanical shape functions. The algorithm is summarized in
the following:

1. Perform the diffusion step

2. Evaluate the right hand side of the Stokes equation, by integrating temperature values
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interpolated from the thermal grid

3. Calculate the velocity field using the mechanical solver

4. Advect temperature field using characteristics and the fourth-order Runge-Kutta
method.

5.3 Modeling results

5.3.1 Spatial resolution

We monitor the temperature distribution in the system and the Nusselt number at the top
boundary. We study the results for different spatial resolutions, varying the mechanical
grid from 10 to 100 elements in the vertical direction, and varying the number of thermal
elements per mechanical element from 1x1 to 5x5. We present the results obtained with
grids consisting of 25 and 100 mechanical elements in vertical direction, for all thermal
elements configurations, in Figure 5.8.
We refer to the upwellings and downwellings observed in the figures as plumes. Several
qualitative parameters are defined for the purpose of describing the different convective
patterns. We choose to look at the number of plumes in the system. This number is influ-
enced by how close the bases of neighboring plumes are positioned, as well as the branching
of the plume with one tail feeding several plume heads. We also look at the thickness of
the plume tails and the sharpness of the interface between the plume and the interior. The
ability of a plume tail to extend all the way from the bottom to the top, or vice versa, is
another qualitative parameter we consider. This parameter is influenced by the obliqueness
of the tail with respect to the horizontal boundaries, the amount of wiggling of the tail, as
well as the amount of smearing along its travel. The last descriptive parameter we define
is the number of relatively small disconnected structures present in the interior. Due to
the initial random perturbations that we introduce to the system, the convective patern of
the same system varies for each simulation. However, we expect the qualitative parameters
that we defined for the description of the patterns to be approximately the same for each
simulation of the same system.
Studying the temperature distribution in the top five plots of Figure 5.8, we observe that
it varies for different thermal grid resolutions. The number of plumes increases for finer
thermal grids, both due to narrower spacing between neighbouring plumes and to the in-
creased branching. The plume tails are thicker for coarser resolutions, with more smeared
interfaces between the plumes and the interior. In the top plots, which present the coarsest
resolution, some of the plume heads are smeared to such extent that only the tails can be
identified. In the case of the coarsest resolution, top plot of Figure 5.8, there are no plumes
that extend all the way from the top to the bottom, or vice versa, as they appear to be
bent away from the opposing horizontal boundary, as well as highly smeared. We see more
disconnected structures in the interior of the system for higher resolution cases.
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The higher resolution results, with 100 mechanical elements in vertical direction, are pre-
sented in the bottom five rows of Figure 5.8. We see that changing the thermal grid
resolution in this case doesn’t result in as high variation in temperature patterns as was
observed for the case of 25 mechanical elements in vertical direction. However, we still
observe a larger number of plumes for higher thermal grid resolutions. The tails of the
plumes are slightly thicker in the top plot, with coarsest resolution, compared to the bot-
tom four where the thicknesses of the plumes don’t vary much. There appears to be more
smearing of interfaces between the plumes and the interior in the top plot, compared to the
bottom four, where the sharpness of interfaces is quite similar. Nearly all of the plumes
in the top plot extend all the way from the top to the bottom, and vice versa, with their
tails oriented nearly perpendicular to the horizontal boundaries. The tails of the plumes
in the bottom four figures have a large variation in their orientations with respect to the
horizontal boundaries, and they also appear to wiggle more. However, these plumes have
relatively longer tails and manage to extend all the way from the top to the bottom, and
vice versa. No disconnected structures can be observed in the top plot, while several are
resolved in the bottom four figures.
In general, we observe that the coarser thermal grids result in more diffuse temperature
fields, compared to finer grids, and hence more detailed structures can be observed with
higher resolutions. Increasing the resolution of the mechanical grid reveals how unstable
the plumes are with respect to the direction of their propagation.
Time evolution of the Nusselt number computed at the top boundary for each grid resolu-
tion is presented in Figures 5.9 and 5.10. For the coarse grid of 25 mechanical elements in
the vertical direction, we observe that the Nusselt number of the system after it has reached
the dynamic equalibrium varies for different thermal grid resolutions. The Nusselt number
increases as we refine the thermal grid. In case of the higher mechanical grid resolution,
with 100 mechanical elements in the vertical direction, the Nusselt number obtained with
different thermal grid resolutions is quite similar. This indicates that the convergence has
been reached for these resolutions.
To illustrate how the Nusselt number varies for different grid resolutions, its time-average
is plotted against the number of thermal elements in horizontal direction, and presented in
Figure 5.11.

5.3.2 Time resolution

In order to test whether the time resolution that is used for the simulations, 4t = 1 ·
10−6 b2

κ [s], is an appropriate one, we vary the timestep size between 4t = 5 · 10−7 − 1 ·
10−5 b2

κ [s]. Convection patterns obtained after a total time of simulation of 3 · 10−3 b2

κ [s],
with a subsequently refined time resolution, are presented in Figure 5.12. Time evolution of
the Nusselt number computed at the top boundary for different time resolutions is presented
in Figure 5.13. The similarity of the obtained convective patterns, as well as the Nusselt
number after the dynamic steady state is reached, for different time resolutions indicates
that the convergence of solution is reached for the timestep that we use in the simulations.
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Figure 5.8: Convection pattern after 3 ·10−3 b2

κ [s]. Aspect ratio = 10, number of mechanical
elements in the vertical direction is 25 in the top five figures and 100 in the bottom five
figures. Number of thermal elements per mechanical element increases downwards for each
mechanical resolution: 1,4,9,16,25. The timestep size is 1 · 10−6 b2

κ [s].
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Figure 5.9: Time evolution of the Nusselt number computed at the top boundary for varying
thermal grid resolution. In the legend, nl denotes number of thermal elements along one
side of a mechanical element. Number of mechanical elements in the vertical direction =
25. The timestep size is 1 · 10−6 b2

κ [s].

Figure 5.10: Time evolution of the Nusselt number computed at the top boundary for
varying thermal grid resolution. In the legend, nl denotes number of thermal elements
along one side of a mechanical element. Number of mechanical elements in the vertical
direction = 100. The timestep size is 1 · 10−6 b2

κ [s].
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Figure 5.11: Time average of the Nusselt number obtained with different thermal and me-
chanical grid resolutions. The size of the circular markers represent the grid resolutions.
The smallest marker corresponds to the result obtained with 10 mechanical elements in
vertical direction and 1 thermal element per mechanical element. The largest marker cor-
responds to the result obtained with 100 mechanical elements in vertical direction and 25
thermal elements per mechanical element. The Nusselt number according to the boundary
layer theory is plotted as a thick black line. Thin dashed lines are the fitted power-law
functions. The timestep size is 1 · 10−6 b2

κ [s]. Total time of simulation is 3 · 10−3 b2

κ [s].
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Figure 5.12: Convection pattern after 5·10−3 b2

κ [s]. Aspect ratio = 10, number of mechanical
elements in the vertical direction = 100, number of thermal elements per mechanical element
= 16. The timestep size decreses downwards: 5 · 10−7, 1 · 10−6, 5 · 10−6, 1 · 10−5 b2

κ [s].

Figure 5.13: Time evolution of the Nusselt number computed at the top boundary for
varying time resolutions. The spatial resolution for the presented simulations is determined
by the number of mechanical elements in the vertical direction, which is 100, and the
number of thermal elements per mechanical element, which is 16. In the legend, dt denotes
the stepsize, which dimensional value is given by dt b2

κ [s].
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Figure 5.14: Convection pattern after 3 · 10−3 b2

κ [s]. Aspect ratio increases downwards: 1, 3,
6, 10. Number of mechanical elements in the vertical direction = 100, number of thermal
elements per mechanical element = 16. The timestep size is 1 · 10−6 b2

κ [s].

5.3.3 Aspect ratio

It is interesting to study how the presence of lateral boundaries affects the numerically
calculated Nusselt number. The effect of the boundaries poses a constraint when we wish
to compare the numerical solution with the analytical prediction for an infinitely long layer,
provided by the thermal boundary layer theory. The effects of the boundaries is studied
by varying the aspect ratio from 1 to 10. Convection patterns obtained after a total time
of simulation of 3 · 10−3 b2

κ [s] for different aspect ratios are presented in Figure 5.14. Time
evolution of the Nusselt number computed at the top boundary for different aspect ratios is
presented in Figure 5.15. For different aspect ratios, we observe similar convective patterns
and Nusselt number after the dynamic steady state has been reached. This shows that the
aspect ratio doesn’t have much influence on our numerical results.

5.3.4 Flow visualization with markers

To visualize the flow, we use passive markers that are initially distributed randomly through-
out the domain of our computational model. The markers are divided into three layers,
based on their initial vertical positions, and indexed. This way, we can keep track of the
layers as they advect with the velocities computed for each time step of the simulation.
Distribution of the markers at four different times are presented in Figures 5.16 for two
different resolutions: one with 10 mechanical elements in vertical direction, and the other
with 50, respectively. Number of thermal elements per mechanical element is 5x5 in both
cases. The timestep size is 1 · 10−6 b2

κ [s].
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Figure 5.15: Time evolution of the Nusselt number computed at the top boundary for
varying aspect ratios, denoted asp in the legend. Number of mechanical elements in the
vertical direction = 100, number of thermal elements per mechanical element = 16. The
timestep size is 1 · 10−6 b2

κ [s].

In figures presenting the flow patterns after 1000 timesteps, plot number two from top for
both mechanical grid resolutions, we observe a periodicity in the structure of the layers.
We can identify up to five cells in the coarser grid case, with patches of yellow markers
lying on the bottom, separated by the columns of black markers. In the finer grid case, we
can identify up to eight cells of yellow markers piled up at the top, and separated by the
thin columns of black markers. We use fewer markers to visualize the flow for the coarser
resolution, which makes it difficult to compare the flow patterns with those for the high
resolution grid at the end of simulation. For the higher resolution grid, a more detailed flow
pattern can be observed at the end of the simulation.
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Figure 5.16: Three layers of tracer markers advected with velocities computed during the
thermomechanical simulation. Number of mechanical elements in the vertical direction is 10
in the top five figures and 50 in the bottom five figures. The number of thermal elements per
mechanical element is 5x5 in all figures. Results for four different timesteps are presented
for each resolution. The timestep size is 1 · 10−6 b2

κ [s].



Chapter 6

Dense basal layer

6.1 Description of the physical model

We apply the developed thermomechanical FEM code to model convection of a fluid com-
prised by two chemically distinct materials with temperature-dependent viscosity in a rect-
angular domain. The fluid is confined in an impermeable box and is heated from below,
with no internal heating. We assume that we have an infinite Prandtl number fluid with
Newtonian rheology and that the Boussinesq approximation applies. The nondimensional
form of the governing equations is as following:

∂ui

∂xi
= 0 Mass conservation

0 = − ∂p

∂xi
− ḡiTRa1 +

∂

∂xj

[
µ
(∂ui

∂xj
+

∂uj
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Momentum conservation

DT
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∂T

∂xi

)
Energy conservation (6.1)

where Ra1 is the Rayleigh number evaluated at the bottom boundary.
The fluid is comprised by two chemically distinct materials: a dense layer along the bottom
boundary overlain by a material of lower density and higher viscosity. Density and viscosity
of the entire fluid are both temperature- and chemistry-dependent. Density variations are
expressed as a linear combination of thermal and chemical contributions:

4ρ = 4ρth +4ρch = ρ1
1α4T + (ρ1

1 − ρ2
1)Φ Density variation (6.2)

where ρ1
1 and ρ2

1 are the densities of the ambient material and the dense layer, respectively,
evaluated at temperature T1 at the bottom boundary. Φ is a binary phase function that
takes on value 0 for the ambient material and 1 for the dense layer. The density difference
between the two materials is determined by the buoyancy number Br = 4ρch

4ρth
.
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Viscosity depends on temperature exponentially. Chemical viscosity variations are applied
through a scaling parameter qi that varies for different materials:

µ = qiexp
(
− θ(T − T1)

)
Viscosity variation (6.3)

The dimensionless parameter θ determines the viscosity ratio and is given by:

θ ≡ ln
(µ0

µ1

)
(6.4)

where µ0 = µ(T0) and µ1 = µ(T1) are the viscosity values of the ambient material at
temperatures at the top and bottom boundaries, respectively. In this model we scale the
viscosity with µ1 for nondimensionalization. qi is a dimensionless parameter used to scale
the viscosity value depending on the chemistry of the material.

6.2 Description of the numerical model

Heat transport is modelled using the diffusion and advection solvers that were presented
in detail in the preceding chapters. Material transport is modeled using marker-in-cell
technique, discussed in the following sections. The mechanical solver MILAMIN (Dabrowski
et al., 2008) is utilized for solving the Stokes equation.

6.2.1 Spatial discretization

We use structured rectangular elements for spatial discretization. To reduce the computa-
tional cost, two independent grids, thermal and mechanical, are introduced, as was moti-
vated and described in the preceding chapter. We use four-node quads for the elements of
the thermal grid and nine-node quads for the elements of the mechanical grid. The aspect
ratio of the rectangular domain is 4.
The nodes of the grid that do not have a boundary value prescribed to them are referred to
as free nodes. The approximate solution is obtained for all the free nodes by solving the dis-
cretized form of the governing equations, including the equation describing the chemistry-
and temperature-dependence of viscosity. In order to find a solution, the initial and bound-
ary conditions must be specified.
Mechanical boundary conditions are free slip. The thermal boundary conditions are given
by constant temperatures of the bottom and top surfaces, and zero heat flux at lateral
boundaries. The intial thermal conditions vary with the grid resolution, as was discussed
in the previous chapter.
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6.2.2 Materials represented by markers

Different materials in our model are represented by markers. Markers are distributed ran-
domly within each element, and initially there is an equal number of markers in each
element. The markers are labelled so that we can keep track of each material throughout
the simulation.

Linear least squares for extrapolation

The material-dependent values of density and viscosity must be transferred from markers to
integration points of the mechanical elements in order to be integrate the element stiffness
matrix.
Assume we have a function φ which values are known in all marker-positions. We wish to
evaluate this function in the positions of integration points of the mechanical elements. We
use the method of least squares to extrapolate φ from markers to element nodes, and then
use shape functions to interpolate these φ-values from nodes to the integration points. First,
we find which mechanical element each marker belongs to and find the local coordinates
of the markers in their respective elements. We evaluate shape functions using the local
coordinates, and store these values in a matrix Âmark. Âmark has as many rows as there are
markers in the element, nmel, and as many columns as there are nodes, and hence shape
functions, in each element, nnodel. We define φnodes, φmark and φip to be the values of φ
evaluated in nodal, markers-, and integration points-positions, respectively.
A linear system of equations must be solved in order to obtain φnodes, but it has no solution,
since there are more equations than unknowns. However, we can find a solution that
minimizes the square of residual function, r̂, given by:

r̂ = φmark − Âmark ∗ φnodes (6.5)

According to the method of linear least squares, the solution, φ̃nodes, that minimizes |r̂|2, is
given by:

φ̃nodes =
(
ÂT

mark ∗ Âmark

)−1
∗ ÂT

mark ∗ φmark (6.6)

Once φ̃nodes has been evaluated, we can obtain the approximate values φ̃ip by solving:

Âphi ∗ φ̃nodes = φ̃ip (6.7)

where Âphi is the matrix where shape functions evaluated in local integration coordinates
are stored. In order to test the performance of the least squares method, we study the case
of a single element. The element contains markers that represent two different materials,
referred to as the background material and the inclusions. The materials are distinguished
by a binary function φ that is prescribed to each marker. We define a reference case with
a nine-node element containing 2 · 105 markers. We extrapolate φ from markers to nodes
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Figure 6.1: Reconstructed function values in the markers after using the least squares
method from Equation 6.6. We use 2 · 105 markers distributed randomly throughout the
element. Top: Initial function values in the markers. Second row: Reconstructed function
and absolute error for a four-node element. Third row: Reconstructed function and absolute
error for a four-node element, after cutting off outliers. Fourth row: Reconstructed function
and absolute error for a nine-node element. Fifth row: Reconstructed function and absolute
error for a nine-node element, after cutting off outliers.
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the least squares method from Equation 6.6, to obtain φ̃nodes. To evaluate the error, we
intepolate φ̃nodes back onto markers using shape functions, and compare the recontructed
values with the initial ones. The result is presented in the fourth row of Figure 6.1.
We can investigate how the number of nodes in the element influences the result of extrapo-
lation with least squares. We use the same configuration as in the reference case, except for
the number of element nodes that is now four instead of nine. The result is presented in the
second row of Figure 6.1. We observe that the material distribution is poorer represented
in this case compared to the reference case. This can be a combined effect of the error from
least squares method during extrapolation, as well as the lower order shape functions that
are used for interpolation from nodes back onto markers.
The main source of error in the reconstructed function comes from using the least squares
method during extrapolation from markers to nodes. We see in Figure 6.1 that the range of
the reconstructed function exceeds the range of the initial function in the markers. This can
cause serious artifacts when applying this method to extrapolate density and viscosity values
in our thermomechanical model. Namely, we may get unphysical results such as negative
density and viscosity values. To avoid the difference in ranges between the initial and the
reconstructed functions, we set the reconstructed function values that fall outside the initial
range equal to values that define this range. That way, we preserve the well-approximated
distribution of the two materials within the element, given by the least squares method,
while avoiding values that lie outside the given range. The results are presented in the third
and fifth rows of Figure 6.1 for the nine-node and four-node elements. This is the approach
we use in our thermomechanical simulation.

6.2.3 Coupled thermomechanical solver

Once the grid is constructed, and temperature and material properties initialized, we start
computing evolution of the system with time. The advection-diffusion equation is solved
the same way as was done for the homogeneous case, described in Section 5.2.2. Convective
transport of material is modelled using the method of shooting back characteristics with
the fourth-order Runge-Kutta method.
To compute velocities, we need to evaluate the chemical density contribution to the right
hand side of the Stokes equation, as well as the material-dependent factor that scales viscos-
ity which enters the Stokes equation. These material-dependent properties are prescribed
in markers. We interpolate the values in markers onto integration points of the mechanical
elements using the method of least squares that was presented in Section 6.2.2. Then the
velocities are computed by solving the Stokes eqution with MILAMIN.
Next, the heat diffusion step is performed, where we update temperature values in thermal
nodes according to the results from the diffusion solver. Then, we model the convective
heat transport by interpolating the velocities obtained from the Stokes solver onto the co-
ordinates along the characteristic lines, as required by the ODE solver. We interpolate the
velocity-values using the mechanical shape functions. The algorithm for time evolution is
summarized in the following:
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1. Interpolate the material-dependent contributions of density and viscosity onto inte-
gration points of mechanical elements

2. Evaluate the RHS of the Stokes equation in the integration points of the mechanical
elements

3. Evaluate the viscosity values in integration points of the mechanical elements

4. Calculate velocities in mechanical grid nodes using Stokes solver

5. Perform the diffusion step and update temperature values in thermal grid nodes

6. Advect temperature values and markers with the velocities obtained from the Stokes
solver

6.3 Modeling results

We model the thermomechanical evolution of a fluid comprised by two materials: a dense
layer along the bottom boundary overlain by an ambient material of lower density. We
study how the temperature field of the system and the distribution of the dense layer vary
with time, as well as their dependence on the buoyancy ratio Br, the viscosity ratio between
the two materials µ1

1

µ2
1
, and the viscosity ratio due to temperature variations µ1

0

µ1
1
. We present

results for five different values of the buoyancy ratio, varying from Br = 0.1 to Br = 0.5.
Results for three different viscosity ratios are presented: µ1

1

µ2
1

= 1, 10, and 1000. Two values

of viscosity ratios due to temperature variations are presented: µ1
0

µ1
1

= 1 and 10. We inves-
tigate how different parameters affect the ability of the dense boundary layer to be swept
into thermochemical piles, and the stability and longevity of these piles.
We first study the isoviscous case, where the difference between the two materials is only
due to chemical density variations, and there is no viscosity-dependence on temperature
or material. In Figure 6.2 the results for the three lowest values of buoyancy ratios are
presented: Br = 0.1, 0.2, and 0.3, corresponding to density differences between the dense
layer and the ambient material of 4ρch

ρ1
1

= 0.42%, 0.84%, and 1.26%. The simulation time
of the presented models is 500(±50) Ma.
The dense layer in the model with the lowest buoyancy ratio, Br = 0.1, is observed to be
gravitationally unstable. It gets more and more entrained into the ambient material with
time, and follows the convective flow. The dense layer is also unstable for the buoyancy
ratio of Br = 0.2, although there seems to be less entrainment in this case, with larger
patches of dense material present in the system, compared to the case with Br = 0.1. Com-
paring the temperature distribution and the material distribution, we can observe how the
cold downwellings of the ambient material sweep the dense layer and shape it into separate
domains. The sweeping is even more evident in the model with Br = 0.3. In this case, the
dense layer appears to be swept into piles that appear to be more gravitationally stable
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than the layers of lower buoyancy ratio. The piles in the Br = 0.3 model have sharp lateral
boundaries, and the entrainment of the dense layer into the ambient material appears to be
mostly taking place at these boundaries. The convective dynamics within the piles, together
with the sweeping by the cold downwellings, determines the shape of the piles.
Time evolution of the isoviscous models with the two highest values of buoyancy ratio are
presented in Figures 6.3 and 6.4. In the beginning stage of the simulation, before the
cold downwellings reach the bottom, we observe initiation of convection in the dense layer.
The hot upwellings are present within the dense layer, but don’t rise through the ambient
material. The convective dynamics within the dense layer shape its top surface. As cold
downwellings of the ambient material reach the layer, they sweep it into separate piles.
These piles have sharper boundaries and are higher for the Br = 0.4 model, than for the
Br = 0.5 model, which is more flattened. The entrainment of the dense layer into the
ambient material is taking place in these two models as well, although not as rapidly as in
cases with lower buoyancy ratio. We observe also in these two models that the shape of the
piles is dynamically supported by the upwellings within these piles, and is altered by the
sweeping of the downwellings.
The spatial resolution that we use for this isoviscous layer is given by 100 mechanical ele-
ments in the vertical direction and 3x3 thermal per mechanical elements. We use coarser
resolution for the models that are presented in the following, namely 75 mechanical elements
in the vertical direction and 2x2 thermal per mechanical elements.
We now introduce additional complexity to our model, by making the two materials differ
both in density and viscosity, but still without the temperature-dependence of the viscos-
ity of materials. In Figure 6.5 we present the results of temperature field and dense layer
distribution for buoyancy ratios from Br = 0.1 to Br = 0.5 after 428 Ma of simulation
time. Models with Br = 0.1 and Br = 0.2 appear not to be stable at all, with the dense
layer being well mixed with the ambient material. Comparison of these results with the
isoviscous case seems to infer that lower viscosity of the dense layer enhances the entrain-
ment rate. more gravitationally stable structure is observed in the model with Br = 0.3,
although significant amount of entrainment into the ambient material is still taking place.
We start seeing stable structures of dense material with dynamically supported shapes at
buoyancy numbers Br = 0.4 and Br = 0.5. Higher topography of the piles is observed for
the Br = 0.4 model, than for the Br = 0.5 model. In the Br = 0.4 model, the piles are
more numerous and have smaller lateral extent. The dense material is entrained into the
overlying fluid through thin tails that rise from the sides and the top surface of the piles.
We increase the viscosity ratio between the two materials to µ1

1

µ2
1

= 1000 and present snap-
shots of the resulting temperature field and dense layer distribution in Figure 6.6, for buoy-
ancy ratios 0.2, 0.3 and 0.4. Vigorous convection appears to be taking place within the
dense layer for this high viscosity contrast. For the model with Br = 0.2 we observe that
the layer divides into two large upwellings of dense material that rise along the sides of the
rectangular box, and a doming pile of dense material in the center of the domain. Both in
the large upwellings and in the doming pile vigorous convection is observed to be taking
place. The model evolves into two downwellings and a thin tail of an upwelling comprised
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by the dense material, as observed in the second row of Figure 6.6. Vigorous convection
is also taking place in the dense layer with Br = 0.3. The convective dynamics within the
dense layer shape its topography. The dense material evolves into two large plumes. A
thicker one rises along the lateral boundary, and a plume with a thin tail and a large head
rises in the center of the domain. We can observe downwellings within the plume head
of the dense material. A snapshot of the system after 71.3 Ma of simulation time for the
model with Br = 0.4 is presented in the bottom row of Figure 6.6. Vigorous convection
that shapes the topography of the dense layer may be observed.
The last set of models that we present have a temperature dependent viscosity and the
two materials that only differ in their densities. The viscosity ratio due to temperature
variations is µ1

0

µ1
1

= 10. We present the results after 428 Ma of simulation time for models
with buoyancy ratios from Br = 0.2 to Br = 0.5 in Figure 6.7. Similarly as in the cases
when we decreased the viscosity of the dense layer, Figure 6.5, the rate of entrainment of the
dense layer into the ambient material increases when we introduce temerature dependence
of viscosity. The dense layer in the model with Br = 0.2 is not stable at all, while the model
with Br = 0.3 appears to have some stable structure, although most of the layer has been
mixed with the ambient material. We observe stable piles of the dense layer in the model
with Br = 0.4. The convective dynamics support the topography of these piles. The shape
of the piles is also determined by the sweeping by cold downwellings. The piles appear to be
lower for the case of the temperature dependent viscosity, compared to the piles in the case
of chemically dependent viscosity. For the buoyancy ratio of Br = 0.5, two time frames are
presented in the two bottom rows. After 428 Ma of simulation time the dense layer hasn’t
been separated into piles, but its surface topography has been altered by the convective
motions within the layer, and the cold downwellings that land on top of the layer. After
428 Ma of simulation time, we see piles forming for the model with Br = 0.5, with some
material being entrained through the thin tails rising from its sides and top surface.
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Figure 6.2: The temperature field (left) and the distribution of the dense heterogeneous
layer (right) after approximately 500(±50) Ma of simulation time. The Rayleigh number
is Ra0 = 107. Buoyancy ratios increase downwards: Br = 0.1, 0.2, and 0.3, corresponding
to density differences between the dense layer and the ambient material of 4ρch

ρ1
1

= 0.42%,

0.84%, and 1.26%. The viscosity ratio between the two materials µ1
1

µ2
1

= 1, and the viscosity

ratio due to temperature variations µ1
0

µ1
1

= 1. Number of mechanical elements in vertical
direction = 100. Number of thermal per mechanical elements = 3x3.
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Figure 6.3: Time evolution of the temperature field (left) and the distribution of the dense
heterogeneous layer (right). The Rayleigh number is Ra0 = 107. Buoyancy ratio Br = 0.4,
corresponding to a density differences between the dense layer and the ambient material of
4ρch

ρ1
1

= 1.7%. The viscosity ratio between the two materials µ1
1

µ2
1

= 1, and the viscosity ratio

due to temperature variations µ1
0

µ1
1

= 1. Number of mechanical elements in vertical direction
= 100. Number of thermal per mechanical elements = 3x3.
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Figure 6.4: Time evolution of the temperature field (left) and the distribution of the dense
heterogeneous layer (right). The Rayleigh number is Ra0 = 107. Buoyancy ratio Br = 0.5,
corresponding to a density differences between the dense layer and the ambient material of
4ρch

ρ1
1

= 2.1%. The viscosity ratio between the two materials µ1
1

µ2
1

= 1, and the viscosity ratio

due to temperature variations µ1
0

µ1
1

= 1. Number of mechanical elements in vertical direction
= 100. Number of thermal per mechanical elements = 3x3.
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Figure 6.5: The temperature field (left) and the distribution of the dense heterogeneous
layer (right) after 459 Ma of simulation time. The Rayleigh number is Ra0 = 107. Buoy-
ancy ratios increase downwards: Br = 0.1, 0.2, 0.3, 0.4, and 0.5, corresponding to density
differences between the dense layer and the ambient material of 4ρch

ρ1
1

= 0.42%, 0.84%,

1.26%, 1.7%, and 2.1%. The viscosity ratio between the two materials µ1
1

µ2
1

= 10, and the

viscosity ratio due to temperature variations µ1
0

µ1
1

= 1. Number of mechanical elements in
vertical direction = 75. Number of thermal per mechanical elements = 2x2.
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Figure 6.6: Snapshots of the temperature field (left) and the distribution of the dense
heterogeneous layer (right) for models with high viscosity ratio between the two materials
µ1

1

µ2
1

= 1 · 103. The Rayleigh number is Ra0 = 107. Buoyancy ratios increase downwards: in
the top two rows Br = 0.2, in the second and third rows Br = 0.3, and in the bottom row
Br = 0.4. The viscosity ratio due to temperature variations µ1

0

µ1
1

= 10. Number of mechanical
elements in vertical direction = 75. Number of thermal per mechanical elements = 2x2.
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Figure 6.7: The temperature field (left) and the distribution of the dense heterogeneous layer
(right) after 459 Ma of simulation time. The Rayleigh number is Ra0 = 107. Buoyancy
ratios increase downwards: Br = 0.2, 0.3, 0.4, and 0.5, corresponding to density differences
between the dense layer and the ambient material of 4ρch

ρ1
1

= 0.42%, 0.84%, 1.26%, 1.7%, and
2.1%. In the bottom row, the model with Br = 0.5 is presented after 856 Ma of simulation
time. The viscosity ratio between the two materials µ1

1

µ2
1

= 1, and the viscosity ratio due to

temperature variations µ1
0

µ1
1

= 10. Number of mechanical elements in vertical direction = 75.
Number of thermal per mechanical elements = 2x2.
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6.4 Conclusions

The modelling results presented in this chapter show that the the density difference of at
least 1.7% between the dense layer and the ambient material is required in order to achieve
gravitational stability of the dense layer for times up to a billion of years. Decreasing
the viscosity of the dense layer, or introducing temperature dependence of the viscosity,
enhances the entrainment of the dense layer into the ambient material. These results also
show that the topography of the thermochemical piles is dynamically supported by the
convective motion within the pile. Sweeping of the pile by the cold downwellings of the
ambient material significantly influences its shape. We observed plumes of denser material
forming both on the top and on the sides of the piles.
We have studied the stability of a heterogeneous material confined in a rectangular box.
The simplicity of our model poses limitations for how representative these results are for
the case of mantle convection. Presence of lateral boundaries in our model clearly affects
the material flow. The downwellings of cold ambient material observed in our models is yet
another deviation from observations in nature. Also, a more systematic study is required
of a larger range of buoyancy numbers, viscosity ratios between the materials and depth
dependent values of viscosity, in order to describe their effects on the stability and shape of
the thermochemical piles.
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