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Chapter 1

Introduction

From the very beginning of nuclear physics a continuing effort has been devoted
to study γ-decay from excited nuclei. Information on γ-decay has been accu-
mulated almost exclusively for low lying nuclear levels with excitation energy,
typically not exceeding 2− 3 MeV for medium heavy nuclei. Above this region
the number of levels increases so much that a quasi-continuum is reached. Little
experimental data are collected from this region up to the neutron binding energy.
One exception is experiments performed by use of the Oslo method.

Average properties of γ-decay in the quasi-continuum are described by the
level density and the γ-ray strength function. The level density and the γ-ray
strength function give rich information about the nuclei. These quantities are of
interest both in nuclear physics as well as in other branches of physics. One of the
applications of level density is to extract thermodynamic properties of the nucleus.
It is also used as an input in astrophysical models of the nucleosynthesis in stars.
The γ-ray strength function describes electromagnetic properties of the nucleus.
By use of the Oslo method we are able to extract both the level density and the
γ-ray strength function from one and the same experiment [1]. The Oslo group
has in recent years worked with mapping the level density and γ-ray strength
function for several nuclei. Most of the nuclei studied belong to the group of rare
earth isotopes, that is, nuclei with mass number in the range A = 140− 180. In
the present work we will continue this mapping by investigating two dysprosium
isotopes, namely 163,164Dy. These are medium heavy, well deformed rare earth
nuclei in the mid-shell region.

In this thesis we are particularly interested in a resonance in the γ-ray strength
function in the 3 MeV region. This originates from the so-called scissor mode,
which has been shown by the Oslo group to be an M1 mode of the nucleus [2],
also shown in Ref. [3]. This mode, called the 3 MeV pygmy resonance, appears
as a bump in the γ-ray strength function. It has been observed for several rare
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Figure 1.1: Gamma-ray strength function of several rare earth isotopes studied at
OCL. We observe the 3 MeV pygmy resonance in all of the strength functions dis-
played above, besides samarium. It is not present in samarium due to shell effects
in this nucleus. The data is taken from: URL: http://ocl.uio.no/compilation/
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earth isotopes, some of them are displayed in Fig. 1.1. The width of the resonance
have been measured to lie in the interval 0.84− 1.57 MeV for the dysprosium
nuclei previously studied at the Oslo Cyclotron Laboratory (OCL) [4]. Of the
main motivation for the current study is to investigate the width of the pygmy
resonance in 163,164Dy. The width will be compared to results found for 163Dy [3]
obtained with the so-called two step cascade (TSC) method [5]. Through this
method one has measured a considerable smaller width of the pygmy resonance
in 163Dy, than what is observed in other dysprosium isotopes by use of the Oslo
method. Through the present analysis we will be able to conclude if there are
reaction dependent parameters that influence the width. Secondly we want to
extract the level density and thermodynamic properties, and see if they coincide
with previously observations for other dysprosium isotopes as well as for other
rare earth nuclei.

In chapter 2 the theory behind the level density, how to extract thermodynamic
properties from the level density, and the theory behind the γ-ray strength function
will be presented. In chapter 3 experimental details and the data analysis are
described. Chapter 4 is dedicated to the Oslo method, and the level density and
thermodynamic properties achieved from this method is presented in chapter 5.
In chapter 6 the experimental γ-ray strength function is discussed and compared
to previous experiments at the OCL and to results found from the TSC method.
Finally, a summary and conclusion of this analysis is given in chapter 7.

3



Chapter 2

Level density, thermodynamics and
γ -ray strength function

The main goal with the present analysis as well as for previous experiments per-
formed at the OCL is to extract the level density and the γ-ray strength function. In
this chapter we will look into the information obtained from these measurements,
and why they are so significant.

2.1 Level density
The level density gives the number of levels per energy unit as a function of ex-
citation energy. At low excitation energy the level density is directly obtained
by counting low-lying levels. As the excitation energy increases the level den-
sity becomes large and individual levels are often not resolved in experiments. It
is said that the level density has reached the quasi-continuum. Where the quasi-
continuum region starts differs for different nuclei, in rare earth isotopes it is typ-
ically reached above a few MeV of excitation energy. The level density together
with the γ-ray strength function are used to calculate nuclear reaction cross sec-
tions. Knowledge about the cross sections are necessary to calculate astrophysical
reaction rates and for modeling nucleosynthesis in stars. It is also important with
respect to nuclear reactors and waste management. In addition we are able to ex-
tract thermodynamic properties from the level density, as will be described in the
next section.

Bethe developed the so called Fermi gas model in 1936 [6], which gives the
level density as function of excitation energy. The original formula is given by

ρ(E) =
√

π

12
exp(2

√
aE)

a1/4E5/4 , (2.1)

4



2.1. LEVEL DENSITY

at an given excitation energy E. The level density parameter a is expressed by

a =
π

6
(gp +gn), (2.2)

where gp and gn are the single-particle level density parameters for protons and
neutrons, respectively. There are weaknesses in this model because particles are
assumed to move independently, and single particle states are considered to be
equally spaced. Due to this, the Fermi gas model does not account for odd-even
and collective effects. Later modified versions of the Fermi gas formula has been
developed, where these effects are accounted for by employing free parameters
that are adjusted to fit the experimental data on level spacings obtained from neu-
tron or proton resonance experiments. Gilbert and Cameron developed in 1965 a
level density formula where the effective excitation energy is reduced by the pair-
ing energy for the odd-mass and even-even nuclei [7], resulting in a lower level
density for the same excitation energy. Later it has been shown that the shift equal
to ∆p +∆n is to large and it is ’back-shifted’ by subtracting a parameter C1 [8].
The most recent back-shifted Fermi gas model was developed by Egidy and Bu-
curescu [9] in 2005. It is given by the following expression

ρBS(E) =
exp[2

√
a(E−E1)]

12
√

2σa1/4(E−E1)5/4
, (2.3)

for an excitation energy E, where the level density parameter a and the energy
shift E1 are treated as free parameters to be fitted to experimental data. Sigma
is the spin-cutoff parameter, equal to the mean value of the spin distribution at a
given excitation energy. It is expressed as

σ
2 = 0.0146A5/3 1+

√
1+4a(E−E1)

2a
, (2.4)

where A denotes the mass number.
In addition to the Fermi gas model there exist a variety of other models that can

be used to calculate the level density. However, for the medium heavy, mid-shell
nuclei, as will be studied in this work, there are many degrees of freedom and a
corresponding high level density. As a results it is hard to perform calculations on
these nuclei with the present models. However, attempts have been made, perhaps
the most successful one is by use of the shell model Monte Carlo method, which
has been applied to calculate level densities [10, 11, 12] even for some dysprosium
isotopes [13].

5



CHAPTER 2. LEVEL DENSITY, THERMODYNAMICS AND γ -RAY
STRENGTH FUNCTION

2.2 Thermodynamic properties derived from the
level density

In microscopic systems such as the atomic nucleus , any attempt to measure ther-
modynamic properties by equipment like for example a thermometer, would of
course not work because of the size of the system. However, the level density
ρ(E) can be used to derive various thermodynamic properties through statistical
models. To understand this, we will first discuss some basic principles of statisti-
cal mechanics.

In the present case we have a microscopic system consisting of 163 and 164
nucleons for 163Dy and 164Dy, respectively. These nucleons can be arranged in
different ways which result in different observed properties. We would therefore
like to study the probability distribution of these configurations. We know that
at thermodynamic equilibrium for an isolated system all available microscopic
states are equally likely. The number of these states increases with excitation
energy, and for nuclei similar to those we are studying the number of states per
excitation energy reaches a quasi-continuum for energies above a few MeV. From
the density of states Ωs(E) all other thermodynamic quantities can be obtained.
The density of states Ωs(E) is directly proportional to the level density and a spin
dependent factor [14]

Ωs(E) ∝ ρ(E)(2〈J(E)〉+1), (2.5)

where 〈J(E)〉 is the average spin at excitation energy E. There exist little experi-
mental data on the spin distribution, therefore we will in this analysis work with a
multiplicity Ω(E) that is based on the level density alone,

Ω(E) ∝ ρ(E). (2.6)

The level density is through Eq. (2.6) our basic quantity for collecting informa-
tion about the thermodynamics of the nucleus. However, one must keep in mind
that the thermodynamic properties derived in this thesis are ”pseudo” quantities,
because we do not take into consideration the spin dependence.

Care has to be taken when choosing the ensemble that best describes the sys-
tem. It is not quite obvious which ensemble is the most correct to use. In the
following sections the micro-canonical and canonical ensemble will be described.

2.2.1 The micro-canonical ensemble
The micro-canonical ensemble is the assembly of many isolated systems with
fixed total energy E, and fixed size V . One usually applies the micro-canonical

6



2.2. THERMODYNAMIC PROPERTIES DERIVED FROM THE
LEVEL DENSITY

ensemble when describing a nucleus. One can justify this because the nuclear
force has a very short range, and the nucleus does normally not share its excita-
tion energy with its surroundings. It is therefore fair to consider the nucleus as an
isolated system. However, the drawback for applying this ensemble is that some
thermodynamic properties, such as the temperature T and heat capacity CV , can
have huge fluctuations and even negative values.

Among the important characteristics of a system is its entropy S. The entropy
of a system is the measure of the disorder or randomness of the system. The
second law of thermodynamics states that the entropy is an increasing function as
a function of energy. The maximization of entropy ensures that the system strives
to reach equilibrium, which corresponds to the most probable configuration of the
system. The entropy can be expressed through the density of states. The definition
of entropy in the micro-canonical ensemble is

S = kB lnΩs(N,V,E), (2.7)

where kB = 1.381 ·10−23 J/K is Boltzmann’s constant. In terms of the level density
ρ(E), we have

S = kB ln
ρ(E)

ρ0
= kB lnρ(E)+S0, (2.8)

where we have inserted Eq. (2.6), divided by a normalization constant ρ0, into
Eq. (2.7). The constant S0 is determined by applying the third law of thermody-
namics which states that when the temperature goes to zero, the entropy will also
tend to go to zero or to a constant value. Further we can find the temperature for
a system in equilibrium through the relation

T =
(

δS
δE

)−1

V
. (2.9)

Obviously the constant S0 will not survive the derivation, and does thereby not in-
fluence the temperature. However, slight changes in lnρ(E) can cause significant
changes in the temperature. It is these changes that can cause negative values of
the temperature, as a result of the derivation.
Another important quantity that characterizes a system is its heat capacity CV . The
heat capacity gives a measure of how fast the temperature increase with increasing
energy, and is in the micro-canonical ensemble expressed by

CV =
(

δT
δE

)
V

. (2.10)

Because negative slopes can occur in the temperature as a function of excitation
energy, this will create negative values of the heat capacity.

7



CHAPTER 2. LEVEL DENSITY, THERMODYNAMICS AND γ -RAY
STRENGTH FUNCTION

2.2.2 The canonical ensemble
Because of the limitations described for the micro-canonical ensemble, we will
also present results derived from the canonical ensemble, where the system is
brought into thermal contact with a reservoir with constant temperature. However,
this ensemble is probably not ideal. In the canonical ensemble the energy E can
fluctuate while the size of the system V is assumed to be fixed.

The partition function in the canonical ensemble Z(T ) is expressed as the
Laplace transformation of the multiplicity of states ω(Ei)

Z(T ) =
∞

∑
i=0

ω(Ei)e−Ei/kBT , (2.11)

where ω(Ei) = δEiρ(Ei), where Ei is the excitation energy, δEi is a small energy
interval and ρ(Ei) is the level density at excitation energy Ei. The Boltzmann’s
constant is given by kB and the temperature is represented by the factor T . As a
result of the summation structural changes will be smoothed as a function of exci-
tation energy. From the partition function we can derive all other thermodynamic
quantities. As a starting point let us look at the Helmholtz free energy F , defined
by

F(T ) =−kBT lnZ(T ). (2.12)

This can also be expressed through the partition function

F = 〈E〉−T S. (2.13)

Taking the differential of Eq. (2.12) and using the thermodynamic identity

d 〈E〉= T dS− pdV, (2.14)

where p represents the pressure, we find that the entropy can be written as

S(T ) =−
(

δF
δT

)
V

, (2.15)

for a constant volume V . The average energy 〈E〉 in the canonical ensemble can
be expressed as follows

〈E〉=−T 2
(

δ (F/T )
T

)
V

. (2.16)

Further the canonical heat capacity is defined as the derivative of the energy E
with respect to the temperature

CV =
(

δ 〈E〉
δT

)
V

. (2.17)

8



2.3. THE γ-RAY STRENGTH FUNCTION

2.3 The γ-ray strength function
The γ-ray strength function is a measure of the average electromagnetic proper-
ties of the nucleus. Through emission of electromagnetic radiation the nucleus
can change its electromagnetic moment. By emission of γ rays the angular mo-
mentum can change with one or several units. The total angular momentum must
be conserved and the γ-ray will carry the angular momentum lost by the nucleus,
equal to Lh̄ where L is the quantum number for angular momentum. The numbers
that L can attain must be integers above zero, L = 1,2, ...;L 6= 0, where L = 1 char-
acterizes a dipole, L = 2 a quadrupole, L = 3 a octupole etc. Further the parity
of the radiation distinguishes between electric and magnetic multipole radiation.
Electric multipole radiation have even parity if L is even, while magnetic multi-
pole radiation have even parity if L is odd.

The total γ-ray strength function consists of the sum over all strengths of all
possible polarities. The probability of the different multipole radiation decreases
drastically with increasing angular momentum L. In general, photon emission
with a multipolarity L+1 is less probable than the photon emission with a multi-
polarity L by a factor of 10−6. For this reason the dipole radiation will dominate
the strength function. Further the probability for emission of electric multipole
radiation is an order of two larger than the probability of emission of magnetic
multipole radiation.

Bartholomew [15] described in 1972 the strength function fXL, for a transition
of multipolarity L and electric or magnetic type X from an initial state i to a final
state f through the expression;

fXL =

〈
Γγi f

〉
E2L+1

γ Di
, (2.18)

where
〈
Γγi f

〉
is the radiative width, Di is the level spacing of the initial states and

Eγ gives the transition energy.

2.3.1 Pygmy resonance
The pygmy resonance is a common name describing non statistical features in
quasi-continuous γ-ray spectra observed at energies below the giant electric dipole
resonance (GEDR). The GEDR will be discussed in the next section. In the rare
earth isotopes a pygmy resonance is observed at approximately 3 MeV. This gives
rise to a little bump in the γ-ray strength function, centered at about 3 MeV.
One usually parametrizes the 3 MeV pygmy resonance by a Lorentzian function
fpy(Eγ) [16]

9



CHAPTER 2. LEVEL DENSITY, THERMODYNAMICS AND γ -RAY
STRENGTH FUNCTION

Figure 2.1: The scissor mode where protons are clipping against neutrons in the
nucleus.

fpy(Eγ) = σpy

(
1+

(E2
γ −E2

py)
2

E2
γ Γpy2

)−1

, (2.19)

where σpy, Epy and Γpy represent the strength, centroid and width of the pygmy
resonance, respectively. The parameter Eγ gives the γ-ray energy. All these pa-
rameters are obtained by fit to experimental data, details of this fitting procedure
is outlined in chapter 6.

The Oslo group has investigated the probability that the 3 MeV pygmy res-
onance in rare earth isotopes is due to the so called scissor mode. In Ref. [2]
the M1 multipolarity of the pygmy resonance was established. The name scissor
mode originate from the geometrical interpretation of the mode as a scissor like
motion where the protons are clipping against the neutrons, see Fig. 2.1.

2.3.2 Giant electric and magnetic dipole resonance
At γ-ray energies around 12− 14 MeV, in medium heavy and heavy nuclei, the
giant electric dipole resonance (GEDR) is observed. Geometrically it is inter-
preted to originate from oscillation of protons against neutrons in the nucleus, as
illustrated in Fig. 2.2. The Brink-Axel hypothesis [17, 18] states that collective
excitations built on excited states have the same properties as those built on the
ground state. As a consequence the γ-decay is only dependent on γ-ray energy Eγ ,
not on the temperature of the final state. As a result the GEDR has a Lorentzian
shape [19]

fE1(Eγ) =
1

3π2h̄2c2

σE1Γ2
E1Eγ

(E2
γ −E2

E1)2 +Γ2
E1E2

γ

, (2.20)
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Figure 2.2: The giant electric dipole resonance where the protons and neutrons
are oscillating against each other.

where σE1, ΓE1 and EE1 represents the strength, width and centroid energy of
the GEDR, respectively. This expression provides a very good description of the
GEDR close to the centroid, for medium heavy and heavy nuclei. However, in the
low excitation energy region the γ-ray strength predicted from Eq. (2.20) is less
than the observed value. In the present work we will apply a method developed
by Kadmenskiǐ, Markushev and Furman (KMF model) [20]. In this model there
is a temperature dependence on the final states Tf ,

f KMF
E1 (Eγ) =

1
3π2h̄2c2

0.7σE1EγΓ2
E1(E

2
γ +4π2T 2

f )

EE1(E2
γ −E2

E1)2 , (2.21)

The KMF model describes the low energy region we are interested in very good.
However, the temperature dependence contradicts the Brink-Axel hypothesis. The
KMF model fails to describe the GEDR close to the centroid, where Eq. (2.21)
diverges.

As illustrated by the horizontal and vertical arrows in Fig. 2.2, there are two
different axes, in deformed nuclei, where the protons and neutron can oscillate
against each other. This results in a splitting of the GEDR that can be parametrized
by two functions given by either Eq. (2.20) or Eq. (2.21), depending on the energy
region under consideration.

In the γ-ray strength function one also observes a giant magnetic dipole res-
onance (GMDR). This is believed to be governed by the spin-flip M1 resonance
[21]. It is described by the following function [4]

fM1(Eγ) =
1

3π2h̄2c2

σM1EγΓ2
M1

(E2
γ −E2

M1)2 +E2
γ Γ2

M1
, (2.22)
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CHAPTER 2. LEVEL DENSITY, THERMODYNAMICS AND γ -RAY
STRENGTH FUNCTION

where σM1, ΓM1 and EM1 represents the strength, width and centroid of the reso-
nance, respectively. The expressions both for the GEDR and GMDR along with
the expression for the pygmy resonance will be taken in use in chapter 6, where
the predicted total γ-ray strength function is fitted to the experimental data.
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Chapter 3

Experimental method and data
analysis

The experiment was performed at the Oslo Cyclotron Laboratory (OCL) in June
2006. It was a very successful run, with more than 15 Gb of data collected over
a running time of 11 days. In the following sections an outline will be given on
how the data was handled and saved, and the data analysis will be described.

3.1 Experimental details and detector setup
The accelerator at the OCL is a Scanditronix MC-35 cyclotron. It was used to
accelerate a beam of 3He particles to an energy of 38 MeV. As a target we used
a 1.73 mg/cm2 thick foil of 98.5 % enriched 164Dy. The excited 163Dy was pro-
duced through the pick up reaction; 164Dy(3He,α)163Dy, whereas 164Dy was ex-
cited through inelastic scattering from the Coulomb interaction between the pro-
jectile and the target; 164Dy(3He,3He′)164Dy. The corresponding Q-values1 are
12.92 MeV and 0 MeV, respectively. The ejectiles and the γ rays were detected
with the CACTUS multi-detector array [22], that consists of 28 NaI(Tl) γ detectors
and eight particle telescopes made of silicon. The detector configuration is illus-
trated schematically in Fig. 3.1. The NaI(Tl) detectors in the array are mounted
in a spherical frame with a radius of 250 mm. The distance between the target
position and the γ-detectors are 220 mm. All the NaI detectors are equipped with
a lead collimator which has an inner diameter of 7 cm and a thickness of 10 cm. In
front of the detectors a 2 mm Cu absorber is placed to shield against low energy x-
ray radiation. The total efficiency of the NaI(Tl) detectors is measured to be 15%
of 4π . The NaI(Tl) detectors has an energy resolution of 8 keV determined from
the full width at half maximum (FWHM) at an energy of 1.33 MeV. These are

1The Q-value denotes the amount of energy released in the reaction.
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Figure 3.1: Schematic drawing of the CACTUS multidetector array, taken from
Ref. [23].

suitable detectors for our type of experiments due to their high efficiency, which
remains almost constant and independent of γ-ray energy. The particle telescopes
are placed in a vacuum chamber inside the detector frame located at the end of the
beam tube. The vacuum ensures that the particles are not scattered or lose energy
before reaching the telescopes. Each telescope makes an angle of 45◦ relative to
the incoming beam, in a forward direction with respect to the beam axis. The Si
detectors are placed approximately 5 cm from the target. The telescopes consist
of a front detector that slows the particles down and an end detector where the
particles stops. Particles that arrive in a narrow angle with respect to the telescope
axis might escape the detectors without depositing their full energy. In order to
stop such particles a 6 mm thick Al collimator with a diameter of 5 mm is placed
in front of each telescope. In addition, a 19 µm thick Al foil is placed in front
of each collimator in order to absorb low energy δ electrons2. Our experimental
energy resolution of the elastic 3He peak is measured to be 260 keV. The particle
telescopes have a total solid angle coverage of around 0.7 % of 4π .

A Faraday cup is located at a distance of 1.5 m outside the detector frame to
stop the incident beam.

2The δ electrons are atomic electrons released from the target after Coulomb interaction with
the projectile.
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3.2. SIGNAL TREATMENT

3.2 Signal treatment
When a particle hits a Si telescope an electric signal is generated. The signal is
amplified and sent through the electronics setup. A crucial part of this setup is to
measure particle-γ coincidences. The particle type detected by the Si telescopes
give information of which excited 163Dy or 164Dy nucleus that has been created.
The γ-rays detected simultaneously with this particle will then origin from this
nucleus. We therefore want to measure which γ-rays are detected simultaneously
with the various particles. The coincidence unit generates a signal if all the three
following criteria are met

(i) Only one front detector is hit.

(ii) The particle front detector signal is higher than a threshold set to Z > 1, for
the constant fraction discriminator (CFD).

(iii) At least one particle end detector is hit.

There is no requirement that the particle front and end detector that register a hit
belong to the same telescope. However, this is not a considerable problem be-
cause the particle multiplicity and the beam current are relatively low. The second
criteria rules out the electrons and hydrogen isotopes. The particle-γ coincidences
are tested by a veto discriminator. If it registers a coincidence a logic signal is
generated to start a time-to-digital converter (TDC)3. Then a delayed signal from
a CFD, which is connected to the NaI which detected a γ-ray, is used to stop the
TDC. The time interval measured in between the start and stop pulses is digitized
and contains the time information for an event.

3.3 Particle identification
To be able to distinguish which γ-rays that belong to which reaction, we have to
identify the various projectiles produced. Each particle telescope has a thin front
detector where the particles deposit some energy ∆E and a thick end detector
where the particles are stopped and thereby deposit the rest of the energy E. The
various particles will lose energy mainly due to ionization. How different particles
deposit energy in a medium is described through the Bethe-Block formula [24]:

−dE
dx

= 2πNar2
emec2

ρ
Z
A

z2

β 2

[
ln
(

2meγ2v2Wmax

I2

)
−2β

2
]
, (3.1)

3A TAC and a ADC connected together
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where Na is Avagadros number (6.022 · 1023 mol−1), re is the classical electron
radius (2.817 · 1013 cm) and me is the mass of the electron, z is the charge of the
incoming particle, Z, A and ρ are the atom number, mass number and the density,
respectively, of the absorbing material. The factor β is given by, β = v/c, where
v is the speed of the particle and c is the speed of light. The factor γ is given
by γ = 1/

√
1−β 2. The mean excitation potential is denoted by I, while the

maximum energy transferred in a single collision is given by Wmax.
For the same type of particles, the amount of energy deposited in the front and

end detectors varies with the energy of the particles. From Eq. (3.1) it follows that
the energy deposition increases when a charged particle is slowed down. In ad-
dition the mass and charge of a particle will also influence the energy deposition.
When plotting the energy deposition in the front detector versus the energy depo-
sition in the end detector, a unique banana-shaped curve is found for each particle
type. Such a plot is given in Fig. 3.2, where the uppermost curve represents the α

particles. The curve below this is the 3He curve, where we observe a peak located
at approximately 32 MeV in the end detector. This peak corresponds to the elastic
3He peak. Diagonal to this peak we observe a tail, which is most likely due to a
small amount of ejectiles channeling through the polycrystalline structure of the
front detector. As a result too little energy is deposited in the front detector. The
sharp vertical line seen in the spectrum above the elastic peak corresponds to the
case when δ -electrons deposit energy in the front detector along with elastically
scattered 3He-particles. Below the elastic peak there is another vertical line that
originates when some of the energy deposited in the front detector is not collected.
Similarly the horizontal line to the left of the peak is due to failure in collecting all
the energy in the end detector. At the bottom left of Fig. 3.2, curves corresponding
to tritons, deuterons and protons are observed.

From these banana-shaped curves we are able to calculate the range R(E) of
the particles of interest. The range of a particle describes how far the particle can
penetrate in a certain medium as a function of energy. Experiments performed
with the CACTUS multi-detector array showed that the range curve can be de-
scribed accurately with the following parameterization [25]

R(E) = aE(b+c) logE , (3.2)

where a, b and c are free parameters, and E gives the kinetic energy of the particle.
From this we can derive a thickness spectrum that gives the thickness of the front
detector as a function of particle type. This is obtained by subtracting the range
for the particle in the end detector from the total range of the particle.

R(∆E +E)−R(E) = dfront (3.3)

Here, ∆E and E give the energy deposited in the front and end detector, re-
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Figure 3.2: Energy deposited in the front detector versus energy deposited in the
end detector, see explanation in the text of Sec. 3.3.
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Figure 3.3: Thickness spectrum of particle telescope 6. This spectrum is used to
set gates on the 3He and α particles

spectively. The free parameters of Eq. (3.2) are determined by using the banana
shaped curves in Fig. 3.2 along with Eq. (3.3). In software the data are sorted with
a range curve, for example for the α particles, to obtain a thickness spectrum.
Such a spectrum is shown in Fig. 3.3. The α peak in Fig. 3.3 corresponds to the
front detector’s true thickness. By looking at the thickness spectrum we are able
to set gates for the 3He and α particles which are used in subsequent data sorting
routines to extract the α− γ and 3He-γ coincidences.

3.4 The time spectrum

A TDC (one for each NaI(Tl)) records the time interval between the input start and
stop pulses arriving. A start signal is created when a charged particle is detected
in a Si telescope, and a stop signal is created when γ-rays are registered in the
NaI(Tl) detectors. If the interval between the start and stop pulses are less than
a time window set to 410 ns, the time signals are stored. However, a delay of a
≈ 250 ns is put on the stop signal, in this way we will register events where the γ-
rays in real time are detected before the particle. The distribution of these digitized
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Figure 3.4: The time spectrum, where an α-particle gives the start signal. The
largest peak corresponds to true coincidences.

time signals are called the time spectrum, see Fig. 3.4. This time spectrum is used
to determine whether the γ-rays detected are in coincidence with a particle, and
hence origin from the same nuclear reaction. We observe in Fig. 3.4 that the
position of the largest peak is centered around 250 ns. This corresponds to the
true coincident events, due to the delay of the stop signal this is located at 250 ns
instead of 0 ns.

The particles in the beam arrive at the target in bunches with a period of 130 ns.
Because our time window is larger than the beam period, we will detect events that
do not originate from the same beam pulse. This explains the smaller peak on the
left side of the coincidence peak. Also on the right side of the beginning of a
small peak is shown, see Fig. 3.4. In the right peak the particle is measured in
coincidence with a γ-ray from the next beam pulse, and in the left peak the γ-ray
stems from a reaction induced by the previous beam pulse. In addition, there is a
steady number of random coincidences caused by background radiation.

We now want to extract the true coincidences from the data. This is done by
setting a window on the true coincidence peak and one window on the left peak.
Events that fall into the coincidence window are incremented, while events that
fall into the random window are decremented. Everything else is rejected.
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3.5 The particle spectra
Using the gates set in the thickness spectrum as described in Sec. 3.3 we are able
to sort out the α and the 3He particles from the data. The spectrum obtained is
called a singles spectrum and contains the total number of the particles of interest
as a function of the particle energy. Further, using the windows set in the time
spectrum, we can separate which particles are in coincidence with one or more
γ-rays.

In Figs. 3.5 and 3.6 the α and 3He coincidence spectrums are displayed, re-
spectively, and compared to the singles spectrum. In the singles spectrum for the
α particles in Fig. 3.5, we observe a peak with an energy of 49.6 MeV. This peak
corresponds to the maximum energy the α particle can obtain, Eα (max). The en-
ergy of the α particle Eα plus the energy E transferred from this particle to excite
the nucleus, remains equal when we neglect the small recoil energy of the target
nucleus. This total energy Etot corresponds to the maximum α energy,

Etot = E +Eα , (3.4)

where Etot = Eα(max). Further, this peak gives the population of the ground
state, hence one cannot measure α particles of this energy in coincidence with
γ-rays. Therefore, the Eα (max) peak is not seen in the coincidence spectrum.
One can also note a decrease in counts in the coincidence spectrum around 43.3
MeV. The energy transferred from the α particle to the nucleus in this case,
Etot−Eα = (49.6− 43.3)MeV = 6.3 MeV, equals the neutron binding energy in
163Dy. Therefore, the γ decay in this region will compete with neutron emission.
A similar decrease in counts is observed in the 3He coincidence spectrum around
29 MeV, which corresponds to an energy transferred to the nucleus equal to the
binding energy of the neutron in 164Dy, namely 7.7 MeV. In the singles spectrum
for this particle we observe a large peak located at 36.8 MeV, which is due to the
elastic scattering of 3He particles on the target nucleus. This type of scattering will
populate the ground state in 164Dy, and we will therefore not observe this peak in
the coincidence spectrum. We observe pronounced peaks in both particle coinci-
dence spectra, however we cannot be certain of which levels that built up these
peaks. The reason for this is that information about discrete levels of 163,164Dy
found through the reactions 164Dy(3He,α)163Dy and 164Dy(3He,3 He′)164Dy, can
not be found in literature.

When studying the coincidence spectra in Figs. 3.5 and 3.6 we observe data
registered below the neutron binding energy. This is caused by other reaction
channels, namely 164Dy(3He,αxn) and 164Dy(3He,3 Hexn), where the emission
of α and 3He particles are accompanied by a certain number of neutrons x. The
more particles emitted, the more particles have to share the energy given by the
projectile, thereby we observe the α and 3He particles that originate from these
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Figure 3.5: The black spectrum gives the total number of counts for α particles as
a function of energy. The blue spectrum is the number of α particles measured in
coincidence with γ-rays as function of energy.
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Figure 3.6: The black spectrum gives the total number of counts for 3He parti-
cles as a function of energy. The blue spectrum is the number of 3He particles
measured in coincidence with γ-rays as function of energy.
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Figure 3.7: The γ spectrum in coincidence with α particles, see explanation in the
text of Sec. 3.6 and 3.7.

reaction channels at a lower energy. In the further analysis we will only work
with the region of the coincidence spectra that correspond to the (3He,α) and
(3He,3 He′) reaction.

3.6 The γ spectra
Analogous to the particle spectra described in the previous section, we extract
which γ-rays that came in coincidence with the α and 3He particles. The CAC-
TUS detector array enables us to study the γ-spectra obtained for different exci-
tation energies in the nucleus. Gamma spectra obtained in the excitation region
spanning from the ground state up to the neutron binding energy are displayed in
Figs. 3.7 and 3.8 for α and 3He coincidences, respectively. Due to a substantial
amount of noise in the NaI electronics at low energies we do not have a reliable
spectrum for energies below∼ 0.5 MeV. However, as will be explained in the next
chapter, this will not complicate the rest of the analysis.

3.7 Unfolding the γ-ray spectra
The γ-rays emitted after a nuclear reaction are not measured directly, but instead
interacts with the atomic electrons in the NaI(Tl) crystals, which we in turn are
able to detect. The observed γ-spectrum displays a broad energy distribution with-
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Figure 3.8: The γ spectrum in coincidence with 3He particles, see explanation in
the text of Sec. 3.6 and 3.7.

out sharp peaks, see Figs. 3.7 and 3.8. The spectrums are influenced by how the
γ-rays interact with matter, and does not reflect the full energy of all the γ-rays. To
retrieve the true energy of all the γ-rays an unfolding procedure is applied. This
method will be outlined in the following.

3.7.1 The response function
The detector response function gives the response observed from a detector when
it is exposed to monoenergetic radiation. The response function for the NaI de-
tectors is determined by how the γ-rays interact with the NaI crystals. In addition,
the design and geometry of the detector will play a role. Gamma rays interact with
matter through the three following processes:

Photoelectric effect: The photon transfers all its energy to a bound electron.
The electron is then released from the atom and will have almost the full
energy of the incoming photon, except for the binding energy of the electron
which is very small in comparison.

Compton scattering: The photon transfers only parts of its energy to the
bound electron, which is released from the atom. The photon can be scat-
tered in this way several times. Due to the finite size of the detector it is
inevitable that some of these Compton scattered photons will escape the
detector. This creates the so-called Compton continuum.
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Pair production: Gamma rays with energies higher than 1022 keV may
undergo pair production. In this process an electron e− and a positron e+

is created. The positron produced will annihilate with an atomic electron,
and create two new γ-rays. If one of these annihilation photons escape the
detector we will register the full energy of the incoming photon minus 511
keV, this peak is called the single-escape peak. If both photons leave the
detector we get a peak 1022 keV to the left of the full energy peak, this is
called the double-escape peak.

We are interested in the actual γ-ray energies emitted from the nucleus, and
only in the full energy peak is the total energy preserved. We therefore need to
know the response function of all the detectors for all γ-ray energies.

The response functions for the 28 NaI detectors in CACTUS were found by
measuring the following ten monoenergetic γ-rays from known sources and in-
beam experiments: 122, 245, 344, 662, 1173, 1333, 1836, 4439, 6130 og 15110
keV [26]. Further, we obtain the response functions for all γ-ray energies by
interpolating between the known response functions. First the full energy peak
and the single- and double escape peaks are removed, to simplify the interpolation
of the Compton background and the prominent peaks. The interpolation of the
prominent peaks are done by placing a Gaussian distribution at the interpolated
peak positions with the proper intensity and energy width. Handling the Compton
background is more complicated because the distribution is varying depending on
the full energy, see Fig. 3.9.

The energy E transferred from a photon to an electron depends on the energy
of the incoming photon

E = Eγ −
Eγ

1+ Eγ

mec2 (1− cos(θ))
, (3.5)

where θ is the scattering angle and Eγ is the γ-energy. The electron mass is given
by me, and the speed of light is represented by c. The interpolation is performed
between γ-energies that correspond to the same scattering angle. Since the energy
of the electron depends strongly on Eγ and the scattering angle, this must be ac-
counted for by normalizing the interpolated spectrum. The interpolated Compton
background C between two known Compton backgrounds C1 and C2 is calculated
from the following formula

C(E) = (
dE
dθ

)−1
Eγ

[C1(E1)(
dE
dθ

)Eγ1 +
Eγ −Eγ1

Eγ2−Eγ1
(C2(E2)(

dE
dθ

)Eγ2−C1(E1)(
dE
dθ

)Eγ1)].

(3.6)
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Figure 3.9: Interpolation of the Compton part of the response functions C1 and C2,
illustrating the increase of ∆θ with the full energy Eγ . The figure is taken from
Ref. [26].

Here Eγ , Eγ1 and Eγ2 are the full energies for the interpolated spectrum and the
reference spectra, respectively. The quantities E, E1 and E2 are the corresponding
energies that the electron deposits in the detector due to Compton scattering into
a angle θ . The terms C(E), C1(E1) and C2(E2) represent the normalized number
of counts for the corresponding energy deposited in each spectrum, see Fig. 3.9.

3.7.2 Folding iteration method

Through the folding iteration method we corrected for incomplete energy contri-
butions from the total γ-ray spectrum, and a spectrum is created that contains the
true energy of the incoming γ-rays. This spectrum is called an unfolded spectrum.
The folding of a spectrum is described through the following expression [26],

f1
f2
...
fN

=


R11 R12 . . . R1N
R21 R22 . . . R2N

...
... . . .

...
RN1 RN2 . . . RNN




u1
u2
...

uN

 , (3.7)

or in short form: f = Ru, where R is the response matrix , f and u are the folded
and unfolded spectrum respectively. Through an iterative procedure where we
start with a trial function u, which is folded and compared to the observed spec-
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trum we obtain a better and better unfolded spectrum. This is performed through
four steps [26]:

(1) Define a trial function u0 equal to the observed spectrum r.

(2) Calculate the first folded spectrum by, f 0 = Ru0.

(3) The next trial function is set equal the previous one plus the difference r−
f 0,

u1 = u0 +(r− f 0).

(4) Fold once more and obtain a new f 1 that is used to obtain the next trial
function,

u2 = u1 +(r− f 1).

These steps are repeated until f i ∼ r, where i denotes the number of iterations. If
one were to calculate the unfolded spectrum through the exact matrix inversion,
u = R−1r, one would obtain high oscillations from channel to channel. This is
because even small variations in R causes significant variations in R−1. If we
proceeded with higher iterations the unfolded spectrum would become more and
more similar to the exact solution. We therefore terminate the iteration when
the folded spectrum agrees with the observed spectrum within the experimental
uncertainties. Usually this is obtained after about ten iterations, for nuclei similar
to the ones studied here.

3.7.3 The Compton subtraction method
The Compton subtraction method produces a less fluctuating unfolded spectrum
u0. As a starting point the unfolded spectrum obtained from the folding iteration
method is used. A Compton-like spectrum is extracted, which can be strongly
smoothed, since it has no abrupt peak structures [26]. The Compton part together
with the single-escape, double-escape and annihilation peaks are subtracted from
the observed spectrum. The first step in the method is to define a spectrum equal
to the observed spectrum minus the Compton contribution, given by

v(i) = p f (i)u0(i)+w(i), (3.8)

where p f u0 is the contribution from the full energy peak u f , and w = us +ud +ua
is the contribution due to single escape, double escape og annihilation processes,
expressed as

us(i− i511) = ps(i)u0(i) (3.9)

ud(i− i1022) = pd(i)u0(i) (3.10)
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Figure 3.10: The uppermost panel gives the observed raw γ-spectrum, while the
middle panel is the unfolded spectrum, which after folding gives us the folded
spectrum displayed in the lowest panel. All γ-ray spectrums are for the 163Dy
nucleus taken at excitation energy between 4−6 MeV.
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ua(i511) = ∑
i

pa(i)u0(i), (3.11)

where i511 and i1022 correspond to the channels with the energies 511 and 1022 keV,
respectively. The probabilities p f , ps, pd and pa are taken from Table 1 in Ref. [26].
The contributions in v(i) have to be smoothed by an appropriate energy resolution.
The spectra u f , us and ud have an energy resolution determined by both the exper-
imentally observed spectrum (1.0 FWHM) and the response matrix (0.5 FWHM).
Therefore the resolution is

√
1.02 +0.52 = 0.87. To obtain the experimental res-

olution, an additional smoothing of 0.5 FWHM is performed. The ua spectrum
will have all counts in channel i511 and must be smoothed with a resolution of 1.0
FWHM. Now we are able to determine the Compton background by

c(i) = r(i)− v(i) (3.12)

This spectrum is smoothed with a additional 1.0 FWHM. Then the Compton term
c and the peaks contained in the expression w are subtracted, and we correct for
the full energy probability p f (i):

u(i) = [r(i)− c(i)−w(i)]/p f (i). (3.13)

Finally, we compute the true distribution of the γ-rays by correcting for the energy-
dependent total γ detection efficiency εtot ,

U(i) =
u(i)

εtot(i)
. (3.14)

The total γ-efficiency is given in ref. [26].

In Fig. 3.10 the result of this method is presented for the nucleus 163Dy at
excitation energy between 4− 6 MeV. The uppermost panel gives the observed
raw γ-spectrum, while the lowest panel shows the folded spectrum. We observe
that the folded spectrum shows a strong resemblance with the raw spectrum, this
indicates that the method is reliable. The desired unfolded spectrum is displayed
in the middle panel.
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Chapter 4

The Oslo method

Both the level density and the γ-ray strength function can be extracted from one
and the same experiment by use of the Oslo method. The starting point of the
method is the first generation matrix, which will be obtained in the first section.
The method is built upon the Brink-Axel hypothesis, which will be discussed in
Sec. 4.2. In the following sections details on how the level density and the γ-ray
strength function are derived from this hypothesis will be presented.

4.1 The first generation matrix

When an energy level below the neutron binding energy in an excited nucleus is
populated, it will decay through a cascade of γ-rays. For the further analysis we
want to extract the first γ-rays emitted in each such cascade. These γ-rays are
used to construct the so-called first generation matrix, where the excitation energy
is given versus the energy of the primary γ-rays. By normalizing the primary γ-
ray spectrum to unity for each excitation energy, the first generation matrix will
represent the decay probability for each γ-ray with energy Eγ decaying from a
certain excitation energy Ei:

Ei

∑
Eγ=Emin

γ

P(Ei,Eγ) = 1. (4.1)

The first generation matrix is not straightforward to construct, because it cannot
be experimentally resolved which γ-ray in a cascade that is emitted first. Since
the detector registers all γ-rays in a cascade simultaneously, a subtraction method
is developed to separate the primary γ-rays from the rest of the cascade [27]. An
illustration of the method is given in Fig. 4.1. If we assume that an initial energy
level Ei can decay by γ1,γ2,γ3, ...,γ j, with decay probability ω i

1,ω
i
2,ω

i
3, ...,ω

i
j,
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CHAPTER 4. THE OSLO METHOD

Figure 4.1: Illustration of the method used to extract the primary γ-rays. Gamma-
rays from different excitation energy regions are obtained by setting different gates
in the unfolded particle-γ coincidence matrix. The illustration is based on Fig. 1
found in Ref. [30].

one can obtain the first generation spectrum for the level Ei by subtracting the
γ-ray spectra f j that correspond to the energy levels E j from the spectrum fi. The
subtraction can then be expressed as

hi = fi−gi, (4.2)

where
gi = ∑

j
ni

jω
i
j f j. (4.3)

Here the coefficients ω i
j represent the probability (∑ωi = 1) of decay from bin i to

bin j (each excitation energy bin is 120 keV wide). Because the different levels are
populated with different probabilities, one must account for this when subtracting
the weighted sum gi from fi. Therefore the coefficients ni are determined such
that the area of spectrum fi multiplied by ni corresponds to the same numbers of
cascades. The particle singles cross section σ is proportional to the number of
populated states and therefore also proportional to the number of cascades:

ni
j =

σi

σ j
, (4.4)

Where σi and σ j is the cross section measured for excitation region i and j, re-
spectively. Further, we can calculate the average γ-ray multiplicity 〈M〉, which
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4.1. THE FIRST GENERATION MATRIX

is related to the γ-ray energy Eγ . We assume an N-fold population of an excited
level E. The decay from this level will result in N γ-ray cascades, where the ith
cascade contains Mi γ-rays. The average γ-ray energy

〈
Eγ

〉
is equal to the total

energy carried by the γ-rays divided by the total number of γ-rays [32]:〈
Eγ

〉
= N · E

∑
N
i=1 Mi

=
E

1
N ∑

N
i=1 Mi

=
E
〈M〉

. (4.5)

From this we obtain the expression for the average multiplicity

〈M〉= E〈
Eγ

〉 . (4.6)

The average γ-ray multiplicity 〈Mi〉 can thus be calculated for each excitation
energy bin i. If A( f j) represents the number of counts (area) in the spectrum f j,
the cross section σ j is proportional to A( f j)/

〈
M j
〉
, and accordingly

ni
j =

A( fi)/〈Mi〉
A( f j)/

〈
M j
〉 =

A( fi)
〈
M j
〉

A( f j)〈Mi〉
. (4.7)

A small correction to Eq. (4.7) can be useful to introduce in order to compensate
for an improper choice of weighing function ωi j. We start by substituting g with
αg, where α is close to unity. The area of the primary γ-ray spectrum is then

A(h) = A( fi)−αA(g), (4.8)

which corresponds to a γ-ray multiplicity of one unit. Since the number of first
generation γ-rays in the spectrum fi equals A( fi)/〈Mi〉, A(hi) is also given by

A(h) =
A( fi)
〈Mi〉

. (4.9)

Combining Eqs. (4.8) and (4.9) we obtain

α =
(

1− 1
〈Mi〉

)
A( fi)
A(g)

. (4.10)

The parameter α can be varied in order to obtain the best agreement of the areas
A(hi), A( fi) and A(gi). However, the correction should not exceed 15%, if a
greater correction is necessary, then improved weighting functions ωi j should be
determined instead.

The weighting functions ω i
j correspond to the first generation γ-spectrum h.

This relationship is utilized when determining ω i
j (and h) through a fast converg-

ing iterative procedure [27]. The method is composed of the following four steps:
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CHAPTER 4. THE OSLO METHOD

(1) Apply a trial function ω i
j.

(2) Calculate hi.

(3) Transform hi to ω i
j, giving hi the same energy calibration as ω i

j and normal-
ize the area of hi to unity.

(4) If ω i
j(new)≈ ω i

j (old) finish the iterations, else proceed from step 2.

This method is based on some assumptions. The main assumption is that the
γ-decay from a certain energy region is independent of the history of formation.
This means that the levels populated by γ-decay from higher lying levels gives rise
to exactly the same γ-emission pattern as the levels populated directly through the
(3He,3 He′) or (3He,α) reactions, in the same energy region. This is fulfilled if
the following two criteria are met

(i) The reaction (3He,α) or (3He,3 He′) populate approximately the same spin
in each excitation interval.

(ii) About equally many states of positive and negative parity are populated in
each excitation energy bin.

For each step in a γ-cascade the spin distribution becomes wider, however the av-
erage spin is approximately preserved when the cascade reaches the yrast line1 [30].
Decay to the ground band is denoted as side feeding. From here the decay fol-
lows the ground band until the ground state is reached. One can hence obtain
information about initial spin distribution by investigating the intensity of the side
feeding to the ground band as a function of excitation energy [28, 29]. It was
shown that the intensity of the side feeding to the ground state band transitions
remains approximately the same over all excitation energies [30]. Therefore one
can conclude that the spin population is approximately the same over the energy
region under consideration [30].

Due to the dominance of E1 dipole transitions from the states populated in
the quasi-continuum, there is a successive parity change in the cascade. As a
result, γ-transitions subtracted from the γ-ray spectra in the subtraction method
originate from states with opposite parity of those populated after emission of
the first generation γ-rays [30]. If the population of both parities are equal, as is
the case for low excitation energies [33], this would not be a problem. One can
assume that this is correct for the whole energy range because the damping width2

1The yrast line refers to states of the nucleus which has the lowest excitation energy possible
for a given angular momentum.

2The damping width is connected to the superposition of wave functions from neighboring
levels [34].
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4.1. THE FIRST GENERATION MATRIX

is much larger than the average separation of single particle states, this results in
an effective smearing of the single particle strengths [30].

At low excitation energy there exist strong single particle effects. As a re-
sult the γ-emission is not statistical in this region. In the next sections the γ-ray
strength function and the level density will be extracted from the first generation
matrix. When doing this we will exclude a region of low excitation energy due to
the non-statistical decay. The limits used are equal to 2.01 MeV and 2.24 MeV
in 163Dy and 164Dy, respectively. The first generation method has a weakness in
that it can not completely exclude yrast transitions from the first generation ma-
trix. This is due to that the spin population distribution between low and high
excitation regions are not taken into consideration in the first generation method.
In addition there are limitations in the electronics that make the low γ-ray energy
region not reliable. For these reasons we will also exclude the region in the first
generation matrix that corresponds to γ-energies below 1.0 MeV and 1.2 MeV in
163Dy and 164Dy, respectively. All the limits are indicated in the first generation
matrices displayed in Figs. 4.2 and 4.3, for 163Dy and 164Dy, respectively.
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Figure 4.2: The first generation matrix obtained for the 163Dy nucleus. The solid
lines in the spectrum gives the portion of the matrix which is used in the further
analysis, see text of Sec. 4.1.
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Figure 4.3: The first generation matrix obtained for the 164Dy nucleus. The solid
lines in the spectrum gives the portion of the matrix which is used in the further
analysis, see text of Sec. 4.1.

4.2 The Brink-Axel hypothesis

The original Brink-Axel hypothesis [17, 18] states that the giant electric dipole
resonance (GEDR) can be built on every excited state, and that the properties of
the GEDR does not depend on the temperature of the nuclear state on which it is
built [37]. This hypothesis can be generalized to include any type of collective
excitation. This results in that the first generation matrix can be factorized as

P(Ei,Eγ) ∝ T (Eγ)ρ(Ei−Eγ), (4.11)

where P(Ei,Eγ) is the experimentally obtained and normalized first generation
matrix. The final excitation energy E f is given by the initial excitation energy
minus the emitted γ-ray energy Eγ , as illustrated in Fig. 4.4. The decay probability
of a γ-ray from an excited level Ei to a final level E f = Ei−Eγ , is proportional
to the product of the γ-transmission coefficient T (Eγ) and the level density at the
final excitation energy ρ(E f ). The above factorization is based on the essential
assumption that the system is fully thermalized prior to γ-emission. The reaction
can be described as a two-stage process of which the first is the formation of the
compound nucleus, which subsequently decays in a manner that is independent
of the mode of formation [31]. The formation of a complete compound state is as
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4.2. THE BRINK-AXEL HYPOTHESIS

Figure 4.4: The final energy level is give by the initial excitation energy minus the
emitted γ-ray energy. The figure is taken from Ref. [1].

fast as≈ 10−18 s, significantly less than the typical life time of a state in the quasi-
continuum which is≈ 10−15 s. Thus, the nucleus ”forgets” how it was formed and
the decay process is statistical. Full thermalization is therefore expected to occur.

Experimentally it has been shown that the Brink-Axel hypothesis is invalid for
high temperatures (above 1-2 MeV). Especially the width of the GEDR has shown
to depend on the temperature of the final states [35]. Fermi-liquid models suggest
a T 2 dependence for this effect [20, 36]. However, for the relatively low exci-
tation energy range which is under study here (T ≤ 0.55 MeV), the temperature
dependence of the γ-transmission coefficient is not well known experimentally.
The following assumptions are made [37]:

(i) The temperature varies little within the experimentally accessible excitation
energy range (roughly T ∝

√
E).

(ii) The variations in the γ-transmission coefficient with temperature are small,
roughly a second order effect in T [20].

Within these assumptions we can replace the temperature dependence of the trans-
mission coefficient by a constant, average value 〈T 〉 of the temperature. In this
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way we recover the applicability of the generalized Brink-Axel hypothesis. The
systematic error obtained by this approximation is largest for low energies (below
2-3 MeV) of the γ-ray transmission coefficient where it can reach ∼ 20% [37].

Due to the normalizing condition given in Eq. (4.1), also the right hand side
of Eq. (4.11) must be normalized to one at each excitation energy, this yields

P(Ei,Eγ) =
T (Eγ)ρ(Ei−Eγ)

∑E ′γ=Emin
γ

T (E ′γ)ρ(Ei−E ′γ)
. (4.12)

Using this equation and applying a least χ2-fit to the primary γ-ray data we derive
the functions ρ and T [1]. However, the level density and γ-transmission coef-
ficient obtained from the χ2 minimization is only one solution among an infinite
number of solutions that reproduce the first generation matrix. All the solutions
are related to each other through the two transformations [1]

ρ̃(Ei−Eγ) = A exp[α(Ei−Eγ)]ρ(Ei−Eγ) (4.13)

and
T̃ (Eγ) = B exp(α Eγ)T (Eγ), (4.14)

where A,B and α are constants. These constants are determined by normalizing
Eqs. (4.13) and (4.14) to known experimental data.

4.3 Normalizing the level density
The parameter α determines the slope of both the level density ρ and the γ-
transmission coefficient T , while the parameter A determines the magnitude of ρ .
We therefore normalize Eq. (4.13) to known experimental data and thereby pick
out the slope and magnitude which give us the most probable physical solution,
from the infinite number of other options. At low excitation energy we assume
that all levels are known. Information on discrete levels at low excitation energy
are found in the database NNDC [38]. We normalize ρ to these known levels, the
result can be viewed in Figs. 4.5 and 4.6 for 163Dy and 164Dy respectively, where
the solid line represents the known levels and the dots are our experimental data
points. The region between the arrows is used for the normalization.

The experimental level density is normalized to the level density determined
from the known neutron resonance spacing data [19] at the neutron binding en-
ergy Bn. For the level density at Bn a Fermi gas model proposed by Gilbert and
Cameron is used [7]:

ρ(U,J) =
√

π

12
exp(2

√
aU)(2J +1)exp

[
−(J +1/2)2/2σ2]

2
√

2πσ3
(4.15)
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ρ(U) =
√

π

12
exp(2

√
aU)

a1/4U5/4
1√

2πσ
, (4.16)

where ρ(U,J) represents the level density for both parities for a given spin J, and
ρ(U) is the level density for all spins and parities. The parameter σ gives the spin
dependence and a is the level density parameter. The intrinsic excitation energy is
given by U . The neutron resonance spacing D for s-wave neutron capture3 can be
expressed as follows:

1
D

=
1
2

[
ρ(Bn,J = I +

1
2
))+ρ(Bn,J = I− 1

2

]
, (4.17)

since all levels are accessible in neutron resonance experiments, and it is assumed
that both parities contribute equally to the level density at the neutron binding en-
ergy Bn [1]. The spin of the target nucleus in a neutron resonance experiment is
represented by I. When combining Eqs. (4.15)- (4.17) one can obtain an expres-
sion for the level density at the neutron binding energy given by

ρ(Bn) =
2σ2

D
1

(I +1)exp(−(I +1)2/2σ2)+ I exp(−I2/2σ2)
, (4.18)

where the spin-cutoff σ is calculated as follows [7]

σ
2 = 0.0888

√
aUnA2/3, (4.19)

and A is the mass number of the nucleus. It is assumed that σ has an error of about
10% due to shell effects [7].

The extracted experimental level density cannot be compared directly to the
calculated level density at the neutron binding energy, since the level density is
only measured up to about E = Bn− 1 MeV. To reach the neutron binding en-
ergy we extrapolate the extracted experimental level density using the back-shifted
Fermi gas level density [7, 8]:

ρbs(E) = η
2
√

a(U)
12
√

2a1/4(U)5/4σ
, (4.20)

where η is a constant assigned to adjust ρbs to the experimental level density at
Bn. The intrinsic excitation energy U is estimated by U = E−C1−Epair, where
C1 is the back-shift parameter equal to C1 = −6.6A−0.32 MeV, and A is the mass
number. The pairing energy Epair is based on the pairing gap parameters ∆p and ∆n
evaluated from odd-even mass differences [39] according to Ref. [40]. The spin-
cutoff parameter σ is given by σ2 = 0.0888aTA2/3, where the nuclear temperature

3Absorption of a neutron followed by emission of γ-rays, (n,γ).
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Figure 4.5: Normalizing procedure of the level density of 163Dy at low excitation
energy. The data points between the arrows are adjusted to known levels.
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Figure 4.6: Normalizing procedure of the level density of 164Dy at low excitation
energy. The data points between the arrows are adjusted to known levels.
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Figure 4.7: Normalizing the level density of 163Dy to the level density at the
neutron binding energy by using an interpolation of the Fermi gas level density.
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Figure 4.8: Normalizing the level density of 164Dy to the level density at the
neutron binding energy by using an interpolation of the Fermi gas level density.

39



CHAPTER 4. THE OSLO METHOD

Nucleus Epair a C1 Bn D ρ(Bn) η

(MeV) (MeV−1) (MeV) (MeV) (eV) (106 MeV−1)
163Dy 0 17.653 -1.293 6.271 62 (5) 0.969(125) 0.215
164Dy 0.832 17.747 -1.291 7.658 6.8 (6) 1.762(215) 0.179

Table 4.1: Parameters used for the level density with the back shifted Fermi gas
model.

is described by T =
√

U/a. In Figs. 4.7 and 4.8 the normalization of the level
density according to the calculated value of ρ(Bn) is displayed for 163Dy and
164Dy, respectively.

Recently, an improved method to calculate the level density at the neutron
binding energy has been developed by Egidy and Bucurescu [9], as discussed in
chapter 2. The spin-cutoff parameter of the new model is calculated from the
expression [9]

σ
2 = 0.0146A5/3 1+

√
1+4aU
2a

. (4.21)

In addition, new improved measurements on the neutron resonance spacing have
been accumulated. However, in the present analysis the method of Gilbert and
Cameron is still employed. The reason for this is that results achieved from previ-
ous experiments on 160.161,162Dy have been extracted by use of this model, com-
paring the results will thus be easier. When extracting the level density at the
neutron binding energy from the model of Gilbert and Cameron we obtain values
that are 34% and 32% lower than for what is achieved by the Egidy and Bucurescu
model for 163Dy and 164Dy, respectively. In Table 4.1 follows a list of the param-
eters used for normalizing the level density.

It is important to note that the error bars displayed in all the figures only reflect
the statistical uncertainties, and hence do not reflect the uncertainties related to the
model used for normalization.

4.4 Normalizing the γ-transmission coefficient
All that is left to determine in order to normalize the γ-transmission coefficient
is the constant B, which represents the magnitude of T . The γ-transmission co-
efficients T for multipole type XL are related to the corresponding γ-strength
functions by

TXL(Eγ) = 2πE2L+1
γ fXL(Eγ). (4.22)

As described in chapter 2, the γ-decay taking place in the quasi-continuum is
dominated by dipole transitions. Here one assumes that only such transitions give
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a significant contribution to the γ-strength function. The observed T can then be
described as a sum of only the E1 and M1 strength functions

BT (Eγ) = B[TE1(Eγ)+TM1(Eγ)] = 2πE3
Eγ

[ fE1(Eγ)+ fM1(Eγ)]. (4.23)

The parameter B represents the unknown normalization coefficient. In addition
we assume that the number of positive and negative parity states are equal inde-
pendent of energy and spin [21],

ρ(Ei−Eγ , I f ,±Π f ) =
1
2

ρ(Ei−Eγ , I f ). (4.24)

The parameter B can be determined from the average total radiative width of com-
pound states 〈Γγ〉. The experimental 〈Γγ〉 with excitation energy E, spin I and
parity Π can be written in terms of the strength functions fXL(Eγ) [41]

〈Γγ(E, I,Π)〉= 1
2πρ(E, I,Π) ∑

XL
∑

I f ,Π f

∫ E

0
dEγT (Eγ)ρ(E−Eγ , I f ,Π f ). (4.25)

The summations run over all final levels with spin I f and parity Π f which are
accessible by γ radiation with energy Eγ , and multipolarity XL. By combining
Eqs. (4.23) and (4.24) in the expression (4.25), we can express the average total
radiative width 〈Γγ〉 of neutron s-wave capture resonances with spin It ± 1

2 and
excitation energy E = Bn

〈Γγ(Bn, It±
1
2
,Πt)〉 =

1
4πρ(Bn, It± 1

2 ,Πt)

∫ Bn

0
dEγBT (Eγ)ρ(Bn−Eγ)

×
1

∑
J=−1

g(Bn−Eγ , It±
1
2

+ J), (4.26)

where It and Πt denotes the spin and parity, respectively, of the target nucleus
from the (n,γ)-reaction, and ρ is the experimentally obtained level density. Fur-
thermore the level density is expressed as the product of the total level density and
the sum of the spin distribution g given by [7]

g(E, I) =
2I +1
2σ2 exp

[
−(I +1/2)2

2σ2

]
, (4.27)

where σ is the same spin-cutoff parameter as the one used in Eq. (4.20). Fur-
ther g is normalized so that ∑I g ≈ 1. The experimental width 〈Γγ〉 of Eq. (4.26)
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Figure 4.9: Extrapolation of the γ transmission coefficient T in 163Dy. The data
points between the arrows are used for fitting the extrapolation.
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Figure 4.10: Extrapolation of the γ transmission coefficient T in 164Dy. The data
points between the arrows are used for fitting the extrapolation.
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Nucleus It
〈
Γγ

〉
Bn D ρ(Bn)

(meV) (MeV) (106 MeV−1)
163Dy 0 112 6.271 62(5) 0.969(125)
164Dy 5

2 113 7.658 6.8(6) 1.762(215)

Table 4.2: Parameters used to normalize the γ-transmission coefficient.

is then simply expressing the weighted sum of the contributions with spin It±1/2.

As mentioned in the end of chapter 3, the region in the first generation matrix
that corresponds to γ-ray energies below 1.0 MeV and 1.2 MeV for 163Dy and
164Dy, respectively, are not taken into consideration. In addition, the region that
corresponds to γ-energies of Eγ > Bn− 1 MeV suffer from bad statistics. The
γ-transmission coefficient T is therefore extrapolated in these regions using an
exponential function. The data points between the arrows in Figs. 4.9 and 4.10 are
used for fitting the extrapolation of 163Dy and 164Dy, respectively. The parameters
used in the extrapolations are given in Table 4.2.
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Chapter 5

Experimental level density and
thermodynamic properties

In this chapter the final results extracted with the Oslo method will be presented.
In the first section the level densities are shown, further we will look into thermo-
dynamic properties derived from the level density. Results obtained from both the
micro-canonical and the canonical ensemble are displayed.

5.1 The experimental level density

Rare earth isotopes are medium heavy well deformed nuclei. The fact that they
are heavy and thus contain many nucleons means that there are many ways the
nucleus can configure and therefore there are more degrees of freedom than for
smaller systems. The nuclei 163,164Dy exist in the mid-shell region, which makes
a considerable amount of accessible states. The proton number of Z = 66 is right
in between the closed shells of 50 and 82 protons. Also the neutron numbers
of N = 97 and N = 98 for 163Dy and 164Dy, respectively, are far away from the
closed shells at 82 and 126 neutrons. Thus we observe a high level density for
these nuclei. The level densities are displayed in Figs. 5.1 and 5.2 for 163Dy and
164Dy, respectively. At low excitation energy a step-like structure is observed for
164Dy. Similar structures are observed in several rare earth isotopes, in particular
for even-even nuclei. The discrete levels below the plateau located beneath 1 MeV
of excitation energy are caused by rotational modes of the nucleus. The plateau
indicates that there are no new accessible levels within that energy region. In the
ground state all the protons and neutrons are coupled together with other protons
and neutrons in time reversed orbitals, so-called Cooper pairs. As the energy in-
creases the pairs will break up. The energy to break up proton pairs is calculated
to be 1750 keV in164Dy, and 1664 keV to break up neutron pairs, by evaluating
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Figure 5.1: Experimental level density for 163Dy. The data points between the
arrows are normalized to known levels at low excitation energy and to the level
density at the neutron binding energy using an interpolation with the Fermi gas
level density, as described in chapter 4.
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Figure 5.2: Experimental level density for 164Dy. The data points between the
arrows are normalized to known levels at low excitation energy and to the level
density at the neutron binding energy using an interpolation with the Fermi gas
level density, as described in chapter 4.
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odd-even mass differences [40]. We observe in Fig. 5.2 that the level density for
164Dy gains a steeper slope above approximately 1.6 MeV, this is interpreted as
the first pair break-up. With two unpaired nucleons there are more configurations
accessible and hence a higher level density is observed. Equivalently the energy
needed to break up proton pairs in 163Dy is 1322 keV, whereas the nucleus al-
ready has an unpaired neutron. However, due to a smearing effect of the valence
neutron in 163Dy we can not identify the breaking of Cooper pairs in this nucleus
by studying the level density. With exception of the step structure at low energy
in 164Dy the level density in both nuclei increases smoothly. We observe that the
level density in the even-odd 163Dy nucleus is higher than in the even-even 164Dy
nucleus as a function of excitation energy. The even-odd nucleus has an uncou-
pled neutron in the ground state, and will have more quasi-particles as the energy
increases and Cooper pairs start breaking up.

One can note that the error bars in both Figs. 5.1 and 5.2 increase as a function
of excitation energy. This is due to less data accumulated for higher excitation
energies. Simply because we only look at decay from the neutron binding energy
down to the ground state, there are very few levels decaying to the levels corre-
sponding to the last data points. At low excitation energy we have more counts
and hence the level density can be determined with better precision.

5.2 Experimental thermodynamic properties

The thermodynamic properties are extracted by the use of statistical mechanics.
The nucleus can be considered as an isolated system and one would therefore
think that if reflects properties of the micro-canonical ensemble. However, the
micro-canonical ensemble produces some controversial results where one can ob-
tain negative temperatures and heat capacities. It is challenging for theoreticians
to explain these negative values. Some prefer therefore to apply the canonical
ensemble where one avoid this problem. In the following sections we will derive
results from both ensembles. An obvious objection for using either of these en-
sembles is that they are designed to describe macroscopic systems, which do not
apply to our systems consisting of 163 and 164 nucleons for 163Dy and 164Dy,
respectively. However, because of the lack of a model that describes such small
systems we choose to apply the current ensembles, but one must keep this in mind
when interpreting the results. A comparison of the two ensembles is given at the
end of this chapter.
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5.3 Micro-canonical ensemble

5.3.1 Entropy
The entropy S is described through the following expression

S = lnρ(E)+S0, (5.1)

where we have set the Boltzmann’s constant kB equal to unity for simplicity. The
level density is represented by ρ(E) and S0 is a constant. The third law of thermo-
dynamics states that as the temperature tends to zero (T → 0), so does the entropy
(S→ 0). We can utilize this law when normalizing the entropy in 164Dy. The
even-even nucleus 164Dy has only one accessible level in the ground state and we
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Figure 5.3: Entropy for 163,164Dy in the micro-canonical ensemble.

therefore normalize the entropy to zero at zero excitation energy. Whereas the
lowest lying states in the even-odd 163Dy nucleus involve the excitation of one
single particle state, and is interpreted as a single quasi-particle state. These states
are rather close in energy to the ground state and cause the entropy for 163Dy to
have a finite value already at low temperature.

The entropies derived from the micro-canonical ensemble are given in Fig. 5.3,
as a function of excitation energy. The entropies are, except for the error bars,
identical in form to the level densities of Figs. 5.1 and 5.2 which are plotted in
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logarithmic scale. This is as expected due to the relation S ∝ lnρ . The shape of
the entropy is therefore understood by using the same reasoning as in Sec. 5.1.

In macroscopic systems the entropy is considered an extensive quantity, that is
a quantity that is proportional to the size of the system. However, for nuclei where
the size of the system is small compared to the range of the strong interaction, this
does not hold. Instead indications have been found that the entropy is an extensive
function with respect to the number of quasi-particles [44]. In this case the entropy
can be expressed as S = nS1, where n is the number of quasi-particles and S1 is
the single quasi-particle entropy. This seems to be in agreement with our results,
see Fig. 5.4 where the entropy difference between 163Dy and 164Dy is displayed.
The entropy difference appears to be fluctuating around the mean value equal to
1.85 kB in the energy region above 1.5 MeV, independent of excitation energy.
This indicates that the entropy of the single quasi-particles is about ∼ 1.85 kB.
However, as the number of broken pairs increase every new broken pair will not
contribute as much to the level density and hence to the entropy. We therefore
expect that the entropies of the two nuclei will eventually coincide. Our results
from the micro-canonical ensemble indicates that this happens far above 5 MeV
of excitation energy, because the entropies does not approach each other in this
energy region.
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Figure 5.4: Entropy difference between 163Dy and 164Dy in the micro-canonical
ensemble. The solid line represents the average value found above an excitation
energy of 1.5 MeV.
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5.3.2 Temperature

The temperature of the micro-canonical ensemble is obtained by taking the deriva-
tive of the entropy with respect to energy. Obviously the constant S0 will cancel
under derivation, however even small changes in the factor lnρ will cause huge
fluctuations. To limit the sensibility the derivation is performed by a least square
fitting to a linear function over five bins, although we will loose some informa-
tion by this smoothing. The results can be viewed in Figs. 5.5 and 5.6 for 163Dy
and 164Dy, respectively. The error bars reflect the fluctuations of the derivation
method and the statistical uncertainties which is generated because the system is
very small. In both figures we observe a peak at low temperatures that needs com-
menting. We observe in Fig. 5.6 that the highest temperature in this peak exceeds
the excitation energy of the nucleus. This is obviously not a physical property,
but a result of trying to obtain the temperature in a region where there only exist
a few levels. Above the energy regions corresponding to the first pair break-up
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Figure 5.5: Temperature for 163Dy as a function of excitation energy in the micro-
canonical ensemble.

at ≈ 1.2 MeV and ≈ 1.6 MeV in 163Dy and 164Dy, respectively, the level density
increases significantly and the temperatures above this point can be considered
realistic. The negative slopes are caused by energy taken from the system in order
to break up pairs, and hence the temperature decreases. However, relatively large
uncertainties above the first break-up make it hard to determine in which regions
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Figure 5.6: Temperature for 164Dy as a function of excitation energy in the micro-
canonical ensemble.

the temperature decrease.

5.3.3 Heat capacity
In the micro-canonical ensemble one obtains the heat capacity by taking the deriva-
tive of the temperature with respect to energy. Since the temperatures displayed
in Figs. 5.5 and 5.6 have negative slopes in some regions, we will obtain negative
values of the heat capacities, as seen in Figs. 5.7 and 5.8 for 163Dy and 164Dy, re-
spectively. Interpreting these negative values is a controversial topic as discussed
in [42, 43]. As described in the previous section the negative values can originate
from the breaking of Cooper pairs.
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Figure 5.7: Heat capacity for 163Dy as a function of excitation energy in the micro-
canonical ensemble.
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Figure 5.8: Heat capacity for 164Dy as a function of excitation energy in the micro-
canonical ensemble.
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5.4 Canonical ensemble
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Figure 5.9: Entropy for 163,164Dy as a function of temperature in the canonical
ensemble.

5.4.1 Entropy

Due to the strong smoothing introduced by the transformation to the canonical
ensemble as described in chapter 2, we do not observe clear transitions between
the various quasi-particle regimes as we did in the micro-canonical ensemble,
but only the transition where all pairing correlations are quenched as a whole.
The results for the entropies in the canonical ensemble for 163,164Dy are given in
Fig. 5.9. We observe a clear entropy difference between the two nuclei at tem-
peratures below T ≤ 0.5− 0.6 MeV, where the even-odd 163Dy nucleus has the
highest entropy. For the lowest temperature we observe an entropy difference
of ≈ 2 kB between the two nuclei, which is of the same order as in the micro-
canonical ensemble. At around T = 0.5− 0.6 MeV the entropy of the even-odd
and even-even system approach each other, this corresponds to an average excita-
tion energy of 〈E〉= 2.6−4.2 MeV in 163Dy, and 〈E〉= 3.4−5.3 MeV in 164Dy.
Above this region the entropy curves coincide and display almost identical behav-
ior. Also the entropies of 161,162Dy coincide at approximately the same excitation
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energy [44], and the form of these entropies are very similar to what we observe
in 163,164Dy. This is understood because the pairing plays a less significant role as
the level density becomes high, as already mentioned in Sec. 5.3.1. However, in
the micro-canonical ensemble indications where found that the effect of pairing
does in fact play a role even far above 5 MeV of excitation energy. The different
results are partly due to the smoothing introduced in the canonical ensemble, and
partly because we are dealing with two different physical systems.

We observe in Fig. 5.9 that the entropies are given up to a temperature of
1 MeV, this correspond to an excitation energy of 15 MeV. It has been obtained
by extrapolating with the Fermi gas model above the neutron binding energies. A
similar extrapolation has been performed for the energies and heat capacities in
the canonical ensemble. These will be discussed in the next sections.

5.4.2 Energy
The average excitation energies 〈E〉 behave smoothly as a function of tempera-
ture, see Fig. 5.10. We observe that the 164Dy nucleus has a higher 〈E〉 than the
neighboring 163Dy nucleus as a function of temperature. In Ref. [45] a model
based on the canonical ensemble theory was applied to performed calculations for
nuclei around 162Dy. It was found that even-even, odd-even/even-odd and odd-
odd systems have different excitation energies at one and the same temperature,
where the even-even system requires the highest 〈E〉 value. This is also confirmed
by experimental data, for example in Ref. [4] for 160,161Dy.

5.4.3 Heat capacity
We observe the characteristic S-shape of the heat capacity of 164Dy in Fig. 5.11
which is interpreted as a fingerprint of phase transition. The S-shape is much
weaker for 163Dy, displayed in the same figure. In Ref. [46] two different critical
temperatures were discovered in the canonical ensemble using the method dis-
cussed in Ref. [47, 48]. The lowest critical temperature is explained by the first
break up of Cooper pairs. The second critical temperature is due to the contin-
uous melting of Cooper pairs at higher excitation energies. We see a significant
increase in the heat capacity around temperature T ≈ 0.45 MeV in the 164Dy nu-
cleus, which correspond to the first critical temperature. This first contribution is
strongest for 164Dy because this is an even-even nucleus and thus the first broken
pair represents a large and abrupt step in the level density and thereby a large con-
tribution to the heat capacity. The second critical temperature can be observed at
about T ≈ 0.6 MeV. The second critical temperature agrees with the region where
the entropy curves coincides, see Fig. 5.9. Similar features for the heat capacity
as discussed here are observed for 160,161Dy [4].
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Figure 5.10: Average excitation energy for 163,164Dy as a function of temperature
in the canonical ensemble.
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Figure 5.11: Heat capacity for 163,164Dy as a function of temperature in the canon-
ical ensemble.
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5.5 Comparison of the ensembles
In the thermodynamic limit, that is when the number of particles in the system ap-
proach infinity, the micro-canonical and canonical ensemble should produce the
same results. Our results show that we are clearly far away from the thermody-
namic limit. When comparing the entropies of the two ensembles we observe that
the importance of pair breaking above approximately 2.6 MeV of excitation en-
ergy for 163Dy and 3.4 MeV of excitation energy for 164Dy, can not be understood
by studying the entropies of the canonical ensemble. However, by investigating
the heat capacities in the canonical ensemble we get valuable information about
phase transitions. The nucleus is a very small system and we have shown that the
single quasi-particles in the low energy region which is under study here, have
strong influence on the thermodynamic properties. These properties do best come
to light when applying the micro-canonical ensemble rather than the canonical
ensemble, which only gives average properties. In this sense we obtain more
information when employing the micro-canonical ensemble. Another strong ob-
jection against using the canonical ensemble to describe the nucleus is that the
system is assumed to be in contact with a heat bath. What this heat bath could
be is hard to account for because the nuclear force has a very short range, and the
nucleus does normally not share its excitation energy with its surroundings.

It is clear that neither of the ensembles are ideal to describe a system like the
nucleus, however it would be fair to conclude that the micro-canonical ensemble
seems to be the most suited one.
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Chapter 6

Experimental results on the γ-ray
strength function

In this chapter we will examine the results obtained for the γ-ray strength function.
The most important contributions to the γ-ray strength function, in the low energy
region, are thought to be the GEDR, the GMDR and the 3 MeV pygmy resonance.
In the following we will fit models for these resonances to the experimental data
points and compare with the results found for 160,161,162Dy. In Sec. 6.3 and 6.4
we will discuss the results in light of what has been found through the two-step
cascade (TSC) method.

6.1 The predicted γ-ray strength function fitted to
experimental data

The total predicted γ-ray strength function is fitted to the experimental data points.
The predicted γ-ray strength function can be described by

f = κ( fE1 + fM1)+ fpy, (6.1)

where κ is a normalization constant, and fE1, fM1 and fpy are functions repre-
senting the contributions from the GEDR, GMDR, and the pygmy resonance,
respectively. They are each characterized by their strength, width, and centroid
as described in chapter 2. We perform the fit to the experimental data points
through a least square method where the normalization constant κ in addition
to the strength, width and centroid of the pygmy resonance are used as free pa-
rameters. The GEDR and GMDR parameters are taken from the systematics of
Ref. [19], and are listed in Tables 6.1 and 6.2, respectively.

The KMF model describing the GEDR is temperature dependent. We assume
that the temperature is constant and found that the temperature of T = 0.3 MeV
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provides the best fit to the experimental data. The results are displayed in Figs. 6.1
and 6.2 for 163Dy and 164Dy, respectively. The solid line in the figures gives the
total predicted strength and the points represent the experimental data. In Fig. 6.1
we have a very good fit to the experimental points for 163Dy , there is however a
region around 5 MeV which does not fit well with the predicted strength. In the
next section a different fit is applied to include this area.

We observe that the points close to the neutron binding energy in both nuclei
have great uncertainties and do not follow the predicted strength. These data are
a result of direct decay to the ground state and the first excited states from states
at the neutron binding energy. The statistics in this region are so low that we can
not treat the strength function for such energies with certainty.

We see from Fig. 6.2 that the strength function follows the total predicted
strength nicely around the pygmy resonance in 164Dy. Above this point the ex-
perimental points show a significantly higher strength than the predicted strength.
Similar features have been observed in other nuclei, among these 116,124Sn [49]
and 208Pb [50] through (γ,γ ′) experiments. In these nuclei the structure is thought
to be governed by the so-called skin oscillation1. This is an E1 mode of the nu-
cleus first predicted by van Isacker [51] and Chambers [52]. It is located in the
excitation energy region of 6−10 MeV, in stable nuclei [53]. The mode has been
observed in nuclei with a high neutron to proton ratio N/Z. It is interpreted as an
out of phase oscillation of the neutron enriched periphery of the nucleus versus the
proton and neutron core [51, 52]. It is also observed in the nuclei 116,117Sn in an
experiment performed at the OCL through the reactions, (3He,α) and (3He,3 He′),
respectively. Although, the study of 116,117Sn is ongoing and not yet published.
Dysprosium nuclei have a higher neutron excess than 116,117Sn, with a neutron
to proton ratio between N/Z = 1.36−1.48 for the stable isotopes. It is therefore
likely that the same oscillation can take place in these nuclei. Due to the lower
binding energy in 163Dy, we do not have experimental data above ≈ 6 MeV and
can not observe the same effect in our extracted strength function.

A list of the 3 MeV pygmy resonance parameters and normalization con-
stants is given in Table. 6.3. In Table. 6.4 the same parameters are displayed
for 160,161,162Dy. When comparing the results we see that the width of the pygmy
resonance in 163,164Dy coincides with what is measured for 160,161,162Dy by use
of the same method. However, we do observe a higher strength in the 163,164Dy
nuclei, and the centroids are located at slightly higher energies.

1Also referred to as the pygmy dipole resonance (PDR).
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Nucleus EE1,1 σE1,1 ΓE1,1 EE1,2 σE1,2 ΓE1,2
(MeV) (mb) (MeV) (MeV) (mb) (MeV)

163Dy 12.10 208.9 3.04 16.13 208.9 5.27
164Dy 11.99 210.4 2.99 16.19 210.4 5.31

Table 6.1: Parameters used in the KMF model for the GEDR for 163,164Dy.

Nucleus EM1 σM1 ΓM1
(MeV) (mb) (MeV)

163Dy 7.50 0.84 4.00
164Dy 7.49 0.86 4.00

Table 6.2: Lorentz parameters used for the GMDR for 163,164Dy.

Nucleus Epy σpy Γpy κ

(MeV) (mb) (MeV)
163Dy 3.25(15) 0.70(17) 0.91(21) 1.89(16)
164Dy 3.31(4) 0.50(3) 1.19(10) 1.49(4)

Table 6.3: Fitted 3 MeV pygmy resonance parameters and normalization con-
stants.

Reaction Epy σpy Γpy κ

(MeV) (mb) (MeV)
(3He,α)160Dy 2.63(17) 0.33(7) 1.57(40) 0.95(12)
(3He,α)161Dy 2.68(8) 0.44(5) 1.26(19) 1.34(10)

(3He,3 He′)161Dy 2.80(5) 0.43(3) 1.26(11) 1.30(5)
(3He,α)162Dy 2.69(14) 0.36(7) 1.32(31) 0.96(11)

(3He,3 He′)162Dy 2.59(5) 0.37(2) 1.36(14) 0.84(4)

Table 6.4: Fitted 3 MeV pygmy-resonance parameters and normalization con-
stants for 160,161,162Dy, taken from Ref. [4].
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Figure 6.1: The γ-ray strength function for 163Dy. The solid line represents the
predicted strength made up by the tail of the GEDR, the 3 MeV pygmy resonance
and the GMDR. The temperature is set to T = 0.3 MeV.
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Figure 6.2: The γ-ray strength function for 164Dy. The solid line represents the
predicted strength made up by the tail of the GEDR, the 3 MeV pygmy resonance
and the GMDR. The temperature is set to T = 0.3 MeV.
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Figure 6.3: The γ-ray strength functions of 160,161,162Dy. The black and blue
circles are measured with the (3He,α) and (3He,3He′) reactions, respectively. The
data are taken from Ref. [4].
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6.2 Including one extra Lorenzian function in the
predicted γ-ray strength function

Previously, one has predicted only one pygmy resonance located at around 3 MeV.
However, we observe in addition what appears to be a non statistical region at
about 5 MeV, both for 163Dy and 164Dy. When comparing to dysprosium nuclei
studied in the past, see Fig. 6.3, one observes the same feature, although not as
pronounced as in the present strength functions. The previous experiments on
dysprosium at the OCL collected far less data than for this experiment. It might
therefore be that the strength functions of 160,161,162Dy would be more similar to
what we observe in 163,164Dy if the statistics were better.

The strength functions have been fitted with one additional Lorentzian func-
tion, similar to the one used to fit the 3 MeV resonance, to include the extra
strength found around 5 MeV. The results can be viewed in Figs. 6.4 and 6.5 for
163Dy and 164Dy, respectively. We observe that the new fit follows the experimen-
tal data points surprisingly well for the 163Dy nucleus. A substantial improvement
is also obtained for the 164Dy nucleus. The origin of this extra strength is however
uncertain. At present there are two known collective modes which result in pygmy
resonances in the energy region under consideration here. One is the well estab-
lished M1 pygmy resonance located around 3 MeV, and the other is the E1 skin
oscillation, as described in Sec. 6.1, the later is located at energies above 5 MeV.
Further investigation is therefore required to find the origin of the extra strength.

The parameters used to describe the pygmy resonances are given in Table 6.5.
The parameters used for the GEDR and the GMDR are the same as in the previous
fitting.

Nucleus Epy,1 σpy,1 Γpy,1 Epy,2 σpy,2 Γpy,2 κ

(MeV) (mb) (MeV) (MeV) (mb) (MeV)
163Dy 3.15(11) 0.82(16) 0.91(17) 5.0 2.6 1.2 1.37(16)
164Dy 3.30(6) 0.49(5) 1.05(11) 4.9 1.7 1.1 1.33(5)

Table 6.5: Fitted 3 MeV pygmy resonance parameters and normalization con-
stants, when including two pygmy resonances. The parameters for the resonance
located around 5 MeV were set constant during the fitting.
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Figure 6.4: The γ-ray strength function for 163Dy. The solid line represents the
total strength made up by the tail of the GEDR, two pygmy resonances and the
GMDR. The temperature is set to T = 0.3 MeV.
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Figure 6.5: The γ-ray strength function for 164Dy. The solid line represents
the predicted strength made up by the tail of the GEDR, two pygmy resonances
GMDR. The temperature is set to T = 0.3 MeV.
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6.3 Comparing with results obtained from the two-
step cascade method

The nucleus 163Dy has been studied by use of the so called two-step cascade (TSC)
method. The TSC method is a sum-coincidence method were only two γ-rays are
involved in the cascade. The sum-coincidence method was first proposed by A.
M. Hoogenboom in 1958 [54]. Excited nuclei usually decay through different
cascades of γ-rays starting at one single level and ending at the ground state. The
key property exploited in this method is that the total energy involved in the differ-
ent cascades is the same given that the initial and final level in the cascades is the
same in the nuclei. The γ-rays involved in a cascade are measured in coincidence
with scintillation detectors. Later the technique was modified for germanium de-
tectors by the Dubna group [55]. If the detectors have the same energy calibration,
the sum of their output pulses are proportional to the total energy involved in the
cascade, assuming that all the energy is absorbed in the detectors.

The experiment for studying 163Dy was performed at the R̆es̆ LWR-20 reac-
tor. The coincidence setup consisted of two HPGe detectors with an efficiency of
30%. A beam of thermal neutrons was used and the reaction 162Dy(n,γ)163Dy
was studied. Through this setup one measures three quantities: the deposited γ

-ray energies in the detectors, Eγ1 and Eγ2, and the detector time difference ∆t.
These data are used to create a two-step γ cascade (TSC) spectrum. This spec-
trum contains the energy distribution of primary and secondary γ-rays that belong
to all two-step cascade γ-rays that initiate at the neutron capturing state and termi-
nate at a prefixed ”terminal” level f in the product nucleus [56]. The background
is subtracted by a method described in Ref. [5]. Through Monte Carlo simulations
the level density and γ-ray strength function are produced according to Ref. [57].

One of the main motivations for doing our experiment was to investigate if
the form of the γ-ray strength function is reaction dependent. The reason for
suspecting this is that before our experiment one had measured a width of the
pygmy resonance in 163Dy to be 0.6 MeV [3], using the TSC method, which is
about half of the value measured for other dysprosium isotopes by use of the Oslo
method. The present analysis indicates that the width of the pygmy resonance is
in fact reaction dependent. One parameter that differs significantly for the two
experiments is the angular momentum transferred to the excited nucleus, this will
be looked into in the following section.

6.4 Transferred angular momentum
In the TSC experiment thermal neutrons were used. Thermal neutrons have an en-
ergy of only around 0.025 eV, the spin transferred can therefore be neglected. The
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6.4. TRANSFERRED ANGULAR MOMENTUM

angular momentum transferred in the Oslo experiment will be calculated in the
following. When calculating spin transfer accurately on a system like a nucleus,
one should apply quantum mechanics reaction theory. However, we will use clas-
sical mechanics and thereby not take into consideration the wave properties of the
particles. One should therefore note that the values calculated in the following are
not exact, but an indication of the real value. The angular momentum is given by
the equation

~| L |=|~r×~p |= rmpvp sinθ , (6.2)

where mp and vp corresponds to the mass and velocity of the projectile, respec-
tively, θ equals the angle between the position vector ~r and the vector ~p which
represents the momentum of the projectile. The size of ~r is given by r and cor-
responds to the distance from the projectile to the core of the target nucleus. If
we assume that the projectile hits the target nucleus with its center of mass at the
edge of the target, the radius can be set equal to the radius of the target nucleus,
expressed as r = Rt = r0A1/3

t , where r0 = 1.25 fm and At is the mass number of
the target nucleus. Further, the velocity v of the ejectile can be calculated through
the relativistic expression

Ep =
mpc2√

1− v2/c2
, (6.3)

where Ep is the kinetic energy of the projectile, and c represents the speed of light.
Solving with respect to velocity yields,

v = c

√√√√√1−

 1
Ep

mpc2 +1

2

. (6.4)

Combining Eqs. (6.3) and (6.4) we obtain the following expression for the angular
momentum transferred to the nucleus:

∣∣∣~L∣∣∣= r0A(1/3)
t mpc

√√√√√1−

 1
Ep

mpc2 +1

2

sinθ . (6.5)

In the present experiment the projectiles used were 3He particles with a mass of
2809 MeV/c2 and an energy of 38 MeV. The maximum angular momentum Lmax
transfer is obtained when the ejectile is emitted tangential to the nuclear surface
and in the opposite direction of the rotation of the system [29]. At maximum
transfer we have θ = 90◦. However, the average value of the transferred angu-
lar momentum 〈L〉 is about half of the maximum value [29], this corresponds to
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Projectile Ep 〈L〉 Lmax
(MeV) (h̄) (h̄)

3He 38 7.9 15.8
p 15 2.9 5.7

Table 6.6: Angular momentum transferred from the projectile to the target nu-
cleus, for 3He and p projectiles.

θ = 30◦. Angular momentum calculated for the Oslo experiment is given in Ta-
ble 6.6. In the same table it is displayed angular momentum transferred with a
beam of 15 MeV protons, with a mass of 938 MeV/c2. In april 2008 an exper-
iment was performed at the OCL where 163Dy was excited through the reaction
163Dy(p,p′)163Dy. The beam used consisted of 15 MeV protons, we observe from
Table 6.6 that this reaction would cause the average angular momentum that trans-
ferred to equal 2.9 h̄. This is significantly less than the 7.9 h̄ which is the average
transferred angular momentum with the present experiment. Through the (p,p′)
experiment one could hopefully determine if the angular momentum influences
the width of the 3 MeV pygmy resonance.
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Chapter 7

Summary and outlook

7.1 Summary and conclusions

This thesis has dealt with extracting the level density, thermodynamic properties
and the γ-ray strength function of 163,164Dy by using the Oslo method. Through
this method the distribution of the first γ-rays emitted in the decay cascades is
found, which enables us to apply the Brink-Axel hypothesis to derive the above
mentioned quantities. Both the level density and the γ-ray strength function are
indispensable to characterize a nucleus in the quasi-continuum. Also, they are
especially important when describing nuclear reactions.

The level density and thermodynamic results extracted exhibit characteristic
features found for rare earth nuclei. The 163,164Dy nuclei are medium heavy, mid-
shell nuclei with a corresponding high level density. The even-odd system dis-
plays an overall higher level density than the even-even nucleus. This is due to the
extra valence neutron which results in an approximate constant entropy difference
in the quasi-continuum region. In the thermodynamic properties derived from the
micro-canonical ensemble we observe distinct structures related to breaking of
Cooper pairs. The canonical ensemble provides information about phase transi-
tions. Although there are theoretical challenges when calculating the properties
from the micro-canonical ensemble, we can conclude that this ensemble is the
most appropriate to apply when describing a nucleus.

Interpreting the form of the γ-ray strength function is not as obvious as in the
case of the level density. We observed a high strength in 164Dy close to the neutron
binding energy. This might be a result of skin oscillation. We found that the width
of the 3 MeV pygmy resonance coincides with what is previously measured by use
of the same method in other dysprosium isotopes. It does not agree with what has
been found through the TSC method. Both the Oslo method and the TSC method
are considered as reliable methods. Based of this we can conclude that it seems
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as if the width of the 3 MeV pygmy resonance is reaction dependent. In addition,
we observed what appears to be a second resonance located at around 5 MeV, this
sheds new light on an earlier presumed statistical region. The extra strength in this
region might also be seen in previous OCL data on other dysprosium isotopes.
When performing a fit to the experimental data points for this new resonance
where a similar Lorantzian function as for the 3 MeV resonance is included in the
predicted strength function, we obtained a surprisingly good fit.

7.2 Outlook
Further investigations have to be performed in order to determine the origin of the
extra strength at around 5 MeV as well as to determine if the high strength close
to the binding energy in 164Dy is in fact due to the skin oscillation. At present it is
not fully understood why the OCL measurement and the TSC results differ when
it comes to the width of the 3 MeV pygmy resonance. One factor that might influ-
ence the width of the pygmy resonance is the angular momentum transferred from
the projectile to the target nucleus. Already new data have been collected at the
OCL where 163Dy was excited through the reaction (p,p′), which introduces less
angular momentum than the reactions utilized in this work. If the width measured
from the (p,p′) reaction is smaller than the one measured by using a 3He-beam, it
will indicate that the angular momentum does play a role.

An improvement of the detector setup at the OCL is in progress. A highly
efficient system of particle telescopes called the Silicon Ring (SiRi) is being de-
veloped. Each new telescope is formed as a trapeze, with an eight-fold segmented
front detector in front of each of the eight end detectors. The telescopes are ar-
ranged in a ring and can be put in both forward and backward angles. The new
system will cover a solid angle fraction of 6% of 4π . This will result in much
higher statistics as well as improved energy resolution, since the segmented front
detector allows a better angular resolution [58]. In the future we also aim for
replacing the NaI(Tl) detectors of the CACTUS array with LaBr3(Ce) detectors
which has a 65% higher efficiency than the NaI(Tl) detectors, and almost three
times the resolution [58]. For future experiments we will therefore be able to
produce even more precise results.
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Inst. Meth. A 376 (1996) 434.

[6] H.A. Bethe, Phys. Rev. 50, 332 (1936).

[7] A. Gilbert, A. G. W. Cameron, Can. J. Phys. 43 (1965) 1446.

[8] T. von Egidy, H. H. Schmidt, A. N. Behkami, Nucl. Phys. A 481 (1988) 189.

[9] T. von Egidy, Dorel Bucurescu, Phys. Rev. C 72 , (2005), 044311, and Phys.
Rev. C 73 , (2006), 049901(E).

[10] H. Nakada, Y. Alhassid, Phys. Rev. Lett. 79 , (1997) 2939.

[11] Y. Alhassid, G. F. Bertsch, L. Fang, Phys. Rev. C 68 , (2003) 044322.

[12] Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 99 , (2007), 162504.

[13] J. A. White, S. E. Koonin, D. J. Dean, Phys. Rev. C 61, 034303(R) (2000).

[14] A. C. Larsen, R. Chankova, M. Guttormsen, F. Ingebretsen, S. Messelt, J.
Rekstad, S. Siem, N. U. H. Syed, S. W. degrd, T. Lönnroth, A. Schiller, A.
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