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Chapter 1

Introduction

The aim of experimental nuclear physics is to increase our knowledge of atomic
nuclei under various conditions. Although the bare two-nucleon force is rather
well determined, the many-particle system of an excited atomic nucleus becomes
almost impossible to solve theoretically. However, at low excitation energies
or for highly collective states, detailed wave functions can be derived with
certain accuracy. These predictions of well-defined states and the transition rates
between them can then be compared with experiments. Through this program, our
understanding of the simplest nuclear excitations has been constantly increasing
during the last decades.

For more complex nuclear excitations, there exist very limited information,
both experimentally and theoretically. The present work concerns the study of
the quasi-continuum part of the nuclear excitation regime, where individual levels
are no longer resolvable with traditional experimental methods. Here, the high
density of levels makes statistical averages much more relevant than the detailed
descriptions of each level.

Two very fruitful statistical concepts appropriate in the quasi-continuum
region and for higher energies are the level density and the γ-ray strength function.
The level density is defined as the number of levels per unit of excitation
energy. The γ-ray strength function characterises the average electromagnetic
properties for excited nuclei as a function of γ-ray energy. The strength function
is proportional to the reduced transition probability, which is independent of the
density of final states.

The level density and γ-ray strength function are of fundamental importance
for understanding nuclear structure and reactions involving γ-ray transitions.
Local deviations from a smooth level density is expected to be due to shell
gaps, breaking of nucleon Cooper pairs, and/or changes of nuclear shape.
Local deviations in the strength function may indicate the presence of collective
excitation modes (resonances). Both the level density and the strength function are
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CHAPTER 1. INTRODUCTION

used for many aspects of fundamental and applied physics, including calculations
of nuclear properties, like reaction cross sections. Such cross reactions are
used for calculations in, e.g., reactor physics, nuclear waste management, and
astrophysical models describing the nucleosynthesis in stars.

The γ-ray strength function is usually measured using photonuclear reactions
for excitation energies above the particle separation energy. Here, the giant
electric dipole resonances (GEDR), observed in all nuclei across the nuclear chart,
dominates. This has lead to the development of several theoretical models for the
low-energy tail of the GEDR. Relatively few experiments have been performed
below the particle separation energies.

The Oslo method, which is developed at the OCL, makes possible a
simultaneous extraction of the functional forms of both the level density and
the strength function below the particle separation energy from the measured
data. The observed level densities and γ-ray strength functions often deviate
significantly from existing theoretical models.

During the past 15 years, level densities and γ-ray strength functions have
been investigated in OCL experiments. Most of the nuclei investigated have been
in the rare-earth region of A = 140 − 180, but some have also been lighter or
heavier. Examples of interesting publications are the experimental evidence of
the breaking of nucleon Cooper pairs [1], the discovery of the strongly enhanced
strength function at low energies in Fe and Mo isotopes [2, 3], and the M1
scissor-mode pygmy resonance in rare-earth nuclei [4, 5].

In neutron-rich Sn isotopes, as well as in other neutron-rich medium-heavy or
heavy nuclei, a small resonance on the tail of the GEDR has been observed. This
so-called pygmy resonance has been measured in many experiments using various
techniques. At the OCL, this resonance has earlier been measured in 117Sn [6].
This experiment was the first time that the resonance was measured below the
neutron-separation energy in an odd, stable Sn nucleus. It was not found that
the nucleus has a strongly enhanced strength function for lower energies, which
has been seen for some light and medium-heavy nuclei. The level densities of
116,117Sn measured in this experiment, were also interesting because distinctive
steps were observed [7]. Some of the steps were interpreted as signatures of
neutron pair breaking and were explained by the magic number of protons in Sn
(Z = 50). Only pair breakings of neutrons occur at low excitation energy. The
steps in the level density of 116Sn were the most pronounced steps ever seen in
experiments done at the OCL.

The origin of the pygmy resonances in Sn and other nuclei is still unclear.
Theoretical models often assume the neutron-skin oscillation mode, where the
resonance is created by excess neutrons in a skin collectively oscillating against a
N ≈ Z core. According to this interpretation, the strength of the resonance should
increase with an increasing number of neutrons. Tin is an ideal element for a
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systematic resonance study due to the large number of stable isotopes. For this
thesis, we have performed experiments on 116,118,119,121,122Sn and extracted their
level densities and strength functions. One aim is to investigate the evolution of
the pygmy resonance with increasing neutron number. The results are published
in Refs. [8, 9], which are included in this thesis as the scientific Articles 1−2.

Another aim is a thorough review of the Oslo method with the purpose of
investigating possible systematic uncertainties. Typical data sets from various
mass regions as well as simulated data have been tested against the assumptions
behind the data analysis. The study is published in Ref. [10] and is included here
as Article 3.

The present thesis starts with chapters providing background information.
Chapter 2 presents an overview of the experiments analysed and of the
experimental set-ups. Chapter 3 describes the data analysis for extracting the
events to proceed with from the measured data. Chapters 4 and 5 go through
the Oslo method. The first of these two chapters concerns the preparation of
the γ-ray spectra, i.e., the unfolding and the extraction of the first-generation γ
rays. The latter presents how the level density and the γ-ray strength function are
extracted with the Oslo method. Brief background information about the pygmy
resonance is given in Chapter 6. Articles 1−3 are included in Chapter 7. Chapter
8 summarises the results and draws conclusions.
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Chapter 2

Experiments and set-ups

The experiments covered in this thesis were all performed at the OCL, which is
located at Centre for Accelerator based Research and Energy Physics (SAFE) at
the University of Oslo. The cyclotron was built in 1979 and is Norway’s only
nuclear physics research cyclotron. It is an MC-35 Scanditronix model, able to
deliver pulsed light-ion beams of p, d, 3He and α . The cyclotron is shown in
Fig. 2.1. The picture also shows the 90◦ analysing magnet, used as momentum
filter. When the beam reaches the target, its diameter has been focused and
collimated to about 1−2 mm.

In this thesis, three experiments are studied, and experimental data on 116Sn,
118,119Sn and 121,122Sn are analysed. Two nuclear reactions are considered,
namely the inelastic scattering reaction (3He,3He′γ) and the neutron pick-up

Figure 2.1: The Oslo Cyclotron with the analysing magnet to the left.
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CHAPTER 2. EXPERIMENTS AND SET-UPS

Target Enrichment Mass thickness Beam energy Current Reactions studied
(%) (mg/cm2) (MeV) (nA)

117Sn 92.0 1.9 38 1.5 117Sn(3He,αγ)116Sn
119Sn 93.2 1.6 38 1.5 119Sn(3He,3He′γ)119Sn

119Sn(3He,αγ)118Sn
122Sn 94 1.4 38 0.2 122Sn(3He,3He′γ)122Sn

122Sn(3He,αγ)121Sn

Table 2.1: The enrichment and mass thickness of the targets, the energy and current of
the beams, and the reactions studied in the experiments presented in this thesis. The last
experiment was performed with the new 64 telescope SiRi system.

reaction (3He,αγ). The experiment on 116Sn was run for eleven days in 2003, the
experiment on 118,119Sn for three days in 2008, and the one on 121,122Sn for five
days in 2010. All experiments had beams of 3He with typical pulse frequencies
of 15.3 MHz. The technical details of the experiments are listed in Tab. 2.1.

The γ rays and particle ejectiles emitted in the nuclear reactions are measured
with NaI(Tl)-scintillation detectors and Si semiconductor detectors, respectively.
An illustration of the particle-γ-ray coincidence detection set-up is shown in
Fig. 2.2.

The CACTUS γ-ray multidetector system consists of 28 5”×5” NaI(Tl)
detectors. CACTUS is described in Ref. [11] and shown in Fig. 2.3. The detectors
are distributed on a spherical frame in a distance of 22 cm from the target. At the

Figure 2.2: Schematic set-up for particle-γ-ray detection. The illustrated particle detector
is of the old type, placed in an azimuthal angle of 45◦ with respect to the beam axis.

6



Figure 2.3: The γ-ray multidetector system CACTUS, consisting of 28
NaI(Tl)-scintillation detectors. The target and the particle detectors are placed
inside the CACTUS sphere.

γ-ray energy of 1332 keV, CACTUS’ total detection efficiency is 15.2%, while
the energy resolution of a single detector is ≈ 6% Full Width at Half Maximum
(FWHM). The NaI crystals are collimated by lead collimators in order to obtain
a good peak-to-total ratio (from reducing the escape out of the NaI crystal of
Compton-scattered γ rays). The inner diameter of the collimator is 7 cm. A
total solid angle of ≈ 18% out of 4π is covered by the 28 NaI detectors. Copper
absorbers of 2 mm thickness in front of each NaI detector reduce the background
from X rays.

The target and the Si detector system are located inside the CACTUS sphere.
Two different Si detector systems have been used in this thesis, as the old detector
system was replaced by SiRi (Silicon Ring) in 2009. They will both be briefly
described in the following.

The original particle detector system consisted of eight Si ΔE −E detectors.
The thicknesses of the ΔE detectors were ∼ 140− 150 μm, while those of the
E detectors were 1500 μm. Aluminium foils of thickness 15 μm were placed in
front of each ΔE detector in order to stop the δ electrons, originating from the
target foil.

The detectors were distributed on a ring with a distance of 5 cm from the target
and having an angle of 45◦ with respect to the beam axis. This choice of angle is a
compromise. Both the elastic scattering reaction and the reactions of interest have
their largest cross sections at small scattering angles. A large deflection angle
is favourable in order to reduce the dominance from the elastic scattering. On
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CHAPTER 2. EXPERIMENTS AND SET-UPS

the other hand, the angle should not be too large, since the rate of the interesting
reactions are also reduced when the scattering angle is increased.

The ΔE detectors were collimated to reduce the occurrences of partial
detection of the ejectiles’ energies on the edge of the active area, and to ensure
narrow spreads Δθ of the scattering angles. Since the energy of a scattered particle
depends on the scattering angle, a smaller fluctuation in scattering angle leads to
smaller spread in the detected energy. Thus, a small collimator leads to a better
energy resolution. However, large collimators are favourable from a detection
efficiency point of view. The size of the collimator may therefore be adjusted to
the target mass. A heavy nucleus causes a smaller spread in the ejectile’s energy
per Δθ and therefore allows for a larger collimator, compared to a light nucleus.

The first two experiments in this thesis used the old Si detector system. The
116,117Sn experiment had collimators with spherical openings of diameter 6 mm,
giving the particle detector system a total solid-angle coverage of ≈ 0.72% out of
4π . In the 118,119Sn experiment, the collimators were shaped as squared openings
of 6×10 mm2, giving a total solid-angle coverage of ≈ 1.5%.

The new SiRi particle detector system was used for the last experiment,
121,122Sn. SiRi consists of eight trapeziums distributed on a ring with a fixed angle
with respect to the beam axis in a distance of 5 cm from the target, see Fig. 2.4.
The ΔE detectors of each trapezium are assigned to individual angles of 40−54◦,
as shown in Fig. 2.5.

Each trapezium consists of eight independent ΔE detectors and one common
E detector on the back. In total, SiRi has 64 ΔE − E detectors. The detector
thicknesses are 130 μm (ΔE) and 1550 μm (E). A conic Al absorber with a mass
thickness of 2.8 mg/cm2 covers the front of the trapeziums in order to stop δ
electrons.

As each tick on the axes in Fig. 2.5 corresponds to 2 mm in reality, each
detector is less than 2 mm narrow in the y axis. As the old Si detector system
had a 6 mm opening in this direction, SiRi gives an improvement in the energy
resolution from less spread in the scattering angle. In addition, there is an
improvement in the detection efficiency from a larger total solid-angle coverage,
which is ≈ 9% out of 4π .

8



Figure 2.4: SiRi’s eight trapeziums distributed on a ring.

Figure 2.5: The front of one of the SiRi trapeziums, which has eight arch-shaped ΔE
detectors. The angular assignments of each of the ΔE detector are indicated in the figure.
One tick on the axes corresponds to 2 mm in reality.
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Chapter 3

Particle-γ-ray coincidence
measurements

The first step of the data analysis is to calibrate and align the detectors and to
extract the relevant events, which are the particle-γ-ray coincidences. The method
is discussed in this chapter.

3.1 Detector calibration and alignment

Each of the individual detectors of particles and γ-rays were calibrated in energy
according to a linear relationship between channel ch and detected energy E ′:

E ′ = a0 +a1 · ch , (3.1)

where a0 is the shift constant and a1 the dispersion. The appropriate values for a0
and a1 were determined for each individual particle/γ-ray detector. Likewise, the
detectors were calibrated and aligned in time.

Data from the aligned individual particle detectors were added to one energy
spectrum and one time spectrum, and likewise for the γ-ray detectors. Good
alignment is important in order to obtain a good energy/time resolution in the total
spectra. The FWHM of the elastic 3He peak was determined to ≈ 280 keV at 36.8
MeV in the 118,119Sn experiment, and to ≈ 210 keV at 37.0 MeV in the 121,122Sn
experiment. The energy resolution of the total γ-ray spectrum at 1.1 MeV was
determined to ≈ 6.4% FWHM in the 118,119Sn experiment, and to ≈ 5.3% FWHM
in the 121,122Sn experiment.

11



CHAPTER 3. PARTICLE-γ-RAY COINCIDENCE MEASUREMENTS

3.2 Particle identification
In order to gate on a specific particle, a way to identify the type of charged particles
(p, d, t, 3He or α) is needed. Figure 3.1 shows the ΔE −E matrix for the 121,122Sn
experiment. In the ΔE −E matrix, the particle types are distinguished from their
different combination of energy deposits in the ΔE and E detectors.

The energy loss per length, dE ′/dx, in the ΔE detector may be calculated from
the Bethe-Block formula, where the leading term is [12]:

− dE ′

dx
= C

(
Z
v

)2

, (3.2)

where C is a constant and v the particle’s velocity. This expression may be
rearranged to explicitly include the particle mass m, if one considers the special
case where several particle types having the same kinetic energy Ek:

− dE ′

dx
= C

Z2

2Ek/m
. (3.3)

A change of the particle type will lead to a change in the energy deposit in the ΔE
detector, and of course also correspondingly in the E detector. Since the particle
types can take a broad range of kinetic energies, the result is the shapes that we
see in the ΔE −E matrix in Fig. 3.1.

Figure 3.1 visualises that the separation in ΔE is larger between different
values of Z than of m. There is a large gap between different Z and equal m (t
and 3He), and smaller gaps between different m’s and equal Z’s (e.g., 3He and α).

The so-called thickness spectrum reduces the two-dimensional ΔE −E matrix
to a one-dimensional spectrum. Then a particle type may be identified with a
single window. We apply the known range Rα of α particles in Si as a function
of energy and define the thickness T as the range of an α particle of energy Ek =
ΔE +E in Si minus the corresponding range for energy E:

T = Rα(Ek)−Rα(E) . (3.4)

The thickness T is calculated for all particles detected in the experiment.
The resulting thickness spectrum will consist of one peak for each particle

type. The peak that reproduces the actual thickness of the ΔE detector consists of
the α particles. The other particle types have smaller m and possibly smaller Z2

than α particles, and therefore they deposit less energy in the ΔE detector than an
α particle with the same kinetic energy do.

Figure 3.2 shows the thickness spectrum for the 118,119Sn experiment. The
peak with centroid energy of ≈ 145 μm consists of α particles, while the larger
peak at a smaller thickness consists of 3He.
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Figure 3.1: Identification of the particle types from the ΔE−E matrix by the combination
of the energy deposits in the ΔE and E detectors. The shown ΔE −E matrix is from the
121,122Sn experiment.

3.3 Coincidence gating

In order to extract the true particle-γ-ray coincidences, we measure the time
difference between detection of good particle events (i.e., both ΔE and E
detection) and γ-ray events with 28 time-to-digital converters (TDC). A delay
is added to the time signal of the γ ray, so that the detected time difference is a
non-zero value. The particle events give the start signals, while the γ-ray events
give the stop signals. The time difference is shown in the time spectrum, where the
true coincidences are found in the so-called prompt time peak. The TDC measures
the entire prompt peak due to the applied delay.
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Figure 3.2: The thickness spectrum for one of the ΔE detectors in the 118,119Sn
experiment. The peak having a centroid thickness ≈ 145 μm represents the α particles,
while the peak at ≈ 115 μm is 3He. The two arrows show the low (t1) and high (t2) gates
set to extract α particles.

Figure 3.3 shows the time spectrum for the 119Sn(3He,3He′γ)119Sn reaction.
The prompt peak is centered around time difference ≈ 200 ns, which corresponds
to the chosen delay. The time resolution, determined from the FWHM of the
prompt peak, is ≈ 18 ns.

The smaller peak to the left of the prompt peak consists of random
coincidences1 and is used for background subtraction. Hence for the
particle-specific spectrum, gates for incrementation are set on the prompt peak,
while gates for decrementation are set on the smaller peak.

1The random coincidences in the smaller peak comes from particles from the nuclear reaction
of the present beam burst coinciding with background γ rays or γ rays originating from the previous
burst, as well as particles from the reaction of the preceding burst coinciding with γ rays from the
present burst.
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Figure 3.3: The time spectrum for 119Sn(3He,3He′γ)119Sn showing the time difference
between detection of 3He particles and γ rays. The two arrows t1 and t2 show the gates
set on the peak of random coincidences (decrementation), while t3 and t4 show the gates
set on the prompt peak (incrementation).

3.4 Particle-γ-ray coincidence matrix
After gating on the selected particle type and on the prompt time peak, we
are left with the particle-γ-ray coincidence events, where the γ-ray energies are
the observed (raw) energy from the NaI detectors. These coincidence events
may be arranged in a two-dimensional coincidence matrix P ′(E,Eγ), which has
the observed γ-ray energy Eγ on the x axis and the excitation energy E of the
residual nucleus on the y axis.2 This excitation energy is calculated from the
detected energy of the ejectile using reaction kinematics and the Q value of the
corresponding nuclear reaction.

The observed 3He-γ-ray coincidence matrix for 122Sn is shown in Fig. 3.4.
Several typical features are seen in this matrix. The γ-ray energies are less than
or equal to the excitation energy. (There are relatively few exceptions, caused by
γ-ray pileups.) The E = Eγ diagonal represents first-generation γ rays decaying
directly to the nucleus’ ground state. The number of counts is dramatically
reduced above the neutron separation energy E = Sn, which is ≈ 8.8 MeV for

2From now on, the physical meaning of the quantity E is excitation energy.
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Figure 3.4: The 3He-γ-ray coincidence matrix for 122Sn consisting of the observed γ-ray
spectra.

this isotope. This reduction is explained by neutron emission being possible
and generally favoured to γ-ray decay above Sn. Some yrast transitions are also
displayed in the figure, recognised as strong (red) vertical lines.
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Chapter 4

Preparation of the γ-ray spectra

The final part of the data analysis is to apply the Oslo method. The Oslo method
consists of four steps to simultaneously extract the experimental level density and
the γ-ray strength function from the measured data.

In this chapter, we present how the observed γ-ray spectra are prepared for the
simultaneous extraction. Special techniques are used for the unfolding (Sec. 4.1)
and for the rejecting of the higher-than-first generation γ rays (Sec. 4.2). These
steps are the first two of the Oslo method.

In the next chapter, we will present the last two steps, which are
the factorisation from the first-generation coincidence matrix as well as the
normalisation of the experimental level density and transmission coefficient.

4.1 Unfolding of the γ-ray spectra

The γ-ray spectra have to be corrected for the response of the NaI detectors. This
unfolding (deconvolution) is necessary because the energy deposited in the γ-ray
detector is often not equal to the energy of the incident photon. The unfolding of
the γ-ray spectra in the Oslo method follows the procedure described in Ref. [11].
The folding iteration method, based on successive foldings of better and better
trial functions, is performed first. Afterwards, the Compton subtraction method,
developed at the OCL, ensures a large improvement in the reduction of the
fluctuations of the unfolded spectra.

The photon interacts with matter mainly in three ways, and their energy
dependences are different. Photoelectric absorption gives complete detection and
hence, a full-energy peak. This peak does not need correction. The photon may
also undergo Compton scattering in the detector while the scattered photon itself
escapes. Such cases give rise to the broad Compton background. The third
important interaction is the pair production, where the photon may interact with
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CHAPTER 4. PREPARATION OF THE γ-RAY SPECTRA

matter and create an electron-positron pair. The positron will annihilate, and
one or two of the annihilation photons may escape detection. If so, the energy
detected will be 0.511 or 1.022 MeV less than that of the incoming photon. Also
background peaks at 511 keV and at ∼ 200− 300 keV, respectively originating
from annihilation radiation and from backscattering outside the detector, are found
in the observed spectra.

The objective of the unfolding is to find the actual energy of the incident
photons. For this, we need to know the detector’s responses as a function of
incident γ-ray energy. This may be given in the response matrix R(E ′,Eγ), where
E ′ is the energy deposited in the NaI detector and Eγ the energy of the incident
photon. The response matrix is used to deduce the full-energy spectra from the
observed spectra.

4.1.1 Determining the response functions

The response function of the CACTUS detector has been determined by
performing experiments and measuring the detector’s response function for a wide
range of monoenergetic γ-ray energies. Of practical reasons, this has been done
for a series of ten energies (122, 245, 344, 662, 1173, 1333, 1836, 4439, 6130 and
15110 keV), while all energies in between have been interpolated.

The interpolation is done separately for the different structures in the spectra.
The full-energy peak is easily interpolated. The Compton background, however,
needs a more complicated treatment, since the energy region of the Compton
background depends on the respective full energy. The energy E ′′ transferred
to the electron in a Compton process is given by

E ′′ = Eγ −
Eγ

1+ Eγ
mec2 (1− cosθ)

, (4.1)

where θ is the scattering angle between the directions of the incident and scattered
photons, and me is the mass of the electron. The maximum transferred energy, the
Compton edge, is found at θ = 180◦. A reasonable procedure is to interpolate
for each spectrum the response functions of the Compton background at energies
corresponding to the same values of θ . The interpolation then operates along a set
of curves forming a fan, as illustrated in Fig. 4.1.

The set of interpolated response functions make the response matrix R(E ′,Eγ).
More information about the method of determining CACTUS’ response matrix is
found in Ref. [11].
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Figure 4.1: Interpolation of the response functions C2, C and C1 of the Compton
background for different incident γ-ray energies (Eγ2, Eγ and Eγ1). The response functions
are shown as spectra with energy E ′′ transferred to the electron on the x axis and
the number of counts on the y axis. The figure illustrates how the energy region of
the Compton background and the Δθ increase with increasing full energy Eγ . The
interpolation of the three Compton response functions are performed at the same angle
θ (left diagonal line). The simple interpolation of the full energies is also shown (right
diagonal line). The drawing is taken from Ref. [11].

4.1.2 The folding iteration method
The Oslo method unfolds by an iterative procedure, called the difference
approach. The procedure was first described in less available institute reports and
is therefore also outlined in Ref. [11]. Utilising the response matrix to perform
a folding is very straightforward, while inverting the response matrix in order
to unfold would cause large fluctuations due to the limited number of events.
The idea therefore is to unfold by applying the folding matrix. We start with a
trial function which we fold (using the known CACTUS response matrix), modify
and refold in an iteration process until the folded redefined trial function is equal
to the observed (raw) spectrum. When the spectrum folded equals the observed
spectrum, the unfolded spectrum has been found.

The matrix element Ri j of the response matrix is defined as the response in
channel i when the detector is hit by γ rays with an energy corresponding to
channel j. The response function is normalised so that for each incident γ ray
in channel j, we have ∑i Ri j = 1. The folding of an unfolded spectrum u is then
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expressed as:

f = Ru , (4.2)

where f is the folded spectrum.
The folding iteration is performed as following:

1. A trial function u0 for the unfolded spectrum is assumed, with the same
shape as the observed spectrum r:

u0 = r . (4.3)

2. The first folded spectrum is calculated:

f 0 = Ru0 . (4.4)

3. The resulting folded spectrum is compared to the observed spectrum, and
the deviation is f 0 − r. The second trial function is the folded spectrum
minus this deviation:

u1 = u0 − ( f 0 − r) . (4.5)

4. The second folding gives the second folded spectrum:

f 1 = Ru1 , (4.6)

which again is used to obtain the next trial function:

u2 = u1 − ( f 1 − r) . (4.7)

5. The iteration is continued until f i ∼ r, where i is the iteration index.

More details about the iteration process are found in Ref. [11].
The folding iteration by the difference approach is a well-proven method

giving reliable results. The disadvantage is the relatively large fluctuations from
channel to channel in the unfolded spectrum. Because these fluctuations increase
with the number of iterations, it is important to terminate the iteration as soon as
the folded spectrum agrees with the observed spectrum within the experimental
uncertainties. Typically, ten iterations are sufficient.
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4.1.3 The Compton subtraction method
The fluctuations in the folded spectrum is in the Oslo method mended by the
Compton subtraction method, developed in Ref. [11]. The idea is that since the
Compton background is a slowly varying function of energy, the Compton part
of the resulting unfolded spectrum ui can be smoothed and subtracted from the
observed spectrum. The result is an unfolded spectrum with the same statistical
fluctuations as the observed spectrum.

The starting spectrum of the Compton subtraction method is the unfolded
spectrum ui resulting from the iteration process, which we rename u0. The
probabilities for an event in channel i in the unfolded spectrum u0 to be found
in the full-energy peak is denoted pf(i), in the single escape peak denoted ps(i),
in the double escape peak denoted pd(i), and in the annihilation peak denoted
pa(i). These probabilities are known as functions of energy as they are parts of
the detector’s responses. The probabilities are normalised so that:

∑
i

pf(i)+ ps(i)+ pd(i)+ pa(i)+ pc(i) = 1 , (4.8)

where pc(i) is the probability for having a Compton event (as well as background
events, etc.) in channel i.

The probability functions are used for folding. Assume that i is the specific
channel i denoting the full-energy peak, and that the channels i511 and i1022
represent channels with energies 511 and 1022 keV, respectively. The expected
(folded) contribution to the observed spectrum from the peaks of full energy (uf),
single escape (us), double escape (ud) and annihilation (ua) are found from:

uf(i) = pf(i)u0(i) , (4.9)

us(i− i511) = ps(i)u0(i) , (4.10)

ud(i− i1022) = pd(i)u0(i) , (4.11)

ua(i511) = ∑
i

pa(i)u0(i) . (4.12)

The sum over i for ua is explained by the fact that all γ-ray energies above 1022
keV will contribute to the peak at 511 keV.

The expected contributions from Eqs. (4.9) − (4.12) have large fluctuations
due to the iteration process. Therefore, the expected contributions are smoothed to
the observed experimental resolution, which is 1.0 FWHM. The smoothed spectra
are denoted ũf, ũs, ũd, and ũa, etc.

Now we have a good estimate for the contributions to the observed spectrum
from the full energy, single escape, and double escape processes. The expected
contribution from the Compton background c(i) may hence be calculated from:

c(i) = r(i)− ũf(i)− ũs(i− i511)− ũd(i− i1022)− ũa(i511) . (4.13)
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The expected contribution c(i) has strong fluctuations because it is found from
the unfolded spectrum u0. It is expected that the Compton contribution is a slowly
varying function of energy. Thus, a smoothing of, e.g., a resolution of 1.0 FWHM,
is applied on c to get the smoothed contribution c̃.

The final unfolded spectrum of the full-energy peaks only is obtained by taking
the observed spectrum and subtract the smoothed expected contribution from the
Compton background as well as the expected contributions from the single escape,
double escape, and the annihilation:

uunf(i) = r(i)− c̃− ũs(i− i511)− ũd(i− i1022)− ũa(i511) . (4.14)

Finally, the true unfolded γ-ray energy distribution Uunf is calculated by
correcting for the full-energy probability pf(i) and the energy dependent total
γ-ray detection efficiency ε of the detector:

Uunf(i) =
uunf(i)

pf(i)εtot(i)
(4.15)

See Ref. [11] for more details on the Compton subtraction method.
Figure 4.2 shows comparison of the observed γ-ray spectrum, the unfolded

spectrum, and the unfolded spectrum refolded, in the case of 121Sn for a chosen
excitation energy interval (see figure text). The background is clearly removed
in the unfolded spectrum, and only the full-energy peaks are left. Refolding the
unfolded spectrum returns a spectrum that is very equal to the observed spectrum.

4.2 Extraction of the first-generation γ rays
The Oslo method uses the first-generation method to extract the first-generation γ
rays from the spectra. This method is an in-house developed procedure described
in Ref. [13]. We will give an introduction to its main features.

The deexcitation of a highly excited state below the particle threshold may
involve a cascade of transitions. Each transition will result in the emission of a
γ ray. The transition probability depends on the γ-ray energy and the final level
density. In order to extract the γ-ray strength function, we therefore also need to
know which γ rays decay to which levels. This is done by considering only the
first-generation γ ray of each transition, since then, the final excitation energy is
known from an easy calculation from the initial state and the γ-ray energy.

The time resolution of the experiment is not in any way able to separate out
the first-generation γ rays. A γ decay in the quasi continuum is very fast, typically
∼ 10−15 s for the entire process. In the analysis, it therefore seems like all the γ
rays in a decay occur at the same time. The generations of the γ rays are also not
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Figure 4.2: Comparison of the observed γ-ray spectrum (upper panel), the unfolded
spectrum (middle panel), and the unfolded spectrum refolded (lower panel) for 121Sn.
The spectra are shown for excitation energies E in the region 4.5−5.6 MeV.

well separated in energy either, so that discriminating on the energy is no option.
The first-generation γ rays must be extracted in another way in the data analysis.
This is the motivation for the first-generation method.

4.2.1 Simple example

The main assumption of the first-generation method is that the γ-ray decay from
any excitation-energy bin is independent of how the nucleus was excited to this
bin. In other words, that the decay routes are the same whether they were
initiated directly by the nuclear reaction or by the feeding from γ-ray decay from
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Figure 4.3: A hypothetical decay route from energy level E1. First-generation γ rays are
coloured in blue, second-generation in red, and third-generation in black. The branching
ratio w2 is the probability of decay from level E1 to E2, while w3 is the probability of
decay from E1 to E3.

higher-lying states. In the following simple example, we will see in what way the
main assumption of the first-generation method is introduced.

Figure 4.3 shows a hypothetical decay route from the discrete
excitation-energy level E1, where the γ rays may decay to lower-lying levels E2
and E3 with decay-route branching ratios w2 and w3, respectively. We assume for
simplicity that all energy levels are equally populated. Let us give the name f1 to
the total (all-generations) γ-ray spectrum from E1, f2 to the total spectrum from
E2, and f3 to the total spectrum from E3. With the above-mentioned assumption
that a state populated by the first γ transition has the same decay properties as
if it had been populated directly by the nuclear reaction, the second and third
generation γ rays originating from E1 is accessed from f2 and f3 multiplied with
their respective branching ratios. Hence, the first-generation γ-ray spectrum h
from E1 is in this simple example found by:

h = f1 −w2 f2 −w3 f3 . (4.16)

The reaction cross section instead varies from level to level, leading to
different population of the levels. To compensate, we therefore introduce the
corresponding weighting of the spectra. The normalisation factor n2 between level
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E1 and level E2 is:

n2 =
S1

S2
, (4.17)

where S1 is the population of level E1, etc. A similar definition is done
for n3. Hence, taking the varying population of the levels into account, the
first-generation γ-ray spectrum h from E1 is found by:

h = f1 −n2w2 f2 −n3w3 f3 . (4.18)

4.2.2 Technical details of the first-generation method
We would like to write a general expression for the first-generation spectrum from
an excitation energy bin, but keep the consideration to only the highest energy
bin (bin 1) for simplified notation. The results may easily be generalised to any
lower-lying energy bin j. We recall the assumption of the first-generation method:
The decay route of a state is the same whether the state has been populated directly
by the nuclear reaction of by γ decay from higher-lying states, i.e., independence
of the method of formation.

The first-generation γ-ray spectrum of bin 1, h, is found from:

h = f1 −g , (4.19)

where f1 is the total spectrum of bin 1, and where g is the weighted sum of all the
spectra:

g = ∑
i

niwi fi . (4.20)

In this sum, the coefficients wi (normalised to ∑i wi = 1) are the (unknown)
probabilities of γ decay (branching ratios) from bin 1 to an underlying bin i. The
coefficients ni are the normalising factors for the differences in the cross sections
for populating bin 1 and the underlying bins i. The subtraction of g in Eq. (4.19),
as defined by wi and ni in Eq. (4.20), equals the assumption that the decay routes
are independent of the method of formation.

There are two ways to determine ni: The singles normalisation and the
multiplicity normalisation. Their major difference is the use of single particle
counts in the first case, and of the number of γ rays in each spectrum fi in the
latter.

• Singles normalisation: The cross-section correction factor ni is determined
from the ratio of singles particle counts (populations) S in energy bin 1 and
bin i:

ni =
S1

Si
. (4.21)
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• Multiplicity normalisation: The deexcitation of a state at energy level Ei
will lead to a cascade of γ rays with average multiplicity Mi. The number
of particle populations may in general be found from dividing the number
of γ rays by the multiplicity. Hence, the population of energy bin i, Si,
is proportional to A( fi)/Mi, where A( fi) is the number of counts (area) of
the γ-ray spectrum fi. Hence, the cross-section correction factor ni may be
determined from:

ni =
A( f1)/M1

A( fi)/Mi
=

A( f1)Mi

A( fi)M1
. (4.22)

The average multiplicity as a function of excitation energy may easily be
deduced from the experiment.

The two normalisation methods may give different results due to presence of
isomeric states. The γ rays of possible isomeric states may not be considered
in the multiplicity normalisation, if their decay time exceed the TDC time
range. However in singles normalisation, the isomeric states will be taken into
account, but not their γ rays. In such a case, the singles normalisation will
lead to stronger subtraction than the multiplicity normalisation. Usually, the
difference between singles and multiplicity normalisation is very small, and both
methods are performed and compared when analysing an experiment. Multiplicity
normalisation was chosen for all the Sn experiments in this thesis.

Because the unknown weighting coefficients wi correspond directly to the
first-generation spectrum h, the wi’s are found from a fast converging iteration
procedure [13]:

1. Assume a trial function wi.

2. Deduce h.

3. Transform h to wi by giving h the same energy calibration as wi and by
normalising the area to unity.

4. Repeat from step 2 until wi (new) ≈ wi (old). Then, convergence has been
reached, and the procedure is finished.

Tests have shown that the first-generation method gives very correct results
with small dependence on the choice of trial function after only three iterations
[13]. Usually, at least ten iterations are performed.

Figure 4.4 shows the total, the higher-than-first-generation and the
first-generation γ-ray spectra for a chosen excitation energy region in 121Sn.

The first-generation γ-ray spectra are arranged in a two-dimensional matrix
P(E,Eγ). This matrix is normalised for every excitation-energy bin E so that the
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Figure 4.4: Comparison of the total (unfolded) γ-ray spectrum (upper panel), the
higher-than-first-generation spectrum (middle panel), and the first-generation spectrum
(lower panel) for 121Sn. The spectra are shown for excitation energies in the region
4.5−5.6 MeV.

sum over all γ-ray energies Eγ from some minimum value Eγ
min to its maximum

value Eγ
max = E at this excitation-energy bin is unity:

E

∑
Eγ=Eγ min

P(E,Eγ) = 1 . (4.23)

In this way, its entries are the relative γ-decay probabilities, i.e. the probability
that a γ ray of energy Eγ is emitted from an excitation-energy bin E.

The P matrix is shown for 122Sn in Fig. 4.5. There are regions in this matrix
for which the first-generation method has not worked very well. The empty region
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Figure 4.5: First-generation matrix P(E,Eγ) of 122Sn.

at lower γ-ray energies and higher excitation energies is explained by differences
in shape of the γ-ray spectra between lower and higher excitation energies, caused
by differences in the feeding of the states from the nuclear reaction and from
the decay from higher-lying states (non-independence of method of formation).
The differences in shape may be understood by, e.g., the two strongly populated
states at lower excitation energy (visualised as the two red spots), causing too
strong subtraction. The shortcoming of the method is eliminated by excluding
this region of low γ-ray energy in the further analysis. Article 3 elaborates on this
kind of shortcoming.
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Chapter 5

Extraction of the level density and
the γ-ray strength function

The present chapter concerns the last two parts of the Oslo method: The
factorising of the experimental first-generation matrix P(E,Eγ) into the
unnormalised level density ρ(E) and γ-ray transmission coefficient T (Eγ)
(Sec. 5.1), as well as their normalisation (Sec. 5.2). Afterwards, the γ-ray
strength function f (Eγ) may easily be estimated from the transmission coefficient
(Sec. 5.3).

5.1 Factorisation of level density and transmission
coefficient

A method of simultaneous extraction of the experimental level density ρ(E) and
γ-ray strength function f (Eγ) has been developed at the OCL [14]. The method
uses the first-generation matrix P(E,Eγ) as the basis, as well as the assumption
that the γ decay is statistical. We will present the main features of the factorisation
method.

The general rule describing the transition probability per time between energy
levels in a quantum system is the well-known Fermi’s golden rule:

λ =
2π
h̄
|〈 f |Ĥint|i〉|

2ρ(Ef) . (5.1)

Here λ is the transition probability per time (transition rate) of the initial state |i〉
to the final state | f 〉. The quantity Ĥint is the perturbating transition operator, and
ρ(Ef) is the level density at the final excitation energy Ef = E −Eγ . As we see
from Eq. (5.1), the transition rate is proportional to both the square of the absolute
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value of the matrix element of perturbation and to the level density at the final
excitation energy Ef.

The Brink-Axel hypothesis [15, 16] states that collective excitation modes
built on excited states have the same decay properties as those built on the ground
state. In other words, we assume that the γ-ray transmission coefficient T (Eγ) is
only a function of γ-ray energy and independent of excitation energy E (and thus
the nuclear temperature).

The Brink-Axel hypothesis is assumed to be valid for statistical γ decay
(except for very high temperatures and/or spins, beyond those achievable at OCL).
Statistical γ decay is the decay from a compound nucleus. A compound nucleus
is a nucleus that has thermalised prior to deexcitation, and thus its energy is
shared on a relatively large number of nucleons. As a consequence, the nucleus
”forgets” its way of formation, and hence, the decay is statistical. In this case, the
probability of γ decay P(E,Eγ) may be expressed as:

P(E,Eγ) ∝ T (Eγ)ρ(Ef) . (5.2)

The reactions that we study, (3He,3He′γ) and (3He,αγ), are not compound
reactions, but direct reactions involving only a few nucleons in the nucleus. Still,
in the region of high level density, which usually means levels at high excitation
energy, the nucleus seems to attain a compound-like system before deexcitation.
This is due to two factors. First, a large degree of configuration mixing appears
at high level density [17]. Second, the typical life time of states in the quasi
continuum (∼ 10−15 s) is many orders of magnitude larger than the time required
to create a compound state (∼ 10−18 s). However, we do not have compound
states in the discrete excitation energy region. Therefore, this low-energy region
is not used in the factorisation procedure.

To extract the level density and the γ-ray transmission coefficient, an iterative
χ2 procedure [14] is applied to the first-generation γ-ray matrix P(E,Eγ). The
basic idea is to globally minimise χ2:

χ2 =
1

Nfree

E

∑
E=Emin

E

∑
Eγ=Eγ min

(
Pfit(E,Eγ)−P(E,Eγ)

ΔP(E,Eγ)

)2

, (5.3)

where Nfree is the number of degrees of freedom, P(E,Eγ) is the experimental
first-generation matrix, ΔP(E,Eγ) is the uncertainty in the experimental P(E,Eγ)
matrix, and Pfit(E,Eγ) is the χ2-fitted output matrix from the iteration. This
output is fitted as a normalised product of the level density and the transmission
coefficient:

Pfit(E,Eγ) =
ρ(E −Eγ)T (Eγ)

∑E
Eγ=Eγ min ρ(E −Eγ)T (Eγ)

. (5.4)
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Figure 5.1: First-generation matrixes of 121Sn. The left panel shows the experimental
matrix P(E,Eγ), while the right panel shows the output matrix Pfit(E,Eγ) calculated from
χ2 fitting. The cuts of data illustrate the limits that were set prior to the extraction. The
energy bins of Eγ and E are 120 keV/ch.

The denominator of the expression assures that Pfit is normalised to unity.
Every points of the ρ(E − Eγ) and T (Eγ) functions are assumed to be

independent variables, so that χ2 in Eq. (5.3) is minimised for every argument
E −Eγ and for Eγ . When a certain matrix Pfit minimises χ2, the two independent
functions ρ(E −Eγ) and T (Eγ) have been found. The method usually converges
very well [14].

Figure 5.1 shows for 121Sn the input (experimental) matrix P(E,Eγ) in the
left panel and the output (χ2-fitted) matrix Pfit(E,Eγ) in the right. These limits
set prior to the extraction procedure were chosen to ensure that the data used in
the iteration method are from the statistical excitation-energy region (Emin,Emax),
and that the γ-ray energies are above a certain threshold where the first-generation
method works well (Eγ

min) (see Sec. 4.2.2).
The quality of the procedure when applied to the measurements on 122Sn is

demonstrated in Fig. 5.2. The experimental first-generation spectra (filled squares)
for various excitation energies are compared to the χ2-fitted solution (solid lines).
In general, the agreement between the experimental data and the fit is very good.
It is noted that in some of the panels (e.g., the transition to the ground state for
the panel of E = 4.1 MeV, and to the first-excited state for the panel of E = 4.8
MeV), the fitted curves are significantly lower than the experimental data. This
discrepancy is discussed in Article 2.

The globalised fitting to the experimental points gives only the functional
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Figure 5.2: Comparison of the experimental P matrix with the χ2-fitted Pfit matrix
for 122Sn. Gamma-ray spectra are shown for different excitation energies E, with
experimental data as filled squares and χ2-fitted data as solid lines. The energy bins
are compressed to 240 keV/ch in E and in Eγ . While the illustrations have been made
for different excitation energies E (indicated in the panels), the χ2 fit was performed
simultaneously for all excitation energies within the chosen region.

forms of ρ and T . It has been shown [14] that if one solution for the set of
functions ρ and T is known, one may construct an infinite number of other sets
that give identical fits to the experimental P(E,Eγ) matrix:

ρ̃(E −Eγ) = Aexp
[
α(E −Eγ)

]
ρ(E −Eγ) , (5.5)

T̃ (Eγ) = Bexp(αEγ)T (Eγ) . (5.6)

The parameters A, B, and α are determined so that the functions ρ and T
correspond to the physical solution. This normalisation is treated in the next
section.

5.2 Normalisation
The final step for extracting the level density ρ and the γ-ray transmission
coefficient T is the determination of the parameters A, B, and α (see Eqs. (5.5) −
(5.6)) that correspond to the physical solution. This is done by comparing these
extracted functional forms of ρ and T to known, experimental data. The details
of this normalisation procedure is briefly explained in the following.
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5.2.1 Level density
The normalisation procedure for the level density was developed in Ref. [14]. In
the discrete excitation-energy region, typically up to ≈ 2−3 MeV in heavy nuclei
like Sn, the level density function is known from spectroscopy. At the neutron
separation energy Sn, we can deduce the level density from the level spacing
D, obtained from neutron (or proton) resonance experiments, if available. For
simplicity, we show it here only for s-wave neutrons (D0, denoting � = 0).

The level spacing D0 is found from neutron resonance experiments using
neutrons with spin/parity 1/2+. Then levels with spin I = It ± 1/2, where It is
the target spin, are accessible. The s-wave level spacing is

D0 =
1

ρ(Sn, It ±1/2,πt)
, (5.7)

where πt is the target parity. Assuming that both parities contribute equally to
the level density at the neutron separation energy Sn, the value of D0 may be
determined from:

1
D0

=
1
2

[ρ(Sn, It +1/2)+ρ(Sn, It −1/2)] . (5.8)

We are interested in expressing D0 as a function of the total (all spins) ρ(Sn).
To establish an expression for the value of ρ(Sn), it is necessary to assume models
for the spin distribution g(U, I) and the spin cut-off parameter σ(U), where U
is the nucleus’ intrinsic excitation energy. In all the studies on Sn isotopes
presented in this thesis, the back-shifted Fermi-gas (BSFG) model with the
original parametrization of von Egidy et al. [18] was the most appropriate. Here,
the spin distribution g and the spin cut-off parameter σ are kept as the original
Gilbert and Cameron expressions [19], but with a redefined parameterisation of U
and the level-density parameter a (see also Article 1).

The theoretical Fermi-gas prediction for level density ρ(U) as a function of
intrinsic excitation energy U for all spins and both parities is [19]:

ρ(U) =
√

π
12

exp(2
√

aU)
a1/4U5/4

1√
2πσ

, (5.9)

while the spin distribution is [19]:

g(U, I) =
2I +1
2σ2 exp

[
−(I +1/2)2/2σ2] . (5.10)

The spin distribution is normalised to ∑I g(U, I) ≈ 1. Hence, the theoretical
prediction for level density as a function of U and spin I for both parities is found
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from:

ρ(U, I) = ρ(U)g(U, I)

=
√

π
12

exp(2
√

aU)
a1/4U5/4

(2I +1)exp
[
−(I +1/2)2/2σ2]

2
√

2πσ3
. (5.11)

Determining ρ(Sn, It ±1/2) from the expression in Eq. (5.11) and inserting these
into Eq. (5.8), we may express the total level density ρ(Sn) as a function of D0:

ρ(Sn) =
2σ2

D0

1
(It +1)exp [−(It +1)2/2σ2]+ It exp

[
−It2/2σ2

] . (5.12)

The value of the spin cut-off parameter at the neutron separation energy,
σ(Sn), according to the chosen parameterisation of Ref. [18] is inserted into
Eq. (5.12). Hence, the normalisation value ρ(Sn) has been found, expressed by
D0. The experimental value of D0 is often available in literature.

While we would like to normalise to ρ(Sn), our experimental results do not
reach E = Sn, due to methodical limitations. We therefore make an interpolation
from ρ(Sn) down to our data points, and instead, we normalise our measurements
to this interpolation. The interpolation is made using the level density prediction
in Eq. (5.9), where we keep the shape but scale it to agree with ρ(Sn). Figure
5.3 shows the normalised level density function for 121Sn. Included in the
figure is also the normalisation value ρ(Sn) and arrows showing the regions
of normalisation, both to the discrete levels from spectroscopy and to the level
density interpolation from ρ(Sn).

Since ρ(Sn) includes all spins, while we only measure for low spins in the
experiments, normalising our measurements to ρ(Sn) also normalise the measured
data into all spins. It is assumed that the structures of the level density is
approximately the same in a region of low spins compared to if all spins were
included (see Article 3).

5.2.2 Transmission coefficient

The log-scale slope of the γ-ray transmission coefficient T has already been
normalised with the correction parameter α . It remains to normalise the absolute
value, i.e., finding the absolute value correction B, defined in Eq. (5.6). The
normalisation method was developed in Ref. [20] and is briefly explained here.

The γ-ray transmission coefficient is related to the average total radiative width〈
Γγ(E, Ii,πi)

〉
of excitation energy levels with initial energy E, initial spin Ii and
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Figure 5.3: Normalised level density ρ(E) (filled squares) as a function of final excitation
energy E for 121Sn. The energy bin is 120 keV/ch. The solid lines represent the discrete
level density, obtained from spectroscopy. The dashed line is the predicted level density
interpolation, scaled to agree with the normalisation value ρ(Sn) (open square), which
has been calculated from neutron-resonance data. The arrows show the two normalisation
regions.

initial parity πi = πt (parity of the target in the neutron-capture reaction) by [21]:

〈
Γγ(E, Ii,πi)

〉
=

1
2π ρ(E, Ii,πi)

×∑
XL

∑
I f ,π f

∫ E

Eγ
dEγTXL(Eγ)ρ(E −Eγ , I f ,π f ) .

(5.13)
The summations and the integration are over all final energy levels of spin If and
parity πf that are accessible through a γ-ray transition categorised by the γ-ray
energy Eγ of electromagnetic character X and multipolarity L. It is clarified that
the final state of If and πf is the state after the γ-ray deexcitation of the nucleus,
while the initial state of Ii and πt is the state after the neutron-capture reaction and
before the γ-ray transition.

In our experiment, we measure BT , which will replace the component-based
sum in Eq. (5.13). We set ∑XL TXL = BT .
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We assume that there are equally many accessible states with positive and
negative parity for all excitation energies and spins. Then we may simplify the
level density function in Eq. (5.13) at the neutron separation energy Sn by:

ρ(Sn −Eγ , If,±π) =
1
2

ρ(Sn −Eγ , If) . (5.14)

We normalise T to experimental values of the average total radiative width
at the neutron separation energy Sn,

〈
Γγ(Sn, Ii,πt)

〉
. This quantity is measured in

neutron-capture experiments (n,γ) and is often found in literature both for s-wave
neutrons and for p-wave neutrons. In the following, we will consider s-wave
resonances. The initial spin will then be Ii = It ± 1/2, where It is the spin of the
target in the neutron-capture reaction. The final spin is If = It ±1/2+ J, where J
is the vector addition of the spin transfer in the γ-ray transition of multipolarity
L, i.e., J = −L,−L + 1, ...,L. Note that the factor 1/ρ(Sn, It ± 1/2,πt), seen in
Eq. (5.13) for E = Sn and assuming s waves, is recognised as the s-wave neutron
level spacing D0.

Further, we assume that the governing contribution to the experimental T is
from dipole radiation, which is indeed the case in the measurements. This implies
that the γ-ray transition has L = 1, which leads to J being any of −1, 0 or 1.

Our experimental data have been normalised to include all spins (see
Sec. 5.2.1), while we now need to find the level density for If. We do this with the
help of the spin distribution g(E, I). At a general final excitation energy E −Eγ ,
Eq. (5.14) may be expressed as:

ρ(E −Eγ , If) = ρ(E −Eγ)
1

∑
J=−1

g(E −Eγ , It ±1/2+ J) , (5.15)

where the function ρ(E −Eγ) is our experimental data for all spins. As a spin
distribution we assume the same theoretical expression from Ref. [19], as in
Sec. 5.2.1.

Combining all expressions, the average total radiative width at the neutron
separation energy Sn for neutron s-wave capture resonances is given by:

〈
Γγ(Sn, It ±1/2,πt)

〉
=

BD0

4π

∫ Sn

Eγ=0
dEγT (Eγ)ρ(Sn −Eγ)

×
1

∑
J=−1

g(Sn −Eγ , It ±1/2+ J) ,

(5.16)

where our measured data are inserted for T (Eγ) and ρ(Sn −Eγ). We also insert
the values of

〈
Γγ(Sn, It ±1/2,πt)

〉
and D0, which are known from experiments

and given in literature. Afterwards, we solve for B.
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Figure 5.4: Normalised γ-ray transmission coefficient T (Eγ) as a function of γ-ray
energy Eγ for 121Sn. The γ-ray energy bin is 120 keV/ch. The arrows indicate the low
and high γ-ray energy regions for which the data points are used to make the exponential
extrapolations.

Some extra treatment of the transmission coefficient T is however performed
before the calculation. The transmission coefficient is only determined for γ-ray
energies Eγ > Eγ

min (see Eq. (5.4)), and the measurements at the highest Eγ below
Sn suffer from poor statistics. Thus, the low and high-energy values of T are fitted
with exponential extrapolations. The errors due to possibly poor extrapolations
normally do not exceed 15% and are thus expected to be of minor importance
[20]. Figure 5.4 demonstrates the extrapolations applied for normalising T in the
case of 121Sn.

5.3 The γ-ray strength function
The γ-ray strength function f (Eγ) may be defined as [22]:

fXL(Eγ) =

〈
Γγ�

〉
Eγ

2L+1D�
, (5.17)
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where
〈
Γγ�

〉
is the average radiative width, D� the level spacing for �-wave

resonances (usually s- or p-wave) obtained from neutron resonance experiments,
and X and L denote the electromagnetic character and multipolarity, respectively,
of the γ decay. The quantity transmission coefficient T (Eγ) is related to the
strength function by:

T (Eγ) = 2π ∑
XL

Eγ
2L+1 fXL(Eγ) . (5.18)

We estimate the γ-ray strength function from the normalised transmission
coefficient T (Eγ) according to Eq. (5.18), assuming dipole radiation:

f (Eγ) =
1

2πEγ
3 T (Eγ) . (5.19)

In the OCL experiments, we cannot distinguish between magnetic and electric
dipole radiation, hence both contributions are included in our measurements. The
normalised strength function of 121Sn is as an example shown in Fig. 5.5.
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Figure 5.5: Normalised γ-ray strength function f (Eγ) as a function of γ-ray energy for
121Sn. The energy bin is 120 keV/ch.
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Chapter 6

The E1 neutron-skin oscillation
mode

The nature and origin of the low-energy pygmy electric dipole resonance in
medium and heavy-mass neutron-rich nuclei are heavily debated. The present
chapter provides a brief presentation of this resonance as a phenomenon.

Additional γ-ray strength, compared to standard strength models, are observed
for γ-ray energies below the GEDR (located at Eγ ≈ 16 MeV) in neutron-rich Sn
isotopes, as well as in other neutron-rich medium-heavy or heavy nuclei. It has
not been determined yet if the neutrons causing this extra strength are excited
as single particles or as a collective phenomenon. However, there exist several
theoretical analyses that predict the existence of a collective mode in these nuclei
(see, e.g., Ref. [23] and references therein).

In the present thesis, we have chosen to call the extra strength in Sn a
”resonance”, assuming collectivity, even though it is questionable [23]. The term
”pygmy” is often applied on the resonance in the medium and heavy nuclei, which
is understood by its relatively small integrated strength compared to the GEDR.

These nuclei are often assumed to have a so-called neutron skin. This skin
is thought of as a thin layer of excess neutrons close to the nuclear surface. The
densities of the core nucleons and the excess neutrons overlap, but the excess
neutrons extend beyond the density of the core. The neutron-skin oscillation
mode is thought to originate from the neutron skin being excited to perform
collective oscillations against the proton-neutron core. The existence of this mode
has not been experimentally confirmed yet. Though, several experiments have
been performed with the aim to measure the thickness of the neutron skin (see
Ref. [23] and references therein).

Many theoretical studies have investigated the collective approach. Until
the beginning of the 1990 decade, macroscopical hydrodynamical models were
applied. The nucleons were modeled as fluids and the resonance by classical
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oscillations [23]. For instance the three-fluid hydrodynamical model [24],
published as early as 1971, modeled three fluids: The protons, the neutrons
located in the same orbitals as the protons, and the remaining neutrons. Another
hydrodynamical study, of Van Isacker et al. [25], predicted an analytical
expression for the ratio of the integrated strength of the pygmy resonance to that
of the GEDR. This ratio is: (N −Nc)Z/(Z +Nc)N, where Nc is the number of
neutrons in the core fluid. In Article 2, we compare this ratio for the Sn isotopes
to the one estimated from our experiments. At the end of the 1990 decade,
microscopical approaches replaced the macroscopical.

The predictions of the theoretical studies are very interesting. Microscopical
calculations by, e.g., Paar et al. [26] and by Vretenar et al. [27] predict that the
dynamics of the pygmy resonance and of the GEDR, both being E1 resonances,
are completely different. The transition densities of the proton and the neutrons in
the GEDR peak oscillate with opposite phases (characteristic for a isovector dipole
mode). The dynamics of the pygmy resonance states is, however, that the proton
and neutron densities are in phase (isoscalar) in the nucleus core, whereas only
neutron excitations contribute to the transition density in the surface region. Thus,
the pygmy resonance is indeed a separate mode not belonging to the tail of the
GEDR. The neutron skin oscillates against the proton/neutron core, and it is the
neutron skin that basically determines the properties of the pygmy resonance (see
Ref. [23] and references therein). The presence of both isoscalar and isovector
states in the pygmy resonance in Sn seems to have been experimentally confirmed.
Recent measurements using the (α,α ′γ) coincidence method on 124Sn compared
to photon-scattering experiments shows a splitting into its isoscalar and isovector
components [28].

There exists many theoretical studies of the evolution with increasing neutron
number of the resonance’s integrated strength and centroid energy. Most
theoretical calculations predict a systematic increase of the strength. This is of
course due to the increase of the neutron number in the skin. The predicted
increase of integrated strength is often significant. Studies predicting such an
increase in the Sn isotopes are, e.g., Paar [23], Daoutidis [29], Tsoneva and Lenske
[30], Litvinova et al. [31], as well as Terasaki and Engel [32].

It is commented that the study of Daoutidis [29] predicts a relatively smaller
increase of the integrated strength (thus a strength being relatively stable) in the
atomic mass region A = 120− 126, compared to other mass regions. Paar [23]
predicts an overall increase, but with a local decrease with a local minimum in
integrated strength around A = 128−132, caused by a combination of shell effects
and reduced pairing correlations.

Most theoretical studies predict a decrease in the centroid energy of the pygmy
resonance as the neutron number is increased. Examples are the investigations on
Sn isotopes by Daoutidis [29], Tsoneva and Lenske [30], and Paar [23], as well
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as on Ca isotopes by Tertychny et al. [33]. Daoutidis [29] predicts also a centroid
energy that is relatively stable in the atomic mass region A = 120−126.

Experimental estimates of the centroid energy of the pygmy resonance exist
for several Sn isotopes: Eγ ≈ 8.5 MeV for 116,117Sn from Utsunomiya [34], Eγ ≈
7.8 MeV for 117,119Sn from Winhold et al. [35], and Eγ = 10.1(7) MeV for 130Sn
and 9.8(7) MeV for 132Sn from Adrich et al. [36]. The centroid energies of Ca
isotopes determined from (γ,γ ′) experiments increase with increasing neutron
number, which is a finding in contradiction to theoretical predictions (see Ref. [33]
and references therein).

The classical Thomas-Reiche-Kuhn (TRK) sum rule gives the
energy-weighted integrated strength of the pygmy resonance with respect
to the GEDR, assuming that the pygmy resonance is built up by E1 radiation.
TRK values of the pygmy resonance in Sn have been estimated from several types
of experiments. Data on 116,117Sn(γ ,n) experiments from Utsunomiya et al. [34]
indicate a TRK value of ≈ 1%. From 116,124Sn(γ ,γ ′) experiments by Govaert et
al. [37], the value is calculated to 0.4− 0.6%. Taking into account unresolved
strength in the quasi continuum of typically a factor of 2− 3, the estimate from
the measurements of Govaert is compatible to that of Utsunomiya.

The pygmy resonance in Sn has a relatively small integrated strength
compared to the GEDR. Still, the pygmy resonance is expected to have a large
impact in nuclear astrophysics. Its existence and its location close to the neutron
separation energy may cause a large increase of the radiative neutron-capture cross
sections of neutron-rich nuclei. This means that the neutron-capture rates in the
so-called r-process nucleosynthesis are increased accordingly. Since the r-process
nucleosynthesis produces neutron-rich nuclei heavier than Fe, the existence of the
pygmy resonance may have important impacts on the calculated distribution of
elemental abundance, as shown in calculations by Goriely et al. [38, 39].

If the resonance is caused by the predicted neutron-skin oscillation, its
radiation will be of E1 character. Another electromagnetic character or
multipolarity would have shown that the radiation is due to another mechanism.
However, measurements confirming an E1 character do not automatically verify
a neutron-skin oscillation origin.

A large number of experiments have indeed measured an E1 character in this
energy region. Amongst these are several experiments on Sn isotopes: The nuclear
resonance fluorescence experiments (NRF) performed on 116,124Sn [37] and on
112,124Sn [40], and the Coulomb dissociation experiments performed on 129−132Sn
[36, 41].

It should be mentioned that an M1 character has been indicated in a
proton inelastic-scattering experiment on 120,124Sn [42], but that the experiments
measuring an E1 character are in majority. Both E1 and M1 strength is expected
to be present in this γ-ray energy region due to the tail of the GEDR and to the
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magnetic spin-flip transitions building up the giant magnetic dipole resonance
(GMDR), respectively. The GMDR is observed in many nuclei around the energy
region of the pygmy resonance. Therefore, both E1 and M1 strength will anyway
be present in the energy region of the pygmy resonance, and the strength of the
tail of the GEDR is much larger than the strength from the GMDR.

Another possibility not ruled out is that the pygmy resonance in the Sn isotopes
might instead be due to an enhanced GMDR. As shown in Article 1, the Sn
isotopes have their proton Fermi level located right in between the g7/2 and g9/2
orbitals, and similarly their neutron Fermi level between h11/2 and h9/2. This may
cause proton g7/2 ↔ g9/2 and neutron h11/2 ↔ h9/2 magnetic spin-flip transitions.
To summarise, clarification of the electromagnetic character of the Sn pygmy
resonance is of utmost importance.
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7.1. ARTICLE 1: LEVEL DENSITIES AND γ-RAY STRENGTH
FUNCTIONS IN SN ISOTOPES

7.1 Article 1: Level densities and γ-ray strength
functions in Sn isotopes

The experimental level densities of 118,119Sn and the γ-ray strength functions
of 116,118,119Sn below the neutron separation energy are extracted with the Oslo
method using the (3He,αγ) and (3He,3He′γ) reactions.

The level density function of 119Sn displays step-like structures. The
experimental microcanonical entropies are deduced from the level densities, and
the single neutron entropy of 119Sn is determined to be ΔS = 1.7±0.2kB. Results
from a simple microscopic model [43, 44, 45] support the interpretation that some
of the low-energy steps in the level density function are caused by neutron pair
breaking.

An enhancement in the experimental 116,118,119Sn γ-ray strength functions,
compared to the generalised Lorentzian (GLO) [46] model for radiative strength,
is observed for the γ-ray energy region of 4.5 � Eγ � 11 MeV. These small
resonances all have a centroid energy of Eγ = 8.0(1) MeV and an integrated
strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn (TRK)
sum rule.
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The nuclear level densities of 118,119Sn and the γ -ray strength functions of 116,118,119Sn below the neutron
separation energy are extracted with the Oslo method using the (3He,αγ ) and (3He,3He′γ ) reactions. The
level-density function of 119Sn displays steplike structures. The microcanonical entropies are deduced from
the level densities, and the single neutron entropy of 119Sn is determined to be 1.7± 0.2 kB . Results from a
combinatorial model support the interpretation that some of the low-energy steps in the level density function
are caused by neutron pair breaking. An enhancement in all the γ -ray strength functions of 116−119Sn, compared
to standard models for radiative strength, is observed for the γ -ray energy region of �4–11 MeV. These small
resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of
the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin
oscillations or to an enhancement of the giant magnetic dipole resonance.
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I. INTRODUCTION

The level-density and the γ -ray strength function are av-
erage quantities describing atomic nuclei. They are important
for many aspects of fundamental and applied nuclear physics,
including calculations of nuclear properties, like reaction cross
sections. Such cross sections are used for calculations in, e.g.,
reactor physics and nuclear waste management, and of nuclear
reaction rates in astrophysics for modeling of nucleosynthesis
in stars.
The nuclear level density of nuclei is defined as the number

of levels per unit of excitation energy. The entropy and other
thermodynamic properties may also be determined from the
level density. Structures in the level density are expected to be
due to shell gaps, breaking of nucleon Cooper pairs, and/or
changes in the nuclear shape. In the majority of previous
experiments, the level density is measured either only at low
energy by direct counting (conventional spectroscopy) or at
higher energy around the neutron/proton separation energies
(nuclear resonance measurements).
The γ -ray strength function may be defined as the reduced

average transition probability as a function of γ -ray energy.
This quantity characterizes average electromagnetic properties
of excited nuclei. The strength function reveals essential
information about the nuclear structure. Electric transitions
are mostly influenced by the proton charge distribution, while
magnetic transitions are also affected by the neutron distribu-
tion due to the magnetic dipole moment of the neutron. The
shape and softness of the nuclear surface are other important
factors for the nuclear response to electromagnetic radiation.

*h.k.toft@fys.uio.no

The large number of stable isotopes in Sn makes the
element suitable for systematic studies. This article presents
the level densities of 118,119Sn and the γ -ray strength functions
of 116,118,119Sn for energies in the quasicontinuum below
the neutron separation energy. The measurements have been
performed at the Oslo Cyclotron Laboratory (OCL). The
118,119Sn results are compared with earlier OCL studies on
other isotopes. In Ref. [1], the level-density functions of
116,117Sn were shown to display steps that are much more
distinctive than previously measured for other mass regions.
The stepswere interpreted as neutron pair breaking. InRef. [2],
a resonance-like structure in the γ -ray strength function was
measured below the neutron threshold in 117Sn. A combinato-
rial model is also used in this article to study, e.g., the origin
of the level-density steps and the impact of collective effects.
The experimental setup and the data analysis are briefly

described in Sec. II. The normalized experimental results
for level density and entropy are presented in Sec. III.
Section IV discusses the nuclear properties extracted from
the level density with the combinatorial model. Section V
presents the normalized experimental γ -ray strength functions.
Conclusions are drawn in Sec. VI.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

The self-supporting 119Sn target was enriched to 93.2%
and had a mass thickness of 1.6 mg/cm2. For three days
the target was exposed to a 38-MeV 3He beam with an
average current of ∼1.5 nA. The reaction channels studied
were 119Sn(3He,3He′γ )119Sn and 119Sn(3He,αγ )118Sn.
Particle-γ coincidences were recorded with seven colli-

mated Si particle�E-E telescopes and 26 collimated NaI(Tl)
γ -ray detectors. The �E and E detector thicknesses were
about 140 and 1500 μm, respectively. These detectors were
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placed at 45◦ with respect to the beam axis. The NaI detectors
are distributed on a sphere and constitute the CACTUS
multidetector system [3]. The total solid-angle coverages out
of 4π were approximately 1.3% for the particle detectors and
16% for the γ -ray detectors.
In the data analysis, the measured ejectile’s energy is

transformed into excitation energy of the residual nucleus
using reaction kinematics. The γ -ray spectra for various initial
excitation energies are unfoldedwith the known response func-
tions of CACTUS and the Compton subtraction method [3].
The Compton subtraction method preserves the fluctuations
in the original spectra without introducing further, spurious
fluctuations.
The first-generation γ -ray spectra are extracted from the

unfolded total γ -ray spectra by the subtraction procedure
described in Ref. [4]. The main assumption is that the γ decay
from any excitation energy bin is independent of the method of
formation—whether it is directly formed by a nuclear reaction
or indirectly by γ decay from higher lying states following the
initial reaction.
The first-generation γ -ray spectra are arranged in a two-

dimensional matrix P (E,Eγ ). The entries of P are the
probabilities P (E,Eγ ) that a γ ray of energy Eγ is emitted
from an energy bin of excitation energyE. This matrix is used
for the simultaneous extraction of the γ -ray strength function
and the level-density function.
The first-generation matrix P is factored into the level-

density function ρ and the radiative transmission coefficient
T [5]:

P (E,Eγ ) ∝ T (Eγ )ρ(E − Eγ ). (1)

The factorization of P into two components is justified for
nuclear reactions leading to a compound state prior to a
subsequent γ decay [6]. Equation (1) may also be regarded as
a variant of Fermi’s golden rule: The decay rate is proportional
to the density of the final state and the square of the matrix
element between the initial and final state. The factorization
is performed by an iterative procedure where the independent
functions ρ and T are adjusted until a global χ2 minimum
with the experimental P (E,Eγ ) is reached.
As shown in Eq. (1), the transmission coefficient is assumed

to be a function of onlyEγ , in accordance with the generalized
form of the Brink-Axel hypothesis [7,8]. This hypothesis states
that a giant electric dipole resonance, and all other collective
excitation modes, may be built on any excited state and still
have the same properties as the one built on the ground
state. Hence, the transmission coefficient is independent of
excitation energy.
Equation (1) determines only the functional forms of ρ

and T . The entries of P are invariant under the following
transformations [5]:

ρ̃(E − Eγ ) = A exp[α(E − Eγ )]ρ(E − Eγ ), (2)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (3)

The final step of the Oslo method is to determine the
normalization parameters. The parametersA andB will define
the absolute values ofρ andT , respectively, whileαwill define
their common slope.

III. LEVEL DENSITIES

A. Normalization and experimental results

The constants A and α in Eq. (2), which are needed to
normalize the experimental level density ρ, are determined
using literature values of the known discrete energy levels at
low energy and of the level spacingD at the neutron separation
energy Sn, obtained from neutron resonance experiments.
The normalization value ρ(Sn) is calculated either from the

s-wave level spacingD0(Sn) or from the p-wave level spacing
D1(Sn). The level spacings are taken from Refs. [9,10]. To
establish an expression for the value of ρ(Sn), it is necessary
to assume models for the spin distribution g(E, I ) and the
spin cut-off parameter σ . We choose the back-shifted Fermi
gas (BSFG) model with the original parametrization of von
Egidy et al. [11], because this parametrization gives the most
appropriate normalization of these nuclei when comparing to
other experimental measurements (see also Ref. [1]).
Here, these functions are kept as the original Gilbert and

Cameron expressions [12], but with a redefined parametriza-
tion of the nucleus’ intrinsic excitation energyU and the level-
density parameter a. The spin distribution is expressed as [11]:

g(E, I ) � 2I + 1
2σ 2

exp [−(I + 1/2)2/2σ 2], (4)

where I is the spin and where the spin cut-off parameter σ (E)
is given by:

σ 2 = 0.0888A2/3aT , (5)

whereA is the mass number of the isotope and T is the nuclear
temperature given by T = √

U/a. Here, the level-density
parameter is defined as a = 0.21A0.87MeV−1,while the shifted
excitation energy U is defined as U = E − Epair − C1. The
back-shift parameter is defined as C1 = −6.6A−0.32 MeV.
The pairing energy Epair is calculated from the proton
and neutron pair-gap parameters: Epair = �p + �n. The
pair-gap parameters are evaluated from the even-odd mass
differences found in Ref. [13] according to the method of
Ref. [14].
Assuming this spin distribution and equal numbers of levels

with positive and negative parity, the level density at Sn may
be expressed as, for s-wave neutron resonances [5,15]:

ρ0(Sn) = 2σ 2

D0

{
(It + 1) exp

[− (It + 1)2
2σ 2

]

+ It exp

[−It
2

2σ 2

]}−1
, (6)

and for p-wave resonances [15]:

ρ1(Sn) = 2σ 2

D1

{
(It − 1) exp

[− (It − 1)2
2σ 2

]
+ It exp

[−It
2

2σ 2

]

+ (It + 1) exp
[− (It + 1)2

2σ 2

]

+ (It + 2) exp
[− (It + 2)2

2σ 2

]}−1
, (7)

where the spin cut-off parameter is evaluated at Sn and where
It is the spin of the target.
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TABLE I. Input parameters and the resulting values for the calculation of the normalization value ρ(Sn) and the input parameters for the
BSFG interpolation and the required values of the scaling parameter η.

Nucleus Sn D0(Sn) a C1 �n �p σ (Sn) ρ(Sn) η

(MeV) (eV) (MeV−1) (MeV) (MeV) (MeV) (104 MeV−1)

119Sn 6.485 700(150) 13.43 −1.43 0 1.02 4.55 6.05(175) 0.44
118Sn 9.326 61(7) 13.33 −1.43 1.19 1.24 4.74 38.4(86) 0.59

A higher ρ(Sn) is obtained from the level spacing of D0

than of D1, according to calculations on both isotopes. As the
highest value of the level density is presumed to be the best
estimate, D0 is chosen in the following. The input parameters
and the resulting values of the normalization data ρ(Sn) are
given in Table I.
The experimental data for the level densities are not

obtained up to the excitation energy of Sn. There is a gap, and
the level density in the gap and below is estimated according
to the level-density prediction of the BSFG model with the
parametrization of von Egidy et al. [11]. This is a consistency
choice in order to keep the spin distribution and the spin cut-off
parameter the same as the ones used during the calculation of
ρ(Sn) based on the neutron resonance data. The BSFG level
density, for all spins and as a function of excitation energy, is
given by

ρ(E)BSFG =
exp

(
2
√

aU
)

12
√
2a1/4U 5/4σ

. (8)

A scaling parameter η is applied to the BSFG formula,

ρ(E)BSFG → ηρ(E)BSFG, (9)

in order to make its absolute value at Sn agree with the
normalization value ρ(Sn). We then get a level-density in-
terpolation that overlaps with the measurements, and to which
the measurements are normalized. The values of η are shown
in Table I.
Figure 1 shows the normalized level densities in 118,119Sn.

The arrows indicate the regions used for normalization. As
expected, the level densities of 119Sn and 118Sn are very similar
to those of 117Sn and 116Sn [1], respectively. The figure also
shows that the known discrete levels [16] seem to be complete
up to ∼2 MeV in 119Sn and up to ∼3 MeV in 118Sn. Hence,
our experiment has filled a region of unknown level density
from the discrete region and to the gap, approximately at Sn −
1MeV. Unlike 119Sn, the ground state of the even-even nucleus
118Sn has no unpaired neutron, and accordingly it has fewer
available states than 119Sn. Therefore, measuring all levels to
higher excitation energies by conventional methods is easier
in 118Sn.
An alternative interpolation method to describe the gap

between our measured data and the neutron-resonance-data–
based ρ(Sn) is the constant temperature (CT) model [12]. This
approximation gives

ρ(E) = 1

T
exp [(E − E0) /T ] , (10)

where the “temperature” T and the energy shift E0 are treated
as free parameters. Figure 2 shows a comparison of the CT
model and the BSFGmodel as interpolationmethods for 118Sn.
The small difference in the region of interpolation is negligible
for the normalization procedure.
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FIG. 1. Normalized level densities of 119Sn (upper panel) and
118Sn (lower panel) as a function of excitation energy. Our ex-
perimental data are marked with filled squares. The dashed lines
are the BSFG predictions that are used for interpolation, scaled
to coincide with ρ(Sn) (open squares), which are calculated from
neutron resonance data. The solid lines represent the discrete level
densities obtained from counting the known levels. The arrows
indicate the regions used to normalize the absolute values and
the slope. The energy bins are 360 and 240 keV/ch for 118,119Sn,
respectively.
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FIG. 2. (Color online) Comparison of the BSFG model (dashed
line) and the CTmodel (solid line) as interpolationmeans for the level
density of 118Sn. The arrows indicate the region of normalization. The
parameters in the CT model (T = 0.86 MeV and E0 = −1.7 MeV)
have been found from a least χ 2 fit to the data points in this region
and from matching ρ(Sn), and the parametrization is not intended to
be appropriate elsewhere.

B. Steplike structures

In Fig. 1, the level density of 119Sn shows a steplike
structure superimposed on the general level density, which
is smoothly increasing as a function of excitation energy. A
step is characterized by an abrupt increase of level density
within a small energy interval. The phenomenon of steps was
also seen in 116,117Sn [1].
Distinctive steps in 119Sn are seen below ∼4 MeV. They

are, together with the steps of 116,117Sn [1], the most distinctive
steps measured so far at OCL. This may be explained by Sn
having a magic number of protons, Z = 50. As long as the
excitation energy is less than the energy of the proton shell
gap, only neutron pairs are broken. The steps are distinc-
tive since no proton pair breaking smears the level-density
function.
The steps are less pronounced for 118Sn than for 119Sn. This

is in contradiction to what is expected, as 118Sn is an even-even
nucleus without the unpaired neutron reducing the clearness
of the steps in 119Sn. The explanation probably lies in poorer
statistics for the (3He,α) reaction channel than for (3He, 3He′).
To reduce the error bars, a larger energy bin is chosen for 118Sn,
leading to smearing the data and less clear structures.
Two steps in 119Sn are particularly distinctive: one at

∼1.0 MeV and another at ∼2.0 MeV, leading to bumps in
the region around 1.2–1.4 MeV and around ∼2.2–2.6 MeV,
respectively. The steps in 119Sn are found at approximately the
same locations as in 117Sn [1].
Also for 116Sn, two steps were clearly seen for low

excitation energy [1]. The first of these is probably connected
to the isotope’s first excited state, at 1.29 MeV [16]. A similar
step in 118Sn would probably also had been found connected

to the first excited state, at 1.23 MeV [16], if the measured
data had had better statistics.
Microscopic calculations based on the seniority model

indicate that step structures in level-density functions may
be explained by the consecutive breaking of nucleon Cooper
pairs [17]. The steps for 119Sn in Fig. 1 are probable
candidates for the neutron pair-breaking process. The neutron
pair-breaking energy of 119Sn is estimated1 to be 2�n = 2.5
MeV, which supports neutron pair breaking as the origin of the
pronounced bump around ∼2.2–2.6 MeV.
However, if the applied values of the neutron pair-gap

parameters are accurate, the pronounced step at ∼1.0 MeV
in 119Sn and other steps below this energy are probably not
due to pure neutron pair breaking. They might be due to
more complex structures, involving collective effects such
as vibrations and/or rotations. In subsection IVC, the pair
breaking in our isotopes will be investigated further.

C. Entropy

In many fields of natural science, the entropy is used to
reveal the degree of order/disorder of a system. In nuclear
physics, the entropy may describe the number of ways the
nucleus can arrange for a certain excitation energy. Various
thermodynamic quantities may be deduced from the entropy,
e.g., temperature, heat capacity, and chemical potential. The
study of nuclear entropy also exhibits the amount of entropy
gained from the breaking of Cooper pairs. We would like to
study the entropy difference between odd-A and even-even Sn
isotopes.
The microcanonical entropy is defined as

Ss(E) = kB ln
s(E), (11)

where kB is the Boltzmann constant, which is set to unity to
make the entropy dimensionless, and where
s(E) is the state
density (multiplicity of accessible states). The state density is
proportional to the experimental level density ρ(E) by


s(E) ∝ ρ(E) [2〈I (E)〉 + 1] , (12)

where 〈I (E)〉 is the average spin within an energy bin of
excitation energy E. The factor 2〈I (E)〉 + 1 is the spin
degeneracy of magnetic substates.
The spin distribution is not well known, so we assume the

spin degeneracy factor to be constant and omit it. Omitting
this factor is first grounded by the spin being averaged over
each energy bin, leading to only the absolute value of the state
density at high excitation energies being altered, and not the
structure.
Second, the average spin 〈I (E)〉 is expected to be a slowly

varying function of energy (see Sec. IV). Hence, a “pseudo”

1The values of the neutron pair-breaking 2�n and the proton pair-
breaking 2�p for 118,119Sn are estimated from the �n/p values in
Table I, except for �n of 119Sn. We estimate the energy for breaking
a neutron pair in 119Sn as the mean value of 2�n of the neighboring
even-even nuclei, redefining its value to be 2�n = 2.5 MeV.
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FIG. 3. (Upper panel) Experimental pseudo entropies Sl of
119Sn (filled squares) and 118Sn (open squares) as a function of
excitation energy. (Lower panel) The respective experimental entropy
difference,�S = Sl

119 − Sl
118, as a function of excitation energy. An

average value of �S(E) = 1.7± 0.2 kB is obtained from a χ 2 fit
(dashed line) to the experimental data above ∼3 MeV.

entropySl maybe defined based only on the level densityρ(E):

Sl (E) = kB ln

[
ρ(E)

ρ0

]
. (13)

The constant ρ0 is chosen so that Sl = 0 in the ground
state of the even-even nucleus 118Sn. This is satisfied for
ρ0 = 0.135 MeV−1. The same value of ρ0 is used for 119Sn.
Figure 3 shows the experimental results for the pseudo

entropies of 118,119Sn. These pseudo entropy functions are very
similar to those of 116,117Sn [1], which is as expected from
the general similarity of the level-density functions of these
isotopes.
We define the entropy difference as

�S(E) = Sl
A − Sl

A−1, (14)

where the superscript denotes the mass number of the isotope.
Assuming that entropy is an extensive quantity, the entropy
difference will be equal to the entropy of the valence neutron,
i.e., the experimental single neutron entropy of ASn.

Formidshell nuclei in the rare-earth region, a semiempirical
study [18] has shown that the average single nucleon entropy
is �S � 1.7 kB . This is true for a wide range of excitation
energies, e.g., both for 1 and 7 MeV. Hence for these nuclei,
the entropy simply scales with the number of nucleons not
coupled in Cooper pairs, and the entropy difference is merely
a simple shift with origin from the pairing energy.
Figure 3 also shows the entropy difference�S of 118,119Sn,

which are midshell in the neutrons only. Above ∼3 MeV, the
entropy difference may seem to approach a constant value.
In the energy region where the entropy difference might
be constant (shown as the dashed line in Fig. 3), we have
calculated its mean value as �S = 1.7± 0.2 kB . Within the
uncertainty, this limit is in good agreement with the general
conclusion of the above-mentioned semiempirical study [18]
and with the findings for 116,117Sn [1]. For lower excitation
energy, however, Fig. 3 shows that the entropy difference of
118,119Sn is not a constant, unlike the rare-earthmidshell nuclei.
Hence, the 118,119Sn isotopes have an entropy difference that
is more complicated than a simple excitation energy shift of
the level-density functions.

IV. NUCLEAR PROPERTIES EXTRACTED WITH A
COMBINATORIAL BCS MODEL

A simple microscopic model [19–21] has been developed
for further investigation of the underlying nuclear structure
resulting in the measured level-density functions. The model
distributes Bardeen-Cooper-Schrieffer (BCS) quasiparticles
on single-particle orbitals to make all possible proton and
neutron configurations for a given excitation energy E. On
each configuration, collective energy terms from rotation
and vibration are schematically added. Even though this is
a very simple representation of the physical phenomena,
this combinatorial BCS model reproduces rather well the
experimental level densities. As a consequence, the model
is therefore assumed to be able to predict also other nuclear
properties of the system. We are first and foremost interested
in investigating the level-density steps and in investigating
the assumption of parity symmetry used in the normalization
processes of the Oslo method.

A. The model

The single-particle energies esp are calculated from the
Nilsson model for a nucleus with an axially deformed core
of quadrupole deformation parameter ε2. The values of the
deformation parameters are ε2 = 0.111 and ε2 = 0.109 [22]
for 118,119Sn, respectively. Also needed for the calculation of
the Nilsson energy scheme are the Nilsson parameters κ andμ

and the oscillator quantum energy between the main oscillator
shells: h̄ω0 = 41A−1/3. The adopted values are κ = 0.070
and μ = 0.48 for both neutrons and protons and for both
nuclei, in agreement with the suggestion of Ref. [23]. All
input parameters are listed in Table II. The resulting Nilsson
scheme for 118Sn is shown in Fig. 4.
The parameter λ represents the quasiparticle Fermi level. It

is iteratively determined by reproducing the right numbers of
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neutrons and protons in the system. The resulting Fermi levels
for our nuclei are listed in Table II and illustrated for 118Sn in
Fig. 4.
The microscopic model uses the concept of BCS quasi-

particles [24]. Here, the single quasiparticle energies eqp are
defined by the transformation of:

eqp =
√
(esp − λ)2 + �2. (15)

The pair-gap parameter � is treated as a constant, as before,
and with the same values.
The proton and neutron quasiparticle orbitals are character-

ized by their spin projections on the symmetry axes 
π and

ν , respectively. The energy due to quasiparticle excitations
is given by the sum of the proton and neutron energies and of

a residual interaction V :

Eqp(
π,
ν) =
∑

{
′
π ,
′

ν }
eqp(


′
π )+ eqp(


′
ν)+ V (
′

π ,
′
ν).

(16)

In the model, quasiparticles having 
’s of different sign will
have the same energy, i.e., one has a level degeneracy. Since no
such degeneracy is expected, a Gaussian random distribution
V is introduced to compensate for a residual interaction
apparently not taken into account by the Hamiltonian of the
model. The maximum allowed number of broken Cooper pairs
in our system is three, giving a total of seven quasiparticles for
the even-odd nucleus 119Sn. Technically, all configurations are
found from systematic combinations.
On each configuration, both a vibrational band and rotations

are built. The energy of each level is found by adding the energy
of the configuration and the vibrational and rotational terms:

E = Eqp(
π,
ν)+ h̄ωvibν + ArotR (R + 1) . (17)

The vibrational term is described by the oscillator quantum
energy h̄ωvib and the phonon quantum number ν = 0, 1, 2, . . .
The values of h̄ωvib are found from the 2+ and 3− vibrational
states of the even-even nucleus and are shown in Table II.
The last term of Eq. (17) represents the rotational energy.
The quantity Arot = h̄2/2J is the rotational parameter with J
being the moment of inertia, and R is the rotational quantum
number. The rotational quantum number has the values of
R = 0, 1, 2, 3 . . . for the even-odd nucleus 119Sn, and R =
0, 2, 4 . . . for the even-even nucleus 118Sn.
For low excitation energy, the value of the rotational

parameter Arot is determined around the ground state Ags.
At high energy, the rotation parameter is found from a rigid,
elliptical body, which is [25]:

Arigid = 5h̄2

4MR2A (1+ 0.31ε2)
. (18)

Here, M is the mass and RA the radius of the nucleus. For
nuclei in the mediummass region,A ∼ 50− 70, the rotational
parameter Arigid is obtained at the neutron separation energy,
according to a theoretical prediction [26].We assume thatArigid
is obtained at the neutron separation energy also for our nuclei.
The applied values of Ags and Arigid are listed in Table II. The
functionArot as a function of energy is estimated from a linear
interpolation between these.

TABLE II. Input parameters used in the combinatorial BCS model and the resulting values for the Fermi levels λν (neutrons) and λπ

(protons).

Nucleus ε2 κ μ h̄ω0 Ags Arigid h̄ωvib,e−e λν λπ

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

119Sn 0.109 0.070 0.48 8.34 0.200 0.0122 1.23; 2.32 48.9 44.1
118Sn 0.111 0.070 0.48 8.36 0.205 0.0124 1.23; 2.32 48.9 44.2
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FIG. 5. Level densities of 119Sn (upper panel) and 118Sn (lower
panel) as a function of excitation energy. The solid lines are the
theoretical predictions of the combinatorial BCS model. The squares
are our experimental data.

B. Level density

In Fig. 5, the level-density functions calculated by our
model are compared with the experimental ones. We see
that the model gives a very good representation of the level
densities in the statistical area above 3 MeV for both isotopes.
Not taking into account all collective bands known from
literature, the model is not intended to reproduce the discrete
level structure below the pair-breaking energy. The model also
succeeds in reproducing the bump around ∼2.2–2.6 MeV for
both isotopes, even though the onset of this bump in 119Sn
appears to be slightly delayed. Above ∼2.6 MeV, the step
brings the level density to the same order of magnitude as the
experimental values.
According to Eq. (8) and the relation between the intrinsic

excitation energy U and the pair-gap parameters �p and �n,
the log-scale slope of the level-density function is dependent
on the pair-gap parameters. Figure 5 shows that the model
reproduces well the slopes of the level densities for both
isotopes. This supports the applied values of the pair-gap
parameters.
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FIG. 6. (Color online) The average number of broken quasiparti-
cle pairs 〈Nqp〉 (solid line) as a function of excitation enegy for 119Sn
(upper panel) and 118Sn (lower panel), according to the combinatorial
BCSmodel.Also shown is how this quantity breaks down into neutron
pairs (dashed line) and proton pairs (dashed-dotted line).

C. Pair breaking

The pair-breaking process produces a strong increase in the
level density. Typically, a single nucleon entropy of 1.6–1.7
kB represents a factor of ∼5 more levels due to the valence
neutron. Thus, the breaking of a Cooper pair represents about
25more levels. Pair breaking is themost important mechanism
for creating entropy in nuclei as function of excitation
energy.
The average number of broken Cooper pairs per energy bin,

〈Nqp〉, is calculated as a function of excitation energy by the
model, using the adopted pair-gap parameters as input values.
All configurations obtained for each energy bin are traced,
and their respective numbers of broken pairs are counted. The
average number of broken pairs is also calculated separately
for proton and neutron pairs. The result for 118,119Sn is shown
in Fig. 6.
Figure 6 shows that the first pair breaking for both 118,119Sn

is at an excitation energy around 2.2–2.6 MeV. That energy
corresponds to the pair-breaking energy plus the extra energy
needed to form the new configuration. The figure also shows
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that, according to the model, the pair breakings here are only
due to neutrons. The step in the average number of broken
pairs is abrupt, and this number increases from 0 to almost 1.
This means that there is a very high probability for the nucleus
to undergo a neutron pair breaking at this energy. Provided that
our values of the pair-gap parameters are reasonable, so this
intense step in the number of broken neutron pairs in the model
corresponds to the distinctive step in level density at∼2.0MeV
in 119Sn (see Sec. III); that step in level density is probably
purely due to neutron pair breaking.
The increases in the average number of broken pairs are

abrupt also for certain other excitation energies, namely around
5–6 MeV and 8–9 MeV, as shown in Fig. 6. Here, we predict
increases of the number of levels caused by pair breaking,
even though they are not necessarily visible with the applied
experimental resolution. In between the abrupt pair breakings,
the number of broken pairs is almost constant and close to
integers. Saturation has been reached, and significantly more
energy is needed for the next pair breaking.
Neutron pair breaking dominates over proton pair breaking

for the energies studied. Even though there is a large shell
gap for the protons, breaking of proton pairs also occurs, but
then only for energies above the proton pair-breaking energy of
2�p plus the shell-gap energy.According to Fig. 6, proton pair-
breaking contributes for excitation energies above 3.5 MeV in
both isotopes. An increased number of broken proton pairs at
higher energies is expected to lead to the level-density steps at
high excitation energy being smeared out and becoming less
distinctive, in accordance with the experimental findings of
subsection III B.
Two effects due to the Pauli principle are notable in Fig. 6.

In 119Sn compared to 118Sn, (i) the increases of the total
average number of broken pairs occur at higher energies and
(ii) the average number of broken proton pairs is generally
higher. The explanation probably is that the valence neutron
in 119Sn to some extent hinders the neutron pair breaking. The
presence of the valence neutron makes fewer states available
for other neutrons, due to the Pauli principle. Therefore, in
119Sn compared to 118Sn, more energy is needed to break
neutron pairs, and for a certain energy, proton pair breaking is
more probable. Of course, an increase in the number of broken
proton pairs leads to a corresponding decrease in the number
of broken neutron pairs.

D. Collective effects

Wehavemade use of themodel tomake a simple estimate of
the relative impact on the level density of collective effects, i.e.,
rotations and vibrations, compared to that of the pair-breaking
process. The enhancement factor of the collective effects is
defined as

Fcoll(E) = ρ(E)

ρnon−coll(E)
, (19)

where ρnon−coll is the level-density function excluding collec-
tive effects.
Figure 7 shows the calculated level density with and

without collective contributions from vibrations and from
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FIG. 7. (Color online) The impact of collective effects on the
level density of 119Sn according to the combinatorial BCS model.
The upper panel shows experimental level density (data points)
compared with model calculations with collective effects (solid line)
and without collective effects (dashed line). The lower panel shows
the corresponding enhancement factor of the collective effects, Fcoll
(linear scale).

rotational bands for 119Sn. The model prediction is assumed
to be reasonably valid above ∼3 MeV of excitation energy.
According to these simplistic calculations, the enhancement
factor of collective effects F sharply decreases at the energies
of the steps in the average number of broken quasiparticle pairs
(see Fig. 6). For 119Sn, we find that F decreases for excitation
energies of approximately 2.5 and 6 MeV, where the average
number of broken quasiparticle pairs increases from∼0 to∼1
and from ∼1 to ∼2, respectively. For the energies studied,
the maximum value of F is about 10, found at E � 6 MeV.
For 118Sn, the enhancement factor would be less than for
119Sn, since this nucleus does not have unpaired valence
neutrons.
As a conclusion, the collective phenomena of vibrations and

rotations seem to have a significantly smaller impact on the
creation of new levels than the nucleon pair-breaking process,
which has an enhancement factor of typically about 25 for
each broken pair.
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E. Parity asymmetry

The parity asymmetry function α is defined as

α = ρ+ − ρ−
ρ+ + ρ−

, (20)

where ρ+ is the level density of positive-parity states, and ρ−
is the level density of the negative-parity states. The values of
α range from −1 to +1. A system with α = −1 is obtained
for ρ+ = 0, implying that all states have a negative parity. A
system with α = 0 has equally many states with positive as
negative parity and is obtained for ρ− = ρ+.
The Nilsson scheme in Fig. 4 shows that the single-particle

orbitals both above and below the neutron Fermi level are a
mixture of positive and negative parities. In addition, each of
these states may be the head of vibrational bands, for which
the parity of the band may be opposite of that of the band
head.
The parity asymmetry functions of 118,119Sn are drawn in

Fig. 8. For energies below the neutron pair-breaking energy
approximately at 2.5 MeV, the even-odd isotope has a parity
asymmetry function with large fluctuations between positive
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FIG. 8. The parity asymmetry function α, according to the
combinatorial BCS model, shown as a function of excitation energy
for 119Sn (upper panel) and 118Sn (lower panel).

and negative values, while the even-even isotope has positive
parities. This is as expectedwhen vibrational bands of opposite
parity are not introduced. (The zero parity of 118Sn for certain
low-energy regions is explained by the nonexistence of energy
levels.)
Above the pair-breaking energies, the asymmetry functions

begin to approach zero for both isotopes. This is also as
expected, since we then have a group of valence nucleons that
will randomly occupy orbitals of positive and negative parity
and on average give an α close to zero. Above ∼4 MeV, the
parity distributions of 118,119Sn are symmetric with ρ+ � ρ−.
This is a gratifying property, since parity symmetry is an
assumption in the Oslo method normalization procedure for
both the level density and the γ -ray strength function (see
Sec. V).

F. Spin distribution

The combinatorial BCS model determines the total spin I

for each level from the relation:

I (I + 1) = R (R + 1)+
∑


π ,
ν


π + 
ν, (21)

from which the spin distribution of the level density ρ may be
estimated.
The resulting spin distribution is compared with the

theoretical spin distribution of Gilbert and Cameron in Eq. (4),
using the same parametrization of the spin cut-off parameter
as Eq. (5). Figure 9 shows the comparison for four different
excitation energies: 5, 6, 7, and 8 MeV. The agreement is
generally good. Hence, the spin calculation in Eq. (21), and
the assumption of the rigid rotational parameterArigid obtained
at Sn, are indicated to be reasonable assumptions. We also
note from the figure that the average spin, 〈I (E)〉, is only
slowly increasing with excitation energy, justifying the pseudo
entropy definition introduced in Eq. (13).

V. γ -RAY STRENGTH FUNCTIONS

A. Normalization and experimental results

The γ -ray transmission coefficient T , which is deduced
from the experimental data, is related to the γ -ray strength
function f by

T (Eγ ) = 2π
∑
XL

E2L+1
γ fXL(Eγ ), (22)

where X denotes the electromagnetic character and L the
multipolariy of the γ ray. The transmission coefficient T is
normalized in slope α and in absolute value B according to
Eq. (3). The slope was determined in Sec. III in the case of
118,119Sn and in Ref. [1] in the case of 116Sn. The absolute value
normalization is yet to be determined. This is done using the
literature values of the average total radiative width at the
neutron separation energy, 〈�γ (Sn)〉, which are measured for
neutron capture reactions (n,γ ).
The γ -ray transmission coefficient T is related to the

average total radiative width 〈�γ (E, I, π )〉 of levels with
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energy E, spin I , and parity π by [27]:

〈�γ (E, I, π )〉 = 1

2πρ(E, I, π )

∑
XL

∑
If ,πf

∫ E

Eγ

dEγTXL(Eγ )

× ρ(E − Eγ , If , πf ). (23)

The summations and integration are over all final levels of spin
If and parity πf that are accessible through a γ -ray transition
categorized by the energy Eγ , electromagnetic character X,
and multipolarity L.
For s-wave neutron resonances and assuming a major

contribution from dipole radiation and parity symmetry for
all excitation energies, the general expression in Eq. (23) will
at Sn reduce to

〈�γ (Sn, It ± 1/2, πt )〉 = B

4πρ(Sn, It ± 1/2, πt )

×
∫ Sn

0
dEγT (Eγ )ρ(Sn − Eγ )

×
1∑

J=−1
g(Sn − Eγ , It ± 1/2+ J ).

(24)

Here, It and πt are the spin and parity of the target nucleus in
the (n,γ ) reaction. Indeed, the results from the combinatorial
BCS model in Sec. IV supports the symmetry assumption
of the parity distribution. The normalization constant B

in Eq. (24) is determined [28] by replacing T with the
experimental transmission coefficient, ρ with the experimental
level density, g with the spin distribution given in Eq. (4), and
〈�γ (Sn)〉 with its literature value.
The input parameters needed for determining the normal-

ization constant B for 118,119Sn are shown in Table III and
taken from Ref. [10]. For 116Sn, the level spacing D0(Sn) is
not available in the literature. Therefore, ρ(Sn) was estimated
from systematics for the normalization of α in Ref. [1]. The
value of D0 in Table III is estimated from ρ(Sn). Note that
there was an error in the spin cut-off parameters σ (Sn) of
116,117Sn in Refs. [1,2]. The impact of this correction on
the normalization of level densities and strength functions is
very small. Moreover, updated values of D0(Sn) and 〈�γ (Sn)〉
are now available for 117Sn [10]. All the new normalization
parameters for 116,117Sn are presented in Table IV. The value
of 〈�γ (Sn)〉 of 116Sn is taken from the indicated value in
Ref. [10].
The resulting γ -ray strength functions of 116−119Sn are

shown in Fig. 10. For all isotopes, it is clear that there is a
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TABLE III. Input parameters for normalization of the γ -ray
transmission coefficient T for 118,119Sn.

Nucleus It D0(Sn) 〈�γ (Sn)〉
(h̄) (eV) (meV)

119Sn 0 700 45
118Sn 1/2 61 117

change of the log-scale derivate at Eγ ∼ 4 MeV, leading to
a sudden increase of strength. Such an increase may indicate
the onset of a resonance. The comparison in Fig. 10 of the
new 117Sn strength function with the earlier published one [2]
confirms that correcting the σ (Sn) and the D0(Sn) had only a
minor impact on the normalization.
Figure 11 shows the four normalized strength functions of

116−119Sn together. They are all approximately equal except
for 118Sn, which has a lower absolute normalization than
the others. This is surprising considering the quadrupole
deformation parameter of 118Sn (ε2 = 0.111) being almost
identical to that of 116Sn (ε2 = 0.112) [22]. In the following,
we therefore multiply the strength of 118Sn with a factor of
1.8 to get it on the same footing as the others. The values of
ρ(Sn) and the scaling parameter η (see also subsection III A) of
these Sn isotopes are collected in Table V. For 118Sn, the ρ(Sn)
may be expected to be larger, while η may be expected to be
smaller. It would be desirable to remeasure both D0(Sn) and
〈�γ 〉 for this isotope, since the apparent wrong normalization
of the strength function of 118Sn depends on these parameters.

B. Pygmy resonance

Comparing our measurements with other experimental data
makes potential resonances easier to localize. Experimental
cross-section data σ (Eγ ) are converted to γ -ray strength
f (Eγ ) through the relation:

f (Eγ ) = 1

3πh̄2c2

[
σ (Eγ )

Eγ

]
. (25)

Figure 12 shows the comparison of the Oslo strength
functions of 116−119Sn with those of the photoneutron cross-
section reactions 116,117Sn(γ ,n) from Utsunomiya et al. [29]
and 119Sn(γ ,n) from Varlamov et al. [30], photoabsorption
reactions 116−119Sn(γ ,x) from Fultz et al. [31], 116−118Sn(γ ,x)
from Varlamov et al. [32], and 116−118Sn(γ ,x) from Leprêtre
et al. [33]. Clearly, the measurements on 117,119Sn both from
Oslo and from Utsunomiya et al. [29] independently indicate
a resonance from the changes of slopes. For 116,118Sn, the
Oslo data clearly shows the presence of resonances. Hence,
the resonance earlier observed in 117Sn [2] is confirmed also in

TABLE IV. New normalization parameters for 116,117Sn.

Nucleus σ (Sn) D0(Sn) ρ(Sn) 〈�γ (Sn)〉 η

(eV) (104 MeV−1) (meV)

117Sn 4.58 450(50) 9.09(2.68) 52 0.43
116Sn 4.76 59 40(20) 120 0.45

TABLE V. The Fermigas approximation for ρ(Sn)BSFG, the calcu-
lated ρ(Sn), and the resulting scaling parameter η for 116−119Sn.

Nucleus ρ(Sn)BSFG ρ(Sn) η

(104 MeV−1) (104 MeV−1)

119Sn 14 6.05(175) 0.44
118Sn 65 38.4(86) 0.59
117Sn 22 9.09(2.68) 0.43
116Sn 89 40.0(20.0) 0.45

116,118,119Sn. This resonance will be referred to as the pygmy
resonance.
In order to investigate the experimental strength functions

further, and in particular the pygmies, we have applied
commonly used models for the giant electric dipole resonance
(GEDR) and for the magnetic spin-flip resonance, also known
as the giant magnetic dipole resonance (GMDR).
For the GEDR resonance, the generalized Lorentzian

(GLO) model [34] is used. The GLO model is known to agree
well both for low γ -ray energies, where we measure, and for
the GEDR centroid at about 16 MeV. The strength function
approaching a nonzero value for low Eγ is not a property
specific for the Sn isotopes but has been the case for all nuclei
studied at the OCL so far.
In theGLOmodel, theE1 strength function is given by [34]:

f GLOE1 (Eγ ) = 1

3π2h̄2c2
σE1�E1

×
{

Eγ

�KMF(Eγ , Tf )(
Eγ

2 − EE1
2
)2 + Eγ

2[�KMF(Eγ , Tf )]2

+ 0.7�KMF(Eγ = 0, Tf )

EE1
3

}
(26)

in units of MeV−3, where the Lorentzian parameters are the
GEDR’s centroid energyEE1, width�E1 and cross sectionσE1.

We use the experimental parameters of Fultz [31], shown in
Table VI. The GLO model is temperature dependent from the
incorporation of a temperature-dependent width �KMF. This
width is the term responsible for ensuring the nonvanishing
GEDR at low excitation energy. It has been adopted from the
Kadmenskii, Markushev, and Furman (KMF) model [35] and
is given by:

�KMF(Eγ , Tf ) = �r

Er
2

(
Eγ

2 + 4π2Tf
2) , (27)

in units of MeV.
Usually, Tf is interpreted as the nuclear temperature of

the final state, with the commonly applied expression Tf =√
U/a. On the other hand, we are assuming a constant

temperature, i.e., the γ -ray strength function is independent
of excitation energy. This approach is adopted for consistency
with the Brink-Axel hypothesis (see Sec. II), where the
strength function was assumed to be temperature independent.
Moreover, we treat Tf as a free parameter in order to fit in the
best possible way the theoretical strength prediction to the low
energy measurements. The applied values of Tf are listed in
Table VI.
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TheM1 spin-flip resonance is modeled with the functional
form of a standard Lorentzian (SLO) [22]:

f SLOM1 (Eγ ) = 1

3π2h̄2c2
σM1�M1

2Eγ(
Eγ

2 − EM1
2
)2 + Eγ

2�M1
2
, (28)
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FIG. 11. (Color online) The four normalized strength functions
of 116−119Sn shown together.

where the parameterEM1 is the centroid energy,�M1 thewidth,
and σM1 the cross section, of the GMDR. These Lorentzian
parameters are predicted from the expressions in Ref. [22],
with the results as shown in Table VI.
In the absence of any established theoretical prediction

about the pygmy resonance, we found that the pygmy is
satisfactorily reproduced by a Gaussian distribution [2]:

fpyg(Eγ ) = Cpyg
1√
2πσpyg

exp

[−(Eγ − Epyg)2

2σpyg2

]
, (29)

where Cpyg is the pygmy’s normalization constant, Epyg the
energy centroid, and σpyg is the standard deviation. These
parameters are treated as free. The total model prediction of
the γ -ray strength function is then given by:

ftotal = fE1 + fM1 + fpyg. (30)

By adjusting the Gaussian pygmy parameters to make the
best fit to the experimental data of 116−119Sn, we obtained the
values as presented in Table VII. The pygmy fit of 117Sn is
updated and corresponds to the present normalization of the
strength function. This pygmy fit also gave an excellent fit for
116Sn. For 118,119Sn, it was necessary to slightly reduce the
values of Tf and σpyg. The similarity of the sets of parameters
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for the different nuclei is gratifying. As is seen in Fig. 12, these
theoretical predictions describe the measurements rather well.
The pygmy centroids of all the isotopes are estimated to

be around 8.0(1) MeV. It is noted that an earlier experiment
by Winhold et al. [36] using the (γ,n) reactions determined
the pygmy centroids for 117,119Sn to approximately 7.8 MeV,

in agreement with our measurements. Extra strength has
been added in the energy region of ∼4–11 MeV. The total
integrated pygmy strengths are 30(15) MeV mb for all four
isotopes. This constitutes 1.7(9)% of the classical Thomas-
Reiche-Kuhn (TRK) sum rule, assuming all pygmy strength is
E1. Even though these resonances are rather small compared

TABLE VI. Parameters used for the theoretical γ -ray strength functions of 116−119Sn. The value of Tf in 118Sn has been found for the
measured strength function multiplied by 1.8.

Nucleus EE1 �E1 σE1 EM1 �M1 σM1 Tf

(MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

119Sn 15.53 4.81 253.0 8.34 4.00 0.963 0.40(1)
118Sn 15.59 4.77 256.0 8.36 4.00 0.956 0.40(1)
117Sn 15.66 5.02 254.0 8.38 4.00 1.04 0.46(1)
116Sn 15.68 4.19 266.0 8.41 4.00 0.773 0.46(1)
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TABLE VII. Empirical values of 116−119Sn pygmies Gaussian parameters, the integrated pygmy strengths, and the TRK values. For 118Sn,
the values have been found from fitting to the measured strength function multiplied by 1.8.

Nucleus Cpyg Epyg σpyg Integrated strength TRK value
(10−7MeV−2) (MeV) (MeV) (MeV mb) (%)

119Sn 3.2(3) 8.0(1) 1.2(1) 30(15) 1.7(9)
118Sn 3.2(3) 8.0(1) 1.2(1) 30(15) 1.7(9)
117Sn 3.2(3) 8.0(1) 1.4(1) 30(15) 1.7(9)
116Sn 3.2(3) 8.0(1) 1.4(1) 30(15) 1.7(9)

to the GEDR, they may have a non-negligible impact on
nucleosynthesis in supernovas [37].
If one does not multiply the strength function of 118Sn by

1.8 for the footing equality, then the pygmy of 118Sn differs
significantly from those of the other isotopes, and the total
prediction is not able to follow as well the measurements for
low Eγ . A pygmy fit of the original normalization does, how-
ever, give: Tf = 0.28(2) MeV, Cpyg = 1.8(6)× 10−7 MeV−2,
Epyg = 8.0(2) MeV, and σpyg = 1.0(1) MeV. This represents
a smaller pygmy, giving an integrated strength of 17(8) MeV
mb and a TRK value of 1.0(5)%.
The commonly applied SLO was also tested as a model of

the baseline and is included in Fig. 12. The SLO succeeds in
reproducing the (γ, x) data but clearly fails for the low-energy
strength measurements, both when it comes to absolute value
and to shape. The same has been the case also for many other
nuclei measured at the OCL. Therefore, we deem the SLO
to be inadequate below the neutron threshold. Most likely,
the pygmies of all the Sn isotopes are caused by the same
phenomenon. It is still indefinite whether the Sn pygmy is
of E1 or M1 character. Clarification would be of utmost
importance.
Earlier studies indicate an E1 character of the Sn pygmy.

Among these studies are the nuclear resonance fluores-
cence experiments (NRF) performed on 116,124Sn [38] and
112,124Sn [39] and the Coulomb dissociation experiments
performed on 129−132Sn [40,41]. If the Sn pygmy is of E1
character, it may be consistent with the so-called E1 neutron
skin oscillation mode, discussed in Refs. [42–44].
However, the possibility of anM1 character cannot be ruled

out. Figure 4 shows that the Sn isotopes have their proton
Fermi level located right in between the g7/2 and g9/2 orbitals,
and their neutron Fermi level between h11/2 and h9/2. Thus,
an enhanced M1 resonance may be due to proton g7/2 ↔
g9/2 and neutron h11/2 ↔ h9/2 magnetic spin-flip transitions.
The existence of an M1 resonance in this energy region has
been indicated in an earlier experimental study via the proton
inelastic scattering experiment on 120,124Sn [45].

VI. CONCLUSIONS

The level-density functions of 118,119Sn and the γ -ray
strength functions of 116,118,119Sn have been measured using
the (3He, αγ ) and (3He,3He′γ ) reactions and the Oslo method.
The level-density function of 119Sn shows pronounced

steps for excitation energies below ∼4 MeV. This may be
explained by the fact that Sn has a closed proton shell so
only neutron pairs are broken at low energy. Without any
proton pair breaking smearing out the level-density function,
the steps from neutron pair breaking remain distinctive. The
entropy has been deduced from the experimental level-density
functions, with a mean value of the single neutron entropy in
119Sn determined to 1.7 ± 0.2 kB . These findings are in good
agreement with those of 116,117Sn.
A combinatorial BCS model has been used to extract

nuclear properties from the experimental level density. The
number of broken proton and neutron pairs as a function
of excitation energy is deduced, showing that neutron pair
breaking is the most dominant pair-breaking process for the
entire energy region studied. The enhancement factor of
collective effects on level density contributes a maximum
factor of about 10, which is small compared to that of pair
breaking. The parity distributions are found to be symmetric
above ∼4 MeV of excitation energy.
In all the 116−119Sn strength functions, a signifi-

cant enhancement is observed in the energy region of
Eγ � 4–11 MeV. The integrated strength of the resonances
correspond to 1.7(9)% of the TRK sum rule. These findings
are in agreement with the conclusions of earlier studies.

ACKNOWLEDGMENTS

The authors thank E. A. Olsen, J. Wikne, and
A. Semchenkov for excellent experimental conditions. The
funding of this research fromTheResearchCouncil of Norway
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7.2. ARTICLE 2: EVOLUTION OF THE PYGMY DIPOLE RESONANCE IN
SN ISOTOPES

7.2 Article 2: Evolution of the pygmy dipole
resonance in Sn isotopes

The experimental level density and the γ-ray strength function of 121,122Sn are
extracted with the Oslo method using the (3He,αγ) and (3He,3He′γ) reactions.
The level densities of 121,122Sn display step-like structures, interpreted as due to
neutron pair breaking.

An enhancement in both strength functions, compared to the GLO, is observed
in our measurements for Eγ � 5.2 MeV. This enhancement is compatible with a
resonance centered at Eγ = 8.4(1) and 8.6(2) MeV for 121,122Sn, respectively,
and with an integrated strength corresponding to 1.8+1

−5% of the TRK sum rule
for both isotopes. Similar pygmy resonances were also found in 116−119Sn (see
Ref. [6] and Article 1). The centroid energies of the resonances earlier found in
118,119Sn (in Article 1) are corrected from Eγ = 8.0(1) MeV for both isotopes to
8.2(1) MeV.

Experimental (n,γ) cross sections are well reproduced when including the
pygmy resonance. Including the pygmy resonance gives significantly better
agreement than standard models of radiative strength (the GLO and the standard
Lorentzian (SLO) model [47]).

The evolution of the pygmy resonance as a function of neutron number in the
isotopes 116−122Sn is discussed. The findings are that the centroid energy of the
resonance increases from Eγ = 8.0(1) in 116Sn to 8.6(2) MeV in 122Sn, while no
significant difference in integrated strength can be seen. These observations are
in contradiction to theoretical predictions.
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Nuclear level density and γ-ray strength functions of 121,122Sn below the neutron separation energy are ex-
tracted with the Oslo method using the (3He,3He′γ) and (3He,αγ) reactions. The level densities of 121,122Sn
display step-like structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength
functions, compared to standard models for radiative strength, is observed in our measurements for Eγ � 5.2
MeV. This enhancement is compatible with pygmy resonances centered at ≈ 8.4(1) and ≈ 8.6(2) MeV, respec-
tively, and with integrated strengths corresponding to ≈ 1.8+1

−5% of the classical Thomas-Reiche-Kuhn sum rule.
Similar resonances were also seen in 116−119Sn. Experimental neutron-capture cross reactions are well repro-
duced by our pygmy resonance predictions, while standard strength models are less successful. The evolution
as a function of neutron number of the pygmy resonance in 116−122Sn is described as a clear increase of centroid
energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.

PACS numbers: 21.10.Ma, 24.10.Pa, 24.30.Gd, 27.60.+j

I. INTRODUCTION

The level density and the γ-ray strength function are av-
erage quantities describing properties of atomic nuclei. The
nuclear level density is defined as the number of energy levels
per unit of excitation energy, while the γ-ray strength function
may be defined as the reduced average transition probability
as a function of γ-ray energy. The strength function charac-
terizes average electromagnetic properties of excited nuclei.

The level density and the strength function are impor-
tant for many aspects of fundamental and applied nuclear
physics. They are used for the calculation of cross sections
and neutron-capture (n, γ) reactions rates, which are input pa-
rameters in, e.g., reactor physics, nuclear waste management,
and astrophysical models describing the nucleosynthesis in
stars.

Tin and other heavier neutron-rich nuclei are often found
display a smaller resonance for γ-ray energies below the Gi-
ant Electric Dipole Resonance (GEDR). The existence of even
a small resonance close to the neutron separation energy may
have large consequences in nuclear astrophysics on the calcu-
lated distribution of elemental abundance.

This article presents the measurements of the level densities
and γ-ray strength functions in 121,122Sn for energies below
the neutron separation energy, as well as a systematic study of
the evolution of the pygmy resonances in 116−119,121,122Sn. The
experimental results on 116−119Sn are published in Refs. [1–3].
All experiments have been performed at the Oslo Cyclotron
Laboratory (OCL).

The experimental set-up is described in Sec. II and the data
analysis in Sec. III. The level densities of 121,122Sn are pre-
sented in Sec. IV and the strength functions in Sec. V. Section
VI discusses the pygmy resonance evolution and the impacts
from the pygmy resonances on the (γ, n) cross sections. Con-

∗h.k.toft@fys.uio.no

clusions are drawn in Sec. VII.

II. EXPERIMENTAL SET-UP

The self-supporting 122Sn target was enriched to 94% and
had a mass thickness of 1.43 mg/cm2. For five days the
target was exposed to a 38-MeV 3He beam with an aver-
age current of ≈ 0.2 nA. The reaction channels studied were
122Sn(3He,3He′γ)122Sn and 122Sn(3He,αγ)121Sn.

Particle-γ coincidences were recorded with 64 Si particle
ΔE − E telescopes and 28 collimated NaI(Tl) γ-ray detectors.
The ΔE and E detector thicknesses are approximately 130 μm
and 1550 μm, respectively. These detectors cover the angles
of 40−54◦ with respect to the beam axis, and they have a total
solid-angle coverage of ≈ 9% out of 4π. The NaI detectors
are distributed on a sphere and constitute the CACTUS mul-
tidetector system [4]. The detection efficiency is 15.2%, and
the resolution of a single NaI detector is ≈ 6% FWHM, at the
γ energy of 1332 keV.

III. DATA ANALYSIS

The measured energy of the ejectile is calculated into ex-
citation energy of the residual nucleus. The γ-ray spectra are
unfolded with the known response functions of CACTUS and
by the use of the Compton subtraction method [5]. The first
generation γ-ray spectra are extracted by the subtraction pro-
cedure described in Ref. [6].

The first-generation γ-ray spectra are arranged in a two-
dimensional matrix P(E, Eγ), shown for 122Sn in Fig. 1. The
entries of the matrix give the probabilities P(E, Eγ) that a γ-
ray of energy Eγ is emitted from a bin of excitation energy
E.

The empty region for low γ energy and higher excitation en-
ergies in Fig. 1 is explained by too strong subtraction caused
by the strongly populated states (yellow/red spots) found for
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FIG. 1: (Color online) The first-generation matrix P of 122Sn. The
solid lines indicate the region for the data used in the Oslo method
(Eγ > 1.6 MeV, 3.8 < E < 9.4 MeV). The dashed line (E = 6.6
MeV) is the middle between the upper and lower ranges in excitation
energy.

low γ-energy and lower excitation energies. Too few first-
generation γ’s remain for low γ energy and higher excita-
tion energies, which has made the first-generation method not
work very well (see Ref. [7]). We select and proceed with the
region between the solid lines. It is commented that the diag-
onal valleys and ridges are made up by strong first-generation
transitions to the ground and first-excited states.

The selected region of the first generation matrix P is fac-
torized into the level density ρ and the radiative transmission
coefficient T [8]:

P(E, Eγ) ∝ ρ(E − Eγ)T (Eγ). (1)

The factorization into two independent components is justi-
fied for nuclear reactions leading to a compound state prior to
a subsequent γ decay [9]. The factorization is performed by
an iterative procedure [8] where the independent functions ρ
and T are adjusted until a global χ2 minimum with the exper-
imental P(E, Eγ) is reached.

The quality of the factorization of level density and strength
function is illustrated for 122Sn in Fig. 2. At example excita-
tion energies (indicated on the panels), the entries of the P
matrix obtained from the χ2-fitted output functions ρ and T
using Eq. (1) are compared to those of the experimental P ma-
trix. The fitted output (solid line) agrees well with experimen-
tal data. It is noted that in some of the panels, the fitted curves
are significantly lower than the experimental data points (For
E = 4.1 MeV: the transition to the ground state; for E = 4.8
MeV: the transition to the first-excited state). This is probably
explained by the fit adjusting the entire matrix, and not just

these example excitation energies.
The Brink-Axel hypothesis [10, 11] states that the GEDR

and any other collective excitation mode built on excited states
have the same properties as those built on the ground state.
Equation 1 shows that the transmission coefficient is assumed
to be independent of excitation energy E, which is a conse-
quence of the Brink-Axel hypothesis.

Figure 3 shows an investigation of this assumption for
122Sn, which is of special concern due to some clear struc-
tures in the strength function. We divide the selected region
of the P matrix into two parts (separated by the dashed line
in Fig. 1), which are two independent data sets. Figure 3 dis-
plays the strength functions derived from the lower and upper
part, as well as from the total region. The strength functions,
proportional to T /Eγ3, are not normalized and are shown in
arbitrary units. As the clear structures are found at the same
locations for the two independent data sets, the T is indeed
found to be approximately independent of excitation energy.

The adjustment to Eq. (1) determines only the functional
forms of ρ and T . These two functions are invariant under the
following transformations [8]:

ρ̃(E − Eγ) = A exp
[
α
(
E − Eγ

)]
ρ(E − Eγ) , (2)

T̃ (Eγ) = B exp
(
αEγ
)
T (Eγ) . (3)

The parameters A and B define the correction to the absolute
values of the functions ρ andT , respectively, while the param-
eter α defines their common correction to the log-scale slope.
These parameters will be determined in Secs. IV and V.

IV. LEVEL DENSITIES

The constants A and α needed to normalize the experimen-
tal level density ρ, are determined using literature values of the
known discrete energy levels at low energy and of the level
spacing D at the neutron separation energy S n. We use the
same normalization procedure as in Refs. [1–3], in order to
have a common ground for comparison.

The chosen model is the back-shifted Fermi gas (BSFG)
model, published by von Egidy et al. in 1988 [12]. The level
density at the neutron separation energy ρ(S n) is calculated
from known values of the s-wave level spacing D0 [8]:

ρ(S n) =
2σ2

D0
·
{

(It + 1) exp
[
− (It + 1)2

2σ2

]

+ It exp
[
−It

2

2σ2

]}−1

, (4)

where It is the target spin, and where the spin-cutoff parameter
σ is also evaluated at S n. The spin-cutoff parameter is defined
as σ2 = 0.0888 A2/3aT , where A is the mass number of the
isotope, and T is the nuclear temperature given by T =

√
U/a.

Here, U is the nucleus intrinsic excitation energy, and a is the
level-density parameter. The parameterization used for a is
a = 0.21 A0.87 MeV−1. The parameterization of U is U =
E − Epair − C1, where the pairing energy Epair is calculated
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are derived from the independent data sets of the upper and lower
part of the selected region of the P matrix, as well as from the total
selected region for comparison.

from the proton and neutron pair-gap parameters: Epair = Δp+

Δn, and where the back-shift parameter C1 is defined as C1 =

−6.6 A−0.32.
The experimental value of D0 for 121Sn is found in Ref. [13]

and is used to calculate ρ(S n) using the input parameters
listed in Tab. I. The pair-gap parameters are evaluated from
even-odd mass differences [14] according to the method of
Ref. [15].

No experimental value exists for D0 of 122Sn, and we esti-
mate ρ(S n) for this isotope from systematics. Figure 4 shows
ρ(S n) calculated from the experimental values of D0 accord-
ing to Eq. (4) for all available Sn isotopes as a function of S n.
The values of D0 have been taken from Ref. [13]. We have
also calculated ρ(S n) according to the prediction of the BSFG
model [16]:

ρ(E)BSFG =
exp
(
2
√

aU
)

12
√

2 a1/4 U5/4 σ
, (5)

with the above-listed parameterizations. The theoretical value
of ρ(S n), multiplied with a common factor of 0.4, are shown in
Fig. 4 together with the experimental values. From the trends
appearing in the figure, we estimate ρ(S n) for 122Sn to 2.0(10)·
105 MeV−1 (50% uncertainty assumed, see Tab. I).

While we would like to normalize to ρ(S n), our experimen-
tal data only cover the excitation energy region from 0 to S n−2
MeV, due to methodical limitations. We therefore make an
interpolation from our measurements to S n using the BSFG
prediction in Eq. (5). The prediction is multiplied by a scaling
parameter η (see Tab. I) in order to agree with the normaliza-
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TABLE I: Input parameters and the resulting values for the calculation of the normalization value ρ(S n).

Nucleus S n D0 a C1 Δn Δp σ(S n) ρ(S n) η
(MeV) (eV) (MeV−1) (MeV) (MeV) (MeV) (104 MeV−1)

121Sn 6.17 1250(200) 13.62 -1.42 0 0.82 4.57 3.42(86) 0.25
122Sn 8.81 62(31)a 13.72 -1.42 1.32 1.12 4.75 20(10)a 0.42

a Estimated from systematics.
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ious Sn isotopes as function of S n. (See text.)

tion value ρ(S n):

ρ(E)BSFG → η ρ(E)BSFG . (6)

Figure 5 shows the normalized level densities of 121,122Sn.
The arrows indicate the two regions that have been used for
normalization to the discrete level density and to the normal-
ization value ρ(S n). As expected, the level density function
of 121Sn is very similar to those of the other even-odd nuclei
117,119Sn, while the level density function of 122Sn is very sim-
ilar to those of the even-even nuclei 116,118Sn [1, 3].

The level densities of 121,122Sn in Fig. 5 show step-like
structures, a feature also seen in 116−119Sn [1, 3]. In 121,122Sn,
two pronounced bumps are seen in the region of ≈ 0.8 − 1.4
MeV and ≈ 1.8 − 2.4 MeV. The corresponding steps are lo-
cated at ≈ 1.0 and ≈ 2.0 MeV, respectively. The second step is
very abrupt, especially in the even-even nucleus, and the step
is followed by a significantly higher level density. The sec-
ond step is therefore a candidate for the neutron pair-breaking
process in 121,122Sn. Such neutron pair-breaking bumps are
especially distinctive in Sn isotopes since the proton number
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FIG. 5: Normalized level densities of 121,122Sn (filled squares) as a
function of excitation energy with energy bins of 120 keV/ch. The
solid lines represent the discrete level densities obtained from spec-
troscopy. The dashed line in both panels is the BSFG prediction,
which is used for interpolation, scaled with η to coincide with ρ(S n)
(open square). The value of ρ(S n) has been calculated from neutron
resonance data. The arrows indicate the two regions used for nor-
malization.

is magic (Z = 50), making proton pair breaking occur only at
relatively higher excitation energies. A detailed discussion of
the pair-breaking process has been given in Refs. [1, 3].
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V. GAMMA-RAY STRENGTH FUNCTIONS

The γ-ray transmission coefficient T , which is deduced
from the experimental data, is related to the γ-ray strength
function f by

T (Eγ) = 2π
∑
XL

E2L+1
γ fXL(Eγ) , (7)

where X denotes the electromagnetic character and L the mul-
tipolarity of the γ ray. The transmission coefficient T is nor-
malized in log-scale slope (α) and in absolute value (B) (see
Eq. (3)).

For s-wave neutron resonances and assuming a major con-
tribution from dipole radiation and parity symmetry for all
excitation energies, the expression for the average radiative
width

〈
Γγ(E, I, π)

〉
will at S n reduce to [17]:

〈
Γγ(S n, It ± 1/2, πt)

〉

=
B

4π ρ(S n, It ± 1/2, πt)

∫ S n

0
dEγ T (Eγ) ρ(S n − Eγ)

×
1∑

J=−1

g(S n − Eγ, It ± 1/2 + J) . (8)

Here, It and πt are the spin and parity of the target nucleus in
the neutron capture (n, γ) reaction. We determine B by using
the BSFG model for the spin distribution g given in Ref. [12]
and the experimental value of

〈
Γγ(S n)

〉
.

For 121Sn, the radiative width at the neutron separation en-
ergy is available in literature. For 122Sn, we estimated it
from systematics. Figure 6 shows the

〈
Γγ(S n)

〉
plotted against

S n for Sn isotopes where this quantity is known (taken from
Ref. [13]). From the appearing trend of the even-even nuclei,
we estimate

〈
Γγ(S n)

〉
to 85(42) meV for 122Sn. The applied in-

put parameters needed for determining the normalization con-
stant B for 121,122Sn are shown in Tab. II. The values for 121Sn
have been taken from Ref. [13].

TABLE II: Input parameters for normalization of the γ-ray transmis-
sion coefficient T of 121,122Sn.

Nucleus It D0

〈
Γγ(S n)

〉
(�) (eV) (meV)

121Sn 0 1250(200) 40(5)
122Sn 3/2 62(31)a 85(42)a

a Estimated from systematics.

The normalized γ-ray strength functions of 121,122Sn are
shown in Fig. 7. The error bars show the statistical uncer-
tainties. While the strength function of 121Sn is smooth, just
like those of 116−119Sn [2, 3], the strength function of 122Sn
displays clear structures in the entire Eγ region. As discussed
in Sec. III, these structures also appear using different, inde-
pendent data sets.

A change of the log-scale slope in the strength functions,
leading to a sudden increase of strength, is seen in 121,122Sn for
Eγ > 5.2 MeV. The change of log-scale slope represents the
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onset of a small resonance, commonly related to as the pygmy
dipole resonance. A comparison of our 121,122Sn measure-
ments compared with photonuclear cross section data from
Refs. [18–22] is shown in the two upper panels in Fig. 8. Sim-
ilar strength increases were also seen in 116−119Sn [3], and this
figure will be further discussed for those isotopes when dis-
cussing the evolution of the pygmy resonance in the next sec-
tion.

In order to investigate the experimental strength functions
of 121,122Sn, we have applied commonly used models for
the GEDR resonance and for the magnetic spin-flip reso-
nance, also known as the Giant Magnetic Dipole Resonance
(GMDR).

The Generalized Lorentzian (GLO) model [23] is used for
the GEDR resonance. The GLO model is known to agree
rather well both for low γ-ray energies and for the GEDR cen-
troid at about 15 MeV. The strength function approaching a
non-zero value for low Eγ is not a property specific for the Sn
isotopes, but has been seen for all nuclei studied at the OCL
so far.

In the GLO model, the E1 strength function is given by
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FIG. 7: Normalized γ-ray strength functions of 121,122Sn as functions
of γ-ray energy. The energy bins are 120 keV/ch.

[23]:

f GLO
E1 (Eγ) =

1
3π2�2c2σE1 ΓE1

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Eγ
ΓKMF(Eγ,T f )(

Eγ2 − EE1
2
)2
+ Eγ2

(
ΓKMF(Eγ,T f )

)2

+ 0.7
ΓKMF(Eγ = 0,T f )

EE1
3

]
,

(9)

in units of MeV−3, where the Lorentzian parameters are the
GEDR’s centroid energy EE1, width ΓE1 and cross section
σE1. These experimental parameters are not available for
121,122Sn. We instead apply the one measured for 120Sn to
121Sn, and the one measured for 124Sn to 122Sn, from Fultz
[18] (see Tab. III).

The GLO model is temperature dependent from the incor-
poration of a temperature dependent width ΓKMF . This width
is the term responsible for the non-vanishing E1 strength at

TABLE III: Applied parameters for the parameterization of the
GEDR and the GMDR contributions for 121,122Sn.

Nucleus EE1 ΓE1 σE1 EM1 ΓM1 σM1 T f

(MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)
121Sn 15.53 4.81 253.0 8.29 4.00 1.11 0.25(5)
122Sn 15.59 4.77 256.0 8.27 4.00 1.09 0.25(5)

low excitation energy. It has been adopted from the Kadmen-
skiı̆, Markushev and Furman (KMF) model [24] and is given
by:

ΓKMF(Eγ,T f ) =
Γr

Er
2

(
Eγ2 + 4π2T f

2
)
, (10)

in units of MeV, and where T f is the temperature.
Usually, T f is interpreted as the nuclear temperature

of the final state, with the commonly applied expression
T f =

√
U/a. In this work and in Refs. [1–3], we assume

a constant temperature, i.e., the γ-ray strength function is in-
dependent of excitation energy. This approach is adopted for
consistency with the Brink-Axel hypothesis (see Sec. III).

Moreover, we treat T f as a free parameter. This is necessary
to adjust the theoretical strength prediction to our low-energy
measurements. The applied values of the T f parameters are
listed in Tab. III.

The M1 spin-flip resonance is modeled with the functional
form of a Standard Lorentzian (SLO) model [25]:

f SLO
M1 (Eγ) =

1
3π2�2c2

σM1ΓM1
2Eγ(

Eγ2 − EM1
2
)2
+ Eγ2 ΓM1

2
, (11)

where the parameter EM1 is the centroid energy, ΓM1 the width
and σM1 the cross section of the GMDR. These Lorentzian
parameters are for 121,122Sn predicted from the theoretical ex-
pressions in Ref. [25] and shown in Tab. III. The predictions
for the GEDR using the GLO model and for the GMDR for
116−119,121,122Sn nuclei are shown as dashed lines in Fig. 8.

The Standard Lorentzian (SLO) model was also tested and
is included in Fig. 8 (the M1 spin-flip resonance contribution
is added to it). The SLO succeeds in reproducing the (γ, x)
data, but clearly fails for the low-energy strength measure-
ments, both when it comes to absolute value and shape. The
same has been the case also for many other nuclei measured
at the OCL and elsewhere. Therefore, we consider the SLO
not to be adequate below the neutron threshold.

At present, it is unclear how these resonances should be
modeled properly, although many theoretical predictions ex-
ist. We have found [2, 3] that the Sn pygmy resonance is sat-
isfactorily reproduced by a Gaussian distribution [2]:

fpyg(Eγ) = Cpyg ·
1

√
2πσpyg

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−
(
Eγ − Epyg

)2
2σpyg

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (12)

superimposed on the GLO prediction. Here, Cpyg is the res-
onance’s absolute value normalization constant, Epyg the cen-
troid energy and σpyg the width. These parameters are treated
as free.
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FIG. 8: (Color online) Comparison of the prediction of the total strength functions with the OCL experimental measurements for
116−119,121,122Sn. The strength function of 118Sn is shown both as multiplied with 1.8 (filled squares) and as the original normalization (open
squares). The arrows indicate S n. The total strength predictions (solid lines) are modeled as Gaussian pygmy resonance additions to the GLO
(E1 +M1) baselines. The SLO (E1 +M1) baselines are also shown.
Upper, left panel: 117Sn(γ, n) from Utsunomiya et al. [19], 119,124Sn(γ, x) from Fultz et al. [18], and 120Sn(γ, x) from Varlamov et al. [21].
Upper, right panel: 116Sn(γ, n) [19], 120,124Sn(γ, x) [18], and 122Sn(γ, n) from Varlamov et al. [20].
Middle, left panel: 117Sn(γ, n) [19], 119Sn(γ, x) [18], and 119Sn(γ, n) [20].
Middle, right panel: 116Sn(γ, n) [19], 118Sn(γ, x) [18], 118Sn(γ, x) from Varlamov et al. [21], and 118Sn(γ, x) from Leprêtre et al. [22].
Lower, left panel: 117Sn(γ, n) [19], 117Sn(γ, x) [18], 117Sn(γ, x) [21], and 117Sn(γ, x) [22].
Lower, right panel: 116Sn(γ, n) [19], 116Sn(γ, x) [18], 116Sn(γ, x) [21], and 116Sn(γ, x) [22].

By adding the discussed theoretical strength contributions,
the prediction of the total γ-ray strength function is given by:

ftotal = fE1 + fM1 + fpyg . (13)

We determined the Gaussian pygmy parameters of 121,122Sn
from fitting to our measurements. The centroid energies of the
pygmy resonances are 8.4(1) and 8.6(2) MeV, respectively.
We found that the same width σpyg and strength Cpyg as in
116,117Sn [3] gave a very good agreement also in 121,122Sn,
so the width and strength are kept unchanged. The pygmy

parameters are listed in Tab. IV. The estimated error bars
given in the table take into account systematic uncertainties in
the normalization values and in the choice of baseline of the
pygmy resonance, including the fact that the GLO does not
perfectly follow the (γ, n) measurements for higher Eγ values.

The predictions for 121,122Sn are shown as solid lines in the
upper panels of Fig. 8. We see that the predictions of the total
strength describe the measurements rather well, in the sense
that the Gaussian pygmy resonances fill a very large fraction
of the missing strength. Still, the Gaussian distribution does
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TABLE IV: Empirical values of Gaussian pygmy parameters, and
the corresponding integrated strengths and TRK values of the pygmy
resonances, in 121,122Sn.

Nucleus Epyg σpyg Cpyg Integrated strength TRK value
(MeV) (MeV) (10−7MeV−2) (MeV·mb) (%)

121Sn 8.4(1) 1.4(1) 3.2+3
−9 31+3

−8 1.8+1
−5

122Sn 8.6(2) 1.4(1) 3.2+3
−9 32+2

−9 1.8+1
−5

not completely follow neither the left flank nor the right flank
of the pygmy resonances in 121,122Sn. In the case of 116,117Sn
[2, 3], having a larger T f of T f = 0.46(1) MeV, the left flank
was followed very well. However, in all Sn isotopes, there is a
gap on the right flank between measured data and the GLO. A
better pygmy resonance representation than the Gaussian or a
better model for the baseline may be found in the future.

Strength from the resonances in 121,122Sn have been added
in the energy region of ≈ 5−8 MeV according to our measure-
ments, and in the region of ≈ 5 − 11 MeV when comparing
to photonuclear data as well. The total integrated strengths
of the pygmy resonances, based on the total predictions, are
estimated to 32+3

−9 MeV·mb. This constitutes 1.8+1
−5% of the

classical Thomas-Reiche-Kuhn (TRK) sum rule, assuming all
pygmy resonance strength being E1, see Tab. IV.

Even though uncertainties in the choice of baseline have
been considered in the uncertainty estimates, another predic-
tion of the GEDR than the GLO or another function for the
pygmy resonance than the Gaussian may be found in the fu-
ture. This will consequently influence the estimates on the
pygmy resonance. Lack of data, i.e., the gaps between our
measurements and the (γ, n) measurements in resonance re-
gion, and also the lack of (γ, n) measurements for 121,122Sn,
adds to the uncertainties in the estimates of the pygmy reso-
nances.

Measurements from other reactions and using other meth-
ods have also been used to estimate the TRK value of the Sn
pygmy, and these estimates deviate from each other. Data
from 116,117Sn(γ,n) experiments [19] indicate an integrated
strength which constitutes ≈ 1% of the TRK sum rule,
which agrees within the uncertainty with our value. From
116,124Sn(γ,γ′) experiments [26], the TRK value is calculated
to 0.4 − 0.6%. This may seem to deviate from our result.
However, taking into account unresolved strength in the quasi-
continuum of typically a factor of 2 − 3, the (γ,γ′) results are
compatible within the uncertainty with the other data.

VI. EVOLUTION OF THE PYGMY RESONANCE

Studying the neutron dependency is important and may
help in determining the origin of the Sn pygmy resonance.
Figure 9 shows the present and previously analyzed normal-
ized strength functions for the Sn isotopes. The measurements
of 118Sn have been multiplied by 1.8 in order to agree with
those of 116Sn (see Ref. [3]).

First, it may seem like a trend that the tail of the strength
function decreases in strength as the neutron number N in-
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FIG. 9: (Color online) Normalized γ-ray strength functions as func-
tions of γ-ray energy for the Sn isotopes measured at the OCL. The
even-odd isotopes, 117,119,121Sn, are shown in the upper panel, while
the even-even isotopes, 116,118,122Sn, are shown in the lower. The mea-
sured strength of 118Sn has been multiplied by 1.8 (see Ref. [3]). The
energy bins are 120 keV/ch for 116,117,121,122Sn, 240 keV/ch for 119Sn
and 360 keV/ch for 118Sn.

creases. Second, it is noticeable from Fig. 9 that the change
of log-scale slope, which represents the onset of the pygmy
resonance, occurs at an higher Eγ value in 121,122Sn than for
116,117Sn. The changes of slope are clearest for the even-even
nuclei. They are found at ≈ 4.5 MeV in 116Sn and at ≈ 5.2
MeV in 122Sn.

The values of T f for 121,122Sn are lower than for 116−119Sn.
There is no physical reason for different nuclear temperatures.
Lowering the parameter T f is instead necessary in order to get
the lowest-energy part of the GLO comparable in magnitude
with the measurements.

The centroid energy Epyg of the pygmy resonances in
121,122Sn has larger values than those of earlier studies in
116,117Sn [2, 3]. For 121,122Sn, the pygmy centroids ire 8.4(1)
and 8.6(2) MeV (see Tab. IV), respectively, while 8.0(1) MeV
is found for 116,117Sn [2, 3]. During the pygmy resonance fit-
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TABLE V: Empirical values of 116−119Sn Gaussian pygmy parame-
ters, and the corresponding pygmies’ integrated strengths and TRK
values. For 118Sn, the values have been found from fitting to the
measured strength function multiplied by 1.8.

Nucleus Epyg σpyg Cpyg Integrated strength TRK value
(MeV) (MeV) (10−7MeV−2) (MeV·mb) (%)

116Sn 8.0(1) 1.4(1) 3.2+3
−9 30+0

−8 1.7+0
−4

117Sn 8.0(1) 1.4(1) 3.2+3
−9 30+0

−8 1.7+0
−4

118Sn 8.2(1) 1.4(1) 3.2+0
−9 30+0

−8 1.8+0
−5

119Sn 8.2(1) 1.4(1) 3.2+0
−9 30+0

−8 1.7+0
−4

TABLE VI: Applied parameters for the parameterization of the
GEDR and the GMDR contributions for 116−119Sn.

Nucleus EE1 ΓE1 σE1 EM1 ΓM1 σM1 T f

(MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)
116Sn 15.68 4.19 266.0 8.41 4.00 0.773 0.46(1)
117Sn 15.66 5.02 254.0 8.38 4.00 1.04 0.46(1)
118Sn 15.59 4.77 256.0 8.36 4.00 0.956 0.40(1)
119Sn 15.53 4.81 253.0 8.34 4.00 0.963 0.40(1)

ting, it was clear that the centroid energies had to be signifi-
cantly increased for the heavier isotopes. The significant in-
creases are also apparent from studying the energies for which
there is a change of log-scale slope in the strength functions.
Moreover, keeping the centroid energy constant has as a con-
sequence that the same pygmy width σpyg and pygmy strength
Cpyg as in 116,117Sn [3] also give the best fit in 121,122Sn.

In the earlier study of 118,119Sn [3], the data have large error
bars. This means that the pattern of an increasing centroid en-
ergy was not so clear, and the choice then was to keep the cen-
troid energy constant while compensating with an increase of
the resonance width. We have updated the resonance predic-
tion of 118,119Sn by following the same pattern. The estimated
centroid energy of the pygmies in 118,119Sn is then 8.2(1) MeV,
while the width and strength are kept constant. Updated pa-
rameter values are listed in Tab. V and displayed in Fig. 8.
The parameters for the GEDR and GMDR contributions are
listed in Tab. VI.

We would like to investigate for several isotopes the ef-
fect of our predicted pygmy resonances on the (n, γ) cross
sections and compare these with available experimental mea-
surements. This has been done for 117−119,121Sn using the re-
action code TALYS [27]. For the level density, we have ap-
plied the spin- and parity-dependent calculations of Goriely,
Hilaire and Koning [28], which are in good agreement with
our level-density data, as demonstrated for 117Sn in Fig. 10.
Also, we have used the neutron optical potential of Koning
and Delaroche [29].

The results of the comparisons are shown in Fig. 11. Our
modeled strength function with a Gaussian pygmy resonance
(denoted GLO2) leads to a calculated cross section that gen-
erally agrees very well with the measurements. Assuming the
GLO model with constant temperature but without the pygmy
resonance (GLO1), clearly gives a lower cross section in all
cases, as expected. This may be taken as a support of the
finding of an enhanced strength function in the Eγ region of
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FIG. 10: (Color online) Level-density measurements on 117Sn com-
pared with microscopic calculations from Ref. [28].

≈ 5−11 MeV. The SLO model gives an overall too high cross
section, which is not surprising considering the large over-
shoot in γ-ray strength compared to our measurements and
also to

〈
Γγ
〉

data. We note that our calculated cross section
for 116Sn(n, γ)117Sn using the GLO2 model is in very good
agreement with the one in the work of Utsunomiya et al. [19].

For the 117Sn(n, γ)118Sn case, we have applied the model
parameters that correspond to our scaled data (with a factor of
1.8). The resulting excellent agreement with the experimen-
tal (n, γ) data further supports our choice of renormalization
in Ref. [3]. We have in addition tested the strength predic-
tion using parameters that fit with the original normalization,
which results in calculated cross section that are clearly un-
derpredictive compared to the experimental data (not shown
here).

The reproduction of the 120Sn(n, γ)121Sn cross section is not
as good as for the other nuclei, as this calculation seems to
be somewhat more underpredictive. However, the calculation
is certainly an improvement compared to that of the GLO1,
which is a standard strength model without the pygmy reso-
nance. The underprediction might be explained by too low ex-
perimental value of

〈
Γγ
〉

in the normalization procedure of the
measurements. If the value had been higher, the pygmy reso-
nance would had produced more strength, leading to a general
increase of the calculated cross section.

We would also like to study the evolution of the resonances’
centroid energy Epyg with neutron number N. Figure 12 shows
Epyg as a function of N for the isotopes studied at the OCL. A
χ2 fit has been performed on these data, resulting in the linear
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FIG. 11: (Color online) Data on neutron-capture cross sections for the target nuclei 116−118,120Sn compared with calculations, for neutron
energies � 20 keV. GLO1 (dotted line) is the GLO model assuming constant temperatures (given in Tabs. IV and VI), and GLO2 (solid line)
is the GLO1 model plus the prediction of the pygmy resonance. Measurements from Koehler et al. [30], Macklin et al. [31], Nishiyama et
al. [32], Wisshak et al. [33], and Timokhov et al. [34].

relation Epyg = 2.0(16) + 0.090(23) · N in units of MeV.

The estimates on Epyg from others’ experimental data on Sn
are in agreement within the uncertainties with the observed
pattern: ≈ 8.5 MeV for 116,117Sn [19], ≈ 7.8 MeV for 117,119Sn
[35], and 10.1(7) and 9.8(7) MeV for 130,132Sn [36], respec-
tively. It is commented that an increase of the resonances’
centroid energies with increasing neutron number was also
found in experimental data on Ca [37].

The observation of an increase of the centroid energy
with increasing neutron number is not in agreement with
common theoretical predictions. On the contrary, studies
on Sn isotopes instead predict a decrease of centroid en-
ergy with increasing neutron number. These studies in-
clude the Hartree-Fock-Bogoljubov (HFB) and multiphonon
quasiparticle-phonon (QPM) models by Tsoneva and Lenske
[38], the RHB+RQRPA (DD-ME2) model by Paar [39], and
the Continuum QRPA model by Daoutidis [40]. Also a the-

oretical study on Ca isotopes, using the Extended Theory of
Finite Fermi Systems (ETFFS) by Tertychny [37], results in a
decrease of centroid energy with neutron number (in contrary
to experimental results on Ca, see Ref. [37] and references
therein). However, it is commented that Daoutidis [40] pre-
dicts a relatively stable centroid energy in the atomic mass re-
gion A = 120 − 126 compared to other mass regions. Hence,
the increase of centroid energy in the isotopes that we have
compared, may be less than would had been observed in an-
other mass region.

Recent measurements using the (α, α′γ) coincidence
method on 124Sn compared to photon-scattering experiments
show a splitting into its isoscalar and isovector components
[41]. Hence, both components seem to be present, in agree-
ment with theoretical predictions.

The nature, origin, and integrated strength of the Sn pygmy
resonance are issues that are heavily debated. The E1 neutron-
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FIG. 12: (Color online) Estimated centroid energies Epyg (squares) as
a function of neutron number N, deduced from our measurements on
116−119,121,122Sn. The solid line is a linear χ2 fit to the measurements.

skin oscillation mode, discussed in Refs. [39, 42, 43], is as-
sumed as the underlying physical phenomenon in most of the
theoretical predictions, both in macroscopic (e.g., Van Isacker
et al. [42]) and microscopic approaches (e.g., Daoutidis [40],
Tsoneva and Lenske [38], Paar [39], Sarchi et al. [43]). Most
theoretical calculations predict a systematic increase of the
resonances’ strength as the number of neutrons increase, due
to the increase of the number of neutrons in the skin. An-
other prediction is the increase by neutron number up to 120Sn
followed by a decrease (Paar [39]). Several of the predicted
increases of integrated strength concerning the isotopes that
we have performed measurements on, are significant (e.g.,
Tsoneva and Lenske [38], Van Isacker et al. [42], Litvinova
et al. [44]). It is commented that the study by Daoutidis [40]
predicts that also the integrated strength is relatively stable in
the mass region A = 120 − 126.

However for our measurements on the pygmy resonances
in 116−119,121,122Sn, we cannot see any dependency on neutron
number in the integrated strengths. The same resonance pre-
diction has on the contrary been applied for all isotopes. (The
total integrated strengths and the TRK values of 121,122Sn be-
ing slightly larger than those of 116,117Sn, see Tabs. IV and IV,
is explained by differences in the GLO models of those iso-
topes.) Figure 13 shows our TRK values together with those
of Van Isacker et al. [42] (multiplied by a factor of 14 in abso-
lute value). The experimental result does not follow the pre-
dicted increase. Still, the uncertainties in our estimated reso-
nance strengths are large. More experimental information is
therefore needed in order to answer the question if the inte-
grated strength in Sn increases with neutron number.

Neutron number N
64 65 66 67 68 69 70 71 72 73 74

T
R

K
 v

al
u

e 
(%

)
0.5

1

1.5

2

2.5

3

Oslo

Van Isacker

FIG. 13: (Color online) TRK values for Sn estimated from our mea-
surements (squares) compared to the theoretical prediction from Van
Isacker et al. [42] (multiplied by a factor 14) (solid line) as a function
of neutron number N.

The experimental TRK values based on our and others’
measurements are relatively large, compared to general ex-
citations. This might indicate that the pygmy resonance is
due to a collective phenomenon. However, its origin is un-
known, and single-particle excitations are not excluded. Var-
ious theoretical predictions disagree on whether the neutron
skin-oscillation is collective or not [39].

A clarification of the electromagnetic character of the
pygmy resonance in Sn would be of utmost importance.
Present theoretical predictions assumes an E1 strength, mod-
eling the resonance as a neutron-skin oscillation. Experi-
mental studies have indicated an E1 character. Amongst
these are the nuclear resonance fluorescence (NRF) experi-
ments performed on 116,124Sn [26] and on 112,124Sn [45], and
the Coulomb dissociation experiments performed on 129−132Sn
[36, 46]. In addition comes the polarized photon beams ex-
periments on 138Ba [47]. However, the existence of an M1
component of the resonance strength cannot be ruled out, as
was discussed in Ref. [3].

VII. CONCLUSIONS

The level density and γ-ray strength functions of 121,122Sn
have been measured using the (3He,3He′γ) and (3He,αγ) re-
actions and the Oslo method. The level densities of 121,122Sn
display step-like structures for excitation energies below ≈ 4
MeV. One of the bumps is interpreted as a signature of neutron
pair breaking, in accordance with the findings in 116−119Sn.



12

A significant enhancement in the γ-ray strength is observed
in the 121,122Sn measurements for Eγ � 5.2 MeV. The inte-
grated strength of the resonances correspond to ≈ 1.8+1

−5% of
the TRK sum rule. These enhancements are compatible with
pygmy resonances centered at ≈ 8.4(1) and ≈ 8.6(2) MeV,
respectively.

Neutron-capture cross-section calculations using our
pygmy resonance predictions give significantly better repro-
duction of experimental (n, γ) cross sections than standard
strength models without any pygmy resonance.

The pygmy resonances are compared to those observed in
116−119Sn. The evolution with increasing neutron number of
the pygmy resonances observed in 116−119,121,122Sn is a clear
increase of centroid energy from 8.0(1) MeV in 116Sn to 8.6(2)
MeV in 122Sn, while no difference in integrated strength is
observed. This finding is not in agreement with most theo-
retical predictions. However, the experimental uncertainties

are large, and more experimental information is needed in or-
der to determine the nature of the pygmy resonances in the Sn
isotopes.
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7.3. ARTICLE 3: ANALYSIS OF POSSIBLE SYSTEMATIC ERRORS IN
THE OSLO METHOD

7.3 Article 3: Analysis of possible systematic errors
in the Oslo method

The Oslo method enables the simultaneous extraction of experimental level
density and γ-ray transmission coefficient from a set of particle-γ-ray coincidence
data. The assumptions behind each step in the method are tested in this article,
and possible systematic errors and uncertainties are investigated in detail. This is
done using typical experimental data sets from various mass regions, as well as
with simulated data.

The finding is that although the Oslo method is very robust in general, the
various assumptions the method relies on must be carefully considered when it is
applied in different mass regions.

The excitation energy levels are fed in different intensity from the reaction
and the decay from higher-lying states. When this different feeding occurs to the
levels at low excitation energy, the shapes of the γ-ray spectra may be significantly
different from those of the higher excitation energies. This is connected to the few
states being present at low excitation energy. As a consequence, the subtraction
of higher-order γ rays from the total spectra in the first-generation method may
be erroneous for low γ-ray energies. Hence for low γ-ray energies, vertical ridges
and/or valleys may occur in the first-generation matrix.

It is important for the first-generation method that the populated spin
distribution is, at least approximately, independent of excitation energy. Else,
the energy bins at high excitation energy would contain γ decays from states with
higher spins than the bins at lower excitation energy, which would disturb the
extraction of the first-generation γ rays. The spin populations as a function of
excitation energy have been studied for experiments on nuclei in several mass
regions, and the spin distributions have been found to be constant within the
uncertainties. Hence, variations in the spin distribution are assumed not to be
an important concern when applying the Oslo method.

In the region of high level density, the nucleus seems to attain a compound-like
system before emitting the γ rays even though the undergone nuclear reaction is
a direct reaction. The considered part of the first-generation matrix is therefore
constrained to the region of higher excitation energy.

Testing on simulated data gives that if there is a temperature dependence in the
γ-ray strength function (i.e., a contradiction of the Brink hypothesis), the strength
especially at low γ-ray energy is affected. The extracted strength is found to be
an average over the considered excitation-energy range. However, there is so far
no experimental evidence for any strong temperature dependence of the strength
function for the excitation-energy region in question (below E ≈ 10 MeV).

Parity symmetry is assumed in the Oslo method. Parity asymmetry would
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affect the normalisation value ρ(Sn) and thus the normalisation of the slope, which
is common to the level density and the strength function. A large parity asymmetry
may change the value of ρ(Sn) with a factor of ≈ 2. The parity asymmetry is
expected to be largest for the lighter nuclei. However, experimental data on lighter
nuclei suggest that the parity asymmetry is small even here. It is reasonable to
believe that the error in ρ(Sn) and in the absolute normalisation of the strength
function does not exceed 50%.

Simulations with different spin ranges on the initial levels shows that the case
with the range including the highest spins may give an enhanced strength function
at low γ-ray energies for light nuclei. This is understood from considering the
relatively low level density and the matching of spins between the initial and final
levels for dipole radiation. This could explain, at least partially, the observed
enhanced low-energy strength in experimental data for light and medium-mass
nuclei.

The spin distribution is one of the largest uncertainties in the normalisation
procedure, since the slope of the level density and strength function strongly
depends on the relative intensities of the populated spins at Sn. The variation
in the normalisation value ρ(Sn) may be within a factor of two or more, especially
for the rare-earth nuclei.

The experimentally reached spin window consists of low spins only, which
means that the measured level density represents a narrow spin range. The Oslo
method solves this by normalising at Sn the measured level density to ρ(Sn), which
is estimated for all spins. The impact is not big for light nuclei, since they have
relatively few high-spin states. Even in the case of rare-earth nuclei, calculations
indicate that this scaling works well, as the main structures in the level density are
indeed also present in the level density of a rather narrow spin range.
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In this work, we have reviewed the Oslo method, which enables the simultaneous extraction of level density
and γ-ray transmission coefficient from a set of particle-γ coincidence data. Possible errors and uncertainties
have been investigated. Typical data sets from various mass regions as well as simulated data have been tested
against the assumptions behind the data analysis.
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I. INTRODUCTION

Nuclear level densities and γ-ray strength functions are two
indispensable quantities for many nuclear structure studies
and applications. The approach developed by the nuclear
physics group at the Oslo Cyclotron Laboratory (OCL), was
first described in 1983 [1], and has during a period of nearly
30 years been refined and extended to the sophisticated level
presently referred to as the Oslo method. The method is de-
signed to extract the nuclear level density and the γ-ray trans-
mission coefficient (or γ-ray strength function) up to the neu-
tron (proton) threshold from particle-γ coincidence data. Typ-
ical reactions that have been utilized are transfer reactions
such as (3He, αγ) and (p, tγ), and inelastic scattering reac-
tions, e.g., (3He, 3He′γ) and (p,p′γ).

The measurements have been very successful and have shed
new light on important issues in nuclear structure, such as
the M1 scissors mode [2–5], and the sequential breaking of
Cooper pairs [6, 7]. For the Sn isotopes, a resonance-like
structure that may be due to the so-called E1 pygmy reso-
nance has been observed [8, 9]. Also, a new, unpredicted
low-energy increase in the γ-ray strength function for Eγ ≤ 3
MeV of medium-mass nuclei has been discovered by use of
this method [10–15]. This enhancement may have a non-
negligible impact on stellar reaction rates relevant for the nu-
cleosynthesis [16]. At present, this structure is poorly under-
stood.

In this work, we have investigated the possible systematic
errors that can occur in the Oslo method due to experimen-
tal limitations and the assumptions made in the various steps
of the method. We have studied experimental data with high
statistics (and thus low statistical errors) so that systematic er-
rors can be revealed. Also, we have used simulated data to en-
able better control on the input parameters (level density and
γ-ray strength function). In Sec. II we give a short overview
of the experiments and the various steps in the method. In

∗Electronic address: a.c.larsen@fys.uio.no

Sec. III we present the possible systematic errors for each
main step of the method. Finally, a summary and conclud-
ing remarks are given in Sec. IV.

II. EXPERIMENTAL PROCEDURE AND THE OSLO
METHOD

The Oslo method is in fact a set of methods and analysis
techniques, which together make it possible to measure level
density and γ-ray strength from particle-γ coincidence data. In
this section, these techniques and methods will be described.

A. Experimental details

The experiments were performed at the OCL using a light-
ion beam delivered by the MC-35 Scanditronix cyclotron.
Typically, 3He beams with energy 30 − 45 MeV have been
used. Recently, also proton beams with energy 15−32 MeV
have been applied. Self-supporting targets enriched to ≈ 95%
in the isotope of interest, and with a thickness of ≈ 2 mg/cm2

were placed in the center of the multi-detector array CAC-
TUS [17]. CACTUS consists of 28 collimated NaI(Tl) γ-ray
detectors with a total efficiency of 15.2(1)% for Eγ = 1332
keV. Usually also a 60% Ge detector has been applied to mon-
itor the populated spin range (∼ 0− 8h̄) and possible target
contaminations. The experiments were typically run for a pe-
riod of 1−2 weeks with beam currents of ∼ 1 nA.

Inside the CACTUS array, eight collimated Si particle de-
tectors were used for detecting the charged ejectiles from the
nuclear reactions. The particle detectors were placed at 45◦

relative to the beam line in forward direction. The detectors
were of ΔE − E type with a thin (∼ 140 μm) front detec-
tor and a thick (∼ 1500 μm) end detector where the charged
ejectiles stop. The particle telescopes enable a good separa-
tion between the various charged-ejectile species. The energy
resolution of the particle spectra ranges from 150− 300 keV
depending on the beam species, the mass of the target nucleus
and the size of the collimators. Both singles and coincidence
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FIG. 1: Singles α-particle spectrum (upper panel), and α-γ coinci-
dence spectrum (lower panel) from the 117Sn(3He, α)116Sn reaction.
The data are taken from the experiment presented in Ref. [7].

events were measured for the ejectiles. In Figs. 1, 2 and 3
the singles and particle-γ coincidence spectra are shown for
the reactions 117Sn(3He,α)116Sn, 164Dy(3He,3He′)164Dy and
46Ti(p, p′)46Ti, respectively.

The ejectile energy can easily be transformed to the excita-
tion energy of the residual nucleus using the reaction Q-values
and kinematics. Thus, an excitation energy vs. γ-ray energy
matrix can be built from the coincidence events. An exam-
ple of such a matrix is shown in Fig. 4 (left panel), where
the γ-ray spectra have been corrected for the known response
functions of the CACTUS array [18]. The correction (or un-
folding) method is described in detail in Ref. [18]. One of
the main advantages with this method is that the fluctuations
of the original spectra are preserved without introducing addi-
tional, spurious fluctuations.

B. Extracting primary γ rays

As γ decay from highly excited states often involves a cas-
cade of transitions, it is necessary to isolate the γ rays that are
emitted in the first decay step of all the possible decay routes,
since information on the level density and the γ-ray strength
function can be extracted from the distribution of these pri-
mary γ rays (also called first-generation γ rays). Therefore, a
method has been developed in order to separate the primary
γ-ray spectra from the γ rays that origin from the later steps
in the decay cascades at each excitation energy. This method

C
o

u
n

ts
/4

0 
ke

V

200

400

600

800

1000

310�

Dy, singles 164

, g.s.+0

(x 1/50)

 (MeV)
He3He energy E3

28 30 32 34 36 38 40 42

C
o

u
n

ts
/4

0 
ke

V

10000

20000

30000

40000

50000 Coincidences 

nB

FIG. 2: Singles 3He spectrum (upper panel), and 3He-γ coincidence
spectrum (lower panel) from the 164Dy(3He,3He′)164Dy reaction.
The data are taken from the experiment presented in Ref. [5].

will hereafter be referred to as the first-generation method and
is described in detail in Ref. [19]. This method is very impor-
tant, since the correctness of the further analysis is completely
dependent on correctly determined primary γ-ray spectra. The
first-generation method shares several features with another
subtraction technique developed by Bartholomew et al. [20].
The main features of the method will be outlined in the fol-
lowing.

From the E vs. Eγ matrix, where γ-ray spectra for each
excitation energy are contained, the primary γ-ray spectra are
extracted through an iterative subtraction technique. The un-
folded spectra fi are made of all generations of γ rays from all
possible cascades decaying from the excited levels within the
excitation-energy bin i. Now, we utilize the fact that the spec-
tra f j<i for all the underlying energy bins j contain the same
γ-transitions as fi except the first γ rays emitted1, since they
will bring the nucleus from the states in energy bin i to under-
lying states in the bins j. Thus, the primary γ-ray spectrum hi
for each bin i can be found by

hi = fi −gi, (1)

1 This is only true if the γ-decay pattern is the same regardless of whether
the states in the bin were populated from the direct reaction, or from decay
from above-lying bins. See Sec. III B.
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where gi is a weighted sum of all spectra

gi = ni1wi1 f1 +ni2wi2 f2 + . . .+ni jwi j f j = ∑
j

ni jwi j f j. (2)

Here, the unknown coefficients wi j (with the normalization
∑ j wi j = 1) represent the probability of the decay from states
in bin i to states in bin j. In other words, the wi j values make
up the weighting function for bin i, and contain the distribu-
tion of branching ratios as a function of γ-ray energy. There-
fore, the weighting function wi corresponds directly to the pri-
mary γ-ray spectrum hi for bin i.

The coefficients ni j are correcting factors for the different
cross sections of populating levels in bin i and the underlying
levels in bin j. They are determined so that the total area of
each spectrum fi multiplied by ni j corresponds to the same
number of cascades. This can be done in two ways [19]:

• Singles normalization. The singles-particle cross sec-
tion is proportional to the number of events populating
levels in a specific bin, and thus to the number of de-
cay cascades from this bin. We denote the number of
counts measured for bin i and j in the singles spectrum
Si and S j, respectively. The normalization factor ni j that
should be applied to the spectrum f j is then given by

ni j =
Si

S j
. (3)

• Multiplicity normalization. The average γ-ray multi-
plicity 〈M〉 can be obtained in the following way [21]:

Assume an N-fold population of an excited level E. The
decay from this level will result in N γ-ray cascades,
where the ith cascade contains Mi γ rays. The average
γ-ray energy 〈Eγ〉 is equal to the total energy carried by
the γ rays divided by the total number of γ rays:

〈Eγ〉 = N · E

∑N
i=1 Mi

=
E

1
N ∑N

i=1 Mi
=

E
〈M〉 . (4)

Then, the average γ-ray multiplicity is simply given by

〈M〉 =
E

〈Eγ〉
. (5)

The average γ-ray multiplicity 〈Mi〉 can thus easily be
calculated for each excitation-energy bin i. Let the area
(or total number of counts) of the γ-ray spectrum fi be
denoted by A( fi). Then the singles particle cross sec-
tion Si is proportional to the ratio A( fi)/〈Mi〉, and the
normalization coefficient ni j that should be applied to
bin i when subtracting bin j is

ni j =
A( fi)/〈Mi〉
A( f j)/〈Mj〉

=
〈Mj〉A( fi)
〈Mi〉A( f j)

. (6)

The two normalization methods give normally the same re-
sults within the experimental error bars2, see also Sec. III B.
The resulting primary γ-ray matrix of 50V is shown in Fig. 4
(right panel), using the singles normalization method.

In cases where the multiplicity is well determined, an area
consistency check can be applied to Eq. (1). Assume that a
small correction is introduced by substituting gi by δgi, where
δ is close to unity. The area of the first-generation γ spectrum
is then

A(hi) = A( fi)−δA(gi), (7)

and this corresponds to a γ-ray multiplicity of one unit. Since
the number of primary γ rays in the spectrum fi equals
A( fi)/〈Mi〉, A(hi) is also given by

A(hi) = A( fi)/〈Mi〉. (8)

Combining Eqs. (7) and (8) yields

δ = (1−1/〈Mi〉)
A( fi)
A(gi)

. (9)

The δ parameter can be varied to get the best agreement of the
areas A(hi), A( fi) and A(gi) within the following restriction:
δ = 1.00±0.15; that is, the correction should not exceed 15%.
If a larger correction is necessary, then improved weighting
functions should be determined instead.

As mentioned before, the weighting coefficients wi j cor-
respond directly to the first-generation spectrum hi, and this
close relationship makes it possible to determine wi j (and thus
hi) through a fast converging iteration procedure [19]:

2 In case of the presence of isomeric states, the multiplicity method must be
used to get the correct normalization.
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experiment presented in Ref. [13].

1. Apply a trial function for wi j.

2. Deduce hi.

3. Transform hi to wi j by giving hi the same energy cali-
bration as wi j, and normalize the area of hi to unity.

4. If wi j(new) ≈ wi j(old), convergence is reached, and the
procedure is finished. Otherwise repeat from step 2.

The first trial function could be the unfolded spectrum fi, or a
theoretical estimate based on a model for the level density and
γ-ray transmission coefficient, or a constant function; it turns
out that the resulting first-generation spectra are not sensitive
to the starting trial function. Also, previous tests of the conver-
gence properties of the procedure have shown that excellent
agreement is achieved between the exact solution (from sim-
ulated spectra) and the trial function wi j already after three it-
erations [19]. Usually, about 10−20 iterations are performed
on experimental spectra.

C. Determining level density and γ-ray strength

Once the primary γ-ray spectra are obtained for each exci-
tation energy, the first-generation matrix P(E,Eγ) is used for
the determination of level density and γ-ray strength. For sta-
tistical γ-decay, the decay probability (given by P(E,Eγ)) of
a γ-ray with energy Eγ decaying from a specific excitation en-
ergy E is proportional to the level density ρ(Ef) at the final
excitation energy Ef = E −Eγ , and the γ-ray transmission co-
efficient T (Eγ):

P(E,Eγ) ∝ ρ(Ef)T (Eγ). (10)

The above relation holds for decay from compound states,
which means that the relative probability for decay into any

specific set of final states is independent on how the com-
pound nucleus was formed. Thus, the nuclear reaction can
be described as a two-stage process, where a compound state
is first formed before it decays in a manner that is independent
of the mode of formation [22, 23]. This is believed to be ful-
filled at high excitation energy, even though direct reactions
are used, as already discussed previously. Equation (10) can
also be compared with Fermi’s golden rule:

λ =
2π
h̄

∣∣〈f
∣∣Ĥint

∣∣ i
〉∣∣2 ρ(Ef), (11)

where λ is the decay rate of the initial state |i〉 to the final
state |f〉, and Ĥint is the transition operator. In Eq. (10), an en-
semble of initial and final states within each excitation-energy
bin is considered, and thus we obtain here the average decay
properties of a set of initial states to a set of final states. Note,
however, that in contrast to Fermi’s golden rule where the ma-
trix element is strictly dependent on the initial and final state,
the transmission coefficient T is only dependent on the γ-ray
energy and neither the initial nor the final excitation energy.
This is in accordance with the Brink hypothesis [24], which
states that the collective giant dipole mode built on excited
states has the same properties as if built on the ground state.
In its generalized form, this hypothesis includes all types of
collective decay modes. Assuming that this hypothesis holds,
the first-generation matrix P(E,Eγ) is separable into two func-
tions ρ and T as given in Eq. (10).

To extract the level density and the γ-ray transmission co-
efficient, an iterative procedure [25] is applied to the first-
generation matrix P(E,Eγ). The basic idea of this method
is to minimize

χ2 =
1

Nfree

Emax

∑
E=Emin

E

∑
Eγ =Emin

γ

(
Pth(E,Eγ)−P(E,Eγ)

ΔP(E,Eγ)

)2

, (12)

where Nfree is the number of degrees of freedom, and
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ΔP(E,Eγ) is the uncertainty in the experimental first-
generation γ-ray matrix. The fitted first-generation γ-ray ma-
trix Pth(E,Eγ) can theoretically be approximated by

Pth(E,Eγ) =
ρ(E −Eγ)T (Eγ)

∑E
Eγ =Emin

γ
ρ(E −Eγ)T (Eγ)

. (13)

The experimental matrix of first-generation γ rays is normal-
ized [25] such that for every excitation-energy bin E, the sum
over all γ energies Eγ from some minimum value Emin

γ to
the maximum value Emax

γ = E at this excitation-energy bin
is unity:

E

∑
Eγ =Emin

γ

P(E,Eγ) = 1. (14)

The experimental matrix P(E,Eγ) and the fitted matrix
Pth(E,Eγ) of 46Ti are displayed in Fig. 5. The energy limits
set in the first-generation matrix for extraction are also shown.
These limits (Emin, Emax, and Emin

γ ) are chosen to ensure that
the data utilized are from the statistical excitation-energy re-
gion and that no γ-lines stemming from, e.g., yrast transitions,
are used in the further analysis. Note that the γ-ray energy bins
are now re-binned to the same size (120 keV in this case) as
the excitation-energy bins.

Each point of the ρ and T functions is assumed to be an in-
dependent variable, so that the reduced χ2 of Eq. (12) is min-
imized for every argument E −Eγ and Eγ . The quality of the
procedure when applied to 46Ti and 163Dy is shown in Figs. 6
and 7, where the experimental first-generation spectra for var-
ious initial excitation energies are compared to the least-χ2

solution. In general, the agreement between the experimental
data and the fit is very good. Note, however, that differences
of several standard deviations do occur. In the case of 46Ti,
this is particularly pronounced for the peaks at Eγ ≈ 4.7 MeV
for E = 5.6 MeV and Eγ ≈ 5.5 MeV for E = 6.4 MeV. As
these peaks correspond to the decay to the first excited state,
one might expect large Porter-Thomas fluctuations [26] in the
strength of these transitions.

The global fitting to the data points only gives the functional
form of ρ and T . In fact, it has been shown [25] that if one so-
lution for the multiplicative functions ρ and T is known, one
may construct an infinite number of other functions, which
give identical fits to the P(E,Eγ) matrix by

ρ̃(E −Eγ) = Aexp[α(E −Eγ)]ρ(E −Eγ), (15)

T̃ (Eγ) = Bexp(αEγ)T (Eγ). (16)

Therefore the transformation parameters α , A and B, which
correspond to the physical solution, must be found from ex-
ternal data.

D. Normalization

In order to determine the correction α to the slope of the
level density and the γ-ray transmission coefficient, and to de-
termine the absolute value A of the level density in Eq. (15),

the ρ function is adjusted to fit the number of known discrete
levels at low excitation energy and neutron (or proton) reso-
nance data at high excitation energy. This normalization is
shown for 164Dy in Fig. 8. The data point at high excitation
energy (open square in Fig. 8) is calculated in the following
way according to Ref. [25]. The starting point is Eqs. (4) and
(5) of Ref. [27]:

ρ(U,J) =
√

π
12

exp(2
√

aU)
a1/4U5/4

(2J +1)exp
[
−(J +1/2)2/2σ2

]
2
√

2πσ3
,

(17)
and

ρ(U) =
√

π
12

exp(2
√

aU)
a1/4U5/4

1√
2πσ

, (18)

where ρ(U,J) is the level density for a given spin J, and ρ(U)
is the level density for all spins. The intrinsic excitation en-
ergy U , the level-density parameter a, and the spin cutoff
parameter σ are normally taken from Ref. [28] in previous
works, or from Ref. [29] in recent works.

Now, let It be the spin of the target nucleus in a neutron res-
onance experiment. The average neutron resonance spacing
D�=0 for s-wave neutrons can be written as

1
D0

=
1
2

[ρ(Sn,J = It +1/2)+ρ(Sn,J = It −1/2)] , (19)

because all levels with spin J = It ±1/2 are accessible in neu-
tron resonance experiments, and because it is assumed that
both parities contribute equally to the level density at the neu-
tron separation energy Sn. Combining Eqs. (17)–(19) with
U = Sn, one finds the total level density at the neutron separa-
tion energy to be

ρ(Sn)=
2σ2

D0
· 1
(It +1)exp [−(It +1)2/2σ2]+ It exp

[
−I2

t /2σ2
] .

(20)
Note also that the resonance spacing between p-waves, D1,
could also be used for calculating ρ(Sn), see Ref. [30].

Since our experimental data only reach up to excitation en-
ergies around Sn −Emin

γ , an interpolation has been made be-
tween the Oslo data and ρ(Sn) using the back-shifted Fermi
gas model of Refs. [28, 29], as shown in Fig. 8. It should
be noted that in most cases the gap between the data and
ρ(Sn) is small, so that the normalization is not very sensi-
tive to the interpolation; a pure exponential function of the
type ρ(E) = C0 exp(C1E), where C0 and C1 are fitting param-
eters, gives an interpolation of equally good agreement (see
Ref. [9]).

The slope of the γ-ray transmission coefficient T (Eγ) has
already been determined through the normalization of the
level density, as explained above. The remaining constant B
in Eq. (16) gives the absolute normalization of T , and it is
determined using information from neutron resonance decay
on the average total radiative width 〈Γγ〉 at Sn according to
Ref. [31].
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The starting point is Eq. (3.1) of Ref. [32],

〈Γγ(E,J,π)〉 =
1

2πρ(E,J,π) ∑
XL

∑
Jf,πf

∫ E

Eγ =0
dEγTXL(Eγ)

×ρ(E −Eγ ,Jf,πf), (21)

where 〈Γγ(E,J,π)〉 is the average total radiative width of lev-
els with energy E, spin J and parity π . The summation and

integration are going over all final levels with spin Jf and par-
ity πf that are accessible through γ transitions with energy
Eγ , electromagnetic character X and multipolarity L. Assum-
ing that the main contribution to the experimental T is from
dipole radiation (L = 1), we get

BT (Eγ) = B∑
XL

TXL(Eγ) ≈ B
[
TE1(Eγ)+TM1(Eγ)

]
, (22)
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from which the total, experimental γ-ray strength function can

easily be calculated:

f (Eγ) =
1

2πE3
γ

BT (Eγ), (23)

from the relation between γ-ray strength function and γ-ray
transmission coefficient [33]:

TXL(Eγ) = 2πE(2L+1)
γ fXL(Eγ) . (24)

Further, we also assume that there are equally many acces-
sible levels with positive and negative parity for any excitation
energy and spin, so that the level density is given by

ρ(E −Eγ ,Jf,±πf) =
1
2

ρ(E −Eγ ,Jf). (25)

Now, by combining Eqs. (21), (22) and (25), the average to-
tal radiative width of neutron s-wave capture resonances with
spins It ± 1/2 expressed in terms of the experimental T is
obtained:

〈Γγ(Sn, It ±1/2,πt)〉 =
B

4πρ(Sn, It ±1/2,πt)

∫ Sn

Eγ =0
dEγT (Eγ)

×ρ(Sn −Eγ)
1

∑
J=−1

g(Sn −Eγ , It ±1/2+ J),

(26)

where It and πt are the spin and parity of the target nucleus
in the (n,γ) reaction, and ρ(Sn −Eγ) is the experimental level
density. Note that the factor 1/ρ(Sn, It ± 1/2,πt) equals the
neutron resonance spacing D0. The spin distribution of the
level density is assumed to be given by [27]:

g(E,J) � 2J +1
2σ2 exp

[
−(J +1/2)2/2σ2] . (27)



8

The spin distribution is normalized so that ∑J g(E,J)≈ 1. The
experimental value of 〈Γγ〉 at Sn is then the weighted sum of
the level widths of states with It ±1/2 according to Eq. (26).
From this expression the normalization constant B can be de-
termined as described in Ref. [31]. However, some considera-
tions must be done before normalizing according to Eq. (26).

Methodical difficulties in the primary γ-ray extraction pre-
vent determination of the function T (Eγ) for Eγ < Emin

γ as
discussed previously. In addition, the data at the highest γ-
energies suffer from poor statistics. Therefore, T is extrap-
olated with an exponential function, as demonstrated for 51V
in Fig. 9. The contribution of the extrapolation to the total
radiative width given by Eq. (26) does not normally exceed
15%, thus the errors due to a possibly poor extrapolation are
of minor importance [31].
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FIG. 9: Extrapolation of the γ-ray transmission coefficient of 51V.
The data points between the arrows in the low and high γ-energy
regions are utilized to fit the exponential functions to the data. The
data are taken from the experiment presented in Ref. [13].

III. UNCERTAINTIES AND POSSIBLE SYSTEMATIC
ERRORS

In the following, we will go through the Oslo method step
by step with a close look at the uncertainties and possible sys-
tematic errors connected to it.

A. Unfolding of γ-ray spectra

The unfolding method is described in great detail in
Ref. [18]. The method is based on a successive subtraction-
iteration technique in combination with a special treatment of
the Compton background. The stability of the method has

 energy E (MeV)�
0 2 4 6 8 10 12 14 16 18 20

 e
ff

ic
ie

n
cy

 (
%

)

0

20

40

60

80

100

120

140

160

180

200

220

FIG. 10: (Color online). Efficiencies relative to the 1.33-MeV effi-
ciency used in the unfolding method.

been extensively tested in previous works and has proven to
be very robust and reliable (see, e.g., Refs. [13, 14, 30]). To
some extent also the impact of slightly erroneous response
functions has been investigated in Ref. [23]. As this is the
part of the method that has the largest potential of influencing
the final results, it is further addressed here.

In the unfolding method, the γ-ray spectra are corrected for
the total absorption efficiency of the NaI crystals for a given γ
energy. The applied efficiencies (normalized to the efficiency
at 1.33 MeV) are shown in Fig. 10.

We have tested the effect of reducing these efficiencies
by up to ≈ 20% for γ energies above 1 MeV, using simu-
lated particle-γ coincidences generated with the DICEBOX
code [34]. In the DICEBOX algorithm, a complete decay
scheme of an artificial nucleus is generated. In this case we
have considered an artificial nucleus resembling 57Fe. Below
an excitation energy of about 2.2 MeV, all information from
the known decay scheme is used; above this energy the lev-
els and decay properties are generated from a chosen model
of the level density and γ-ray strength function. The code al-
lows to take into account Porter-Thomas fluctuations of the
individual transition intensities as well as assumed fluctua-
tions in the actual density of levels. Each particular set of
the level scheme and the decay intensities is called a nuclear
realization. For more details see Ref. [34]. A restriction on
the spin distribution of the initial excitation-energy levels of
1/2 ≤ J ≤ 13/2 was applied, and the chosen bin size was 120
keV. In these simulations, each level in a bin was populated
with the same probability independently of its spin and parity.
This means that Porter-Thomas fluctuations were not consid-
ered in the population of levels via the direct population, but
only in the γ decay.

The results on the extracted level density and γ-ray strength
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FIG. 11: (Color online). Test of sensitivity on the total γ efficiency on
the level density (top) and γ-ray strength function (bottom) extracted
from simulated data.

function are shown in Fig. 11. It is seen that the level den-
sity is not very sensitive to the total efficiency, but the slope
of the γ-ray strength function is increased when using a too
low efficiency for the high-energy γ rays, thus leading to a
too large correction in the unfolding procedure. However, it is
very gratifying that the overall shape is indeed preserved, and
the deviation in absolute value of the two γ-ray strength func-
tions does not exceed 20%, corresponding to the maximum
change in the absolute efficiency.

FIG. 12: Calculated γ-ray spectra from the 160Dy(3He,αγ) reaction
at 45 MeV [35]. The solid line shows the pre-equilibrium component
of the total γ-ray spectrum (γ before α), the dashed line represents
the equilibrium part (α before γ), and the filled squares give the total
spectrum.

B. The first-generation method

The first-generation method, which is applied to extract the
distribution of primary γ rays from each excitation-energy bin,
is a sequential subtraction technique where an iterative proce-
dure is applied to determine the weighting coefficients wi j,
which correspond to the primary γ-ray spectrum as described
in Sec. II B.

The main assumption of the first-generation method is that
the γ decay from any excitation-energy bin is independent on
how the nucleus was excited to this bin. In other words, the
decay routes are the same whether they were initiated directly
by the nuclear reaction or by γ decay from higher-lying states,
giving rise to the same shape of the γ spectra. This assumption
is automatically fulfilled when states have the same cross sec-
tion to be populated by the two processes, since γ branching
ratios are properties of the levels themselves.

In the region of high level density, the nucleus seems to
attain a compound-like system before emitting γ rays even
though direct reactions are utilized. This is due to two fac-
tors. First, a significant configuration mixing of the levels will
appear when the level spacing is comparable to the residual in-
teraction. Second, the reaction time, and thus the time it takes
to create a complete compound state, is ≈ 10−18s, while the
typical life time of states in the quasi-continuum is ≈ 10−15s.
Therefore, it is reasonable to assume that the nucleus has ther-
malized prior to γ decay. This is supported by recent calcula-
tions [35] based on the Iwamoto-Harada-Bispinghoff model,
showing that for the 160Dy(3He,αγ) reaction with a 45-MeV
3He beam, the pre-equilibrium (”direct”) component of the
γ-ray spectra is very small for γ energies below ≈ 10 MeV
(see Fig. 12). The same is true for the 46Ti(p, p′γ) reaction
with proton beam energy Ep = 15 MeV, see Fig. 13. Note that
the ”direct” component is calculated using the pre-equilibrium
(i.e. statistical) formalism.
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FIG. 13: Same as Fig. 12, but for the inelastic scattering 46Ti(p, p′γ)
at Ep = 15 MeV.

Experimentally, the independence of the reaction mecha-
nism has been tested by creating the same compound nu-
cleus with the two different reactions (3He,α) and (3He,3He’).
This has been done for, e.g., 96,97Mo [12], 161,162Dy [4], and
171,172Yb [3]. One observes an excellent agreement with the
level density and γ-ray strength function resulting from the
two reactions within the experimental error bars. However, at
very low excitation energies, there is a significant difference in
the obtained level density: the inelastic scattering gives con-
sistently a higher level density close to the ground state than
does the pick-up reaction. This could be a sign that the in-
elastic scattering populates states with wave functions having
a large overlap with the ground state and the low-lying ex-
cited states. Thus, the decay to the ground state and low-lying
states will be very fast, and cannot be characterized as com-
pound decay.

The region at low excitation energies can be tricky also
in other aspects. Vertical ridges and/or valleys can occur in
the primary γ-ray matrix as a consequence of differences in
feeding of these discrete states, giving significantly different
shapes of the γ spectra at low E compared to higher excitation
energies. The direct reaction cross section depends strongly
on the intrinsic wave functions of low lying states, as seen in
the particle spectra in Figs. 1–3. One can encounter the situa-
tion where some of these states are very weakly populated in
the reaction, but strongly fed through decay from above-lying
states. This means that some higher-order γ rays are not fully
subtracted in the first-generation method, giving an erroneous
primary γ-ray spectrum for low Eγ . On the other hand, the re-
action might populate very strongly some low-lying states that
are more moderately populated by decay from above. One can
then subtract too much of the γ rays from these states.

The latter case is demonstrated for 50V in the right panel of

Fig. 4. A state at excitation energy 910 keV with spin/parity
7+ decaying 100% to the ground state, is strongly populated
in the neutron pick-up reaction, which favors high-� transfer
(here � = 3, see Ref. [36]). However, it is not so strongly
populated by γ decay from above, and the result is that there
is a vertical valley with zero counts in the primary γ-ray matrix
at this γ energy.

Furthermore, it is important that the populated spin distribu-
tion is (at least approximately) independent on the excitation
energy. Else, the bins at high excitation energy will contain
decay from states with higher spin than the bins at lower ex-
citation energy, again disturbing the low-energy part of the
primary γ-ray spectra. For the 163Dy(3He, α)162Dy reaction,
the spin population has been extensively studied in Ref. [23]
and references therein. In this specific case, the spin distribu-
tion turned out to be approximately constant in the excitation-
energy region investigated. Also, for the lighter nuclei it is
observed that indeed, the spins are populated with the same
relative intensities within the error bars. This is seen for 50V
in the left panel of Fig. 4: the relative feeding to the low-lying
states (vertical lines) is approximately the same for the whole
quasi-continuum region. This is also the case for 46Ti [15].

Another potential problem could arise from the finite de-
tector resolution. To illustrate this, consider a first-generation
γ-ray of 8 MeV, decaying from Ei = 10 MeV to E f = 2 MeV.
This γ-ray would typically have a resolution of ≈ 250 keV,
while the particle resolution could be ≈ 150 keV (for 15-
MeV protons). This means that the weighting function (see
Sec. II B) for E f = 2 MeV is about 100 keV broader than
the excitation-energy resolution at this point. If the situa-
tion is that there is only one level within E f , one could then
”miss” some of the weighting function because it is broader
than the particle peak. It could also be that the opposite sit-
uation applies: low-energy γ rays with, say, 50-keV resolu-
tion might decay to excitation energies with resolution rang-
ing from 150−300 keV, leading to too narrow weighting func-
tions.

We have tested the effects of different resolutions by em-
ploying a very simple, artificial decay scheme, see Fig. 14.
A hypothetical nucleus with three excited states at E1 = 3.5
MeV, E2 = 6 MeV, and E3 = 8 MeV, was assumed to have the
following decay scheme:

• from E3: 30% γa, 20% γb, and 50% γc.

• from E2: 67% γd , and 33% γe.

• from E1: 100% γ f .

The γ-ray energies involved are: γa = 2.0 MeV, γb = 4.5 MeV,
γc = 8.0 MeV, γd = 2.5 MeV, γe = 6.0 MeV, and γ f = 3.5
MeV. The first-generation γ rays from E3 are then γa, γb, and
γc, from E2 γd and γe, and from E1 γ f .

Applying no smoothing for all excitation energies, i.e.,
the γ-ray peaks are δ functions, the exact result is obtained
from the first-generation method. Then, we assume 200-
keV resolution for all excitation energies, but with an energy-
dependent resolution of the γ-ray spectrum with 50-keV reso-
lution for 1-MeV γ rays and 300-keV resolution for 9-MeV γ
rays, similar to the experimental conditions. This constructed
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FIG. 14: (Color online). Hypothetical decay scheme of an artificial
nucleus (see text).

matrix is shown in Fig. 15. When applying the first-generation
method on this smoothed matrix, we get the result shown in
the lower part of Fig. 15. It is seen that it is not exact any more,
but the differences are small. For example, for E3 = 8 MeV,
γd is not a primary transition and should have been completely
gone in the first-generation spectrum, but still about 5% of the
counts in the original peak is present. For the γe and γ f peaks,
the situation is the same; also so for γ f at E2 = 6 MeV. This
means that one might expect leftovers of higher-generation γ
rays of the order of 5% in the primary spectra. Compared
to values of experimental errors, which are typically within
5−30%, this is a relatively small effect (the error propagation
is discussed in detail in Ref. [25]).

To check more thoroughly what effect possible errors in
the first-generation method might have on the final results,
namely the extracted level density and strength function, we
have performed simulations with the generalized version of
DICEBOX [34], as already discussed biefly in Sec. III A.
Again, we have considered an artificial nucleus resembling
57Fe, with a spin distribution of the initial excitation-energy
levels of 1/2 ≤ J ≤ 13/2, and bin size of 120 keV. Note also
that equally many negative- and positive-parity states are as-
sumed above the region of known, discrete levels.

First, the simulated spectra were folded with the CACTUS
response functions, and also a Gaussian smoothing was ap-
plied giving a full width at half maximum (FWHM) of 250
keV for all excitation energies. These spectra were thus made
to be as similar as possible to experimental spectra. Then,
we applied the unfolding technique and the first-generation
method to obtain the first-generation spectra. We then com-
pared the extracted first-generation matrix with the true first-
generation matrix from the simulations, after smoothing the
true first-generation spectra with a resolution similar to the
experimental one. Examples of two such matrices for one
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FIG. 15: (Color online). Matrix of energy levels and γ transitions in
an artificial nucleus. Top: original matrix; bottom: result after the
first-generation method is applied.

nuclear realization are shown in Fig. 16. The overall good
similarity between the two matrices is gratifying. However,
in the low-Eγ region, there are significant differences between
the results extracted from the experiment-like matrix and the
true, smoothed matrix. In particular, one can see that there
are some vertical lines in the experiment-like first-generation
matrix, e.g., for Eγ ≈1020 keV, that are not present in the
true matrix. This particular vertical ridge originates from the
7/2− state at 1007 keV, which for this nuclear realization is
strongly populated in the decay cascades at high excitation en-
ergy. However, at low excitation energies, which corresponds
to the population from the direct reaction, this state is only
moderately populated. Thus, its γ decay is not correctly sub-
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FIG. 16: (Color online). Simulated first-generation matrix for 57Fe.
Top: spectra from folded data set. Bottom: true spectra with smooth-
ing similar to the experimental resolution.

tracted in the first-generation procedure. It is therefore impor-
tant to exclude such leftovers from higher-generation γ rays in
the further analysis, as mentioned in Sec. II C.

We also tested the case with a Gaussian smoothing on the
particle resolution, and the ideal response on the γ-detection
side. The extracted level densities and strength functions for
all three cases are displayed in Fig. 17. In general, the results
agree very well. We note that there are larger fluctuations in
the strength function extracted from the experiment-like ma-
trix as well as the case where only the particle resolution is
applied, especially in the region below Eγ ≈ 2.5 MeV. These
fluctuations are related to uncertainties in the first-generation
subtraction procedure and could be due to small variations
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FIG. 17: (Color online). Results from simulated spectra on 57Fe.
Top: level density. Bottom: γ-ray strength function.

in the shape of the γ spectra. However, by compressing
the experiment-like γ spectra by a factor of two (bin size of
240 keV), we obtain practically the same shape of the γ-ray
strength function as from the true first-generation spectra (see
Fig. 17).

Finally, we have tested the two normalization options (sin-
gles or multiplicity) of the first-generation method on experi-
mental spectra to investigate the effect on the extracted level
density and γ-ray strength function. The result for 51V is
shown in Fig. 18. We observe that the two options give very
similar results, only a very few data points are outside the ex-
perimental error bars. It is clear that the two methods do not
give any difference in the overall shape of neither the level
density nor the strength function.
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first-generation method for 51V. Top: level density. Bottom: γ-ray
strength function. The data are taken from the experiment presented
in Ref. [13].

C. The Brink hypothesis

The γ-ray transmission coefficient T (Eγ) in Eq. (10) is as-
sumed to be independent of excitation energy (and thus nu-
clear temperature) according to the generalized Brink hypoth-
esis [24], as discussed in Sec. II C. This hypothesis is vio-
lated when high temperatures and/or spins are involved in the
nuclear reactions, as shown for giant dipole excitations (see
Ref. [37] and references therein). However, since both the
temperature reached and the spins populated are rather low for
the Oslo experiments, these dependencies are usually assumed
to be of minor importance in the relatively low excitation-
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FIG. 19: Results from simulated spectra of the artificial nucleus
163Dy. The extracted γ-ray strength functions are shown as black
points and open circles for two different nuclear realizations, while
the input γ-ray strength model is shown as a solid line.

energy region considered here.
The effect of the Brink hypothesis has been tested by an-

alyzing simulated spectra on an artificial nucleus resembling
163Dy. The simulations were again performed with the DICE-
BOX code [34] for a specific spin range on the initial excited
levels, 1/2 ≤ J ≤ 13/2.

As a first step, a temperature-independent model for the γ-
ray strength function was used as input for the simulations.
The extracted and input γ-ray strength function are shown in
Fig. 19. As expected, the Oslo method works very well in this
case.

In the next test, a temperature-dependent input γ-ray
strength function was used, with temperature T ∝

√
Ef. In

principle, it is not possible to disentangle the input level den-
sity and γ-ray strength function anymore, since now we have

P(E,Eγ) ∝ ρ(Ef)T (Ef,Eγ). (28)

This we keep in mind when we use the procedure of Ref. [25]
in order to extract the level density and γ-ray strength func-
tion.

The extracted γ-ray strength functions for two different nu-
clear realizations are shown in Fig. 20, within the excitation-
energy range 2.1 < E < 6.2 MeV. It is seen that the extracted
γ-ray strength function lies in between the two extremes of
the temperature-dependent input model, and thus an average
strength function for the excitation energy region under study
is found. The shape of the extracted γ-ray strength function
is therefore quite reasonable, although it is clear that the low-
energy part with 1 ≤ Eγ ≤ 2.5 MeV must necessarily be quite
different from the two extremes of the input.
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FIG. 20: Results from simulated spectra of 163Dy. The extracted γ-
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two different nuclear realizations. The input γ-ray strength function
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√
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line) are also shown.

This is further illustrated in Fig. 21, where we have ex-
tracted the γ-ray strength function for two separate excitation-
energy regions: 2.1 < E < 4.1 MeV and 4.1 < E < 6.2 MeV.
It is easily seen that the γ-ray strength function for γ energies
between ≈ 1−2 MeV is different in the two cases; the higher
excitation energies lead to a higher temperature of the final
states and thus a higher strength function.

However, one should keep in mind that the experimental γ-
ray strength functions have been tested against the assumption
of temperature dependence for many nuclei, e.g., 45Sc [14],
56,57Fe [10], 96,98Mo [12], and 117Sn [8]. This is also shown
for 164Dy [5] in Fig. 22, where the γ-ray strength function has
been extracted for three sets of initial excitation energies. As
can be seen from the figure, the similarity of the three γ-ray
strength functions is striking. There is, therefore, no experi-
mental evidence in this excitation-energy region for a strong
temperature dependence in the strength function. Hence, the
Brink hypothesis seems to be valid here.

D. The parity distribution

As mentioned previously, for both the normalization of the
level density and the γ-ray transmission coefficient, the as-
sumption of equally many levels with positive and negative
parity is used. We will in the following investigate this as-
sumption in detail.

Using ρ+ and ρ− to denote the level density with positive
and negative parity levels, the parity asymmetry α is defined
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FIG. 21: Results from simulated spectra of the artificial nucleus
163Dy. The extracted γ-ray strength functions for two excitation-
energy regions are displayed as black and open squares. The in-
put γ-ray strength function models for Tf = 0 (solid line) and Tf ∝√
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as [38]

α =
ρ+ −ρ−
ρ+ +ρ−

, (29)

which gives −1 and 1 for only negative and positive parities,
respectively, and 0 when both parities are equally represented.

Another expression widely used in literature is the ratio
ρ−/ρ+, which relates to α by

ρ−
ρ+

=
1−α
1+α

. (30)

We have considered theoretical parity distributions from
combinatorial plus Hartree-Fock-Bogoliubov calculations of
spin- and parity-dependent level densities [39]. Applying
the definition in Eq. (29), we find the calculated parity dis-
tributions for several Fe, Mo, and Dy isotopes as shown in
Figs. 23–25. As one might expect from the fact that more or-
bits are accessible at increasing excitation energy, the parity
distributions are seen to approach zero as the excitation en-
ergy increases. However, it is clear that for the lighter nuclei,
in particular the Fe isotopes, the assumption of zero parity
asymmetry is not fulfilled in the calculations for excitation
energies below ≈ 10 MeV.

We have also looked at other theoretical work such as
shell-model Monte Carlo calculations [40] and macroscopic-
microscopic calculations [41]. In Fig. 2 of Ref. [41], the ratio
ρ−/ρ+ is shown for 56Fe, indicating a value of ρ−/ρ+ � 0.1
at 10 MeV excitation energy. From Fig. 4 in Ref. [40], the



15

 (MeV)
�

-ray energy E�
0 1 2 3 4 5 6 7 8

)
-3

-r
ay

 s
tr

en
g

th
 f

u
n

ct
io

n
 (

M
eV

�

-910

-810

-710

-610

Dy164 E = 4.0-5.2 MeV 

 E = 5.2-6.4 MeV 

 E = 6.4-7.7 MeV 

FIG. 22: Experimental γ-ray strength function of 164Dy for three sets
of initial excitation energies. The data are taken from the experiment
presented in Ref. [5].

ratio ρ−/ρ+ � 0.2 for E = 10 MeV. In contrast to this, the
combinatorial calculations of Ref. [39] give ρ−/ρ+ � 0.7 at
E = 10 MeV, which is also in accordance with other mi-
croscopic calculations based on the Nilsson model and BCS
quasi-particles [11], where ρ−/ρ+ � 0.5. These results in-
dicate considerably more negative-parity states in 56Fe than
found in Refs. [40, 41]. In this specific case, the amount of
positive-parity states is very sensitive to the position of the
g9/2 orbital relative to the Fermi level.

To our understanding, there are currently no experimen-
tal data on the parity distribution in 56Fe. However, recent
measurements on level densities of Jπ = 2+ and 2− states
in 58Ni and 90Zr [42] show no indication of a significantly
larger amount of states with one of the parities in none of the
nuclei under study at E ≈ 10 MeV. Also, from the study of
proton resonances in 45Sc [38], equally many 1/2+ and 1/2−

states were found, again at E ≈ 10 MeV. Thus it seems reason-
able to assume that the parity asymmetry is at least very small
for these excitation energies, in support of the assumption of
equal parity as described in Sec. II D.

We would nevertheless like to investigate the impact of the
assumption of parity symmetry on the calculations of ρ(Sn).
Let us assume that the spin- and parity-projected level density
ρ(E,J,π) can be described by [41]

ρ(E,J,π) = ρ(E) ·g(E,J) ·P(E,π), (31)

where ρ(E) is the total level density at excitation energy E,
g(E,J) is the spin distribution given by Eq. (27), and P(E,π)
is the parity projection factor. According to Eq. (19), we get

1
D0

= ρ(Sn) ·g(Sn,J = It ±1/2) ·P(Sn,πt) (32)
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FIG. 23: (Color online). Calculated parity distributions as a function
of excitation energy calculated for 56−58Fe, from Ref. [39].

for the neutron resonance spacing at Sn reaching states with
parity πt · (−1)� = πt for s-wave neutrons having � = 0. Now,
we define the parity projection factor for positive and negative
parities as

P+ ≡ P(E,π = π+) =
ρ+

ρ
=

1+α
2

, (33)

and

P− ≡ P(E,π = π−) =
ρ−
ρ

=
1−α

2
, (34)

using

P+ +P− = 1. (35)

Further,

1
D0

= ρ(Sn) [g(Sn,J = It +1/2)+g(Sn,J = It −1/2)]P(Sn,π)

(36)

= ρ(Sn) [g(Sn,J = It +1/2)+g(Sn,J = It −1/2)]
1±α

2
,

(37)
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FIG. 24: (Color online). Same as Fig. 23 for 96−98Mo.

which gives

ρ(Sn) =
σ2

D0

(1±α)/2
(It +1)exp [−(It +1)2/2σ2]+ It exp

[
−I2

t /2σ2
] ,

(38)
using Eq. (27). If the target nucleus in the neutron-capture
experiment has positive parity in the ground state, the factor
(1+α)/2 is used, and for negative ground-state parity we use
(1−α)/2.

For several key cases, we have applied Eq. (38) for calcu-
lating ρ(Sn) and compared to the result using Eq. (20). For
example, for 58Fe with neutron resonance spacing D0 = 6.5
keV at Sn = 10.044 MeV [33], and using the spin cutoff pa-
rameter σ(Sn) = 3.93 from the prescription of Ref. [29], we
obtain ρ(Sn) = 2518 MeV−1 if the assumption of equal parity
is used, and ρ(Sn) = 2939 MeV−1 if we correct for the parity
asymmetry α = 0.14 predicted by the combinatorial model of
[39]. Thus, including the parity asymmetry gives about 17%
higher level density at Sn. For 96Mo, with D0 = 105 eV [33],
σ(Sn) = 5.15, and α =−0.017 [39], we get ρ(Sn) = 1.01 ·105

MeV−1 when no parity asymmetry is taken into account, and
ρ(Sn) = 1.03 ·105 MeV−1 when the parity asymmetry is con-
sidered; only a change of ≈ 2%.
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FIG. 25: (Color online). Same as Fig. 23 for 162−164Dy.

To check the effect of the parity asymmetry on the nor-
malization, we have renormalized the data on 96Mo using
the above-mentioned values for ρ(Sn) with and without par-
ity correction. Since the estimated α was so small for this
case, we have also assumed a much larger parity asymmetry
of α = −0.5 leading to ρ(Sn) = 2.02 ·105 MeV−1, a factor of
2 larger level density than the one assuming equal parity. As-
suming that α = 0.5 gives ρ(Sn) = 6.74 ·104 MeV−1, roughly
a factor of 2/3 reduction compared to the parity-symmetry
case.

The resulting level density and strength function are shown
in Figs. 26. Here, it is easily seen that a small parity asym-
metry does not give any significant changes of the normal-
ization in neither the level density nor the strength function.
However, for α = −0.5 corresponding to a factor of 2 larger
ρ(Sn) gives an overall larger level density for excitation en-
ergies larger than ≈ 3 MeV, and the steeper slope is reflected
also in the strength function. In addition, one sees a suppres-
sion in the γ-ray strength function for Eγ � 6 MeV, a direct
consequence of the changes in the level density. The oppo-
site is true for α = 0.5; here, ρ(Sn) and thus the slope of the
level density is reduced. Consequently, the slope is reduced
also in the γ-ray strength function, but the absolute value for
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FIG. 26: (Color online). Effect of parity asymmetry on the ex-
perimental level density (upper panel) and strength function (lower
panel) of 96Mo. The data are taken from the experiment presented in
Ref. [12].

Eγ � 6 MeV is in this case increased with respect to the parity-
symmetry case. Note that such large values of α represent ex-
treme cases; both from experimental data [38, 42] and several
theoretical estimates (e.g, [11, 39]) the asymmetry around Sn
should be smaller than typically ±0.2.

The assumption of parity symmetry influences also the nor-
malization of the γ-ray transmission coefficient. To take into
account the parity distribution, one can modify Eq. (25) ac-

cording to Eq. (31) so that

ρ(E −Eγ ,Jf,πf) = ρ(E −Eγ) ·P(E −Eγ ,πf) ·g(E −Eγ ,Jf).
(39)

We will restrict ourselves to consider � = 1 radiation only (E1
and M1), since in general, this multipolarity is expected to
give by far the largest contribution to the strength function in
the quasicontinuum region (see, e.g., studies by Kopecky and
Uhl [32]).

For E1 radiation, the parity of the final state is opposite to
the initial state. In s-wave neutron capture experiments, the
parity of the target nucleus’ ground state is equal to the parity
of the neutron resonances of the created compound nucleus.
Therefore, the accessible parity of the final states must be the
opposite of the initial state. For M1 radiation, the accessible
final states must have the same parity as the initial state.

Based on Eq. (21) and taking the parity distribution into
account, one finds

〈Γγ(Sn, It±1/2,πt)〉 =
B

2πρ(Sn, It ±1/2,πt)

×
∫ Sn

Eγ =0
dEγ

[
TE1(Eγ)P−/+ +TM1(Eγ)P+/−

]

×ρ(Sn −Eγ)
1

∑
J=−1

g(Sn −Eγ , It ±1/2+ J). (40)

for target nuclei with positive/negative ground-state parity. It
is easily seen that if P+ = P− = 1/2, Eq. (26) is restored.

The Oslo method does not enable the separation of T (Eγ)
into its E1 and M1 components. We have therefore applied
models for the level density and the E1 and M1 strength func-
tions in order to investigate the influence of including par-
ity on the integral in Eq. (40). For the level density, we
have used the results of [39]. For the E1 strength function,
we have used the the Kadmenskiı̆, Markushev and Furman
(KMF) model [43] with a constant temperature Tf = 0.3 MeV,
while for the M1 component (the spin-flip resonance [22]) we
have applied a Lorentzian shape (see Ref. [33]). We use again
96Mo as a test case, with experimental GDR parameters taken
from Ref. [33] and M1 Lorentzian parameters from systemat-
ics [33]. The target nucleus 95Mo in the (n,γ)96Mo reaction
has spin/parity 5/2+.

First, we take the parity distribution from Ref. [39] as
shown in Fig. 24 and apply in the integral of Eq. (40). The
resulting value is only about 1% smaller than the value ob-
tained assuming P+ = P− = 1/2 for all excitation energies,
implying that the effect of parity is negligible in this case. As
a further test we used the parity distribution of 56Fe shown
in Fig. 23 on 96Mo; then, we found a ≈ 47% reduction using
Eq. (40) compared to the parity-symmetry case. For the very
extreme cases assuming that α = 1 for all E (allowing only
for positive-parity states and M1 transitions), we get about a
factor of 3 reduction, and using α = −1 for all E (allowing
only for negative-parity states and E1 transitions), we obtain
about 67% increase of the normalization integral in Eq. (40)
relative to the case where no parity distribution is considered.

To summarize, for nuclei in the Mo mass region and above,
we find only small corrections of the order of a few percent
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FIG. 27: (Color online). Extracted strength functions from simulated
data for an artificial 57 Fe nucleus, with and without parity asymme-
try in the level density.

to the estimation of ρ(Sn) and also for the absolute normal-
ization of the strength function when using realistic parity
distributions (compared to the extreme cases). However, for
light nuclei such as Fe, effects of the parity distribution could
be significant on both the level-density and strength-function
normalization, of the order of 30–50%.

The parity distribution could also potentially influence the
γ-ray strength function in other ways than just the normal-
ization. In the quasi-continuum region, one expects that E1
transitions largely dominate as long as the parity asymmetry
is close to zero. However, if the parity asymmetry is large,
M1 transitions will be favored over those of E1 type. We
have investigated this using DICEBOX [34] to generate simu-
lated data on an artificial nucleus resembling 57Fe, as already
described in Sec. III B. We have applied a symmetric parity
distribution in the first case, and an asymmetric parity distri-
bution in the second case. Note that the parity distribution is
implemented directly in the level density only; the input γ-ray
strength function is kept fixed.

The resulting γ-ray strength functions are shown in Fig. 27.
Visually, it is hard to see any difference between the γ-ray
strength functions with and without parity asymmetry. By tak-
ing the average γ-ray strength function for γ energies between
1.4−3 MeV, we find an average increase of about 20% for the
case with parity asymmetry relative to the equal parity case,
using the true first-generation spectra. The statistical fluctu-
ations here are typically less than 10% for Eγ = 2− 3 MeV,
and up to 40% for γ rays below 2 MeV. If we use the extracted
first-generation spectra from the folded data, the difference
between the two cases is approximately 6–7%, less than the
statistical fluctuations which are larger than when using the
true first-generation spectra. For higher Eγ , there is no effect

of parity within the fluctuations. We therefore conclude that it
could be an effect of ≈ 20% on the low-energy part of the γ-
ray strength function. Hence, we find it reasonable to believe
that even a considerable parity asymmetry on the level density
as in the 57Fe case will not drastically change the shape of the
γ-ray strength function.

In Fig. 27, we note that there is an enhanced strength for
γ-ray energies below ≈ 3.5 MeV compared to the input γ-ray
strength function, regardless of the parity distribution. This
is in fact due to the spin range of the initial levels, which is
further investigated in the following section.

E. The spin distribution

The uncertainty in the spin distribution may lead to er-
rors in the Oslo method in three ways: (i) the extraction of
first-generation γ rays and subsequent effects on the extracted
level density and γ-ray strength function, (ii) the estimation of
ρ(Sn), and (iii) the spin range accessed experimentally (typi-
cally 0− 8h̄ depending on the reaction and target spin) com-
pared to the true, total spin distribution. These issues will be
discussed in the following.

We have once more relied on simulated data applying the
DICEBOX code [34] in order to test the sensitivity on the
final results with respect to the spin range of the initial lev-
els. We simulated again a light nucleus that resembles 57Fe,
as we expect that light nuclei would be most sensitive to the
initial spin population. This is because the higher spin levels
are missing at low excitations. Again, the critical energy was
set to 2.2 MeV, as there are no available data in the literature
about levels with higher spins above this energy. As before,
all levels had the same probability of population. The input
γ-ray strength function model was independent of excitation
energy.

Three spin ranges were used: 1/2 ≤ J ≤ 7/2, 1/2 ≤ J ≤
13/2, and 7/2 ≤ J ≤ 13/2. This means that the highest possi-
ble spin reached at the final excitation energy was 9/2 or 15/2
depending on the maximum allowed initial spin. The weight-
ing of the allowed spins followed the spin distribution of the
input level density, which in this case was from the micro-
scopic calculations of Ref. [39]. For all initial spin ranges we
applied the full Oslo method, and in parallel we extracted the
level density and γ-ray strength function from the true first-
generation spectra. The resulting level densities and γ-ray
strength functions are displayed in Figs. 28 and 29, respec-
tively.

As can be seen from Fig. 29, there is an enhanced strength
at low γ energies for the spin windows including the highest
spins. Also, by looking at the average multiplicity 〈M〉 at 7.0
MeV of excitation energy, we get 1.8 for 1/2 ≤ J ≤ 7/2, 2.2
for 1/2 ≤ J ≤ 13/2, and 2.5 for 7/2 ≤ J ≤ 13/2. At Eγ =
2.1 MeV, we find that the γ-ray strength function is increased
with a factor of ≈ 1.7 for the spin range 1/2 ≤ J ≤ 13/2,
and a factor of ≈ 2.6 for the spin range 7/2 ≤ J ≤ 13/2 with
respect to the input γ-ray strength function. This is not an
artifact from the unfolding or first-generation method, as it is
also seen in the extracted γ-ray strength functions from the
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FIG. 28: (Color online). Extracted level densities from simulated
data for initial spin range 1/2 ≤ J ≤ 7/2 (top panel), 1/2 ≤ J ≤ 13/2
(middle panel), and 7/2 ≤ J ≤ 13/2 (bottom panel) on the initial
levels.

true first-generation spectra.
The explanation for the observed behavior is probably con-

nected to three issues: (i) the dominance of dipole radiation,
which carries L = 1; (ii) the applied spin restriction on the
initial levels; (iii) the low level density in this mass region at
low excitation energies, especially for high spins. Let us take,
as an example, the population of a 13/2 level at high excita-
tion energy. If it is to decay to a low-lying level, involving
a high-energy γ transition, a level with appropriate spin must
be present at this excitation energy. This is not necessarily the
case as there are only about 2−10 levels per 120 keV for exci-
tation energies below 4.7 MeV. Among these few levels, there
are probably no high-spin levels at all. This leads to a higher
average multiplicity and an enhanced probability for decaying
with low-energy γ rays.

From Fig. 29, it is clear that the enhancement in the ex-
tracted γ-ray strength function is not present in the input γ-ray
strength function, but is an effect of the three factors men-
tioned above. This means that the simple factorization in
Eq. (10) of the first-generation spectra is not able to reproduce
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FIG. 29: (Color online). Extracted strength functions for spin range
1/2 ≤ J ≤ 7/2 (top), 1/2 ≤ J ≤ 13/2 (middle), and 7/2 ≤ J ≤ 13/2
(bottom) on the initial levels.

the input γ-ray strength function. The extracted γ-ray strength
function, which could be considered as an ”effective” γ-ray
strength function, is however fully capable of reproducing the
true primary γ-ray spectra, and it is seen from Fig. 28 that the
extracted level density is very reasonable indeed.

However, it is not obvious whether the spin range of the
inital states is the full explanation of the observed low-energy
enhancement in light and medium-mass nuclei. Further inves-
tigations are therefore needed to clarify this issue. It should
also be noted that similar tests have been performed for an ar-
tificial nucleus resembling 163Dy. No such enhancement was
seen in this case, in agreement with experimental findings in
this mass region. This is not surprising since in these nuclei,
the level density is much higher and relatively high spins are
available already at low excitation energies.

The quantity ρ(Sn) is calculated assuming a bell-like spin
distribution according to Ref. [27] given by Eq. (27) and us-
ing a model for the spin cutoff parameter σ usually taken from
Ref. [27] or from Ref. [29]. Both these assumptions could in
principle be a source of uncertainty, as it is hard or even im-
possible to measure experimentally the total spin distribution
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at high excitation energy. Thus, the theoretical spin distribu-
tions are seldom constrained to data for excitation energies
higher than typically 2−3 MeV.

In Fig. 30 various spin distributions for 44Sc are shown, cal-
culated at an excitation energy of 8.0 MeV. In the two up-
per panels, the spin distribution given in Eq. (27) has been
used, but with the expression for the spin cutoff parameter
of Refs. [27, 28] in panel a) and the formalism of Ref. [29]
in panel b). In panel c) the spin distribution of the spin-
dependent level densities of Ref. [44] are shown. Here, the
authors also have assumed a bell-shaped spin distribution ac-
cording to Eqs. (7) and (8) in Ref. [44]. It is clear from the
figure that the spin distributions in panel b) and c) are broader
with centroids shifted to higher spins compared to the one in
panel a).

In panel d), the spin distribution of the calculated spin- and
parity-dependent level density of Ref. [45] is shown. There
are no underlying assumptions for the spin distribution in
these calculations. It is seen from this distribution that there is
a significant difference in the relative numbers of states with
spin 0 and 1. The normalization procedure for the level den-
sity described above is especially sensitive to such variations
at low spin if the neutron resonance spacing D0 is measured
from a neutron capture reaction where the target nucleus is
even-even, that is, with zero ground-state spin. Then the states
reached in neutron capture can only have spin 1/2+, and the
number of all other states must be estimated using a certain
spin cutoff parameter, introducing a larger uncertainty in the
calculated ρ(Sn). Therefore it is preferred to calculate ρ(Sn)
from both D0 and D1 resonance spacings if possible, since in
the latter, also states with 3/2− are reached for target nuclei
with Iπ

t = 0+, and will therefore decrease this uncertainty.
We have investigated the relative difference in the value

of ρ(Sn) for several nuclei using the spin-cutoff parameter
of [27] with global parameterization of [28] (referred to as
Gilbert & Cameron), and the prescription of [29] (hereafter
called von Egidy & Bucurescu), see Tab. I. For the cases inves-
tigated here, the general trend is that the Gilbert & Cameron
approach leads to a lower value for ρ(Sn) than the von Egidy
& Bucurescu parameterization. However, this depends on the
spins reached in the (n,γ) reaction. For example, for 51V, we
note that the obtained ρ(Sn) using the spin cutoff of von Egidy
& Bucurescu is lower than that of Gilbert & Cameron. This is
easily understood from the fact that in this case, relatively high
spins are populated in the (n,γ) reaction. We see from Fig. 31
that the Gilbert & Cameron parameterization gives lower rel-
ative values for states with spin 11/2 and 13/2 compared to the
von Egidy & Bucurescu distribution. Thus, one divides by a
smaller number in Eq. (20) and ρ(Sn) gets larger.

One can conclude that the two approaches studied here give
a ≈ 10−50% change in the resulting ρ(Sn), while other calcu-
lations [39] indicate even larger variations. Using this HFB-
plus-combinatorial approach gives typically a factor of two
change compared to ρGC(Sn) for most cases and up to a factor
of 3.7 for the extreme case of 172Dy (see Tab. II in Ref. [39]).

Recently, a new expression for the spin-cutoff formula was
proposed by von Egidy and Bucurescu [46]. In this work,
the spin-cutoff parameter depends directly on the excitation
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FIG. 30: Relative spin distributions calculated for E = 8.0 MeV of
44Sc (see text).

energy and the deuteron pairing (see Eq. (16) in Ref. [46]).
Using this expression for the light nuclei listed in Tab. I, we
get rather similar values for σ as for the Gilbert & Cameron
case. For the heavier 117Sn and 164Dy, the values are lower
than using the Gilbert & Cameron approach, and consequently
a lower value of ρ(Sn) is obtained.

The effect of all these deviations is of course an uncertain
determination of ρ(Sn) and thus of the slope of the level den-
sity and the γ-ray strength function, in a similar fashion as for
the parity dependence (see Sec. III D and Fig. 26).

There is also a question of how the spin range accessed ex-
perimentally relative to the true, total spin range might influ-
ence structures in the level density. In the analysis, we assume
that the excluded spins contribute on average with a scaling
factor of the level density, which is corrected for by normal-
izing to ρ(Sn), i.e. the total level density for all spins at this
energy. However, this relies on the hypothesis that structures
in the level density due to, e.g., nucleon pair breaking are not
severely affected by the spin window.

To test this, we have performed simplistic calculations with
the code COMBI [47], which is based on a microscopic, com-
binatorial model using Nilsson single-particle energies and the
concept of quasiparticles from the nuclear Bardeen-Cooper-
Schrieffer (BCS) theory. The chosen spin windows were
0 ≤ J ≤ 6 and 0 ≤ J ≤ 30 (in units of h̄). Details of the model
can be found in Ref. [47].
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TABLE I: Variation of the calculated ρ(Sn) using different spin cutoff parameters. The target spin in the (n,γ) reaction is denoted by Iπ
t , and

E1 is the total backshift for the back-shifted Fermi-gas model while a is the level-density parameter. All level spacings (D0) are taken from
[33]. The parameter η is the ratio ρEB(Sn)/ρGC(Sn).

Gilbert & Cameron von Egidy & Bucurescu
Nucleus Iπ

t Sn D0 a E1 σ ρGC(Sn) a E1 σ ρEB(Sn) η
(MeV) (keV) (MeV−1) (MeV) (MeV−1) (MeV−1) (MeV) (MeV−1)

51V 6+ 11.05 2.3(6) 6.42 −0.511 3.24 5.18×103 6.17 −0.153 3.83 4.15×103 0.80
57Fe 0+ 7.646 25.4(22) 7.08 −0.910 3.20 8.46×102 6.58 −0.523 3.83 1.20×103 1.41
96Mo 5/2+ 9.154 0.105(10) 11.14 1.016 4.21 7.38×104 11.39 0.779 5.15 1.01×105 1.37
117Sn 0+ 6.944 0.380(130) 13.23 0.197 4.48 1.08×105 13.62 −0.210 5.58 1.67×105 1.54
164Dy 5/2+ 7.658 0.0068(6) 17.75 0.416 5.49 1.74×106 18.12 0.310 6.91 2.59×106 1.49
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FIG. 31: Relative spin distributions calculated at Sn = 11.051 MeV
of 51V (see text).

The resulting calculated level densities for 56Fe and 164Dy
are displayed in Figs. 32 and 33, respectively. For 56Fe, is
it clear that most of the states are found within the spin range
of 0− 6h̄. In fact, the relative difference between the large
and the small spin window is at most ≈ 30%, and it is clear
that there are no significant structural differences for the two
cases. One would therefore not expect any severe problems
with normalizing the level density of such light nuclei to the
total level density ρ(Sn). However, for the 164Dy case, the
deviation of the level densities calculated within the two spin
ranges can be considerable and is increasing with excitation
energy, up to a factor of ≈ 2.5 for E ≈ 7.5 MeV. It is nev-
ertheless very gratifying that, indeed, the gross structures of
the level densities are very much alike, so that extracted infor-
mation from the experimental level density, such as the onset
of the pair-breaking process, is probably reliable (the larger
spin window leads to a smoothing of the steps). However, ex-
perimental work to investigate the spin distribution further is
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FIG. 32: Calculated level density of 56Fe for two spin ranges:
0 ≤ J ≤ 6 (dashed line) and 0 ≤ J ≤ 30 (solid line) compared to
experimental data (open circles, from Ref. [11]) normalized to the
total level density at Sn.

highly desirable.

IV. SUMMARY AND CONCLUSIONS

In this work we have addressed uncertainties and possi-
ble systematic errors that one can encounter using the Oslo
method. The main steps of the method have been outlined,
and the assumptions behind each step are investigated in de-
tail. Our findings indicate that although the Oslo method is in
general very robust, the various assumptions it relies on must
be carefully considered when it is applied in different mass
regions. The results can be summarized as follows.

The unfolding procedure. We have investigated the effect of
changing the total absorption efficiencies of the NaI(Tl) crys-
tals up to ≈ 20%. We found that the extracted level density is
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FIG. 33: Same as Fig. 32 for 164Dy, with experimental data from
Ref. [5].

hardly affected at all, while the γ-ray strength function gets a
somewhat different slope. The quantitative effect on the γ-ray
strength function corresponds directly to the imposed changes
in the efficiencies.

The first-generation method. In general, the assumption of
thermalization can be questioned at excitation energies above
≈ 10 MeV. Also, variation in the populated spin range as a
function of excitation energy may lead to an erroneous sub-
traction, especially of yrast states and other strong transitions
at low γ-ray energies. This is particularly pronounced at low
excitation and low γ-ray energies, where the direct reaction
may favor or suppress the population of some levels compared
to feeding from γ decay. In addition, the finite, and for some
energies, the mismatch of the detector resolution of the parti-
cle telescopes and CACTUS might in principle lead to prob-
lems with determining correct weighting functions. However,
tests on simulated spectra show that this effect is probably of
minor importance. The two different normalization options in
the method turn out to give very similar results.

The Brink hypothesis. Since the extraction of level density
and γ-ray strength relies on the Brink hypothesis, one would
expect problems if there was an effective temperature depen-
dence in the γ-ray strength function. From the results of sim-
ulated data, it is clear that especially the region of low Eγ is
affected when the γ-ray strength function is temperature de-
pendent, and the extracted strength is found to found to lie in
between the two temperature extremes considered. However,
we note that there is, so far, no experimental evidence for any
strong temperature dependence of the γ-ray strength function
in the excitation-energy region in question (below ≈ 10 MeV).

The parity distribution. The assumption of equally many
positive- and negative-parity states may break down, espe-
cially for light nuclei, and would then affect the normaliza-

tion of both the level density and the γ-ray strength function.
If the parity asymmetry is large, the value of the normaliza-
tion point ρ(Sn) might change with a factor of ≈ 2, which
will consequently change the slope of the level density and γ-
ray strength function. For heavier nuclei, however, the parity
distribution at Sn is expected to be quite even, and experimen-
tal data on lighter nuclei suggest that the parity asymmetry
should be small also here. Therefore, we find it reasonable to
believe that the error in ρ(Sn) and on the absolute normaliza-
tion of the γ-ray strength function due to this assumption does
not exceed 50%.

Another issue is the influence on the relative contribution
of E1 and M1 transitions, as a large parity asymmetry will
favor M1 transitions. Tests with simulated data indicate, how-
ever, that the effect is not large even with a considerable parity
asymmetry.

The spin distribution. From simulations on light nuclei with
different spin ranges on the initial levels, it is seen that the
ranges including higher spins might lead to an enhanced γ-
ray strength function at low γ-ray energies. This is under-
stood from considering the relatively low level density and
the matching of spins between the initial and final levels for
dipole radiation. This could explain, at least partially, the ob-
served enhanced low-energy strength in experimental data for
light and medium-mass nuclei.

The spin distribution is one of the largest uncertainties in
the normalization, since the determination of the slope of the
level density and γ-ray strength function strongly depends on
the relative intensities of the populated spins at Sn. Assuming
a bell-shaped spin distribution with various global parameter-
izations of the spin cutoff parameter give up to ≈ 50% change
in ρ(Sn); however, microscopic calculations indicate that this
value can vary within a factor of 2 or more, especially for
nuclei in the rare-earth region. This will also consequently
influence the γ-ray strength function.

The experimentally reached spin window in OCL experi-
ments is typically 0−8h̄, which means that the extracted level-
density data in fact represent this narrow spin range. This is
usually compensated for by normalizing to the total level den-
sity at Sn. This is not a big effect for light nuclei with relatively
few high-spin states. Even in the case of rare-earth nuclei, our
calculations indicate that this scaling works well as the main
structures in the level density are indeed present in the levels
of a rather narrow spin range.



23

V. ACKNOWLEDGMENTS

The authors wish to thank E. A. Olsen and J. Wikne for
providing excellent experimental conditions. Financial sup-

port from the Research Council of Norway (NFR), project no.
180663, is gratefully acknowledged.

[1] J. Rekstad et. al., Physica Scripta Vol. T5, 45 (1983).
[2] A. Schiller, A. Voinov, E. Algin, J. A. Becker, L. A. Bernstein,

P. E. Garrett, M. Guttormsen, R. O. Nelson, J. Rekstad, and
S. Siem, Phys. Lett. B 633 225 (2006).

[3] U. Agvaanluvsan, A. Schiller, J. A. Becker, L. A. Bernstein,
P. E. Garrett, M. Guttormsen, G. E. Mitchell, J. Rekstad,
S. Siem, A. Voinov, and W. Younes, Phys. Rev. C 70, 054611
(2004).

[4] M. Guttormsen, A. Bagheri, R. Chankova, J. Rekstad,
A. Schiller, S. Siem, and A. Voinov, Phys. Rev. C 68, 064306
(2003).

[5] H. T. Nyhus, S. Siem, M. Guttormsen, A. C. Larsen, A. Bürger,
N. U. H. Syed, G. M. Tveten, and A. Voinov, Phys. Rev. C 81,
024325 (2010).

[6] E. Melby, L. Bergholt, M. Guttormsen, M. Hjorth-Jensen, F. In-
gebretsen, S. Messelt, J. Rekstad, A. Schiller, S. Siem, and
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T. Lönnroth, S. Messelt, J. Rekstad, A. Schiller, S. Siem,
N. U. H. Syed, A. Voinov, and S. W. Ødegård, Phys. Rev. C
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Chapter 8

Summary and conclusions

8.1 Experimental results on Sn

In this thesis, the level densities of 118,119,121,122Sn and the γ-ray strength functions
of 116,118,119,121,122Sn below the neutron separation energy have been studied.
The approach has been to apply the Oslo method on data from the (3He,αγ) and
(3He,3He′γ) reactions. The results have been compared to previous OCL studies
of 116,117Sn [6, 7]. The studies have been published in Articles 1 and 2.

In our experiments on the Sn isotopes, a region of unknown level density
from the discrete region up to 1− 2 MeV below the neutron separation energy
Sn has been studied (Articles 1 and 2). The level densities of 119,121,122Sn display
distinctive step-like structures for excitation energies below E ≈ 4 MeV (Articles
1 and 2). This was also the case in 116,117Sn [7]. The steps in the level densities
of Sn isotopes are the most distinctive steps measured so far at the OCL. This
is probably due to the closed proton shell of Sn (Z = 50), increasing the energy
required to break a proton pair. Hence for the lower excitation energies, only
neutron pairs are broken, without any interference on the level density from
broken proton pairs. The bump centered around the neutron pairing energy, which
is 2Δn ≈ 2.5 MeV, is thus interpreted as a signature of neutron pair breaking in the
Sn isotopes (Article 1).

A combinatorial BCS model has been used to extract nuclear properties from
a prediction of the level densities of 118,119Sn (Article 1). The model is simple
and also relies on the given input values. However, since the experimental level
densities in these isotopes are reproduced rather well by the model, we may
expect that its predictions are representative. In particular, the log-scale slope
of the predicted level densities agrees well with the measured ones. In the model,
this slope depends on, e.g., the input values of the neutron and proton pair-gap
parameters, and thus, support is given to the values we applied. Some of the most
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interesting results from the simulations concern the bump in the measurements
that we interpreted as a signature of neutron pair breaking: The predicted average
number of neutron pair breakings per excitation energy bin has in fact at the
energy E ≈ 2.5 MeV a very abrupt increase from 0 to 1, while pair-breaking
of protons almost do not occur below ≈ 4 MeV. Hence, the model shows that the
pair breakings here are basically only due to neutrons. Provided that our applied
values of the pair-gap parameters are reasonable, so that this abrupt increase in the
model corresponds to the distinctive step in the measured level density, this step
in the level density is probably due to pure neutron pair breaking.

The rare-earth midshell nuclei have a constant single neutron entropy of ΔS ≈
1.7 kB for a wide range of excitation energies [48]. In other words, there is a
simple scaling with the number of nucleons not coupled in Cooper pairs. We have
deduced the single neutron entropy of 119Sn from the experimental level densities
of 118,119Sn and determined it to be a constant, ΔS = 1.7± 0.2 kB, for excitation
energies above ≈ 3 MeV (Article 1). Within the uncertainty, this is in agreement
with the finding in 117Sn [7]. For lower excitation energies than E ≈ 3 MeV, the
single neutron entropies of 117,119Sn are clearly not constant. We conclude that Sn
isotopes, having a filled proton shell, have a more complicated entropy difference
than the rare-earth midshell nuclei.

The γ-ray strength functions of 116,118,119,121,122Sn were compared to standard
strength models and (γ,n) and (γ,x) measurements [34, 49, 50, 51, 52].
Significant enhancements in integrated strength in these isotopes were found for
γ-ray energies above Eγ ≈ 4−5 MeV (Articles 1 and 2), which was also the case
for 117Sn [6]. This observed enhancement in Sn is interpreted as due to the pygmy
resonance. In the absence of any established theoretical model, we have modeled
the resonance with a Gaussian distribution. A better prediction may be found in
the future.

Neutron-capture cross sections for 117−119,121Sn have been calculated from
our strength predictions using the reaction code TALYS [53] (Article 2).
Experimental neutron-capture cross sections are well reproduced. Our predictions
give significantly better agreement with experiments than standard strength
models without the pygmy resonance.

Studying the neutron dependency of the pygmy resonance is important and
may help in determining its origin. We have found that we cannot see any
dependence within the uncertainties on isotope in the resonances’ integrated
strength, and that their centroid energies are shifted towards increasing γ-ray
energies with increasing neutron number N of the isotope (Article 2). The
significant increase of the centroid energies are also clear from studying the γ-ray
energies for which there is a change of log-scale slope in the strength function.
The change of slope is interpreted as the onset of the pygmy resonance.

Our estimates of the centroid energies of the pygmy resonances increase
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smoothly from Epyg ≈ 8.0(1) MeV in 116,117Sn to 8.6(2) MeV in 122Sn (Article
2). However, the finding of an increase of centroid energy with increasing neutron
number is in contradiction to existing theoretical calculations, which often predict
a decrease instead.

The E1 neutron-skin oscillation mode is assumed to be the underlying physical
phenomenon in most theoretical studies of the pygmy resonance (Article 2).
They often predict a systematic increase in the resonance integrated strength as
the number of neutrons increase, due to the increase of the neutron skin. The
predicted increase of the integrated resonance strength from 116Sn to 122Sn is
often significant and is thus expected to be detectable in measurements (see e.g.,
Refs. [25, 30, 31]), though one study [29] predicts that the integrated strength is
relatively stable in the mass region A = 120−126.

We cannot see any dependency on neutron number in the resonance strength
measured in these OCL experiments. For all the isotopes, the integrated strengths
have been estimated to ≈ 1.7(9)% or ≈ 1.8+1

−5% of the TRK sum rule. However,
the experimental uncertainties are large, and more experimental information is
needed to conclude in this important question.

The pygmy resonance may be small compared to the GEDR, but still,
the enhancement in strength is significant. The significant magnitude might
indicate that the resonance is indeed caused by a collective phenomenon, in
contrary to independent single-particle excitations. This additional strength may
have important impacts in nuclear astrophysics on the calculated distribution of
elemental abundance.

It has been confirmed that also these Sn isotopes do not display any strongly
enhanced strength function for low γ-ray energies.

8.2 Systematic uncertainties
This thesis has in Article 3 also investigated the systematic uncertainties in the
Oslo method. The conclusion is that the Oslo method is generally very robust, but
that some assumptions should be considered when analysing experiments. Here
we will give a summary of the most important uncertainties from this article, in
addition to a discussion of their impact on the results for Sn.

It is found that often in the first-generation method there will be an erroneous
subtraction for the regions of low γ-ray energies. This may be visualised by
vertical ridges (strongly populated regions) and/or vallies (empty regions) in
the first-generation matrixes (see, e.g., Fig. 4.5). The problem occurs due to
different feeding of these discrete states from the reaction and from the decay from
higher-lying states (non-independence of method of formation). This different
feeding leads to different shapes as a function of excitation energy of the γ-ray
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spectra. This shortcoming of the first-generation method is taken into account
by eliminating the low γ-ray energy part of the first-generation matrix from the
analysis (Article 3).

Another finding of Article 3 is that a relatively small parity asymmetry does
not have a significant impact on the normalisation of the level density and the
strength function, while a large parity asymmetry, often found for light nuclei,
may change the normalisation value ρ(Sn) with a factor of ≈ 2. Tin, being a
heavy element, is expected to have less parity asymmetry. In Article 1, we did
calculations on the parity asymmetry in two Sn isotopes. The predicted parity
asymmetry is smaller than for the medium-heavy nucleus

(96Mo
)

investigated in
Article 3, for which the influence on the normalisation was found to be negligible.
It is thus expected that the impact from parity asymmetry on the normalisation of
the Sn isotopes is also negligible.

The probably largest uncertainty in the normalisation of the Sn isotopes
stems from the uncertainty in the spin distribution. The calculations in Article
3 indicate that the normalisation value ρ(Sn) may vary with a factor of two or
more, depending on the choice of spin distribution. The variation will especially
be found for nuclei in the rare-earth region. A variation in ρ(Sn) influences the
normalisation of both the level density and the strength function. Experimental
work to further investigate the spin distribution is highly desirable.

The experimentally reached spin window at the OCL is typically 0−8h̄, while
the true spin range for the heavier nuclei may be higher. Therefore, not all
of the level density is measured in OCL experiments. Calculations in Article
3 on a rare-earth nucleus show that the main structures are very much alike
when different spin windows are compared. This finding is expected to be the
case also for Sn. Therefore when normalising the measured level density to
the normalisation value ρ(Sn), which has been estimated for all spins, the level
density extracted from our experiments is thus expected to be scaled to including
all spins.

Article 3 also discusses one possible origin of the low-energy enhancement
in the strength function seen in light nuclei in earlier experiments at the OCL.
Simulations on these nuclei applying different spin ranges on the initial levels
shows that the case with the range including the highest spins may in these nuclei
give an enhanced strength function at low γ-ray energies. This is understood from
considering the relatively low level density and the matching of spins between the
initial and final levels for dipole radiation. The enhancement in strength was not
seen in the Sn measurements.
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8.3 Conclusions
The present thesis has provided new knowledge of the Sn isotopes and the
pygmy resonance. For the first time, the functional form from low energy to the
neutron separation energy of the level density and the strength function have been
measured in a systematic study of many Sn isotopes. One observed pronounced
step in the level densities has been interpreted as due to neutron pair breaking.
With increasing neutron number, the pygmy resonance seems to display an
increase of centroid energy, while no change in the integrated strength is observed.
The estimated centroid energies increase from Eγ ≈ 8.0(1) MeV in 116Sn to 8.6(2)
MeV in 122Sn. The integrated strength of the resonance is determined to ≈ 1.8+1

−5%
of the classical TRK sum rule. Also systematic uncertainties in the Oslo method
have been investigated in this thesis.

8.4 Outlook
Several experimental issues would be desirable to investigate further. The
theoretical predictions for the neutron-skin oscillation mode is of E1 character.
Clarification of the electromagnetic character is of utmost importance and is one
of the most interesting question to get an answer to. This knowledge may help in
understanding the underlying physics of the pygmy resonance. This is a kind of
experiment that cannot be performed at the OCL, since here, the total strength is
measured without distinguishing between magnetic and electric radiation.

Tin is a ideal element for a systematic study of the pygmy resonance due
to its large number of stable isotopes. The stable isotopes 112Sn and 124Sn
may be chosen as targets for future OCL measurements. It will make possible
the comparison of the pygmy resonances in 111Sn (pick-up reaction) and 125Sn
(stripping reaction), giving an even larger difference in neutron number than
studied in the present thesis. The comparison of even a larger isotope difference
may provide more information. Support may be given to our finding of an
increasing energy centroid with increasing neutron number, and one may actually
establish if the integrated strength increases or not.

Also even more neutron-rich Sn isotopes are possible to study. This would be
the unstable isotopes. They may be investigated in radioactive beam facilities, like
the facilities ISOLDE [54] at CERN or SPIRAL2 [55] at GANIL.

At the moment, analyses on Pd (Z = 46) and Cd (Z = 48) experiments are
ongoing at the OCL. We look forward to seeing if pygmy resonances are displayed
for these cases.

For the future, the groups at the OCL hopes to get funding to replace the
CACTUS NaI detector system with LaBr3(Ce) scintillation detectors [56]. The
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LaBr3 are better than our current system in both energy resolution, γ-ray detection
efficiency and timing properties. Such an instrument would significantly improve
the γ-ray spectra and give more accurate measurements of the nuclear properties
in the quasi-continuum region.
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K. Mazurek, M. Norby, H. T. Nyhus, G. Perdikakis, S. Siem, and A. Spyrou,
Phys. Rev. C 80, 044309 (2009).

[45] M. Guttormsen, U. Agvaanluvsan, E. Algin, A. Bürger, A. C. Larsen,
G. E. Mitchell, H. T. Nyhus, S. Siem, H. K. Toft, and A. Voinov, EPJ Web
of Conferences 2, 04001 (2010).

[46] J. Kopecky and R. E. Chrien, Nucl. Phys. A 468, 285 (1987).

[47] T. Belgya, O. Bersillon, R. Capote, T. Fukahori, G. Zhigang, S. Goriely,
M. Herman, A. V. Ignatyuk, S. Kailas, A. Koning, P. Oblozinsky,
V. Plujko and P. Young, Handbook for calculations of nuclear
reaction data, RIPL-2 (IAEA, Vienna, 2006). Available online at
[http://www-nds.iaea.org/RIPL-2/].

[48] M. Guttormsen, M. Hjorth-Jensen, E. Melby, J. Rekstad, A. Schiller, and
S. Siem, Phys. Rev. C 63, 044301 (2001).

[49] S. C. Fultz, B. L. Berman, J. T. Caldwell, R. L. Bramblett, and M. A. Kelly,
Phys. Rev. 186, 1255 (1969).

[50] V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, V. A. Tchetvertkova, Moscow
State Univ. Inst. of Nucl. Phys. Reports No. 2009, p. 3/847 (2009).

[51] V. V. Varlamov, N. N. Peskov, D. S. Rudenko, and M. E. Stepanov,
Vop. At. Nauki i Tekhn., Ser. Yadernye Konstanty 1-2 (2003).

[52] A. Leprêtre, H. Beil, R. Bergere, P. Carlos, A. De Miniac, A. Veyssiere, and
K. Kernbach, Nucl. Phys. A 219, 39 (1974).

[53] A. J. Koning, S. Hilaire, and M. C. Duijvestijn, "TALYS-1.2", in
Proceedings of the International Conference on Nuclear Data for Science
and Technology, April 22-27, 2007, Nice, France. Editors: O. Bersillon,
F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray, EDP Sciences, 211 (2008).
Available online at [http://www.talys.eu/].

110



BIBLIOGRAPHY

[54] The ISOLDE facility, CERN. Online homepage available at
[http://isolde.web.cern.ch/ISOLDE/].

[55] The SPIRAL2 facility, GANIL. Online homepage available at
[http://www.ganil-spiral2.eu/].

[56] BrilLanCe R©380 documentation, Saint-Gobain Crystals and Scintillation
Products. Available online at [http://www.detectors-saint-gobain.com/].

111



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




