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Preface

This thesis concludes the research undertaken by the present author as a
PhD student at the group for Advanced Materials and Complex Systems,
Department of Physics, University of Oslo, during the last three years
(September 2007 — August 2010).

The work has been divided between two fields of research. The first part
deals with experiments on simultaneous fluid flow in porous media. In short,
we simultaneously inject a high viscous and a non viscous fluid at the same
time into a porous model. This study was first initiated in 2006 by a series of
experiments performed by the present author [1]. However at that time, no
clear interpretation of the results could be obtained. Flexibility in the present
PhD project have permitted us to follow up this study with supplementing
experiments, data analysis, and finally a satisfactory understanding of the
results.

The concept of simultaneous two-phase flow has existed for some time,
and is commonly used in the petroleum industry to measure relative per-
meabilities; e.g the Penn-state method [2]. However, non-transparent core
samples are normally used, and it is generally not possible to address the
dynamics of the complex structures inside. This particular flow scenario is
representative for some of the processes taking place in the bulk of an oil
reservoir. Thus, in addition to scientific interest, increased knowledge could
also be important for the oil industry. The first to do a pore-scale study of
simultaneous two-phase flow, was Payatakes (1995) et al. [3, 4], categorizing
the different flow patterns according to variation of the flow parameters. In
our experiments we seek to answer how pressure and fluid flow relate to the
structure observed during simultaneous two phase flow in a large transpar-
ent quasi two-dimensional model, consisting of ~ 10° pores. In particular
we address how statistical properties such as cluster size distributions and
morphology relates to the measured pressure and imposed flow-rates.

The second part of the present study considers experiments on fracture
propagation in heterogeneous materials. Specifically, we observe a crack front
propagating in a low-toughness plane between two weakly sintered Plexiglas
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plates. Despite the obvious differences, the two topics have many similarities.
Both systems are disordered in the form of local pinning centers of fluctuating
strength, and a wide distribution of pore voids in the heterogeneous material
and the porous medium respectively. This quenched disorder affects the
dynamics in a similar manner, and particularly the existence of long range
correlations. In fracture this is seen in the the elastic stress field ahead of
the crack front, and in porous flow through the velocity field of the viscous
fluid. In both systems, scale invariant fluctuating behaviour is the main
characteristic of the dynamics. Such intermittency is best described through
a statistical approach. To this end we found that many of the analysis
methods developed for the flow experiments could be applied to the fracture
experiments with only minor adaptive changes.

In fracture experiments it is in general hard to directly observe the dynam-
ics during propagation, simply because most materails are non-transparent.
For this purpose, Schmittbuhl and Malgy [5] introduced a transparent
Plexiglas model to follow an in-plane Mode I fracture, allowing for direct
visual observation. Further, the high velocity avalanche dynamics of the
crack front were studied using this model [6]. Creep relaxation of the frac-
ture, with a duration of several days, was later observed and has in part
motivated the present study. Considering both forced and creep relaxation
of the fracture, we have in the present work studied how toughness fluctu-
ations influence the dynamics in high and low velocity regimes.

This thesis is organized as follows: Part I - Introduction and Part II - Papers.
Part II contains the papers in which our experimental results are presented
and discussed in detail. Part T aims to put these papers in a proper context,
with an introduction to the underlaying research fields. Herein, Chapter I
comprises the subject of porous flow, relevant for Paper I and II, whereas
in-plane fracture is the subject of Chapter II relevant for Paper III.
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Chapter 1

Two-phase flow in porous
media

This chapter is meant as a brief introduction to multi-phase flow in porous
media, with main focus on steady-state flow as it encompasses a major part
of the present work. Sections1.1-1.3 should be readable for students working
in other fields of physics, whereas parts of Sec. 1.4 may require some prior
knowledge of porous flow physics. Section 1.4 gives an overview of the ex-
perimental setup, the procedure used in order to analyse images, and a brief
description of simultaneous two-phase flow as background for Paper I and II.

1.1 Introduction

Porous flow shows interesting applications not only in physics, but includes
also petroleum engineering, applied mathematics, hydrology, soil sciences,
and biomedical and agricultural engineering. This very rich and broad field
has puzzled and intrigued scientists for more than a century, and is still
a hot topic of research. This is mainly due to the complex dynamics and
structures observed, resulting from the interplay between one or more phases
and a disordered porous medium [7, 8, 9]. Moreover in areas such as the
petroleum industry, the chemical industry, food production, and agriculture,
there are potentially huge economical benefits to be gained from increased
knowledge in this field.

Ever since Henry Darcy introduced his famous equation [2] in 1856, much
valuable insight on flow in porous media has been gained. This includes
among other things the introduction of global flow equations [8], a good
theoretical pore scale understanding of basic flow structures and their de-
pendence on the flow parameters [10], and also various simulation techniques
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Chapter 1.Two-phase flow in porous media

based on pure statistical algorithms [11, 12], network modeling of capillary
flow in tubes [13], lattice Boltzmann modeling [14] and so on.

However, many questions still remain unanswered. From an industrial
point of view, the perhaps most important one being the upscaling prob-
lem [15]. It is often highly non trivial how the behavior observed at mi-
croscopic scale manifests itself on the laboratory scale. Even more so, how
the physical description obtained at laboratory scale can be used to obtain
a physical understanding at an even larger industrial scale. Additionally,
new flow structures are discovered as more complex boundary conditions are
introduced in experiments and simulations, motivated by new industrial ap-
plications and also pure scientific interest. Examples are; seismic stimulation
of oil reservoirs to enhance oil recovery [16, 17], and the topic of the present
work: simultaneous porous flow of two phases.

The volume of literature in this field is overwhelming, and to place the
present study in a full context of all available literature is challenging. Below
is given a general introduction of the basic parameters used to describe flow in
porous media, followed by a more specific and selective inclusion of the most
relevant background material, motivating the present work. Together with
the references provided along the way, it should at least serve as a starting
point for the eager reader.

1.2 Basic concepts and parameters

We will throughout this chapter restrict the discussion to two-dimensional
porous media, for simplicity and illustrative purposes. Additionally the
experiments carried out in the present work concerns so called quasi two-
dimensional systems, as defined in Sec.1.4.1. However the concepts intro-
duced below apply also to the three-dimensional case.

1.2.1 Porous media and fluid properties

A porous medium is in general any solid containing voids. Of special interest
are permeable porous media, i.e. the existence an interconnected path of
voids throughout the bulk of the solid, enabling one or more fluids to flow
from one end to the other. The voids are referred to as pores, and the random
pore network constitutes what is called the pore space. Examples of porous
media are: sandstone, limestone, cement, sponge and so on. A characteristic
property of a porous medium is the porosity ¢g, defined as:

= %, where ¢ €[0,1], (1.1)



1.2 Basic concepts and parameters

and V is the total sample volume whereas V), is the pore space volume.

The permeability ko is another geometrical property, describing a fluids
ability to flow through the porous medium. The permeability is fluid inde-
pendent and analog to the conductance in electrical circuits. A high value
makes it easier to flow and vice versa. A commonly used unit of permeability
is darcy, after Henry Darcy, where 1 darcy = 9.87-107% cm? ~ 1(um)2. When
dealing with multi-phase flow, i.e. more than one fluid or phase present in
the porous medium, kg is referred to as the absolute - or one-phase permeab-
ility. The permeability can be measured through Darcy’s law as discussed in
Sec.1.2.2.

Both the porosity and the permeability are average global quantities, and
they do not give any information of the local properties of the porous medium.
One such property is the quenched disorder of the pores. Quenched disorder
means irregularities ”frozen” into the system independent of time. Gener-
ally the pores have various sizes, which in turn has important implications
for fluid flow. Figure 1.1 shows a two-dimensional model porous medium
consisting of randomly placed discs confined by a rectangular box. It is cus-
tomary to divide the pore space into pores and pore throats. The region
confined by di, dy, and d3 constitutes a pore, whereas the narrower channels
characterized by the lengths dy, ds and d3 are referred to as pore-throats. In
real porous media it is not always a clear cut case to define pores and pore
throats. Assuming however that it is possible to measure the different pores
and pore throats, in terms of either volume or some suitable length scale,
their distributions will provide valuable information on the system disorder.
The disc diameter may be used as a length scale of the disorder in the present
example. As will become apparent in Sec.1.2.2 the morphological random-
ness in the porous medium will in turn transfer to the local pressures in fluid
flow, and in this way play an important role for the dynamics.

Having introduced the embedding geometry in which different flow pro-
cesses can take place, it is also necessary to describe the most important fluid
properties. The dynamic viscosity p is given by

W= pv, (1.2)

where p is the fluid mass density and v the kinematic viscosity. The viscosity
can be interpreted as the ability of a fluid to sustain shear stresses, or more
loosely speaking the resistance to flow.

When two immiscible phases (fluid-fluid or gas-fluid) are present in a
porous medium, there will be a so called surface tension over the interfaces
between the two phases due to molecular interactions. In the bulk of each
phase there are cohesive forces between identical molecules, whereas weaker
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Figure 1.1: Porous medium consisting of discs with system size is L, x L,,.
Two fluids are present, denoted 1 and 2, separated at the invasion front
consisting of the three menisci (red). A pore is the region confined by the
nearest neighbour distances di, dy and ds. These individual lengths also give
a characteristic size measure of the pore throats connected to the pore.

adhesive forces exist between different molecules on the interface between the
two phases. A fundamental principle of any physical system is to reduce the
free energy while maximizing the entropy. Adhesive forces contribute less to
reducing the potential energy, thus it is favorable to minimize the interface
area between the two phases and maximize the bulk volume. Due to the
minimizing of adhesive forces, surface tension gives rise to curvature on the
interface. As an example, the surface of a droplet of fluid in a gas is spherical,
since this gives the largest volume pr. surface ratio and thus the lowest free
energy configuration.

In equilibrium, surface tension is defined as the work needed to increase
the surface area by one unit and can be viewed as a force pr. unit length
or an energy pr. unit area. The mechanical equilibrium condition due to
surface tension and the pressure difference over the curved interface can be
formulated as [§]

1 1
Ap = — 4+ = . 1.
=7+ %) (13)

Equation (1.3) is the Young-Laplace law, where Ap is the pressure difference,
v is the surface tension, and Ry and R, are the principal radii of curvature
of the interface.

In addition to the interactions across the fluid-fluid interface, there are
also molecular interactions at the contact line between the two phases and
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the porous medium. This introduces yet another fluid property, namely the
wettability. The wetting conditions of a fluid describe its ability to maintain
contact with a solid. This is specified by the contact angle 6,, as shown in
Fig. 1.2. It is measured as the inside angle between the tangential crossing
at some contact point between the solid and the fluid in question. A fluid
with contact angle 8, < 90° is said to be wetting and for 6,, > 90° the fluid is
non-wetting. For 6, ~ 90°, the fluid-fluid-solid system is said to have mixed
wetting conditions. If we return to the example in Fig. 1.1, surface tension
results in a curved interface between the two phases as seen in the three
menisci and fluid 1 wets the porous medium.

Figure 1.2: Two droplets of different fluids are deposited on a solid surface,
surrounded by a gas. The left droplet has a contact angle 6,, > 90° and is
non-wetting, whereas the droplet to the right has a contact angle 6,, < 90°
and is wetting the solid surface.

A more intricate situation arises when fluids are in motion. So called
contact angle hysteresis [8] can occur, meaning that one measures a different
contact angle upon advancing and receding fluid displacement. However in
most cases, it is customary when local wetting are not of primary interest to
give only the static wetting properties of the phases.

Having introduced the wettability of fluids, we define two more properties,
namely the wviscosity ratio and the fluid saturation, as they are important
for fluid displacement in porous media. The viscosity ratio M is given as

M = Foe (1.4)

Hw
where fi,,, and p,, are the dynamic viscosities of the non-wetting and wetting
fluids respectively. The non-wetting S, and wetting 5, saturations are the
volume fractions of each fluid, and are defined as

)

Vow
nw — ) 1.
S v, (1.5)
Vi
w = Y, 1.
S v (1.6)
S+ S = 1, (1.7)
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where V,, = ¢V is the pore space volume, V,,,, and V,, are the volumes of the
non-wetting and wetting fluids respectively.

1.2.2 Flow dynamics

Considering two immiscible phases displacing each other in a porous medium,
their flows are governed by the equation of continuity and the Navier-Stokes
equations [18]. However, due to the complex geometry of the porous me-
dium, these equations can in general not be solved analytically. Quantitative
descriptions are instead obtained by a combination of simplified effective
equations, valid on large scale, and considerations of the flow at the scale of
a single pore.

In 1856 Henry Darcy found an empirical relation between the fluid ve-
locity and pressure gradient during one-phase flow through porous media.
This was later known as the Darcy equation:

Ko

p (Vp—F), (1.8)

up =

where the volume flux up = Q/A is called the filtration- or Darcy-velocity,
@ is the volumetric flow-rate through the porous medium, and has units of
[m?®/s]. The cross section of the porous medium orthogonal to the flow is
denoted A, kg is the permeability, p is the viscosity, Vp is the global pressure
gradient, and F = pg is some body force, e.g gravity. Note that the actual
fluid velocity through the porous medium is v = up/¢.

The Darcy equation has been generalized for multi-phase flow, although
the applicability in this case is limited. The generalized Darcy equations
assume that the flow of both phases is hydrodynamically independent, i.e.
the flow of the wetting phase is uncoupled with that of the non-wetting. The
non-wetting fluid appears as a ”solid” to the wetting fluid and vice versa, and
so called relative permeabilities are introduced to describe the resistance to
flow for both phases. Since the relative permeabilities depend on parameters
of both phases, it is no longer a pure geometrical property. For a thorough
discussion of the generalized Darcy law, see [8, 2, 19].

While Darcy’s law describes the average properties of the flow on a large
scale, it is also necessary to consider local behavior at the pore scale. The
capillary pressure over a fixed! meniscus is defined as

Pcap = Pnw — Pw » (19)

LA viscous stress term must be included in the general case of a moving meniscus.



1.2 Basic concepts and parameters

where p,, and p, is the non-wetting and wetting fluid pressure respect-
ively. The capillary pressure thus gives the pressure difference over the non-
wetting/wetting fluid interface. When neglecting gravity forces, the condition
for mechanical equilibrium is given by the Young-Laplace equation [Eq. (1.3)],
i.e. the capillary pressure is proportional to the curvature of the interface.

Returning once more to the example of fluid displacement in the model
porous medium in Fig. 1.1, we can define two flow situations. When a non-
wetting fluid (1) displaces a wetting fluid (2) the process is referred to as
drainage. The opposite situation is called imbibition, i.e. when a wetting
fluid displaces a non-wetting fluid. In a drainage situation, to move a men-
iscus into a narrower part of a pore-throat, one can either increase the non-
wetting pressure or decrease the wetting pressure in Eq. (1.9). In equilibrium
it then follows from Eq. (1.3) that the increase in capillary pressure must be
accompanied by an increase in curvature. In this manner, the curvature of
the interface is linked to its position in the pore-throat. A threshold or crit-
ical value of the capillary pressure p¢ is associated with the narrowest part of
the pore throat. Whenever pe,, exceeds p? the meniscus becomes unstable,
because the geometry of the pore-throat can no longer uphold mechanical
equilibrium at this point. The instability causes spontaneous invasion of the
pore in front. This is the mechanism of drainage at the pore scale, and it
is important to note that the geometrical disorder in the porous medium
(distribution of pore throats) is reflected in the capillary pressure. Reflected
in the sense that each pore throat has a limit or critical value of the capillary
pressure it can sustain. In the case of imbibition it is the widest part of a
pore, associated with the lowest capillary pressure, that is of importance for
advancement of the fluid interface. The wetting fluid will stand in the pore
throats and invade the pore in front when the capillary pressure is below the
critical capillary pressure for imbibition pi.

The distributions of capillary pressure thresholds for drainage and imbib-
ition play a significant role when considering two phase flow in porous media.
This will be discussed further in Secs. 1.3 and 1.4.

The introduction to physics of flow in porous media in the present and
previous subsection has been brief and somewhat superficial. The interested
reader should look to the references [8, 9, 2, 18, 19, 20] for more comprehens-
ive treatments of the topics presented.

1.2.3 Dimensionless numbers

Due to the complexity of flow in porous media, a vast number of displacement
structures are observed. Some forces may dominate in the system, and are
thus responsible for the structure observed. The most important are grav-



10 Chapter 1.Two-phase flow in porous media

itational, capillary, and viscous forces. It is common practice to introduce
dimensionless numbers describing the ratio between these forces, as they can
be helpful in describing the dynamics as well as assist in the comparison
between different systems, e.g experiment and simulation.

For non-horizontal flow, gravity is important. The dimensionless ratio
between gravitational and capillary pressure over a characteristic pore is
called the Bond-number,

_ Apgray _ Apga® (1.10)
Apeap g

Bo

Here, Apgav = Apga is the gravitational or hydrostatic pressure drop over a
pore of characteristic size a, Ap = py, — Pnw i the density difference between
the wetting and non-wetting fluid respectively and ¢ is the component of
gravity in the direction of flow. The capillary pressure drop over a typical
pore-throat is approximated by Ape., ~ 7, and so Eq. (1.10) follows. Small
values of the Bond number means that capillary forces dominate over the
gravitational ones. Notice that when g is perpendicular to the flow, as in
two-dimensional horizontal models, Bo = 0.

If we look at the ratio of viscous to capillary forces, being the most im-
portant for the present work, we get the Capillary-number Ca. It is defined
here as:

_ Apvisc _ /'LwaCLZ

Ca =
Apcap WHOA

(1.11)

The viscous pressure drop follows from Darcy’s law over a pore of size a;
Apyise = pw@Quwa/koA, where @Q,, is the flow-rate of the wetting fluid. It was
emphasized previously that Darcy’s law was a macroscopic equation, however
it is used here as a rough approximation. Viscous forces dominate the flow
when Ca ~ 1, whereas capillary forces dominates when Ca < 1.

The definition of the capillary number often differs in the literature, even
though it always gives some measure of the viscous to capillary force ratio.
Thus care must be taken when comparing results for given Ca-numbers from
different studies. It is generally not sufficient with only the numerical value,
and it should always be made clear how the capillary number is defined.
Fortunately in this work the definition of the Ca-number is not crucial, as
it is merely a useful dimensionless number proportional to the important
tuning parameter ), i.e. the flow-rate of wetting fluid.
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1.3 Transient flow regimes

After having introduced the necessary concepts of flow in porous media in the
previous section, an overview of the ”classical” structures observed during
either drainage or imbibition will be given in the following. Pore geometry,
boundary conditions, and controlling parameters (M, Bo, and Ca) will govern
the displacement. It is important to have some notion of the underlying
physics of these processes.

Transient flow regimes mean that some of the flow parameters and the
displacement structure are time dependent. Furthermore the duration of
the process is between the onset of invasion and breakthrough, i.e. when
the invading phase reaches the system perimeter, percolating? the porous
medium.

1.3.1 Capillary fingering

Consider a drainage situation where Ca < 1, i.e. the capillary forces com-
pletely dominate viscous forces. This means a very slow invasion rate of
the non-wetting phase. The pressure inside each phase is everywhere the
same and the pressure difference over the non-wetting-wetting fluid interface
is given by the capillary pressure, Eq.(1.9). In a porous medium initially
saturated with wetting fluid, the front (interface between the two fluids)
is located along a line at the inlet, trying to overcome the capillary barri-
ers presented by the pore-throats. When the flow is initiated, either p,, or
Pnw Will increase so that pea, also increases. This is a stable situation as
long as the capillary barriers can sustain the gradual increase in pe,,. The
widest pore throat along the front will have the smallest capillary threshold,
p?. Whenever pe., > p¢, the front becomes unstable and invades the pore
in front of the widest pore-throat. The spontaneous invasion of pores are
referred to as bursts and is one type of so called Haines jumps [21, 22], oc-
curring over a much smaller time scale than the advancement of the front in
the pore-throats. The number of pores invaded in a burst depends on the
capillary pressure, because the front will not stabilize until it finds a new
configuration in which all capillary thresholds are greater than the current
capillary pressure. After a burst, equilibrium is obtained and pc,, must be
increased once more to continue invasion. In this manner, the wetting fluid
is displaced from the porous medium, until the non-wetting fluid percolates
the model. Figure 1.3 a) and b) show for experiment and simulation respect-
ively, the resultant structure from a displacement in the capillary fingering

2The existence of a connecting path from one end to the other.
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regime at breakthrough. It is characterized by wetting clusters of all sizes

Figure 1.3: a) Air (white) displacing a water/glycerol mixture (black) in a
porous cell consisting of a monolayer of glass beads randomly distributed
between two plates [M. Jankov, Complex group, UiO, (2006)]. System size
10 x 20 ¢m, consisting of ~ 44100 pores, and Ca ~ 10~*. b) IP-simulation [1]
with trapping in a 400 x 800 lattice. The similarity between a) and b) is
evident.

surrounded by an interconnecting network of non-wetting fluid, referred to
as the percolating cluster.

Malgy et al. [23, 24] studied how the capillary pressure varied under slow
drainage experiments. It was found that a sudden drop in capillary pressure
accompanied every burst. They also observed that the volume of displaced
defending fluid during a burst, did not leave the model, but was redistributed
over the front making the menisci retract. This capacitive volume effect was
found to be the reason for the sudden pressure drops.

The displacement structure in the capillary regime will depend on the
wettability. The description above assumes favorable wetting conditions.
That is, a contact angle of the invading fluid around 180°. Robbins et
al. [25, 26, 27], studied how ordinary capillary fingering structures changed
with the wetting properties of the system. They found that below a critical
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contact angle, dependent on the porosity, the invasion structure flooded the
system. When the contact angle approaches the mixed wetting limit, the
distribution of capillary thresholds will be drastically altered. Due to the
wetting, equilibrium menisci can exist also outside of the pore-throat exit.
This means that neighboring menisci can intersect and coalesce, thus altering
the dynamics.

1.3.2 Viscous fingering

The viscous fingering regime characterizes a drainage process where a low-
viscous fluid displaces a high-viscous fluid at a large flow rate. In this case
the viscosity ratio M < 1, and Ca ~ 1. This regime, seen from experiment
and simulation in Fig. 1.4 a) and b) respectively, is characterized by finger
formation of the invading fluid, propagating faster through the medium than
the rest of the front. The finger development causes the front to be unstable.

Figure 1.4: a) Viscous fingering experiment in a porous cell consisting of a
monolayer of glass beads randomly distributed between two plates, performed
in the Complex lab (2007). Air displaces glycerol from a single inlet node
at a high flow-rate from left to right. System size of 40 x 80 cm containing
~ 213600 pores, M ~ 10~* and Ca = 0.16. b) DLA-simulation [1] on a
400 x 800 lattice.
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In the initial stages of the displacement, some part of the front will get ahead
of the rest. Due to the low-viscosity in the invading fluid, the pressure drop in
the invading phase is negligible. It then follows from Darcy’s law [Eq. (1.8)],
that the parts of the front closest to the system outlet, will experience the
highest pressure gradients in the high-viscous defending fluid. This means
that the tips of the fingers will propagate at a higher velocity through the
porous medium than the rest of the front. In linear models, one or two
fingers usually dominate the growth. By dominate, we mean that the growth
of these fingers suppress the growth of smaller fingers further behind. This
screening effect has been studied by Lgvoll et al. [28].

Viscous fingering was first studied by Saffmann & Taylor (1958) in Hele-
Shaw cells® [29]. They found that if an initial flat fluid/fluid interface was
perturbed above a critical wavelength, viscous fingers would develop. This
is known as the Saffmann-Taylor instability.

1.3.3 Stable displacement

When a high-viscous fluid displaces a low-viscous fluid, opposite to that of
viscous fingering, at a high flow-rate so that Ca ~ 1 and M < 1, the flow
regime is referred to as stable displacement. The displacement front is in this
case almost flat. A small roughness is observed due to the disorder of the
porous medium. Since the front is flat, there are little trapping of defending
fluid. Only small trapped clusters are observed for lower flow-rates, and the
maximum cluster size is bound by the roughness of the front. The reason for
stabilization in this case, is that advanced parts of the front will experience
lower pressure gradients than parts further behind. Thus the pores closest
to the inlet of the system will always be considered for invasion before any
of the advanced pores. Figure 1.5 shows a cropped section from a stable
displacement experiment.

Capillary fingering, viscous fingering, and stable displacement have been
studied extensively over the years. The phase diagram of Lenormand et al.
(1988) [10] sums up these regimes.

1.3.4 Other displacement structures

The previously considered displacement structures are all limiting cases of
horizontal flow in terms of Ca and M. References to other studies are given
below, exploring intermediate values of the parameter space, and also intro-
ducing new forces.

3S0 called quasi two dimensional flow model, consisting of two plates separated by a
small distance compared to the dimensions of the plates.
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Figure 1.5: Stable displacement imbibition experiment in a porous Hele-Shaw
cell [S. Santucci, Complex group, UiO (2006)]. A viscous water/glycerol
mixture (black) displaces low-viscous air (white) at a flow-rate of Qynx ~ 69
ml/min. The front is flat, without any trapping of air clusters. Size of
cropped section: 85 x 59 mm.

When Bo # 0, gravity will either stabilize or destabilize the flow de-
pending on the density difference between the phases and the directions of
flow and gravity. Mdéheust et al. [30] studied the effect of tilting a porous
Hele-Shaw cell out of the horizontal plane so as to consider the stabilizing
effect of gravity during the displacement of a high-viscous, high-density fluid
by a low-viscous, low-density fluid. For a constant capillary number, it was
observed that the displacement changed from viscous fingering to capillary
fingering to stable displacement like structures with increasing values of the
bond number.

Viscosity matched experiments, i.e. M = 1, where performed by Frette
et al. [31] for small Ca numbers. Stable displacement like structures with
trapping of defending fluid clusters were observed. The roughness of the
displacement, front was shown to exhibit scale invariant behaviour with the
capillary number.

The increasing interest in seismic stimulation during porous flow, has
resulted in simulation studies by Aursjg et al. [16] where an oscillatory body
force was introduced, and also experimental work by Jankov et al. [17] where
either the invading phase or the porous medium itself was oscillated.

Finally it is worth mentioning the review article of Payatakes et al. [32]
considering a number of different drainage and imbibition displacements.
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1.4 Steady-state, simultaneous two-phase flow

This section is devoted to the simultaneous flow of two phases in a large
model porous medium, shown in Fig. 1.6. Together with Paper I and II, it
embodies one of two main parts of the work presented in this thesis.

Figure 1.6: The experimental setup used for the flow experiments is depicted.
The injection pump system is seen in the upper left corner, and the lightbox
with the model on top is seen at the center.

1.4.1 Experimental setup

The experimental setup used in Papers I and II is shown in Figs. 1.7 and 1.8.
We use a mono-layered porous medium consisting of glass beads of diameter
a=1 mm, randomly spread between two contact papers [28, 31]. This is
one realization of the porous Hele-Shaw cell, a so called quasi two dimen-
sional system. The model is a transparent rectangular box of dimensions
L x W=850 x 420 mm? and thickness a. A detailed listing of the model
parameters can be found in Tablel in Paper II.
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Figure 1.7: Sketch of the experimental setup with the light box, the porous
model and the digital camera. The porous medium is sandwiched between
two contact papers and kept together and temperature controlled with a
water filled “pressure cushion”.

A 2 cm thick Plexiglas plate is placed on top of the model. In order to
squeeze the beads and the contact paper together with the upper plate, a
Mylar membrane mounted on a 2.5 cm thick Plexiglas plate, below the model,
is kept under water pressure as a “pressure cushion”. The upper plate and the
lower plate are kept together by clamps, and the side boundaries are sealed
by a rectangular silicon rubber packing. The upper plate has 15 independent
drilled inlets for fluid injection and a milled outlet channel (Fig. 1.8). The
distance between the inlets and the outlet channel defines the length of the
model.

Due to the small separation of the plates, our model is considered to
be a quasi two-dimensional medium. Network models etched in glass [3, 4]
are other examples of model porous media. The advantage of quasi two-
dimensional models is that the flow can easily be visualized, and one is able
to make measurements directly on the observed structures. However, the
generalization of results obtained for two dimensional flow to three dimen-
sions are in general not trivial.

The wetting fluid used in all our experiments is a glycerol-water solution
dyed with Negrosine (black color), whereas air is used as the nonwetting
fluid. This gives a black & white fluid pair with good visual contrast. The
viscous ratio is M=fi,/ju~10"%, which is typical for a gas/liquid system.
Other fluid parameters are found in TableI in Paper II. The model is kept at
a constant temperature of 20°C during the experiments. This is monitored
by measuring the temperature in the wetting fluid at the outlet, thus allowing
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Figure 1.8: Sketch of the experimental model. There are 15 independent
inlet holes with attached tubes where we inject (alternately) the wetting and
the nonwetting phase with syringe pumps. This leads to a mixing of the
two phases inside the model porous medium (a random mono-layer of glass
beads), and a mix of the two phases flows out of the outlet channel at the
opposite end of the system. In one of the inlet tubes (nonwetting phase)

and in the porous model (wetting phase), pressure sensors are mounted for
pressure measurements.
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accurate estimation of the viscosity of the fluid.

During experiments the pressure is recorded at four different positions.
In one of the air inlet tubes and in the wetting fluid at three positions: close
to the inlet, at a distance L/2 in the flow direction, and in the outlet channel
(Fig. 1.8).

The flow structure is visualized by illuminating the model from below
with a light box, and images are captured at regular intervals with a digital
camera. Fach image contains 3000 x 2208 pixels, corresponding to a spatial
resolution of ~ 0.19 mm per pixel (27 pixels in a pore of size 1 mm?). Close to
the inlet and to some degree along the model perimeter, there are boundary
effects in the displacement structure. To avoid these, we define a (69 x 30)cm
region of interest in the central part of the model used for image analysis.

In all experiments the porous model is initially filled with the wetting
glycerol-water solution. An experiment is then started by injecting the wet-
ting fluid and the nonwetting fluid from every other inlet hole (Fig. 1.8).
Counting from one side this means that syringes no.: 1, 3, 5, ..., 15 inject
the wetting fluid. Similarly, syringes no.: 2, 4, 6, ..., 14 are used for the
nonwetting fluid. The movement of all 15 syringes are controlled by the same
step motor, setting an equal displacement rate.

1.4.2 Image analysis

A substantial part of the results in Papers I and II are obtained from image
analysis of the flow structure. In this subsection additional and complement-
ary details to those provided in the papers will be given.

The raw image displays a wide range of gray levels with the darkest shad-
ings corresponding to the water-glycerol mixture, and the lightest shadings
corresponding to the air. The glass beads and possible film flow of water-
glycerol appear as medium gray spots. The first task is to separate the
phases from a gray scale of 256 levels into a binary representation by choos-
ing a threshold level. The accuracy of any results obtained in this manner is
highly dependent on how well the interfaces of the resulting black and white
image trace the actual interfaces of the object imaged.

To obtain an optimal black and white image, the raw image itself must
be of high quality. In this respect, homogeneous illumination of the flow
structure is of vital importance. Uneven illumination is unfavorable due
to intensity gradients, causing different regions of the image to be affected
unevenly for a given threshold value. To this end, considerable effort has
been made to ensure a homogeneous diffusive white illumination from the
lightbox (depicted in Fig. 1.6).

In some cases when the object of interest has a very good contrast to
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Figure 1.9: Gray level histogram of the imaged flow structure. Circular
and square markers correspond to a raw image and a sharpened raw image

respectively. Sharpening separates in particular the white air phase into a
distinctive peak at a gray level of ~ 225.

the ”"background”, and the background and object occupy roughly the same
amount of space, the gray level histogram presents two distinctive separ-
ate peaks. The threshold value is then easily found at the local minimum
between the two peaks. In our flow experiments however, it is hard to use
this procedure to determine the threshold, due to the wide and mixed gray
level distributions of fluid and air clusters seen in the raw image histogram
in Fig. 1.9. The reason for this mixing is due to the flow structure. Thou-
sands of small fragmented air clusters are embedded in a background flow
field of fluid. A large number of clusters implies many interfaces between
air and fluid, which again implies local gray level gradients in the images.
The water-glycerol fluid also wets well the porous medium, and may give rise
to film flow. Some air clusters are seen to appear darker than others, and
might be due to a surrounding fluid film. The result is mixing of the two
distributions, making the threshold challenging to find.

To further improve the quality of the raw images, i.e. isolate the gray level
distribution corresponding to the white air phase, a sharpening algorithm is
applied. It is somewhat technical to go into details of this algorithm, but it
is a common tool in most image treatment software. Sharpening enhances
the contrast and shifts ”dark” and ”bright” areas further towards lower and
higher gray levels respectively, as shown in Fig. 1.10, thus reducing the prob-
lem with dark air clusters. Figure 1.9 shows how the sharpening algorithm
affects the gray level distribution in a typical image of the flow structure.



1.4 Steady-state, simultaneous two-phase flow 21

Grayscale value

Position, [pixels]

Figure 1.10: Application of a sharpening algorithm over an initial step-
function of graylevels (filled circular marker). As more sharpening is applied
(empty circular and square markers) the contrast between the two grayscale
levels are enhanced.

When the raw image is sharpened, the gray level distribution presents two
peaks corresponding to the white air-filled and dark gray glycerol-filled parts
of the image. Particularly the white peak, seen to the right in Fig. 1.9, is
very distinct. The image is then thresholded at a small constant offset from
the white-peak to obtain a representative boundary between the two phases.
This offset is found by careful visual inspection from raw images with extrac-
ted black and white interfaces superimposed. All further image treatment is
performed on the resulting black and white image. A stepwise presentation
of the image analysis is shown in Fig. 1.11.

In the black and white image, the glass beads are indistinguishable from
the white air bubbles or clusters. This will not affect further analysis,
provided one is at larger scales than the bead size (or pore size) a. Fur-
thermore all connected regions of white pixels smaller than ~ 20 pixels are
disregarded from analysis, as this roughly corresponds to the maximum size
of a glass bead (see the inset of Fig. 13 in Paper II).

Finally the black and white image is analyzed with the image processing
toolbox provided by MATLAB. This includes among other things the distri-
butions of size and extent of air bubbles as explained in Papers I and II.

1.4.3 Flow structure

In this subsection a brief description of the flow pattern obtained by using the
boundary conditions described in Sec. 1.4.1 will be given. The displacement
structure in simultaneous two phase injection, is at all stages significantly
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Figure 1.11: Three steps of the image analysis: a) Sharpened raw image of a
small cropped section of the flow structure. b) Thresholded black and white
image of the gray scale original in a). ¢) For illustrational purposes, only
selected interfaces obtained from b) have been superimposed (in red) on a
small section of the original raw image in a).

different from that of capillary- or viscous fingering. From a fractal continu-
ous invasion cluster of nonwetting fluid, the presence of a background flow
field of the wetting fluid, contributes to a high degree of fragmentation of
the air phase. This is shown in figure 1.12. During the transient stage of
invasion, the wetting fluid is displaced by numerous smaller invasion clusters
of nonwetting fluid, along the front. After breakthrough, the average global
saturation (of both phases) approaches a constant value, and the structure
is characterized by a flow of fragmented air clusters, mixed in a background
field of the water-glycerol fluid. As an air cluster moves through the porous
medium, it can be deformed in many ways before it reaches the outlet. This
may be by further fragmentation, merging with other clusters, trapping in the
porous medium etc. What is referred to as steady-state is reached when both
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Figure 1.12: Snapshot of the invasion phase in one of our experiments, per-
formed in the Complex lab (2007). Air (white) and water-glycerol (black)
are injected simultaneously into a porous Hele-Shaw cell, initially saturated
with the water-glycerol mixture. In the zoom-in we see the fragmented air-
clusters.

phases are transported through the model without ”"long-time” flow para-
meter changes, implying that the pressure difference, relative permeabilities,
saturations, and cluster distributions are on average constant.

In the experiments we tune the flowrate of both phases entering the model.
A pronounced observable effect is the decrease in the typical size of clusters
of fragmented air when the flowrate is increased. Also, the wetting fluid
saturation increases with increasing values of the capillary number. This can
be seen in Figs. 1.13 and 1.14, showing the different stages of invasion for
two different capillary numbers.

The main structural difference between classical regimes described in
Sec. 1.3 and simultaneous flow, is the existence of multiple independent in-
vasion clusters, due to fragmentation. The simultaneous flow of the wetting
and nonwetting phase, causes a competition between drainage and imbibi-
tion. When the air clusters extend a certain length into the model, snap offs
will occur. By snap off we mean that imbibition displacement takes place
somewhere behind the tip of a non-wetting cluster, and disconnects a part
of it. We will see that snap offs introduce a characteristic length scale of the
largest non-wetting clusters, thus being the origin of fragmentation. Both in
Paper T and IT we address how the dynamics of the flow is governed by this
length scale, the global pressure difference over the model, and the system
disorder.
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Figure 1.13: Time series ({1, t> and t3) of the invasion phase for a Ca = 0.0079
(left) and a Ca = 0.17 (right) experiment. In both cases the degree of
fragmentation and mixing increases with time. The wetting fluid is displaced
by several independent non-wetting clusters. In the right column, channel
flow can be seen. This signature of the boundary conditions is gradually
wiped out with time. In the left column virtually no signature effect is

observed.
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t4 =6t 35 min
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ts = 16t 29 min
15 = 54 min

Figure 1.14: Continuation of Fig. 1.13. The timestep ¢4 shows the middle
stage of the invasion phase. At ¢5 the systems are in steady-state. The whole
porous matrix contains a homogeneous mix of the two phases. Note that
much of the air invaded region in t4 is similar to that of later steady-state.
The region bound by the rectangle in the bottom right panel (ROI), shows
the area considered during image analysis.






Chapter 2

In-plane fracture propagation

This chapter serves as a background to the second part of the thesis. All-
though being a different area of physics, fractures in heterogeneous materials
share many similarities with flow in porous media. In particular the way
quenched disorder in the system influences the dynamics. Sections?2.1-2.2
should be readable for those with a general physics background, whereas
part of Secs. 2.3 and 2.4 will also involve some technicalities, relevant for the
work presented in Paper III.

2.1 Introduction

The failure and fracturing of materials have obvious implications in everyday
life and in the industry. It is known that Leonardo da Vinci measured the
strength of iron wires, and found that their strength varied inversely with
the wire length. Fracture is a complex process manifested on many scales;
from the separation of atomic bonds, to the nucleation and growth of micro
and macro voids, and even up to larger geological scales during earthquakes
and fault dynamics.

The theory for describing fracture is relatively new, and to this date there
is no single formalism that handles every aspect of the observed complexity.
The foundation, however, for much of the obtained knowledge, and a corner-
stone in modern fracture mechanics, is the pioneering work by A. A. Griffith
published in 1920 [33]. Extended later by G. R. Irwin in 1956, introducing
the energy release rate concept [34].

A main contribution to the description of fracture in heterogeneous media
was provided by Rice et. al in 1985 [35], accounting for toughness fluctuations
due to material irregularities. As improved experimental techniques have
made it possible to map fracture surfaces with high resolution, the roughness

27
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of cracks have been given much attention [36]. In particular, the universality
concept of the morphological properties of fracture surfaces, proposed by E.
Bouchaud et. al [37].

Material heterogeneities affect not only the morphology of fracture but
also the dynamics. Similar behaviour is found in a variety of other systems,
commonly referred to as crackling noise [38]. Malgy et. al [6] studied in
2006, high velocity avalanches of a fracture front propagating in a transpar-
ent Plexiglas model. The present work on fracture is an extension of [6],
considering the dynamics during either forced or creep-relaxation of fracture
in high and low velocity regimes.

2.2 Basic concepts from LEFM

In this section, a brief introduction to linear elastic fracture mechanics (LEFM)
will be given. Knowledge of LEFM is important for any study of material
failure. The theory concerns linear elastic homogeneous media, with a very
small volume element of nonlinear and dissipative processes around the crack
tip. This region is referred to as the Fracture Process Zone. The two terms
crack and fracture will be used synonymously in the following.

2.2.1 The stress field in Mode I fracture

The fracture of solids can be categorized by three loading modes, or a com-
bination of these. This is shown in Fig. 2.1. Mode I (opening mode) cor-
responds to a tensile loading normal to the plane of the fracture. Mode IT
(sliding mode) corresponds to in-plane shear loading perpendicular to the
crack front, and tends to slide one crack face over the other. Mode III (tear-
ing mode) corresponds to out ouf-of-plane shear loading, i.e. parallel to the
plane of the crack and parallel to the crack front. In the present work only
Mode I fracture will be considered. A fundamental question in fracture is
how an applied outer stress is transmitted through the solid and in particular
near the crack tip where fracture actually takes place. Inglis [40] considered
in 1913 a highly illustrative model. Consider a uniformly stressed plate con-
taining an elliptical cavity as shown in Fig. 2.2. The equation of the ellipse
is given by

2 2

StE=1 (2.1)
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Figure 2.1: The three loading modes of fracture (from [39]). Mode I - opening,
Mode II - sliding, and Mode III - tearing.

It may be shown that the radius of curvature  has a minimum value at the
point C,
b2
r=—, where b<c. (2.2)
c

The analysis of Inglis relates stress at C' to the applied stress o4:

0y (¢,0) = 0 (1 + 2%) , (2.3)

—oa(142) (2.0

An interesting case with respect to fracture arises when b < ¢, in which

Eq. (2.4) reduces to
JCUNPNG 25)
oA r’ '

It is to be noted that the stress ratio in Eq.(2.5) depends on the surface
geometry of the cavity rather than size or area, and can take values much
larger than unity for a small radius of curvature. This means that a relatively
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Figure 2.2: Uniform tensile loading of a plate containing an elliptical cavity.
The applied stress is 04, the minor and major axis of the ellipse is given as
b and ¢ respectively, and the point C' defines the notch tip of the ellipse.

small applied stress will cause a large stress consentration at the notch tip
of a narrow cavity.

As an example consider the model in Fig. 2.2 ”cut in half” along the
y—axis, i.e. a surface cavity defined for x > 0 loaded in Mode I. It can be
shown that the stress field component o, will decrease asymptotically from
its maximum value o,,(c,0) and approach o4 for large z. Generally, the
largest stress gradients are confined to a highly localised region of order r,
surrounding the position of maximum stress concentration (oy,(c,0) at the
point C' in the present example).

A Mode I surface crack can in general be considered as a half-ellipse,
infinitely narrow (b — 0), with a finite crack length ¢ and a small but finite
curvature r at the tip. Approximating these boundary conditions by an
infinitesimally narrow and perfectly sharp slit, as shown in Fig. 2.3, Irwin [41]
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obtained the stress field solution':

ARG b
Oyy ¢ = = cos + sin sin . .
Oay 2mr sin(6/2) cos(6/2) cos(36/2)

Here " and 6 is the spherical coordinates of the stress field, and K is the
so called stress intensity factor. The latter quantity depends on the crack
length, applied stress, and sample geometry. As an example, for an edge
crack under Mode I loading, K = o44/7c and K = 1.120 4+/7c for an infinite
and a semi-infinite plate respectively. Equation (2.6) is only valid in close
vicinity to the crack-tip, the so called singularity dominated zone. Further
away from the crack tip, it should be mentioned that other non singular
contributions to the stress field become important. These terms are however
outside the scope of this introduction. The stress component oy, in Eq. (2.6)
takes the same form as in Eq.(2.4). However, the Irwin solution diverges
as 1’ — 0, which is unphysical, since no material can sustain infinite stress.
This has been of some concern since it is well known that at high stresses,
plastic deformation may occur in metals and so called crazing? in polymers
relaxes the stress field further. To this end, corrections from plasticity theory
and nonlinear material behaviour have been proposed [42].
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Figure 2.3: Irwin representation of a fracture, where C' defines the sharp
crack tip. For a small area of distance ' from C' making an angle 6 with the
r—axis, the stresses are indicated.

'For illustrational purposes only the two dimensional solutions are given.
2Crazing is a network of fine micro cracks, preceding the main fracture.



32 Chapter 2.In-plane fracture propagation

2.2.2 The Griffith criterion for crack propagation

Around 1920 A. A. Griffith [33] developed a fracture theory based on energy
considerations rather than local stress. Using a principle from thermodynam-
ics he studied the energy balance of the system, and wanted to obtain the
crack configuration that minimized the total free energy Ur of the system.
Using the same notation as in [41] the free energy can be divided into two
terms

Ur=Uy+Us, (2.7)

where Uy = Ug+Uj, is the mechanical energy, consisting of the stored elastic
strain energy in the solid Ug, and the potential energy from the outer applied
loading U,4. The term Ug is the surface energy, expressing the energy cost in
creating new crack surfaces. Consider then a Mode I loading of the system in
Fig. 2.3 with a crack length ¢, defined from the y—axis to the point C'. For an
imaginary extension of the crack de, thermodynamic equilibrium is obtained
by a balance between the mechanical and surface energy, expressible as
%Z%(U5+UM)=O. (2.8)

The mechanical energy will decrease under crack extension due to the release
of tractions across dc i.e. dUy/de < 0, whereas the surface energy will
increase since cohesive molecular forces must be overcome in order to open
new crack surface, i.e. dUg/dc > 0. It is this balance that is expressed
through Eq. (2.8).

It is common practice to define a quantity referred to as the mechanical
energy release rate®; given as

AUy

G=—c

(2.9)
where C' is now the crack area. In a straight crack, the crack length c is
proportional to the crack area and we can write

_dUy _ dUs

G= de ~— de

=T, (2.10)

where I' denotes the surface energy per crack length, referred to as the frac-
ture energy. When Eq. (2.10) is fullfilled, the crack is in equilibrium, but as
soon as the energy release rate exceeds the fracture energy, the crack will

3Rate is in this context meant relative to extension of crack area or length, not time.
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start to propagate. This is expressed through the famous Griffith criterion
for fracture propagation

G>T. (2.11)

In the case of quasi-static conditions, i.e. very slow propagation of the crack
so that virtually no dissipation takes place at the crack tip, all the mechanical
energy is used to drive the crack forward and create new crack surface. The
velocity of the crack front is then proportional to the difference in mechanical
and surface energy, given by [43]

Lo—a-r, (2.12)
I

where p is an effective mobility of the crack front.
Finally it may be shown that the energy release rate can be expressed
through the stress intensity factor

G="—", (2.13)

where the denominator equals Young’s elastic modulus F in plane stress
loading. Note that Eq. (2.13) is the special case of Mode I fracture. Generally
in mixed mode fracture the energy release rate is composed of three stress
intensity terms, one for each mode [41]. Using Egs. (2.13) and (2.10) the
fracture toughness may be defined

2

r= [; = K,=VET, (2.14)

thus providing an alternate formulation of Griffith’s criterion for crack propaga-
tion in terms of the stress intensity factor and the fracture toughness: K > K..
The toughness is a constant material property for homogeneous media. In
heterogeneous materials on the other hand, disorder will induce local tough-
ness fluctuations.

2.2.3 Dynamical description of a crack tip

Using the framework presented in Secs. 2.2.1 and 2.2.2 it is possible to obtain
an average equation of motion of a Mode I fracture, propagating in a plane
of low toughness compared to the rest of the material. The analysis is indeed
similar to the classical work by Obreimoff [44] (1930), studying the splitting
strength of mica crystals.
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The system is shown in Fig. 2.5, and it is assumed in this case that the
loading is slow enough for quasi static conditions to apply. Furthermore it is
assumed that the upper plate is completely fixed, and the lower plate is thin
enough for simple beam bending theory to apply. For simplicity we consider
an arbitrary cross section along the y—axis, i.e. a two dimensional version
of the system. The crack length ¢ is the horizontal distance from the end of
the plate, where a point force F' is applied, to the crack tip. The deflection
or vertical separation between the two plates is in this case denoted d.

From simple beam bending theory [45] the applied force may be related
to the deflection and the vertical length of the bent plate (crack length) as

3EI

F=

: (2.15)

where [ is the so called area moment of inertia, a property of a cross sec-
tion of the lower plate in the zz—plane, depending only on plate geometry.
This quantity can be viewed as the resistance of the plate to bending and
deflection. The mechanical energy of the system consists of two terms; the
negative work of the applied force F'

AUy = —Fdo , (2.16)
and the strain energy Ug, given as

3EI15?

1
— s =0
Ur =3 268

(2.17)
by integration of the energy density in the deformed volume of the bent
plate [41]. The change in strain energy for a deflection variation dé and
crack extension dc is

U . OUp
dUp = Fd5 — ?’;S—fdc . (2.19)

Using the equilibrium condition of Eq. (2.8) and Eq. (2.10) we obtain

OF

oF EI15?
G = S0F 9 .

2¢ 2t

(2.22)
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We now impose a time dependent linear loading, i.e. § = V,t where V, is
the constant velocity of the bar used to displace the lower plate. From the
Griffith criterion [Eq. (2.11)] it is clear that the crack will remained fixed (c
is constant) as long as G < T, and propagate whenever G tempts to exceed
', thus we obtain from Eq. (2.22)

El o\ 1/4
oft) — (92;/) P2 (2.23)
de 1 (9ETV2\'*
v(t) = i ( T ) 12 (2.24)

Note that for a heterogeneous material, Egs. (2.23) and (2.24) are applicable
only on a global scale, giving the average! length and velocity of the crack
in time.

2.3 Toughness fluctuations and roughness

LEFM has a common property with the macroscopic equations of flow in
porous media, in the sense that it describes average behaviour of the dy-
namics when applied to heterogeneous materials. We turn now to describe
the influence of toughness fluctuations on fracture, again analog to the influ-
ence fluctuations of capillary threshold pressures have on the displacement
structures in porous media.

A crack propagating slowly in a purely homogeneous material will remain
straight or smooth, and it is possible through LEFM theory to obtain the
value of the stress intensity factor. In heterogeneous media on the other
hand, local defects induce fluctuations in the toughness of the material. This
will cause an initially straight crack to develop deformations, since the front
is pinned with different strengths at different positions. This is referred to as
roughness of the fracture front. Not only will toughness fluctuations cause
roughness, but the stress field will be correlated along the crack tip, i.e. the
stress intensity factor will be modified. In order to extend the LEFM theory
to the case of heterogeneous materials, perturbation analysis have been used
to account for disorder. First order corrections to fluctuations in the stress
intensity factors were included by Rice et al. [35], and a second order term
was proposed by Adda-Bedia et al. [46].

A particularly illustrative equation of motion can be obtained for fracture
in a heterogeneous material considering the stress intensity factor solution by
Rice, obtained for an infinite body. Remember that the stress intensity factor

4With respect to the z—direction in Fig. 2.5.
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can also be expressed through the mechanical energy release rate [Eq. (2.13)].
In terms of the latter quantity, the first order perturbation solution [35, 47]
is given as

G=a° (1 + L /OO Mdag’) : (2.25)

21 J_ o (2" — x)?

The position of the crack front at time ¢, now defined as h(x,t) as shown in
Fig. 2.6 in Sec.2.4.1, is confined to the xy—plane. This is so called in-plane
conditions. The parameter G° is a reference mechanical energy release rate
that would result in the case of a straight crack front located at the same mean
position (h(z,t)),. The integral describes long range elastic interactions in
the energy release rate, due to material heterogeneities. To model variation
in the fracture energy, equivalent to local toughness fluctuations [Eq. (2.14)],
we can write

I =T +n(z, h(z,1)], (2.26)

where T is the average fracture energy as in the case of a homogeneous
material, and 7 is an uncorrelated random component with zero mean, often
taken to be Gaussian. It is then straight forward to obtain the balance
between the mechanical energy release rate and fracture energy by inserting
Egs. (2.25) and (2.26) into Eq. (2.12). The following equation of motion is
obtained

lv =G -1+ ¢ /OO Mdm' —T%(x, h(z,t)) . (2.27)

L 21 J_ oo (2 — x)?
The terms on the right hand side of Eq. (2.27) represent the most important
effects in heterogeneous fracture. For a straight crack front, or at scales large
enough for the roughness to be disregarded, the crack velocity is simply given
by the difference between the average value of the energy release rate and
fracture energy (first two terms). For a rough crack front there is in addition
the competition between long range elastic forces and the disorder term (last
two terms). Equation (2.27) has been modeled extensively and shown to
describe a variety of systems; including in-plane fracture in PMMA [48],
wetting contact line motion on a disordered substrate [49], and interfaces in
disordered magnets [50].

It should be emphasised that Eq.(2.27) is only one model proposed to
describe disordered fracture propagation under certain conditions. Strictly
speaking it is applicable only under quasi static conditions and zero tem-
perature. At finite temperatures, thermally activated processes might cause
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so called sub-critical propagation, meaning that even though the Griffith cri-
terion [Eq. (2.11)] is not fullfilled, propagation can still take place [51, 52, 53].

Hopefully Eq. (2.27) convince the reader that toughness fluctuations cause
both roughness and velocity fluctuations along the fracture front. Roughness
will briefly be considered below, whereas the dynamics are the topic of Paper
I1T and will be treated in the next section.

Consider the fracture front h(z,t) in Fig. 2.6 in Sec.2.4.1. One way of
measuring the roughness [54] of such a profile is through the second moment
of the height distribution

Ah(Az) = ((h(z + Az) — h(z))H)Y? (2.28)

where the average is taken over all possible origins x of the window of width
Az. Scale invariance of this function, i.e.

Ah(Az) ~ Az (2.29)

gives a Hurst [55] or roughness exponent H. Equation (2.29) corresponds to
so called in-plane roughness. For three dimensional crack surfaces, one may
also find an out-of-plane roughness exponent [56]. When a relation such as
Eq. (2.29) can be found, the profile is said to display self-affine scaling prop-
erties. Typical values of the roughness exponent is between 0.4 < H < 0.8.
Quite remarkably, many different materials share the same roughness ex-
ponent [57], and it has been proposed that the morphology of fracture is uni-
versal for some classes of materials, independent of loading conditions [37, 58].

2.4 Local dynamics of fracture propagation

This section concerns the experimental study of the fracture dynamics in a
Plexiglas (PMMA) sample, shown in Fig. 2.4. Together with Paper III it
covers the second part of the work presented in this thesis.

2.4.1 Experimental setup and loading conditions

The setup used in our fracture experiments is shown in Figs. 2.4 and 2.5.
The fracture sample is made of two transparent PMMA plates: a thicker
plate with dimensions (30,14,1)cm and a thinner plate with dimensions
(30,10,0.4) cm for the length, width, and thickness respectively. The plates
are then sandblasted on one side using glassbeads ranging between 50 pym and
300 pm in diameter. Sandblasting introduces random roughness on the ori-
ginally "flat” surface. This causes light to be scattered in all directions from
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Figure 2.4: Picture of the experimental setup for studying fracture propaga-
tion in a PMMA block. A thick plate is clamped to an aluminum frame (A),
while the thin plate is subjected to a load from the press bar, seen in the
bottom right corner (B). The fracture front can be seen between the trans-
parent and opaque part of the PMMA block (C), and is imaged from above
with a digital camera (D).

these microstructures, and the plate is no longer transparent. The plates are
clamped together in a pressure frame, with the sandblasted sides facing each
other. The pressure frame is made of two parallel aluminum plates, exerting
a normal homogeneous pressure on both sides of the PMMA. Finally, the
pressure frame is put in a ceramic temperature controlled oven at 205°C
for 30 — 50 min. This annealing or sintering procedure creates new polymer
chains between the two plates and the resulting PMMA block is now fully
transparent. The new layer created between the two plates is weaker than
the bulk PMMA, so that we obtain a weak plane with quenched disorder in
which the fracture can propagate. This system is ideal for direct visual ob-
servation since the fractured part of the sample immediately becomes opaque
whereas the unfractured part remains transparent. The sharp and high con-
trast boundary between transparent and opaque parts defines the fracture
front.

The thick plate of the PMMA block is mounted on a rigid aluminum
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Figure 2.5: Sketch of the experimental setup. Two Plexiglas plates are
sintered together, creating a weak in-plane layer for the fracture to propagate.
Fracture is initiated by lowering a cylindrical press bar, controlled by a step
motor, onto the lower plate, as seen in Fig. 2.4. The uncracked part of the
sample is transparent, whereas the cracked part has lost transparency hence
creating a good contrast at the fracture front. The fracture front is imaged
from above by a digital camera. The deflection d (z-direction) between the
plates is indicated in the lower panel. The fracture plane is (z,y), where the
r— and y—direction is transverse and parallel respectively, to the average
direction of fracture propagation.

frame, also containing a camera setup for imaging. Mode-I fracture is induced
by a normal displacement of the thin plate by a cylindrical pressbar, as
shown in Fig. 2.4. Glycerol is put on the contact area between the plate and
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the pressbar to reduce friction and prevent shear loading. The pressbar is
mounted to a forcegage on a vertical translation stage controlled by a step
motor, so that it can be moved up and down in the z-direction. Through the
forcegage we are able to monitor the force exerted on the lower plate during
an experiment.

In order to investigate how different loading conditions affect the local
dynamics we apply the following loading to the PMMA sample: 1) forced
crack propagation with an imposed constant deflection velocity of the press
bar, and 2) creep relaxation with an imposed constant deflection of the press
bar.

The front propagation is then followed in time, using a high speed digital
camera, at the spatial resolution ~ 2 — 5 yum/pixel. The obtained grayscale
images contain two parts; a dark and a bright region, corresponding respect-
ively to the uncracked and the cracked part of the sample. Contrary to the
image analysis in Sec. 1.4.2; the gray level distribution of the raw image thus
presents directly two distinctive peaks, and a stable threshold value is imme-
diately obtained at the local minimum. The fracture front is then extracted
from the black and white image in the same manner as interfaces were ob-
tained in Sec.1.4.2. For a more detailed description of the front extraction
and image treatment see [59, 60]. Figure 2.6 shows the extracted fracture
front superimposed on the raw image.

Figure 2.6: Fracture front line h(z,t") at some time #', superimposed on the
corresponding raw image. Direction of propagation is from top to bottom.
System size L in the z-direction is indicated.
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2.4.2 Avalanche dynamics

On a laboratory scale the fracture front can be viewed as a non-rough line
propagating everywhere with the same velocity according to the loading con-
ditions. Dynamically, disorder in the system results in pinning and avalanche
like movement of the front. In some experiments this can be observed in re-
altime through the microscope. The front is seen in some parts to be almost
completely pinned, or only moving slowly, and then suddenly jump to a new
configuration. This can happen at multiple positions along the front at the
same time. The areas covered in such jumps, seen both from observation and
analysis, occur at very different sizes.

A big advantage of the setup is transparency. With a very high time
resolution, the front shown in Fig. 2.6 is followed over a distance of roughly
~ 500 um. As described in Appendix A of Paper III, each image can be
represented as a binary matrix, with unity entries at the position of the front
and zeros elsewhere. All binary front matrices are then added to form the
waiting time matrizv (WTM). Each element of the WTM is then an integer,
corresponding to the waiting time of the front at a particular position. The
waiting time w is inversely proportional to the normal local velocity v of the
fracture front

ay,
v = ,
dtw

(2.30)

where a, and dt are the spatial and temporal image resolution respectively.
A grayscale map of the waiting time matrix is shown for one of our exper-
iments in Fig. 2.7. Dark regions correspond to a high waiting time and a
low velocity, and vice versa for bright regions. The dark low velocity regions
are seen to occur as irregularly shaped ”lines” (pinning lines), separated by
brighter compact regions referred to as high velocity avalanches. The wide
span of waiting times shown by the colorbar, together with their irregular
distribution in space, is direct visual confirmation of a complex dynamics.
Furthermore this pinning/avalanche behaviour involves velocities on scales
1.5 and 2.5 decades below and above the average velocity of the fracture
front respectively.

The statistical analysis of pinning lines and high velocity avalanches along
the fracture front, is an important part of Paper ITI. The local velocity matrix
V(i,7), obtained through Eq.(2.30) for every element in the WTM, is a
spatial map of the normal local velocities along the crack front. It is the
basis for most of the analysis done in our fracture experiments. Avalanches
are defined as connected regions or clusters in the thresholded binary velocity
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Figure 2.7: Waiting time matrix from one of our experiments. The average
crack front velocity is (v) = 1.36 pm/s. The map results from the extraction
of 24576 front lines at a rate of 50 fps. Dark regions correspond to a high
waiting time and thus a low velocity, and vice versa for bright regions, as
shown in the colorbar indicating the number of timesteps the front has been
fixed at a given position. A unit timestep corresponds to 0.02s. Black
pinning lines are visible, with bright depinning regions in between. The
system size/width L is indicated.

matrix with elements

. 1 for V(i,j) > v
Voli, j) = { 0 for Vgi,jg <v (2:31)
where v, = C), (v) is the threshold velocity. The parameter C), is the threshold
constant, an integer of a few unities, and (v) is the average propagation
velocity of the crack front. For C}, = 6 and (v) = 0.17 pm/s a cropped region
of Vi is shown in Fig. 2.9 a). The full size of Vi corresponds to the system
size L, x L, (the size of a captured image). We show in Paper III that
independently of C), clusters of high velocity show scale invariant behaviour
up to some cutoff, both with respect to size and linear extension.

In addition to high-velocity avalanches, we consider also the statistics of
low velocity pinning lines. Pinning lines are found by a similar thresholding
procedure as in Eq.(2.31) but with reversed inequality signs, i.e. we con-
sider velocities smaller than v, = C,(v). Figure. 2.8 shows for C}, = 3 and
(v) = 1.36 pm/s the resulting thresholded matrix. The geometry of these pin-
ning lines differ from high velocity avalanches, but as our study has shown,
they share the same scaling properties.

Finally, the independence of the different loading conditions and average
crack front velocity with respect to: statistical scaling, velocity distribution,
and spatial and temporal velocity correlations, are amongst our findings.
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Figure 2.8: Pinning line matrix obtained for C,, = 3 and (v) = 1.36 pm/s.
Notice the difference in geometry of clusters compared to high velocity ava-
lanches in Fig. 2.9a).

2.4.3 Data analysis

In this section the robustness of the WTM procedure, introduced in the
previous section and thoroughly described in Appendix A of Paper III, is
demonstrated. Below, we consider a front subtraction method for obtain-
ing avalanches along the fracture front. The purpose of introducing this
algorithm is the comparison to the WT'M method, and in this manner en-
sure that the extracted results in Paper III are not influenced by the chosen
method of analysis.

The basis for this method is the front matrix h(7,j), containing all cap-
tured fracture fronts during an experiment. The time index ¢ runs from unity
to the total number of captured images, the position index 1 < j < L, de-
notes the position of the crack front along the x—axis, and h denotes the
position of the crack front in the y—direction (see Fig. 2.6). Let A; be the
number of unit timesteps between two fronts to be subtracted (e.g A, =1 is
the timeresolution between two consecutive fronts) and let A, be the distance
(in pixels along the y—direction) the front has moved during A;. We can now
impose a threshold condition on A, for a given value of A, to isolate both
high and low velocity regions of the fracture front. The front is considered
to propagate at a high velocity between i and i + A, if

h(i+ Ay j) —h(i,5) > A, (2.32)

for 1 < j < L,. It is now possible to obtain a binary matrix similar to Vo
[Eq. (2.31)] by defining a zero matrix V of size L, x L,. In looping through
the front matrix h(7,j) at a step of A; for ¢ and every j, the corresponding
matrix elements Vp(h(i,7) — h(i + Ay, j),7) are put to unity when the
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condition in Eq. (2.32) is fullfilled. Note at this point that when all elements
in Vi from h(i,j) to h(i + A4, j) are put to unity, it is implicitly assumped
that also the fronts in between i and i+ A; obey Eq. (2.32). This assumption
may not be fullfilled and could give rise to deviations, however the WTM
method does not suffer from such problems.

WWMM‘%
mmnm—m e T
S ek L e QPG SN

Figure 2.9: Thresholded velocity matrices showing high velocity avalanches
for C, = 6. One grid box has the dimensions 50 x 100 pixels. a) WTM
method showing Vi, and b) front subtraction method showing V. To a
large extent the two matrices are similar, but there are some deviations for
smaller clusters, as these are more sensitive to experimental error.

In order to compare the WTM method and front subtraction, we have
to threshold at approximately the same velocity. This is accomplished by
rescaling A, and A, with the actual space and time resolution a, and dt
respectively. Thus from Eq. (2.31) it is required that

Au ar

v = Cp(v) = A, di

AW ar
Cplvydt

(2.33)

At:

(2.34)
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Finally, A; must be rounded to the closest integer value, since it is used
as a matrix index. For the same parameters as was used to obtain Vi in
Fig. 2.9 a), i.e. C, =6 and (v) = 0.17 um/s, we use A, = 1 for a, = 2.24 ym
and dt = 0.5s, giving A; ~ 4. The matrix V is shown in Fig. 2.9 b). In
comparing Vp and Vi in Fig. 2.9, the structures are similar to a satisfactory
degree, allthough there are deviations in shape and size, in particular for
smaller clusters. However one can not expect to find identical clusters with
the exact same perimeter and size, due to the different definitions of an high
velocity avalanche in the two cases. In the WTM method, the velocity field is
thresholded directly, whereas it is done so indirectly in front subtraction. It is
also difficult to threshold at the exact same velocity due to integer rounding
when using a A, for a given C), in Eq. (2.34). Finally, smaller clusters are more
sensitive to experimental error such as pixel fluctuations in the apparatus,
deviations in thresholding when obtaining the fronts and so on.

A more quantitative comparison can be made by considering the statist-
ics of the clusters obtained with the two methods. Figure 2.10 shows the
probability density function of cluster sizes using both the WTM and the
front subtraction method, for two values of the threshold constant C,. It is
clear that the probability density functions are more or less equal in the two
cases, thus we obtain the same statistical results.
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Figure 2.10: Probability density functions P(S) for high velocity clusters of
size S using both the WTM and front subtraction method. Filled and empty
markers correspond to C, = 3 and C}, = 6 respectively. It is apparent that
the two methods produce the same statistics.
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Note that this version of front subtraction is somewhat crude and might
possibly be improved. In contrast to the WTM approach it does not give
the actual velocity field of the fracture front, and has also shown to be more
sensitive to experimental error, requiring a higher time resolution than the
WTM method to be accurate.



Chapter 3

Summary of the papers

Paper 1

In this paper the main experimental results from steady-state simultaneous
two-phase flow in a quasi two-dimensional porous medium are presented. The
wetting and the nonwetting phase are injected simultaneously from alternat-
ing inlet points into a Hele-Shaw cell containing one layer of randomly dis-
tributed glass beads, initially saturated with wetting fluid. The high viscous
wetting phase and the low viscous nonwetting phase give a low viscosity ratio
M = 10~*. The dynamics is dominated by the interplay between a viscous
pressure field from the wetting fluid and bubble transport of a less viscous,
nonwetting phase. In contrast to more studied displacement front systems
such as viscous and capillary fingering, steady-state flow is in equilibrium, in
a statistical sense. This opens for a simpler theoretical description, so that
the probability distribution of bubble sizes, depending on the Ca number,
can be explained. From an equilibrium condition between the applied work
rate on the system and the dissipation, we have been able to explain the-
oretically the experimentally found power law relation between the pressure
gradient in the system and the capillary number.

Paper 11

It is the same set of experiments that form the basis for Papers I and II.
Paper II is an extension of Paper I, where both the transient and steady-
state regimes of the flow are described. Transient behavior is followed in
time and space. The duration of this regime is shown to scale with the Ca
number, and it is observed that at a certain distance behind the initial front,
a "local” steady-state develops. This region shares the same properties as the

47
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later "global” steady-state. In this state, the nonwetting phase is fragmen-
ted into clusters, whose size distribution follows a scaling law, truncated by
a characteristic cluster size. This cutoff is found to be inversely proportional
to the capillary number. Furthermore it is demonstrated that a character-
istic length scale, depending on the capillary number through the pressure
gradient, controls the steady-state dynamics. Finally we devote a section to
the effects of compressibility, since air is used as the nonwetting phase, and
pressures can exceed several bars of atmospheric pressure.

Paper III

The propagation of a Mode I crack front along the heterogeneous weak plane
of a transparent Plexiglas block is followed in space and time at high res-
olution. To study the effect of different boundary conditions, we apply two
different loadings: 1) fracture is induced by opening the sample at a con-
stant deflection velocity, and 2) the sample is opened to a deflection distance
large enough to induce fracture and then kept fixed in this position. These
loading conditions correspond to forced propagation and creep relaxation of
the fracture respectively. The intermittent local dynamics for a wide range
(over four decades) of average crack front velocities, has been of primary in-
terest. We observe independently of loading conditions and average velocity,
similar dynamics. From both visual inspection and statistical analysis of the
velocity field, it is found that the fracture propagates through scale free pin-
ning and depinning regions. Avalanches (depinning regions) of various sizes
occur when the front jumps from one pinned configuration to the next. We
have related the local fluctuations in the crack velocity to the distribution of
avalanche sizes through a scaling relation. Additionally the analysis includes
space-time correlations of the local velocities, and we find that the evolution
of the width of the fracture front behaves as in simple diffusion growth.
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Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties

Ken Tore Tallakstad, Henning Arendt Knudsen,' Thomas Ramstad,”> Grunde Lgvoll,' Knut Jgrgen Mé’llcjy,l
Renaud Toussaint,4 and Eirik Grude Flekk(zjy1
'Department of Physics, University of Oslo, P.B. 1048 Blindern, NO-0316 Oslo, Norway
Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
3Numerical Rocks AS, Stiklestadveien 1, NO-7041 Trondheim, Norway
“Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS, Université de Strasbourg,

5 rue René Descartes, F-67084 Strasbourg Cedex, France
(Received 16 October 2008; published 18 February 2009)

We study experimentally the case of steady-state simultaneous two-phase flow in a quasi-two-
dimensional porous media. The dynamics is dominated by the interplay between a viscous pressure field
from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more
studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The
corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution
as well as the relation |[VP| o +/Ca between the pressure gradient in the system and the capillary number.

DOI: 10.1103/PhysRevLett.102.074502

Different types of immiscible multiphase fluid flow in
porous media play an important role in many natural and
commercial processes [1-3]. The complex fluid patterns
observed in such processes have been extensively studied
and modeled over the past decades; see [1-5], and refer-
ences therein.

The vast majority of work up to now has focused on
invasion processes: either pure drainage or pure imbibition.
These inherently transient processes give different dis-
placement patterns and are classified into capillary finger-
ing [6], viscous fingering [5,7-12], and stable front
displacement [13,14]. These are nonstationary processes,
and to understand them in a broader context there is a need
to understand the stationary case which has received far
less attention: steady-state flow, which is in equilibrium in
the sense that average flow properties and distribution
functions are invariant in time. This stationary system is
in statistical equilibrium although it is a dissipative pro-
cess; an external energy input balances the internal energy
loss to maintain the equilibrium.

With some notable exceptions, there is to our knowledge
very little pore scale experimental data available for such
problems [15]. The Payatakes group did pore scale steady-
state experiments using network models etched in glass
[16] and later theoretical modeling predicting the nonline-
arity of such flows [17]. In addition, some numerical work
has focused on a steady-state regime: a pore scale lattice
Boltzmann study by Gunstensen and Rothman [18] and
network simulations at larger scales by Knudsen et al. and
Ramstad er al. [19-22].

In this Letter, we experimentally demonstrate that an
equilibrium flow situation results after simultaneous injec-
tion of two fluids into a porous medium. This allows for the
combination of mean-field approximations of local quan-
tities and energy dissipation considerations. As a result, we
analytically obtain the highly nontrivial steady-state
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pressure-flow-rate relationship. Furthermore, in contrast
to transient flows, steady-state mass conservation gives a
normalization condition based on flow rate rather than
saturation. From this we derive a scaling law of the cluster
size distributions of nonwetting fluid.

Our system is shown in Fig. 1. The horizontal porous
model consists of a monolayer of glass beads of diameter
a = 1 mm, which are randomly spread between two trans-
parent contact papers [7,13]. The model dimensions are
L X W = 85 X 42 cm?, with thickness a and volume V =
aLW. The porosity and absolute permeability are mea-
sured to be ¢y = 0.63 and Ky =(1.95*0.1) X 1073 cm?,
respectively. The wetting fluid used is a 85%-15% by

INLET
OUTLET

FIG. 1. Depicted inside the model frame (L X W =
85 X 42 cm?) is the initial transient stage of an experiment.
There are 15 independent inlet holes with tubes and syringes
attached. Every second syringe injects the wetting phase; the
others inject the nonwetting one. An outlet channel with four exit
holes allows the fluid mix to leave the system. Three
SensorTechnics 26PC0100G6G flow-through pressure sensors
(indicated by the solid rectangles) are attached alongside the
model at the positions y = 0, L/2, L. Additionally, one pressure
sensor is attached to the first “air”” tube from the bottom.

© 2009 The American Physical Society
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weight glycerol-water solution dyed with 0.1% Negrosine
and has a viscosity w,, = 0.11 Pas at room temperature.
Air is used as the nonwetting fluid with viscosity u,,, =
1.9 X 107 Pas, giving a viscosity ratio M = w,,,,/ t,, ~
1074, The surface tension is measured to be y = 6.4 X
1072 Nm™L.

The tuning parameter in the experiments is the total flow
rate, i.e., the sum of the flow rate of the wetting and
nonwetting fluid, and can during steady state be written
as Qit = Oy + O,y = (8 +7)Qp, Where Q, is the flow
rate from every single syringe.

Gray scale images of the flow structure are taken at
regular intervals with a Pixelink Industrial Vision PL-
A781 digital camera. An image contains 3000 X 2208
pixels, corresponding to a spatial resolution of ~0.19 mm
per pixel (27 pixels in a pore of size 1 mm?). All analysis is
done on the basis of black and white thresholded images
[14] and the measured pressure signals.

The porous model is initially saturated with the wetting
phase. An experiment is started by injecting the fluid pair
from every other inlet hole. The initial structure consists of
bubbles or clusters of air distributed over various sizes, but
always much smaller than the system size. The clusters are
embedded in a background field of percolating wetting
fluid. Usually, the smallest air clusters are immobile and
trapped, whereas larger clusters are mobile and propagate
in the porous medium. However, trapped clusters can be
mobilized when they coalesce with larger migrating clus-
ters, and migrating clusters can be fragmented and thereby
trapped.

We divide an experiment into two regimes. A transient
regime where the mix of nonwetting clusters and wetting
fluid gradually fills up the model, as seen in Fig. 1. During
this time, the measured average pressure difference be-
tween y =0 and y = L, AP,, increases. This is due to
the presence of more and more air clusters trapped in the
system, effectively lowering the relative permeability for
the viscous wetting fluid. At some characteristic time,
shortly after both phases are produced at the outlet, AP,
starts to fluctuate around a constant value. This marks the
start of the steady-state (or statistically stationary) regime.
The whole model now contains a homogeneous mix of the
two phases, transported through the model without “long
time” flow parameter changes.

Through six experiments we have studied how the mea-
sured steady-state pressure difference AP; varies with the
capillary number Ca, defined as

— MW‘ Qwaz
YKoA

Ca (€))
where A = Wa is the cross-sectional area. This is shown in
Fig. 2, for a span in the Ca number of roughly two decades.
The steady-state pressure fluctuations are Gaussian, indi-
cating that AP; results from a sum of independent, local
pressure differences over scales smaller than the system
size. It is evident that the pressure is consistent with a
power law in the Ca number AP; o Ca®, where the ex-

100 —

T

AP, (kPa)

el
0.01 0.1

Ca

ol . .

FIG. 2. Mean pressure difference AP; during steady state as a
function of Ca. The fluctuations in AP; are of the order of 1 kPa,
i.e., very small compared to the mean values. A power law
dependence is found, with exponent 8 = 0.54 = 0.08.

ponent is found to be 8 = 0.54 = 0.08. This is a nontrivial
result, and we will return to the discussion shortly.

A general trend in the experiments, in passing from high
to low Ca numbers, is that the size or area of the largest air
clusters increases. This means that the geometry of the
clusters depends on the steady-state pressure gradient. To
quantify this, we have found the normalized probability
distributions of cluster extension in the x and y directions,
P(l,) and P(1,), respectively (see Fig. 3). We define the
extension lengths [, and [, as the sides of the smallest
rectangle (bounding box) that can contain a cluster. For
clarity, [, lays parallel whereas [, lays transverse to the
average flow direction.

Analysis shows that, for a cluster of a given area s, the
extension lengths have well defined means (/,) and (/,)
increasing monotonically with s [23]. The corresponding

10°

b, _ o4
" 3
10° | A‘A’x"ﬁ.‘ \jo'i /
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=~ 10°}| _ 10 . L2
s g ﬁn.& Ly /1
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1072} - 1 2 For
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FIG. 3. Air cluster extension length distributions P(l,) (filled
markers) and P(/,) (empty markers), collapsed by the rescaling
I*9P(1;) vs I;/I*, where i € {x,y} and ¢ = 2.8. The dashed
vertical line at /; = [* indicates the start of the different cutoff
behavior in the two directions. The lower left inset shows (solid
line) AP; o 1/I* with the corresponding experimental values
(squares). The upper right inset shows Al/{l,) vs (l,x)(l),)/l*z,
where Al = (l,) — (l,).
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standard deviations are small and proportional to these
means (relatively 20%) for all (/) and (/,) values [23].
Furthermore, we find that {/,) = (/,) up to a characteristic
length scale in the system [*. Above [*, (l,)>(l,), as
shown in the upper right inset in Fig. 3. The exact same
behavior is seen in the distributions P(l,) and P(l,).
Figure 3 shows, for the same Ca numbers used previously,
a collapse of the P(l,) and P(l,) distributions by the
rescaling I*?P(l;) vs I;/I*. The scaling exponent ¢ =
2.8 = 0.3 is taken as the value that gives the best collapse.
Apart from the expected crossover when the extension
lengths reaches the pore length scale a, the collapse is
very good. The above results reveal important information
of our system, particularly that there is only one length
scale [*, dependent on the pressure difference AP;, that
controls the steady-state displacement structure.

In the following, we shall give a simple and minimal
scaling theory for the purpose of predicting the exponents
B and ¢ from Figs. 2 and 3 respectively.

Consider a nonwetting cluster in the porous medium
surrounded by flowing viscous wetting fluid. The cluster
perimeter is made up of several menisci standing in differ-
ent pores. A single meniscus at a particular position has a
surface pressure given by the pressure difference of the
nonwetting and wetting fluid on each side. The nonwetting
fluid pressure is assumed constant inside the cluster due to
its low viscosity, whereas the wetting fluid pressure is
position-dependent, decreasing in the y direction. The
neighboring pores inside and outside the meniscus can be
either imbibed or drained, respectively, if the surface pres-
sure exceeds one of the capillary pressure thresholds for
imbibition or drainage. The imbibition and drainage
threshold pressures depend on pore geometry and are
thus distributions due to the randomness of the porous
medium [24].

If all menisci along the perimeter are in mechanical
equilibrium, the cluster is immobile. This is typically the
case for clusters with only a small l(v extension. However,
for large enough [, the viscous pressure drop on the
wetting side of the perimeter is sufficient for a migration
step to take place. Migration is the process of drainage in
one pore and imbibition in another along the perimeter.
The result of several migration steps is that the cluster
moves and perhaps also changes shape. The onset of
migration will depend on the difference between the
mean threshold pressure for drainage and imbibition [24],
a pressure we denote P,. Furthermore, P, predicts a char-
acteristic length of extension [* for cluster mobility

s

Vel = APL% =P, 2)

where we make the mean-field assumption that the pres-
sure gradient |VP| is constant. The scaling of the last
equality in Eq. (2) is verified experimentally, as shows
the lower left inset in Fig. 3. Note that /* also determines
when clusters become unstable against breakup, since the
mechanism of cluster mobilization is the same as that of

cluster fragmentation. This is important because it links the
single crossover length that collapses both P(l;) distribu-
tions in Fig. 3 to the extension of mobilized clusters.
Particularly, it means that the characteristic /, extension
of mobilized clusters is [*.

Equilibrium conditions require the total dissipation in
the system to be balanced by the work rate done through
the external pressure drop: QAP = D;. In obtaining
Dy, we assume that the main contribution to dissipation is
in the volume of the wetting fluid and that the dissipation in
the nonwetting fluid is negligible. Visual observation in-
dicates that most of the wetting fluid is restricted to flow
through narrow channels at some typical spacing. The
motion and configuration of the nonwetting clusters seem
to show that the channel width is of the order of a pore size
~a and that the permeability in between channels is made
relatively low by the presence of lowly mobile nonwetting
clusters. Motivated by these observations, we define a
dissipative wetting fluid volume:

W  aV

Viis = LAgis = Lazl—* = o (3)

where [* is taken as the spacing between channels, making
W/I* the number of channels through the system. This
simplification of channel flow of the wetting fluid is a
strong assumption, but supporting numerical simulations
also show that the dissipative volume is constrained to a
small fraction of the total volume, changing with the flow
rate.

Since the overall interface area between the wetting and
nonwetting phase is fluctuating around a constant value in
steady state, changes in the potential energy stored in the
interfaces do not contribute to the average dissipation, and
we are justified in writing

leAPL=Df=7f avulVel =2 [ avie, @)
X \4

ais Ko J Vg

where we have applied Darcy’s law locally, in the dissipa-
tive part of the wetting fluid. Taking the local Darcy
velocity u = (Q,,/A)(V/Vg4,) as a constant, and using
Egs. (3), (1), and (2), respectively, we obtain
_ 8yvr 8vP,

154°A 154°
i.e., |[VP| o« \/Ca, consistent with the exponent 3 in Fig. 2.
An alternative interpretation of this result is that the wet-
ting fluid experiences an effective permeability, assuming a

Darcy law r.(Ca) = w,,0,,/AIVP|, due to the flow of
air:

AP, Ca= |VP]> = Ca, 3)

15y
Kgff = m K%Ca. (6)
We turn now to the distributions of cluster extension
lengths and the found exponent ¢. From the collapses in

Fig. 3, it is seen that the distributions can be written
Pi(D) = 1" *h(1/1), ()

where the cutoff functions h;(x) are dominating. Note that
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this scaling form should be expected to hold only for /
above the lower cutoff scale ~a. To obtain ¢, we use the
fact that the nonwetting flow rate is an imposed quantity
and must in steady state be equal to the accumulated flow
of all mobile clusters on the average. The contribution of a
single cluster of extent [ to the total nonwetting flow rate is
alU(l), where U(l) is the average center of mass velocity.
Further, the average number of clusters of extension (/, [ +
dl) that intersects any given cross section A is given as
dIP;(I)N1/L. Hence we can write

_aN fe )
O = f dIPU)P,(1), ®)

where N is the total number of clusters. This number is
measured and found to depend only weakly, at most log-
arithmically, on Q,,,,. For simplicity, N will be treated as a
constant in the following.

To obtain U(I), we make the general assumption that it is
linear in Q,,,, and has some functional dependence on 1/1":

_ O

-
As a first-order approximation, f(x) would be a step func-
tion, since clusters of size [ < [* usually are immobile. By
Egs. (7) and (9) and the substitution x = I/I*, Eq. (8) can
be written

u() Fu/r. ©

N foo
1= l*(3"/’)a7 f/z* dxx>=? f(x)h;(x). (10)

Since the right-hand side of Eq. (10) must be independent
of I*, we obtain ¢ = 3 consistent with the experimental
value in Fig. 3.

In conclusion, experiments have been done on two-
phase flow in a porous medium under steady-state condi-
tions. In contrast to invasion processes and other inherently
transient phenomena of two-phase flow, steady state is in a
statistical sense an equilibrium situation. Whereas the
description of transient behavior is a whole range of sepa-
rate loosely attached cases, depending on flow parameters,
the description and formalism for steady state should be
more integrated and universal. Our work explores a part of
its parameter space, and we find a robust power law be-
havior: Pressure increases as AP; = Ca’>, alternatively
for permeability g o Ca>.

The power law is valid over roughly two decades, but
there should be cutoffs for large and small flow rates. For
high flow rate, the cutoff cluster size will approach the pore
size, and from that point the permeability must reach a
plateau. The same is the case for flow rates low enough that
the largest clusters are limited by the system size. These
limits were not realized experimentally, but in numerical
work these cutoffs have been seen [20,22].

The scaling behavior of the system was explained by
theoretical arguments, relying on a high viscosity ratio.
Numerical work with a lower viscosity ratio (steady state
but somewhat different boundary conditions) indicates a
lower exponent: AP, x Caf’, where 8/ < 0.5 [20]. We

conjecture that the presented theory is a limiting case and
thus is suitable as a starting point for further theoretical
developments, aiming at incorporating the more complex
case where the two fluids have more similar viscosities.

The work was supported by NFR through
PETROMAKS, a CNRS PICS, an ANR ECOUPREF
project, and a regional REALISE program. A special
thanks to Alex Hansen for useful comments.
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Steady-state, simultaneous two-phase flow in porous media: An experimental study
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We report on experimental studies of steady-state two-phase flow in a quasi-two-dimensional porous me-
dium. The wetting and the nonwetting phases are injected simultaneously from alternating inlet points into a
Hele-Shaw cell containing one layer of randomly distributed glass beads, initially saturated with wetting fluid.
The high viscous wetting phase and the low viscous nonwetting phase give a low viscosity ratio M=10"%.
Transient behavior of this system is observed in time and space. However, we find that at a certain distance
behind the initial front a “local” steady-state develops, sharing the same properties as the later “global* steady
state. In this state the nonwetting phase is fragmented into clusters, whose size distribution is shown to obey a
scaling law, and the cutoff cluster size is found to be inversely proportional to the capillary number. The steady
state is dominated by bubble dynamics, and we measure a power-law relationship between the pressure
gradient and the capillary number. In fact, we demonstrate that there is a characteristic length scale in the
system, depending on the capillary number through the pressure gradient that controls the steady-state

dynamics.

DOI: 10.1103/PhysRevE.80.036308

L. INTRODUCTION

There is truly a broad range of different immiscible mul-
tiphase flows in porous media [1-3]. Intrigued by the ob-
served complex dynamics and geometry, researchers have
over the past decades taken great interest to explain and
model these systems [1-7]. Not only is it important to un-
derstand these processes from a scientific point of view, but
there are also huge commercial advantages. Many questions
in this field still remain unanswered; thus, to develop a better
understanding is highly warranted.

Traditionally, experimental and theoretical works focused
on invasion processes: pure drainage (a nonwetting fluid dis-
placing a wetting fluid from a porous medium), or pure im-
bibition (a wetting fluid displacing a nonwetting fluid from a
porous medium) [8,9]. Different displacement patterns were
observed and classified into capillary fingering [6,10], which
has been modeled by invasion percolation [11], viscous fin-
gering [7,12-16], and stable front displacement [8,17,18].
Later experimental work has also been done by Tsakiroglou
et al., focusing on transport coefficients of such systems
[19-22]. The common feature of these effects is that they are
inherently transient. In large-scale reservoir systems there
will be regions and length scales where one or both of the
fluids are fragmented and transported as bubbles, i.e. dy-
namically very different from the regimes described above.
This transport is governed by the interplay and competition
between drainage and imbibition, and it is not sufficient to
look at these two processes separately. We therefore ap-
proach this problem by studying the steady-state regime ex-
perimentally on laboratory scale inside “a representative el-
ementary volume.”

*k.t.tallakstad @fys.uio.no
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This kind of flow regime, where drainage and imbibition
are occurring simultaneously, has received less attention than
the now classic “pure invasion” problems. There is a short
literature listing of steady-state pore-scale studies, but to the
best of our knowledge little experimental data are available.
Avraam and Payatakes [23-25] did pore-scale steady-state
experiments using etched two-dimensional glass models.
Their main focus was relative permeability and a qualitative
description and classification of flow regimes. Payatakes and
co-workers worked on numerical modeling and theory for
such problems [26-30]. In an experimental setup quite simi-
lar to ours, Vedvik et al. did experiments on fragmentation of
capillary fingering clusters in a background viscous field
[31]. Also numerical work has focused on a steady-state re-
gime. By means of two-dimensional numerical network
simulations Knudsen ef al. and Ramstad and Hansen studied
average flow properties and cluster formation in steady-state
two-phase flow [32-35].

In this paper we report on an experiment, in which a
nonwetting fluid with low viscosity (air) and a highly viscous
wetting fluid (a glycerin/water solution) simultaneously are
injected into a horizontal two-dimensional porous medium.
Hence, gravity has no influence on the displacement. The
medium is initially saturated with the wetting fluid, and we
investigate the initial transient regime, where the two fluids
mix, invade, and fill the system. We demonstrate that a
steady state is reached after some characteristic time. By
letting the injection continue beyond this point, we study the
flow dynamics and transport properties in steady state. The
main characteristic of this process is that the nonwetting fluid
is broken up and transported through the system as discon-
necting bubbles. We therefore pay special attention to the
size distribution of nonwetting clusters (bubbles). For six
different injection rates (spanning a range of two orders of
magnitude), the probability density of cluster size is mea-
sured and found to obey a scaling law. We also report results
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FIG. 1. Sketch of the experimental setup with the light box for
illumination, the porous model, and the digital camera. The porous
medium is sandwiched between two contact papers and kept to-
gether and temperature controlled with a water-filled pressure
cushion.

on the relation between the global pressure, a characteristic
cluster length scale, and the capillary number.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Figs. 1 and 2. We use
a monolayered porous stratum consisting of glass beads of
diameter a=1 mm, randomly spread between two contact

Air phase 420 mm

\ |
pressure sensor g ~.| 15 inlet tube connectors ‘
AT

Inlet t
pressure sensor [

Silicon gasket

Middle
pressure sensor [

Outlet
pressure sensor [+

L] s
Thermistor

4 outlet tube connectors

FIG. 2. Sketch of the experimental model. There are 15 inde-
pendent inlet holes with attached tubes where we inject (alternately)
the wetting and the nonwetting phase with syringe pumps. This
leads to a mixing of the two phases inside the model two-
dimensional porous medium (a random monolayer of glass beads)
and a mix of the two phases flows out of the outlet channel at the
opposite end of the system. In one of the inlet tubes (nonwetting
phase) and in the porous model (wetting phase) pressure sensors are
mounted for pressure measurements.

PHYSICAL REVIEW E 80, 036308 (2009)

TABLE I. Geometrical parameters of the experimental setup and
measured fluid properties. The absolute permeability « is measured
in a separate experiment with the wetting fluid only.

Description Symbol Value
Model length L 850 mm
Model width w 420 mm
Bead diameter a 1.0 mm
Porosity by 0.63
Permeability Ko (1.95%0.1) X 1075 cm?
Wetting fluid viscosity Moy 0.11 Pas
Nonwetting fluid viscosity Moy 1.9%X107° Pas
Wetting fluid density P 1217 kg m™3
Nonwetting fluid density Prw 1.168 kg m
Viscosity ratio M ~107*
Surface tension y 64%X1072 Nm™!

papers [16,17]. The model is a transparent rectangular box of
dimensions L X W=850X420 mm? and thickness a (see
Table 1 for a listing of model parameters).

A 2-cm-thick Plexiglas plate is placed on top of the
model. In order to squeeze the beads and the contact paper
together with the upper plate, a Mylar membrane mounted
on a 2.5-cm-thick Plexiglas plate, below the model, is kept
under a 3.5 m water pressure as a “pressure cushion.” The
upper and the lower plates are kept together by clamps, and
the side boundaries are sealed by a rectangular silicon rubber
packing. The upper plate has 15 independent drilled inlets for
fluid injection and a milled outlet channel (Fig. 2). The dis-
tance between the inlets and the outlet channel defines the
length of the model.

The wetting fluid used in all our experiments is a 85
—15 % by weight glycerol-water solution dyed with 0.1%
Negrosine (black color). Air is used as the nonwetting fluid.
This gives a black and white fluid pair with good visual
contrast. The wetting and the nonwetting fluids have viscosi-
ties of u,~0.11 Pas and u,,=1.9X107 Pas, respec-
tively. The viscous ratio is thus M=,/ i, ~ 107, which is
typical for a gas/liquid system. Other fluid parameters are
found in Table I. The model is held at a constant temperature
of 20 °C during the experiments. This is monitored by mea-
suring the temperature in the wetting fluid at the outlet, thus
allowing an accurate estimation of the viscosity of the fluid.

During experiments the pressure is recorded at four dif-
ferent positions, in one of the air inlet tubes and in the wet-
ting fluid at the edge of the model: close to the inlet, at a
distance L/2 in the flow direction, and in the outlet channel
(Fig. 2) using SensorTechnics 26PC0100G6G Flow Through
pressure sensors.

The flow structure is visualized by illuminating the model
from below with a light box and pictures are taken at regular
intervals with a Pixelink Industrial Vision PL-A781 digital
camera, which is controlled by a computer over a FireWire
connection. This computer records both the pictures and the
pressure measurements. Each image contains 3000
X 2208 pixels, which corresponds to a spatial resolution of
~0.19 mm per pixel (27 pixels in a pore of size of 1 mm?).
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The color scale contains 256 gray levels. The gray level dis-
tribution of the image presents two peaks corresponding, re-
spectively, to the white air-filled and dark gray glycerol-filled
parts of the image. The image is thresholded at a constant
offset from the white peak so as to obtain a representative
boundary between the two phases [18]. All further image
treatments are performed on the resulting black and white
image. The exact choice of the threshold value influences the
extracted results. However, by visual inspection and analyses
of results from a range of threshold values around the chosen
one, the deviations are found to be small and systematic with
this perturbation. We therefore claim that this procedure of
choosing the threshold value is consistent and that the result-
ing data may be compared directly.

Close to the inlet and to a small degree along the model
perimeter, there are boundary effects in the displacement
structure. To avoid these, we define a (69 X 30) cm region of
interest (ROI) in the central part of the model. Image analy-
sis is then performed only inside this ROL

In all experiments the porous model is initially filled with
the wetting glycerol-water solution. An experiment is then
started by injecting the wetting fluid and the nonwetting fluid
from every other inlet hole (Fig. 2). Counting from one side
this means that syringes 1,3,5,...,15 altogether eight indi-
vidual syringes for the wetting fluid are used for the injec-
tion. Similarly, syringes 2,4,6,...,14 altogether seven indi-
vidual syringes are used for the nonwetting fluid. The
movements of all 15 syringes are controlled by the same step
motor, setting an equal displacement rate.

III. RESULTS

As the nonwetting fluid enters the model, it first forms
elongated clusters which are connected with their respective
inlets. As these clusters grow, they are snapped off by the
wetting fluid and transported as bubbles along the flow to-
ward the outlet of the model. Over time the nonwetting air
clusters propagate all the way to the outlet of the model, thus
filling the whole porous matrix with a mixture of air and
glycerol-water solution. The air only exists in the form of
fragmented clusters while the glycerol-water solution perco-
lates the model at all times. It is observed that the smallest
air clusters usually are immobile and trapped. Larger clusters
on the other hand are mobile and propagate in the porous
medium. However, mobilization of trapped clusters can oc-
cur when they coalesce with larger migrating clusters. Con-
versely, fragmentation and trapping of migrating clusters also
take place, so the fate of an air cluster is thus highly unde-
cided. In this context it is worth mentioning the detailed
pore-scale study of cluster mobilization and entrapment by
Avraam and Payatakes [23,39].

We run the experiment for a significant time after air
breakthrough. Shortly after breakthrough the transport pro-
cess reaches steady state, meaning that both phases are trans-
ported through the model without “long-time” flow param-
eter changes, implying that the pressure difference, relative
permeabilities, saturations, and cluster distributions are on
average constant. Images of the evolution of the transient
part of a typical experiment are shown in Fig. 3.
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2 h 23 min

FIG. 3. For the Ca=0.0079 experiment, the system is shown at
three different times. Both fluids are injected at left hand side; the
outlet is at the right. The upper panel shows a sample in the early
transient regime. The water-glycerol mixture is of dark color. This
is best seen to the right of the upper panel, where the small bright
dots are the solid glass beads. The air is bright white, and glass
beads surrounded by air may be indiscernible. The middle panel
shows a later stage in the transient. The lower panel shows fully
developed steady state.

In Fig. 4 pressure differences over the model are plotted
as function of time. Three pressure sensors are used: at the
inlet, in the middle of the model, and at the outlet. Even
though pressure measurements are local, and measured in the
wetting phase, they reflect on average the global pressure
development of both phases. If both phases are present along
a given cross section transverse to the flow, the pressure
along this cross section will only vary by small capillary and
viscous fluctuations. Due to the size of our system and the
high viscosity of the wetting phase, the measured pressure
drop is much larger than these fluctuations. Physically rel-
evant for the motion inside the model is the pressure differ-
ence between (i) inlet and outlet and (ii) middle of the model
and outlet which, for brevity, are referred to as inlet and
middle pressures. In Fig. 4(a) we can see the signature of a
“breakthrough” just before =60 min in the pressure sig-
nals. Here, the apparent linear increase in pressure stops.
Shortly after this time the two signals approach a constant
level as we reach steady state. In the transient regime the
overall pressure behavior at the two sensors appears differ-
ent. As air enters the model, the inlet pressure starts to in-
crease and it increases linearly until breakthrough, while the
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TABLE II. For each of six experiments are given the capillary
number, the corresponding flow rate out of a single syringe pump
0y, the total flow rate 150, and the “total invasion flow rate” Q™"
(see Fig. 14). The difference between 150 and Q;Z;’ is due to com-
pressibility effects as will be discussed in Sec. III D. The capillary

number is calculated from Eq. (1).
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FIG. 4. (Color online) Time evolution of the pressure in each of
the six experiments, performed at different injection rate, which is
denoted in terms of the capillary numbers (a) Ca=0.17, (b) Ca
=0.90, (c) Ca=0.032, (d) Ca=0.015, (e) , and (f) Ca=0.027. The
upper black curves are the measured pressure differences between
the inlet and the outlet. The lower red (dark gray) curves are the
pressure differences between the middle of the model and the outlet.
The straight line fit to the pressure curves in (a) shows the determi-
nation of the steady-state time 7, i.e., at which time the system
enters into steady state.

middle pressure is constant until the air bubbles reach the
sensor (~30 min). At this point the middle sensor pressure
also starts to increase linearly. This is because the average
pressure at a point inside the porous medium is controlled by
the viscous pressure drop between that point and the outlet
channel. Moreover, as air bubbles pass the sensor, the effec-
tive permeability of the medium in front of the sensor is
lowered. In order to maintain constant flow rate, the pressure
has to increase.

In order to learn more about the transient and the transi-
tion to steady state, here, we present the results of six experi-
ments performed at different injection rates. The injection
rate is controlled by the speed of the step motor used to
control the syringe pistons. The rates and the corresponding
capillary numbers are given in Table II. We define the capil-
lary number as the ratio between the viscous and the capil-
lary pressure drops over a pore of typical size a,

_ 0@ v,
YA YKo

Ca , (1)
where A=Wa is the cross-sectional area, Q,,=8Q, is total
flow rate of the wetting fluid, and v, is the Darcy velocity of
the wetting fluid.

Qo 150, o
Ca (ml/min) (ml/min) (ml/min)

0.17 0.553 8.29 5.73
0.090 0.279 4.18 2.90
0.032 0.114 1.71 1.29
0.015 0.055 0.83 0.67
0.0079 0.023 0.41 0.35
0.0027 0.011 0.16 0.15

A. Transient behavior

A first characteristic time in the transient regime is the
elapsed time from onset of invasion until the first break-
through of nonwetting fluid (air). Recall that the model ini-
tially is filled with wetting fluid. We determine this break-
through time #, by visual inspection in each experiment. A
second characteristic time is when all signs of transient be-
havior vanish: the steady-state time 7. To some degree it is
possible to see the transition to steady state also by visual
inspection. However, as opposed to the breakthrough time,
which is sharply defined visually, the steady-state time is not
so sharply defined in this way.

In order to quantize the steady-state time, we make use of
the measured pressure curves. Figure 4 shows the evolution
of the pressure difference between (i) inlet and outlet and (ii)
middle point and outlet for each experiment. The pressure
saturates and fluctuates around some value at late times in all
cases. Prior to saturation there is a period of close to linear
increase in the pressure. By making a straight line fit to this
slope and flat line fit to the saturated value, we define their
crossing point to be the steady-state time ¢, as shown in Fig.
4(a). This definition is sharp and consistent in the sense that
this time is the same no matter which of the pressure mea-
surement points (inlet or middle) is used.

The resulting characteristic times versus the capillary
number are plotted in Fig. 5. Power-law fits are obtained as
shown in the legend. Leaving out details of the process one

1000

-0.89
o 1,~Ca

-0.76
o1t ~Ca

t (min)

100

il
0.01 0.1
Ca

FIG. 5. Measured breakthrough time #, and steady-state time 7
as a function of the capillary number Ca.
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FIG. 6. (Color online) Pressure difference between inlet and
middle sensor AP;,, as a function of time ¢ for Ca=0.015. Three
characteristic times are indicated by dashed lines; the time at which
the front passes the middle sensor 7, the breakthrough time #,, and
steady-state time #.

would expect these times to be proportional to the inverse
injection rate. The deviations in the found exponents are
small, but nevertheless indicating that there are variations in
invasion structure and saturation with Ca.

B. Steady state

In Sec. III A we learned that there exists a well-defined
transition to steady state based on analysis of the pressure
signal. This is a global criterion, meaning that the system as
a whole has reached a steady state. We wish to look at this
also on a local scale.

From the onset of invasion a frontal region establishes,
containing quite large nonwetting clusters (see Fig. 3). Here,
the wetting saturation is somewhat larger than compared to
the region behind the frontal region. In addition the region
behind the front is more fragmented and homogeneous. We
claim that, locally, the region behind the front has already
entered into steady state. This is interesting because this hap-
pens very early in the process. The region with local steady
state grows as the front sweeps through the model. Two ar-
guments support this observation.

First, there is the fact that the pressure monitored by the
middle sensor increases linearly from a time ¢ right after the
front has reached the sensor [see Fig. 4(d)]. This linear in-
crease has the same slope as the inlet sensor pressure until
steady state is reached globally (see Fig. 6). For all experi-
ments we find that the pressure difference between the inlet
and the middle sensors, AP, (1,<t<t), during this linear
increase is hardly distinguishable from AP;,(r>1), as
shown in Fig. 6. Since the displacement rate is constant and
close to equal both in the transient and the steady states, it
follows from Fig. 6 that the relative permeability of the re-
gion behind the front must equal that of the later global
steady state.

Second, image analyses of parts of the model behind the
front in the transient regime as well as in global steady state
were performed, yielding similar results for saturation and
cluster distribution. This statistical equality and the above
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FIG. 7. (a) Average steady-state pressure difference AP vs cap-
illary number Ca. The solid line is a power-law fit to the measured
points giving an exponent B=0.54*0.08. Inset shows the
Gaussian-like PDF of AP(r>1,)-AP. Note that for all experi-
ments the fluctuations are small and on the order of 1 kPa. (b) The
nonwetting saturation S,,,, as a function of the capillary number Ca.

results demonstrate that the region behind the front is in local
steady state.

The global steady state can be quantized by the averaged
global pressure drop between the inlet and the outlet,

1 Tend
AP = 7f AP(t)dt, (2)
fﬂ

Lena = Lss

where 1,,,; is the end time of the experiment and the nonwet-
ting fluid saturation S,,,, [see Figs. 7(a) and 7(b)].

Experimentally, saturation is not an easily accessible pa-
rameter and two approaches have been employed to deter-
mine the saturation [see Fig. 7(b)]. A direct method uses the
measured amount of wetting fluid that leaves and enters the
model. It is in principle a precise method, but it is global.
Possible boundary effects, e.g., different saturations near
edges or corners, are ignored. Further, image analysis was
used by setting a certain grayscale clipping level, as de-
scribed in Sec. II, and then from the binary image count the
amount of wetting fluid.

One observes that the nonwetting saturation decreases
with increasing the total injected flow rate. The constraint
that the fractional flow is kept constant, a situation for which
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
[33,34]. However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7(a) shows the mean steady-state pressure differ-
ence AP as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF(AP-AP,,) in the inset of Fig. 7(a). For all
experiments the standard deviation in AP, is on the order of
1 kPa. It is evident that AP follows a power law in Ca,

AP = CaP, (3)
with the exponent
B=0.54 £ 0.08. 4)

This behavior is by no means obvious [36], and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function (PDF) p(s) as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8(a). A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory [37],
we assume that the distribution of the clusters follows the
PDF,

pls) < 577 exp(=s/s7), (5)

where s* is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant 7 and s* as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8(a). By averaging
the fitted 7 exponents it is found that 7=2.07 +0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that 7 is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s* are found to
scale with Ca [Eq. (1)] as
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FIG. 8. (Color online) Nonwetting cluster size PDF p(s) in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm?. (a) Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. (5). (b) The horizontal and the vertical axes are
rescaled with 1/s™ and s*7, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s* is shown in the
inset.

s* o Ca™?, (6)

where {=0.98 +0.07. This is shown in the inset of Fig. 8(b).
One should note, even for the lowest Ca number, that s*
~10° pixels is considerably smaller than the system size
~107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation (5) predicts a rescal-
ing of the horizontal and the vertical axes with 1/s" and s*7,
respectively. On this basis the data collapse in Fig. 8(b) is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p(s) < s "H(s/s"), (7)

where H(x) contains an exponential cutoff [Eq. (5)], so that
p(s)—0 when x> 1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: [, transverse to the overall
direction of flow and /, oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides [, and [, to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, [;, where i
e {x,y}, will denote both the /, and the /, extensions. It is
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FIG. 9. (Color online) The extension lengths /; are measured in
pixel units; 1 pixel=0.19 mm. (a) Data collapse of multiple p(l;]s)
PDFs, where i € {x,y}. The s values are picked from all experiments
and ranges over four decades. The collapse is obtained by a rescal-
ing predicted by the Gaussian distribution function. (b) Scaling of
(ly) and (L) with s for all Ca numbers. The horizontal axis has been
rescaled with 1/s" to emphasize that Eq. (9), represented by the
solid red (dark gray) lines, shows deviations for s>s*. The inset
shows the scaling of o with s, [Eq. (8)].

found that the PDF of /; for a given cluster size s, p(l;|s), is
a Gaussian. Additionally, for s=s", the corresponding stan-
dard deviation o and mean (/;) of p(/;|s) scale with the clus-
ter size as

o=AysP, ®)
(Iy=As, )
with prefactors A,=0.25 and A;=1.12, where g,

=0.55*0.06 and B;=0.57 = 0.05. Within the limits of uncer-
tainty, B, and 3; can be considered equal. The corresponding
prefactors yield

al{l}y = 0.22, (10)

meaning that the standard deviation is roughly 22% of the
mean extension length.

The collapse of multiple p(l;|s) PDFs of different cluster
sizes and Ca numbers and the scaling of Egs. (8) and (9) are
shown in Figs. 9(a) and 9(b), respectively. Figure 9(a) re-
veals a strong correlation between cluster size and linear ex-
tension, and we believe that the use of bounding boxes to
characterize the clusters is justified. It is evident from Fig.
9(b) that the scaling of (/,) and (/,) is equal for s=s", a point
to which we will return shortly. However, at this stage we
note that the cutoff cluster size s* corresponds to a cutoff
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FIG. 10. (Color online) Average extension length (/) vs (I,),
with both axes rescaled with the cutoff length /*. Clusters are not
elongated, on the average, until /* is reached. The inset shows the
relative length difference Al/(l,) as a function of s/s*, where Al
=(l,)=(L,). Al/{l,) increases significantly when s" is reached.

extension length /*. From Egs. (6) and (9) it follows that
I"=A;s*Pioc Ca~%Pi, (11)

The similar scaling of (/;) for s=s" means that nonwetting
clusters fit into quadratic bounding boxes on the average and
can thus be considered isotropic at these sizes. This is seen
from Fig. 10 where (/,) is plotted vs (/,), both rescaled with
the cutoff extension length [*. It is evident that the average
bounding box for (/;)=<I"* is quadratic, and furthermore this
behavior is independent of Ca. When (I;) reaches I*, equiva-
lent to the cluster size reaching s, there is a crossover and
the clusters are seen to be somewhat elongated in the direc-
tion of flow on the average. Cluster elongation or anisotropy
is best emphasized by considering the average relative length
difference Al/(l,), where Al=(l,)=(l,). The inset of Fig. 10
shows, for six Ca numbers, the relative length difference for
all cluster sizes. Each curve is characterized by a region
where the relative length difference is constant or only
slowly increasing, always less than 5%. As the cutoff cluster
size s* is reached, Al/(l,) increases significantly. Specifi-
cally, the largest sustainable clusters are roughly 30% longer
in the direction of flow than transverse to the direction of
flow.

To understand elongation, one has to consider how the
capillary pressure at the cluster perimeter is affected by a
surrounding viscous pressure field. In mechanical equilib-
rium, the surface pressure P,,,—P,, equals the capillary pres-

sure Py,

1 1
Pu=Pu=Pap=—+—]. 12
nw w p 7(R| R2) ( )

where R and R, are the radii of curvature in the well-known
Young-Laplace law. The wetting fluid pressure difference
AP, over a cluster of length /, can be approximated as
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AP

Asz L

whereas the nonwetting fluid pressure P,,, is constant inside
the cluster. The capillary pressure over the interface of the
cluster will thus decrease in a direction opposite to that of the
overall flow, highest at the tip and lowest at the tail of the
cluster. As we shall see, this introduces anisotropy which will
depend on the crossover length /*.

In the case of steady-state simultaneous flow, the dynam-
ics of nonwetting clusters are influenced by a competition of
both drainage and imbibition processes. A pore is drained or
imbibed when the capillary pressure is above or below the
capillary threshold pressure for drainage Pf_) or imbibition Pf,,
respectively. Due to the randomness in the local geometry of
the porous medium, P? and P! are not fixed values. As dis-
cussed by Auradou et al. [38], they will vary independently
from pore to pore according to their respective distribution
function. Furthermore, these distributions are isotropic.

Clusters of length [, <</* are observed from experiments to
migrate only small distances in the porous matrix. Usually
they get trapped and can only be remobilized by coalescing
with larger migrating clusters. Migration is the process
where drainage is followed by imbibition, so that a cluster
moves without changing its volume. The viscous pressure
field sets a length scale, below which the local geometry
dominates the choice of flow path. Above this length scale,
growth near the advancing tip and retraction near the reced-
ing tail are favored due to the now significant capillary pres-
sure difference between the cluster tip and tail.

As we have seen, clusters cannot grow infinitely large. It
is the occurrence of snap-offs [38] of the cluster tail, caused
by imbibition, that will determine the /, extension. The prob-
ability of a cluster snap-off will mainly depend on (1) the
difference between the average capillary pressure threshold
for drainage and imbibition P,=P"— P’ and (2) the capillary
pressure difference APg,,=Pyp iip= Peaprail [s€€ Eq. (12)] be-
tween the advancing tip and receding tail of a cluster. Fur-
ther, snap-offs will typically occur when

AP, > P, (14)

Using Egs. (12) and (13) we obtain the following crossover
length scale from Eq. (14):

AP, . -

= r=p, (15)
_

I'=pL—. 16
Lap. (16)

Equation (16) predicts a cutoff length [*, inversely propor-
tional to AP, over which clusters can stay connected. At
this point an important observation is made; inserting Eq. (3)
into Eq. (16), we see that the cutoff length [* scales with the
Ca number as in Eq. (11), provided B={B;. All of the latter
exponents have uncertainty, which within we can make the
reasonable claim that they are equal, and thus that our find-
ings are consistent with
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FIG. 11. A conceptual sketch of the assumed channel system.
Channels of the wetting fluid, of a characteristic width that coin-
cides with the pore width, are separated by a distance [*. Q indicates
the average direction of flow.

. L

" AP, (17)
To sum up, we claim that Eq. (17) controls the onset of (1)
cluster elongation or anisotropy as seen in Fig. 10, (2) snap-
offs and the size of the largest sustainable clusters as seen in
Fig. 8, and (3) cluster mobilization.

The scaling relation between AP and Ca [Eq. (3)] can be
derived by the following argument of dissipation balance
[36]. Since the average interface area of the system will re-
main constant in steady state, all the power that is put into
the system goes into viscous dissipation. This dissipation
will then take place in the high viscous wetting fluid. The
flow pattern of the wetting fluid is best described as an in-
terchanging network in between the air clusters, containing
larger islands connected by narrow channels on the order of
a pore size wide. It is reasonable to assume that the majority
of viscous dissipation will take place in the narrow channels,
since the local flow velocity is much higher here. In this
respect it is also important to remember that the permeability
for the most part is set by the narrowest parts of the fastest
flow path through the medium. Islands of wetting fluid do
not contribute as much.

Careful visual observation indicates that the width of the
channels are typically one or a few pore widths, while the
spacing between these channels must be the characteristic
cluster length /*. This conceptual picture is illustrated in Fig.
I1. Thus, the volume in which the dissipation happens is
then assumed to be the volume of these channels and will be
denoted as V;;,. We may then write the following proportion-
ality for Vi

w
Vs  number of channels = i x APy, (18)

where the last proportionality follows from Eq. (17). On the
other hand, the total work per unit time which is done by the
pressure drop across the system must equal the internal dis-
sipation D, so that
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15Q0AP, =D o« V1, (19)

where u is the average flow velocity of the wetting fluid and
D is the integral over Vy;, of u|VP|. Furthermore, the pres-
sure gradient |V P|ou thanks to Darcy’s law. The flow veloc-
ity u is set by the volume flux as

u % o AQ; (20)
dis 55

by the use of Eq. (18). Upon insertion of u in Eq. (19) we
may write in terms of the Ca number (CacQ,, Q)

AP, = \Ca, (21)

which is the scaling relation we set out to prove. Darcy’s law
allows us to write things in terms of a Ca-dependent effective
permeability «(Ca). Since Darcy’s law takes the form

AP
= (22)
My L
we immediately obtain
k% \Ca. (23)

We have already discussed the normalized PDF of non-
wetting clusters, p(s), which was shown to obey a scaling
law in the cutoff cluster size s* [Eq. (7)], and thus also in the
capillary number Ca [Eq. (6)]. We now turn to a discussion
of the PDF of [; for all s, namely, the marginal PDF p(1;).
Since there is no one-to-one correspondence between /; and
s, no exact analytical solution of p(/;) can be obtained from
Eq. (5). However, p(l;|s) is Gaussian [Fig. 9(a)] and nar-
rowly peaked around {/;) [Eq. (10)]. On this basis we would
expect p(l;) to have similarities with the PDF

ds
g(l) =p(S)E, (24)
1\ VB
gy <17 exp[— (lj) ], (25)
where
T+ Bi—1
=—=209. 26
L) 0

The function g(/) is thus the PDF obtained when assuming
that Eq. (9) applies for all /;.

The PDFs p(l,) and p(l,) are plotted in Fig. 12(a), and it is
evident that a cutoff behavior is dominant, similar to what is
found for p(s). Furthermore, for the largest extension
lengths, the probability density p(l,) is larger than p(l,) for
all the Ca numbers. This is intrinsically linked to the fact that
large clusters are elongated in the direction of flow as dis-
cussed previously. We have already argued that there exists a
cutoff length /* common for both /; directions. The observed
difference between p(l,) and p(l,) is thus due to different
cutoff behaviors in these PDFs as a consequence of elonga-
tion.

On the basis of Eq. (25) a rescaling of the form I*%p(l;) vs
[;/1* is predicted. The corresponding data collapse is shown
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FIG. 12. (Color online) (a) Plot of the linear extension PDF
p(1,) and p(l) for various Ca numbers (similar symbol encoding as
in Fig. 10). (b) shows a data collapse, predicted by Eq. (25), of the
same curves. The red (dark gray) filled and black empty markers
represent /, and /,, respectively. The exponent ¢ is taken as the
value that gives the best collapse, and it is found that ¢=2.8=0.3.
Solid black lines indicate the difference in cutoff function of p(l,)
and p(ly).

in Fig. 12(b). The exponent ¢ is in this case taken as the
value giving the best collapse, and it is found that ¢
=2.8+0.3, in agreement with Eq. (26). Again there is a
crossover as the extension length approaches the pore scale,
but above this scale the collapse is most satisfactory. The
small difference in the cutoff function, as discussed above, is
indicated by the two solid lines in Fig. 12(b). Analog to Eq.
(7), p(l;) obeys the scaling function

p(l) = F_(be(li/l*) 5 (27)

for clusters above the lower cutoff scale.

The imposed nonwetting flow rate during steady state
Q,,,=70, must on average equal the flux of nonwetting clus-
ters inside the model. As shown in [36], this gives a normal-
ization condition that can be used to obtain the value of the
scaling exponent ¢, in Eq. (27),

0 =" f " dl UG, (28)

where we have skipped subindices. Here, NV denotes the total
number of clusters. Below we show that this number de-
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FIG. 13. Total number of clusters N in the system of area A
=L X W as a function of the crossover length /*. The upper and the
lower limits of the error bars correspond to a chosen threshold of
s=14 and s=30, respectively. Inset shows the size PDF of glass
beads. A threshold of s=20 pixels ensures that no glass-bead “clus-
ters” are included in N.

pends only very weakly on the flow rate. U(/) denotes the
average center of mass velocity of a cluster of extent /. This
function is assumed to be linear in Q,,, and to depend only
on some function f(//1"). As a first approximation one could
take f(1/1*)c@(l/I"-1), where O(x) is the usual Lorentz-
Heaviside step function, since small clusters usually are im-
mobile,

u(l) = %f(l/l*). (29)
By insertion of the distribution of /; in Eq. (27) and applying
the substitution x=1/1%, Eq. (28) gives

g
1= 1*<3-¢)“7 f 2F()G,(x)dx, (30)
all’*

where the integrand converges in both limits. In particular,
the lower limit corresponds to immobile clusters where
U(I)=0. If the total number of clusters N is constant with
respect to [ or Ca, we obtain immediately ¢=3. This is
consistent with our experimental findings. We wish however
to elaborate somewhat on the influence of N on the exponent
¢, as measurements of N is found to have a weak, at most
logarithmic, dependence of [*. In counting the number of
clusters, there is an experimental technicality that needs to be
addressed. In the black and white images used in the cluster
analysis, both the glass beads that constitute the porous me-
dium and regions of air show up as white pixels. This means
that there is a size distribution of bead “clusters” that should
be disregarded from the real air cluster size distribution. Ana-
lyzing background images, i.e., images of the porous matrix
filled with the black wetting fluid only, it is found that the
distribution of glass beads does not exceed a size of s
=20 pixels as shown in the inset of Fig. 13. Thus, in obtain-
ing N we use s=20 pixels as a lower threshold for a cluster
to be counted. However, clusters of all sizes contain pixels
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FIG. 14. The solid line is the measured accumulated outflow of
the wetting phase since the start of the experiment. After the steady-
state time 7, the slope of this curve equals 8 X Q, as one should
expect since this is the injection rate of the wetting phase. However,
for t <t the pressure increases in the model, thus compressing air,
and therefore the outflow of wetting fluid QY is less than 15
X Qg which one would expect in the case of incompressible fluids.

from both glass beads and air. As a consequence, when we
are above the typical bead size, a constant size fraction is
added to the original cluster size and it does not affect the
analysis in any way. When clusters approach the average size
of a glass bead, somewhat below the threshold, the extracted
area is largely dominated by the glass bead and we have little
information at this scale. This small-scale effect is most
dominant in high Ca-number experiments, as air clusters are
smaller here (low [* values). In this case, the value of N will
be underestimated, since there are actual air clusters smaller
than the chosen glass bead threshold.

Figure 13 shows a weak decreasing trend in the number of
clusters N as a function of [, with error bars corresponding
to glass bead cluster thresholds s={14,30} pixels. As a mat-
ter of convenience, we quantify this dependence through a
power law and we find an exponent of —0.25 = 0.10 between
N and [*. Accounting for this dependence in Eq. (30), the
exponent ¢ is reduced and we obtain ¢p=2.75, corresponding
well with the experimental value. Using this ¢ we obtain
through Eq. (26) an exponent 7=?2 for the cluster size PDF.
This is also in good agreement with the found experimental
value.

D. Compressibility effects

In addition to the pressure, we record the volume of wet-
ting fluid flowing out of the model, V,,,,. This is shown in
Fig. 14 for the Ca=0.032 experiment. If the fluids were in-
compressible, the total outflow would equal the total inflow,
i.e., 150, until the first nonwetting fluid is produced. For ¢
<t,, we define the total invasion flow rate as Q™
=dV,,/dt. One observes that this slope is smaller than 150,
which is caused by air compression as the pressure increases.
For each experiment this slope is found to be roughly con-
stant, with values listed in Table II. As steady state is
reached, i.e., t=t,, we expect a total flow rate of Q,,
=15Q,. At this point the pressures are relaxed at a constant
average value, and the air is not compressed any further,
meaning that a flow rate of Q, is obtained from all seven
air-filled syringes.
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As an example, for Ca=0.17 the inlet and the outlet pres-
sures during steady state are ~55 and ~5 kPa, respectively.
This gives a pressure difference of ~50 kPa as seen in Fig.
4(a). This means that air entering the model has a com-
pressed volume of roughly ~2/3 relative to the volume at
the outlet. The question is to what extent air compressibility
affects the flow dynamics and structure, i.e., compared to the
flow of two incompressible fluids.

We claim that most of the expansion of compressed air
happens during short time intervals through “avalanches” in
the porous medium. In the following a qualitative description
will be given. This phenomenon is a study in its own respect,
and a quantitative analysis is beyond the scope of this paper.
From visual inspection it is observed that air is frequently
blocked out by the local configuration of wetting fluid
around one or more of the air inlet nodes. This causes further
compression and thereby a pressure increase in the air tubes.
As the pressure continues to increase, the air is seen to
slowly displace the blocking wetting fluid. At some point an
avalanche of expanding air is triggered and the air and inlet
pressure drop abruptly. The avalanche is characterized by
channels, not more than a pore size wide, created between
existing nonwetting clusters. The temporarily existing non-
wetting cluster is narrow in the /, direction but spans the air
invaded region in the /, direction. This means that an ava-
lanche cluster reaches from the originating inlet node to ei-
ther the displacement front or all the way through the model,
dependent on whether the system is in the transient or in the
steady state, respectively. During an avalanche in the tran-
sient state, air is seen to propagate rapidly to the displace-
ment front where it expands surrounded only by the wetting
fluid. This rapid propagation of expanding air is also seen in
steady state but the air is now immediately transported to the
model outlet. The time scale of an avalanche is on the order
of ~1 s. During this time, a signature of the avalanche is
seen as a spike in the pressure signal from the middle and the
outlet pressure sensors. As the pressure inside the avalanche
cluster relaxes, the interconnecting channels are imbibed by
the surrounding wetting fluid and the displacement now re-
turns to “normal.” Being a highly dynamical phenomenon,
the flow of expanding air in avalanches is visually striking.
Figure 15 shows an avalanche through the central part of the
model, also compared to normal displacement during the
same time interval.

It is not trivial to obtain the details of how the flow dy-
namics is affected by compressibility of the nonwetting fluid.
It is clear that the avalanches occurring on small time scales
are solely an effect of compressibility. However we believe
that the results of our statistical analysis of clusters would be
the same as in the incompressible case. Mainly there are two
arguments supporting this. (1) From the above description of
avalanches it is natural to assume that most of the com-
pressed air volume inside clusters is released during an ava-
lanche. Hence in between avalanches, the normal motion,
breakup, stranding and coalescing of clusters would be as in
the incompressible case. (2) Intuitively one might imagine
that compressible clusters would expand and grow larger
when moving toward lower pressure at the outlet, thus giving
a position dependence of the cluster PDF and saturation. This
is however not the case as shown in Fig. 16, where the dis-
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(a) (b)

FIG. 15. (Color online) A central region of the model, (17
X 17) cm consisting of ~10* pores, is captured with a fast camera
during steady state (Ca=0.090). Flow direction is from top to bot-
tom. By subtracting two images of the displacement structure, sepa-
rated in time by Az~ 1 s, pores imbibed or drained (bright regions)
during this time can be distinguished from pores of unchanged fluid
configuration (dark regions). (a) Normal displacement. Pore fluid
configurations are close to unchanged during Arz. (b) Avalanche
through the same region as depicted in (a). In this case the fluid
configurations are drastically changed in a narrow central part of the
image during Ar as the avalanche passes through. This is the signa-
ture of air expanding rapidly through the region.

tribution of clusters from two different regions of the model
are compared and found to be identical. Thus, the saturation
and the distribution of clusters are homogeneous throughout
the model, as expected for an incompressible system. This
can be explained by recalling the importance of the viscous
pressure drop in the wetting fluid, which in essence deter-
mines the size of nonwetting clusters through the cutoff
length or size, as argued previously. Either if clusters expand
due to compressibility or, e.g., because two smaller clusters
coalesce to make one big cluster, snap-off will occur at the
cutoff size regardless of the origin of growth.

10 T T

—&—Inlet region, A i
10_2 = —&—Outlet region, B,

p(s)
=

Outlet

10’ 10° 10°

10*

FIG. 16. (Color online) Cluster size PDF p(s), for Ca=0.090
and Ca=0.015. For each Ca number a region A close to the inlet and
region B close to the outlet has been considered, as shown in the
inset sketch. It is evident that the clusters are distributed equally in
the direction of flow and not affected by air compressibility. This
behavior is found to apply for all Ca numbers considered in the
experiments.
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IV. CONCLUSION

Simultaneous two-phase flow in porous media has been
studied experimentally, in a large quasi-two-dimensional
laboratory model of roughly ~10° pores. We use a gas-liquid
phase pair, resulting in a low viscosity ratio M ~ 107*. Both
the transient and the steady states of this system have been
considered.

The mixed displacement structure of wetting and nonwet-
ting fluids is more complex than what is found in the tran-
sient regimes of, e.g., capillary or viscous fingering. Due to
the simultaneous flow of high viscous wetting fluid, clusters
of low viscous nonwetting fluid will be snapped off from the
inlet nodes. The competition of both drainage and imbibition
causes fragmentation of the nonwetting fluid, and the dynam-
ics is characterized by the movement and mixing of discreet
nonwetting clusters in a background field of wetting fluid.
Initially, the fragmentation and the mixing of fluids increase,
but are seen to stabilize when the most advanced parts of the
front have reached roughly halfway through the model. At
this point the invasion structure consists of a heterogeneous
region at the front and a homogeneous region further behind,
locally in steady state, similar to that of later global steady
state. It is an important result, because this kind of similarity
between transient and steady regimes is far from obvious.

The probability distribution of the size of nonwetting
clusters exhibits a clear cutoff for all Ca numbers investi-
gated during steady state. No clear power-law behavior is
found, however, for larger clusters reasonable fits are ob-
tained to Eq. (5). We find 7=2 and that the cutoff cluster
size s™ is inversely proportional to the capillary number. Ad-
ditionally a scaling relation is found between the mean ex-
tension length (/;) and s=s*, equal in both directions with
the exponent 3;=~0.57. Clusters at these sizes are thus iso-
tropic. Clusters above s* are elongated in the direction of
flow due to the anisotropic influence of the viscous pressure
field. From these scaling relations we demonstrate experi-
mentally and theoretically the important result that both 1//*
and AP, scale approximately as the square root of the Ca
number.

The observed avalanche behavior, occurring in the com-
pressible nonwetting phase, is an interesting phenomenon
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that we have not explored fully in this work. To the best of
our knowledge, this kind of dynamics in a gas-liquid system
in porous media has not previously been reported. To char-
acterize and obtain a better understanding of these dynamical
events is certainly something worthy to pursue.

In a recent paper by Ramstad and Hansen [35], cluster
size distributions during steady-state two-phase flow in a po-
rous medium was studied numerically for M =1, i.e., viscos-
ity match of the fluid pair. They found that below a critical
value of the nonwetting fluid saturation, the nonwetting clus-
ter size distribution was dominated by a cutoff behavior
similar to what have been presented here. Above the critical
saturation value, power-law behavior was observed. Due to
the large difference in viscosity contrast between our experi-
ments and these simulations, no direct comparison can be
made. Nevertheless, it would be interesting to perform future
experiments with the intention of exploring such a critical
value.

Despite the variety of findings in this study, only a small
part of the parameter space was explored. Our theoretical
predictions should be used as a starting point of incorporat-
ing the more complex case of, e.g., viscosity matched fluids.
Thus, we would like in the future to consider experiments
where the two phases has more similar viscosities and also
the possibility of tuning the wetting and the nonwetting fluid
flow rates independently. At the present time, preliminary
results indicate that the flow dynamics show no strong de-
pendence of the latter flow parameter. Finally, the question of
any history dependence of the global steady state is impor-
tant. It is not obvious that the system will reorganize itself to
a unique steady-state structure independent on initial tran-
sients. However, a preliminary steady-state experiment, ini-
tially at Ca=0.0027 and then increased to Ca=0.032, shows
that the structure organizes into a statistically identical struc-
ture as in an ordinary Ca=0.032 experiment.
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‘We have studied the propagation of a crack front along the heterogeneous weak plane of a trans-
parent PMMA block using two different loading conditions: imposed constant velocity and creep
relaxation. We have focused on the intermittent local dynamics of the fracture front, for a wide range
of average crack front propagation velocities spanning over four decades. We computed the local
velocity fluctuations along the fracture front. Two regimes are emphasized: a de-pinning regime of
high velocity clusters defined as avalanches and a pinning regime of very low velocity creeping lines.
The scaling properties of the avalanches and pinning lines (size and spatial extent) are found to be
independent of the loading conditions and of the average crack front velocity. The distribution of
local fluctuations of the crack front velocity are related to the observed avalanche size distribution.
Space-time correlations of the local velocities show a simple diffusion growth behaviour.

PACS numbers: 62.20.mt, 46.50.+a, 68.35.Ct

I. INTRODUCTION

Failure of heterogeneous materials has a vast impor-
tance in geophysical systems, industrial applications and
of course fundamental physics. This subject is far from
understood, and has been studied extensively over the
years [1-3]. Of key importance for brittle materials is
the competition between pinning forces due to local ma-
terial heterogeneities and elastic forces due to outer ap-
plied stress, resulting in a complex roughening of fracture
surfaces. In general this competition triggers a rich his-
tory dependence of the fracture process. Up until quite
recently, a broad range of experimental and simulation
studies have been concerned with the morphology of ei-
ther fracture surfaces in the case of three-dimensional
solids [4], or interfacial crack fronts for planar fracture [5-
7). In both geometries it has been well established that
the fracture roughness exhibits self affine scaling prop-
erties [8-11]. To this end, theoretical approaches have
been suggested: the fluctuating line model [12, 13], where
the interface is seen as an elastic string propagating in a
rough morphology, being pinned with different strengths
at different positions, and also the stress weighted per-
colation approach [14] with a damage zone ahead of the
crack.

In this study, we will pay our attention to the dy-
namics of fracture propagation. Owing to the mate-
rial heterogeneities, the motion is complex and charac-
terised by abrupt jumps separated by periods of rest.
Both the jumping and the resting behaviour span a large
range of time scales. This dynamics is often referred
to as Crackling Noise [16]. Apart from direct obser-
vation of fracture [17-20], such intermittent dynamics
embody also large scale activity in earthquakes [21-23],
acoustic emission during material failure (fiberglass [24],

rocks [25], paper [26] etc.), magnetic domain wall motion
(Barkhaussen noise) [27], wetting contact line motion on
a disordered substrate (28, 29], and imbibition fronts in
porous media [30].

Studies on fracture propagation often characterize
the complex dynamics through related effective aver-
age quantity, due to the difficulties of direct observation
and/or insufficient resolution of the spatio-temporal be-
haviour at local scale. In contrast we use here a trans-
parent PMMA model for in-plane mode-I fracture well
suitable for capturing optically detailed intermittent be-
haviour with high precision in both time and space [5].

The present work is a completion and substantial ex-
tension of the experimental study presented by Malgy et
al. in [18], where the concept of the waiting time matrix
was introduced; a consistent way of obtaining the local
velocity field of the propagation of a pinned interface.
Statistical analysis, based on the waiting time matrix,
of avalanche behaviour in fracture front propagation has
since been followed up by simulations. Bonamy et al. [32]
quantitatively reproduced the intermittent crackling dy-
namics observed in experiments, using a crack line model
based on linear elastic fracture mechanics extended to
disordered materials. Using a similar string model, but
with pure quasistatic driving and zero average propaga-
tion velocity, Laurson et al. [33] have recently proposed
a scaling relation connecting the global activity with the
observed local avalanches, connecting the dynamics at
large and small scales. Further they find that the as-
pect ratio of local avalanches is consistent with recent ex-
perimental advances of multiscale roughness analysis [7].
Experimentally, Grob et al. [31] have, through the termi-
nology of seismic catalogs, been able to compare the dy-
namics of interfacial crack propagation to what is found
in shear rupture for earthquakes.



Most of the previous studies mentioned in the above
paragraph address only rapid event statistics, for a frac-
ture propagation that is forced by the imposed bound-
ary conditions (critical fracture propagation). What we
present here is more elaborate and general in the sense
that we consider intermittency in both high and low ve-
locity regimes of crack propagation using two different
methods of external loading: 1) constant opening veloc-
ity of the crack and 2) creep relaxation of a crack main-
tained at a constant opening distance. While it is easy
to imagine that these different boundary conditions will
give a very different global behaviour, we are surprised
to find that the local dynamics is similar in every re-
spect. This is shown by statistical analysis of high and
low velocity events, referred to as depinning and pinning
clusters respectively, and by considering the autocorrela-
tion of the velocity field. The vanishingly small timecor-
relations have been related to the time evolution of the
width of the fracture front [17]. We see that it follows
simple diffusion growth. Another important finding is
that the pinning and depinning size distributions are de-
scribed by the same power law exponent. Moreover we
propose a relationship between the different power law
exponents describing the fracture process, thus linking
velocity fluctuations with spatial avalanches.

This paper is organized as follows: In Sec. II we de-
scribe in detail the experimental setup, including sample
preparation, loading conditions and optical setup. We
then present the results in Sec. III starting with the
distribution of local velocities along the fracture front
(Sec. IITA). In Sec. III B we obtain the autocorrelation
functions in time and space for these velocities. Finally in
Sec. III C we give the main statistical analysis of spatial
clusters that we eventually show to be linked to the local
velocity distribution in Sec. IIT A. Section IV summarizes
the paper with concluding remarks.

II. EXPERIMENTAL SETUP
A. Sample preparation

The experimental setup [5, 6, 31] is shown in Fig. 1.
The fracture sample is made out of two transparent
Plexiglas (PMMA) plates: a thicker plate with dimen-
sions (30,14,1) cm and a thinner plate with dimensions
(30,10,0.4) cm for the length, width, and thickness re-
spectively. The plates are then sandblasted on one side
using glassbeads ranging between 50 ym and 300 ym in
diameter. Sandblasting introduces random roughness on
the originally ”flat” surface. This causes light to be
scattered in all directions from these microstructures,
hence transparency of the plate is lost and it becomes
opaque. The plates are then clamped together in a pres-
sure frame, with the sandblasted sides facing eachother.
The pressure frame is made of two parallel aluminum
plates, exerting a normal homogeneous pressure on both
sides of the PMMA. Finally, the pressure frame is put

in a ceramic temperature controlled oven at 205°C for
30 — 50min. This annealing or sintering procedure cre-
ates new polymer chains between the two plates and the
resulting PMMA block is now fully transparent. The
new layer created between the two plates are weaker than
the bulk PMMA, so that we obtain a weak plane with
quenched disorder in which the fracture can propagate.
This system is ideal for direct visual observation since
the fractured part of the sample immediately becomes
opaque whereas the unfractured part remains transpar-
ent. The sharp and high contrast boundary between
transparent and opaque parts thus defines the fracture
front.

FIG. 1: Sketch of the experimental setup. Two PMMA plates
are sintered together, creating a weak in-plane layer for the
fracture to propagate. Fracture is initiated by lowering a
cylindrical press bar, controlled by a step motor, onto the
lower plate. The uncracked part of the sample is transparent,
whereas the cracked part has lost transparency hence creat-
ing a good contrast at the fracture front. The fracture front
is imaged from above by a digital camera. The deflection
d (z-direction) between the plates is indicated in the lower
panel. The fracture plane is (z,y), where the z-direction is
transverse to the average direction of fracture propagation
whereas the y-direction is parallel to the average direction of
fracture propagation.

The rough surface generated by the sandblasting tech-
nique depends on the volume flux of the beads, the kinetic
energy of the beads, the bead size, and the total time of
the sand blasting. It is important to note that there is no
obvious direct link between the bead size and the charac-
teristic size of the disorder. The rough surface will after
annealing give local toughness fluctuations. The strength



of these fluctuations will depend on the sintering time.
The relationship between the disordered morphology of
the plates and the toughness fluctuations is very diffi-
cult to access experimentally. However we know that the
toughness fluctuations will change when the disorder of
the plates changes [7]. In [35] a white light interferom-
etry technique was used to measure the rough surface,
sandblasted with 50 — 100 pm particles, and it was found
that the local heterogeneities had a characteristic size
of ~ 15 pum. Other samples have been studied through
a microscope [6] where the random position of the de-
faults and the maximum size of the defaults was seen to
roughly correspond to the bead size ~ 50 pm. However
we emphasize that the image pixel resolution is smaller
(~ 1 —5pum) and the largest length scales considered
(~ 10 pm) is much larger than the sample disorder.

Two different PMMA samples, characterised by the
glass bead diameter, have been used in our experiments.
Sample #1 has been sandblasted with 100 — 200 pum
beads whereas sample #2 has been sandblasted with
200 — 300 um beads. Both samples where sintered in the
oven for 50 min.

B. Mechanical setup and loading conditions

The thick plate of the PMMA block is mounted on a
rigid aluminum frame, also containing a camera setup
for imaging. Mode-I fracture is induced by a normal dis-
placement of the thin plate pushed by a cylindrical press
bar, as shown in Fig. 1. Indicated is also the definition of
our coordinate system, where (z,y) is the fracture plane:
the x-direction is transverse to the average direction of
fracture propagation whereas the y-direction is parallel
to the average direction of fracture propagation. The de-
flection d is defined as the plate separation at the position
of the press bar. A bit of glycerol is put on the contact
between the plate and the press bar to reduce any fric-
tion and prevent shear loading. The pressbar is mounted
to a force gage on a vertical translation stage controlled
by a step motor, so that it can be moved up and down
in the z-direction. Through the force gage we are able to
monitor the force exerted on the lower plate during an
experiment.

We use two sets of loading conditions: 1) The imposed
deflection d (see Fig. 1) as a function of time ¢ is given
by

d(t) = vpt , 1)

where v, is the velocity of the press bar. Throughout
the experiment we can measure the force F' on the lower
plate at the position of the press bar. As an example, the
force development during an experiment is shown in the
upper panel of Fig. 2(a). Initially there is a period of lin-
ear increase, corresponding to pure elastic bending of the
lower plate. At some point, indicated by the dashed line,
linear behaviour is deviated and fracturing occurs. Af-
ter some transient period, the force decays only slowly in

time as the fracture propagates in the sample. The corre-
sponding linear increase of the deflection is shown in the
bottom panel. We will refer to these loading conditions
as constant velocity boundary conditions (CVBC).

(a)

0 100 200 300 400 500

d (mm)

t(s)

FIG. 2: (a) Constant velocity boundary conditions (CVBC).
Upper panel shows the force development F'(t) on the lower
plate as it is bent by the pressbar. The dashed line indicates
the onset of fracturing. Lower panel shows the linear increase
of the deflection d(t). (b) Creep boundary conditions (CBC).
Same as in (a) but F(¢t) and d(t) are in semilog scale. The
short solid line in the upper panel indicates the onset of frac-
turing, whereas the dashed line indicates the time at which
the pressbar is stopped and maintained in a constant position
according to Eq. (2).

2) The deflection is given by

_ Upt for t < tstop
d(t) = { const. for t >ty

2)
where t40, marks the time at which the step motor con-
trolling the pressbar is switched off, i.e v, = 0. We will
refer to these loading conditions as creep boundary condi-
tions (CBC), since it is seen that the fracture front con-
tinues to propagate at ”creepingly slow” velocities over
several days after tg,,. An example is shown in Fig. 2(b),
where we see a logarithmic decay of the force while the de-
flection is maintained constant. Motivated by the differ-
ent global behaviour of the fracture in CVBC and CBC,



we have performed experiments using both loading con-
ditions to study the local dynamics.

C. Optical setup

The front propagation is followed in time using a
high speed digital camera mounted on a microscope.
In one experiment between 12000 and 30000 frames
are captured using either the Photron Fastcam-Ultima
APX (512 x 1024 pixels) or the Pizelink Industrial Vi-
sion PL-A781 (2200 x 3000 pixels). High-resolution im-
ages (~ 1 — 5 pm/pixel) are captured at high frame rate
relative to the average propagation velocity of the crack
front (see Table I). This is important as the local fluctua-
tions in velocity can range over several decades. As large
amounts of data are accumulated, we only have the possi-
bility to follow the fracture front over short time windows
compared to the long-time global development in the ex-
amples shown in Fig. 2. Both in the case of CBC and
CVBC these time windows are small enough so that the
average propagation velocity of the crack front is consid-
ered constant. Also for CBC we did several experiments
with very different average velocity (Fig. 2(b)) during the
same loading periods. The span of the timewindows will
of course vary depending on the average velocity, but the
y-distance (parallel to direction of propagation) covered
by the crack front is roughly ~ 500 ym in all our experi-
ments. Finally, image capture is initiated only after onset
of the fracture process.

The obtained grayscale images of the fracture front
contain two parts: a dark and a bright region, corre-
sponding respectively to the uncracked and the cracked
part of the sample. The gray level distribution of the im-
age thus presents two distinct peaks. Image analysis is
performed to obtain the coordinates of the fracture front
line, h(z,t), separating the two regions. This is done
by thresholding the grayscale image at the local mini-
mum of the gray level histogram, between the bright and
dark peak. We then obtain a black and white image from
which the front can easily be extracted. We always obtain
a very good contrast between the cracked and uncracked
part of the sample; the extracted fronts are very robust
with respect to perturbations in the chosen threshold.
For a more detailed description of the front extraction
and image treatment see [6, 31].

Fig. 3 shows an extracted front line h(z,t) superim-
posed on the corresponding raw image. Its roughness is
due to local pinning asperities of high toughness, created
as a result of the sandblasting and annealing procedure
as explained earlier. Occasionally, on small scales close
to the pixel resolution, the front shows local overhangs
and is not always a single valued function of x. How-
ever the number of overhangs per front and the scale at
which they occur are small; hence we construct the single
valued front h(x,t) by keeping only the most advanced
y—coordinate at the front line for a given x—coordinate.
Arbitrarily we could also have chosen the least advanced

FIG. 3: Fracture frontline h(xz,t’) at some time ¢', superim-
posed on the corresponding raw image. Direction of propaga-
tion is from top to bottom. System size L in the z-direction
is indicated.

y—coordinate. Single valued fronts are constructed in or-
der to simplify the statistical analysis, which has shown
not to influence the results.

III. RESULTS

The rough fracture front exhibits self-affine scal-
ing properties [8-11, 13, 14] together with a complex
avalanche like motion with very large velocity fluctua-
tions. Due to the large temporal and spatial variations
in front velocity it is not straight forward to analyze
the local dynamics by a simple front subtraction proce-
dure. Therefore we characterize this complex behaviour
by measuring the local waiting time fluctuations of the
crack front during its propagation, following the proce-
dure introduced first in [18]. We compute a so called wait-
ing time matriz (WTM) [30-32], which is a pinning time
map with elements w, giving the amount of time the front
is pinned down or fixed at a particular position (z,y) in
time step units. As explained in Appendix A, the local
velocity v at a given position is given as v = a/(wdt).
Using h(z,t) and the WTM, it is then straight forward
to obtain the local velocities along a fracture front v(z, t).
Furthermore, by computing v(x,t) for all time steps, we
build the spatio-temporal velocity map Vi(x,t). The av-
erage velocity (v) is defined as the average over all ele-
ments of V;(x,t), i.e the total average over all fronts.

Presented below are the results of eight experiments
(both CBC and CVBC), spanning a broad average prop-
agation velocity range, where we have characterized the
local dynamics. The total duration of an experiment is
within the range of 4 seconds to 7 hours, whereas the
average distance of front propagation, is ~ 500 pm in all
cases. The details of each experiment can be found in
Table I. Additionally we will also compare the present
data to previous experiments from [18].

A. Distribution of local velocities

A gray scale map of the waiting time matrix is shown
for a CBC experiment in Fig. 4. Dark regions correspond



TABLE I: Parameters of the different experiments, sorted after the average propagation velocity of the front (v): System size
L (z—direction), image timestep dt gives the time delay between the capture of two subsequent images, resolution a gives the
pixel resolution of an image, displacement type denotes the set of boundary conditions used, and the last column indicates the
sample number. Sample #1 has been sandblasted with 100 — 200 um beads whereas sample #2 has been sandblasted with

200 — 300 pm beads.

(v) (pm/s), L (pm), 6t (s), a (pum/pixel), displacement type, sample
Expl  0.028 6700 1 2.24 CBC #2
Exp2  0.15 6700 5x 107! 2.24 CBC #2
Exp3  0.42 5600 2 x 1072 5.52 CVBC #2
Exp4 1.36 5600 2 x 1072 5.52 CBC #2
Exp5 2.4 2865 8 x 1073 2.83 CVBC #1
Exp6 10.1 2865 2x 1073 2.83 CBC #1
Exp7 23 2865 2x 1073 2.83 CVBC #1
Exp8 141 2842 5 x 1074 2.83 CVBC #1

to a high waiting time and thus a low velocity, and vice
versa for bright regions. The dark low velocity regions
are seen to occur as irregularly shaped ”lines”, separated
by brighter compact regions referred to as high velocity
avalanches. The wide span of waiting times shown by
the colorbar, together with their irregular distribution in
space, is direct visual confirmation of the complex dy-
namics found in this system. Furthermore, the visual
impression of the WTM for a CBC experiment compared
to a CVBC experiment is identical. The similarity of the
local dynamics in CBC and CVBC experiments is also
confirmed in our analysis, as we will return to.

From the local velocities along all front lines V(z,t)
we can compute the normalized probability density func-
tion (PDF) P(v). By rescaling every local velocity with
the average propagation velocity v/(v), we obtain a data
collapse for all experiments as shown in Fig. 5. In this
figure the results from all experiments in Table I are put
on top of previous experiments from [18]. It was found
that

P(v/(v)) o< (v/{v))™"  for

with the exponent n = 2.55 + 0.15. The result primarily
obtained for CVBC is now extended to the case of creep
experiments. It is indeed very stable over the different
experiments, considering the wide range of average ve-
locities. We emphasize that Fig. 5 provides quantitative
confirmation on the similarity between the local dynam-
ics for CBC and CVBC experiments.

At this point we divide the velocity distribution in two
and define: a pinning regime for v/(v) < 1 and a depin-
ning regime for v/(v) > 1, as indicated in Fig. 5. The
Fig. 5 inset shows the corresponding PDF of waiting
times P(w/(w)). Through Eq. (A2) the two distributions
are related by P(v)dv = P(w)dw (cf. Eq.(35)), giving
P(w/{w)) o (w/(w))?=2 for w/{w) < 1. Note that the
waiting time distribution decays very fast in the pinning
regime compared to the depinning regime.

B. Space and time correlations

The power law distribution of the local velocities con-
firms the visual impression of a non trivial local dynamics
of the fracture process. As mentioned earlier, the front
propagates through high velocity bursts of different sizes.
An important question is thus how the local velocities
along and between different front lines are correlated in
space and time.

We define the normalized autocorrelation function
G(Az) and G(At) for the local velocities on all front-
lines v(t, x) in space and time as

((v(@ + Az, t) = (v)o)(v(z, 1) = <U>m)>-77>

2
Oz

G(Az) = <
(4)

v(x, t + At) — (v)e)(v(x, t) — (V)e))e
G = (Lol 80 (01060 = (9 >m(;)

i

where (v), and o is the spatial average and standard de-
viation respectively at a given time in V;(x,t), whereas
(v)¢ and oy is the temporal average and standard de-
viation respectively for a given position in Vi(z,t). The
outer brackets in Egs. (4) and (5) denotes an average over
all different realizations in time and space respectively, i.e
over all columns and rows in the V; matrix.

In Fig.6 the spatial correlation function G(Az) is
shown for all experiments listed in Tablel. It is more
or less evident that correlation functions obtained from
the same sample are grouped together, independently of
the average propagation velocity and loading condition.
By fitting the data with power law functions with an ex-
ponential cutoff we get

G(Ax) < Az~ exp(—Ax/z") , (6)

where 7, = 0.53 £0.12 is the average exponent and z* =
{92,131} pm is the average cutoff or correlation length of
the local velocities in the z-direction, for sample #1 and
#2 respectively. The quality of the fits is not perfect, as



L =5.6 mm

FIG. 4: Waiting time matrix of a CBC experiment, (v) = 1.36 pm/s. The map results from the extraction of 24 576 front lines
at a rate of 50 fps. Dark regions correspond to a high waiting time and thus a low velocity, and vice versa for bright regions,
as shown in the colorbar indicating the amount of time (in seconds) the front has been fixed at a given position. Black pinning
lines are visible, with bright depinning regions in between. The system size L is indicated.

FIG. 5: Distribution of local velocities P(v/(v)) rescaled by
the average propagation velocity for various experimental con-
ditions: A range of roughly four decades in average crack front
velocity including both CBC and CVBC experiments. Sym-
bols colored red are results from [18]. A fit to all the data
for v > (v) shows power law behaviour with an exponent
—2.55. Inset shows the corresponding waiting time distribu-
tion P(w/(w)) The exponent transforms in this case to 0.55.

can be seen in Fig.6, but they represent each group of
correlation functions fairly well. It is to be noted that
extracting well defined correlation lengths is not trivial
in our data. Other estimators of Eq.(4) are possible to
use, e.g the power spectrum method.

In Fig.7(a) the time correlation function G(At) is
shown for all experiments listed in Tablel. For each
experiment, functional fits analog to Eq.(6) have been
made. Using the average value of the power law expo-
nent 74 &~ 0.43 and different cutoff correlation times t*, a
good collapse is obtained. We note also that t* is small;
typically more than two orders of magnitude smaller than
the duration of an experiment. The inset shows the scal-
ing of the correlation time with the average propagation
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FIG. 6: Space correlation functions G(Ax). Functions from
the same sample are grouped together (sample #2 - filled
markers, sample #1 - open markers). A power law with ex-
ponential cutoff has been fitted to each group of correlation
functions, as indicated by the solid and dashed line for sample
#1 and #2 respectively (see text).

velocity

=y /), (7)

where y* ~ 7pm. The proportionality constant y* has
the dimension of a length since the scaling exponent
equals minus unity. This length scale is on the order of
the pixel resolution a and also within the disorder limit.
Hence y* is very small and might be influenced both by
resolution and disorder effects. For comparison we cal-
culate G(Ay) directly, i.e. the velocity autocorrelation
in space along the direction of propagation, defined sim-
ilar to Eq. (4) and shown in Fig. 7(b). We find no power
law decay in this case but the drop to zero correlation
occurs between 10 — 20 pm consistently with y*. Correla-
tion functions from the same sample are shown in similar
colors (red - sample #2, blue - sample #1). Within the
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FIG. 7: (a) Time correlation functions collapsed onto ea-
chother according to a power law with an exponential cutoff
G(At) = AAt™ ™ exp(—At/t"). The exponent is 7¢ ~ 0.43.
Inset shows the scaling between the crossover correlation time
and average propagation velocity ¢* ~ 7 um/(v). (b) Space
correlation function G(Ay) with logarithmic Ay—axis. Con-
sistently with (a) and Eq.(7), the local velocities become
uncorrelated after only a short distance (~ 10 — 20 um) in
the y—direction. Correlation functions from experiments per-
formed on sample #2 and #1 have filled and open markers
respectively. To some extent we see also here grouping of ex-
periments from the same sample. The difference is however
not as clear as for the spatial correlations along the trans-
verse z—axis (subparalell to the fronts), on the inset showing
G(Az) with logarithmic z—axis. The reason might be that
the drop to zero correlation occurs close to the resolution scale
for G(Ay).

interval {a, 20} pm, where a is the image resolution, the
sample grouping is not so clear as in the case for G(Ax)
as shown in the inset, but the same initial trend is ob-
served. This can be attributed to resolution effects and
the very small correlation lengths. Thus at the time and
length scales we are looking at, the local velocities are
considered uncorrelated in the y—direction.

Since the local fluctuations control the global advance-

ment of the crack, it is of interest to consider the evo-
lution of the width of the fracture front in time. This
growth process is known to depend on the system corre-
lations. It has been shown previously [15] that uncorre-
lated growth processes such as simple diffusion, Brown-
ian motion, etc, can be described by a growth exponent
a = 1/2. For the present case we define the root-mean-
square (RMS) value of the front width Ah(t) as

(AR(H)?)E =

1
2

{[(ha,t +t0) ~7) — (h(a.t0) ~F)]*)’ . (®)

x,to

where h(x, ) is an initial front line and A indicates a po-
sitional average height at a given time. This differs some-
what from the usual situation of a front growth from an
initially flat front. In our case the front width is defined
as the fluctuations from an initially rough line which cor-
responds to the geometry of the front at the onset of the
experiment. The front width is related to the autocor-
relation of local velocities in time. By rewriting Eq. (8)
and using that h(t+to) —h(to) = H't“ v(t")dt’ we obtain

(An(t)?) = <[h<w,t +t0) - h(w,to>f> ~ ()’

/t+t0 /t+t0
to to

By substituting n + At = m and using Eq. (5) we get

m))dmdn — (t{v))* . (9)

t+to t+to—n
/ / “v(n + At))dAtdn ...
to—n
t+t0 t+to—n
=o? / dn/ dAt G(At) . (10)
Jto Jtop—n

As argued above, we consider the local velocities uncor-
related in time. The regime where G(At) behaves as a
power law is very short, and should only affect Ah(¢)
on very small time scales. Thus we approximate the
autocorrelation function with the Dirac delta function
G(At) =~ 6(At) which gives

(AR xct = (AR(H)2)? ~t* (11)
with the growth exponent @ = 1/2. Figure 8 shows
the scaling of the front width as a function of time
for all experiments. We find indeed a growth exponent
a = 0.55 £ 0.08 consistent with Eq. (11), as indicated by
the fitted dashed line. The large scale crossover is an ef-
fect of a limited system size in the direction of crack prop-
agation. Our direct measurement of the growth exponent
also agrees with the indirect measures in [17, 35], where
the front width power spectrum was analysed at different
times and interpreted in terms of a Family-Vicsek scal-
ing, with a dynamic exponent x = 1.2 and a roughness
exponent 6 = 0.6 giving & = §/k = 0.5.
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FIG. 8: Scaling of the front width as a function of time,
rescaled with the average velocity. The dashed line corre-
sponds to <Ah(t)2>% o 995,

Due to the one-to-one correspondence between velocity
and waiting time [Eq. (A2)], the above analysis of corre-
lations could just as well have been performed using the
latter quantity. Calculating G(Az), G(At) and G(Ay)
using w, we obtain approximately the same trends and
correlation lengths as for v. We turn now to the statistics
of the dynamical avalanches in the pinning and depinning
regimes.

C. Cluster analysis
1. Spatial map of clusters

As discussed earlier the local dynamics of the fracture
front is a mix of pinning lines where the front is fixed or
only moves slowly, and sudden propagation in high ve-
locity jumps or bursts. The statistics in both the pinning
and depinning regimes will be shown to be scale invari-
ant and characterized by equal scaling exponents. In
order to study both these regimes we apply a threshold-
ing procedure to the velocity matrix V(z,y) and obtain
a thresholded binary matrix Ve

1 for v > C (v)
Ve = 12
¢ {0forv<C<v) ' (12)

for the depinning regime and

1 forv < % (v)
Vo = - ¢ , 13
¢ {Oforv>%(v> i (13)

for the pinning regime. Here C' is a threshold constant
of the orders of a few unities. An example of a thresh-
olded matrix Vi in both regimes is shown, in Fig. 9.
The geometrical characteristics of the two regimes can
be seen quite clearly. Depinning clusters (high velocity

regions) are compact and extend somewhat longer in the
r—direction than in the y—direction. Pinning clusters
(low velocity regions) have also a long x—direction ex-
tension, but are very narrow in the y—direction on the
other hand. Thus they can be described almost like irreg-
ularly curved lines in the fracture plane. From Eq. (12)
it is clear that the cluster size decreases with increas-
ing values of the threshold parameter C' in both regimes.
Obviously one must choose reasonable values of C' in the
two regimes as the number of clusters goes to one and
zero when C' is very small or very large respectively.

In order for the thresholding of the velocity matrix to
be consistent, it is important to note that the average
velocity must be constant in time to avoid clusters from
being affected by a size gradient. Thus we ensure that the
duration of image capture is short enough for the global
development of the average velocity to be approximated
as constant for CBC and CVBC experiments.

2. Size distribution of clusters

We will denote the size/area of a cluster, for both
pinning and depinning, S. Figure 10 shows for C' = 3
the normalized probability density function (PDF) of the
sizes P(S) respectively for all experiments. There are
several aspects to emphasize about these figures. First of
all, the distributions show a power law decay, with a cut-
off for large sizes S. Furthermore the distributions fall
on top of eachother, meaning that they span the same
range of cluster sizes, independently of the average prop-
agation velocity. There is neither no clear indication that
the PDF cutoffs depend on the correlation length z*. It
is thus reasonable to average cluster data from all the
experiments to improve in particular the tail of the dis-
tribution. Finally, the distributions from both CBC and
CVBC experiments cannot be distinguished. Thus the
distributions seem to indicate that the local dynamics
are very similar in the two cases, despite very different
boundary conditions. We will in the following quantify
the properties of these distributions.

Figure 11 shows the averaged P(S) distributions for a
threshold range C' = 2 — 12 in the pinning regime. It
is clear that the distributions follow a power law with
an exponential like cutoff. Furthermore it is evident and
to be expected that the size of the largest clusters, i.e.
the cutoff cluster size, decreases with increasing values
of the threshold level. A similar behaviour is found for
the PDFs of cluster sizes in the depinning regime, but
the cutoff size is generally larger due to the cluster ge-
ometry. In contrast to what was done in [18], where
the distributions were rescaled by the average cluster size
(P(S/(S))), we choose to fit the distributions according
to the function

P(S) x S™Vexp(—S/S¥) , (14)

where S* is the cutoff cluster size and v the power law
exponent. This is shown for the pinning regime in Fig. 11,
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FIG. 9: Thresholded matrix Vo (5600 x 1400)pm in the depinning (left) and pinning (right) regime for a CBC experiment with
(v) = 1.36 um/s. White clusters correspond to velocities C' times larger than (v) for the depinning case, whereas white clusters
or lines correspond to velocities C' times less than (v) for the pinning case.
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FIG. 10: Probability distribution function P(S) for all ex-
periments using a threshold C' = 3. A distribution averaged
over all experimental conditions is also included for the depin-
ning (dashed line and circular markers) and pinning regime
(dashed line and square markers). The pinning size distribu-
tions have been shifted along the y—axis to enhance visual
clarity.

where fitted solid lines are plotted on top of the averaged
experimental data (similar fits have been obtained for
the depinning regime). We find that in both regimes,
the cluster size PDF scales with an average exponent
v = 1.56 + 0.04. Using this exponent, and the fitted
values for the cutoff cluster size we obtain a data collapse
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FIG. 11: Distributions of pinning clusters P(S) averaged over
all different experimental conditions, for a threshold range
C = 2 — 12. Solid lines show the fits corresponding to a
power law with an exponential cutoff.

in both velocity regimes for the full range of available
threshold values, as shown in Fig. 12. Furthermore we
find a scaling relation between the cutoff cluster size S*
and the threshold level C, as shown in the inset of Fig. 12.
For the depinning regime it is given by

S x O (15)

where o4 = 1.77 + 0.16. Similarly, we obtain for the
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FIG. 12: Collapsed P(S) distributions averaged over all dif-
ferent experimental conditions for both depinning (upper set
of data) and pinning (lower set of data). The pinning dis-
tributions have been shifted for visual clarity. Depinning and
pinning thresholds are in the range C' =2—22 and C = 2—-12
respectively. The dashed and the solid line both have the
slope v = 1.56. Inset shows the scaling between the cutoff S™*
and the threshold C' for the depinning (solid line oq = 1.77)
and pinning regime (dashed line o, = 2.81).

pinning regime.
S*x C7% (16)

where 0, = 2.81 £0.23.

The exponent v = 1.56 is somewhat lower but
consistent with the previously reported value in [18]
(v =1.7£0.1), in which the distributions were rescaled
by the average cluster size in lack of a pronounced cutoff
size. A later check using the rescaling as explained in the
above paragraph does show to lower the exponent also for
the old data. We would like to mention that our exper-
imentally obtained exponents v and o4 are in excellent
agreement with the recent numerical study of high veloc-
ity clusters in planar crack front propagation by Laurson
et al. [33]. They use an empirical value of oq = 1.8 to
describe the relationship between the cutoff size and the
threshold. Their value of the size exponent v = 1.5 is ex-
plained theoretically from the decomposition of a global
avalanche (collective movement of the front as a whole)
into local clusters. The experimental equivalent to the
suggested numerical approach is to study how the fluc-
tuations of the spatially averaged instantaneous velocity
<% (z,t))s relates to the distribution of local clusters that
we observe here. We do not consider global avalanches
in this study but it is certainly available in our data and
is a work in progress.

8. Scaling relations

The collapse in Fig. 12 shows that the scaling in
Egs. (15) and (16) are well satisfied. If we first consider
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the depinning regime, it is possible to relate the expo-
nents o4 and v of the cluster size distribution [Eq. (14)]
to the exponent n characterising the spatio-temporal dis-
tribution of local velocities [Eq. (3)]. The latter distri-
bution is obtained from Vi(z,t), i.e the velocity map in
space and time of all front lines [Eq. (A3) and Fig. 18b)],
thus the space-time fraction covered by local velocities
between v and v + dv is P(v)dv. One may also define
the spatial distribution of local velocities, obtained from
the spatial map of local velocities V'(z,y) [Egs. (Al) and
(A2)], denoted R(v). The fraction of (z,y) space covered
by local velocities between v and v + dv is then R(v)dv.
As shown in Appendix B, there is a relationship between
these two probability density functions. Using Eq. (B5)
gives

R(v) = Plv) v~v T for

(v)

The cumulative distribution of R(v), from a given thresh-
old C' and up to the highest velocity, equals the area
fraction that these velocities occupy out of the total area
swept by the fracture front. In terms of threshold level
we then get

Ro(v > C) :/

C

v > (V). (17)

oo

R(v)dv ~ C™"+2 (18)

The same area fraction can also be expressed through the
cluster size distribution, hence we obtain

Roo =€) = 25 (19)
«N [ sP(s)ds (20)
J Stow

where A, is the total area in the (z,y) plane where
the fracture has propagated, N is the total number of
clusters, (S) is the average cluster size, and Sj,, is
the pixel size or some other lower cutoff. Substituting
P(S) = BS 7Vexp(—S5/5*), where B is the normaliza-
tion factor, in the above integral, we obtain for (S),

1 o)

== SV exp(—S5/S*)dS (21)

B Stow

(S)=B S exp(—S/5*)dS (22)
Stow

where S* is the cutoff cluster size. Considering the nor-
malization factor, we get by substituting x = S/S*
1 o0
= = 5*1’7/ z 7V exp(—z)dx . (23)
B Slow/S*
Since the lower limit is very small and v = 1.56 > 1, the
power law part of the integrand will dominate and the
contribution from the upper cutoff is negligible. Thus we
approximate
1—
l ~ §*1-7 /oo 2 Vdx ~ S*I*WSL'J — Sll—W ,
B Stow /S S*l—'y ow
(24)



which is independent of S*. For the average cluster size
we then obtain

(8) x 55 /

J Stow/S*

o]

21V exp(—z)dz . (25)

Since v — 1 = 0.56 < 1, this integral will converge at
the lower end, to a value independent of S}, as long as
Siow/S* < 1. Thus from Eq. (15), we obtain:

(8) ox §*277 o 7742 | (26)

where 04(2 — ) = 0.79. Equation (26) is experimentally
verified for C' > 3, as shown in Fig. 13.
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FIG. 13: Average cluster size (S) obtained from the image
analysis vs. threshold level C. The dashed line shows a power
law fit for 3 < C' < 30, with the exponent —oq(2—~) = —0.75.
Inset shows the number of clusters as a function of threshold
level for the various experiments. The dashed lines all have
the average slope x = 0.28.

The number of clusters N depends on the threshold
level in a non-trivial manner. This is shown in the inset of
Fig. 13. We see however that in the interval 3 < C' < 16
the number of clusters can be approximated by

N(C) ~CX (27)

where y = 0.28. Inserting Eqs. (18),(26) and (27) into
Eq. (19) we obtain the following scaling relation

o2 C*U{i(Q*’Y)‘FX , (28)

leading to a quantitative link between the exponent of
local velocity distribution and the exponent of the event
size distribution:

n=042-7) —x+2. (29)

Inserting numbers in the above equation (n = 2.55, v =
1.56, x = 0.28) we get that o4 = 1.88, in good agreement
with the empirically found value of o4 = 1.8. Strictly
speaking this result is only valid for 3 < C' < 16. If
we now turn to the pinning regime, we note that from
Egs. (15) and (16), 0}, = 04+ 1, allthough we can not de-
rive it from a theoretical argument. The pinning thresh-
old values spans a velocity interval (v/(v) < 0.5), in
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which the P(v/(v)) distribution does not follow a power
law (Fig. 5). Thus a similar scaling argument to the de-
pinning regime, based on simple power law behaviours of
all dependent variables, is not very likely to hold.

4. Cluster morphology

A depinning cluster of size S can be further decom-
posed into two extension lengths [, - transverse to the
average direction of front propagation and [, - parallel
to the average direction of front propagation, by fitting
a bounding box. A bounding box is the smallest rectan-
gle that can enclose the cluster, with sides [, and [, as
shown in the left panel of Fig. 14 (a). As mentioned ear-
lier, the pinning cluster geometry can be characterized as
an irregularly curved line with a much larger extension
in the z—direction compared to the y—direction. Due to
this feature, [, is not a good measure, and badly over-
estimates the y—direction extension. This is shown in
Fig 14 (b) where bounding boxes for both pinning and de-
pinning clusters are shown. Thus for pinning clusters we
use [, in the z—direction and the average cross sectional
width I, as a measure of the y—direction extension, as
shown in the right panel of Fig. 14 (a). Analysis shows

:J:[j:Ilt

U{ \ )
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FIG. 14: (a) Left panel shows a bounding box with sides
Iz and [, embedding a depinning cluster. In this case the
bounding box is a good measure of the linear extension of
the cluster. Right panel shows a bounding box embedding a
pinning cluster. In this case [, gives a reasonable linear extent
measure, however [, does not, due to the irregular curvature
(somewhat exaggerated in the figure) and to the narrow width
in the y—direction. To characterize this width we use instead
the average cross sectional width ly.. (b) Upper and lower
panel show bounding boxes for depinning and pinning clusters
respectively from one experiment.

that for a cluster of size S, either depinning or pinning,
the extension lengths have well defined means I,, l,,, and

lyw increasing monotonically with S. Note here that the



bar denote the mean only over a narrow range of S and
is not the overall mean. The corresponding standard de-
viations are small and proportional to these means. Due
to the different definitions of I, and Iy, their absolute
value cannot be compared directly. From analysis we
find that, after an initial transient, I, and l,,, do scale
similarly but with different prefactors for depinning clus-
ters. This is a consistency check between using either a
bounding box or the cross sectional width to describe the
y—direction extension. Thus [,,, is a reasonable measure
for the y—direction extension of pinning clusters.

Figure 15 shows the scaling of the different extension
lengths with the cluster size in the two regimes. In all
cases there are differences between small (pixel resolu-
tion up to S ~ 100m?) and large scale behaviour. In the
case of depinning, for small S values, [, and fy scale more
or less similarly indicating that clusters are isotropic at
these scales. In the case of pinning, l;,w is very small and
stays constant while I, scales almost like the depinning
cluster size. This is consistent with the characteristic lin-
ear geometry observed in the pinning regime. However
the small scale behaviour ranges only over one decade,
and might be affected both by resolution and disorder ef-
fects, so we do not have much information at these scales.
The large scale behaviour spans close to three decades in
S and displays robust scaling in all cases. From Fig. 15
we obtain the following relationship between extension
lengths and cluster size

lp o< §% | Zy o S Ly ox S (30)
for S > 100 um? where a, = 0.62 + 0.04 is consid-
ered equal in both velocity regimes, a, = 0.41 £ 0.06
in the depinning regime, and oy, = 0.34 & 0.05 in the
depinning regime. The exponents in both regimes con-
firm the visually observed anisotropy of cluster extension.
Note also the very small y—direction maximum exten-
sion (Zyw ~ 25 um) of pinning clusters, resulting from a
small proportionality factor in the scaling relation. Fur-
thermore we obtain approximately from the exponents in
Eq. (30) that S ~ [Jy ~ [,l},m meaning that the ratio of
the approximated area from the extension lengths to the
real cluster area is scale independent. From Eq. (30) we
get the following x— and y—direction aspect ratio:

Iy o I8v/oe | Ty oc [ove/ e (31)
where ay/a, = 0.66 and oy, /a, = 0.55 for the depin-
ning and pinning regime respectively. It was suggested
in [18] and in [36] that ay/a, could be another mea-
sure of the roughness of the self-affine fracture front, in
agreement with previous experimental measurements of
the roughness exponent. However, in a very recent ex-
perimental work [7] on planar crack growth, there has
been two roughness exponents observed acting at differ-
ent scales; a smallscale roughness with exponent ~ 0.6
and a largescale roughness with exponent ~ 0.4, with a
crossover depending on the fracture toughness fluctua-
tions and the stress intensity factor. This trend has also
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FIG. 15: Linear extent of pinning and depinning clusters as
a function of cluster size for the full span of threshold levels
and averaged over all experimental conditions. The slopes
of the different fitted lines (dashed - pinning clusters, solid -
depinning clusters) are indicated in the caption. Note that
there in all cases are initial transients up to S & 100 ym?.

been seen for the aspect ratio of depinning clusters in
the simulation study by Laurson et al. [33]. In the ex-
perimental case on the other hand, considering that the
length scale of this roughness crossover are comparable
with the [, range in our case, we find no traces of such
behaviour in the aspect ratio of depinning clusters. This
point thus warrants further consideration.

Finally, we discuss the marginal distributions of the
extension lengths, i.e. for all cluster sizes, in the two
regimes denoted P(l;), P(l,), and P(l,,). For clarity
we mention again that [, scales similarly with S in the
two regimes only separated by a small difference in the
proportionality factor, whereas I, describing the depin-
ning regime, and l,,, describing the pinning regime, are
treated separately. The insets in Fig. 16(a)(b) show the
extension length distributions P(l,) and P(l,) respec-
tively in the pinning regime. The corresponding pin-
ning cluster distributions display similar behaviour, ex-
cept that the P(ly,) distribution is entirely dominated
by a cutoff function. This is due to the very narrow
y—direction span of pinning clusters. We define the fol-
lowing distributions for the extension lengths

P(ly) o 1% D(1, /1;) (32)
P(ly) < 1,7 D(1, /1) (33)
P(lyw) o l;u?wa(ly/l;) ’ (34)

where D(z) is some cutoff function decaying faster to
zero than any power of [, [, or [, when x > 1 and con-
stant otherwise. The (3 exponents above can be predicted
from our previous results for the cluster size distribu-
tion. From statistics we know that the relation between
the PDFs of two random variables b and ¢, one-to-one
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FIG. 16: (a) Collapsed P(l,) distributions averaged over all
different experimental conditions for both depinning (upper
set of data) and pinning (lower set of data). The pinning
distributions have been shifted for visual clarity. Depinning
and pinning thresholds are in the range C' =2 — 30 and C =
2 — 12 respectively. The solid and dashed lines both have
the slope B, = 1.93. Inset shows for the case of depinning
the threshold dependence for the unscaled distributions. (b)
Collapsed P(l,) and P(l,.) distributions averaged over all
different experimental conditions for the depinning (upper set
of data) and pinning (lower set of data) regime respectively.
The pinning distributions have been shifted for visual clarity.
Thresholds are in the range C' =2 — 30 and C' = 2 — 12 for
depinning and pinning respectively. The solid line has the
slope B, = 2.36. Inset shows for the case of depinning the
threshold dependence for the unscaled distributions.

related, can be expressed as

dc

P(b) = P(c) 5 - (35)

In our case S, I, l,, and l,,, is not one-to-one related,
but since the means Iy, l_y and l_yw have only small stan-
dard deviations, the PDFs P(l,), P(l,), P(lyw) should
at least be approximated by Eq. (35). For P(l,) we get
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by inserting Eq. (14) and Eq. (30) into Eq. (35)

+aoap —1
By =100 (36)
Qg

where 3, = 1.93. Similarly we obtain £, = 2.36 and
Byw = 2.65. For the depinning regime we obtain for the
cutoffs in Egs. (32) and (33) by using Egs. (15) and (30):
ly oc Ot o [hoc O 4% (37)
For the pinning regime we obtain for the cutoffs in

Egs. (32) and (34) by using Egs. (16) and (30):

* —0pQy *
lyoc C7r% L,

o O (38)

The extension length distributions in both velocity
regimes are collapsed according to Eqs. (32-34) as shown
in Fig. 16(a)(b). In the z—direction, transverse to the
direction of crack propagation, the distribution in both
regimes scale with the same exponent, similarly to what
was found for the cluster size distribution. The only dif-
ference between the two distributions is the proportional-
ity factor in the cutoff length, as explained earlier. We see
that along the direction of crack propagation the depin-
ning [P(l,)] and pinning [P(ly,,)] distribution are quite
different, in the sense that all power law behaviour is sup-
pressed by the cutoff function in the latter distribution.
This is understandable since the span of l,,, values is no
more than one decade.

In Sec. III B we discussed various correlation functions
of the spatio-temporal velocity field. In particular it was
seen that the local velocities had correlation lengths of
the order ~ 100 ym and 10 pm in the z— and y—direction
respectively. One would expect the correlation lengths in
some sense to control the extent of pinning and depinning
clusters. This dependence is non trivial since a cluster
in this context is artificially constructed by threshold-
ing the velocity field. No clear relation is found between
the cutoff size of the pinning and depinning clusters, and
the correlation length extracted from the autocorrelation
function of the velocity field. However, since the clusters
are obtained from thresholded velocities, it is also pos-
sible to look at the autocorrelation function of thresh-
olded velocities, rather than the one of the continuous
velocity signal. In ongoing work we consider such cor-
relation functions Go(Az) [Eq. (4)], obtained from dis-
cretized signals v (z,t) where the local velocities along
each front line are now thresholded with a threshold C'
according to Eq. (12). Preliminary analysis indicate the
existence of a correlation length roughly proportional to
I* [Eq.(37)], meaning that both quantities evolve simi-
larly with the threshold C.

Furthermore, in the z—direction we could see clear
sample differences in the correlation lengths, even though
they were within the same order of magnitude (Fig. 6).
Analysing carefully both size and extension length distri-
butions of individual experiments, and not average distri-
butions as presented above, we could not recognize such
trends. In this respect it is also important to mention



that for individual experiments, the cutoff behaviour in
the distributions are not well pronounced due to the lack
of large scale statistics. Even when considering the above
limitations, we can say that the geometry of pinning lines
are qualitatively consistent with the observed correlation
lengths. Thus it seems that the vanishingly small corre-
lation length in the y—direction, describes the low value
part of the local velocity distribution.

IV. CONCLUSION

The local dynamics of an in-plane mode-I fracture have
been studied experimentally using high resolution moni-
toring of the front line advances. Indeed the transparency
of the PMMA enable us to follow the fracture process us-
ing a high-speed camera. Fracture is induced by fixing
the upper plate, while applying a force on the lower plate
from a press bar controlled by a step motor. Experiments
are performed using two sets of boundary conditions: 1)
constant driving velocity on the pressbar, giving a lin-
ear deflection in time between the plates (CVBC) and 2)
fixed deflection between the plates (CBC), resulting in a
slow creep motion of the fracture front.

Disorder is introduced in the fracture plane by a sand-
blasting and sintering procedure, resulting in heteroge-
neous fluctuations of the local toughness. The compe-
tition between the toughness fluctuations and the long
range damping elastic forces results in a rough fracture
front with self affine scaling properties. In this study
we have considered the local dynamics of the fracture
front over a wide range of average propagation veloci-
ties (0.028 < (v) < 141)um/s. The local velocity field
is obtained through the waiting time matrix and gives
a spatio-temporal distribution with a large power law
tail for high velocities described by an exponent —n =
—2.55. The fracture front advance, displays pinning and
avalanches with a broad range of velocity scales. Our
results show that the local dynamics is similar in every
respect for the two different boundary conditions. This is
an important and non-trivial result considering the very
different behaviour in the global large scale propagation.
Additionally, no dependence on the average propagation
velocity for different experiments is found.

The average autocorrelation of local velocities have
been studied in both spatial directions, and also in time
along the direction of crack propagation. We find that
the velocities are correlated up to ~ 100 um transverse
to the direction of crack propagation, and ~ 10 pm, i.e.
close to the spatial resolution, and thus uncorrelated in
the direction of crack propagation. Within these gen-
eral trends we have seen that there are differences in the
autocorrelation function from sample to sample, but no
dependence on the loading condition or average propa-
gation velocity. Relating the autocorrelation of velocities
in time to the evolution of the front width gives a growth
exponent of & = 1/2 similar to simple diffusion, a process
such as Brownian motion.

14

The local dynamics have been studied through a statis-
tical analysis of local avalanche events. We have observed
that the cluster properties are independent of both load-
ing conditions and average velocity of the crack front.
The depinning cluster size distribution show scale invari-
ance, described by an exponent —y = —1.56, in agree-
ment with previous experimental [18] and numerical re-
sults [32, 33]. Surprisingly the same result is found also
for the pinning regime. Furthermore, we have in this
study seen that the cluster size distribution scaling is
truncated by an upper cutoff, depending on the threshold
value. We have shown that the cutoff essentially is con-
trolled by the total distribution of local velocities. Par-
ticularly for the depinning regime we have obtained a
scaling law relating the cluster size exponent v to the
exponent 7 describing the local velocity distribution.

Clusters have in both velocity regimes been fur-
ther decomposed into extension lengths in the z— and
y—direction. We have demonstrated that the distribu-
tions of these extension lengths are consistent with their
size distribution. The aspect ratio of depinning clusters
follows a power law with the exponent a, /o, = 0.66 in-
dicating that the clusters are anisotropic and extending
longer transverse to the direction of propagation than in
the direction of crack propagation. We have yet to ob-
tain experimentally a relationship between the extension
of depinning clusters and the roughness of the fracture
front. This is a topic that warrants further work.

The pinning clusters were found to display a very
strong anisotropy, extending far in the z—direction as
opposed to the very short y—direction extension. This is
qualitatively in agreement with the found velocity corre-
lation lengths in the two directions, thus indicating that
these lengths describe the spatial correlations of low ve-
locities.

APPENDIX A: THE WAITING TIME MATRIX

The waiting time matrix (WTM) is a robust procedure
that enables a comparison of both different experiments
at different time and space resolution, and also with nu-
merical simulations of similar systems. It can be applied
to any propagating interface [30-32], and is particularly
suited for estimating the local velocity of pinned inter-
faces which are dominated by low speeds. Below, we will
explain the procedure in detail.

The coordinates of the extracted front lines h(z,t), in-
troduced in Fig. 3, can be represented in matrix form
as: H(x, h(z,t)) =1 and 0 elsewhere, with a matrix size
equal to the captured image size. We define the WTM
W as the sum of all front matrices H,

W(z,y) =Y H(w hx,t), (A1)

where the sum runs over all discrete times ¢. Note that W
is an integer matrix, so to get the true waiting time, the
time step dt must be multiplied to each matrix element



w. An example of front line addition is shown in Fig. 17.
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FIG. 17: Example of the computation of the waiting time
matrix W (z,y) [Eq.(A1)]. All fronts are added to an origi-
nally empty matrix in time step unit. Indicated above is the
addition of front lines in three timesteps ¢1 (red), t2 (blue),
and t3 (green).

From above it is clear that the WTM procedure gives
a spatial map that accounts for the amount of time spent
by the front at a given pixel, thus reflecting the local dy-
namics of the interface. However, avoiding holes in the
WTM, implies a high enough sampling rate, so that the
movement of the front position is at maximum one pixel
between two subsequent images. Second, it also requires
a small noise from the imaging device. Finally, care must
be taken in preparing the sample. Indeed, impurities and
surface scratches are not transparent but rather reflect
light and may thus artificially alter the extracted front
shape. In our case, experiments are devised so that the
front is propagating in a steady manner both before and
after the short interval of image capture. To avoid tran-
sient effects at the beginning and at the end of the image
recording, we typically clip between 200-500 front lines
in the start and end of the generated WTM.

From the WTM we can construct the local velocity
matrix in space V(x,y). Matrix elements represent the
normal speed of the fracture front at the time it went
through a particular position

(A2)

From the local velocity matrix V (z, y), we can also obtain
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the local velocity along each front h(x,t)

v(x,t) = V(x, h(x,1)) . (A3)
By computing v(z,t) for every time step, we build the
spatio-temporal velocity map V;(x,t). We then define the
average propagation velocity of the front (v) as the av-
erage taken over all elements in the matrix Vi(z,¢). The
development of the front in time for a given z—position
is shown in Fig. 18 (a), also indicating how the velocity
is approximated from the WTM. One realization of the
local velocity fluctuations along a front line is shown in
Fig. 18 (b).
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FIG. 18: (a) Pixel level zoom in of a frontline h(z',t) at
a given position z’ as function of time. Indicated are three
waiting times w1, we and ws separated by a one-pixel jump.
As an example, note that all captured fronts from h(z’, ) to
h(z',to+w1) is given the same constant velocity vi oc 1/wy in
making the jump from pixel 127 to pixel 128 along the y—axis.
This approximation means that the front position increases
linearly during this time interval (indicated in red). (b) Local
velocity fluctuations v(z,t’) along the frontline h(z,t').

APPENDIX B: VELOCITY PDF
TRANSFORMATION

In transforming from the spatio-temporal map V;(z,t)
[Eq. (A3) and Fig. 18b)] to the spatial map V(z,y)
[Egs. (A1) and (A2)] with the PDFs P(v) and R(v) re-
spectively, we can express the space travelled through
at speed v over a time dt as dy = v dt. The area in
(z,y) space where the front travels at speed u between
v and v + dv corresponds to the total area of fracture
propagation, A, ,, multiplied by the fraction of the area



corresponding to this speed:

/ drdy = Az yR(v)dv .
v<u(z,y)<v+dv

This area is related to the area covered by the fronts trav-
eling at that speed in the spatio-temporal map, expressed
using the variable change between y and ¢:

/ dxdy = / dzvdt (B2)
v<u(z,y)<v+dv v<u(z,t)<v+dv

Eventually, this last area is directly related to the distri-
bution P(v), with the same argument as for the spatial
map: denoting A, ; the total area of the spatio temporal
map, we can write

(B1)

dzdt = Ay P(v)dv (B3)

/v<u(z,t)<v+dv
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Inserting Eqs. (B1) and (B3) into Eq. (B2) leads to
Ag yR(v)dv = Ayt P(v)vdv . (B4)

Furthermore it can be shown that A, /A, = (v), thus
eventually

(B5)

ACKNOWLEDGMENTS

The work was supported by: The Norwegian Re-
search Council, a French Norwegian PICS program of
the CNRS, the INSU, and the French ANR SUPNAF
grant. The authors thank A. Hansen and O. Lengline for
stimulating discussions.

[1] B. Lawn, Fracture of Brittle Solids (Cambridge Univer-
sity Press, Cambridge, England, 1993).

[2] M. J. Alava, P. K. V. V. Nukala, and S. Zapperi, Adv.
Phys. 55, 349 (2006).

3] D. Bonamy, J. Phys. D: Appl. Phys. 42, 214014 (2009).

4] E. Bouchaud, J. Phys. Condens. Matter 9, 4319 (1997).

[5] J. Schmittbuhl, and K. J. Malgy, Phys. Rev. Lett 78,

3888 (1996).

[6] A. Delaplace, J. Schmittbuhl, and K. J. Malgy, Phys.
Rev. E 60, 1337 (1999).

[7] S. Santucci, M. Grob, A. Hansen,
saint, J. Schmittbuhl, and K. J.Malgy,
arXiv:1007.1188 (2010).

[8] L. Ponson, D. Bonamy, and E. Bouchaud, Phys. Rev.
Lett. 96, 035506 (2006).

[9] D. Bonamy, L. Ponson, S. Prades, E. Bouchaud, and
C. Guillot, Phys. Rev. Lett. 97, 135504 (2006).

[10] S. Santucci, K. J. Malgy, A. Delaplace, J. Mathiesen,
A. Hansen, J. O. Haavig Bakke, J. Schmittbuhl, L. Vanel,
and P. Ray, Phys. Rev. E 75, 016104 (2007).

[11] J. Schmittbuhl, A. Hansen, and G. G. Batrouni, Phys.
Rev. Lett. 90, 045505 (2003).

[12] J. P. Bouchaud, E. Bouchaud, G. Lapasset, and J.
Planes, Phys. Rev. Lett 71, 2240 (1993).

[13] J. Schmittbuhl, S. Roux, J. P. Vilotte, and K. J. Malgy,
Phys. Rev. Lett 74, 1787 (1995).

[14] A. Hansen and J. Schmittbuhl, Phys. Rev. Lett. 90,
045504 (2003).

[15] A. L. Barabasi, and H. E. Stanley, Fractal Concepts in
Surface Growth (Cambridge University Press, New York,
1995).

[16] J. Sethna, K. Dahmen, and C. Myers, Nature (London)
410, 242 (2001).

[17] K. J. Malgy, and J. Schmittbuhl, Phys. Rev. Lett 87,
105502 (2001).

[18] K. J. Malgy, S. Santucci, J. Schmittbuhl, and R. Tous-
saint, Phys. Rev. Lett. 96, 045501 (2006).

[19] S. Santucci, L. Vanel, and S. Ciliberto, Phys. Rev. Lett.
93, 095505 (2004).

R. Tous-
cond-mat,

[20] A. Marchenko, D. Fichou, D. Bonamy, and E. Bouchaud,
Appl. Phys. Lett. 89, 093124 (2006).

[21] B. Gutenberg and C. F. Richter, Seismicily of Earth
and Associated Phenomena (Princeton University Press,
Princeton, NJ, 1954).

[22] A. Corral, Phys. Rev. Lett. 92, 108501 (2004).

[23] A. P. Mehta, K. A. Dahmen, and Y. Ben-Zion, Phys.
Rev. E 73, 056104 (2006).

[24] A. Garcimartin, A. Guarino, L. Bellon, and S. Ciliberto,
Phys. Rev. Lett. 79, 3202 (1997).

[25] J. Davidsen, S. Stanchits, and G. Dresen, Phys. Rev.
Lett. 98, 125502 (2007).

[26] J. Koivisto, J. Rosti, and M. J. Alava, Phys. Rev. Lett.
99, 145504 (2007).

[27] D. Spasojevi, S. Bukvi¢, S. Milosevi¢, and H. E. Stanley,
Phys. Rev. E 54, 2531 (1996).

[28] A. Prevost, E. Rolley, and C. Guthmann, Phys. Rev. B
65, 064517 (2002).

[29] S. Moulinet, A. Rosso, W. Krauth, and E. Rolley, Phys.
Rev. E 69, 035103 (2004).

[30] R. Planet, S. Santucci, and J. Ortin, Phys. Rev. Lett.
102, 094502 (2009).

[31] M. Grob, J. Schmittbuhl, R. Toussaint, L. Rivera, S. San-
tucci, and K. J. Malpy, Pure Appl. Geophys. 166, 777
(2009).

[32] D. Bonamy, S. Santucci, and L. Ponson, Phys. Rev. Lett
101, 045501 (2008).

[33] L. Laurson, S. Santucci, and S. Zapperi, Phys. Rev. E
81, 046116 (2010).

[34] J. W. Obreimoff, Proc. Roy. Soc. London A 127, 290
(1930).

[35] S. Santucci, K. J. Malgy, R. Toussaint, and J. Schmit-
tbuhl, Interconnected Biosensor Systems: Networks and
Bioprocesses (Kluwer, Amsterdam, 2006).

[36] K. J. Malgy, R. Toussaint, and J. Schmittbuhl, Dynam-
ics and Structure of Interfacial Crack Fronts (Proc. of
the ICF11, 11th International Conference on Fracture,
Torino, 2005).




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


