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Preface

In 1911, Rutherford discovered the existence of the atomic nucleus, which
was later confirmed through the experiments of Geiger and Marsden. A
new branch of science, nuclear physics, started to develop. In the 1940s
and 1950s, it was revealed that protons and neutrons, which are the con-
stituents of the nucleus, were not fundamental, but built up of even smaller
particles later called quarks and gluons. However, some of the most fun-
damental problems of nuclear physics such as the exact nature of the force
that holds the nucleus together, are yet unsolved. In recent years, a huge
effort has been made to understand the basic force between the quarks and
gluons, and attempts have been made to describe nuclear properties from
first principles. However, the complex nature of the nuclear force makes
this task extremely hard. The status of today is that nuclear physics still
lacks a coherent theoretical formulation that would enable us to analyze
and interpret all nuclear phenomena in a fundamental way.

The aim of this thesis is to provide a tiny bit of new insight into the
broad and diverse field of nuclear physics by presenting experimental ob-
servations on statistical properties of medium-mass nuclei at high temper-
atures. This has long been the main research field of the nuclear physics
group at the Oslo Cyclotron Laboratory, where the experiments were per-
formed. In the experiments, the nuclei were excited to high-energy quan-
tum levels and the decay from these levels were studied by means of statis-
tical methods. This thesis will show that statistical methods are applicable
in the energy region of interest, even for relatively small systems such as a
nucleus, provided that the nucleus is brought to a sufficiently high temper-
ature and that the time scale is large enough for the nucleus to equilibrate
before emitting radiation. The results are especially interesting from an
astrophysical point of view, as the nuclear structure close to the particle
separation energies influences strongly the nucleosynthesis processes that
take place in extreme stellar environments such as supernovae.
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Chapter 1

Introduction

Low-energy nuclear physics describes atomic nuclei in terms of nucleons
as the relevant degrees of freedom. The carriers of the force between the
nucleons are thought to be light mesons, in particular the π and ρ mesons.
Ab initio calculations based on, e.g, the shell model, are able to describe
the observed nuclear quantum numbers such as energy levels, spin and
parity with good accuracy for nuclei and excitation energies where there
are relatively few quantum energy levels accessible. Transition strengths
and branching ratios are also often well reproduced.

However, as the excitation energy increases, the density of energy lev-
els becomes so high that it is impractical or even impossible to resolve
individual levels. This is the region of the quasi-continuum, squeezed in
between the discrete region where levels are easily resolved with state-
of-the-art spectroscopy measurements, and the continuum region, where
the levels are overlapping and thus not possible to separate. The onset
of quasi-continuum varies from nucleus to nucleus, and is in general at
higher excitation energy for light nuclei and nuclei with nucleon numbers
close to or equal a magic number – that is, a filled major shell1.

In the region of quasi-continuum, the precise location of levels and
strengths of individual transitions between those levels is of much lesser
importance than in the discrete region. The mixing that occurs due to
small, residual interactions dilutes the purity of, in principle, simple exci-
tations formulated in terms of approximate quantum numbers. The strength
of these excitations is then distributed over many energy levels. Therefore,
statistical concepts such as average values and fluctuations around those
values become the physically relevant quantities.

Two very important, statistical quantities applied in the quasi-continuum,

1The magic numbers representing shell closures are 2, 8, 20, 28, 50, 82, and 126 [1].
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CHAPTER 1. INTRODUCTION

is the nuclear level density and the γ-ray strength function. These av-
erage quantities can be regarded as the counterparts of the energy lev-
els and transition strengths in the discrete region. Local deviations from
a smooth behaviour in the level density and the strength function im-
ply global structure changes in the nucleus, such as breaking of nucleon
Cooper pairs or collective excitation modes such as the scissors mode.

However, it has has proven to be a difficult task to get experimental
information on the level density and the γ-ray strength function in the
medium and high excitation-energy region. The nuclear physics group
at the Oslo Cyclotron Laboratory (OCL) has developed a method (the
so-called Oslo method) to extract level density and γ-ray strength func-
tion from first-generation γ-ray spectra for excitation energies between the
ground state and the neutron (proton) binding energy [2, 3, 4]. This unique
technique has provided experimental evidence for the sequential breaking
of nucleon Cooper pairs [5] and an M1 scissors mode pygmy resonance in
rare-earth nuclei [6, 7]. Also, a strongly enhanced strength function at low
γ energies has been discovered in several Fe and Mo isotopes [8, 9].

The main object of this thesis is to investigate how the level density
and the γ-ray strength function develop in medium-mass nuclei, and to
test the Oslo method on nuclei with neutron or proton numbers near or
at magic numbers. Therefore, the nuclei studied here are 44,45

21Sc [10, 11],
50,51

23V [12], and 93−98
42Mo [9, 13]. The Sc nuclei are close to the proton shell

Z = 20, while the neutrons are filling the f7/2 shell half-way. The situation
is opposite in 50,51V, with 23 protons and with a closed or almost closed
N = 28 shell for 51V and 50V, respectively. Moving to a region of heav-
ier nuclei, the Mo isotopes considered in this thesis have neutron num-
bers near the N = 50 shell closure. Shell effects are therefore expected to
manifest themselves in the level density through structures and an overall
lower level density than for mid-shell nuclei. Such features will be looked
for in the presented experimental data.

When it comes to the γ-ray strength functions, it is an open question
whether the low-energy enhancement seen in the Fe and Mo isotopes is
a feature related to specific structures in these nuclei, or if it is a general
behaviour of nuclei in a certain mass region. This issue has been addressed
in the present work.

The thesis is organized as follows: Chapter 2 gives a historic overview
of theoretical and experimental achievements concerning level densities
and γ-ray strength functions. In Chapter 3, the experimental equipment
and some details of the performed experiments are given, and the data
analysis is briefly described. The Oslo method is explained and discussed

2



in Chapter 4. Chapter 5 includes reprints of five published articles. Finally,
conclusions and an outlook will be given in Chapter 6.
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Chapter 2

Nuclear structure and γ-ray
strength in the quasi-continuum

The excitation-energy region between the discrete regime (where the nu-
clear states have well-defined quantum numbers), and the continuum re-
gion (where individual levels cannot be resolved due to minuscule or van-
ishing level spacings), is defined as the quasi-continuum. Here, the nu-
cleus undergoes a transition from an ordered phase at low excitation en-
ergy to a more chaotic behaviour as the energy is increased. Nuclei in
this transitional excitation-energy region might be most appropriately de-
scribed by average quantities like the level density and the γ-ray strength
function. The level density, averaged over a specific excitation-energy bin,
replaces the counting of discrete levels, while the γ-ray strength function
inherits the role that transition probabilities are playing at low excitation
energies.

2.1 The level density

The level density is defined as the number of quantum energy levels ac-
cessible at a specific excitation energy, within a given energy bin. The level
density gives direct information on thermodynamic properties of the nu-
clear system, see Appendix A for a brief introduction to thermodynamic
concepts and quantities.

The first theoretical attempt to describe nuclear level densities was
done by H. Bethe in 1936 [15]. In his fundamental and pioneering work,
Bethe described the nucleus as a gas of non-interacting fermions mov-
ing freely in equally spaced single-particle orbits. The level density was
obtained by the inverse Laplace transformation of the partition function

4



2.1. THE LEVEL DENSITY

determined from Fermi statistics. Bethe’s original results yielded a level
density function

ρ(E) =
√

π

12
exp(2

√
aE)

a1/4E5/4 , (2.1)

for an excitation energy E, and where a is the level-density parameter
given by

a =
π

6
(gp + gn). (2.2)

The terms gp and gn are the single-particle level density parameters for
protons and neutrons, respectively, which are expected to be proportional
to the mass number A. In fact, Bethe’s consideration of the nucleus to be
a Fermi gas of free protons and neutrons confined to the nuclear volume
gives

a = αA. (2.3)

The constant α has been found to be about 1/8 − 1/10 by fitting to exper-
imental data.

The Bethe expression predicts an exponential increase in the level den-
sity with the square-root of the excitation energy and level-density pa-
rameter. This has been found to be qualitatively true, although important
factors such as pairing correlations, collective phenomena and shell effects
are not included. Refined versions of the original Fermi gas formula take
into account these effects by employing free parameters that are adjusted
to fit experimental data on level spacings obtained from neutron and/or
proton resonance experiments. A. Gilbert and A. G. W. Cameron [16] pro-
posed the following level-density formula in 1965:

ρ(U) =
√

π

12
exp(2

√
aU)

a1/4U5/4
1√
2πσ

. (2.4)

Here, U is the shifted excitation energy, U = E − Δp − Δn, where Δp and
Δn are the pairing energy for protons and neutrons, respectively. The spin
cutoff parameter σ is given by

σ2 = g〈m2〉T, (2.5)

where g = gp + gn relate to the level density parameter as in Eq. (2.2),
〈m2〉 ≈ 0.146A2/3 is the mean-square magnetic quantum number for single-
particle states, and the temperature is given by

T =
√

U/a. (2.6)
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CHAPTER 2. NUCLEAR STRUCTURE AND γ-RAY STRENGTH IN
THE QUASI-CONTINUUM

Another expression of the level density for excitation energies between
0 − 10 MeV is obtained from the constant-temperature (CT) model [16],

ρ(E) =
1
T

exp[(E − E0)/T], (2.7)

where E is the excitation energy, and the free parameters T and E0 are
connected to a constant nuclear temperature (in contrast to Eq. (2.6)) and
an energy shift, respectively.

A variant of the shifted Gilbert-Cameron expression given in Eq. (2.4)
is the back-shifted Fermi gas (BSFG) model [17], where the level-density
parameter and energy shift are considered as free parameters, allowing
for a reasonable fit to experimental data over a wider range of energies1.
Also, phenomenological methods were developed to describe the energy
dependence of the parameter a.

In 2005, T. von Egidy and D. Bucurescu [18] published a new compila-
tion of systematics of nuclear level-density parameters. In their approach,
they determined a new set of phenomenological level density parameters
for the BSFG and CT model by fitting the latest data on low-excitation-
energy levels and neutron resonance spacings at the neutron binding en-
ergies for 310 nuclei between 19F and 251Cf. Then they studied the varia-
tions of these parameters for the set of nuclei, and observed correlations
with other physical observables leading to the determination of simple
formulas that describe the main features of the empirical parameters. For
the BSFG model, the following expressions were used for the level density
and the spin cutoff parameter:

ρ(E) =
exp[2

√
a(E − E1)]

12
√

2σa1/4(E − E1)5/4
(2.8)

and

σ2 = 0.0146A5/3 1 +
√

1 + 4a(E − E1)
2a

. (2.9)

The level-density parameter a and energy shift E1 were treated as free pa-
rameters to be fitted to experimental data.

The expression for σ is based on the rigid-body value for the nuclear
moment of inertia,

I =
2
5

m0r2
0

h̄2 A5/3, (2.10)

1The shift Δp + Δn turns out to be too large, so it is ’back-shifted’ by subtracting a
parameter C1 [17].
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2.1. THE LEVEL DENSITY

where m0 is the nucleon mass and r0 is the nuclear radius parameter, and
the nuclear temperature is described as

T =
1 +

√
1 + 4a(E − E1)

2a
. (2.11)

From the relation
σ2 = IT, (2.12)

we obtain the expresion given in Eq. (2.9). Although Eq. (2.11) has been
shown to be mathematically incorrect in [16], the authors of [18] found
Eq. (2.9) to be most adequate in the excitation-energy region considered in
their work.

Other semi-empirical level density models have also been developed,
such as the model by Kataria, Ramamurthy and Kapoor (KRK), which ac-
counts for shell effects in terms of the ground-state shell correction to the
nuclear binding energy, and the Generalized Superfluid (GSF) model in-
troduced by Ignatyuk and others. As these models will not be used in
this thesis, the reader is referred to [19] and references therein for further
information.

Although the above-mentioned semi-empirical expressions give rea-
sonable agreement with experimental data on, e.g., neutron resonance
spacings, they are not able to describe fine structures in the level den-
sity caused by pair breaking, shell effects etc. Also, any extrapolation
to nuclei far from the valley of stability where little or no experimental
data are known could be highly uncertain. In order to have a predictive
power, level densities should ideally be calculated from microscopic mod-
els based on first principles and fundamental interactions.

For a detailed, microscopic description of the nuclear level density, one
should solve the exact many-body eigenvalue problem

Ĥ |Ψ〉 = E |Ψ〉 , (2.13)

where the Hamiltonian is given by

Ĥ =
A

∑
i=1

− h̄2

2m
∇i +

A

∑
i<j

v(i, j) (2.14)

assuming a two-body character of the nucleon interaction, and where i
represents all relevant coordinates and quantum numbers of the ith nu-
cleon. The nuclear wave function for A nucleons is given as

|Ψ〉 = |Ψ(1, ..., A)〉 . (2.15)
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CHAPTER 2. NUCLEAR STRUCTURE AND γ-RAY STRENGTH IN
THE QUASI-CONTINUUM

This is a simplified, non-relativistic treatment where three-body and higher-
order contributions are neglected. However, this has turned out to be a
tremendous challenge for mid-mass and heavy nuclei as the dimension of
the problem grows rapidly with the number of nucleons. For example,
using the interactive shell model to simplify the Hamiltonian and pro-
vide an orthogonal basis for single-particle wave functions, the required
model space is many orders of magnitude larger than spaces in which con-
ventional diagonalization methods can be applied. It is therefore of great
importance to introduce methods where level density can be calculated
approximately without loosing too much of the desired microscopic de-
tails.

One such method is the shell model Monte Carlo approach as applied
by Y. Alhassid et al. [20, 21, 22]. Here, thermal averages are taken over
all possible states of a given nucleus. Two-body correlations are fully
taken into account within the model space2. These calculations show very
promising results and are often in good agreement with experimental data.
The drawback is that they are very time consuming.

Another statistical approach, starting from mean-field theory, is pre-
sented by P. Demetriou and S. Goriely [23]. Here, a global, microscopic
prescription of the level density is derived based on the Hartree-Fock-BCS
(HFBCS) ground-state properties (single-particle level scheme and pair-
ing force). Combinatorial models have also been developed [24], which,
like the HFBCS plus statistical model, give almost equally good agreement
with experimental data as obtained with phenomenological BSFG formu-
lae. A global combinatorial model has been combined with an updated
deformed Hartree-Fock-Bogolyubov model by S. Hilaire and S. Goriely
[25], where the combinatorial predictions provide the non-statistical limit
that by definition cannot be described by any statistical approach. An-
other advantage of this combined model is that the parity dependence of
the level density is obtained in addition to the energy and spin depen-
dence. Globally, the new model of [25] predicts s- and p-wave neutron
resonance spacing data within a factor of two.

When it comes to measuring level densities experimentally, several
methods have been developed and applied in various excitation-energy
regions. At low excitation energies it is possible to determine the level
density by counting the discrete levels from databases such as the Table
of Isotopes [26] and ENSDF [27]. However, this method quickly becomes
unreliable when the level density reaches about 50 levels per MeV.

2The complete pf shell and the 0g9/2 orbit are included in calculations of nuclei from
iron to germanium [21]).
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Figure 2.1: The level density of 51V calculated with two parameterizations of
the back-shifted Fermi gas model (colored lines, [17, 18]), and from the work of
S. Hilaire and S. Goriely (white squares, [25]) compared to the experimental level
density from OCL (black dots, [12]).

At the neutron (proton) separation energy, the numbers of s- and p-
wave neutron (proton) resonances within the energy range of the incom-
ing neutron (proton) reveal the level spacing between the states reached
in the capture reaction [19]. This is the method of choice for determining
parity- and spin-projected level density at and slightly above the neutron
(proton) separation energy. Obviously, the method is not applicable at
other energies, and corrections are needed for missing resonances or con-
taminating resonances with higher � values.

Another appreciable method is the Hauser-Feshbach modelling of evap-
oration spectra [28]. This method can be applied to the quasi-continuum
and produces reliable level density functions, including fine structures.
However, care has to be taken so that the underlying assumptions of the
Hauser-Feshbach theory are met by choosing appropriate reactions, beam
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Figure 2.2: The level density of 44Sc obtained from Hauser-Feshbach modelling
of α-evaporation spectra (open circles) and from a statistical analysis of primary-γ
spectra (black circles), see [11].

energies, ejectile angles and so on. Also, a priori knowledge of particle
transmission coefficients is needed.

In the Ericsson regime (excitation energies 3 − 4 MeV above the neu-
tron separation energy for heavy nuclei), the level density can be deter-
mined from a fluctuation analysis of total neutron cross sections [29]. This
method relies on specific assumptions concerning how level density can
be extracted from cross-section fluctuations. In particular, level widths,
level spacings and the experimental resolution must follow a certain hier-
archy, which is only fulfilled in certain energy regions. Also the restriction
to very specific reactions limits the usefulness of this method.

A recent method to measure the level density has been developed by
the Oslo nuclear physics group [2, 3, 4]. This method, called the Oslo
method, is based on a statistical analysis of primary-γ spectra extracted
from various excitation-energy bins. The extracted level density of 51V
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is shown in Fig. 2.1, where it is compared with calculated level densities
from the back-shifted Fermi gas model, and the calculations of [25]. The
Oslo method determines the functional form of the level density between
the discrete region and the neutron (or proton) separation energy, and has
about the same precision in providing information on fine structures as
the Hauser-Feshbach modelling of evaporation spectra, see Fig. 2.2. It is
however necessary to use information on discrete levels and neutron (pro-
ton) resonances in order to obtain the correct slope and absolute value of
the level density.

2.2 The γ-ray strength function

Gamma-ray strength functions characterize the average electromagnetic
properties of excited nuclei, which means that they are closely connected
to radiative decay and photo-absorption processes. They are also called
radiative strength functions [30] and photon strength functions [31] in the
literature. They can be directly associated with reduced transition proba-
bilities, see Appendix B for details on this subject.

The original definition of a model-independent γ-ray strength function
is (Bartholomew et al. [32]):

fXL(Eγ) =
〈Γγ�〉

(E2L+1
γ D�)

. (2.16)

Here, fXL(Eγ) is the γ-ray strength for electromagnetic character X, mul-
tipolarity L, and γ-ray energy Eγ, 〈Γγ�〉 is the average radiative width and
D� is the resonance spacing for �-wave resonances (usually s- or p-wave)
determined from average resonance capture (ARC) neutron experiments.
This is the ”downward” strength function related to the γ decay. The
photo-excitation (”upward”) strength function is determined by the av-
erage photo-absorption cross section 〈σXL(Eγ)〉 summed over all possible
spins of final states [19, 31, 33]:

fXL(Eγ) =
1

(2L + 1)(πh̄c)2
〈σXL(Eγ)〉

E(2L−1)
γ

. (2.17)

Based on Fermi’s golden rule and the principle of detailed balance, the
”upward” and ”downward” γ-ray strength function correspond to each
other provided that the same states are populated.

11



CHAPTER 2. NUCLEAR STRUCTURE AND γ-RAY STRENGTH IN
THE QUASI-CONTINUUM

The γ-ray strength function fXL is related to the γ-ray transmission
coefficient TXL by

TXL(Eγ) = 2πE(2L+1)
γ fXL(Eγ) . (2.18)

Therefore, γ-ray strength functions are important for the description of the
γ emission channel in nuclear reactions. This is an almost universal chan-
nel since γ rays, in general, may accompany emission of any other emitted
particle. Like the particle transmission coefficients that emerge from the
optical model, γ-ray transmission coefficients enter the Hauser-Feshbach
model for calculation of the competition between photon emission with
other particles.

The simplest model for the strength function, the single-particle model
of Blatt and Weisskopf [34], results in energy-independent strength func-
tions. This has been long known to be a too simple picture – collective ex-
citations must also be taken into account. For instance, the well-known gi-
ant electric dipole resonance (GEDR) that strongly influences the strength
function has been observed throughout the periodic table with great regu-
larity. This resonance is believed to stem from harmonic vibrations where
protons and neutrons oscillate off-phase against each other, and is there-
fore called an isovector collective excitation mode. Other giant resonances
have been discovered as well, such as the giant magnetic dipole resonance
(GMDR), which is built of spin-flip transitions between � ± 1/2 subshells,
and the isoscalar giant electric quadrupole resonance (GEQR) originated
from surface oscillations where the protons and neutrons are distorted in
two orthogonal directions. For more information on giant resonances in
general, see M. N. Harakeh and A. van der Woude [35].

There is also experimental evidence for other types of collective excita-
tion modes, namely the so-called pygmy resonances, which are small com-
pared to the corresponding giant resonances. Examples of such small reso-
nances are the M1 scissors mode, where, in a macroscopic view, the proton
and neutron clouds act like a pair of scissor blades ”clipping” against each
other, and the E1 pygmy resonance caused by a ”skin” created by excess
neutrons oscillating against an N = Z core.

In the following, some of the standard models for the E1 strength func-
tion will be described. For details regarding the determination of various
constants etc., and also for a description of the models of the M1 spin-flip
and E2 isoscalar resonance, see Appendix C.

The Brink-Axel hypothesis [30, 36] has been widely used to describe
collective excitation modes, and in particular the GEDR. The hypothesis
states that collective excitations built on excited states have the same prop-
erties as those built on the ground state; that is, the probability of γ decay
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is only dependent on the γ-ray energy and not on the temperature of the
final state. This strong assumption leads to a Lorentzian shape of the giant
resonances. For the GEDR, the Standard Lorentzian (SLO) is given as3 [19]

fE1(Eγ) =
1

3π2h̄2c2

σrΓ2
r Eγ

(E2
γ − E2

r )2 + Γ2
r E2

γ
(2.19)

in units of MeV−3. Here, the Lorentzian parameters σr (in mb), Γr (in MeV)
and Er (in MeV) are the peak cross section, width and centroid energy of
the GEDR, respectively. This form gives a very accurate description of
photo-absorption data of mid-mass and heavy nuclei close to the reso-
nance maximum. However, the SLO model significantly underestimates
the γ-ray strength function for Eγ � 1 MeV. Also, the SLO model tends to
overestimate experimental data such as capture cross sections and average
radiative widths in heavy nuclei (see [19] and references therein).

In the work of Kadmenskiı̆, Markushev and Furman (KMF) based on
Fermi liquid theory [37], a temperature dependency on the final states Tf
is incorporated in the description of the GEDR:

f KMF
E1 (Eγ, Tf ) =

1
3π2h̄2c2

0.7σrΓ2
r (E2

γ + 4π2T2
f )

Er(E2
γ − E2

r )2 (2.20)

Here, the temperature-dependent width of the GEDR is given by

ΓKMF(Eγ, Tf ) =
Γr

E2
r
(E2

γ + 4π2T2
f ), (2.21)

where the first term reflects the spreading of particle-hole states into more
complex configurations, and the second term accounts for collisions be-
tween quasiparticles. This temperature inclusion made it possible for the
authors of [37] to reproduce quite accurately the experimental strength
function of 144Nd [38] in the region Eγ = 0.2 − 7 MeV. Also, the KMF
model gives good agreement with capture cross sections and average ra-
diative widths. However, using a variable temperature of the final states
contradicts the Brink-Axel hypothesis. This could in principle be mended
if a constant temperature is applied instead. Another problem with the
KMF model is the divergence at the resonance centroid energy that makes
it impossible to describe both the high- and low-energy part of the E1
strength function.

3The constant 1/(3π2h̄2c2) = 8.674 · 10−8 mb−1MeV−2.
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Several attempts have been made to implement the behavior of the
strength function at low and high γ energies simultaneously. The General-
ized Lorentzian (GLO) model as proposed by J. Kopecky and R. E. Chrien
[39] consists of two terms: a Lorentzian with a temperature-dependent
width according to Eq.(2.21), and the non-zero limit when Eγ → 0 as de-
scribed in [37]:

f GLO
E1 (Eγ, Tf ) =

1
3π2h̄2c2

σrΓr

[
Eγ

ΓKMF(Eγ, Tf )
(E2

γ − E2
r )2 + E2

γΓ2
KMF(Eγ, Tf )

+ 0.7
ΓKMF(Eγ = 0, Tf )

E3
r

]
. (2.22)

The GLO model gives reasonable agreement with data on capture cross
sections and primary γ-ray spectra from ARC measurements for nearly
spherical nuclei. For nuclei with a large ground-state deformation in the
mass region A = 150 − 170, the GLO model underestimates the observed
strength calculated from primary γ rays. Therefore, an Enhanced Gen-
eralized Lorentzian (EGLO) model has been proposed [19, 40], where a
generalization of the temperature-dependent width is introduced as fol-
lows:

ΓK(Eγ, Tf ) = K(Eγ)
Γr

E2
r
(E2

γ + 4π2T2
f ), (2.23)

where the empirical function K(Eγ) given by

K(Eγ) = κ + (1 − κ)
Eγ − E0

Er − E0
(2.24)

relates the width in Eq. (2.21) to the collisional damping width in the Fermi
liquid theory. The factor κ depends on the model adopted for the level
density, while E0 is a constant set to 4.5 MeV (see [19] and Appendix C).

From a theoretical point of view, there are problems with both the SLO
and the (E)GLO models despite the good agreement of the latter with ex-
perimental results. As described in [19] and references therein, the shapes
of the (E)GLO and SLO models are inconsistent with the general relation-
ship between the γ-ray strength function of heated nuclei and the imag-
inary part of the nuclear response function to the electromagnetic field.
Also, the damping width of the EGLO model is proportional to the col-
lisional component of the damping width in the infinite Fermi liquid in
which only the collisional (two-body) relaxation is considered. It is how-
ever necessary to also include the contribution from the fragmentation
(one-body) width stemming from the nucleon motion in a self-consistent
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mean field. This fragmentation width is almost independent of the tem-
perature, and is not included in the (E)GLO model, while the temperature-
independent width in the SLO model only accounts for the fragmentation,
but not for collisional damping.

These shortcomings can be avoided using refined closed-form models
such as the Modified Lorentzian (MLO) [19, 41, 42] given by

f MLO
E1 (Eγ, Tf ) =

1
3π2h̄2c2

L(Eγ, Tf )σrΓr
EγΓ(Eγ, Tf )

(E2
γ − E2

r )2 + E2
γΓ2(Eγ, Tf )

. (2.25)

Equation (2.25) is consistent with the principle of detailed balance, and is
obtained by calculating the average radiative width of nuclei with micro-
canonically distributed initial states. The term

L(Eγ, Tf ) =
1

1 − exp(−Eγ/Tf )
(2.26)

is a scaling factor that determines the enhancement of the γ-ray strength
function in a heated nucleus as compared to a cold nucleus. This quantity
can be interpreted as the average number of one-particle − one-hole states
excited by an electromagnetic field with frequency ω = Eγ/h̄, and is only
important for low-energy γ rays [19]. The semi-empirical damping width
is expressed as

Γ(Eγ, Tf ) = ΓC(Eγ, Tf ) + ΓF(Eγ), (2.27)

where ΓC represents the collisional damping width and ΓF simulates the
fragmentation component of the total damping width (see Appendix C for
more details).

Another approach for the E1 strength function is the Generalized Fermi
Liquid (GFL) model as proposed by S. F. Mughabghab and C. L. Dunford
[43] and slightly modified in [19]. The GFL model depends on the final
temperature Tf and the deformation parameter β2, and is given by

f GFL
E1 (Eγ, Tf , β2) =

1
3π2h̄2c2

σrΓr
KGFLEγΓm(Eγ, Tf )

(E2
γ − E2

r )2 + KGFLE2
γΓ2

m(Eγ, Tf )
, (2.28)

KGFL =

√
1 + F′

1/3
1 + F′

0
, (2.29)

where F′
0 and F′

1 are the Landau-Migdal parameters of the quasi-particle
interaction in the isovector channel of the Fermi system. According to [19],
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the term KGFLE2
γΓ2

m(Eγ, Tf ) is added in the denominator to avoid singu-
larity at the resonance centroid energy. Equation (2.28) is thus an exten-
sion of the original expression given in [43]. Quite similar to the width in
Eq. (2.27), the width Γm is given by a sum of a collisional damping width
ΓC and the term Γdq that simulates the fragmentation width:

Γm(Eγ, Tf ) = ΓC(Eγ, Tf ) + Γdq(Eγ, β2). (2.30)

The Hybrid Formula proposed by S. Goriely in Ref. [44] is another
model that is able to simultaneously describe the low-energy and high-
energy part of the γ-ray strength function. The form of the Hybrid For-
mula as given in [19] is:

f HF
E1 (Eγ, Tf ) =

1
3π2h̄2c2

σrΓr
EγΓh(Eγ, Tf )

(E2
γ − E2

r )2 + E2
γΓrΓh(Eγ, Tf )

, (2.31)

where

Γh(Eγ, Tf ) = KGFLΓr
E2

γ + 4π2T2
f

EγEr
. (2.32)

All expressions discussed so far need to be generalized for deformed
nuclei, where the deformation leads to a splitting of the GEDR into two
components corresponding to two oscillation frequencies, one for each
principal axis. The E1 strength function in deformed nuclei is thus defined
as the sum of two components, each with the corresponding centroid en-
ergy Er,j, damping width Γr,j and peak value of the photo-absorption cross
section σr,j where j = 1 and j = 2 correspond to collective vibrations along
and perpendicular to the symmetry axis (see Appendix C for further de-
tails). In Fig. 2.3, model calculations are shown for the E1 strength func-
tion of 51V, and it is seen how the models might deviate significantly at
the low- and high-energy tails of the GEDR. The models of the M1 and E2
resonance briefly described in Appendix C are also included in the figure.

As for the level density, a microscopic treatment of the strength func-
tion is necessary to obtain information on the underlying nuclear structure
and to have predictive power throughout the nuclear chart. For example,
structures due to the scissors mode and neutron skin oscillations are not
dealt with in a comprehensive way in the models described so far. Also,
any extrapolation of the GEDR, GMDR and GEQR systematics for the res-
onance centroid energy, maximum cross section and damping width to
exotic nuclei far from the β-stability line is highly questionable. Calcula-
tions based on, e.g., the random-phase approximation (RPA) have proven
to be superior to the semi-classical approaches in predictive power.
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Figure 2.3: Various theories for the E1 strength in 51V (see text) and the M1 spin-
flip and E2 isoscalar resonance.

Several publications have been dedicated to the microscopic descrip-
tion of γ-ray strength functions. S. Goriely and E. Khan presented in
Ref. [45] large-scale calculations based on the quasi-particle RPA (QRPA)
model [46] to generate excited states on top of the HF+BCS ground state.
To account for the damping of the collective motion, the GEDR is empiri-
cally broadened by folding the QRPA resonance strength with a Lorentzian
function. These calculations were performed for more than 6000 nuclei
with 8 ≤ Z ≤ 110. It is shown that the QRPA provides a quite accurate
description of the GEDR centroid and the fraction of the energy-weighted
sum rule exhausted by the E1 mode (see [35] for a thorough treatment of
radiative sum rules).

Another approach to treat the collective modes microscopically, is the
quasi-particle multiphonon (QPM) model introduced by F. Andreozzi, F.
Knapp, N. Lo Iudice, A. Porrino, and J. Kvasil [47]. Within this model, the
nuclear eigenvalue problem given in Eq. (2.13) is solved exactly in a multi-
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phonon space, where the basis states are generated via the Tamm-Dancoff
Approximation (TDA) [46]. The calculations in Ref. [47] are compared
with experimental data on low-lying negative parity states in 16O, show-
ing a fairly good agreement when three phonons (3h̄ω) are included. It
appears that the isovector GEDR, which is harmonic, is not affected by the
choice of number of phonons included. However, the strength distribu-
tion of the isoscalar GEQR is very sensitive to the size of the multiphonon
space; if three phonons are included, much more fragmentation is induced
compared to the case when only one phonon or two phonons are included.
The same is true for octupole modes.

The by far largest contribution of experimental information on the γ-
ray strength function is from photoabsorption measurements4. To mea-
sure photoabsorption, most often photoneutron cross sections, which pro-
vide a good substitute for photoabsorption cross sections, are measured.
Photoneutron (or photoproton) cross-section measurements are dominated
by E1 radiation, and are limited to energies above the neutron (proton)
separation energy. Also, the absorption cross sections can only be mea-
sured on ground states or on very long-lived isomeric states. These mea-
surements are traditionally performed by guiding a beam of photons to
impinge on a thick target (typically several grams) of the nucleus that is
under study. The photons can be of bremsstrahlung type from a betatron
or a synchrotron facility, or produced by the in flight annihilation of fast
positrons from a linear accelerator giving a quasi-monoenergetic photon
beam although still containing some bremsstrahlung components [50, 51].
More recently, the inverse Compton-scattering technique has been utilized
to produce true quasi-monoenergetic photon beams (see, e.g., Ref. [52] and
references therein).

To measure the γ-ray strength function below the particle-emission
threshold, photon scattering on isolated levels has been utilized. In the
so-called Nuclear Resonance Fluorescence (NRF) method, the spins, par-
ities, branching ratios and reduced transition probabilities of the excited
states can be extracted in a model-independent way [53]. Polarization and
angular correlation measurements allow the separation of transitions into
E1, M1, and E2 transitions, usually with very good precision [54]. How-
ever, the method is selective with respect to strong transitions, and experi-
mental thresholds might hamper the determination of an average transition
strength as represented by the γ-ray strength function [6, 7, 55]. Never-

4See, e.g., the atlas of ground-state photoneutron and photoabsorption cross sections
by S. S. Dietrich and B. L. Berman [48], and the Centre for Photonuclear Experiments Data
[49].
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theless, this method was able to confirm the experimental evidence for a
new, low-lying magnetic dipole mode [53] first discovered in (e,e’) exper-
iments [56] on rare-earth nuclei. Also, a thorough study of the E1 pygmy
resonance in the 40,44,48Ca isotopes and in N = 82 nuclei using photon
scattering (γ,γ′) reactions has been presented by A. Zilges et al. [57]. Here,
a summed B(E1↑) strength of up to 1% of the Thomas-Reiche-Kuhn sum
rule [35] for the total E1 strength was found for the pygmy resonance.

Another way of measuring γ-ray strength functions below the neutron
separation energy, is by radiative neutron (or proton) capture reactions
into compound states in the final nucleus [39, 58, 59]. From such experi-
ments, both average total radiative widths of neutron resonances and indi-
vidual transition strengths from one or several neutron resonances to one
or several lower-lying discrete states can be obtained. Such primary γ-
rays are averaged manually to get the γ-ray strength function, unless ARC
neutrons were used, covering a wider range of energy and including many
resonances. In the case of the total radiative widths, the γ-ray strength is
obtained by integrating a modeled spectral distribution of γ rays which is
constructed from trial γ-ray strength functions and level densities. In the
analysis of individual transition strengths, corrections can be applied for,
e.g., experimental bias and non-statistical effects. The advantage of mea-
suring individual transition strengths is that since the spin and parity of
both the initial and final states are known, E1, M1, and E2 γ-ray strength
functions can be obtained separately. The method is however limited in
energy in that it provides averages of transitions with energies in the or-
der of ∼ 1 − 2 MeV below the neutron separation energy.

Yet another approach in determining the γ-ray strength experimen-
tally, is the spectrum-fitting method (see Ref. [60] and references therein).
Within this method, a total γ-cascade spectrum is fitted in terms of trial
γ-ray strength functions and level densities. This method has been used
extensively for γ spectra following, e.g, fusion-evaporation reactions in
the search for the temperature response of the giant electric dipole res-
onance and can cover a wide range of temperatures and spins. A special
development of the spectrum-fitting method is the two-step cascade (TSC)
or (n,2γ) method, where experimentally, only two-step cascades which
connect neutron resonances and discrete low-lying levels with definite
parity and spin are recorded. In this manner, the method trades flexi-
bility in terms of applicable nuclear reactions, and temperature and spin
regions with sensitivity to γ-ray strength functions of different multipo-
larities [6, 8, 55]. The disadvantage of all spectrum-fitting methods is that
the level density remains a large source of systematic uncertainty, unless
it is known a priori.
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The Oslo method makes it possible to extract the γ-ray strength through
the statistical analysis of excitation-energy indexed primary γ-ray spec-
tra [4, 61]. This method is probably the most reliable method in terms
of possible systematic errors to produce a total γ-ray strength function in
the energy region below the neutron separation energy. It is therefore en-
tirely complementary to the measurement of photoneutron and photopro-
ton cross sections. The method is able to reveal fine structures, however,
it does not provide absolute values and the γ-ray strength function has
to be normalized to the average total radiative neutron resonance width.
In several cases, the results from the Oslo method have been validated
by their successful application to the spectrum-fitting method of total and
two-step cascades [6, 8]. Also, the results after normalization to the aver-
age total radiative neutron resonance width are shown to be in excellent
agreement with extrapolations of γ-ray strength from photoneutron cross-
section measurements as well as individual transition strengths from neu-
tron resonances [14].
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Chapter 3

Experimental details and data
analysis

3.1 Introduction

The experiments were performed at the Oslo Cyclotron Laboratory (OCL)
at the University of Oslo. The cyclotron at the OCL is the heart and workhorse
of the research centre SAFE (Centre for Accelerator Based Research and
Energy Physics), which was established by the University of Oslo in June
2005, merging the nuclear physics group, the nuclear chemistry group,
and the energy research group.

The Oslo cyclotron is an MC-35 Scanditronix model delivering pulsed
light-ion beams, see Table 3.1 for a list of available beams. The molybde-
num data were taken in February and June 2002, the vanadium data in
November 2002, and the scandium experiment was carried out in Septem-
ber 2004. In all experiments, a 3He beam was used. For details on the
targets, see Table 3.2. In order to prevent pileup in the detectors, the beam
current was limited to ≈ 1− 2 nA. The experiments were run for about six
days.

Ion Charge state Energy range (MeV) Intensity (μA)

Proton 1H+ 2-35 100
Deuteron 2H+ 4-18 100
Helium-3 3He++ 6-47 50
Helium-4 (α) 4He++ 8-35 50

Table 3.1: Beams available at the Oslo Cyclotron Laboratory.
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Target Enrichment Thickness Reactions Beam energy
(mg/cm2) (MeV)

45Sc† 99.9% 3.4 45Sc(3He,αγ)44Sc 38
45Sc(3He,3He′γ)45Sc

51V† 99.8% 2.3 51V(3He,αγ)50V 30
51V(3He,3He′γ)51V

94Mo 92% 2.7 94Mo(3He,αγ)93Mo 30
94Mo(3He,3He′γ)94Mo

96Mo 96.7% 1.9 96Mo(3He,αγ)95Mo 30
96Mo(3He,3He′γ)96Mo

98Mo 97.0% 2.0 98Mo(3He,αγ)97Mo 45
98Mo(3He,3He′γ)98Mo

† Natural targets.

Table 3.2: Targets and reactions used for the experiments studied in this thesis.

The following nuclei will be studied in this thesis: 44,45Sc, 50,51V, and
93−98Mo. The selected reactions are listed in Table 3.2. The experimental
equipment used in the experiment is described in the following sections.

3.2 Experimental setup

The experimental setup at the OCL is shown in Fig. 3.1. The cyclotron is
situated in the inner hall, the cyclotron hall, where it delivers the light-ion
beam in pulses with a typical frequency of about 8 MHz for 3He ions. The
beam from the cyclotron is bent 90◦ by an analysing magnet into the exper-
imental hall, giving an energy resolution of typically 60 keV of the beam
after this magnet1. In addition, slits and quadrupole magnets in the beam
line allow for collimation and further focusing of the beam, respectively.
When the beam reaches the target placed in the centre of the detector ar-
ray CACTUS (see next section), the diameter of the beam is collimated to
about 1 − 2 mm.

1The analysing magnet is a so-called doubly-focusing magnet, focusing in both the
vertical and horizontal direction. The result of ∼60 keV resolution (full width half maxi-
mum, FWHM) is obtained with a 38-MeV 3He beam and with 2 mm wide slits in front of
the analysing magnet, which has a radius of 1 m.
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Figure 3.1: Experimental setup at the Oslo Cyclotron Laboratory. The Q1 . . . Q4
are guadrupole magnets, the S1 . . . S4 are slits. The beam dumps marked with
211At and 18F are stations for producing the radioactive isotopes 211At and 18F for
medical use and research.

3.2.1 CACTUS

The multi-detector array CACTUS [62] is utilised for measuring particle-
γ coincidences. The γ-rays are detected with 28 5′′ × 5′′ NaI(Tl) detec-
tors mounted on a spherical frame surrounding the target and the particle
telescopes, see Fig. 3.2. The NaI(Tl) crystals are collimated with lead colli-
mators, so that their diameter is reduced from 12.7 cm to 7 cm. The solid
angle coverage of the collimated NaI(Tl) detectors is estimated to be 17.7%
of 4π from Ω = NA

4πR2 , where N = 28 is the number of detectors, A = πr2

is the collimated front area of one detector with radius r = 3.5 cm, and R =
22 cm is the distance of the NaI(Tl) detectors from the target.

The total efficiency was measured to be 15.2% for the 1332-keV γ tran-
sition in 60Co. The efficiency was determined by measuring a singles-γ
spectrum of a 60Co source with a Ge detector placed in a long distance
(≈ 50 cm) from the source. Then, a coincidence requirement was set for
the Ge detector and the NaI(Tl)s, so that either the 1173-keV or the 1332-
keV transition was measured by the Ge detector or the NaI(Tl)s. The area
(counts) reduction in the full-energy peak of the 1173-keV transition of the
Ge coincidence spectrum compared to the singles-γ spectrum gave the ef-
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Figure 3.2: The multi-detector array CACTUS.

ficiency of the NaI(Tl)s:

εNaI
tot (1332 keV) =

NGe
coinc(1173 keV)

NGe
singles(1173 keV)

, (3.1)

where εNaI
tot is the total efficiency of the 28 NaI(Tl)s for Eγ = 1332 keV, Ncoinc

is the number of counts in the 1173-keV coincidence full-energy peak, and
Nsingles is the number of counts in the 1173-keV singles full-energy peak of
the Ge detector.

The resolution of the NaI(Tl) detectors is ∼ 7% FWHM for the 1332-
keV line. A 2 mm copper absorber is placed in front of each γ detector
to suppress X-rays. To reduce crosstalk2, a 3 mm lateral lead shielding
surrounds each NaI(Tl) crystal.

For the runs on the vanadium target, a 60% Ge detector was placed in
backward direction in order to monitor the range of spins populated in the
(3He,α) and (3He,3He′) reactions. It also helped to ensure that the correct
nuclei were studied – the good energy resolution allows for the identifi-
cation of well-known γ transitions in the specific nuclei. The electronics
setup allows for three Ge detectors; however, normally only one is used
during an experiment.

2Crosstalk occurs when a γ ray interacts with one of the detectors and then scatters
into another detector. Then, there is a non-negligible probability for the γ ray to be mea-
sured by two or more detectors within the detector response time, giving false γ signal.

24



3.2. EXPERIMENTAL SETUP

�

�� ����������
� ��	����

� ���������� � ����� � ����

Figure 3.3: Schematic drawing of a Si particle telescope.

The charged particles produced in the nuclear reaction are detected
by eight Si ΔE − E telescopes mounted inside the CACTUS frame. The
ΔE counters have a thickness of ∼ 140 μm, and the E counters are 1500
μm thick. The particle telescopes are placed 5 cm from the target in the
forward direction at an angle of 45◦ with respect to the beam axis. A 15
μm thick Al foil is placed in front of the particle telescopes in order to
stop δ electrons that are emitted from the target foil when the beam is
passing through it. The particle detectors were collimated to reduce the
uncertainty in the outgoing angle and thereby in the energy of the ejectile.
The eight particle telescopes cover 0.2% of 4π when using collimators of
3 mm diameter, as done in the Mo, V, and Sc experiments. The average
energy resolution is ≈ 200 − 300 keV as determined from the FWHM of
the elastic 3He peak.

3.2.2 Electronics and data acquisition

At present, the electronics at the OCL is placed partly in the experimental
room and partly in the computer room, see Fig. 3.4 and Fig. 3.5. The pulses
from the particle and Ge detector(s) are first amplified with preamplifiers
mounted close to the detectors, and then sent to timing filter amplifier
(TFA) units where fast timing signals are filtered out, amplified and in-
verted (Fig. 3.4). The signals are also sent to main amplifiers and directly
to their corresponding analog-to-digital converters (ADCs). The timing
signals are further processed by constant fraction discriminators (CFDs) to
obtain essentially walk-free, fast logic signals. For simplicity, the signals
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Figure 3.4: Block diagram of the electronics setup in the experimental room,
taken from Ref. [63].

from the eight particle end counters are put in groups of four (EA Time
and EB Time), added by a linear fan in (Lin OR) and processed together
(Group A and B). The ΔE detector time signals (ΔE Time) are connected to
a multiplicity unit with the setting N = 1, which produces a gate signal if
one and only one ΔE detector was hit. In addition, a summed, attenuated
analog output of the ΔE timing CFD (Lin OR) is fed into a TFA, where it
is amplified and then used for a common threshold setting (Z > 1). In
this way, it is possible, if desired, to suppress events where protons or
electrons3 hit the ΔE detectors.

All the ΔE-detector CFDs are connected to a pile-up rejection module
(PUR). This module takes the logic signal from the multiplicity unit and
stretches it for ≈ 1 μs, and if another pulse arrives within this time in-
terval, the PUR gives an inverted logic signal to indicate a pile-up event.
Then the pile-up signal is sent to a VME trigger pattern unit (TPU), where
the event is marked as pileup.

The coincidence events of the ΔE and E detectors are made by requir-
ing three conditions:

1. Exactly one ΔE detector is hit.

2. The signal of the ΔE detector is larger than the common threshold
setting (Z = 1).

3Fast electrons and protons with Z = 1 deposit only a small fraction of their energy in
the ΔE counters.
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3. At least one E detector is hit.

This is done by a coincidence unit (AND) checking whether the E detec-
tor CFD signal, the multiplicity unit signal, and the Z > 1 CFD signal
are in coincidence with each other. Unfortunately, there is neither a hard-
ware condition that the ΔE and E detector of the same particle telescope
are hit, nor that only one E detector gave a signal. However, since the
particle multiplicity and the beam current are relatively low, this does not
introduce severe problems, and can also be checked during offline data
sorting.

A scaler serves as a counter for several unit signals, such as the coin-
cidence rate of the particle telescopes and the summed rate of the Ge de-
tectors. Since the elastically scattered 3He particles produce a high count
rate due to the large Rutherford cross section, every other event is rejected
with a (1/N) module with the setting N = 2 unless a γ-ray detector is
hit; thus, the particle singles spectrum is divided by two (shown as ’P div.’
output in Fig. 3.4).

The electronics setup in the computer room is displayed in Fig. 3.5. The
timing signals from the NaI(Tl) detectors (NaI Time) are processed by CFD
units. The coincidence of the signals from the particle telescopes and the γ-
ray detectors is first tested with a gated discriminator (DISC) shown in the
upper part of Fig. 3.5. The DISC is vetoed unless a particle counter gives
a signal. Then, if a coincidence is measured, a logic signal is sent to start
a time-to-digital converter (TDC). Another branch, delayed by 200 ns, is
used to stop the TDC. The gate generators (GG) connected to the DISC cre-
ate a gate signal for the analog-to-digital converters (ADC) for the NaI(Tl)
detectors (ADC NaI) and the Ge detectors (ADC Ge1/2/3/T). The other
logic units connected to the DISC are used to (i) identify which particle-
telescope group is in coincidence with the γ ray(s) (NaI OR, Ge OR, γ OR,
γ+p OR, A OR (AND), B OR (AND), Delay), and subsequently send a gate
signal to open the particle-telescope ADC, (ii) start the Ge-detector time-
to-amplitude converter (TAC) which, with the ADC GeT unit, works as a
TDC (Ge OR), and (iii) set flags in the VME trigger pattern units (TPU),
which control the readout of the digitized data.

In Table 3.3 all the hit patterns for the TPUs are listed. TPU1 handles
the particle telescopes and the Ges, while TPU2 and TPU3 deal with the
NaI(Tl) detectors. The virtual TPU4 is not a real module, but is created
by the sorting program (see next two sections) in order to show in which
detectors pile-up events occured. For simplicity, the control of the NIM-
ADCs by VME-ADC controllers, and the control of the CAMAC crate by
a CAMAC-branch driver are not shown in Fig. 3.5. The VME crate ac-
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Bit # TPU 1 TPU 2 TPU 3 TPU 4
(virtual, for pile up)

0 Group A NaI(Tl) 1 NaI(Tl) 17 ΔE 1
1 Singles NaI(Tl) 2 NaI(Tl) 18 ΔE 2
2 Group B NaI(Tl) 3 NaI(Tl) 19 ΔE 3
3 Coincidence NaI(Tl) 4 NaI(Tl) 20 ΔE 4
4 Ge 1 NaI(Tl) 5 NaI(Tl) 21 ΔE 5
5 NaI(Tl) 6 NaI(Tl) 22 ΔE 6
6 Ge 2 NaI(Tl) 7 NaI(Tl) 23 ΔE 7
7 NaI(Tl) 8 NaI(Tl) 24 ΔE 8
8 Ge 3 NaI(Tl) 9 NaI(Tl) 25 Ge 1
9 NaI(Tl) 10 NaI(Tl) 26 Ge 2
10 Ge time NaI(Tl) 11 NaI(Tl) 27 Ge 3
11 NaI(Tl) 12 NaI(Tl) 28
12 NaI(Tl) 13 NaI(Tl) 29
13 NaI(Tl) 14 NaI(Tl) 30
14 NaI(Tl) 15 NaI(Tl) 31 EA
15 NaI(Tl) 16 NaI(Tl) 32 EB

Table 3.3: Hit patterns for the TPUs.

commodates connections to the SUN-Sparc station via a BIT3 Sun Sbus to
VMEbus interface.

Each event is constructed on an event-by-event basis by the program
Eventbuilder+ [64], running on a CES RIO2 single board processor in the
VME crate with a PowerPC 604r @ 300 MHz CPU running LynxOS. The
event structure is similar to that of Fig. 4.2 in Ref. [64]; the event starts with
a 16-bit word, were bits 12–15 are set to indicate the start of a new event.
The bits 0–11 describe the total event length. The next two words denote
which TPU is read and its pattern word, respectively. The follow words
contain the data (energy, time) of the corresponding detector(s). Then the
next TPU is read and so on, until all information of this particular event is
recorded. The events are then put in buffers with a length of 32768 words.
When a buffer is full, it is transferred to the Sun SPARC computer, where
the data acquisition program Sirius+ [64] writes the event buffer to disk.
While waiting for buffers, the program sorts events on-line for monitoring
the experiment.

The hit patterns of the TPUs displayed in Table 3.3 indicate whether the
corresponding detector has data. When sorting the data files off-line with
the program Offline+ [65], an event matrix is generated so that the user
can access energies and times from this matrix in the sorting user routine.
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Figure 3.5: Block diagram of the electronics setup in the computer room, taken
from Ref. [63].
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3.3 Data analysis

In this section, the data analysis applied on the event files will be briefly
discussed, as well as the techniques involved to obtain a coincidence ma-
trix with γ-decay spectra for each given excitation energy.

3.3.1 Selected reactions

As previously described, the 3He beam energy used for the experiments
discussed here is between 30 − 45 MeV. Letting these 3He ions impinge
on the targets, several reaction channels are opened, such as (3He,xnγ),
(3He,dγ), (3He,xnαγ), and (3He,3He′γ). The reactions of interest for this
study were the inelastic scattering (3He,3He′γ) and the (3He,αγ) pick-up
reaction as shown in Table 3.2. As there are no neutron detectors present
in the experimental setup, and it is necessary to measure all the ejectiles’
energies in order to precisely determine the initial excitation energy of the
target nucleus, the highest excitation energy for which the γ spectra can
be used is the neutron binding energy Bn. If a proton is emitted, the pro-
ton binding energy Bp plus the Coulomb barrier is the excitation limit. In
Table 3.4, the proton and neutron binding energies for all the nuclei stud-
ied in this work are shown, together with the Coulomb barrier for proton
emission and the reaction Q value in the case where the nuclei are popu-
lated through the (3He,αγ) reaction. The Coulomb barrier for the proton
is given by

UCoul =
e2

4πε0

ZpZtarget

Rp + Rtarget
, (3.2)

where the factor e2/4πε0 = 1.44 MeV·fm, the sum of the radii Rp + Rtarget =
r0(A1/3

p + A1/3
target) with r0 ≈ 1.25 fm, and Zp, Ztarget are the electric charge

of the proton and the target nucleus, respectively.
The maximum angular momentum transfer �max possible in the reac-

tions can roughly be estimated using the classical expression∣∣∣��∣∣∣ = |�r ×�p| = rmv sin θ. (3.3)

For θ = 90◦, we have

� = Rtargetm3Hev = r0A1/3
targetm3He

√
2Ek

m3He
, (3.4)

where the relation
Ek =

1
2

mv2 (3.5)
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Nucleus Iπ Bp Bn Coulomb barrier Q value
(MeV) (MeV) (MeV) (MeV)

44Sc 2+ 6.696 9.700 5.34 9.255
45Sc 7/2− 6.889 11.32 5.31 -
50V 6+ 7.949 9.332 5.66 9.526
51V 7/2− 8.061 11.05 5.63 -

93Mo 5/2+ 7.643 8.070 8.75 10.90
94Mo 0+ 8.490 9.678 8.72 -
95Mo 5/2+ 8.632 7.369 8.70 11.42
96Mo 0+ 9.298 9.154 8.67 -
97Mo 5/2+ 9.226 6.821 8.65 11.94
98Mo 0+ 9.794 8.643 8.62 -

Table 3.4: Neutron and proton binding energies, ground-state spin/parity,
Coulomb barriers, and Q values for the nuclei under study.

for the kinetic energy Ek of the 3He projectile has been utilized. Using
r0 ≈ 1.25 fm, Atarget = 98, Ek = 45 MeV, m3He = 2809.41 MeV/c2 and
h̄c = 192.329 MeV · fm gives

�max ≈ 15h̄ (3.6)

for the target nucleus 98Mo. Of course, to get a more precise estimate for
the expected spin window populated, one should perform more realistic
reaction calculations based on reaction theory such as the distorted wave
Born approximation (DWBA, see [1, 66]), taking into account the quantum
nature of the impinging ion and the target nucleus, and also the geometry,
as the particle telescopes are placed 45◦ with respect to the beam axis. Pre-
vious experiments [67] and DWBA calculations [68] have shown that for
the (3He,α) reaction, the pick-up of neutrons with high �-values are pre-
ferred. For the nuclei Sc, V, and Mo, the spin range of states populated by
the direct reactions is typically 2h̄ ≤ I ≤ 6h̄.

3.3.2 Coincidence technique

As displayed in Figs. 3.4 and 3.5, the electronics setup consists of a fast
branch that treats the timing information, and a slow branch that ensures
the best possible handling of the energy information [69]. The time be-
tween the detection of a particle and one or more γ-rays is registered by
TDCs for the NaI(Tl) detectors and a TAC plus an ADC for the Ge detector.
By setting gates on the prompt peak in the measured time spectra when
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sorting the data offline, the true coincident events were obtained, i.e. the
particle and the γ-rays are detected within a narrow time interval. The
present electronics setup has a time window of 200 ns, which means that
the master gate signal set by the particle (start of the TDCs/TAC) has a
duration of 200 ns.

Figure 3.6 shows the time spectrum from the 51V(3He,αγ)50V, and the
gates chosen for the random background (left) and the prompt peak (right).
The time resolution is determined by the FWHM of the prompt peak,
which is in this case about 17 ns. The gated area of the peak to the left gives
the number of random coincidences, and in addition the events where γ-
rays from a reaction stemming from one beam burst are detected in coin-
cidence with particles from a reaction produced by the next beam burst.
Roughly, the true number of coincidences can be obtained by subtracting
the events in the random peak from the prompt peak. Therefore, dur-
ing the offline data sorting, events that fall into the random gate will be
decremented and events in the prompt gate will be incremented, while
everything else is rejected.
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Figure 3.6: The time spectrum of 50V. The dashed lines indicate lower (tl,r, tl,p)
and upper (th,r, th,p) gates on the random and prompt peak, respectively.
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3.3.3 Particle–γ matrix

In order to obtain the particle energy vs. γ-ray energy matrix, each indi-
vidual particle telescope and NaI(Tl) detector is calibrated with a linear
calibration

E = a0 + a1 · ch, (3.7)

where E is the energy, a0 is the constant shift, a1 is the dispersion and ch
is the channel number in the spectrum. When all detectors are properly
calibrated, one can add the data of all the particle telescopes together, and
likewise the NaI(Tl) spectra.

The particle telescopes allow for particle identification by utilizing the
fact that the energy loss of a charged particle per unit length in a medium
is a function of the charge and the mass of the penetrating particle accord-
ing to the Bethe-Bloch formula [69]. The penetration depth or range as
a function of the particle’s kinetic energy differs for each charged parti-
cle due to their different charge and mass numbers. A given particle will
therefore lose a different amount of its energy in the ΔE and E detectors as
a function of its total kinetic energy. Such a plot of the energy deposited
in the ΔE detector vs. the energy deposited in the E detector is shown in
Fig. 3.7, with characteristic banana-shaped curves for each type of particle.

The particle-identification technique described above makes it possible
to gate on a specific particle type utilizing its unique range curve in the
Si detectors. By gating on the 3He and α particles event-by-event in the
offline sorting procedure in addition to the gates on the time spectrum,
the 3He–γ and α–γ coincidence events can be extracted. Figure 3.8 shows
the α–γ coincidence matrix of the 45Sc(3He,αγ)44Sc reaction.

The α–γ coincidence matrix in Fig. 3.8 displays characteristic features
such as the diagonal where the excitation energy equals the γ-ray energy
E = Eγ. The strong population of yrast states in many excitation-energy
bins is shown as intense, vertical lines in the matrix at low γ-ray energy. In
the region of excitation energies around 8 − 9 MeV, the γ-ray multiplicity
is seen to be drastically reduced. In this region, the excitation energy is
high enough so that proton/neutron emission starts to compete with γ-
ray emission, and the nucleus with A − 1 is populated.
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Figure 3.7: Identification of the ejectiles (bananas) by plotting the energy de-
posited in the thin ΔE detector versus the energy deposited in the thick E detector
of the Si particle telescopes (insert).
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Figure 3.8: Alpha–γ coincidence matrix of 44Sc. The energy of the α particle is
transformed into excitation energy E of the residual nucleus using the reaction
kinematics and the Q-value.
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Chapter 4

The Oslo method

Based on the particle-γ coincidence matrix that is obtained by tagging the
measured γ rays with the corresponding particle energy, the Oslo group
has developed a method to unfold the γ-ray spectra by means of the re-
sponse functions of the CACTUS array. In this way, the γ-ray spectra
for each excitation energy are corrected for the single- and double escape
peak, the annihilation peak, the Compton events, and the detector effi-
ciency [2]. From the unfolded γ-ray spectra, the first γ-rays emitted in the
decay cascades from each excitation energy are extracted utilizing a sub-
traction procedure called the ’first-generation method’ [3]. This matrix of
primary γ-rays contains information on the level density and the average
γ-ray transition probability, which are extracted simultaneously through
an iterative procedure with a global fit to the experimental first-generation
matrix [4]. Together, these three methods are called the Oslo method.

4.1 Unfolding the γ-ray spectra

The response function of a γ-ray detector depends on the various inter-
actions with matter that the photons can undertake: Compton scattering,
photoelectric absorption, and pair production. Ideally, the original γ-ray
is fully absorbed and is found in the full-energy peak in the γ-ray spec-
trum. However, since Compton-scattered photons and one or both of the
annihilation photons can escape from the detector and thus deposit only
part of the full energy, it is necessary to correct the observed γ-ray spec-
tra for such incompletely detected photons. Additional background from
backscattered annihilation and Compton γ-rays in the surroundings of the
experimental setup give rise to peak structures at 511 and ≈ 200 keV, re-
spectively.
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To obtain proper γ-ray spectra, one in principle needs to know the re-
sponse of the detector for all incident γ-ray energies. In practice, however,
one is limited to several well-known γ lines from calibration sources such
as 152Eu, 60Co, and 137Cs, and in addition γ lines from in-beam experi-
ments. It is therefore mandatory to choose an appropriate procedure to
interpolate between the response functions of the monoenergetic γ-rays
to get the response function of all γ energies. The technique used here is
explained in detail in Ref. [2], where a folding iteration method called the
Compton subtraction method is applied in order to construct full-energy
γ spectra. A brief outline of the method is given in the following.

First, the detector response functions R(E, Eγ), where E is the actual
amount of energy deposited in the detector, are established for available
incident γ-ray energies Eγ. In total, ten response functions have been
measured for monoenergetic γ lines ranging from 122 to 15 110 keV [2].
These spectra are the basis for interpolating to intermediate full energy γ-
ray peaks. This interpolation is easily done for the peak structures, that
is, the full energy (f), single escape (s), double escape (d), and annihila-
tion (a) peaks, by adding a Gaussian distribution at the interpolated peak
position with proper intensity and width. However, the interpolation of
the Compton background is more complicated, as the observed Compton
background response functions have different maximum energy depend-
ing on their respective full energy values. Therefore, the interpolation op-
erates along a set of curves forming a fan, connecting the same channels
in the lower end and the highest channels in the upper end of the spectra,
see Fig. 4.1. A γ-ray that is scattered at an angle θ transfers an energy E to
the electron as given by

E = Eγ − Eγ

1 + Eγ

mec2 (1 − cos θ)
, (4.1)

where me is the electron mass and c is the speed of light. As a reasonable
approach, the Compton background is thus interpolated between chan-
nels having the same Compton scattering angle θ (see Fig. 4.1).

Having the appropriate response matrix R at hand, the unfolding pro-
cedure can be applied on the experimental γ-ray spectra. The folding it-
eration method takes advantage of the fact that folding is easy and fast to
perform. Each matrix element Rij of the response matrix R is defined as
the response in channel i when the detector is hit by γ-rays with an energy
corresponding to channel j. For each incident γ-ray energy channel j, the
response function is normalized so that ∑i Rij = 1. The folding is then
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Figure 4.1: The interpolation of the Compton part of the measured response
functions c1 and c2, illustrating the increase of Δθ with the full energy Eγ.

expressed as
f = Ru, (4.2)

or, explicitly,⎛
⎜⎜⎜⎝

f1
f2
...

fN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

R11 R12 . . . R1N
R21 R22 . . . R2N

...
... . . .

...
RN1 RN2 . . . RNN

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1
u2
...

uN

⎞
⎟⎟⎟⎠ . (4.3)

Here, f and u represent the folded and unfolded spectra, respectively.
Thus by obtaining better and better trial spectra for u, those trial functions
can be folded with the corresponding response functions and compared
with the observed γ spectrum, hereby denoted r. In practice, the folding
iteration method is carried out as follows:

1. As the first trial function u0 for the unfolded spectrum, the observed
spectrum r is used:

u0 = r. (4.4)

2. The first folded spectrum f 0 is then calculated,

f 0 = Ru0. (4.5)
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3. The next trial function u1 is obtained by adding the difference spec-
trum r − f 0 as a correction to the original trial function u0:

u1 = u0 + (r − f 0). (4.6)

4. The new trial function u1 is folded again to get the next f 1, which
again is used to generate the next trial function:

u2 = u1 + (r − f 1), (4.7)

and so on until f i ∼ r, where i is the iteration index.

Typically, ten iterations (i = 10) are sufficient to get a folded spectrum that
agrees with the observed spectrum within the experimental uncertainties.
However, the obtained unfolded spectrum u10 = u exhibits strong oscil-
lations and fine structures, which give artificially a better resolution of u
than the experimental resolution. This problem is mended by the Comp-
ton subtraction method [2].

The starting point for the Compton subtraction method is the unfolded
spectrum u resulting from the folding iteration method as described above,
hereby denoted u0. This spectrum is used to create the expected contri-
butions from the full energy uf, single escape us, double escape ud, and
annihilation ua part of the original, observed spectrum:

uf(i) = pf(i)u0(i), (4.8)
us(i − i511) = ps(i)u0(i), (4.9)
ud(i − i1022) = pd(i)u0(i), (4.10)

ua(i511) = ∑
i

pa(i)u0(i), (4.11)

where i511 and i1022 represent the channels with energies 511 and 1022 keV,
respectively. The factors pf(i), ps(i), pd(i), and pa(i) are the probabilities
for an event in channel i to be a photo peak, single escape, double escape,
or annihilation event, respectively (see Table 1 in Ref. [2]). The probabili-
ties are normalized so that

∑
i

pf(i) + ps(i) + pd(i) + pa(i) + pc(i) = 1, (4.12)

where pc(i) is the probability for a Compton event in channel i.
The ua spectrum, originally with all its counts in channel i511, must be

smoothed with the experimental resolution denoted 1.0 FWHM in order
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to get the energy resolution of the observed spectrum. The energy reso-
lution of the spectra uf, us, and ud is determined by the resolution of the
observed spectrum (1.0 FWHM) and the response matrix (0.5 FHWM) giv-
ing1

√
1.02 − 0.52 FWHM = 0.87 FWHM. Therefore, an additional smooth-

ing of 0.5 FWHM is done to get a spectrum with the experimental resolu-
tion of 1.0 FWHM:

√
0.872 + 0.52 FWHM ≈ 1.0 FWHM.

The Compton background spectrum2 c(i) can now be found by sub-
tracting the components uf, us, ud, and ua from the experimentally ob-
served spectrum r(i):

c(i) = r(i) − v(i), (4.13)

where
v(i) = uf + us + ud + ua. (4.14)

The extracted Compton spectrum c(i) displays strong oscillations of the
same order as the experimental spectrum r(i). To be able to preserve the
experimental, statistical fluctuations, an additional, rather strong smooth-
ing of 1.0 FWHM is applied on the spectrum c(i), justified by the fact that
this spectrum should be a slowly varying function of energy. The total
smoothing of c(i) is then

√
2 FWHM.

To obtain the unfolded energy spectrum uunf of full-energy peaks, the
smoothed Compton spectrum c and the peaks us, ud, and ua are subtracted
from the observed spectrum r:

uunf(i) = r(i) − c(i) − us(i − i511) − ud(i − i1022) − ua(i511). (4.15)

Finally, the true γ-ray energy distribution is calculated, correcting uunf for
the full energy probability pf and the energy-dependent total γ-ray detec-
tion efficiency εtot:

Uunf(i) =
uunf(i)

pf(i)εtot(i)
. (4.16)

Here, εtot is taken from Table 1 in Ref. [2]. In addition, εtot is multiplied
with the energy-dependent cutoff function reflecting the individual detec-
tor’s discriminator level. Typically, the experimental energy threshold is
about 100-200 keV with a width of ≈ 100 keV.

Figure 4.2 shows an example of the resulting α–γ coincidence matrix of
44Sc, where all γ-ray spectra for each excitation-energy bin are unfolded

1Assuming that the spectra f , r, and u follow a Gaussian behavior, we have (δ f )2 =
(δr)2 + (δu)2, giving δu =

√
(δ f )2 − (δr)2.

2This Compton spectrum also contains the backscattering peak at ≈ 200 keV stem-
ming from Compton backscattered γ-rays of the surroundings, in addition to other back-
ground events such as X-rays.
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Figure 4.2: Unfolded α–γ coincidence matrix of 44Sc.

using the above-described method. A fraction of the matrix is displayed
in Fig. 4.3, where a projection of the γ-ray spectra has been performed
for excitation energies between 5.5–6.5 MeV. As is seen from Fig. 4.3 by
comparing the original and the folded spectrum, the unfolding procedure
works very well.

4.2 Distribution of first-generation γ rays

In general, the γ decay from highly excited states involves a cascade of
transitions. The measured γ spectra will contain contributions from all
decay steps, since the γ decay in the quasi-continuum is generally very
fast (≈ 10−15 s) and as no timing technique is able to determine the order
of the γ-rays that belonged to a specific cascade. As the generations of γ
rays are not well separated in energy either, it is difficult to get hold of the
distribution of primary γ-rays in this excitation-energy region.

The nuclear physics group at the OCL has developed a subtraction
method to extract the primary (first-generation) γ-rays from the quasi-
continuum γ-ray spectra measured for each excitation-energy bin. The
method is described in detail in Ref. [3], and its main features will be
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Figure 4.3: Original (top), unfolded (middle) and folded γ spectrum of 44Sc for
excitation energy between 5.5 − 6.5 MeV.

sketched here.
The main assumption of the first-generation method is that the γ decay

from any excitation-energy bin is independent on how the nucleus was ex-
cited to this bin. In other words, the decay routes are the same whether
they were initiated directly by the nuclear reaction or by γ decay from
higher-lying states. This assumption is automatically fulfilled when states
have the same cross section to be populated by the two processes, since γ
branching ratios are properties of the levels themselves. Even if different
states are populated, the assumption is still valid for statistical γ decay,
which only depends on the γ-ray energy and the number of accessible fi-
nal states. Here, in the region of high level density, the nucleus seems to
attain a compound-like system before emitting γ-rays even though the di-
rect reactions (3He,α) and (3He,3He′) are utilized. This is because the reac-
tion time, and thus the time it takes to create a complete compound state,
is ≈ 10−18s, while the typical life time of states in the quasi-continuum
is ≈ 10−15s. Therefore, it is reasonable to assume that the nucleus has
thermalized prior to γ decay.
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Figure 4.4: Illustration of the principle of the first-generation method (see text).

Figure 4.5: A hypothetical γ-decay cascade. The first-generation γ rays from
level E3 can be obtained by subtracting the γ spectra from the levels E2 and E1.

The method is illustrated in Fig. 4.4. For each excitation-energy bin i
(typically 120 − 240 keV wide), a γ-ray spectrum fi is projected out from
the total particle–γ coincidence matrix, which is generated as described in
Sec. 3.3.3 and unfolded as explained in Sec. 4.1. The unfolded spectra fi
are made of all generations of γ rays from all possible cascades decaying
from the excited levels within the bin i. Now, we utilize the fact that the
spectra f j<i for all the underlying energy bins j contain the same γ transi-
tions as fi except the first γ rays emitted, since they will bring the nucleus
from the states in bin i to underlying states in the energy bins j. This is
shown for one specific, hypothetical cascade in Fig. 4.5, where it is easily
seen that by subtracting the γ spectra from the levels E2 and E1, the first-
generation spectrum of level E3 is found. The picture of Fig. 4.5 is of course
oversimplified. In reality, one has to take into account the different cross
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sections for populating the levels in the various energy bins i and also the
different intensities (branching ratios) of the primary γs. Therefore, the
first-generation spectrum hi is found by

hi = fi − gi, (4.17)

where gi is a weighted sum of all spectra

gi = ni1wi1 f1 + ni2wi2 f2 + . . . + nijwij fj = ∑
j

nijwij f j. (4.18)

Here, the unknown coefficients wij (with ∑j wij = 1) represent the proba-
bility of the decay from bin i to bin j. In other words, wij is the weighting
coefficient or branching ratio of each primary γ-ray depopulating level
i. In this sense, the wij values correspond directly to the first-generation
spectrum hi.

The coefficients nij are correcting factors for the different cross sections
of populating level i and the underlying levels j, and are determined so
that the total area of each spectrum fi multiplied by nij corresponds to the
same number of cascades. This can be done in two ways [3]:

• Singles normalization. The singles-particle cross section is propor-
tional to the number of populated states and thus to the number of
decay cascades. We denote the number of counts measured for bin i
and j in the singles spectrum Si and Sj, respectively. The normaliza-
tion factor nij that should be applied to the spectrum f j is then given
by

nij =
Sj

Si
. (4.19)

• Multiplicity normalization. The average γ-ray multiplicity 〈M〉 can
be obtained in the following way [70]: Assume an N-fold population
of an excited level E. The decay from this level will result in N γ-ray
cascades, where the ith cascade contains Mi γ rays. The average
γ-ray energy 〈Eγ〉is equal to the total energy carried by the γ rays
divided by the total number of γ rays:

〈Eγ〉 = N · E

∑N
i=1 Mi

=
E

1
N ∑N

i=1 Mi
=

E
〈M〉 . (4.20)

Then, the average multiplicity is simply given by

〈M〉 =
E

〈Eγ〉
. (4.21)
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The average γ-ray multiplicity 〈Mi〉 can thus easily be calculated for
each excitation-energy bin i. Let the area (or total number of counts)
in spectrum fi be denoted by A( fi). Then the singles particle cross
section Si is proportional to the ratio A( fi)/〈Mi〉, and the normaliza-
tion coefficient nij that should be applied to bin i when subtracting
bin j is

nij =
A( fi)/〈Mi〉
A( f j)/〈Mj〉

=
〈Mj〉A( fi)
〈Mi〉A( f j)

. (4.22)

In order to choose between the two normalization methods, one needs to
consider the actual experimental conditions. For example, if the nucleus
studied has an isomeric state that has a longer life time than the time range
of the TDCs, the γ decay from this state will not be measured in coinci-
dence with the outgoing particle. This was the case for the nucleus 44Sc,
which has an isomer at E = 271.13 keV with a half-life of 58.6 hours [26].
Therefore, the multiplicity normalization was applied for the Sc nuclei. In
general, the two normalization methods give very similar results.

In cases where the multiplicity is well determined, an area consistency
check can be applied to Eq. 4.17. Assume that a small correction has to be
introduced by substituting gi by αgi, where α is close to unity. The area of
the first-generation γ spectrum is then

A(hi) = A( fi) − αA(gi), (4.23)

and corresponds to a γ-ray multiplicity of one unit. Since the number of
primary γ rays in the spectrum fi equals A( fi)/〈Mi〉, A(hi) is also given
by

A(hi) = A( fi)/〈Mi〉. (4.24)

Combining Eqs. (4.23) and (4.24) yields

α = (1 − 1/〈Mi〉)
A( fi)
A(gi)

. (4.25)

The α parameter can be varied to get the best agreement of the areas A(hi),
A( fi) and A(gi) within the following restriction: α = 1.00 ± 0.15; that is,
the correction should not exceed 15%. If a greater correction is necessary,
then improved weighting functions wij should be determined instead.

As mentioned before, the weighting coefficients wij correspond directly
to the first-generation spectrum hi, and this close relationship makes it
possible to determine wij (and thus hi) through a fast converging iteration
procedure [3]:
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1. Apply a trial function wij.

2. Deduce hi.

3. Transform hi to wij by giving hi the same energy calibration as wij,
and normalizing the area of hi to unity.

4. If wij(new) ≈ wij(old), convergence is reached and the procedure is
finished. Otherwise restart from step 2.

Tests of the convergence properties of the procedure have shown that ex-
cellent agreement is achieved between the exact solution (from simulated
spectra) and the trial function wij already after three iterations [3]. Usually,
about 10 iterations are performed on experimental spectra.

To demonstrate how well the first-generation procedure works, Fig. 4.6
shows the total, unfolded γ spectrum, the second and higher generations
γ-ray spectrum and the first-generation spectrum of 45Sc for excitation
energy between E = 5.5 − 6.5 MeV. The first-generation spectrum has
a continuum-like, bell-shaped form indicating that the γ decay is domi-
nated by statistical processes in the region Eγ = 1.4 − 6.5 MeV. However,
by looking at the lower panel of Fig. 4.6, it is clear that the main assump-
tion of the subtraction method is not fulfilled for Eγ � 1.4 MeV. In this
region, some strong, low-energy transitions were not subtracted correctly.
This means that the levels from which these transitions originate are pop-
ulated more strongly from higher excited levels through γ emission, than
directly by inelastic 3He scattering. Therefore, only data for Eγ > 1.6 MeV
is used in the further analysis. Similar considerations are done for the V
and Mo nuclei.

4.3 Extraction of level density and γ-ray strength

function

For compound reactions, the following assumption has been shown to be
valid: the relative probability for decay into any specific set of final states
is independent of the means of formation of the compound nucleus; in
other words, the compound nucleus can share its excitation energy on a
relatively large number of nucleons and thus ”forgets” the way of forma-
tion (see, e.g., Refs. [1, 75]). The subsequent decay of the compound states
will mainly be governed by statistical rules. Therefore, the decay probabil-
ity P(E, Eγ) of a γ-ray with energy Eγ decaying from a specific excitation-
energy E is proportional to the level density ρ(Ef) at the final excitation
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Figure 4.6: Unfolded, total γ-ray spectrum, second and higher-generation γ-
ray spectrum and first-generation γ-ray spectrum of 45Sc for excitation energy
between 5.5 − 6.5 MeV.

energy Ef = E − Eγ, and the γ-ray transmission coefficient T (Eγ):

P(E, Eγ) ∝ ρ(Ef)T (Eγ). (4.26)

The essential assumption the above relation is based on is that the nuclear
reaction can be described as a two-stage process, where a compound state
is first formed before it decays in a manner that is independent of the mode
of formation [75, 76]. This is believed to be fulfilled at high excitation
energy, even though the direct reactions (3He,α) and (3He,3He′) are used,
as already discussed in Sec. 4.2. Equation (4.26) can also be compared with
Fermi’s golden rule:

λ =
2π

h̄
∣∣〈f

∣∣Ĥint
∣∣ i

〉∣∣2
ρ(Ef), (4.27)

where λ is the decay rate of the initial state |i〉 to the final state |f〉, and Ĥint
is the transition operator. In Eq. 4.26, an ensemble of initial and final states
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within each excitation-energy bin is considered, and thus the average de-
cay properties of a set of initial states to a set of final states.

The γ-ray transmission coefficient T (Eγ) in Eq. 4.26 is independent of
the excitation energy, and thus the nuclear temperature according to the
generalized Brink-Axel hypothesis [30, 36], which states that collective ex-
citation modes built on excited states have the same properties as those
built on the ground state. This hypothesis is violated when high temper-
atures and/or spins are involved in the nuclear reactions, as shown for
GEDR excitations in Ref. [60] and references therein. However, since both
the temperature reached and the spins populated are rather low for the
experiments in this work, these dependencies are assumed to be of minor
importance in the excitation-energy region of interest here.

To extract the level density and the γ-ray transmission coefficient, an
iterative procedure [4] is applied to the first-generation γ matrix P(E, Eγ).
The basic idea of this method is to minimize

χ2 =
1

Nfree

Emax

∑
E=Emin

E

∑
Eγ=Emin

γ

(
Pth(E, Eγ) − P(E, Eγ)

ΔP(E, Eγ)

)2

, (4.28)

where Nfree is the number of degrees of freedom, and ΔP(E, Eγ) is the
uncertainty in the experimental first-generation γ-ray matrix. The exper-
imental matrix of first-generation γ-rays is normalized [4] such that for
every excitation-energy bin E, the sum over all γ energies Eγ from some
minimum value Emin

γ to the maximum value Emax
γ = E at this excitation-

energy bin is unity:
E

∑
Eγ=Emin

γ

P(E, Eγ) = 1. (4.29)

The first-generation γ-ray matrix can theoretically be approximated by

Pth(E, Eγ) =
ρ(E − Eγ)T (Eγ)

∑E
Eγ=Emin

γ
ρ(E − Eγ)T (Eγ)

. (4.30)

The input (experimental) matrix P(E, Eγ) and the output (theoretical) ma-
trix Pth(E, Eγ) of 50V are displayed in Fig. 4.7. The limits set in the first-
generation matrix for extraction are also shown. These limits are chosen to
ensure that the data utilized are from the statistical excitation-energy re-
gion (Emin, Emax) and that no γ lines stemming from, e.g., yrast transitions,
which might not be subtracted correctly in the first-generation method,
are used in the further analysis (Emin

γ ). Every point of the ρ and T func-
tions is assumed to be an independent variable, so that the reduced χ2 of
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Figure 4.7: The experimental first-generation matrix P(E, Eγ) of 50V (left) and
the calculated one (right) from the iteration procedure of A. Schiller et al. [4]. The
dashed lines show the limits set in the experimental first-generation matrix.

Eq. (4.28) is minimized for every argument E − Eγ and E. The quality of
the procedure when applied to 50V is shown in Fig. 4.8, where the exper-
imental first-generation spectra for various initial excitation energies are
compared to the least-χ2 solution. In general, the agreement between the
experimental data and the fit is very good.

The globalized fitting to the data points only gives the functional form
of ρ and T . In fact, it has been shown [4] that if one solution for the multi-
plicative functions ρ and T is known, one may construct an infinite num-
ber of other functions, which give identical fits to the P(E, Eγ) matrix by

ρ̃(E − Eγ) = A exp[α(E − Eγ)] ρ(E − Eγ), (4.31)
T̃ (Eγ) = B exp(αEγ)T (Eγ). (4.32)

Therefore the transformation parameters α, A and B, which correspond to
the physical solution, remain to be found.

4.3.1 Normalizing the level density

In order to determine the correction α to the slope of the level density and
the γ-ray transmission coefficient, and to determine the absolute value A
of the level density in Eq. (4.31), the ρ function is adjusted to fit the number
of known discrete levels at low excitation energy and neutron (or proton)
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Figure 4.8: Experimental first-generation γ spectra (data points with error bars)
at six different initial excitation energies (indicated in the figure) compared to
the χ2 fit (solid lines) for 50V. The fit is performed simultaneously on the entire
first-generation matrix of which the six displayed spectra are a fraction.

resonance data at high excitation energy. This normalization is shown for
44Sc in Fig. 4.9. The data point at high excitation energy (open square in
Fig. 4.9) is calculated in the following way according to [4]: The starting
point are the Eqs. (4) and (5) of Ref. [16]:

ρ(U, J) =
√

π

12
exp(2

√
aU)

a1/4U5/4

(2J + 1) exp
[−(J + 1/2)2/2σ2]

2
√

2πσ3
, (4.33)

ρ(U) =
√

π

12
exp(2

√
aU)

a1/4U5/4
1√
2πσ

, (4.34)

where ρ(U, J) is the level density for a given spin J, and ρ(U) is the level
density for all spins (Eq. (4.34) is identical to Eq. (2.4)). The level-density
parameter a and the spin cutoff parameter σ is taken from Ref. [18]. Let
I be the spin of the target nucleus in a neutron resonance experiment.
The average neutron resonance spacing D�=0 for s-wave neutrons with
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spin/parity 1/2+ can be written as

1
D0

=
1
2

[ρ(Bn, J = I + 1/2) + ρ(Bn, J = I − 1/2)] , (4.35)

because all levels with spin J = I ± 1/2 are accessible in neutron resonance
experiments, and it is assumed that both parities contribute equally to the
level density at the neutron binding energy Bn. Combining Eqs. (4.33) to
(4.35) with U = Bn, one finds the total level density at the neutron binding
energy to be

ρ(Bn) =
2σ2

D0
· 1
(I + 1) exp [−(I + 1)2/2σ2] + exp [−I2/2σ2]

, (4.36)

where σ is calculated at Bn using Eq. (2.9).
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Since the data only reach up to excitation energies around Bn − Emin
γ ,

an interpolation is made between the Oslo data and ρ(Bn) using the back-
shifted Fermi gas model of Ref. [18], as shown in Fig. 4.9.

4.3.2 Normalizing the γ-ray transmission coefficient

The slope of the γ-ray transmission coefficient T (Eγ) has already been
determined through the normalization of the level density as explained
in the previous section. The remaining constant B in Eq. (4.32) gives the
absolute normalization of T , and is determined using information from
neutron resonance decay on the average total radiative width 〈Γγ〉 at Bn
according to Ref. [61].

The starting point is Eq. (3.1) of Ref. [59],

〈Γγ(E, I, π)〉 =
1

2πρ(E, I, π) ∑
XL

∑
If,πf

∫ E

Eγ=0
dEγTXL(Eγ)ρ(E − Eγ, If, πf),

(4.37)
where 〈Γγ(E, I, π)〉 is the average total radiative width of levels with en-
ergy E, spin I and parity π. The summation and integration are going over
all final levels with spin If and parity πf that are accessible through γ tran-
sitions with energy Eγ, electromagnetic character X and multipolarity L.
Assuming that the main contribution to the experimental T is from dipole
radiation (� = 1), it can be expressed as

BT (Eγ) = B ∑
XL

TXL(Eγ) ≈ B [TE1(Eγ) + TM1(Eγ)] , (4.38)

from which the total, experimental γ-ray strength function can easily be
calculated from Eq. (2.18):

f (Eγ) =
1

2πE3
γ

BT (Eγ). (4.39)

Further, we also assume that there are equally many accessible levels
with positive and negative parity for any excitation energy and spin, so
that the level density is given by

ρ(E − Eγ, If,±πf) =
1
2

ρ(E − Eγ, If). (4.40)

Now, by combining Eqs. (4.37), (4.38) and (4.40), the average total radiative
width of neutron s-wave capture resonances with spins It ± 1/2 expressed
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in terms of T is obtained:

〈Γγ(Bn, It ± 1/2, πt)〉 =
B

4πρ(Bn, It ± 1/2, πt)

∫ Bn

Eγ=0
dEγTXL(Eγ)

× ρ(Bn − Eγ)
1

∑
J=−1

g(Bn − Eγ, It ± 1/2 + J),

(4.41)

where It and πt are the spin and parity of the target nucleus in the (n, γ)
reaction and ρ(Bn − Eγ) is the experimental level density. Note that the
factor 1/ρ(Bn, It ± 1/2, πt) equals the neutron resonance spacing D0. The
spin distribution of the level density is given by [16]:

g(E, I) =
2I + 1

2σ2 exp
[
−(I + 1/2)2/2σ2

]
. (4.42)

The spin distribution is normalized so that ∑I g(E, I) ≈ 1. The experi-
mental value of 〈Γγ〉 at Bn is then the weighted sum of the level widths of
states with It ± 1/2 according to Eq. (4.41). From this expression the nor-
malization constant B can be determined as described in Ref. [61]. How-
ever, some considerations must be done before normalizing according to
Eq. (4.41).

Methodical difficulties in the primary γ-ray extraction prevent deter-
mination of the function T (Eγ) for Eγ < Emin

γ as discussed previously. In
addition, the data at the highest γ-energies in the interval Bn − Emin

γ ≤
Eγ ≤ Bn suffer from poor statistics. Therefore, T is extrapolated with an
exponential function, as demonstrated for 51V in Fig. 4.10. The contribu-
tion of the extrapolation to the total radiative width given by Eq. (4.41)
does not normally exceed 15%, thus the errors due to a possibly poor ex-
trapolation are expected to be of minor importance [61].

4.4 Possible uncertainties in the normalization

procedures

4.4.1 The spin distribution

The quantity ρ(Bn) is calculated assuming a bell-like spin distribution ac-
cording to [16] given by Eq. (4.42) and using a model for the spin cutoff
parameter σ taken from [16] in the case of the Mo and V nuclei, and from
[18] for the Sc isotopes. Both these assumptions could in principle be a
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Figure 4.10: Extrapolation of the γ-ray transmission coefficient of 51V. The data
points between the arrows in the low and high γ-energy regions are utilized to fit
the exponential functions to the data.

source of uncertainty, as it is hard or even impossible to measure the total
spin distribution experimentally at high excitation energy.

In Fig. 4.11 various spin distributions for 44Sc are shown, calculated at
an excitation energy of 8.0 MeV. In the two upper panels, the spin distri-
bution of [16] has been used, but with the expression for the spin cutoff
parameter of [16] given in Eq. (2.5) in panel a) and the formalism of [18]
(Eq. (2.9)) in panel b). In panel c) the spin distribution the spin-dependent
level densities of [23] are shown. Here, the authors also have assumed a
bell-shaped spin distribution according to Eqs. (7) and (8) in [23]. It is clear
from the figure that the spin distributions in panel b) and c) give a broader
spin distribution and a centroid shifted to higher spins compared to the
one in panel a).

In panel d), the spin distribution of the calculated spin- and parity-
dependent level density of [25] briefly discussed in Sec. 2.1 is shown. There
are no underlying assumptions for the spin distribution in these calcula-
tions. It is seen from this distribution that there is a significant difference
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Figure 4.11: Relative spin distributions calculated for E = 8.0 MeV of 44Sc (see
text).

in the relative numbers of states with spin 0 and 1. The normalization
method for the level density described above is especially sensitive to such
variations at low spin if the neutron resonance spacing D0 is measured
from a neutron capture reaction where the target nucleus is even-even,
that is, with zero ground-state spin. Then the states reached in neutron
capture can only have spin 1/2+, and the number of all other states must
be estimated using a certain spin cutoff parameter, introducing a larger
uncertainty in the calculated ρ(Bn). Therefore it is preferred to calculate
ρ(Bn) from both D0 and D1 resonance spacings if possible, since in the lat-
ter, also states with 3/2− are reached for target nuclei with Iπ = 0+, and
will therefore decrease this uncertainty.
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4.4.2 The parity distribution

As described above, for both the normalization of the level density and the
γ-ray transmission coefficient the assumption of equally many levels with
positive and negative parity is used. For the level density, this assumption
is likely to be approximately valid since it is utilized for the calculation of
ρ(Bn), which is at relatively high excitation energies for the nuclei consid-
ered in this work (see Table 3.4). For the nuclei 44,45Sc and 93−98Mo, this
assumption has been investigated by calculating the parity distribution
with the code ’Micro’ presented in [10]. Using ρ+ and ρ− to denote the
level density with positive and negative parity levels, the parity asymme-
try α is defined as [71]

α =
ρ+ − ρ−
ρ+ + ρ−

, (4.43)

which gives −1 and 1 for only negative and positive parities, respectively,
and 0 when both parities are equally represented.

The resulting parity distributions are shown in Figs. 4.12 and 4.13 for
the Sc and Mo isotopes. It is seen in Fig. 4.12 that α is close to zero for
E ≈ 10 MeV for both 44,45Sc, in excellent agreement with the findings of
[71]. By inspecting the 2+/2− level densities in 58Ni and 90Zr (Ref. [72]
and references therein), one sees that this is also the case for these nuclei.
However, the calculations for the Mo isotopes indicate a majority of levels
with positive parity, even at excitation energies around 8 MeV, in conflict
with the 90Zr data and the calculations of [25].

To investigate the impact of the assumption of parity symmetry on the
calculations of ρ(Bn), the ratio ρ+/ρ− as a function of the parity asymme-
try α is defined from Eq. (4.43) as

ρ+

ρ−
=

1 + α

1 − α
. (4.44)

Inserting α ≈ 0.3 found in the calculations on 93Mo, we get

ρ+ ≈ 2 · ρ−, (4.45)

which means that the assumption of equally many positive and negative
parity levels are clearly not fulfilled in the ’Micro’ calculations.

The parity distribution should be taken into account when calculat-
ing ρ(Bn) for cases where the parity asymmetry is large. If one assumes
that the spin- and parity-projected level density ρ(E, J, π) can be described
by [73]

ρ(E, J, π) = ρ(E) · g(E, J) · P(E, π), (4.46)
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Figure 4.12: Parity distributions as a function of excitation energy calculated for
44,45Sc (see text).

where ρ(E) is the total level density at excitation energy E, g(E, J) is the
spin distribution given by Eq. (4.42), and P(E, π) is the parity projection
factor. According to Eq. (4.35), we get

1
D0

= ρ(Bn) · g(Bn, J = I ± 1/2) · P(Bn, πt) (4.47)

for the neutron resonance spacing at Bn reaching states with parity πt ·
(−1)� = πt for s-wave neutrons having � = 0. Now, defining the level
density of levels with the same parity πg as the ground state of the nucleus
as ρg, and the level density of levels with parity πs opposite to the ground
state of the nucleus as ρs, we obtain [73]

Pg ≡ P(E, π = πg) =
ρg

ρ
=

1
1 + ξ

, (4.48)

Ps ≡ P(E, π = πs) =
ρs

ρ
=

1
1 + 1/ξ

, (4.49)
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Figure 4.13: Parity distributions as a function of excitation energy calculated for
93−98Mo (see text).

with

ξ =
ρs

ρg
. (4.50)

Further,

1
D0

= ρ(Bn) [g(Bn, J = I + 1/2) + g(Bn, J = I − 1/2)]Pg(Bn) (4.51)

= ρ(Bn) [g(Bn, J = I + 1/2) + g(Bn, J = I − 1/2)]
1

1 + ξ
, (4.52)
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which gives

ρ(Bn) =
σ2

D0

1 + ξ

(I + 1) exp [−(I + 1)2/2σ2] + I exp [−I2/2σ2]
, (4.53)

using Eq. (4.42). In the future, the expression given in Eq. (4.53) should be
used for the calculation of ρ(Bn) instead of Eq. (4.35) if the parity asym-
metry is known, and especially if the parity asymmetry at Bn is large. The
estimation of the factor ξ should be based on experimental data, or on
realistic calculations if such data are not available.

The assumption of equally distributed levels with positive and neg-
ative parity influence also the normalization of the γ-ray transmission
coefficient. To take into account the parity distribution, one can modify
Eq. (4.40) according to Eq. (4.46) so that

ρ(E − Eγ, If,±πf) = ρ(E − Eγ) · g(E − Eγ, If) · Pg(E − Eγ, πf). (4.54)

Instead of Eq. (4.41), one finds

〈Γγ(Bn, It ± 1/2, πt)〉 =
B

2πρ(Bn, It ± 1/2, πt)

∫ Bn

Eγ=0
dEγTXL(Eγ)

×ρ(Bn − Eγ)
1

∑
J=−1

g(Bn − Eγ, It ± 1/2 + J)Pg(Bn − Eγ, πf),

(4.55)

where Pg now must be evaluated for every argument Bn − Eγ.

4.5 Robustness test of the Oslo method

The nucleus 96Mo has become a benchmark for other experimental groups
trying to verify or falsify the upbend structure seen in the γ-ray strength
function [9]. For 96Mo, it has been discovered that the extraction of the
first-generation spectra used in Ref. [9] was not performed in an optimal
way, and therefore the data sets from the reactions 96Mo(3He,3He′γ)96Mo
and 97Mo(3He,αγ)96Mo have recently been reanalyzed [74]. The two main
reasons for reanalyzing these data are explained in the following.

In the previous analysis, the γ-ray energies close or below the strong
778.2 keV 2+ → 0+ ground-state band transition were included, and this
transitional region in the experimental (E, Eγ) matrix were not properly
subtracted in the first-generation procedure. These γ-ray energies are now
excluded from the further analysis.
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The second point concerns the estimate of the γ-ray multiplicity as
function of excitation energy, which was used for the normalization proce-
dure in the first-generation method as explained in Sec. 4.2. In the previous
analyses, the statistical multiplicity at excitation energy E was estimated
by introducing a lower γ-ray threshold E0 and an effective excitation en-
ergy E − Eentry giving

〈Mstat
γ 〉 = (E − Eentry)/〈Eγ〉>E0 , (4.56)

where 〈Eγ〉>E0 is the average energy of the γ spectrum for Eγ > E0. The
Eentry parameter mimics the excitation energy at which the statistical γ-
ray transitions enter the ground-state band. This treatment is applicable
to rare earth nuclei, where the CACTUS efficiency for the lowest ground
state band transitions, typically the 4+ → 2+ and the 2+ → 0+ transitions,
is low. However, for 96Mo the energy of the lowest ground-state band
transitions are detected with high efficiency, as the first excited state is at
E = 778.2 keV [26]. Therefore, in the present analysis the straightforward
expression for the total γ-ray multiplicity

〈Mtot
γ 〉 = E/〈Eγ〉, (4.57)

is used, where the excitation energy is simply divided by the average en-
ergy of the γ spectrum as in Eq. (4.21).

In Figs. 4.14 and 4.15 the reanalyzed level densities and γ-ray strength
functions are compared with previous data [9, 13]. Note that the error bars
include statistical errors only. A very good resemblance between the pick-
up reaction and the inelastic scattering reaction is seen. The reanalyzed
level densities are very similar to the previous ones, and the same is true
for the γ-ray strength functions, except that the upbend is less pronounced
due to the exclusion of the 778.2 keV transition. This gives further confi-
dence in the robustness and stability of the Oslo method, as different ways
of performing the analysis give very similar results.
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Figure 4.14: Experimental level densities of 96Mo from the (3He,α) (filled circles)
and the (3He,3He’) (open circles) reaction. The data from the new analysis is
compared with previously published data [13].
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Figure 4.15: Experimental γ-ray strength functions of 96Mo from the (3He,α)
(filled circles) and the (3He,3He’) (open circles) reaction. The data from the new
analysis is compared with previously published data [9].
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5.1 Brief introduction to the papers

Paper 1 and 2: The Mo isotopes

The motivation for the Mo experiments was primarily to test the Oslo
method in the mass region near the N = 50 shell closure. Also, as the
ground-state deformation parameter β2 goes down from 0.17 in 98Mo to
0.11 in 92Mo [19], one would expect to see deformation effects in both the
level density (decreasing ρ(E) as the deformation decreases) and the γ-ray
strength function (decreasing f (Eγ) as the deformation decreases since the
tail of the GEDR is expected to decrease when approaching spherical nu-
clear shape).

In paper 1, the γ-ray strength functions of 93−98Mo were studied through
the analysis of the measured (3He,3He′γ) and (3He,αγ) reactions as de-
scribed in Chapters 3 and 4. It was found that the γ-ray strength functions
agreed well with the low-energy tail of the GEDR for γ-ray energies larger
than about 3 MeV. However, below Eγ ≈ 3 MeV, an increase of the strength
functions was found for all nuclei, similar to the behavior previously dis-
covered in 56,57Fe [8]. This feature was found to be present at all initial
excitation energies between 5 − 8 MeV.

In paper 2, the level densities of 93−98Mo were investigated and ana-
lyzed within the framework of thermodynamics. It was found that the
level density decreased when approaching the N = 50 shell closure. For
example, ρ(6 MeV) ≈ 4000 MeV−1 for 98Mo, while ρ(6 MeV) ≈ 1400 MeV−1

for 94Mo. Also, the level densities of 93,94Mo display more structures than
the heavier Mo isotopes.

Thermodynamic quantities such as entropy, temperature, and heat ca-
pacity were deduced using both the microcanonical and canonical ensem-
ble, and signatures of phase transitions were looked for (see Appendix B).
The difference in the microcanonical entropies of 93−94Mo were found to
be close to zero, while for 97−98Mo it was about 1kB. These observations
were qualitatively explained considering the available single-particle or-
bits in the two cases. The canonical heat capacities showed an S-like func-
tional form that might indicate a pairing phase transition, consistent with
shell-model Monte Carlo simulations.

Paper 3: The V isotopes

In light of the successful application of the Oslo method on Fe and Mo
nuclei, 51V with N = 28 was chosen for the next experimental campaign
at OCL. Now, the enhancement in the γ-ray strength function at low γ-
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ray energies had been discovered not only in 56,57Fe, but also in all the Mo
isotopes studied in paper 1. One could therefore suspect that this feature
was not singular for Fe and Mo due to some specific nuclear-structure
effects in these nuclei, but rather could be a general feature, perhaps some
sort of low-energy resonance, in a certain mass region.

The level densities and γ-ray strength functions of 50,51V measured us-
ing the Oslo method on the (3He,3He′γ) and (3He,αγ) coincidence spectra.
The level density of 51V showed distinct structures and bumps at excita-
tion energies up to ≈ 4.5 MeV, interpreted as effects of the N = 28 shell
closure that inhibit the neutrons from participating in the creation of levels
until the excitation energy is high enough to let the neutrons cross the shell
gap. Microcanonical entropies were deduced from the level densities, and
the entropy difference were found to be about 1.2kB. The γ-ray strength
functions resembled the ones in Fe and Mo, with a good agreement with
the low-energy GEDR tail at high γ-ray energies and an enhancement at
low γ-ray energies.

Paper 4 and 5: The Sc isotopes

Going even further down in mass number and approaching the Z = 20
major shell, the level densities and γ-ray strength functions of the nu-
clei 44,45Sc were extracted from the (3He,3He′γ) and (3He,αγ) data taken
at OCL. The results were presented in paper 4. The level densities of
both nuclei turned out to be much less structured than for 51V, in spite
of them having only one proton above the Z = 20 shell. However, the
neutrons are mid-shell in the 1 f7/2 orbit, and, apparently, produce a rather
smooth behavior of the level density function. The level densities were
compared with calculations performed with a microscopic combinatorial
model called ’Micro’, where BCS quasi-particles are scattered randomly
into Nilsson single-particle levels, and collective states were schematically
added. The agreement with this very simple model was satisfactory, es-
pecially for 44Sc. Also the average number of broken Cooper pairs and
the parity asymmetry were extracted from the calculations. The γ-ray
strength functions were compared to (γ,n) and (γ,p) data and to the theo-
retical GEDR tail, and a good agreement was again found at γ-ray energies
above 4 MeV. The γ-ray strength functions are seen to increase for γ-ray
energies below 4 MeV, and this upbend structure is shown to be indepen-
dent of initial excitation energy for E = 4.5 − 9.3 MeV in 45Sc. Thus, the
existence of this structure has been established in twelve nuclei from four
different elements (Sc, V, Fe and Mo).
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The motivation for the particle-evaporation experiment at Ohio Uni-
versity presented in paper 5 was twofold. First, since the normalization
of the level density in 44Sc was based on proton resonances with no dis-
tinction of � = 0, 1, this normalization might prove wrong even though
a reasonable agreement was found with the level density and strength
function of 45Sc. By performing a particle-evaporation experiment for the
compound reaction 45Sc(3He,α)44Sc, where the α particles were measured
in backward angles, the level density could be extracted using a Hauser-
Feshbach model to describe the measured evaporation spectra. This method,
which is briefly described in Chapter 2, will give the slope of the level
density directly without any input from auxiliary data except the particle
transmission coefficients determined from optical potential models. Thus,
an independent check of the slope of the 44Sc level density and strength
function could be obtained.

Second, the overall agreement between the level density of 56Fe previ-
ously measured at OCL and Ohio University was very good [28]. There-
fore, we wanted to see if this was also the case for 44Sc. The results pre-
sented in paper 5 was very encouraging, as the slope of the level density
utilized in the OCL data was verified, and the agreement between the OCL
and Ohio data were excellent (see also Fig. 2.2). The reliability of the Oslo
method is thus further strengthened.
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