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Chapter 1

Cosmology and CMB

1.1 Introduction

The field of cosmology today is very dynamic. Our understanding of the universe
is constantly maturing at a rapid pace. Before approaching the main topics of this
thesis, I would like to present a brief overview of the current status of cosmology,
how the universe was understood when this thesis was written 1.

1.1.1 Cosmology

Cosmology is the science about the universe we live in on the very largest scales.
It encompasses the history, the contents and the future of our universe. By today
it describes a universe which was once a hot dense fog placed in a space which
expanded like a stretched rubber sheet. And somehow as it expanded and cooled
down it developed a rich structure with stars and galaxies and people.

The big bang theory has become fundamental in our understanding of the uni-
verse. It forms the baseline of all current cosmological models. This theory basi-
cally states that the universe is expanding. It has been expanding for quite a while
(around 14 billion years according to current estimates [Bennett et al. 2003a]).
This means that the universe at earlier times must have been more dense, and there-
fore also hotter. And in the very early universe, it must have been very hot and
dense. Turning this around, we say that the universe originated in a very hot and
dense state, and then expanded to the size it is today. During this expansion the uni-
verse gradually cooled down and areas with higher density than the surroundings
collapsed and formed galaxies and stars.

If we continue to extrapolate backwards in time we will at some point reach a
hypothetical state where the universe is infinitely dense. This is the point which we
refer to as the big bang event. This is not really a part of the big bang theory. As
the density approaches infinity, the laws of physics as we know them break down.

1For a more detailed introduction to cosmology, the reader is referred to [Dodelson 2003].
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Cosmology and CMB

The singularity itself it therefore an invalid extrapolation of our theories. However,
we still use it as a reference point for time when talking about the early universe.

The standard model of cosmology within the big bang framework is called the
ΛCDM model. It describes the composition and the details of the evolution of the
universe. It is the simplest model which is in general agreement with observations.

The dynamics of the expansion is closely coupled to the contents of the uni-
verse. Within the ΛCDM model, the universe contains three basic components:
matter, radiation and dark energy. The composition of these have varied through
time, and they have all played their part in shaping the history of the universe.

The most familiar component is the one which we call matter. It makes up
for around 30% of the energy contents of the universe. Only around a fifth of this
however, is baryonic matter, which make up the atoms and thereby everything we
see around us.

Most of the matter in the universe seems to be of a different nature. The cold
dark matter (CDM) is a mysterious substance which does not interact electromag-
netically. This means that we can not see it directly, only measure the gravitational
effects on its surroundings. We do not know what the cold dark matter is made of.
There exist several possibilities, but they all extend beyond the standard model of
particle physics today (see for example [Bertone et al. 2005]).

The second basic component of the universe is radiation. Today this make up
for just a tiny fraction of the contents of the universe. However, at earlier times
(the first ∼ 70000 years after the big bang) radiation was the dominating energy
component, and it played an important role in the evolution of the universe.

The remaining ∼ 70% of the energy contents of the universe is dark energy.
This is maybe the biggest unsolved problem of cosmology today, since we sim-
ply do not know what it is. We only observe the effect it has on the expansion of
the universe. Without this component, we would expect the expansion to grad-
ually slow down, and possibly at some point the universe would start to con-
tract. This could happen since the gravitational force of all the contents of the
universe would pull it together. However, when we try to measure the recent ex-
pansion history, we find that the expansion is not slowing down, it is accelerating
[Perlmutter et al. 1999].

There are many models trying to explain this acceleration, often by either in-
troducing a new type of cosmic fluid, or by modifying gravity. The hypothetical
component that causes this acceleration, is what we call dark energy. Whatever it
is, it is not like anything we have seen before.

Although these basic components contain several unknowns, they are capable
of describing the expansion and composition of the universe from early times until
today, and explain the large scale observations with a remarkable precision.

1.1.2 Inflation

The scenario in the previous section is unfortunately not enough to fully explain
the universe we live in today. For some time there were a few unresolved questions
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1.1 – Introduction

Figure 1.1: The composition of the universe, today and at recombination, ∼
400000 years after big bang. (Image: NASA / WMAP Science Team)
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Cosmology and CMB

in cosmology.

The flatness problem The geometry of the universe is remarkably flat. What
makes this strange is that earlier, it must have been even flatter. Any cur-
vature would have increased throughout the evolution of the universe. This
means that the universe must have started out as extremely flat. And this
precise fine-tuning of the curvature deserves an explanation.

The horizon problem When we study the cosmic microwave background (CMB)
–a relic radiation from the early universe that will be properly introduced in
the next section– we find that it keeps almost the same temperature in all
directions. The relative temperature variations on the sky are only ∼ 10−5.
This is quite strange given that two points in opposite directions on the last
scattering surface (the apparent surface, from which the CMB is released)
should never have been in causal contact before, according to the expected
expansion history. Yet, the homogeneity in the temperature indicates that
these two distant points have at some time been in thermal contact.

The monopole problem The early universe must have been very hot and dense.
At some point it must have been so hot that our standard model of parti-
cle physics was not valid, and we may have to use a (yet uncovered) grand
unified theory (GUT) to describe the particle interactions. However, as the
universe expanded and cooled down several symmetries would have been
broken before we were left with the standard model physics we know today.
But during such a symmetry breaking field theory predict the production of
magnetic monopoles, and for most GUT’s it predicts a lot of them. Enough
to dominate the universe. However, so far not a single monopole has been
found.

The primordial seeds The model for the universe that we have discussed so far
assumes a completely homogeneous universe. Our observations show that
this is a good assumptions on very large scales. However, we know that on
relatively small scales the universe is far from homogeneous. We have a lot
of structures like stars, galaxies and clusters. Assuming that we had some
small density perturbations in the early universe, gravity would make them
grow, and later collapse to the structures we see today. But we need some
physical mechanism to describe how these perturbations arose in the first
place.

There is a way to solve all these problems at once. In 1981 Alan Guth [Guth et al (1981)]
proposed that an epoch in the very early universe (around ∼ 10−34s after the big
bang) with extremely rapid expansion could explain these phenomena. Today this
expansion is usually explained by introducing of one or more fundamental fields.
This epoch of rapid expansion is called inflation, and the field responsible for it is
usually referred to as the inflaton.
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1.1 – Introduction

However, even though inflation is commonly accepted as a likely explanation
for the problems mentioned above, there exist many different models for inflation
(see for example [Bartolo et al. 2004]). The most popular one is called single-
field slow roll inflation. In this model inflation is driven by a scalar field which is
“rolling” very slowly down a potential.

An epoch of inflation would explain the flat early universe, since the extreme
expansion would smooth out any curvature. It would also explain the thermal con-
tact of distant points (the horizon problem). Two points that were in contact before
inflation, could easily end up separated by distances larger than today’s causal hori-
zon. When they now enter the horizon again, we see two distant points that once
were very close, and therefore has almost the same temperature.

The missing monopoles are also no longer a problem. There might have been
a lot of monopoles before inflation, but after the extreme expansion these would
be spread out very thin. With today’s models of inflation we would expect only a
single monopole in the observable universe.

Inflation is also capable of explaining the primordial seeds for structure for-
mation. Small quantum fluctuations in the inflaton field during inflation would
have expanded to cosmological scales. These would then be large enough to start
contracting because of gravity. This means the structures we see today originated
as quantum fluctuations. In this way, the physics of the largest scales meets the
physics of the smallest scales.

1.1.3 The Cosmic Microwave Background

When we observe astrophysical objects, we are looking back in time. Since light
travels with a finite speed, everything we see is from the past. For close objects
the time difference is small, and is less significant (For example, it takes 8 minutes
for light to travel to the earth from the sun.). However, for more distant objects,
the light may have travelled for millions, or even billions of years. In these cases
we are really seeing how the objects looked millions of years ago. In a way we
are seeing an older and older universe the further away we look. This is of course
very convenient for cosmologists, who are terribly curious about the early universe.
The oldest object we can observe in the universe today is the Cosmic Microwave
Background (CMB) radiation, appearing as a very faintly glowing fog, around 13
billion light years away.

To see where this radiation comes from, we have to look back at the early
universe, around 400000 years after the big bang. At this time the universe was
filled with a hot fog of protons, electrons and photons. The temperature was too
high for the particles to bind, and form neutral atoms. The fog therefore consisted
of charged particles which had a high probability of interacting with the photons.
For this reason, the photons were never able to travel long distances undisturbed.
They bounced around between the protons and electrons, resulting in an opaque
universe.

As the early universe expanded, it gradually cooled down. At some point it
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Cosmology and CMB

Figure 1.2: The evolution of the universe. To the far left we see very rapid expan-
sion, due to inflation. Just after inflation (approx. 400000 years later) is the cosmic
microwave background radiation, the earliest part we can observe. Note the slightly
accelerated expansion at later times, due to dark energy. (Image: NASA / WMAP
Science Team)
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1.1 – Introduction

became cold enough for electrons and protons to form atoms. The fog was now
electrically neutral, and no longer interfering with the photons. The universe had
suddenly become transparent. As a result, photons were released from all over
the universe, and were now able to travel undisturbed. This important event in the
history of the universe is called recombination.

Today these photons are still around. Most of the radiation has travelled un-
interrupted since it was released. The first people to detect it were Arno Penzias
and Robert Wilson in 1965, who discovered a background signal while working on
a new type of antenna (“the horn antenna”). To begin with they were not able to
explain this signal, and thought something was wrong with the equipment. Only
later, after communicating with the cosmological community it became clear that
they were the first people to observe the relic radiation from big bang.

Since this radiation was the most important evidence for the big bang theory,
many groups put an effort into measuring the temperature of the CMB. Later, in
1989 the satellite COsmic Background Explorer (COBE) was launched, carrying
several instruments, one of them, Far Infrared Absolute Spectrophotometer (FI-
RAS) measured the spectrum of the CMB more precisely than ever before, and
established that the CMB fits nearly perfectly to the Planck curve of black body ra-
diation with temperature 2.7K [Mather et al. 1994]. This fits extremely well with
the predictions of the big bang theory.

But the story does not end here. As mentioned in the previous section, inflation
created small fluctuations in the gravitational potential by enlarging small quantum
fluctuations. By the time of recombination these fluctuations had grown, due to the
pull of gravity. This had led to local variations in the density of the fog. When the
radiation was released, these density variations were imprinted in the CMB. If we
measure the CMB temperature very precisely in different directions, we find tiny
anisotropies corresponding to these density variations.

For this purpose, the COBE satellite also carried a Differential Microwave Ra-
diometer (DMR). This instrument measured the variations in the CMB temperature
on the sky [Bennett et al. 1996]. The resulting map of anisotropies is an image of
the density variations in the early universe. And these density variations originated
as quantum fluctuations during inflation. Thus, by studying the anisotropies of the
CMB, we are studying the origin of the structure of the universe.

Through the CMB we have a unique possibility to study the early universe.
Compared to most other types of observable structures, the fluctuations of the
CMB are to a large extent unchanged since it was released. They have been only
marginally affected by the evolution of the universe in general. What is more, the
CMB has shown to contain a lot of information. Through CMB we are able to
pin down all the cosmological parameters with higher precision than ever before
[Larson et al. 2010].

The most recent full sky CMB data set comes from the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite experiment, by NASA [Bennett et al. 2003a,
Hinshaw et al. 2009]. They have provided the community with publicly available
full sky CMB maps. These are the data that will be studied in this thesis.
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Figure 1.3: The map of the CMB temperature anisotropies on the sky as measured
by the COBE DMR instrument. These show the density fluctuations at recombina-
tion. The temperature fluctuations on this maps are within ±100μK. (The figure
is taken from http://lambda.gsfc.nasa.gov)

1.2 Working with CMB Data

1.2.1 Data reduction and analysis

Although building an instrument for measuring the tiny CMB anisotropies, is quite
an achievement by itself, there is still work to do before we can extract information
about cosmology from them. We need to make a map of the anisotropies, and
understand its properties and limitations, before we use it to constrain cosmological
parameters.

Methods

The data we receive from the instrument are called the time-ordered data. This is
a long stream of numbers encoding the temperature in the direction the instrument
was pointing at a given time. For most practical purposes however, we need a map
of the CMB sky. The somewhat challenging task of assembling a map of the sky
from this, is what we call map making.

During this process the map’s beam and noise properties are found. These are
important when we later want to simulate CMB sky maps. The CMB instrument
has a finite resolution. This results in a smoothing of the features in the map,
removing small scales. This smoothing can be represented by a beam function,
which describes the damping of structures at different scales.

The instrument also leaves noise in the data. We can describe the noise as
random values that are added to each pixel. For the WMAP data, the noise is
assumed to be “white”, meaning that it has the same properties on all scales. We
can assume that the noise in the different pixels are uncorrelated. Because of the
scanning strategy of the satellite, some areas of the sky are scanned more than
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1.2 – Working with CMB Data

Figure 1.4: The root-mean-square of the noise for the V channel of the WMAP
5-year data. We can see how the satellite have been scanning the sky. The blue
areas of around the ecliptic poles have less noise since it has been scanned more
than the rest of the sky.

others, and thus have less noise. The noise is therefore represented by a Gaussian
distribution with a root-mean-square described by the scanning. Figure 1.4 depicts
the variation of the noise properties on the sky as a result of the scanning.

The noise influences the data very little on large scales. However, on smaller
scales the contribution from the noise increases rapidly. This, in combination with
the instrumental beam makes it difficult to extract information from the smallest
scales where the signal is weak and the noise is dominating the data.

By now we have a raw map of the CMB sky, with known beam and noise
properties. A map from one of the WMAP channels are shown in figure 1.5. But
if we look at this map, we can see that there is a strong signal in the equatorial
region of this map. This is radiation from the Milky Way, usually referred to as
foregrounds. There are mainly three different foreground components polluting
the map:

Free-free When charged particles collide, they emit radiation as they accelerate in
each others electromagnetic field (Bremsstrahlung). In the Milky Way this
radiation mainly comes from ionized hydrogen.

Synchrotron Electrons accelerated in the galaxy’s magnetic field emit radiation.

Thermal dust In the milky way there are lots of dust. This dust is heated by
radiation from the surrounding stars, and then emits thermal radiation.

In order to study the underlying microwave background, these foregrounds have to
be removed as accurately as possible. There exist several methods for doing this,
and unfortunately none of them are perfect. The key element of these methods is
that the intensity of the foregrounds vary with the frequency, while the CMB is
independent of frequency. The different foreground components are dominating at
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Figure 1.5: The raw map of the CMB anisotropies (V channel) on the
sky as measured by the WMAP instrument. (The image is taken from
http://lambda.gsfc.nasa.gov)

different frequencies. The intensity of the components can roughly be modelled as
∼ να where ν is the frequency and α is a constant which is different for the three
types of foregrounds [Bennett et al. 2003b]. Free-free and synchrotron radiation
are most significant at low frequencies, with an decreasing emissivity at higher
frequencies (although decreasing at different rates), while thermal dust dominates
at higher frequencies. By combining CMB maps measured in different frequen-
cies, it is possible to identify the foregrounds, and extract the constant, underlying
microwave background radiation.

An example of a foreground cleaned map is given in figure 1.6. As we see,
there are still foregrounds left in the galactic region. In addition to the foreground
components from the milky way described above, it is also contains a number
of point sources. These are bright galaxies appearing as bright dots on the map,
covering one or a few pixels each. Since we do not want these to bias our analysis,
we apply a mask, excluding the both the galactic region and ∼ 1000 known point
sources.

By now we have a map which should in principle be clean from foregrounds,
and which we can use to estimate cosmological parameters. There are still a few
steps we may take to simplify the data. The CMB map can be decomposed into
spherical harmonic functions:

T (θ, φ) =
∑

�

�∑
m=−�

a�mY�m(θ, φ) (1.1)

where the spherical harmonic coefficients are given as

a�m =
∫
Y ∗

�m(θ, φ)T (θ, φ)dΩ (1.2)
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1.2 – Working with CMB Data

Figure 1.6: (upper left) The cleaned map of the CMB anisotropies (V channel)
on the sky as measured by the WMAP instrument (5 year data). Note that there
are still foregrounds left in the map. (right) The same map, but multiplied with
the KQ85 mask from the WMAP 5-year release (lower left). This masks out the
remaining foregrounds in the galactic region and ∼ 1000 known point sources.

Now we may find the CMB power spectrum which describes the amplitude of
the fluctuations on the various scales:

C� =
1

2�+ 1

∑
m

a∗�ma�m (1.3)

where the index � indicates the scale. Larger � represents smaller scales. The
monopole (� = 0) is just the average temperature of the CMB. As the earth moves
with respect to the background CMB, the radiation we measure is strongly red-
shifted in one direction and blueshifted in the other, creating a dipole (� = 1)
which dominates the map. The true dipole of the CMB is practically impossible to
find. Therefore, we usually remove the monopole and the dipole from the analysis
and only consider multipoles � ≥ 2. The power spectrum as measured by WMAP
is shown in figure 1.7.

If we assume that the CMB fluctuations are Gaussian and isotropic as expected
from single field slow roll inflation2, then all the cosmological information of the
CMB is contained in the power spectrum:

〈a�ma�′m′〉 = 〈C�〉δ��′δmm′ .

The brackets 〈〉 here indicates a mean taken from an ensemble of hypothetical
realizations of our universe.

2Almost. Single field slow roll inflation predicts very small deviations from Gaussianity.
[Maldacena (2003)]
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Figure 1.7: The WMAP 7-year best fit power spectrum (for ΛCDM) together with
the power spectrum from the CMB (dots with error bars). This shows the ampli-
tude of the fluctuations on different scales. The shaded region shows the cosmic
variance. (The figure is taken from http://lambda.gsfc.nasa.gov)

It is of course a significant advantage to have all cosmological information
condensed into a power spectrum containing ∼ 103 numbers, as opposed to a full
sky map, containing 106 numbers. The shape of the power spectrum depends on
all the cosmological parameters, and therefore, this function alone can be used to
estimate the full set of parameters.

A note of caution

The described procedure gives us estimates of the cosmological parameters with
remarkable precision. This method does however come with a few assumptions:

Systematics We assumed that we have complete control over systematic effects.
The noise was assumed to be white and with no correlations between the
pixels. We assumed that the instrumental beam was symmetric, so we could
express it as a simple beam function.

Foregrounds We cleaned the map from foregrounds and we assumed that there
are none left in the data. Neither galactic nor point sources.

Gaussianity & Isotropy We assumed that the CMB was Gaussian and statisti-
cally isotropic.

Although these are widely used assumptions, their validity are debated. In this
thesis we investigate the possibility of deviations from Gaussianity in the CMB.
However, systematics and residual foregrounds are likely to also show up as non-
Gaussian effects.

16



1.2 – Working with CMB Data

1.2.2 Gaussian simulations

As described in the previous section, we could condense all the cosmological in-
formation of the CMB into a power spectrum, which could be used to estimate
all the cosmological parameters. It is also possible to go backwards. Given a set
of cosmological parameters is is possible to find the theoretically predicted CMB
angular power spectrum (For this purpose, we may use a Boltzmann code, for ex-
ample CAMB3). Since this power spectrum contains all cosmological information
of the CMB, we may use this to simulate Gaussian and isotropic realizations of the
CMB sky.

When we say that the CMB is Gaussian, it means that the spherical harmonic
coefficients, a�m are following a Gaussian distribution. Since we assume that the
CMB is isotropic, the distribution is only dependent on the scale, � (and not on the
m index). As we saw from eq. 1.3, the variance of the a�m’s are given by C�. The
probability distribution of the spherical harmonic coefficients can then be written:

P (a�m) =
1√

2π〈C�〉
e

−a2
�m

2〈C�〉 (1.4)

where 〈C�〉 is the theoretically predicted power spectrum.
Provided a power spectrum it is then relatively straightforward to simulate a set

of Gaussian a�m’s
a�m = ε

√
〈C�〉

where ε is a variable drawn from a Gaussian distribution with zero mean and a
standard deviation σ = 1. These a�m coefficients may then be transformed to a
pixelized map using eq. 1.1. In this thesis I have used the HEALPix4 package for
making these simulations [Górski et al. 2005].

However, in order to have a complete simulation of the data, we must also
include properties introduced to the data set by the instrument. As described ear-
lier, the instrumental beam smoothes the map, reducing the amplitude of the small
scales. This may be described by convolving the a�m coefficients with a beam
function, B�:

asmooth
�m = B�a�m

Often the beam function may be described as a Gaussian function. However, the
instrumental beam of the WMAP data is highly non-Gaussian, and the beam func-
tion is provided by the WMAP team along with the data maps.

The noise properties of the instrument are also released along with the data.
The noise may be simulated by adding a Gaussian random value to each pixel in
the map.

Tnoisy
i = Ti + εNi

3http://camb.info
4http://healpix.jpl.nasa.gov
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where ε again represents a variable drawn from a Gaussian distribution of zero
mean and σ = 1. The map Ni is the root-mean-square (RMS) of the noise, de-
scribing the noise level in different directions. An example of an RMS-map for the
noise of the V channel of the WMAP data was shown in figure 1.4.

1.2.3 Experiments

We have already mentioned the COBE satellite which performed the first full-sky
measurement of the CMB sky in the 1990’s. Now it is time to introduce the two
current full-sky CMB experiments, WMAP and Planck. For the work presented
in this thesis, only the WMAP data has been used. However throughout the work,
the Planck mission has always been hovering in the horizon, as the future ultimate
CMB experiment.

WMAP

The Wilkinson Microwave Anisotropy Probe (WMAP) mission by NASA [Bennett et al. 2003a,
Hinshaw et al. 2009] has provided us with the best publicly available full-sky maps
of the CMB to date. The WMAP satellite was launched in 2001 and was expected
to run for eight years. During the work presented in this thesis, the data release
after five years of running was the best full-sky CMB data set available, and the
one which has been used for the papers included. However, as this introduction is
being written, a seven year data set has recently been released.

The WMAP instrument consists of 20 differential radiometers, covering 5 fre-
quencies: 23 GHz (K channel), 33 GHz (Ka channel), 41 GHz (Q channel), 61
GHz (V channel) and 94 GHz (W channel). These provides full-sky maps with a
angular resolution of 0.23◦−0.93◦ FWHM. The monopole is simply not measured
(the instrument only measures differences in sky temperatures) and the dipole is
removed since it is dominated by the redshift/blueshift caused by us (the satellite,
the earth, the solar system and the galaxy) moving with respect to the last scattering
surface.

The five maps which are produced have widely different properties because
of their frequency ranges. For the work presented in this thesis only the Q, V
and W channels are used, since the K and Ka channels are considerably more
contaminated by foregrounds. This is likely to show up as non-Gaussian signals,
and would interfere with the results.

For the three higher frequency channels, the noise increases with the frequen-
cies, so that the W-channel is the noisiest. The instrumental resolution follows
an opposite pattern, with the W channel having highest resolution (meaning the
smallest instrumental beam). The V channel has the least contamination of fore-
grounds. Due to the frequency dependence of the foreground components, the Q
channel is mostly contaminated by free-free and synchrotron radiation while in
the W channel there is most radiation from dust. For our analysis we will often

18



1.2 – Working with CMB Data

use a noise-weighted average of the V and W channels, which we call the V + W
channel.

For masking out foregrounds from the galaxy and point sources, we have
mainly used the two masks released with the WMAP 5 year data. The KQ85
mask removes ∼ 18% of the CMB sky, while the more conservative KQ75 mask
removes ∼ 25% of the sky.

The WMAP experiment has provided us with valuable knowledge about the na-
ture of our universe. It has enabled us to estimate the CMB angular power spectrum
with high precision (see fig 1.7). In combination with other experiments (measure-
ments of the Hubble constant and the baryon acoustic oscillations) WMAP has
tightly constrained the curvature of the universe and the equation of state parame-
ter for dark energy, suggesting that we live in a flat universe with a cosmological
constant. And not least, WMAP has provided us with robust knowledge about the
contents and age of the universe [Komatsu et al. 2010].

Planck

No thesis on the topic of CMB is complete without mentioning European Space
Agency’s (ESA) current CMB mission: Planck. The Planck satellite was launched
May 14 2009, and is expected to perform measurements of the CMB for approxi-
mately two years.

Planck will provide full-sky CMB temperature and polarization maps of signif-
icantly better resolution than WMAP. The satellite contains two instruments with
different technology. The low frequency instrument (LFI) has radiometers cover-
ing three frequency channels, 30 GHz, 44 GHz and 70 GHz, with resolution in
the range 56′ − 14′ FWHM. The high frequency instrument (HFI) uses an array of
bolometers to cover six frequencies: 100 GHz, 143 GHz, 217 GHz, 353 GHz, 545
GHz and 857 GHz. These will deliver maps with a resolution of 9.5′−5.0′ FWHM.
With these improved parameters, Planck defines the future of CMB analysis.
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Chapter 2

Breaking the spell

2.1 Anomalies in the CMB

With all this data one can do more than just tune in the cosmological parameters
to ever increasing precision. The CMB may be able to give us answers to very
fundamental questions in cosmology. Or possibly raise questions we would else
not think of.

As mentioned previously there exist many different models for inflation. The
most commonly accepted being single field slow-roll inflation. Up until now it
has been difficult to rule out or distinguish between models of inflation, since their
observables are just barely within reach of the precision from observations. So far
single field slow-roll inflation explains the problems described in section 1.1.2 and
has not had any significant conflict with observations.

The single field slow-roll scenario predicts a universe which is flat, homoge-
neous and isotropic. This was the key motivations for introducing it in the first
place. But it also predicts that the universe should be populated with adiabatic,
scale invariant and nearly Gaussian perturbations. These are predictions we should
test very thoroughly, since they may allow us to put constraints on inflation, and
possibly rule out the models which are incorrect. As with all physics, a good model
should be testable and be able to survive confrontation with data.

Several groups have searched for such kinds of anomalies in the CMB, but the
difficulty is that deviations from isotropy, or Gaussianity does not take any specific
form. It has in principle infinite degrees of freedom. So many different tests have
been performed, and various anomalies have been found whose significance and
possible origin are debated.

Some of the first anomalies that were found were some peculiarities at low mul-
tipoles of the CMB. First of all, the quadrupole of the CMB has an amplitude that
is lower than expected. This is clearly visible on the CMB angular power spectrum
(figure 1.7). This was discovered already in the COBE data [Bennett et al. 1992,
Hinshaw et al. 1996]. However, since this is only a single multipole, and it is stud-
ied only after first seeing it in the data, it is difficult to award it a large significance.
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Another large scale anomaly is the so called “axis of evil”. When looking
at the quadrupole and octopole it seems that most of the power for both of them
is concentrated along a band around the sphere [Tegmark et al.(2003)]. What is
more strange is that they are aligned along the same axis for both � = 2 and
� = 3. In fact, there has been reports of unexpected features in multipoles up to
� ≤ 6 [Land & Magueijo 2005]. The significance and implications however, are
still debated.

A different type of anomaly, present on many scales, is the hemispherical
power asymmetry. The effect was was first noted in [Eriksen et al.(2004)], where
the authors claim that the power is stronger on one hemisphere than the other, when
separating along a certain axis. This means that the power spectrum has a different
amplitude, depending on which part of the sky we are looking at. Several studies
of this has been performed with the strongest significance of 3.5σ − 3.8σ claimed
by [Hoftuft et al. 2009]. The origin of this anomaly is yet unknown.

Another strong anisotropy was detected by [Groeneboom & Eriksen 2009, Groeneboom et al. 2009],
as predicted by a model proposed by [Ackerman et al. 2007]. The authors claim
that the two-point function of the CMB contains a component which varies as a
quadrupole on the sky, resulting in a preferred direction with a 9σ confidence. This
anisotropy has passed several tests, but the indicated direction is pointing to the
ecliptic poles, which also happens to be the spin axis of the WMAP satellite. This
strongly suggests some kind of systematic effect. The WMAP team suggests that
it is the result of incomplete handling of beam asymmetries [Bennett et al. 2010],
but this has yet to be tested.

2.2 Searching for Non-Gaussianity

There are many alternative models of inflation, and testing for Gaussianity is one
of the ways to distinguish between them. By a Gaussian CMB we mean that the
spherical harmonic coefficients are described by a Gaussian distribution with vari-
ance of 〈C�〉 (eq. 1.4). Different models predict different levels (and different
types) of non-Gaussianity. For single field slow-roll inflation we expect only very
small deviations from Gaussianity. An exciting aspect of this is that if we were to
detect such a deviation from Gaussianity, we would be probing physics at a very
high energy.

There are two main approaches for testing Gaussianity. We may perform a
model independent test, or we may test a specific model for non-Gaussianity.

Model independent testing

In a model independent test we construct some kind of estimator, a variable or a
function, θ, which we expect will depend on deviations from Gaussianity. This
test should be performed both on the real data and on an ensemble of Gaussian
simulations. By calculating θ for all the Gaussian simulations, we build a histogram
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describing its distribution. This shows what values we should expect for θ in the
Gaussian model,

Next, we estimate θ for the data, and compare the results with the distribution
we found from simulations. From this we see precisely how typical the data are,
under the assumption that the Gaussian model describes the data correctly. If they
are very untypical, meaning that they are significantly different than the trend of
the simulations, we are left with the following two possibilities.

Either it is just accidental. For this particular estimator our universe belongs
to the tail of the distribution. We have only access to data from one universe, and
for this particular estimator it might be unusual just by chance. It is important to
have this possibility in mind. When we perform a large number of tests, this types
of improbabilities will happen from time to time. Exactly how probable this is, we
can find from the distribution of θ. If this deviation turns out to be very improbable,
we might consider the second possibility.

The other alternative is that our model for making simulations do not correctly
describe the data. It may be that our assumption of Gaussianity is incorrect. This
could certainly explain why simulations and data are so different. Especially if our
estimator is chosen to be sensitive to deviation from Gaussianity.

But there may be other reasons for our simulations to differ from the data.
Especially, we should keep in mind foregrounds and systematic effects. In the
simulations we assume that there are no foregrounds left in the map, while the
data may contain remains of foregrounds, or undiscovered point sources. A first
approach to test whether foregrounds are indeed responsible for the discrepancy
between data and simulations is to perform the test on several individual frequency
channels. Since foregrounds are frequency dependent, inconsistent results from
these tests would be an indicator that foregrounds may be interfering.

This way of testing Gaussianity may have some advantages, depending on the
estimator we choose. It may give an intuitive idea about what property in the map
one is testing for (for example ellipticity in the spots). Also the estimator may
sometimes be constructed so it is flexible, and allows us to look at separate scales
or areas of the sky, or it may be computationally fast. However it is usually difficult
to compare the results to theory. Also, it is difficult to compare the accuracy and
results with that of different methods.

Model testing

The alternative to a model independent test is to make a model for quantifying
non-Gaussianity, and then use the data to constrain a parameter. One such way is
to constrain the non-Gaussianity parameter, fNL. The primordial curvature pertur-
bation field, Φ(x), at the end of inflation may be expanded around a Gaussian as
follows:

Φ(x) = ΦL(x) + fNL

(
Φ2

L(x) − 〈Φ2
L(x)〉)
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where ΦL(x) is the linear (Gaussian) part of the perturbation field1.
Estimating a parameter, like fNL, is more demanding than the model indepen-

dent method, since we need to be able to make simulations with different nonzero
values for this parameter. It is no longer enough to decide whether the Gaussian
model is an acceptable description. We now need to find which value for fNL best
describes the data.

The advantage is that by estimating such a parameter, it is possible to compare
models and data. Various models of inflation predict different values for fNL. For
single field slow-roll inflation fNL ∼ 1. Other inflationary scenarios (multiple
scalar fields, curvaton inflation, inhomogeneous reheating just to mention a few)
predict different values for fNL, usually higher, depending on one or more free
parameters in the model [Bartolo et al. 2004].

2.2.1 Constraining fNL

In paper I and II in this thesis we have estimated deviation from Gaussianity by
constraining the parameter fNL introduced in the previous section. For this we
combined two different tools, the bispectrum and needlets.

Bispectrum

The CMB bispectrum is a three point correlation function. It may be found as a
correlation of spherical harmonic coefficients 〈a�1m1a�2m2a�3m3〉. If we assume
statistical isotropy we get the angular averaged bispectrum, B�1�2�3 defined by

〈a�1m1a�2m2a�3m3〉 = 〈B�1�2�3〉
(
�1 �2 �3
m1 m2 m3

)
(2.1)

where the matrix represents the Wigner-3j symbol. B�1�2�3 is rotationally invari-
ant, and if the harmonic coefficients a�m are Gaussian, the expectation value of
B�1�2�3 is exactly zero.

The bispectrum of the CMB is an excellent estimator for non-Gaussianity.
Since it is vanishing for a Gaussian sky, any significant signal will in principle be
a non-Gaussian one. Unfortunately, calculating the bispectrum is a computation-
ally demanding task. Since it is a three-point correlation function B�1�2�3 contains
∼ �3max elements. And if we want to consider scales up to, say �max ∼ 1000, the
bispectrum contains 109 elements. Even with a considerable amount of symmetries
this is costly to calculate, and a challenge to use for parameter estimation.

Another complication is the mask. Since the CMB map is contaminated with
foregrounds it is absolutely necessary to remove this part from the analysis. But
the mask disturbs the analysis significantly, since the spherical harmonic functions
are no longer orthonormal. And in this way the bispectrum looses its sensitivity.

1In principle there is no need to stop after second order. Φ(x) may be expanded to any order. The
coefficient of the third order term is usually called gNL or τNL.
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Needlets

A possible way to approach some of these difficulties with the bispectrum is to
use wavelet transforms. Wavelet transforms are a general way of decomposing a
function into localized base functions, called wavelets. By localized means that
they have a non-zero value at the origin, and then approach zero asymptotically in
all directions further away. As an example of a wavelet, figure 2.1 shows a needlet
on the sphere. The wavelet usually defines a scale, given by a wavelet parameter.

By performing a wavelet transform, on a function, T (γ̂), (in our case a func-
tion on a sphere, the temperature map) we extract a representation of the function
within the scales defined by the wavelet. This procedure is usually repeated for a
number of different wavelet scales, resulting in a set of functions, each representing
different scales of the original function, T (γ̂).

This is analogue to a spherical harmonic transform, T → a�m. The � number
defines the scale, in the same way as the wavelet scale. But instead of just having
a number m representing the different directions on the sphere, wavelets have an
entire map. The advantage of representing a function in this way is that it gives a
great flexibility to study different scales and regions of a function separately.

Needlets are a new class of wavelets [Narcowich et al. (2006)]. They are the
first type of proper wavelets defined on the sphere. This implies that the inverse
needlet transformation is exact (no information loss). Also, needlets are localized
in harmonic space, meaning that they cover a well defined interval of �-scales, and
are thus easy to compare with spherical harmonics. If not stated otherwise, the
information in this section comes from [Marinucci et al. (2008)].

The spherical needlet function is defined as:

ψjk(γ̂) =
√
λjk

∑
�

b

(
�

Bj

) �∑
m=−�

Y ∗
�m(γ̂)Y�m(γk) (2.2)

where j denotes the needlet scale, λjk is a normalization factor, γ̂ is a direction
on the sphere, and k is the pixel number in the coefficient map. Y�m(γ̂k) are the
spherical harmonic functions. The function b

(
�

Bj

)
defines the weighting of the

spherical harmonics. It is defined so that a given needlet scale, j, will be repre-
sented by spherical harmonics with scales � ∈ [Bj−1, Bj+1]. Outside this interval,
b
(

�
Bj

)
= 0 (see [Marinucci et al. (2008)] for details).

When performing a needlet transform, the information from the map is ex-
pressed in the needlet coefficients βjk, in the same way as the a�m’s contain the
information after a spherical harmonic transform. The needlet coefficients, βjk are
given as

βjk =
∫
T (γ̂)ψjk(γ̂)dΩ (2.3)

=
√
λjk

∑
�m

b

(
�

Bj

)
a�mY�m(γ̂k) (2.4)
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Figure 2.1: The shape of a needlet function. This is made by making a map on the
sphere with a single nonzero pixel and then performing a needlet transform with
B = 1.205, and looking at only the scale j = 16 (equivalent to � ∈ [16, 24]).

Figure 2.2: The power spectrum of the map in figure 2.1. Note that it is nonzero
only for � ∈ [16, 24].
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Figure 2.3: A needlet transform allows us to separate the map, into different scales.

From these, the original map may be found through the reconstruction formula:

T (γ̂) =
∑
j,k

βjkψjk(γ̂) (2.5)

In figure 2.1 a needlet transform has been performed on map with a single
nonzero pixel. The figure displays the needlet coefficients, βjk, for a given needlet
scale, j, showing the shape of the needlet function. Figure 2.2 shows the power
spectrum of the same map, demonstrating how the needlets are localized in har-
monic space.

For the work presented in this thesis, the main advantage of using needlets is
the localization property. In order to exclude foregrounds from the galaxy it is nec-
essary to mask out a large region. As a result, the spherical harmonic functions
are no longer orthogonal. More intuitively: Since the spherical harmonic functions
are “periodic” around the sphere, the masked out region around the galaxy signif-
icantly affects the transform over the entire sphere. For needlets this is less of a
problem. Since a needlet is localized, a mask like this will only influence needlet
coefficients very close to the mask.

Another advantage of the localization property is that it allows for studying
only selected parts of the sky. The wavelets in this region will almost exclusively
be influenced by the structures there. We have taken advantage of this in Paper II,
where we have performed an estimate of fNL on separate regions on the sky.

Computing the bispectrum of needlets [Lan & Marinucci (2008)] is in some
ways equivalent to computing the harmonic bispectrum from binned a�m’s. But by
using the needlet bispectrum instead of the normal bispectrum we avoid some of
the problems mentioned in the previous section.

Since the each of the needlet scales contain the information from many �-scales,
the number of needlet scales that we need are much fewer. This greatly reduces the
size of the needlet bispectrum as compared to the normal harmonic bispectrum,
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and thus the computational cost is reduced. Also, the localization property of the
needlets minimizes the difficulties with using a mask.

Constraining non-Gaussianity

In paper I and II we used the needlet bispectrum to estimate fNL. We made use of
300 non-Gaussian simulated sets of a�m’s generated using the algorithm developed
in [Liguori et al (2003), Liguori et al. (2007)]. These were on the form

a�m = aG
�m + fNLa

NG
�m . (2.6)

We wanted to estimate which value for fNL that best fits the data. We therefore
used a χ2 test for the comparing the data with the model. As always, the χ2 value
is found as:

χ2(fNL) = dT (fNL)C−1d(fNL) (2.7)

Where C is the covariance matrix and d = Iobs
j1j2j3

−〈Ij1j2j3(fNL)〉. Ij1j2j3 is here
the needlet bispectrum [Lan & Marinucci (2008)]:

Ij1j2j3 =
Npix∑

k

βj1kβj2kβj3k

σj1kσj2kσj3k

=
∑

k

∑
�1�2�3

∑
m1m2m3

b
(

�1
Bj1

)
σj1k

b
(

�2
Bj2

)
σj2k

b
(

�3
Bj3

)
σj3k

a�1m1a�2m2a�3m3

× Y�1m1(γ̂k)Y�2m2(γ̂k)Y�3m3(γ̂k) (2.8)

The model we are testing in this case is represented by a specific value for fNL.
But since we want to find the value for fNL which gives the best fit, we would have
to repeat the test for many different values, and thus find the value for fNL which
results in the lowest χ2.

But a much easier way is just to differentiate. The best fit, can be found as:

dχ2(fNL)
dfNL

= 0 (2.9)

For this we need an explicit expression for 〈Ij1j2j3(fNL)〉. By making use of eq.
2.6 we rewrite the three point correlation function of a�m’s as:

〈a�1m1a�2m2a�3m3〉
=

〈
aG

�1m1
aG

�2m2
aG

�3m3

〉
+ fNL

( 〈
aNG

�1m1
aG

�2m2
aG

�3m3

〉
+

〈
aG

�1m1
aNG

�2m2
aG

�3m3

〉
+

〈
aG

�1m1
aG

�2m2
aNG

�3m3

〉 )
+ O((aNG

�m )2) (2.10)

We then neglect terms of higher than first order in aNG
�m (this factor is very small).

The pure Gaussian term can also be neglected since the three point correlation
function of a Gaussian field is zero. We use this result together with eq. 2.8 to find

〈Ij1j2j3(fNL)〉 = fNL〈Îj1j2j3〉 (2.11)
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where we have defined 〈Îj1j2j3〉 = 〈ING,G,G
j1j2j3

〉 + 〈IG,NG,G
j1j2j3

〉 + 〈IG,G,NG
j1j2j3

〉. These
three terms can be found from non-Gaussian simulations. Now we do not have to
re-calculate 〈Ij1j2j3(fNL)〉 every time we want to test a new value for fNL, we just
need to find 〈Îj1j2j3〉 once.

Differentiating eq. 2.7, and using eqs. 2.9 and 2.11 we find an expression for
the best fit fNL:

fNL =
〈Îj1j2j3〉TC−1Iobs

j1j2j3

〈Îj1j2j3〉TC−1〈Îj1j2j3〉
(2.12)

where Iobs
j1j2j3

is the needlet bispectrum of the map we want to test.
We can find C from Gaussian simulations, and 〈Îj1j2j3〉 from non-Gaussian

simulations. We then use this to estimate fNL on an ensemble of Gaussian simu-
lations in order to quantify the error bars and possible bias of the estimate. Finally
we estimate fNL on the WMAP data.

In paper I we used this to estimate fNL in the data and in simulations, resulting
in constraints on the parameter. We explored the method, and performed a number
of consistency checks.

In paper II we found that by using a higher value for the needlet parameter B
we could obtain tighter constraints on fNL. We also extended the analysis to study
only selected regions of the sky. Since the needlets bispectrum can be expressed
as a sum over pixels (eq. 2.8), it is then relatively unproblematic to sum over only
the pixels we want to include in the estimate. We found constraints on fNL using
hemispheres and 45◦ discs in different directions. We also estimated fNL using
rings parallel to equator, in order to uncover possible foreground contamination
outside the galactic mask.

The error bars on these estimates are naturally quite large, since much less data
is being used for the analysis, as compared to a full-sky analysis. Still, this is the
first attempt to estimate fNL in different directions, and as the method and data
improves it might be possible to constrain certain models predicting anisotropic
fNL (for example [Karciauskas et al. 2009]). However, maybe the most important
use is to detect possible systematic effects and residual foregrounds in the CMB
map.

We performed the analysis described above on the combined V + W channel
as well as the individual Q, V and W channels. This resulted in a best fit value of
fNL = 73±31 (at the 1σ level) on the V+W channel using the conservative KQ75
mask. We found consistent results in the V and W channels, but the Q channel
showed significant deviation, suggesting contamination from foregrounds.

The error bars on fNL from the needlet bispectrum are significantly larger than
the ones obtained by [Smith et al. (2009)]. The authors used an optimal bispectrum
estimator to find −4 < fNL < 80 at 95% CL which is the current best limits from
CMB data. Still, the needlet bispectrum provides an important test of consistency.

The partial sky estimates yielded no significant local deviation from Gaussian-
ity, with a possible exception of a 3σ deviation around the equatorial region in the
Q channel, suggesting possible residual foregrounds outside the mask.
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Also, we noted that in the V + W channel the estimates on all the equatorial
rings show fNL > 0. The probability for this to happen in a universe with fNL = 0
is less than 1%.

In conclusion we found no significant anisotropy in the fNL estimates in the
CMB sky. We found no abnormal values for fNL close to the galactic mask, with
the exception of the Q channel, where we suspect influence from foregrounds.

2.2.2 Local Curvature

The local curvature is a conceptually simple and model independent approach to
testing for non-Gaussianity in the CMB. The estimator is based on [Doré et al.(2003)]
and consists of classifying pixels as hills, lakes or saddles based on their second
derivatives.

The Hessian matrix is defined from the covariant second derivatives of the map,
T :

H =

[
D2T
Dθ2

D2T
DθDφ

D2T
DθDφ

D2T
Dφ2

]
(2.13)

Here DT
Dθ and DT

Dφ indicates covariant derivatives. The two eigenvalues of this ma-
trix may be found, and every pixel on the sphere may be classified as a hill, lake or
saddle pixel depending on the signs of the eigenvalues.

A temperature threshold, Tt, is then introduced. For only the pixels with Ti ≥
Tt the fraction of hills, lakes and saddles are found. Then the threshold, Tt, is
increased a small step and the analysis is repeated. This is done from a low Tt,
where almost all pixels are included in the analysis, and up to a high Tt, where only
a small portion of the map is included. The results are three functions, describing
the fractions of hills, lakes and saddles as a function of Tt (figure 2.4).

As it happens, these functions are quite predictable for a Gaussian map. For
this reason they are useful for testing for non-Gaussianity. However, since we do
not completely trust the theoretical prediction of these curves, due to numerical
issues with masks, derivatives and smoothing, we calibrate with simulations. An
ensemble of Gaussian CMB skies are simulated, with instrumental beam and noise.
For each of them the three functions are found, and we the calculate mean and
standard deviation of these (and the covariance matrix). This corresponds to the
Gaussian prediction.

Then we find the same three functions with the CMB data. And we are now
able to decide whether the data behave similarly as the Gaussian simulations. For
this comparison we again use a χ2 test:

χ2 = dTC−1d

where C is the covariance matrix and the data vector d contains the values of one
(or several) of the curvature functions for a map (hill, lake or saddle fraction as a
function of Tt), with the mean value subtracted. The map in question could be a
simulation or it could be the real data.
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Figure 2.4: The fraction of hill, lake and saddle pixels in a simulated Gaussian map
with Nside = 512. The simulation is generated from the best fit power spectrum
from the WMAP 5 year release. The black line shows the mean, while the shaded
area depicts the 68% confidence area.

The χ2 value describes how well the tested data fits to a model. A low num-
ber means it fits well with the model (Gaussian), and a high number means it fits
badly (non-Gaussian). We can now find this χ2 number for another ensemble of
simulations, and for the data, and we can see how well the data fits compared to
the Gaussian simulations.

This test was first performed by [Hansen et al. 2004]. The authors found no
significant deviation when considering the whole sky, but when looking separately
on the northern and southern galactic hemisphere, deviations from Gaussianity was
found on each part. They found that one of the hemispheres had an excess of hills
while the other had too much lakes. On average however, the distribution was
normal. They estimated this peculiar asymmetry on hemispheres along several
different axises, and found a direction where the asymmetry was largest. This was
close to the ecliptic axis.

However, in [Hansen et al. 2004] this analysis was performed on the WMAP
first year data and with limited computational resources. In paper III we there-
fore performed the analysis on the WMAP 5-year data, having better control over
the noise. Also we were able to use significantly more Gaussian simulations thus
properly mapping out the χ2 distribution.

Additionally, in [Hansen et al. 2004] only a diagonal covariance matrix was
used, ignoring correlations between threshold levels. In Paper III we performed
the test both with a diagonal covariance matrix and with a complete one, including
correlations between threshold levels, Tt.

When using the full covariance matrix we found some evidence of a ∼ 1%
deviation from Gaussianity on scales areound 3◦. When investigating the separate
northern/southern galactic/ecliptic hemispheres as well as other scales, we found
no deviation beyond 2σ. When investigating 48 different hemispheres around the
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sky, we found no evidence for a preferred direction. We concluded that there is no
evidence for non-Gaussianity or asymmetry in the WMAP data based on this test.

When using a strictly diagonal covariance matrix however, we found a detec-
tion more similar to the analysis in [Hansen et al. 2004]. Stronger hints of devia-
tion from Gaussianity are found, and an axis of maximal asymmetry is estimated
to be close to the ecliptic poles. The nature of this non-Gaussian detection when
using diagonal covariance matrix is still unclear.
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Chapter 3

Conclusions

In this thesis, through three papers I have presented two methods for estimating
non-Gaussianity in the CMB. Both of these methods have been used to estimate
non-Gaussianity in different directions on the sky, thus testing for anisotropic non-
Gaussianity.

The method applied in paper III (described in section 2.2.2) is a model inde-
pendent test, developed by [Doré et al.(2003)] and [Hansen et al. 2004], making
use of local curvature statistics on the sphere. We have applied this test to newer
data, making use of improved computational resources and we have explored the
independent ecliptic and galactic hemispheres. When using a diagonal covariance
matrix we find hints of non-Gaussianity consistent with [Hansen et al. 2004], but
when including correlations in a full covariance matrix, these detections disappear.

Another method (described in section 2.2.1) is used to constrain the non-Gaussianity
parameter fNL. In paper I we develop the method for estimating fNL by use of
the bispectrum of a new type of wavelets, called needlets. We perform a number
of consistency tests, and conclude with a 2σ deviation from Gaussianity. In paper
II we tighten the error bars, and further develop the method to estimate fNL in
different regions on the sky. We find consistent results in the V and W channels
suggesting non-Gaussianity at the 2σ level. However, we find the that the Q chan-
nel gives inconsistent results, with a noticeable deviation from Gaussianity in the
galactic area. We therefore conclude that the Q channel is too contaminated with
foregrounds to be reliable for non-Gaussianity studies.

These types of analysis are important, both to test the validity of the standard
inflationary scenario, but also for uncovering residual foregrounds and systematic
effects. As the methods for extracting information out of the CMB becomes more
refined, it becomes increasingly important to have a good control of these effects.

It will be vital to apply these estimators to the future release of the Planck data
in order to confirm or discard the various hints of deviation from Gaussianity en-
countered in this thesis. The Planck experiment will provide high resolution maps
in many frequencies. With its different systematics it will provide an independent
and hopefully conclusive test for both these and many other reported deviations
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from Gaussianity and isotropy. If any of these anomalies are confirmed to have
a cosmological origin, alternative models for inflation should seriously be consid-
ered.

Additionally, the Planck data is likely to also suffer from residual foreground
contamination and various systematic effects. Estimators of directional non-Gaussianity,
like the ones described in this thesis will be useful tools for dealing with these chal-
lenges.
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