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Abstract

Chiari I malformation characterizes by cerebellar tonsils submerging below
foramen magnum, leading to obstruction of subarachnoid space (SAS) that
alters the cerebrospinal fluid (CSF) flow. The condition leads to diverse
symptoms in patients and is in some cases accompanied by a syrinx in the
spinal cord. In order to improve the understanding of effects of SAS geom-
etry on the CSF flow characteristics, numerical simulations of the CSF flow
were conducted on a a series of personalized models of Chiari I patients,
healthy volunteers and post-operative patients. The models were gener-
ated with the help of VMTK, which is a software tool for reconstruction of
anatomical structures based on segmentation of medical images. To simu-
late the CSF flow, we applied the Navier Stokes equations for incompress-
ible Newtonian fluid, which were solved numerically by applying the Finite
Element Method (FEM) to the Incremental Pressure Correction Scheme
(IPCS). The simulations were conducted by means of a pre-provided code
for computational fluid dynamics (CFD) based on the FEniCS software li-
brary. To assess the validity of our results, the computed velocities were
compared with MRI-measurements of the studied patients. If the computa-
tions were significantly different from the velocity measurements, the inflow
and outflow conditions were changed accordingly and new simulations were
conducted. Chiari I models have shown more evident flow complexities,
greater peak velocities, higher flux-values and larger magnitude of bidirec-
tional flow compared to models of healthy volunteers. We observed that
to achieve more realistic results in future simulations, setting pressure and
velocity conditions based on MRI measurements is recommended.
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Chapter 1

Introduction

Technology and science have progressed at an accelerated rate during the
last century, giving us a possibility to study and explore our surroundings
from the smallest particles to the distant regions of the universe. Despite
this, the phenomenon that seems to be the easiest accessible for us; our own
body, has still not been fully understood. The human body is an astound-
ingly complex biologic machine with inter-related physiological functions.
A thorough understanding of the biological mechanisms involved is crucial
for accurate treatment of the different kinds of malfunctioning which can
occur in this complicated system. Even with the advanced tools of today,
many aspects of the human body are difficult to explore in a detailed but
noninvasive way due to their inaccessibility and vulnerability. However, the
development of computational science has made it possible to reconstruct
and simulate phenomena which are difficult or impossible to observe in real
life. The advancement of computational fluid dynamics (CFD) gives limit-
less applications in medicine, from modeling human physiology to analyzing
a patient’s air or blood flow without causing any threat to patient health.
This study gives an example of this noninvasive approach, applying CFD to
advance our understanding of issues related to the Chiari I malformation.

Chiari I malformation is a serious neurological condition that affects the
delicate regions of the brain and the spinal cord (see Chapter 2 on Med-
ical Background). Its description originates from a study by Hans Chiari
in 1891, and the condition has since been studied by many (see e.g. Bej-
jani (2001) and references therein). Chiari I malformation is characterized
by cerebellar tonsils submerging below the foramen magnum. The herni-
ated tonsils alter the flow of cerebrospinal fluid (CSF) that surrounds the
brain and the spinal cord and pulsates up and down through foramen mag-
num with every heartbeat. The malformation may cause a whole range of
symptoms, from headache to more serious neurological disorders (Mueller
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8 CHAPTER 1. INTRODUCTION

and Oró, 2004). Often, it is accompanied by a cyst (syrinx) in the spinal
cord, a condition called syringomyelia (Heiss et al., 1999) It is believed that
the syrinx-formation is a direct consequence of the malformation, somehow
triggered by the altered CSF flow.

Previously regarded as a rare condition, the reports of Chiari I malfor-
mation have increased sharply due to the advanced availability of mag-
netic resonance imaging (MRI). It is currently estimated that about 0.1-
0.6% of the American population suffers from the Chiari I malformation
(http://www.chiariinstitute.com). If left untreated, the progressing Chiari
malformation may have a lethal outcome (Stephany et al., 2008). When
necessary, the condition is treated by surgery. However, there is no guaran-
tee that the surgery makes Chiari symptoms disappear. The diagnosis and
treatment of Chiari has yet to be standardized . Even 16 years after their
publication this quotation by Ball and Crone (1995) still seems to be rele-
vant: ”Ever since the initial postmortem description by Chiari in 1891 of
the group of malformations that bears his name, it seems there have always
been more questions on this subject than answers.”

The triggers and the mechanisms behind Chiari I malformation and sy-
ringomyelia development are still subject to controversy. The inaccessibility
of the brain and spinal cord regions has made it hard to reach conclusions.
Moreover, the CSF flow cannot be assessed in post-mortem studies, as the
vital mechanisms have terminated. In 1999, Chiari Institute surgeons were
the first to adapt color Doppler ultrasonography for the intraoperative mea-
surement of CSF flow (e.g. Milhorat and Bolognese (2003)). Yet, a less
obtrusive investigation technique that does not involve surgery is necessary.
The development of Phase-contrast MR (PC MRI) (e.g. Battal et al. (2011),
Quigley et al. (2004)) has benefited the knowledge of CSF dynamics, but
suffer bad resolution in space and time. The recent introduction of CFD
provides a means to analyze CSF flow patterns for a whole volume of inter-
est with good temporal resolution. Linge et al. (2011) applied the CFD to
idealized models, an approach that benefits from increased modeling free-
dom. Roldan et al. (2009) assessed the CSF flow on two patient-specific
models, yielding detailed characterization of flow in a particular individual.
Although his sample size was small, and applied an unphysiological unidi-
rectional flow with constant velocity, it was one of the first studies to take
on the challenge of patient-specific modeling.

The purpose of the present study is to advance our understanding of Chiari
related issues by using CFD to study the cervical pulsatile flow of CSF in a
whole series of personalized models of healthy volunteers, Chiari I patients,
and post-operative patients.

This thesis has the following outline. Chapter 2 yields a brief introduc-
tion to the medical background concerning Chiari I malformation and sy-
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ringomyelia. Chapter 3 gives a description of the mathematical model and
the software tools. Results are presented in Chapter 5 before our findings
are discussed in Chapter 6.
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Chapter 2

Medical Background

.

2.1 Chiari I Malformation

2.1.1 Anatomy

The CSF is a water-like fluid produced in the choroid plexus of the brain,
around blood vessels and along ventricular walls. It circulates in the sub-
arachnoid space (SAS) surrounding the brain and the spinal cord and it also
fills the ventricular system within the brain. The CSF plays an important
role in moderating the pressure changes in the cranial vault caused by the
expansion of blood vessels and brain during systole and the following con-
traction during diastole. Since the skull is rigid, this pulsatility drives the
CSF flow so that during one cardiac cycle CSF is pumped down the spinal
canal and then back into the cranial vault. As a result, pressure gradients
and velocities of the CSF change during the cardiac cycle.

The SAS can be divided into a cranial and a spinal part which are connected
at the level of the foramen magnum. The foramen magnum is a large opening
in the occipital bone of the cranium. The shape of the SAS is complex at
this level. Its outer boundary, defined by the cranial vault and cervical
spinal canal, tapers. The brain stem, which connects the brain to the spinal
cord, and the inferior portion of the brain (the cerebellum) form the inner
boundary of the SAS. Since the anatomy of the inferior cerebellum occupies
variable amounts of the SAS behind the brain stem, this portion of the SAS
shows much individual variation. The cerebellar tissue at the bottom of the
cerebellum is referred to as the cerebellar tonsils.

11
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Extending downward from the brain, is the spinal cord. It is of cylindrical
shape and has a blood circulation with arteries and veins passing through
it. The spaces where these blood vessels penetrate the spinal cord are called
perivascular spaces. The spinal cord lies within the vertebral column com-
posed of thirty-three bones called vertebrae. These vertebrae are grouped
into five regions: cervical, thoracic, lumbar, sacral and coccygeal.

Figure 2.1: The CSF spaces in a healthy individual (left) and in a pa-

tient with Chiari Malformation (right). Figure is taken from the web-page

http://www.chiariinstitute.com

2.1.2 The Malformation

Compared to healthy individuals, Chiari I patients have displacement of the
cerebellar tonsils into the upper cervical spinal canal (Figure 2.1). This
results in more complex CSF flow patterns than in healthy subjects. While
in a healthy person, CSF flow has some inhomogeneity with small flow jets,
CSF flow in Chiari patients has irregular and larger jets (Quigley et al.,
2004). Maximum systolic and diastolic velocities occur in different locations
in patients, while in healthy volunteers the maximum systolic and diastolic
velocities occur in approximately the same regions. During time of maximal
flow, higher velocities and pressure gradients are found in Chiari I patients
than in normal subjects (e.g. Shah et al. (2011), Linge et al. (2011)).

2.1.3 Neurological manifestations of Chiari I

The Chiari I malformation affects the brain and the nervous system in a
number of ways. Also, it modifies the CSF flow in the brain and elevates CSF
pressure in the skull (Labuda, 2008). Consequently, the list of symptoms
is very long. Different patients experience different symptoms, some more
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severe than others. The most common symptom is headache, which is often
triggered by exertion, such as coughing, sneezing, laughing or standing up.
Other common symptoms are dizziness, sleeping difficulties, weakness or
numbness in arms, hands or legs, fatigue, neck pain, problems with vision,
trouble with swallowing or respiration, tinnitus as well as weakened motor
skills and balance problems (Mueller and Oró, 2004).

2.1.4 Diagnosis and treatment

MRI-scanning of the head effectively and non-invasively shows the position
of the cerebellar tonsils. Tonsils extending more than 3-5 mm below the
foramen magnum is the criterion used for diagnosis of the malformation.
However, this criterion does not differentiate the symptomatic Chiari I mal-
formation from the asymptomatic one, which applies to nearly half of the
Chiari I cases. There are patients with severe symptoms who have tonsillar
herniation of less than 3 mm and there are cases of asymptomatic patients
with herniations larger than 3-5 mm (Labuda, 2008). Thus, the goal of the
medical evaluation of Chiari I patients is to determine if their symptoms
result from the Chiari I malformation and if they require surgery. The eval-
uation process includes MRI imaging of the spine to identify syringomyelia,
Phase Contrast MRI to identify hyper-dynamic CSF flow, a careful history
and neurological exam as well as clinical judgment and experience.

The surgery, called cranio-vertebral decompression, creates more room for
the CSF flow. In the case of patients with Chiari I malformation only, ap-
proximately 80% of the surgeries lead to total cure of the symptoms or signif-
icant improvement (Hayhurst et al., 2008). For patients with syringomyelia,
follow-up shows overall reduction of the syrinx in most cases (Lorenzo et al.,
1995). Additionally, 95− 97% of patients have their symptoms improved or
stabilized (Lorenzo et al., 1995; Xie et al., 2000), but 3 − 5% deteriorated.
The cranio-vertebral decompression may rarely have significant morbidity
and may sometimes cause damage resulting in severe neurological defects.
It is therefore crucial to improve our ability to identify the cause of signs
and symptoms in patients with Chiari I.

2.2 Syringomyelia

Syringomyelia is characterized by formation and enlargement of tubular,
fluid-filled cavities, called syrinxes, in the spinal cord. Syrinxes appear in
connection with a number of conditions like spinal cord trauma and tumors.
However, they appear most commonly as a result of the Chiari I malforma-
tion. Different estimates suggest that between 20% and 70% of cases with
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Chiari I have syringomyelia (Labuda, 2008). Currently, there are no clear
guidelines on how to predict which patients will develop a syrinx. Usual
symptoms associated with this condition include pain, weakness or loss of
sensations in arms and legs and inability to control the body temperature,
often resulting in abnormal sweating and bladder and bowel problems. How-
ever, in some cases the syringomyelia does not produce any symptoms and
is first discovered as a result of an MRI-scan. Syrinx-expansion may lead
to damage in the nerve tissue in the spinal cord which again can cause
permanent nerve damage and, in the worst case, paralysis.

There is a discussion among scientist about the source of the fluid in the sy-
rinx. Most often, theories suggest that a syrinx consists of the CSF (Oldfield
et al., 1994). However, some theories state that the syrinx consists of the
extracellular fluid (Levine, 2004; Greitz, 2006). Also the mechanism behind
the syrinx formation is a highly debated topic. Generally, physicians and
medical scientists believe that the syrinx is related to the disturbance in CSF
flow. However, a single widely accepted theory has yet to be articulated.

2.3 Theories for syringomyelia development

2.3.1 The Piston Theory

One of the theories of syringomyelia is the Piston Theory developed by
Oldfield and Heiss (Oldfield et al., 1994; Heiss et al., 1999). It states that
the cerebellar tonsils move during the cardiac cycle and act like a piston
on the CSF. With each heart beat, the downward movement of the tonsils
increase the pressure of the CSF. This drives the CSF into the spinal cord
through the perivascular spaces.

The statements about tonsils being in movement are based on observations
made during surgery. However, it is suspected that the tonsils move more
during surgery than in normal conditions. PC MR research in this area
shows that there is very little difference in tonsil movement of Chiari patients
and control subjects (Levy, 2000; Cousins and Haughton, 2009). Overall,
the tonsils move less than a millimeter in both groups. It might be question-
able if such a small movement can have significant effect on the CSF flow.
However, if flow boundaries are rigid enough, the incompressibility of the
CSF will cause noticable effects on the flow even with minute tonsil motion.
Heiss et al. (1999) estimates that the piston action of the tonsils is increased
up to ten times in Chiari I patients.

Another criticism of the Piston theory (Levine, 2004) is that it does not
explain how fluid entering the spinal cord causes the syrinx expansion. The
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theory assumes that mean pressure in the SAS is higher than the mean pres-
sure in the syrinx. This assumption is not in agreement with measurements
by e.g. Hall et al. (1980). However, it is possible that during the cardiac
cycle, there are some brief periods when this necessary pressure relation
occurs (Labuda, 2008).

2.3.2 Levine’s theory

Another theory claims that activities such as coughing, straining or change
in posture lead to higher CSF pressure in the skull than in the spine (Levine,
2004). The transmural venous and capillary pressure (which equals the
blood pressure minus the pressure inside the tissue) changes corresponding
to this imbalance. Above the subarachnoid obstruction, the transmural
pressure is decreased, which results in collapse of blood vessels at this level.
Below the obstruction, in the cord, the transmural pressure is increased,
which leads to dilation of blood vessels. These spatially uneven changes in
vessel caliber cause mechanical stress and damage to the spine. This results
in partial disruption of the blood-spinal cord barrier which consists of tight
junctions between capillary endothelial cells. Hypothetically, the junctions
loosen because of the stress allowing fluid to leak from blood vessels into
the spinal cord, creating a syrinx. Levine’s theory has been criticized, for
instance since the transmural venous and capillary pressure have never been
measured.

2.3.3 Intramedullary Pulse Pressure Theory

The Intramedullary Pulse Pressure Theory is based on the Bernoulli theorem
which states that a regional increase in fluid velocity in a narrowed flow
channel decreases the pressure in the fluid (Greitz, 2006). The reduction in
fluid pressure that results when a fluid flows through a constricted section
of a channel is called the Venturi effect.

In Chiari I malformation with the tonsils positioned in the upper cervical
spinal canal, CSF pressure gradients and velocities are increased. According
to the Bernoulli theorem, this leads to decreased pressure in the narrow areas
of the CSF-pathway. This creates a suction effect that, accordingly to the
Greitz theory distends the cord during each systole. The distended cord
fills with extracellular fluid, filling from the inside of the cord and creating
a syrinx. Once formed, the syrinx decreases the cross-sectional area of the
subarachnoid space, which in turn increases the Venturi effect, resulting in
progression of the syrinx.
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*

The three theories mentioned above yield further motivation for this study
as they commonly propose that the pressure and velocities of the CSF are
altered by the the SAS - geometry. Further, we intend to characterize taper-
ing, pressure, velocities, synchronous bidirectional flow and flux in a series of
personalized models. We generate 13 patient-specific geometries of identical
anatomical regions of the SAS, starting at the occipital bone at foramen
magnum down to the level above C6. The models represent three healthy
individuals, six Chiari I patients and three post-operative patients. Ad-
ditionally, one model of a non-symptomatic patient with tonsil-extensions
measuring 2 mm is produced. As the tonsil extensions in the corresponding
mesh turn out to be larger than 5 mm, we choose to classify this model into
the Chiari-group. Patients include both males and females in the age-range
of 2− 54 years.



Chapter 3

Methods

3.1 The Mathematical Model

3.1.1 CSF flow conditions

The simulations carried out in this thesis imitate the CSF flow through a
region Ω ⊂ R3 throughout time t ∈ [0, tend]. The CSF flow can be mod-
elled with viscosity and density similar to water under body-temperature
(Hentschel et al., 2010a). The region surrounding the fluid is modelled as
rigid and impermeable. The following table presents the values and param-
eters applied in the simulations in this study.

Table 3.1: Model variables and parameters

Symbol Meaning Unit Chosen Value

u velocity cm
s to be computed

p pressure Pa to be computed

ρ density kg
cm3 10−3

ν kinematic viscosity cm2

s 0.700 · 10−2[a]

[a] (Linge et al., 2011), water at 37oC.

Initial condition
For simplicity, the flow in our simulations is started from rest. Hence, we
impose the initial condition:

u = 0 ∀~x = (x, y, z) ∈ Ω, t = 0

17
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Starting CSF-flow simulations from an unphysical rest results in a transient
phase since the flow needs some time to stabilize. Thus, the simulations
are carried out for several cardiac cycles in order to reach a repeated flow
pattern between the cycles. This is described further in the method-tests in
Section 3.8.

Inflow and outflow conditions
The inflow and outflow conditions are specified by the pressure function
which we set up on the basis of chosen peak pressure and peak pressure
gradient. We choose the maximum pressure during systole to be 1961Pa ≈
20 cmH2O (Linge et al., 2011). For the first round of simulations, the
maximum difference in pressure between the top and the bottom of the
model is selected to be

24.3 Pa ≈ 0.25 cmH2O, (water at 4oC).

for all models. Later, we will compare our computed velocities to MRI-
measurements of the same patients and new simulations with modified pres-
sure gradients will be conducted if our results are not verified by those
measurements.

The coordinate system is chosen so that the systolic (caudad) flow is in nega-
tive z-direction, while the diastolic (cephalad) flow is in positive z-direction.
Assuming a heart rate of 60 heart-beats per minute, the duration of one
cardiac cycle is set to 1s. The pressure distribution changes in z-direction
and is asummed constant in the x- and y-directions. The pressure-function
follows:

g(z, t) = (a− zmax − z
zmax − zmin

b) · sin(2πt) (3.1)

where t is the time, a = 1961 Pa, b = 24.3 Pa and zmax and zmin denote
the z-coordinates of the top and the bottom of the model. The sinus-term
is added to reproduce the pulsating motion of the fluid.

According to this pressure function, the flow changes direction during one
cardiac cycle, so that the inflow and the outflow boundaries have the follow-
ing definitions:

∂ΩI =

{
∂Ω ∩ {z = zmax}, t ∈ [0, 0.5)
∂Ω ∩ {z = zmin}, t ∈ [0.5, 1.0)

∂ΩO =

{
∂Ω ∩ {z = zmin}, t ∈ [0, 0.5)
∂Ω ∩ {z = zmax}, t ∈ [0.5, 1.0)
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The inflow and outflow condition is thus the Dirichlet boundary condition

p = g(z, t) ∀~x = (x, y, z) ∈ ∂ΩIO, t ∈ (0, tend]

where

∂ΩIO = ∂ΩI ∪ ∂ΩO

No-slip condition
The no-slip condition is given by

u = 0 ∀~x = (x, y, z) ∈ ∂ΩD, t ∈ [0, tend]

where

∂ΩD = ∂Ω \∂ΩIO

3.1.2 The Navier Stokes Equations

To simulate CSF flow, we apply the Navier-Stokes equations for an incom-
pressible Newtonian fluid,

∂~u

∂t
+∇~u · ~u− 1

ρ
(∇ · σ) = ~f (3.2)

∇ · ~u = 0 (3.3)

where ~u is the unknown velocity, ~f denotes gravity and other body forces
and the stress tensor σ equals

σ = −pI + 2µε (3.4)

where p and ρ are given in Table 3.1, µ is the dynamic viscosity and ε is the
symmetric strain tensor

ε =
1

2
(∇~u+∇~uT ) (3.5)

The Navier Stokes equations are derived from the conservation laws of mass
and momentum. This derivation can be found in e.g. Griebel et al. (1998)
but we present it below for completeness.

Conservation of mass
If ρ(~x, t) is the density of a fluid at time t, then the mass of the fluid is given
by the integral
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∫
Ωt

ρ(~x, t) d~x (3.6)

Starting at time t = 0, we have some amount of fluid occupying the domain
Ω0. As time goes by, the same amount of fluid will occupy the domain Ωt.
Hence, we have

∫
Ω0

ρ(~x, 0) d~x =

∫
Ωt

ρ(~x, t) d~x ∀t ≥ 0

Since the mass is constant in time, its derivative with respect to time must
vanish.

d

dt

∫
Ωt

ρ(~x, t) d~x = 0 (3.7)

The transport theorem states that for a differentiable scalar function f :
Ωt × [0, tend]→ R, (~x, t)→ f(~x, t) we have

d

dt

∫
Ωt

f(~x, t) d~x =

∫
Ωt

{ ∂
∂t
f +∇ · (f~u)}(~x, t) d~x

Applying the transport theorem to (3.7) results in

0 =

∫
Ωt

{∂ρ
∂t

+∇ · (ρ~u)}(~x, t) d~x ∀~x ∈ Ωt, t ≥ 0

Since this is valid for arbitrary regions Ωt, the integrand vanishes. This
yields

∂

∂t
ρ+∇ · (ρ~u) = 0

However, since the CSF-fluid is incompressible (its density is constant), this
reduces to

∇ · ~u = 0

which is the continuity equation (3.3) for incompressible fluids.

Conservation of momentum
The momentum of a solid body is given by the product of its mass and
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its velocity. Using (3.6) to express the mass of the fluid, we express its
momentum in the domain Ωt by

~m(t) =

∫
Ωt

ρ(~x, t)~u(~x, t) d~x (3.8)

According to Newton’s second law, the time derivative of momentum equals
the total force applied on the body:

D

Dt
~m(t) =

N∑
i=1

~Fi

where D
Dt is the material derivative:

D

Dt
(ϕ) =

∂

∂t
(ϕ) + (~u · ∇)(ϕ)

The forces acting on the fluid are body forces and surface forces. The body
forces, e.g. gravity, can be expressed as:∫

Ωt

ρ(~x, t)~f(~x, t) d~x (3.9)

where ~f is a given force-density per unit volume. The surface forces, e.g.
pressure and internal friction, can be represented by the equation

∫
∂Ωt

σ(~x, t)~n dS

where σ is a stress tensor which can be expressed as

σ = −pI + 2µε

Here p is the pressure, µ is the dynamic viscosity, ε is the strain tensor given
by (3.5) and ~n is the outward pointing unit normal vector.

Using the divergence theorem, the expression for the surface forces can be
reformulated accordingly:

∫
∂Ωt

σ(~x, t)~n dS =

∫
Ωt

∇ · σ(~x, t) d~x (3.10)
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Then, applying formulas (3.8), (3.9) and (3.10), Newton’s second law can
be rewritten to

D

Dt

∫
Ωt

ρ~u d~x =

∫
Ωt

(ρ~f +∇ · σ) d~x

Using the formula for the material derivative results in∫
Ωt

∂

∂t
ρ~u+ (~u · ∇)(ρ~u) d~x =

∫
Ωt

(ρ~f +∇ · σ) d~x

This applies for arbitrary Ωt so we can remove the integrals. Dividing with
the density ρ yields

∂

∂t
~u+ (~u · ∇)~u− 1

ρ
(∇ · σ) = ~f

which is the momentum equation (3.2) for incompressible fluids.

3.1.3 The Incremental Pressure Correction scheme (IPCS)

A numerical approach for solving Navier Stokes equations can often lead
to unstable solutions. Valen-Sendstad et al. (2010) conducted a study on
efficiency and accuracy of six different schemes for solving these equations.
Their results suggest that IPCS is the most efficient and accurate of the
tested schemes. Therefore, we choose to use this scheme in further imple-
mentation.

One of the challenges with the Navier Stokes equations is the coupling be-
tween velocity and pressure. The essence in the IPCS scheme is that the
previous value for pressure is used to compute a tentative velocity which is
later corrected. Hence, one unknown is removed from the equations.

Starting with the Navier Stokes equations (3.2) and (3.3) and letting ∆t
denote the time-step, we apply the backward Euler discretization scheme on
the time derivative of u:

∂u

∂t
≈ un − un−1

∆t

Further, the term for the stress tensor σ is discretized implicitly

∇ · σ ≈ ∇ · σn = 2µ∇ · ε(un)−∇pn

while the convection-term ∇~u · ~u, is discretized semi-implicitly in order to
improve stability
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∇u · u ≈ ∇un · un−1

The resulting discretization of (3.2) and (3.3) yields:

un + ∆t∇un · un−1 +
∆t

ρ
∇pn − 2ν∆t∇ · ε(un)−∆tfn = un−1 (3.11)

∇ · un = 0 (3.12)

where ν = µ
ρ . Further, we approximate un with the tentative velocity u∗

where pressure from the previous step is used in the computation. In this
manner, (3.11) turns into an elliptic equation:

u∗ + ∆t∇u∗ · un−1 +
∆t

ρ
∇pn−1 − 2ν∆t∇ · ε(u∗)−∆tfn = un−1

(3.13)

Subtracting (3.13) from (3.11) and letting uc denote the velocity correction
uc = un − u∗ results in

uc + ∆t∇uc · un−1 =− ∆t

ρ
∇(pn − pn−1) + 2ν∆t∇ · ε(uc)

Since the error of this scheme is of order O(∆t), we can simplify the above
equation to

uc =− ∆t

ρ
∇(pn − pn−1)

(3.14)

without further increasing the error. From (3.12) we know that

∇ · uc = −∇ · u∗ (3.15)

which together with (3.14) yields a Poisson equation for the pressure differ-
ence Φn = pn − pn−1,

∇2Φn =
ρ

∆t
∇ · u∗ (3.16)

Solving this equation yields an expression for the corrected pressure
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pn = Φn + pn−1 (3.17)

and for the corrected velocity un

un = u∗ − ∆t

ρ
∇(pn − pn−1) (3.18)

where the tentative velocity u∗ is computed by solving

u∗ − un−1

∆t
+∇u∗ · un−1 = −1

ρ
∇pn−1 + 2ν∇ · ε(u∗) + fn (3.19)

3.1.4 The Finite Element method

The Finite Element Method (FEM) (e.g. Logg et al. (2010)) is a flexible,
numerical approach for solving partial differential equations. It easily han-
dles geometrically complicated domains and makes it simple to construct
higher-order approximations.

Starting with the IPCS scheme for the Navier-Stokes equations given in
(3.16)-(3.19), the unknown velocity u∗ and the pressure pn are denoted as
the trial functions in the trial spaces V and Q given by:

V = {v ∈ [H1(Ω)]3 | v = 0 on ∂ΩD}
Q = {v ∈ [H1(Ω)]3 | v = g on ∂ΩIO}

where V is a vector function space, Q is a scalar function space, g is the
pressure-function given in (3.1) and the Sobolev space H1(Ω) is defined as:

H1(Ω) ={f : Ω→ Rd |
∫

Ω
f2 + |∇f |2 <∞}

We define two test-functions v ∈ V̂ and q ∈ Q̂ where the test spaces V̂ and
Q̂ are given by

V̂ =V

Q̂ = {v ∈ [H1(Ω)]3 | v = 0 on ∂ΩIO}

where V̂ is a vector function space and Q̂ is a scalar function space. Mul-
tiplying (3.18) and (3.19) by v and (3.16) by q and integrating over the
domain Ω yields

∫
Ω
un · v dΩ =

∫
Ω

(u∗ − ∆t

ρ
∇(pn − pn−1)) · v dΩ
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∫
Ω
∇2Φnq dΩ =

∫
Ω

ρ

∆t
∇ · u∗q dΩ (3.20)

∫
Ω

(
u∗ − un−1

∆t
+∇u∗ · un−1) · v dΩ =

∫
Ω

(
1

ρ
∇ · σn + fn) · v dΩ (3.21)

Applying integration by parts to (3.20) yields the pressure correction,∫
Ω
∇pn∇q dΩ =

∫
Ω
∇pn−1∇q dΩ−

∫
Ω

ρ

∆t
∇ · u∗q dΩ

which holds for all q in the function space Q̂.

Applying integration by parts to the first term on the right hand side of
(3.21) yields

∫
Ω

(
1

ρ
∇ · σn) · v dΩ =

∫
Ω

(
1

ρ
∇ · (−pn−1 + 2µε(u∗))v dΩ

=− ν
∫

Ω
(∇u∗ +∇(u∗T ))∇v dΩ + ν

∫
∂Ω

(∇u∗ +∇(u∗T ) · nv dS

+
1

ρ

∫
Ω
pn−1∇v dΩ− 1

ρ

∫
∂Ω
pnv · n dS

=− 1

ρ

∫
Ω
σn · ∇v dΩ− 1

ρ

∫
∂Ω
pn−1 · nv dS

+

∫
∂Ω
ν(∇u∗ +∇u∗T ) · nv dS

This holds for all v in the function space V̂ .

Using the inner product 〈f, g〉 =
∫

Ω fg dΩ, and the above calculations, the
weak formulation of the Navier Stokes equations can thus be expressed as:
Find u ∈ V such that

a1(u∗, un−1, pn−1, v) =L1(fn, v), ∀v ∈ V̂ (3.22)

a2(pn, q) =L2(pn−1, u∗, q), ∀q ∈ Q̂ (3.23)

a3(un, v) =L3(u∗, pn−1, pn), ∀q ∈ V̂ (3.24)

where



26 CHAPTER 3. METHODS

a1(u∗, un−1, pn−1, v) =〈v, u
∗ − un−1

∆t
〉+ 〈v,∇u∗ · un−1〉

+ 〈∇v, 1

ρ
σn〉+ 〈v, 1

ρ
pn−1n〉∂Ω

− 〈v, ν(∇u∗ −∇u∗T )n〉∂Ω ∀v ∈ V̂
L1(fn, v) =〈v, fn〉 ∀v ∈ V̂
a2(pn, q) =〈∇q,∇pn〉 ∀q ∈ Q̂

L2(pn−1, u∗, q) =〈∇q,∇pn−1〉 − ρ

∆t
〈q,∇ · u∗〉 &∀q ∈ Q̂

a3(un, v) =〈v, un〉 ∀v ∈ V̂

L3(u∗, pn, pn−1, v) =〈v, u∗〉 − ∆t

ρ
〈v,∇(pn − pn−1)〉 ∀v ∈ V̂

In order to solve the Navier Stokes equations numerically, the continuous
variational problem (3.22 -3.24) must be transformed to a discrete varia-
tional problem. To find the finite element formulation we introduce the
finite dimensional trial subspaces Vh ⊂ V and Qh ⊂ Q and the finite di-
mensional test subspaces V̂h ⊂ V̂ and Q̂h ⊂ Q̂ . The discrete variational
problem reads: Find uh ∈ Vh ⊂ V such that

a1(u∗h, u
n−1
h , pn−1

h , v) =L1(fnh , v), ∀v ∈ V̂h ⊂ V (3.25)

a2(pnh, q) =L2(pn−1
h , u∗h, q), ∀q ∈ Q̂h ⊂ Q (3.26)

a3(unh, v) =L3(u∗h, p
n
h, p

n−1
h ), ∀v ∈ V̂h ⊂ V (3.27)

where

a1(u∗h, u
n−1
h , pn−1

h , v) =〈v,
u∗h − u

n−1
h

∆t
〉+ 〈v,∇u∗h · un−1

h 〉

+ 〈∇v, 1

ρ
σnh〉+ 〈v, 1

ρ
pn−1
h n〉∂Ω

− 〈v, ν(∇u∗h −∇u∗Th )n〉∂Ω ∀v ∈ V̂h ⊂ V
L1(fnh , v) =〈v, fn〉 ∀v ∈ V̂h ⊂ V
a2(pnh, q) =〈∇q,∇pnh〉 ∀q ∈ Q̂h ⊂ Q

L2(pn−1
h , u∗h, q) =〈∇q,∇pn−1

h 〉 − ρ

∆t
〈q,∇ · u∗h〉 ∀q ∈ Q̂h ⊂ Q

a3(unh, v) =〈v, unh〉 ∀v ∈ V̂h ⊂ V

L3(u∗h, p
n
h, p

n−1
h , v) =〈v, u∗h〉 −

∆t

ρ
〈v,∇(pnh − pn−1

h )〉 ∀v ∈ V̂h ⊂ V
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The choice of V̂h, Vh, Q̂h and Qh arises from the type of finite elements
that are applied to the problem. The Lagrangian element is well-suited for
approximations in H1 since it produces piecewise continuous polynomials.
For our 3D problem, a simple but adequate choice is the linear Lagrange
tetrahedron element with four nodes, one at each vertex. Hence, the sub-
spaces V̂h, Vh, Q̂h and Qh are the spaces of all piecewise linear functions
over a mesh of tetrahedrons.

The FEM-discretized IPCS-scheme is summarized in Table 3.2.

Table 3.2: The incremental pressure correction scheme (IPCS)

1. The tentative velocity u∗ is computed by solving

〈v,Dn
t u
∗
h〉+ 〈v,∇u∗h · u

n−1
h 〉+ 1

ρ〈ε(v), σ(u∗h, p
n−1
h )〉+ 1

ρ〈v, p
n−1
h n〉∂Ω − 〈v, ν(∇u∗h)Tn〉∂Ω

= 〈v, fn〉

where

Dn
t u
∗
h =

u∗h−u
n−1
h

∆t

2. The corrected pressure pnh is computed by solving

〈∇q,∇pnh〉 = 〈∇q,∇pn−1
h 〉 − ρ

∆t〈q,∇ · u
∗
h〉

including the inflow and outflow conditions for the pressure.

3. The corrected velocity unh is computed by solving

〈v, unh〉 = 〈v, u∗h〉 −
∆t
ρ 〈v,∇(pnh − p

n−1
h )〉 ∀v ∈ Vh

The simulations are carried out in FEniCS, further described in Section 3.5.
In order to solve a problem in FEniCS, it must be expressed as a varia-
tional problem and the space must be discretized with finite elements. The
pre-written solver-program ipcs.py in the nsbench-directory (Logg et
al, 2008, https://launchpad.net/nsbench/ ) implements the FEM-discretized
Incremental Pressure Correction scheme for solving our problem.

We make adjustments to solve() -function in the ipcs.py - program to
suit the discretization described above. The implicit discretization of the
stress tensor σ and the semi-implicit discretization of the convection-term
yields the modified expression for the tentative velocity step:

# Tenta t i ve v e l o c i t y s t e p
F1 = (1/k ) ∗ i nne r (v , u − u0 ) ∗dx + inner (v , grad (u) ∗u0 ) ∗dx

+ inner ( e p s i l o n (v ) , sigma (u , p0 , nu ) ) ∗dx
+ inner (v , p0∗n) ∗ds − beta ∗nu∗ i nne r ( grad (u) .T∗n , v ) ∗ds
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− i nne r (v , f ) ∗dx
a1 = lh s (F1)
L1 = rhs (F1)

where k is the time-step and we assume that the pressure p is already scaled
with the density ρ.

To improve performance speed, a modification to the vector function space
V is made so that it is discretized by linear elements:

V = VectorFunctionSpace (mesh , ”CG” , 1)

The complete solve() - function with modifications follows.

def s o l v e ( s e l f , problem ) :

i f s t r ( problem )==”Aneurysm” :
pc = ” j a c ob i ”

else :
pc = ” i l u ”

# Get problem parameters
mesh = problem . mesh
dt , t , t r ange = problem . t imestep ( problem )

# Define f u n c t i o n spaces
V = VectorFunctionSpace (mesh , ”CG” , 1)
Q = FunctionSpace (mesh , ”CG” , 1)
DG = FunctionSpace (mesh , ”DG” , 0)

# Get i n i t i a l and boundary c o n d i t i o n s
u0 , p0 = problem . i n i t i a l c o n d i t i o n s (V, Q)
bcu , bcp = problem . boundary condi t ions (V, Q, t )

# Remove boundary s t r e s s term i s problem i s p e r i o d i c
i f i s p e r i o d i c ( bcp ) :

beta = Constant (0 )
else :

beta = Constant (1 )

# Test and t r i a l f u n c t i o n s
v = TestFunction (V)
q = TestFunction (Q)
u = Tria lFunct ion (V)
p = Tria lFunct ion (Q)
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# Functions
u0 = i n t e r p o l a t e (u0 , V)
u1 = Function (V)
p0 = i n t e r p o l a t e (p0 , Q)
p1 = i n t e r p o l a t e (p0 , Q)
nu = Constant ( problem . nu)
k = Constant ( dt )
f = problem . f
n = FacetNormal (mesh )

# Tenta t i ve v e l o c i t y s t e p
F1 = (1/k ) ∗ i nne r (v , u − u0 ) ∗dx + inner (v , grad (u) ∗u0 ) ∗dx

+ inner ( e p s i l o n (v ) , sigma (u , p0 , nu ) ) ∗dx
+ inner (v , p0∗n) ∗ds − beta ∗nu∗ i nne r ( grad (u) .T∗n , v ) ∗ds
− i nne r (v , f ) ∗dx

a1 = lh s (F1)
L1 = rhs (F1)

# Pressure c o r r e c t i o n
a2 = inner ( grad (q ) , grad (p) ) ∗dx
L2 = inner ( grad (q ) , grad ( p0 ) ) ∗dx − (1/k ) ∗q∗div ( u1 ) ∗dx

# V e l o c i t y c o r r e c t i o n
a3 = inner (v , u) ∗dx
L3 = inner (v , u1 ) ∗dx − k∗ i nne r (v , grad ( p1 − p0 ) ) ∗dx

# Assemble matr ices
A1 = assemble ( a1 )
A2 = assemble ( a2 )
A3 = assemble ( a3 )

# Time loop

s e l f . s t a r t t im i ng ( )
for t in t range :

# Get boundary c o n d i t i o n s
bcu , bcp = problem . boundary cond i t ions (V, Q, t )

# Compute t e n t a t i v e v e l o c i t y s t e p
b = assemble (L1)
[ bc . apply (A1 , b) for bc in bcu ]
s o l v e (A1 , u1 . vec to r ( ) , b , ”gmres” , ” i l u ” )

# Pressure c o r r e c t i o n
b = assemble (L2)
i f l en ( bcp ) == 0 or i s p e r i o d i c ( bcp ) : normal ize (b)
[ bc . apply (A2 , b) for bc in bcp ]
i f i s p e r i o d i c ( bcp ) :

s o l v e (A2 , p1 . vec to r ( ) , b )
else :

s o l v e (A2 , p1 . vec to r ( ) , b , ’ gmres ’ , ’ amg hypre ’ )
i f l en ( bcp )==0 or i s p e r i o d i c ( bcp ) : normal ize ( p1 .

vec to r ( ) )
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# V e l o c i t y c o r r e c t i o n
b = assemble (L3)
[ bc . apply (A3 , b) for bc in bcu ]
s o l v e (A3 , u1 . vec to r ( ) , b , ”gmres” , pc )

# Update
s e l f . update ( problem , t , u1 , p1 )
u0 . a s s i gn ( u1 )
p0 . a s s i gn ( p1 )

return u1 , p1

3.2 Model generation in VMTK

For our simulations we reconstruct patient-specific anatomy of the cere-
brospinal fluid system in both Chiari-patients and healthy volunteers. Start-
ing off with MRI-scans of a person’s lower posterior fossa and cervical portion
of the spine, we extract the CSF-canal and create a corresponding 3D model
which can later be used for our simulations. For this purpose we use the
Vascular Modeling Toolkit (VMTK), which is a software tool for generation
of 3D models of different anatomical structures, most commonly used for
reconstruction of blood vessels (http://www.vmtk.org). The reconstruction
is based on segmentation; a process of locating objects and boundaries in
images, which in this case are MRI-scans of a patient. The different methods
we mention below are further described on the VMTK website.

3.2.1 Image segmentation

To be able to compare velocities at the same anatomical levels, we choose to
segment the exact same parts of the anatomical regions in all of the patients
and the volunteers. Because of the complexity of the anatomy higher up,
all of the models start just above the level of the foramen magnum, at the
tip of the occipital bone. Since the quality of the MRI-scans for many of
the patients decreases below C5, segmenting these images further would put
the credibility of the models to question. For this reason, all of the models
end at this level. The physical length of this extracted region varies from
patient to patient, resulting in models of varying lengths.

Starting off with DICOM directories consisting of an MRI-scan of a pa-
tient or a volunteer, we read these directories into VMTK to visualize the
anatomy. In Figure 3.1 we can see an anatomy with Chiari malformation
clearly visible as the tonsils exceed down into the CSF-spaces. Since we are
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only interested in reconstructing a small part of this anatomy, we use the
vmtkimagevoiselector to extract the volume of interest(VOI).

Figure 3.1: MRI-scan of a person with the Chiari Malformation (left) and
the extracted volume of interest which we use for model creation(right).

The selected volume of interest is then segmented in VMTK. As a segmenta-
tion tool, VMTK uses the level sets method which is a numerical technique
for shape-tracing. This method represents shapes with the help of a func-
tion; the level set function. The shape is described by the contour of this
function at level zero.

For initialization of the model, we call vmtklevelsetsegmentation
-ifile [input_file].vti -ofile [output_file].vti , where

input file is the extracted VOI and the output file is where the segmenta-
tion will be saved. The user is then prompted to choose from a list of level
set methods. We use the colliding fronts-method as it proves most conve-
nient and effective in extracting the CSF-channel. This method consists of
placing two seeds on the image. Figure 3.2 illustrates this procedure. The
CSF-fluid in the MR-pictures has a lighter color than the rest of the sur-
rounding anatomy. The user places both seeds in the location of the fluid,
in a reasonable distance from each other. VMTK propagates a front from
each of the seeds, in the direction of the other seed. The two fronts omit re-
gions with intensity that differs considerably from the intensity in the seeds’
location. Thus, the fronts trace the shape of the fluid’s path. The region
where the fronts cross makes up the segmented piece of the CSF-pathway.
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Figure 3.2: A part of the CSF-pathway traced by

the colliding fronts.

The models are made
by continuous repetition
of the colliding-fronts method
combined with appropri-
ate thresholding. Due
to inhomogeneities in the
magnetic fields, darkening
of the signal intensity to-
ward the lower end of the
spine occurs. Addition-
ally, the differences in in-
tensity tend to get smaller
in these parts of the MRI-
image. This often results
in failure of the colliding
fronts method alone, as it
segments the surrounding
anatomy together with the
CSF. To maintain the cor-
rectness of the segmenta-
tion, thresholding is used
together with the colliding
fronts method. Since the
CSF-pathway has higher
pixel-values than the rest
of the surrounding anatomy, we specify an appropriate maximum thresh-
old value so that the darker regions are omitted by the colliding fronts and
are not made part of the model. The specified thresholds are continuously
adjusted according to the changing image intensities. The resulting segmen-
tations are merged into one.

3.2.2 Adjustments to the segmentation process

A range of adjustments to the segmentation process are made during the
level set segmentation in the different cases mentioned below. These editions
will influence our models to such minor degree that our results are assumed
left unchanged.

Manual segmentation using single seeds

Option -seed in the level set method is chosen to segment parts of the
model where for different reasons the colliding fronts method does not suc-
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ceed (Figure 3.3). This often occurs in regions where the walls of the SAS are
very narrow, leading to small intensity-variations not detected by the col-
liding fronts. The segmented walls are further made thinner by deformation
steps performed after the level sets method.

Figure 3.3: Thin canal walls (left) and individual seeds used to segment them

(right).

The segmentation is done manually, using individual seeds, in cases where
the contrast in the image is too poor for the colliding fronts method and
thresholding to succeed (Figure 3.4). This happens mainly in lower parts
of the spine. A disadvantage is that the resulting segmentation is highly
dependent on visual evaluation of the images which might result in erro-
neous outcomes. However, manual segmentation is kept to a minimum,
only adopted in very small parts of the model, and if really necessary. Of-
ten, the successfully segmented parts of the image clearly mark the shape
of the SAS and the seeds are used to fill up the holes in the model which
have not been segmented. Manual segmentation may also result in a slightly
edgy surface of the segmented model parts. However, after the deformation
and smoothing procedures these effects are significantly diminished.

Figure 3.4: Decreased contrast in the lower parts of the MRI-scan.



34 CHAPTER 3. METHODS

Figure 3.5: Blood-vessels inside the CSF-

canal.

Blood vessels

In most of the anatomies, there are
blood-vessels inside the CSF canal
(Figure 3.5) which are omitted by
the level set segmentation. This leads
to creation of empty canals inside
the model, making it impossible for
VMTK to generate a mesh. Because
of their thinness, we assume that
these vessels do not have a big influ-
ence on the CSF-flow. Hence, they
are segmented as a part of the CSF,
using either individual seeds or the
colliding fronts method.

Figure 3.6: The small part of the CSF be-

hind the extended tonsils is not segmented.

Tonsils

VMTK can only handle mesh-generation
of the segmented surfaces if the model
is fairly cylindrical - shaped. This
leads to obstacles just below fora-
men magnum where the tonsils ex-
tend into the CSF-canal Figure 3.6
illustrates the anatomy together with
the generated model. Segmenting
the CSF behind the tonsils, produces
a surface with additional opening at
the top, making it difficult for VMTK
to generate a mesh. Hence, we choose
not to segment the CSF behind the
tonsils, assuming that it makes such
small part of the CSF volume, it
will not make much difference in the
simulations.
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Special cases

Figure 3.7: Patient no.11.

In two of the patients some unex-
pected characteristics occur in the
anatomy. In one patient (Figure
3.7), there is a black spot on the
MRI-scans just below the foramen
magnum. The spot is assumed to
be a lump of fat which has an im-
pact on the CSF-flow. This lump is
hence not segmented as part of the
CSF.

In another patient who has been operated ahead of the MRI-scan a long
cylinder-shaped vessel can be seen on the images (Figure 3.8). Since its
shape and thickness is similar to that of a blood-vessel, it is segmented as a
part of the CSF-canal.

Figure 3.8: Patient no.18: the axial and sagittal view.

3.2.3 Smoothing and clipping

The result of the level set segmentation is an image, which zero-level is the
surface in question. We extract this surface using vmtkmarchingcubes.
Figure 3.9 (left) illustrates the result.

The extracted surface is smoothed with passband 0.1 which eliminates some
high frequency irregularity in the surface and at the same time produces
minimal model shrinkage. The ends of the surface are clipped using the
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Figure 3.9: The surface extracted using the marching cubes-method (left), the

clipping of the smoothed surface(middle) and the surface after clipping (right).

vmtksurfaceclipper. Applying vmtkrenderer, we visualize the verte-
bral column in the MR images while performing the clipping at the foramen
magnum and above C6. The picture in the middle of Figure 3.9 illustrates
this procedure. The surface inside the transparent polygon in the picture
is clipped away. The user adjusts the size and the location of this polygon
before conducting the clipping.

3.2.4 Resolution-control

Figure 3.10: Controlling mesh resolution.

Generating the mesh with cells
of the default edge-length 1.0,
results in the narrow regions
in the modelled SAS having
only one or two cells in width.
This leads to unwanted effects
during simulation, e.g. be-
cause of the no-slip condition
where the outer cells are as-
signed zero velocity. We con-
trol the resolution of those nar-
row parts of the model using the
vmtkdistancetospheres -
script (Morvan, 2009).
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The procedure consists of placing seed points in locations where the walls of
the model are thin (Figure 3.10). We then specify an array which controls
the edge length of the cells in the area around these seeds. In the model
in Figure 3.10, the smallest edge-length is chosen to be 0.1 mm, the largest
edge-length is 1.0 mm.

3.2.5 Mesh generation

The vmtkmeshgenerator creates a mesh from the segmented and edited
surface. The option -cappingmethod annular is specified for the cap-
ping at the inflow and the outflow boundaries of the model to be correct.
The resulting mesh is made up of triangular-shaped cells. It is converted
from the original vtu-format to the xml-format accepted by DOLFIN using
vmtkmeshwriter.

3.3 Pre-processing of the MRI-images in ImageJ

Two of the patients have large syrinxes inside their spinal canals. The
syrinxes in the MRI-scans have the same pixel-intensity as the CSF. The
border between the CSF and the syrinx is often fairly unclear (see Figure
3.11). Straightforward segmentation using the level sets is thus not possible,
since the colliding fronts do not exclude the syrinx and segment it as part
of the CSF-spaces. Pre-processing the image in order to hide the syrinx is
therefore necessary. For this purpose, we apply ImageJ.

ImageJ (http://rsb.info.nih.gov/ij/ ) is a freely available image processing
toolkit. It can read many image formats including TIFF, PNG, GIF, JPEG,
BMP, DICOM and raw formats. It can be used for image analysis, editing
or image processing operations such as logical and arithmetical operations
between images, contrast manipulation, convolution, Fourier analysis, sharp-
ening, smoothing and edge detection. More information about the toolkit
can be found on the ImageJ website.

ImageJ makes it is easy to upload and edit a stack of related images at
the same time. It is hence a useful tool for editing DICOM - pictures.
We upload the whole DICOM-directory with MRI-images of the patient by
choosing the option Import - Image Sequence . It is then possible to
scroll between the different images and make adjustments to them. In the
toolbox, we find the color-picker tool. With this tool, we click on the image-
location with the desired color-intensity to assign to the syrinx. We choose
a darker color in order to separate the syrinx from the CSF. Next, we find
the paintbrush tool. Right-clicking on it, we choose an appropriate brush-
width, in pixels. The syrinx in every image is then colored darker (Figure
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Figure 3.11: Spinal canal with syrinx (left). The syrinx is colored darker using

ImageJ (right).

3.11). This way, the level set method conducted on the image segments only
the high-intensity CSF-fluid surrounding the cord and the syrinx is left out
from the model.

3.4 Boundary marking in Meshbuilder

FEniCS Meshbuilder is a tool for marking boundaries on models which will
be used for numerical simulations. The mesh of the CSF-canal is loaded into
the Meshbuilder in the xml-format generated by the VMTK. The inflow,
outflow and no-slip boundaries of the mesh are easily marked (Figure 3.12).

Figure 3.12: A model of the CSF-canal with indicated inflow-boundary (red) and no-slip

boundary (blue).
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3.5 Simulations in FEniCS

For conduction of simulations on the models of the CSF-canal, we use FEn-
iCS (http://www.fenicsproject.com). The FEniCS Project is a collection of
free software aimed at automated, efficient solution of differential equations.
The project provides tools for working with computational meshes, finite el-
ement variational formulations of PDEs, ODE solvers and linear algebra.

FEniCS programs are written in Python programming language. One of
the strengths of FEniCS is that there is a close correspondence between the
mathematical formulas and how they are expressed with the Python syntax.
This makes FEniCS very easy to use. The key classes in a FEniCS program
are being imported from the DOLFIN software library which consists of
C++ classes for finite element calculation, for instance classes for boundary
conditions Dirichlet, Neuman etc.

For our implementation we use the pre-written programs found in the nsbench
- directory (Logg et al, 2008). Here, the main script ns allows the user to
solve a chosen problem with a given solver. In our case, we use the problem-
script channel.py together with the solver-script ipcs.py. We make
small adjustments to both of the scripts in order to match our criteria.
Adjustments to ipcs.py have already been described in Section 3.1.

In channel.py we implement the problem by defining its parameters, the
mesh and the initial and boundary conditions. The mesh used in the sim-
ulations is read from file constructed beforehand with the VMTK. The ap-
propriate viscosity is defined (see Table 3.1). Body forces are assumed neg-
ligible and are set to zero. The end time is set to 5 s along with the time
step dt = 0.005s.

# Problem d e f i n i t i o n
class Problem (ProblemBase ) :

”3D Chiar i problem . ”

def i n i t ( s e l f , opt i ons ) :
ProblemBase . i n i t ( s e l f , opt i ons )

# Upload mesh
s e l f . mesh1 = Mesh( ’ pa t i en t 1 . xml ’ )

#Sca le mesh from mm to cm
for coor in s e l f . mesh1 . c oo rd ina t e s ( ) :

coor [0 ]= coor [ 0 ] / 1 0 . 0
coor [1 ]= coor [ 1 ] / 1 0 . 0
coor [2 ]= coor [ 2 ] / 1 0 . 0

#Set top−bottom z−c o o r d i n a t e s o f the mesh
s e l f . z max = 16.58
s e l f . z min = 22.08
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# Body f o r c e assumed to be zero
s e l f . f = Constant ( ( 0 , 0 , 0) )

# Set v i s c o s i t y
s e l f . nu = 0.7∗10∗∗−2 #(cm2/ s )

# Set end−t ime
s e l f .T = 5 .0 #s

#Set max u
s e l f .U = 15 #cm/ s

#Set time−s t e p
s e l f . dt = 0.005 #s

For the initial condition, the pressure and the velocity are set to zero.

def i n i t i a l c o n d i t i o n s ( s e l f , V, Q) :
u0 = Constant ( ( 0 , 0 , 0) )
p0 = Constant (0 )
s e l f . p r e s s u r e f un c t i o n = p0
return u0 , p0

The boundary indicators are read from files created in FEniCS Meshbuilder.
Using the DOLFIN-class DirichletBC, the inflow, outflow and no-slip
boundary conditions are easily assigned.

def boundary condi t ions ( s e l f , V, Q, t ) :
# Upload boundary−markers :
in f low boundary = ’ pa t i en t 1 in f l ow boundary . xml ’
outf low boundary = ’ pat i en t 1 out f l ow boundary . xml ’
nos l ip boundary = ’ pa t i en t 1 no s l i p bounda ry . xml ’

s e l f . sub domain no s l ip = MeshFunction ( ” u int ” , s e l f .
mesh , nos l ip boundary )

s e l f . sub domain in f low = MeshFunction ( ” u int ” , s e l f . mesh
, in f low boundary )

s e l f . sub domain outf low = MeshFunction ( ” u int ” , s e l f .
mesh , outf low boundary )

# Create no−s l i p boundary c o n d i t i o n f o r v e l o c i t y
bv = Dir ichletBC (V, Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) , s e l f .

sub domain no s l ip , 3)

# Create boundary c o n d i t i o n s f o r p r e s s u r e
bp0 = Dir ichletBC (Q, s e l f . p r e s su r e bc (Q, t ) , s e l f .

sub domain inf low , 1)
bp1 = Dir ichletBC (Q, s e l f . p r e s su r e bc (Q, t ) , s e l f .

sub domain outf low , 2)

bcu = [ bv ]
bcp = [ bp0 , bp1 ]



3.6. ANALYSIS IN PARAVIEW 41

return bcu , bcp

The pressure function is specified in a separate function in the program.

def pr e s su r e bc ( s e l f , Q, t ) :

#Set max p r e s s u r e g r a d i e n t to 24.3 Pa/ d e n s i t y
b = 2.43∗10∗∗2

#Set max p r e s s u r e to 1961.33 Pa/ d e n s i t y
c = 1.96∗10∗∗4
element = FiniteElement ( ”CG” , t r i a ng l e , 1)
p i i = d o l f i n . p i
a = Express ion ( ” ( c−b∗(zmax−x [ 2 ] ) /(zmax−zmin ) ) ∗ s i n (2∗ p i i ∗

t ) ” , element=element )
a . b = b
a . c = c
a . t = t
a . p i i = p i i
a . zmax=s e l f . z max
a . zmin=s e l f . z min
s e l f . p r e s s u r e f un c t i o n = a
return a

3.6 Analysis in ParaView

ParaView (http://www.paraview.org) is a visualization tool which we use for
examination of the models and the simulation results. It supports a vari-
ety of file formats and can visualize the data interactively in 3D. Paraview
has many useful tools that improve the data analysis and visualization. A
complete description of its features can be found on the Paraview website.

3.6.1 Analysing mesh-resolution

The models created in VMTK are uploaded in Paraview for inspection. By
applying the clipping tool, a model is cut with an arbitrary plane to analyze
the thickness of its walls. This is helpful in investigating which parts of the
model have narrow walls and deciding what edge-lengths should be assigned
to these segments.

3.6.2 Visualizing the results

Animations of the simulation results are visualized in Paraview. We choose
to show the results at six different horizontal levels of the anatomy. We
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extract those parts of the surface using the slicing tool. The corresponding
MRI-images are uploaded in order to visualize the surrounding anatomy
together with the model. This makes it easy to extract the same levels of
the anatomy in all of the patients. Figure 3.13 (left) depicts the sagittal view
of the anatomy together with the axial levels which we choose to extract.
The first slice is on the level of the foramen magnum, just below the occipital
bone. The second slice is taken at the level of C1/C2, the third above C3, the
fourth above C4 and the fifth above C5. The last slice is taken just above
the level of C6. Additionally, there is one slice taken along the sagittal
plane. This plane, when viewed from above, runs approximately through
the mid-line of the model.

Velocities in the simulations are visualized using color plots (Figure 3.13
(right)). The plots have a blue-white-red color-range where red depicts the
highest velocity. The user chooses to visualize either the velocity magni-
tudes or a single component of the velocity. Viewing just the z-components
is useful when finding bidirectional flow. Yet another helpful tool is Glyph,
which is used to visualize the vector field of the points in the dataset. Par-
aview provides the possibility to upload more models together, to compare
the results of simulations on different patients.

Figure 3.13: Axial levels at which we choose to extract the data (left). The veloc-

ities at the extracted levels visualized in Paraview (right). It should be noted that

the MR image to the left is not of the modelled patient to the right.
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3.7 Outline for result analysis

3.7.1 Tapering

For all the models, we conduct area measurements of the SAS at five different
axial levels of the anatomy. The following code computes the area at the level
of C1 for one patient. The location of C1 is found beforehand in Paraview.

class C1( Express ion ) :
def eva l ( s e l f , va lues , x ) :

i f x [ 2 ] >= 209 and x [ 2 ] < 219 :
va lue s [ 0 ] = 1 .0

else :
va lue s [ 0 ] = 0 .0

c1 = C1( )
a r ea c1 = ( assemble ( c1∗dx , mesh=s e l f . mesh ) ) /10

The area is found similarly for all the evenly distributed five axial levels
between C1 and C5. From these five measurements, we compute the average
area for each model. Finally, we compute deviation from the average area
at each level.

3.7.2 Pressure distribution inside the models

To inspect how the pressures are distributed inside the models, we mea-
sure pressure at six different levels between the top and the bottom. The
measurements are made at the time of maximum systolic pressure gradient.

3.7.3 Finding peak velocities

In order to eliminate possible influence of the inflow and outflow boundary
conditions, we clip away a small part of the top and the bottom of the
model. Highlighting the clipped model in Paraview and choosing, ”Rescale
to data-range”, yields the maximum velocity at a given time. Peak systolic
velocities are found halfway through the simulated cardiac cycle, while peak
diastolic velocities are found at the end of the cycle.

3.7.4 Studying velocity patterns

Velocity patterns are found by visual inspection of the models. Paraview
gives the possibility to upload more models together in order to study sim-
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ilarities and differences between them. Since the models have different po-
sitions in space, we use the transform-filter to line-up the models next to
each other. The slice-tool gives the possibility to extract a chosen part of
the model along a selected axis. It is thus possible to e.g. compare velocity
patterns along the sagittal or axial lines.

In this study, jets are identified by reference to the color plots of CSF veloc-
ities. When velocities in one region of the subarachnoid space exceed those
in the adjacent region by more than 100%, the region is classified as a jet.

3.7.5 Synchronous bidirectional flow

Magnitudes of the z- velocity component are analyzed for each model. Flow
where velocities larger than 0.1 cm/s occur in both z-directions simultane-
ously is considered as bidirectional. In this study, we denote the maximum
bidirectional flow difference to be the maximum difference between caudad
and cephalad velocities that occur at the same axial level. The level at
which the synchronous bidirectional flow visually seems to have the biggest
magnitude is extracted. The maximum difference in velocities is found by
parsing through the time-steps.

3.7.6 Flux

Flux is the amount of fluid that flows through a given area per unit time. In
our case, flux depends on the size of the surface, magnitude of velocity and
the normal n which is referred to as facet normal in FEniCS. We compute
flux at the top and at the bottom of each model. This is done by restricting
the computation to inflow and outflow parts of the boundary which are
marked in Meshbuilder. Flux is measured for every time-step. Maximal flux
is found for all the patients. It should be noted that the flux is equal at
the top and at the bottom of the model but it is computed at both ends to
check the correctness of the simulations.

def f l u x ( s e l f , i , u ) :
n = FacetNormal ( s e l f . mesh )
f l u x = dot (u , n) ∗ds ( i )

#Top boundary corresponds to subdomain no . 1
i f i ==1:

a = assemble ( f l ux , e x t e r i o r f a c e t d oma i n s=
s e l f . sub domain inf low , mesh=s e l f . mesh )

#Bottom boundary corresponds to subdomain no . 2
e l i f i ==2:

a = assemble ( f l ux , e x t e r i o r f a c e t d oma i n s=
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s e l f . sub domain outf low , mesh=s e l f . mesh )
return a

f l u x t op = f l ux (1 , u )
f lux bottom = f l ux (2 , u)

At each time-step, the flux magnitude is stored in a file for each of the pa-
tients respectively. Letting Q(t) denote the flux at the top of the model at
time t, we compute the total amount of fluid in ml that flows through

the model during one cardiac cycle (
∫
|Q(t)| dt

2 ), the total change in flux∫
|Q′(t)| dt as well as the ratio

∫
|Q′(t)| dt∫
|Q(t)| dt which describes the pulsation of

the fluid in relation to the total flow volume.

3.7.7 Student t-test

Due to varying standard deviations of the three groups, comparing just the
averages of the results for each group separately might not give a sufficient
impression of the differences between them. Hence, a student t-test (e.g.
Løv̊as, (2004)), is conducted in order to give an additional indication if
there are significant differences between Chiari I patients, volunteers and
postoperative patients. T-test is the most common method to compare
data between two groups. In this study, the type of t-test is unpaired, as
the data in the compared groups are assumed to be independent of each
other.

The essence of a t-test is to define a null-hypothesis, which usually states
that there is no difference between the two studied groups. Further, the
null-hypothesis is rejected if the P-value returned by the t-test is lower than
a chosen significance level-value. P = 0.05 is a common significance level
which we will employ in this study. Two-tailed t-test is applied to inspect
if there is a difference between two groups, in either direction. One-tailed
t-test is applied if we have a directional hypothesis, e. g. if we suspect that
one of the groups has higher values than the other.

The t-test is conducted using the TTEST -function incorporated in the
OpenOffice.org Spreadsheet - package (http://www.openoffice.org/ ) Assum-
ing that the data to be compared are defined in two separate arrays (data1)
and (data2), the syntax for t-test in OppenOffice.org is the following:

TTEST( data1 ; data2 ; mode ; type )

where mode defines if the test is one-tailed (mode=1) or two tailed (mode=2)
while type=3 as the samples are assumed to have unequal variance. The
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P-value returned by the t-test is compared against the chosen significance
level and the null-hypothesis is accepted or rejected accordingly.

By utilizing an unpaired t-test we assume that the sample distribution is
normal. However, it should be noted that with the small sample size in this
study, this assumption cannot be clearly justified. Thus, the t-test is applied
only as an additional indication to our findings and our conclusions are not
based on its results.

3.8 Method-tests

3.8.1 Testing cycle repeatability

In order to check how fast a steady state is reached, peak velocities are
compared for the fourth and fifth cycle at four points in time: t = 0.0s,
t = 0.25s, t = 0.5s and t = 0.75s. Table 3.3 shows the results. We observe
that even after five cardiac cycles the flow is not fully stabilized especially at
time of peak systolic flow, where the differences are 6.0%. Figure 3.14 shows
the maximum velocity magnitudes at six axial levels at t = 0.5s during the
4th and the 5th cycle. We observe equal velocity patterns in both cycles.
We consider the results from the 5th cycle satisfactory, thus, all the results
presented below are taken from the 5th cardiac cycle.

Table 3.3: Peak velocities in 4th and 5th cardiac cycle

Time (s) 4th cycle 5th cycle Difference

0.0 10.9 cm/s 11.2 cm/s 2.7%
0.25 6.5 cm/s 6.4 cm/s 1.5%
0.5 13.3 cm/s 12.5 cm/s 6.0%
0.75 6.2 cm/s 6.3 cm/s 1.6%

3.8.2 Time-step test

Simulations with different time-steps are conducted on one of the models
in order to check if the result are influenced by the size of the time-step.
Table 3.4 shows comparison of maximum velocities at four times during the
cardiac cycle for simulations with ∆t = 0.001 and ∆t = 0.005 on the same
model. We see that at times of peak diastolic and peak systolic flow, the
differences are minimal. The largest difference occurs at t = 0.75s. We
choose to consider dt = 0.005 a satisfying time-step, hence, all the results
presented below are obtained with dt = 0.005.



3.8. METHOD-TESTS 47

Figure 3.14: Velocities at t = 0.5s during the 4th and the 5th cardiac cycle

Table 3.4: Peak velocities with different time-steps

Time (s) dt = 0.001 dt = 0.005 Difference

0.00 10.70 cm/s 10.44 cm/s 0.2%
0.25 6.59 cm/s 6.41 cm/s 2.8%
0.50 14.39 cm/s 14.35 cm/s 0.3%
0.75 5.99 cm/s 5.6 cm/s 6.7%

3.8.3 Resolution test

A simulation on a model with more than three times as many cells as original
is conducted. Table 3.5 shows maximum velocities at four time-steps in the
cardiac cycle. The differences between the two models are most visible
during time of flow reversal. Figure 3.15 shows the two models at time
t = 0.5 s. We observe that the velocity-patterns look approximately the
same in both cases.

Table 3.5: Resolution test: Comparison of maximum velocities

Time Coarser grid Finer grid Difference

0.0s 11.45cm/s 11.37cm/s 0.7%
0.25s 5.86cm/s 6.27cm/s 6.7%
0.5s 12.48cm/s 12.26cm/s 1.8%
0.75s 5.79cm/s 6.21cm/s 7.0%
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Figure 3.15: Peak systolic velocities in a mesh with 550 K cells (left) and in
the same mesh with 1900K cells (right).

3.8.4 Uneven pressure gradient

The pressure is set so that at its peak, the pressure gradient posterior to the
cord has 20% higher magnitude than the pressure gradient anterior to the
cord. The goal is to check if uneven pressure values at one of the boundaries
has a significant impact on the pressure-distribution inside the model and
on the velocities of the fluid. Figure 3.16 shows the pressure distribution
inside the model with uneven pressure gradient (left) and in the original
model (right). We observe that the differences in pressure distribution are
clear at the top of the model.

To inspect difference in pressure distribution, we extract eight axial levels
in the model, evenly distributed between the top and the bottom. Table 3.6
shows the comparison of pressure distributions at each level. We observe
that with the pressure values 20% higher posterior to the cord at the foramen
magnum-level, the differences at the remaining levels are minimal.

Pressure distribution inside the model
Level 1(Top) 2 3 4 5 6 7 8(Bottom)

Even grad. (Pa) 1960 1957 1955 1952 1948 1944 1940 1936

Uneven grad. (Pa) 1960− 1921 1955 1953 1950 1947 1944 1940 1936

Difference (%) 0− 20 0.1 0.2 0.2 0.01 0 0 0

Table 3.6: Comparing pressure distributions at different axial levels
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Figure 3.16: Pressure distribution with uneven pressure gradient (left) and even gradient

(right) set at the top of the model.

Table 3.7 shows difference in peak systolic velocities at six different axial
levels in the anatomy. We observe that, apart from at foramen magnum, the
velocities differ minimally. We note that the differences, although minimal,
are greater towards the bottom of the model than at the levels of C2-C4.

Table 3.7: Comparison of velocities at different axial levels

Level Test p Normal p Difference

FM 10.3cm/s 22.5cm/s 74.4%
C2 7.3cm/s 7.3cm/s 0%
C3 8.8cm/s 8.8cm/s 0%
C4 9.6cm/s 9.5cm/s 1%
C5 8.9cm/s 9.3cm/s 4.4%
C6 10.6cm/s 10.1cm/s 4.8%

3.8.5 Asymmetric pressure function

To check the outcomes of a different flow pulse, a simulation with an asym-
metric pressure function (e.g. Logg et al. (2010)) is conducted on one of the
models. Figure 3.17 shows a plot of the pressure difference between the top
and the bottom of the model resulting from the asymmetric flow pulse and
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the symmetric flow pulse respectively.

Figure 3.17: The asymmetric and the symmetric pressure functions.

Table 3.8 shows a comparison of different flow characteristics in the same
model with applied asymmetric and symmetric pressure function, respec-
tively. We note that the differences are fairly small.

Table 3.8: Comparison of flow characteristics

Flow characteristic Asymmetric p Symmetric p Difference

Peak systolic v (cm/s) 13.5 13.5 0%
Peak diastolic v (cm/s) 12.6 13.0 3.1%

Max bidirectional flow difference (cm/s) 6, 9 7.2 4.2%
Bidirectional flow duration (s) 0.2 0.2 0%

Max flux (cm3/s) 5.3 5.8 9%



Chapter 4

Results

4.1 Geometric models

The generated models are of different sizes, as the modelled patients and
volunteers are of different ages. Table 4.1 contains information on MRI-
measurements of tonsil extensions below foramen magnum, gender and age
of the modelled patients and whether they have syrinxes in their spinal
canals.

Table 4.1: Explanation of the symbols: M=male, F=female, NA = not available, x =

not present (syrinx)/ not herniated (tonsils), pre-op = measured prior to surgery, C1-T10

- length of the syrinx.

51



52 CHAPTER 4. RESULTS

It should be noted that tonsil extensions in some of the generated models
are of slightly different length than the ones measured beforehand in the
MRI images. Tonsils are clearly visible in two of the postoperative models
and slightly visible in one of the healthy models.

Table 4.2 gives the length and the information on tapering for each model.
The length denotes the distance between the top and the bottom of a model
in z-direction. However, we note that some of the models are more curved
in shape and thus their length differs slightly from the one computed in
the z-direction. The sizes of the resulting meshes range between 7.0 · 105

and 3.0 · 106 cells, which requires significant computational time for the
simulations.

Table 4.2: Length, average area and tapering in all the studied patients.

4.1.1 Tapering

Table 4.2 gives the average cross-sectional area for each of the patients, as
well as deviation from this average at five different axial levels. Figure 4.3
shows plots of average deviation in each patient-group. We observe that
because of the tonsils extensions, on average, the Chiari patients have less
variation in cross-sectional flow area than the volunteers. However, when
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Figure 4.3: Average tapering in healthy, Chiari I and postoperative groups.

Figure 4.4: Tapering in all the geometries: Chiari I(red), healthy(blue) and postopera-

tive(green).
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looking at the plot of individual patients (Figure 4.4), we notice that there
is one volunteer who has distinctively apparent tapering, while the rest of
the volunteers resemble Chiari-patients. A two-tailed t-test conducted at
each level, indicates no significant difference in tapering between the three
groups (P > 0.05).

4.2 Pressure

4.2.1 Pressure during one cardiac cycle

The pressure function is specified at the inflow and the outflow boundaries of
the models in such a way that the pressure gradient changes and drives the
flow in a pulsatile manner (Figure 4.5). At t = 0 s, the pressure difference
between the top and the bottom is zero. Then, the pressure increases,
with values getting increasingly higher at the top compared to the bottom
of the model. This drives the flow downwards (with some time-delay due
to inertia), simulating systolic movement of the fluid. At t = 0.25 s, the
pressure difference is at its peak with ≈ 24.3 Pa higher pressure at the
top than at the bottom. Then, the pressure and the pressure difference
start decreasing. A reversal occurs at t = 0.5, as the pressure at the top of
the model starts decreasing faster than at the bottom. This leads to flow-
reversal (again after some time-delay), simulating diastolic fluid movement.
At t = 0.75 s, the pressure difference is again at its maximum, with ≈
24.3 Pa higher pressure at the bottom. After this point in time, the pressure
difference decreases again, until t = 1.0 s when a new cycle is started.

4.2.2 Pressure distribution inside the models by level

Plotting the average pressure distribution in the three studied groups (Figure
4.6), we observe that on average, the postoperative patients have the most
even pressure distribution, with the plot resembling a straight line. For
the Chiari patients and the volunteers, the plotted averages appear as more
arched curves, with slightly steeper pressure gradients between level 3 and
the bottom. Plotting the pressure distributions for all models separately
(Figure 4.7), we observe significant variations in pressure distribution in each
of the studied groups. A two-tailed t-test conducted between the groups for
each axial level indicates significant difference between volunteers and Chiari
at levels 2 and 3 (P ≤ 0.01) with a steeper pressure gradient for Chiari
patients. The difference is thus most evident in the upper levels of the
anatomy, where the tonsils are. The t-test indicates no significant difference
in pressure distribution between Chiari I and postoperative models, nor
between healthy and postoperative models.
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Figure 4.5: Pressure distribution at four different times during the cardiac cycle.

Figure 4.6: Average pressure distribution by level in the three groups.
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Figure 4.7: Pressure distribution by level in models of Chiari I patients (red),

volunteers (dark blue) and postoperative patients (light blue).

4.3 Velocities

4.3.1 Velocities during one cardiac cycle

The velocities of the fluid are driven by the changing pressure gradient.
However, it takes some time for the velocities to react to the pressure vari-
ations. Thus, while the maximum pressure gradient during systole occurs
at t = 0.25 s, the maximum systolic velocities are observed at t ≈ 0.5 s.
Equally, while the diastolic pressure-gradient reaches its maximum at t =
0.75, the maximum diastolic velocities are observed at t ≈ 1.0 s.

We observe differences between systolic and diastolic behavior of the fluid.
The systolic velocities have on average slightly higher magnitudes with peak
velocities ranging from 6.8 cm/s to 15.6 cm/s. The diastolic velocities range
from 6.5 cm/s to 15.7 cm/s. The velocity distributions during diastole differ
from velocity distributions during systole (Figure 4.8). Diastolic velocities
have the highest magnitudes at the side-boundaries while the systolic ve-
locities appear more visible as they spread more extensively over the axial
levels.
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Figure 4.8: Peak diastolic and systolic velocity magnitudes in a Chiari patient.

Table 4.9 gives peak systolic and diastolic velocities in all of the studied
models.

4.3.2 Peak systolic velocities

In simulations with equal pressure gradients, the systolic peak velocities are
on average 27 % higher in Chiari patients than in volunteers. One-tailed
t-tests yields a significant difference (P = 0.002). Each of the postoperative
patients have higher peak systolic velocities than the average peak systolic
velocity in volunteers. The postoperative patients have a wide range of
velocities (8.3 − 15.6 cm/s). One of the postoperative patients has the
highest peak velocity of all the thirteen models. A two-tailed t-test yields
no significant difference between Chiari-patients and postoperative patients
(P = 0.8).

Chiari - patients
In models of Chiari patients, peak systolic velocities range from 7.5 cm/s
to 12.1 cm/s. Frequently, they appear at several different levels in one
geometry. Peak systolic velocities appear at the level of C6, anterior to
the cord in five of the seven Chiari models. In four cases, we observe peak
velocities at the level of C2-C3, posterior to the cord. In three of the Chiari
patients, peak systolic velocities appear also at the level of the foramen
magnum, posterior to the cord. High velocity bands are observed at these
three locations for most of the Chiari-models.
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Table 4.9: Flow characteristics in all the studied models after simulations with

equal pressure gradient for all patients.

Volunteers
In healthy models, peak systolic velocities range from 6.8 cm/s to 7.9 cm/s.
Peak systolic velocities increase gradually from foramen magnum towards
the level of C5/6 in all three volunteers. However, in the model with slightly
visible tonsils, peak velocities are reached already at the level of C3.

Postoperative patients
In postoperative patients, peak systolic velocities range from 8.3 cm/s to
15.6 cm/s. Their occurrence is very diverse. In one of the models, peak
velocities are observed posterior to the cord, at the level of C2 and C3. In
the two other postoperative models, peak velocities appear from the level of
C2 and down to C5 in bands that switch their position relative to the cord
alternately between anterior and posterior.
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4.3.3 Peak diastolic velocities

In simulations with equal pressure gradients, peak diastolic velocities are
on average 24 % higher in Chiari I patients than in volunteers. One-tailed
t-test indicates that this difference is significant (P = 0.01). Peak diastolic
velocities in all of the postoperative patients are higher than the average
peak diastolic velocity in volunteers. Also, two of the postoperative patients
have higher peak diastolic velocities than the average peak diastolic veloc-
ity in the Chiari I group. The t-test indicates non-significant differences
between Chiari and postoperative models (P = 0.6). For all the groups,
peak diastolic velocities appear towards the model boundaries, contrary to
systolic peak velocities that spread along the axial levels.

Chiari patients
Peak diastolic velocities range from 6, 9 cm/s to 11, 8 cm/s in models of
Chiari patients. Posterior to the cord, they appear at the same levels as
peak systolic velocities. Anterior to the cord, the high velocity bands are
less evident than what is observed during systole.

Volunteers
For the volunteers, peak diastolic velocities range from 6.5 cm/s to 7.5 cm/s.
They appear at approximately the same levels as peak systolic velocities for
all of the volunteers.

Postoperative
The range of peak diastolic velocities is between 7.8cm/s and 15.7cm/s for
postoperative patients. Those velocities appear at the same levels as peak
systolic velocities.

4.3.4 Velocity patterns

Spatial variations

For all models with visible tonsils, the velocity patterns have common traits
when comparing the velocity magnitudes posterior - anterior to the cord (in
the sagittal plane). They all characterize by having high velocity bands near
the tonsils at the foramen magnum. Then, at the level of C1, the velocities
anterior to the cord are higher than posterior to the cord. Further, at the
level of C3-C4 the velocity magnitudes are higher posterior to the cord again.
Finally, at C5-C6 the velocities anterior to the cord have higher magnitudes.

Figure 4.10 illustrates this pattern in three of the Chiari I models at time of
peak systolic flow. Figure 4.11 shows one volunteer and two postoperative
patients, all with signs of tonsils at the level of foramen magnum, where the
above described pattern occurs.
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Figure 4.10: Peak systolic velocity magnitudes in three Chiari patients. The dis-

played velocity magnitude-range has been rescaled in order to improve visualization.

Figure 4.11: Peak systolic velocity magnitudes in one volunteer (left) and two

postoperative patients with signs of tonsils at foramen magnum. The displayed

velocity magnitude-range has been rescaled in order to improve visualization.

For the two healthy models with no visible tonsils (Figure 4.12), the velocity
seems to increase progressively from foramen magnum and down to C5/6.
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Figure 4.12: Peak systolic velocity magnitudes in two of the healthy models with no

signs of tonsils. The displayed velocity magnitude-range has been rescaled in order

to improve visualization.

Temporal variations

For all three groups, there are evident differences between systolic and dias-
tolic velocity patterns. While systolic velocities spread more along the axial
levels, diastolic velocities have higher magnitudes at the side boundaries.
However, in Chiari patients, temporal variations are much more evident
than in volunteers. Figure 4.13 illustrates peak diastolic and peak systolic
velocities in a Chiari-model. We observe e.g. that peak systolic velocities
appear at the level of C6, while they don not appear at this level during
diastole. Figure 4.14 illustrates peak diastolic and peak systolic velocities
in a volunteer. We observe that while the systolic velocities are much more
spread along the axial levels, the peak velocities appear at the same level
both during systole and diastole.



62 CHAPTER 4. RESULTS

Figure 4.13: Peak diastolic and peak systolic velocity magnitude patterns in a

Chiari model.

Figure 4.14: Peak diastolic and peak systolic velocity magnitude patterns in a

non-Chiari model.



4.3. VELOCITIES 63

Jets

In five of the Chiari patients we observe jets anterolateral to the cord starting
from the level of C1/2 down to C6. The jets are not apparent during the
whole cardiac cycle but during time of decreasing pressure gradient (t ∈
(0.25 − 0.75) s). The size of the jets change with time, as well as their
velocity magnitudes in correspondence to the magnitudes in the adjacent
area. They are most visible at times of flow reversal and less visible at time
of peak systolic flow (t = 0.5 s).

Figure 4.15: Jets at the level of C3 in a Chiari Patient.

At time of increasing pressure-gradient, the jets disappear and the velocity
magnitudes in the same locations become lower than in the adjacent area.

The jets are found in two of the postoperative models. Figure 4.16 (left)
illustrates asymmetric jets at t ≈ 0.60s in the cardiac cycle in one of these
patients. Figure 4.16 (right) shows the same level at t ≈ 0.20s, where we
observe that the velocity magnitudes change and are now greater in the
adjacent area than in the region where the jet occurred.

In two of the volunteers, we find a jet-like pattern anterolateral to the cord
(Figure 4.17). However, the jets have a smaller area and more than twice
as small velocity magnitudes as the jets in Chiari I models.
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Figure 4.16: Axial level of C3 in a postoperative patient at different t = 0.60 s

(left) and at t = 0.20 s (right).

Figure 4.17: Jet-like pattern anterolateral to the cord at the level of C3 in a vol-

unteer.

4.4 Synchronous bidirectional flow

Synchronous bidirectional flow occurs at times of flow-reversal and is most
visible along the side - boundaries of the channel. Frequently, the magnitude
of synchronous bidirectional flow difference reaches its maximum at the levels
where maximum systolic or diastolic velocities occur. Figure 4.18 shows
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synchronous bidirectional flow at the level of C3 in a Chiari-patient during
systole at time t = 0.25. We observe that the systolic flow (in the negative
z-direction) creates two jets anterolateral to the cord.

Synchronous bidirectional flow is found in all the patients and all the volun-
teers. Table 4.9 gives the maximum difference in velocities and the duration
of bidirectional flow for all the studied models after simulations with equal
pressure gradients. Maximum difference in synchronous bidirectional flow
velocities has on average 34% higher value in Chiari I models than in vol-
unteers; which according to the t-test is a significant difference (P = 0.03).
The t-test shows no significant differences in synchronous bidirectional flow
between postoperative and Chiari-models (P = 0.7). Synchronous bidirec-
tional flow at the level of C1 occurs for a longer period of time in six of
the Chiari I models compared to the three volunteers. A two-tailed t-test
yields P-value equal to the chosen significance-level(P = 0.05). It is thus
questionable if the differences in bidirectional flow durations are significant.
The average duration of synchronous bidirectional flow in postoperative pa-
tients is 0.01s longer than in volunteers and the t-test indicates that this
difference is not significant.

Figure 4.18: Synchronous bidirectional flow at t = 0.25 s at the level of C3 in a

Chiari patient.
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4.5 Flux

Maximum flux is found during time of peak systolic velocity. Table 4.19
gives the results of flux computations in all the models after simulations
with equal pressure gradients. Average maximum flux for Chiari-patients
is 34% larger than in volunteers, and the t-test indicates that this is a sig-
nificant difference (P = 0.001). The postoperative models have on average
19% larger maximum flux than the volunteers and 22% lower flux than the
Chiari models. The t-test indicates that the differences in maximum flux
are significant between the three groups .

Table 4.19: Flux-characteristics for simulations with the same pressure gradient

for all models.

The total amount of fluid that flows through the models during one cardiac
cycle range between 1.18 ml and 2.37 ml. The total change in flux is on
average larger in Chiari models than in healthy models. However, the ratios
between the total change in flow and the total flow volume during one cardiac
cycle are similar for all three groups.
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4.6 Comparing velocities with MRI measurements

MRI-measurements are available for 7 of the 13 patients. Table 4.20 contains
information on how much the velocities computed in simulations with equal
pressure gradients differ from the MRI velocity measurements.

Table 4.20: MRI velocity measurements and our computed velocities at time of

maximum systolic flow.

We observe that in models no. 26, no. 21 and no. 36, the differences exceed
30%. For these three patients, we choose to run new simulations with the
pressure gradient increased/decreased corresponding to these differences. In
postoperative patient no. 18 we observe that the velocity magnitudes in our
computations are 69% higher than MRI-measured velocities at the level of
C1, while at the level of C4/C5 our computed velocities are 23% lower than
the measurements. We choose not to run new simulations for this patient
as the velocities at levels C2-C3/C4 do not differ much.

Table 4.21:
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After the second round of simulations with corrected gradient we observe
that in patient 21, the difference between the MRI-measured and the com-
puted velocities is still > 20% (Table 4.21). This means that the pressure
gradient, which already is 38% lower than the originally applied gradient
should be further diminished in order to achieve better results. However,
it might be questionable if an even smaller pressure gradient is a physi-
ologically realistic choice. Therefore, setting additional conditions on e.g.
velocity should be considered in order to achieve more correct results in
further simulations on this patient.

Table 4.22 gives flow characteristics after simulations with corrected gradi-
ents.

Table 4.22: Results of simulations with corrected pressure gradients. Values in the

first column demonstrate the maximum pressure difference between the top and the

bottom of each model resulting from the new pressure gradients.

The overall results have not changed after the new simulations. The Chiari-
patients and volunteers differ in flux, maximum systolic and diastolic veloc-
ities and in maximum synchronous bidirectional flow differences. The flow
characteristics of Chiari I models have on average higher magnitudes than
the characteristics of healthy models in all of the cases. The postoperative
models’ characteristics do not appear to have significant differences from the



4.6. COMPARING VELOCITIES WITH MRI MEASUREMENTS 69

Chiari-models. Further, the differences in duration of bidirectional flow are
the same as after previous simulations.
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Chapter 5

Discussion

Conclusions

The conducted simulations show differences in flow characteristics of patient-
specific Chiari I and normal models. Peak velocities, synchronous bidirec-
tional flow and flux appear to have higher magnitudes in Chiari I models
compared to the healthy models. In the upper levels of the anatomy, where
the tonsils are, the Chiari I models tend to have a steeper pressure gradient
than the volunteers. Postoperative patients’ models are similar to those of
Chiari patients’ in both peak velocities and synchronous bidirectional flow.
Differences in the duration of synchronous bidirectional flow are not appar-
ent between the three groups. As no significant differences in tapering have
been found, we cannot relate the effect of tapering to our results.

The CSF flow is complex in both Chiari and volunteer models. However,
spatial and temporal flow variations are more apparent in Chiari I models.
Jets occur in five of the Chiari models and in two of the healthy models,
yet are larger, more frequent and have higher magnitudes in the Chiari
group. Complex flow patterns and jets occur also in two of the postoperative
patients.

Common velocity patterns for models with tonsillar herniations are appar-
ent. Dominance of flow anterior-posterior to the cord appears to depend on
the axial level of study. Generally, in tonsil-herniated models, higher veloc-
ity bands appear at foramen magnum (posterior to the cord), at C1 (anterior
to the cord), at C3/C4 (posterior) and at C5/C6 (anterior). Peak velocities
appear in one or several of these locations. For healthy models without sign
of tonsils, the velocity patterns are less complex as the velocities increase
progressively towards C5/C6.

71
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Concurrence with previous research

Our report on higher peak velocities in Chiari-models compared to those of
volunteers agrees with a majority of previous research (e.g. Shah et al.
(2011), Hentschel et al. (2010b), Quigley et al. (2004), Haughton et al.
(2003)). Further, the more diverse spatial and temporal variations observed
in Chiari-models are in accordance with research by e.g. Quigley et al.
(2004) who reported that peak systolic and diastolic velocities appear in the
same regions in volunteers, while they emerge in distinct regions in Chiari
patients. In our Chiari models, the repetitive change in flow domination
posterior-anterior to the cord seems not to agree with previous examina-
tions. E.g. Quigley et al. (2004) and Linge et al. (2011) observed higher
velocities mainly in the anterior nodes. Observation of jets in the anterolat-
eral locations in five of the Chiari patients corresponds to previous findings
by e.g. Roldan et al. (2009), Quigley et al. (2004), Shah et al. (2011). How-
ever, the jets in our study have velocity magnitudes that vary during the
cardiac cycle and they do not appear visible during the whole cycle.

Synchronous bidirectional flow found mainly along the side-boundaries in
both our Chiari models and our normal models is in agreement with findings
of Linge et al. (2010). However, we do not find any significant differences
in the duration of synchronous bidirectional flow between the three studied
groups.

The lack of MRI - data of postoperative patients prior to surgery makes
it difficult to make conclusions on outcomes of the surgery. However, we
observe that average peak velocities are higher in our postoperative models
compared to our Chiari models. Previous studies of postoperative patients
have shown that the peak velocities are not always reduced by the surgery.
A study on 8 postoperative Chiari I patients conducted by Dolar et al.
(2004) has shown overall reduction in peak velocities, however in 3 of the
patients either the systolic or the diastolic peak velocity or both increased
after surgery.

Limitations of the current study

CFD is a complicated undertaking where many assumptions have to be made
and where determining the right complexity of the model is a challenge.
Because of limited time, the simulations in this study are conducted for
five cardiac cycles and with a time-step of dt = 0.005. The method tests
conducted (Section 3.8) show that the CSF flow does not stabilize thoroughly
during five cycles and that a smaller time-step gives slightly different results.

All simulations are carried out using a symmetric pressure function, which
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does not give an entirely realistic representation of the cardiac circle. How-
ever, testing an asymmetric pressure function on one of the models (Sec-
tion 3.8) yields fairly equivalent results with respect to peak velocities, syn-
chronous bidirectional flow and flux.

The sample size in this study is rather small, which may limit our statistical
power to detect differences. Although we cannot base our conclusions on the
t-test, its indications together with our analysis of the results yield fairly
visible differences between our Chiari and healthy models. The patients
studied are not a homogeneous group with respect to age or gender. Those
factors may have an impact on the CSF velocities (e.g. Shah et al. (2011))
and would need further analysis.

The boundaries in our models are rigid, while the cord and tonsils are known
to move and deform with the pulsating CSF. For a more realistic result, this
could be changed in further research. However, it has been suggested that
the boundaries’ movement is relatively small compared to the dimensions of
the cord (Levy, 1999).

Significance
The method presented in this study yields a noninvasive approach for ver-
ifiable measurement of the CSF velocities in real patients. Combined with
(and adjusted according to) MRI-measurements it gives the advantage of
studying the results globally or locally at a desired point in time in any
chosen plane. During result-analysis, we notice that in measurements of
peak velocities, velocity magnitudes may change significantly between loca-
tions that are within small distance from each other. Thus, using solely the
MRI-measurements might give unrealistic impression of the CSF velocities
in patients. E.g. in our model of patient no. 26, the computed peak systolic
velocity was 37% higher than the single level MRI peak velocity measure-
ment. Further, two different models may have equal patterns and velocities
at one level and differ significantly at another level. It is thus a great ad-
vantage to be able to study a whole volume instead of just one cross-section
of a model.

The good temporal and spatial resolutions allow a more detailed exami-
nation of synchronous bidirectional flow and of variations in velocity pat-
terns compared to MRI-measurements. We observe that the magnitude of
synchronous bidirectional flow changes along the anatomy, thus an MRI-
measurement at a single axial level might not give a realistic impression of
the amount of bidirectional flow in a patient.

This study adds additional validation to CFD studies of CSF flow which
indicate greater CSF velocities and different flow characteristics for Chiari
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patients than for healthy individuals. It also demonstrates significant indi-
vidual differences, even in patients belonging to the same groups.

Further research

Additional simulations of CSF flow supplemented by MRI-measurements
can lead to improved ability to distinguish pathologic flow abnormalities
that cause syringomyelia, and the diverse symptoms in Chiari I malforma-
tion. Generation of patient-specific models both prior- and post-surgery
could give a better understanding of outcomes of cranio-vertebral decom-
pression and possibly a better categorization of Chiari-related conditions
that demand surgery. In addition, it might be of interest to compare pa-
tients and volunteers of the same gender and age in order to remove the
influence of these possibly significant factors.

According to Oldfield et al. (1994), syrinxes start at about 5 cm below the
foramen magnum. As none of our Chiari I models have syrinxes inside their
spinal canals, we cannot evaluate the possible effects of syringomyelia on
velocity and pressure distributions. The method test with applied uneven
pressure gradient (Section 3.8) implies that setting a 20% higher pressure
gradient posterior to the cord at the level of foramen magnum, does not
seem to affect the CSF velocities in the other axial levels in a major way.
Conducting further tests of this kind, with higher gradient differences could
perhaps yield a better understanding on the piston effect of the tonsils on
the CSF velocities.

As seen from comparison with MRI velocity measurements, setting boundary
conditions based solely on pressure does not always yield realistic results.
For further studies, it is there for recommended to set initial and boundary
conditions on both pressure and velocity based on MRI measurements.
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