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Abstract

We consider a general class of high order weak approximation schemes for stochastic differential
equations driven by Lévy processes with infinite activity. These schemes combine a compound Poisson
approximation for the jump part of the Lévy process with a high order scheme for the Brownian
driven component, applied between the jump times. The overall approximation is analyzed using
a stochastic splitting argument. The resulting error bound involves separate contributions of the
compound Poisson approximation and of the discretization scheme for the Brownian part, and allows,
on one hand, to balance the two contributions in order to minimize the computational time, and on
the other hand, to study the optimal design of the approximating compound Poisson process. For
driving processes whose Lévy measure explodes near zero in a regularly varying way, this procedure
allows to construct discretization schemes with arbitrary order of convergence.
Key words: Lévy-driven stochastic differential equations, high order discretization schemes, weak
approximation, regular variation
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1 Introduction

Let Xt be the unique solution of the SDE

Xt = x+

∫ t

0

b (Xs) ds+

∫ t

0

σ (Xs) dBs +

∫ t

0

h (Xs−) dZs, (1)

where b, σ and h are C1 functions with bounded derivatives, B is a (multi-dimensional) Brownian motion
and Z a one-dimensional, at least square integrable, infinite activity pure jump Lévy process with Lévy
measure ν. In this paper we are interested in the weak approximation of Xt, using random partitions of
the time interval.

The traditional approach, analyzed, e.g., in Jacod et al. [10] and Protter and Talay [18], consists
in approximating X using the Euler scheme with a uniformly spaced time grid. It suffers from two
difficulties: first, for a general Lévy measure ν, there is no available algorithm to simulate the increments
of the driving Lévy process and second, a large jump of Z occurring between two discretization points
can lead to a large discretization error.

With the aim of resolving these problems, Rubenthaler [19] (see also Bruti-Liberati and Platen [4] and
Mordecki et al. [13] in the context of finite intensity Lévy processes) introduced the idea of replacing the
driving process Z by a suitable compound Poisson approximation and placing the discretization points at
the jump times of the compound Poisson process. This approach is problematic when the jump activity
of the driving Lévy process Z is strong, that is, the Lévy measure has a strong singularity at zero.
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In Kohatsu-Higa and Tankov [9], the authors introduce and analyze a new approximation scheme
in the case σ ≡ 0, building on the ideas of Rubenthaler and Asmussen and Rosinski [2]. The idea is
to replace the driving process Z by an approximating process Zε, which incorporates all jumps of Z
bigger than ε and approximates the jumps of Z smaller than ε with a suitable chosen Brownian motion,
matching the second moment of Z. The solution to the continuous SDE between the jump times can
then be approximated with a suitable high order scheme. More recently, a similar approximation was
used in the context of multilevel Monte Carlo schemes for Lévy-driven SDEs [5].

Although the previous approach improves the rates of convergence obtained with Rubenthaler’s
scheme, there are limits on how well the small jumps of a Lévy process can be approximated by a
Brownian motion (think of non-symmetric Lévy processes). In Tankov [21], the author presented a new
scheme in the case σ ≡ 0 based on approximating Z by a finite intensity Lévy process, which incorporates
all jumps bigger than ε and matches a given number of moments of Z with an additional compound Pois-
son term. The main advantages of this approach are that the schemes are very easy to implement, because
the driving process is piecewise deterministic, and that one can, in specific cases, obtain arbitrarily high
order of convergence by matching a sufficiently large number of moments of Z.

In this paper we are interested in two aspects of approximation schemes for Lévy driven SDE’s.
First, in many of the previously mentioned schemes one assumes that there is no Brownian motion
component in the equation (1) (i.e. σ ≡ 0). The reason for this was that the speed of convergence of
the approximating scheme for the jump component is fast and therefore it was not clear how to match
this speed with the approximation of the Brownian component without wasting computing resources.
Furthermore the fact that the equation does not have a Brownian component facilitates the error analysis
and the implementation of the scheme because the SDE between jumps is deterministic, as in [21], or
can be treated as a deterministic equation perturbed by a small noise term as in [9]. On the other hand,
recent developments in the area of weak approximations for continuous SDE’s [15, 14] allow for high order
approximations of the Brownian component. Therefore one may expect that the right combination of
these approximation techniques with suitable jump adapted approximation schemes for pure jump SDE’s
can be achieved.

Our second goal is a systematic study of the new moment-matching approximation schemes introduced
in [21], with the objective of designing optimal compound Poisson approximations and studying their
convergence in a more general setting.

In this article, we show that the mathematical framework developed in Tanaka and Kohatsu [20] is
the appropriate tool in order to deal with the general situation (σ 6= 0). However, it needs to be adapted
to the present setting where the partition is random while in [20], the partition is fixed. This framework
is based on semigroup decompositions, which allow the study of a complex generator by decomposing it
into simple components. The error estimate is obtained by a local analysis of each component.

In the resulting error bound, the contributions of the compound Poisson approximation and of the
discretization scheme for the Brownian part are separate and tractable. This allows to balance the two
contributions by an appropriate choice of the order of the discretization scheme for the Brownian part, in
order to minimize the computational time. On the other hand, this decomposition enables us to formulate
the problem of choosing the compound Poisson approximation as an optimization problem (minimizing
the error bound). We characterize the optimal approximating process in the general case and provide
explicit representation in specific situations. Often, the optimal solution is to keep all the jumps bigger
than ε and add an additional compound Poisson process to match the moment structure of the small
jumps. Under a regularity assumption on the Lévy measure, we show that this methodology can be used
to construct approximations with arbitrarily high order of convergence.

An interesting consequence of our analysis is that the Asmussen-Rosinski approach is not the optimal
procedure to approximate the small jumps in the setting of weak convergence. We give a better procedure,
which uses Lévy measures with point masses to approximate the small jumps (see Remark 24) .

In order to correctly describe the optimality aspect, let X̄t be the unique solution of (1) but using Z̄
as driving process instead of Z. Z̄ is a finite activity, at least square integrable, Lévy process with Lévy
measure ν̄, which may have a Wiener component. Furthermore, let X̂t be a computable approximation of
X̄t which shares the same jump times as X̄. The first objective is to find an upper bound for the difference
D1 = E[f (X1)]−E[f(X̄1)] in terms of λ̄ = ν̄ (R) <∞ (the average number of partition intervals) and the
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moments of ν − ν̄ and |ν − ν̄|. This part assumes then that the Brownian component can be simulated
exactly.

In the second part, we approximate the Brownian component and analyze the error D̂1 = E[f
(
X̄1

)
]−

E[f(X̂1)]. To analyze D̂1, we extend the operator approach developed in [20] to jump-adapted random
partitions.

In conclusion, we find that we can express an upper bound for D1 in terms of the moments of ν − ν̄
and |ν − ν̄| and an upper bound for D̂1 in terms of λ̄. Now, for fixed λ̄ (and, hence, D̂1 ) we consider
ν̄ as a variable and minimize the upper bound for D1, obtaining an optimal Lévy measure ν̄ for the
approximating finite intensity process Z̄. Once the optimal error is known as a function of λ̄ (this is done
as a worse case analysis or in asymptotic form) one can identify the order of the approximation that is
needed for the Brownian component.

The paper is structured as follows. In Section 2, we introduce the notation. In Section 3, we start
introducing the assumptions in order to study the weak error of the approximations and we give the main
error estimate, which will be the base for the study of optimal approximations. The expansion of the
error is given in terms of λ̄ and the moments of ν − ν̄.

The proof of the main error estimate is given in Sections 4.1 and 4.2, which analyze, respectively, D1

and D̂1. In Section 5, we formulate the problem of finding the optimal compound Poisson approximation
of Z as an optimization problem, characterize its solution and prove an existence result. Explicit examples
of solutions are given in Section 5.1, and Section 5.2 analyzes the convergence rates of the resulting scheme.
Specific algorithms and numerical illustrations are provided in Section 6. Finally, in the appendix we
gather some technical lemmas.

Throughout the article we use the Einstein notation of summation over double indices. δy denotes the
point mass measure at y ∈ R. Various positive constants are denoted by C or K with the dependence
on various parameters. In particular they will depend on the constants appearing in the bounds of the
coefficients of the Lévy driven SDE. We will not make this dependence explicit. The exact values of the
constants may change from one line to the next without further mentioning.

2 Preliminaries and notation

Let the process X = {Xt}t∈[0,1] be the unique solution of the following d-dimensional SDE

Xt = x+

∫ t

0

b (Xs) ds+

∫ t

0

σ (Xs) dBs +

∫ t

0

h (Xs−) dZs, (2)

where b : Rd → Rd, h : Rd → Rd and σ : Rd → Rd×k are C1
(
Rd
)

functions with bounded derivatives,
B = {Bt}t∈[0,1] is a k-dimensional standard Brownian motion and Z = {Zt}t∈[0,1] is a one dimensional,
square integrable, Lévy process (independent of B) with the following representation

Zt =

∫ t

0

∫
R
yÑ (ds, dy) ,

Ñ (ds, dy) = N (ds, dy)− ν (dy) ds,

where ν is an infinite activity Lévy measure, that is ν (R) = +∞, and N is a Poisson random measure
on R× [0,∞) with intensity ν (dy)× dt.

Let X̄ = {X̄t}t∈[0,1] be the approximating process, which is the solution of the SDE

X̄t = x+

∫ t

0

b(X̄s)ds+

∫ t

0

σ(X̄s)dBs +

∫ t

0

h(X̄s−)dZ̄s, (3)

where Z̄ = {Z̄t}t∈[0,1] is a, square integrable, Lévy process (independent of B) with the following repre-
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sentation

Z̄t = µ̄t+ σ̄Wt +

∫ t

0

∫
R
y ˜̄N (ds, dy) ,

˜̄N (ds, dy) = N̄ (ds, dy)− ν̄ (dy) ds,

where we assume that λ̄ =
∫
R ν̄ (dy) <∞, σ̄2 ≥ 0 and N̄ is a Poisson random measure on R× [0,∞) with

intensity ν̄ (dy)× ds and W = {Wt}t∈[0,1] is a standard k-dimensional Brownian motion independent of
all the other processes. We assume that (µ̄, ν̄, σ̄) belongs to a set of possible approximation parameters
denoted by A. Without loss of generality we may sometimes abuse the notation and write ν̄ ∈ A to
denote the Lévy measure for which there exists µ̄ and σ̄ so that (µ̄, ν̄, σ̄) ∈ A.

Remark 1 In order to simplify the notation, we write the pure jump parts of the driving Lévy processes
Zt and Z̄t as compensated Poisson random measures on R× [0,∞). This can be done because they have
finite expectation. Moreover, one can do all the analyses below using the standard Itô-Lévy representation,
which only compensates the small jumps, and obtain equivalent results (it is a reparametrization of the
drift µ̄).

Note that, if we define

b̄ (x) = b (x) + h (x) (µ̄−
∫
R
yν̄ (dy)),

then we can write

X̄t = x+

∫ t

0

b̄
(
X̄s

)
ds+

∫ t

0

σ
(
X̄s

)
dBs + σ̄

∫ t

0

h
(
X̄s

)
dWs +

∫ t

0

∫
R
h(X̄s−)yN̄ (dy, ds) .

Sometimes, the following flow notation will be useful

X̄t (s, x) = x+

∫ t

s

b̄
(
X̄u (s, x)

)
du+

∫ t

s

σ
(
X̄u (s, x)

)
dBu

+ σ̄

∫ t

s

h(X̄u (s, x))dWu +

∫ t

s

∫
R
h(X̄u− (s, x))N̄ (dy, ds) .

Define the process

Ȳt(s, x) = x+

∫ t

s

b̄(Ȳu(s, x))du+

∫ t

s

σ(Ȳu(s, x))dBu + σ̄

∫ t

s

h(Ȳu(s, x))dWu (4)

and the following semigroup operator

(P̄tf) (x) = E[f(Ȳt(0, x))],

where f ∈ Cp, the set of functions with, at most, polynomial growth. The semigroup P̄ corresponds
to the process between jumps once the Lévy driving process is approximated by a compound Poisson
process and an independent Brownian motion to approximate the small jumps as proposed in [2].

We consider the following stopping times

T̄i = inf{t > T̄i−1 : N̄
(
R, (T̄i−1, t]

)
6= 0}, i ∈ N,

T̄0 = 0.

and the associated jump operators

(S̄if) (x) = E[f(x+ h (x) ∆Z̄T̄i)], i ∈ N
(S̄0f) (x) = f (x) ,

4



where f ∈ Cp.
Note that the stopping times T̄i are well defined because λ̄ < ∞ and that S̄i is independent of i

because the jump sizes of a compound Poisson process are identically distributed. Still, we will keep this
notation as it will help to keep track of the number of jumps.

We will also assume that there exist a process X̂ = {X̂t}t∈[0,1] satisfying the following stochastic
representation condition for a given function space C.

Assumption 2 (SR) Assume that for f ∈ C, X̂ satisfies

E[1{1<T̄1}f(X̂1)] = E[1{1<T̄1}S̄
0P̂1f (x)],

E[1{T̄i<1<T̄i+1}f(X̂1)] = E[1{T̄i<1<T̄i+1}S̄
0P̂T̄1∧1S̄

1P̂T̄2−T̄1
· · · S̄iP̂1−T̄if (x)],

for i ∈ N, where P̂t is a linear operator.

Remark 3 The process X̂ and the linear operator P̂ correspond to the actual simulation scheme cho-
sen to approximate the solution of equation (3) between jumps. That is, this semigroups represents the
approximation of the Wiener and drift parts of the equation. Similarly, C corresponds to the domain of
compositions of the operators S̄iP̂ .

Recall that for each multi-index α = (α1, ..., αd) ∈ Zd+, where Z+ := N ∪ {0}, we denote by |α| :=

α1 + · · ·+ αd = m the order of α. We also use the following notation fα =
∏d
i=1(f i)αi for any function

f : Rk → Rd. For m, p ∈ Z+, we introduce the following spaces of functions:

• Cmp : the set of Cm functions f : Rd → R such that for each multi-index α with 0 ≤ |α| ≤ m,∣∣∣∣ ∂α∂xα f (x)

∣∣∣∣ ≤ C (α) (1 + ‖x‖p)

for some positive constant C (α) .

We will use the notation Cp := C0
p . In each Cmp we consider the norm

‖f‖Cmp = inf{C > 0 :

∣∣∣∣ ∂α∂xα f (x)

∣∣∣∣ ≤ C (1 + ‖x‖p) , 0 ≤ |α| ≤ m,x ∈ R}.

• Cmb : the set of Cm functions f : Rd → R such that for each multi-index α with 1 ≤ |α| ≤ m,∣∣∣∣ ∂α∂xα f (x)

∣∣∣∣ ≤ C (α)

for some positive constant C (α) .

For any function space C, we may abuse the notation and write either f ∈ C or f(x) ∈ C.
For m ∈ N and p ∈ Z+, we will consider the following assumption:

Assumption 4 (Hm,p) h, b, σ ∈ Cmb ,
∫
R |y|

m+p
ν (dy) <∞ and supν̄∈A

∫
R |y|

m+p
ν̄ (dy) <∞.

In fact, all the results exposed in this article require moment conditions up to a certain order depending
on the regularity of each of the coefficients and the functional of Xt to be evaluated. The case p = 0 will
also be considered in what follows and it corresponds to the case that f and its derivatives are bounded.

3 Weak error estimate

Our next objective is to establish the main error estimate of this paper. In order to do this, we need to
introduce a modification of the framework introduced in [20] in the next section. The error estimate will
then be given in Section 3.2.
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3.1 Framework for weak approximation of operator compositions

To simplify the notation, we define the non commutative product of operators as follows. Given a finite
number of linear operators A1, ...., An, we define

n∏
i=1

Ai := A1A2 · · ·An.

Suppose we are given two sequences of linear operators {P̄ it }i=1,..,n and {Qit}i=1...,n, t ∈ [0, 1]. Further-
more, assume that for each i ∈ {1, ..., n}, Qit approximates P̄ it in some sense to be defined later (see
Assumption 7). Given a partition π = {0 = t0 < t1 < · · · < tn−1 < tn = 1}, we define its norm as
|π|n := supi=1,...,n(ti − ti−1). Now, we would like to estimate the following quantity

P̄ 1
t1 P̄

2
t2−t1 · · · P̄

n
1−tn−1

f (x)−Q1
t1Q

2
t2−t1 · · ·Q

n
1−tn−1

f (x) .

In order to achieve this goal, we will make use of the following expansion

n∏
i=1

P̄ iti−ti−1
f (x)−

n∏
i=1

Qiti−ti−1
f (x)

=

n∑
k=1

(
k−1∏
i=1

Qiti−ti−1
(P̄ ktk−tk−1

−Qktk−tk−1
)

n∏
i=k+1

P̄ iti−ti−1

)
f (x) . (5)

Hence, if we have an appropriate norm estimate for
∏n
i=k+1 P̄

i
ti−ti−1

, a norm estimate of the error

P̄ ktk−tk−1
− Qktk−tk−1

and a norm estimate for
∏k−1
i=1 Q

i
ti−ti−1

, then we can expect to obtain a norm

estimate for the difference between
∏n
i=1Q

i
ti−ti−1

f (x) and
∏n
i=1 P̄

i
ti−ti−1

f (x).

From now on, P̄ it : ∪p∈Z+
Cp → ∪p∈Z+

Cp, i ∈ {1, ..., n} is a linear operator for t ∈ [0, 1] and Qit :
∪p∈Z+Cp → ∪p∈Z+Cp, i ∈ {1, ..., n} is a linear operator for t ∈ [0, 1]. The set A(Q) is the set that
characterizes the approximating operator sequences (Q1, ..., Qn) ∈ A(Q) for all n ∈ N. In particular,
the set A(Q) englobes all approximations for different values of n and therefore it is a universal set of
approximation sequences for the problem at hand. Similarly, we also define A(P̄ ) as the universal set
that englobes all approximations of interest using finite Lévy measures.

Assumption 5 (M0) For each p ∈ Z+, if f ∈ Cp then Qitf ∈ Cp and

sup
t∈[0,1]

∥∥Qitf∥∥Cp ≤ K (A(Q), p) ‖f‖Cp ,

for some constant K (A(Q), p) > 0, which does not depend on i ∈ N or f . Furthermore, we assume
0 ≤ Qitf (x) ≤ Qitg (x) whenever 0 ≤ f ≤ g and Qit1R (x) = 1R (x).

As we will always consider the biggest constant, we will write K (A, p) ≡ K (A(Q), p). Similarly, we
will simplify the notation on other constants of this type. So in general, writing A will mean a dependence
on A(Q) and A(P̄ ).

Assumption 6 (M) For all i ∈ N, Qit satisfies (M0) and for each fp (x) := |x|p (p ∈ N) ,

Qitfp (x) ≤ (1 +K (A, p) t) fp (x) +K (A, p) t

for some positive constant K (A, p).

For r ∈ N, we define δr (t) = tr as the rate function which measures the error.

Assumption 7 (Rr) For all i ∈ N, define Errit ≡ Errν̄,it = P̄ it − Qit. For each p ∈ Z+, there exists a
constant q = q (p, r) such that if f ∈ C2r+2

p then∥∥Erritf
∥∥
Cq
≤ K (A, p, r) tδr (t) ‖f‖C2r+2

p
,

for all t ∈ [0, 1] .
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Assumption 8 (MP ) For each r ∈ N and p ∈ Z+, if f ∈ Crp one has that there exists a positive constant
K(A, p, r) such that for k = 1, ..., n− 1

sup
(tk+1,...,tn)∈[0,1]n−k

∥∥∥∥∥
n∏

i=k+1

P̄ itif

∥∥∥∥∥
Crp

≤ K (A, p, r) ‖f‖Crp .

Lemma 9 Under assumption (M) , the operators {Qit}i≥1 satisfy

sup
n

sup
(Q1,...,Qn)∈A(Q)

max
1≤k≤n

(
k−1∏
i=1

Qiti−ti−1

)
f (x) <∞,

for any positive function f ∈ Cp, p ∈ Z+ and |π|nn ≤ C for some positive constant C.

Proof. Let fp (x) = |x|p for p ∈ N. Using assumptions (M0) and (M) , we have

k−1∏
i=1

Qiti−ti−1
fp (x) =

(
k−2∏
i=1

Qiti−ti−1

)
(Qk−1

tk−1−tk−2
fp) (x)

≤ (1 +K (A, p) (tk−1 − tk−2))

(
k−2∏
i=1

Qiti−ti−1

)
fp (x) +K (A, p) (tk−1 − tk−2)

≤ (1 +K (A, p) |π|n)

(
k−2∏
i=1

Qiti−ti−1

)
fp (x) +K (A, p) |π|n ,

Since (1 +K (A, p) |π|n)
k−1 ≤ eCK(A,p), by induction follows that

sup
n

sup
(Q1,...,Qn)∈A(Q)

max
1≤k≤n

(
k−1∏
i=1

Qiti−ti−1

)
f (x) ≤ K (A, p) eK(A,p) (1 + |x|p) <∞.

Theorem 10 Assume (M) for P̄ it and Qit as well as (Rr) for some r ∈ N. Let f ∈ C2r+2
p , for some

p ∈ Z+, then there exists a positive constant K = K (x,A, p, r) ∈ Cq such that∣∣∣∣∣
n∏
i=1

P̄ iti−ti−1
f (x)−

n∏
i=1

Qiti−ti−1
f (x)

∣∣∣∣∣ ≤ K ‖f‖C2r+2
p

n∑
k=1

(tk − tk−1) δr (tk − tk−1) .

Proof. Using the expansion (5), we analyze the inner term, using assumptions (Rr) and (MP ) , to
obtain for q ≡ q(p, r) (stated in (Rr)),∣∣∣∣∣

(
(P̄ ktk−tk−1

−Qktk−tk−1
)

n∏
i=k+1

P̄ iti−ti−1

)
f (x)

∣∣∣∣∣
≤ K (A, p, r) (tk − tk−1) δr (tk − tk−1) (1 + |x|q)

∥∥∥∥∥
n∏

i=k+1

P̄ iti−ti−1
f

∥∥∥∥∥
C2r+2
p

≤ K (A, p, r) (tk − tk−1) δr (tk − tk−1) (1 + |x|q) ‖f‖C2r+2
p

.

Now, Lemma 9 yields∣∣∣∣∣
(
k−1∏
i=1

Qiti−ti−1
(P̄ ktk−tk−1

−Qktk−tk−1
)

n∏
i=k+1

P̄ iti−ti−1

)
f (x)

∣∣∣∣∣
≤ K (A, p, r) (tk − tk−1) δr (tk − tk−1) ‖f‖C2r+2

p

k−1∏
i=1

Qiti−ti−1
((1 + |x|q))

≤ K (x,A, p, r) (tk − tk−1) δr (tk − tk−1) ‖f‖C2r+2
p

.
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Finally, adding up the estimates∣∣∣∣∣
n∏
i=1

P̄ iti−ti−1
f (x)−

n∏
i=1

Qiti−ti−1
f (x)

∣∣∣∣∣
≤ K (x,A, p, r) ‖f‖C2r+2

p

n∑
k=1

(tk − tk−1) δr (tk − tk−1) .

3.2 Main error estimate

Theorem 11 Let X̂ = {X̂t}t∈[0,1] be a process satisfying assumption (SR) with C = Cp, for some

p ∈ Z+. Assume that the operators P̄ it := S̄i−1P̄t and Qit := S̄i−1P̂t, i = 1, ..., n + 1 satisfy assumptions

(M) and (Rr) , for some r ∈ N. Furthermore, assume (Hm,p) and f ∈ C
(2r+2)∨m
p , for some integer

m ≥ 3. Then there exist positive constants K(x,A, p, r) ∈ Cq and Ci(x) ∈ Cp+1, i = 1, ...,m such that

|E[f (X1)]− E[f(X̂1)]|

≤ C1 (x) ‖f‖C1
p
|µ̄|+ C2(x) ‖f‖C2

p

∣∣∣∣∫
R
y2(ν − ν̄) (dy)− σ̄2

∣∣∣∣
+

m−1∑
i=3

Ci (x) ‖f‖Cip

∣∣∣∣∫
R
yi(ν − ν̄) (dy)

∣∣∣∣
+ Cm (x) ‖f‖Cmp {

∫
R
|y|m |ν − ν̄| (dy) +

∫
R
|y|m+p |ν − ν̄| (dy)}

+K (x,A, p, r) ‖f‖C2r+2
p

λ̄−r.

Proof. The proof is developed in Section 4 and follows from Theorems 13 and 18. We recall here that
q = q(p, r) which appears above is the parameter defined in hypothesis Rr.

We also remark that in the particular case that f is bounded, regularity hypothesis can be weakened
using a method of proof similar to the one used in this article.

Example 12 The first simple example of application of the above result is to parametrize the set A by a
parameter ε ∈ (0, 1] so that:

µ̄ ≡ µε = 0,

σ̄2 ≡ σ2
ε =

∫
R
y2(ν − νε) (dy) ,

ν̄(dy) ≡ νε(dy) = 1{|y|>ε}ν(dy).

Take P̂t ≡ P̂ εt to be the operator associated with a one step Euler scheme, so that the overall approximation
consists in applying the Euler scheme between the jumps of Z̄. In this case r = 1 and if we take m = 3
with p = 0, we have that the above result states that for f ∈ C4

0 and under (H3,0), we have

|E[f (X1)]− E[f(X̂ε
1)]| ≤ C3(x) ‖f‖C3

0

∫
{|y|≤ε}

|y|3 ν (dy) +K (x) ‖f‖C4
0
λ−1
ε .

When σ ≡ 0, this result corresponds to Theorem 2 in [9].
In the particular case of an α-stable-like Lévy process with Lévy density ∼ c

|x|1+α near zero, one obtains

that the best convergence rate is λ−1
ε for α ≤ 1 and the worse case is λ

−1/2
ε for α→ 2.

Note that we could have applied high order schemes for Wiener driven SDEs in order to improve the
last term above to λ−mε .

Additional examples, algorithms, and numerical illustrations will be given in Section 6.
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4 Proof of the main error estimate

4.1 Estimation of D1 = E[f (X1)]− E[f
(
X̄1

)
]

Throughout this section we will use the notation u (t, x) = E[f(X1(t, x))]. Here X·(t, x) denotes the flow
associated with X. Some auxiliary properties of this function u (t, x) are established in Lemma 36.

Theorem 13 Assume (Hm,p) and f ∈ Cmp , for some integers m ≥ 3 and p ≥ 0. Then we have the
expansion

E[f (X1)− f
(
X̄1

)
] = −µ̄

∫ 1

0

B̄1
t dt+

∫ 1

0

B̄2
t dt

(∫
R
y2(ν − ν̄) (dy)− σ̄2

)
+

m−1∑
i=3

∫ 1

0

B̄itdt

∫
R
yi(ν − ν̄) (dy) +

∫ 1

0

B̄mt dt, (6)

where

B̄it := E

∑
|α|=i

1

α!

∂|α|

∂xα
u
(
t, X̄t

)
hα
(
X̄t

) , i = 1, ...,m,

B̄mt := E

[ ∑
|α|=m

∫
R

(∫ 1

0

∂|α|

∂xα
u
(
t, X̄t + θyh

(
X̄t

)) (1− θ)|α|−1

(m− 1)!
dθ

)

× hα
(
X̄t

)
yα(ν − ν̄) (dy)

]
.

Furthermore, one has that |B̄it| ≤ Ci (x) ‖f‖Cip , i = 1, ...,m− 1, and

∣∣∣∣∫ 1

0

B̄mt dt

∣∣∣∣ ≤ Cm (x) ‖f‖Cmp

{∫
R
|y|m |ν − ν̄| (dy) +

∫
R
|y|m+p |ν − ν̄| (dy)

}
, (7)

where the positive constants Ci (x) ∈ Cp+1, i = 1, ...,m, do not depend on ν̄.

Proof. To simplify the notation we will give the proof in the case d = k = 1. Note that E[f (X1)] =
E[f (X1 (0, x))] = u (0, x) and

E[f (X1)− f
(
X̄1

)
] = E[u (0, x)− u

(
1, X̄1

)
].

Applying Itô formula to u
(
1, X̄1

)
and taking into account the equation satisfied by u (t, x) (see Lemma

36), we have

E[u (0, x)− u
(
1, X̄1

)
]

= −µ̄E
[∫ 1

0

∂u

∂x

(
t, X̄t

)
h
(
X̄t

)
dt

]
+ E

[∫ 1

0

∫
R

{
u
(
t, X̄t + h

(
X̄t

)
y
)
− u

(
t, X̄t

)
− ∂u

∂x

(
t, X̄t

)
h
(
X̄t

)
y

}
(ν − ν̄) (dy) dt

]
− E

[
σ̄2

2

∫ 1

0

∂2u

∂x2

(
t, X̄t

)
h2
(
X̄t

)
dt

]
.
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Making a Taylor expansion of order m ≥ 3, we obtain

E
[∫ 1

0

∫
R

{
u
(
t, X̄t + h

(
X̄t

)
y
)
− u

(
t, X̄t

)
− ∂u

∂x

(
t, X̄t

)
h
(
X̄t

)
y

}
(ν − ν̄) (dy) dt

]
=

m−1∑
i=2

E
[∫ 1

0

∫
R

1

i!

∂i

∂xi
u
(
t, X̄t

)
hi
(
X̄t

)
yi(ν − ν̄) (dy) dt

]

+ E

[∫ 1

0

∫
R

(∫ 1

0

∂m

∂xm
u
(
t, X̄t + θyh

(
X̄t

)) (1− θ)m−1

(m− 1)!
dθ

)
× hm

(
X̄t

)
ym(ν − ν̄) (dy) dt

]
.

Hence, collecting terms, we have

E[u (0, x)− u
(
1, X̄1

)
] = −µ̄

∫ 1

0

E
[
∂u

∂x

(
t, X̄t

)
h
(
X̄t

)]
dt

+

(∫
R
y2(ν − ν̄) (dy)− σ̄2

)
E
[∫ 1

0

1

2!

∂2

∂x2
u
(
t, X̄t

)
h2
(
X̄t

)
dt

]
+

m∑
i=3

∫ 1

0

E
[

1

i!

∂i

∂xi
u
(
t, X̄t

)
hi
(
X̄t

)]
dt

∫
R
yi(ν − ν̄) (dy)

+

∫ 1

0

E

[∫
R

(∫ 1

0

∂m

∂xm
u
(
t, X̄t + λyh

(
X̄t

)) (1− θ)m−1

(m− 1)!
dθ

)
× hm

(
X̄t

)
ym(ν − ν̄) (dy)

]
dt,

and we obtain the expansion (6) . Under the assumption (Hm,p), using Lemmas 33 and 36, one obtains
the bounds for B̄it and (7).

4.2 Estimation of D̂1 = E[f
(
X̄1

)
]− E[f(X̂1)]

Lemma 14 For i ∈ Z+, one has that

E[1{T̄i<1<T̄i+1}f(X̄1)] = E[1{T̄i<1<T̄i+1}P̄1−T̄if(X̄T̄i)].

Proof. Define H̄i,j := σ(X̄T̄j , T̄1, ..., T̄i+1), i ∈ N ∪ {0}, j = 1, .., i. Then, on the set
{
T̄i < 1 < T̄i+1

}
E[f(X̄1(T̄i, X̄T̄i))|H̄

i,i]

= E

[
f(x+

∫ 1

t

b̄(X̄s(t, x))ds

+

∫ 1

t

σ(X̄s(t, x))dBs + σ̄

∫ 1

t

h(X̄s(t, x))dWs)

∣∣∣∣∣H̄i,i
]∣∣∣∣∣
t=T̄i,x=X̄T̄i

= E[f
(
Ȳ1 (t, x)

)
]|t=T̄i,x=X̄T̄i

,

where in the last equality we have used that X̄s (t, x) satisfies the same SDE as Ȳs(t, x) on T̄i ≤ t < 1 <
T̄i+1. Now applying Lemma 35 and the definition of (P̄tf) (x) we obtain the result.

Remark 15 Applying the previous lemma with i = 0 and using that S̄0 is the identity operator we obtain
that

E[1{1<T̄1}f(X̄1)] = E[1{1<T̄1}S̄
0P̄1f (x)].

Proposition 16 For i ∈ N, the following equality holds.

E[1{T̄i<1<T̄i+1}f
(
X̄1

)
] = E[1{T̄i<1<T̄i+1}S̄

0P̄T̄1
S̄1P̄T̄2−T̄1

· · · S̄iP̄1−T̄if (x)].
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Proof. Define Ḡi,j := σ(X̄T̄j−, T̄1, ..., T̄i+1), i ∈ N, j = 1, .., i. By Lemma 14 and the definition of the

operator S̄i we have that

E[1{T̄i<1<T̄i+1}f
(
X̄1

)
]

= E[1{T̄i<1<T̄i+1}P̄1−T̄if(X̄T̄i)]

= E[1{T̄i<1<T̄i+1}E[P̄1−T̄if(X̄T̄i− + h(X̄T̄i−)∆Z̄T̄i)|Ḡ
i,i]]

= E[1{T̄i<1<T̄i+1}S̄
iP̄1−tf(x)|t=T̄i,x=X̄T̄i−

]

= E[1{T̄i<1<T̄i+1}S̄
iP̄1−T̄if(X̄T̄i−(T̄i−1, X̄T̄i−1

))]

= E[1{T̄i<1<T̄i+1}S̄
iP̄1−T̄if(ȲT̄i(T̄i−1, X̄T̄i−1

))].

Where in the last equality we have used that∫ T̄i−

T̄i−1

∫
R
h(X̄s(T̄i−1, X̄T̄i−1

))yN̄ (dy, ds) = 0.

Reasoning analogously to the proof of Lemma 14, one has that

E
[
1{T̄i<1<T̄i+1}S̄

iP̄1−T̄if(ȲT̄i(T̄i−1, X̄T̄i−1
))
]

= E
[
1{T̄i<1<T̄i+1}E[S̄iP̄1−T̄if(ȲT̄i(T̄i−1, X̄T̄i−1

))|H̄i,i−1]
]

= E
[
1{T̄i<1<T̄i+1}E[S̄iP̄1−tif(Ȳti (ti−1, x))]|ti=T̄i,ti−1=T̄i−1,x=X̄T̄i−1

]
= E

[
1{T̄i<1<T̄i+1}P̄T̄i−T̄i−1

S̄iP̄1−T̄if(XT̄i−1
)]
]
.

Iterating this procedure the result follows.
Now we need the following technical result.

Proposition 17 We have for r ∈ N,

∞∑
i=0

i+1∑
k=1

E
[
1{T̄i<1<T̄i+1}

(
T̄k ∧ 1− T̄k−1

)r+1
]
≤ C (r) λ̄−r.

Proof. From Lemma 11 in [9], one has that

E
[∫ 1

0

(t− η (t))
m
dt

]
≤ C (m) λ̄−m,

where η (t) = sup{T̄i : T̄i ≤ t} and C (r) is a constant that only depends on r. We can write

E
[∫ 1

0

(t− η (t))
r
dt

]
=

∞∑
i=0

E
[
1{T̄i<1<T̄i+1}

∫ 1

0

(t− η (t))
r
dt

]

=

∞∑
i=0

i+1∑
k=1

E[1{T̄i<1<T̄i+1}

∫ T̄k∧1

T̄k−1

(t− η (t))
r
dt],

and the result follows by integration.
The main result of this section is the following.

Theorem 18 Let {X̄t}t∈[0,1] be the process defined in (3) and {X̂t}t∈[0,1] a process satisfying assumption

(SR) with C = Cp for some p ∈ Z+. If the operators P̄ it := S̄i−1P̄t and Qit := S̄i−1P̂t associated to these
processes satisfy assumptions (M) and (Rr) with δr(t) = tr for some r ∈ N. Then for any f ∈ C2r+2

p

there exists a positive constant K = K (x,A, p, r) ∈ Cq such that∣∣∣E[f(X̄1)]− E[f(X̂1)]
∣∣∣ ≤ K (x,A, p, r) ‖f‖C2r+2

p
λ̄−r

11



Proof. We can write

E[f(X̄1)]− E[f(X̂1)] = E

[ ∞∑
i=0

[1{T̄i<1<T̄i+1}(f(X̄1)− f(X̂1))

]
.

By Proposition 16 and assumption (SR), we have

E

[ ∞∑
i=0

[1{T̄i<1<T̄i+1}(f(X̄1)− f(X̂1))

]

=

∞∑
i=0

E

[
1{T̄i<1<T̄i+1}(S̄

0P̄T̄1
S̄1P̄T̄2−T̄1

· · · S̄iP̄1−T̄i

− S̄0P̂T̄1
S̄1P̂T̄2−T̄1

· · · S̄iP̂1−T̄i)f (x)

]

=

∞∑
i=0

E

[
1{T̄i<1<T̄i+1}

(
i+1∏
k=1

P̄ kT̄k∧1−T̄k−1
−

i+1∏
k=1

QkT̄k∧1−T̄k−1

)
f (x)

]
.

Then, by Theorem 10, we obtain that∣∣∣E[f(X̄1)]− E[f(X̂1)]
∣∣∣

≤
∞∑
i=0

∣∣∣∣∣E
[
1{T̄i<1<T̄i+1}

(
i+1∏
k=1

P̄ kT̄k∧1−T̄k−1
−

i+1∏
k=1

QkT̄k∧1−T̄k−1

)
f (x)

]∣∣∣∣∣
≤ K (x,A, p, r) ‖f‖C2r+2

p

∞∑
i=0

i+1∑
k=1

E
[
1{T̄i<1<T̄i+1}

(
T̄k ∧ 1− T̄k−1

)
δr
(
T̄k ∧ 1− T̄k−1

)]
,

Then the result follows by Proposition 17.

5 Optimal approximation of Lévy measures

In this section, we discuss the optimization of the error bound in Theorem 11, i) with respect to the
choice of the approximating Lévy process Z̄. We would like to choose the parameters µ̄ and σ̄ and the
Lévy measure ν̄ in order to make the first four terms in the expansion small, that is, we concentrate on

C1 (x) |µ̄|+ C2(x)

∣∣∣∣∫
R
y2(ν − ν̄) (dy)− σ̄2

∣∣∣∣
+

m−1∑
i=3

Ci (x)

∣∣∣∣∫
R
yi(ν − ν̄) (dy)

∣∣∣∣+ Cm (x)

∫
R
|y|m |ν − ν̄| (dy) . (8)

Our approach is to take µ̄ = 0 and σ̄ = 0, so that the expansion becomes

m−1∑
i=2

Ci (x)

∣∣∣∣∫
R
yi(ν − ν̄) (dy)

∣∣∣∣+ Cm (x)

∫
R
|y|m |ν − ν̄| (dy) ,

(see Remark 24 for an alternative choice of σ̄).
Next, we choose the Lévy measure ν̄ in the class of measures for which the first sum is equal to zero

and then optimize over ν̄ in this class with fixed intensity Λ = ν̄(R) <∞ in order to make the last term
as small as possible. We will denote by M the set of all positive finite measures on R. The problem of
finding the optimal approximating Lévy measure then takes the following form.
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Problem 19 (Ωm,Λ) Let ν be a Lévy measure on R with finite moment of order m, where m ≥ 2, and
define µk =

∫
R y

kν(dy), 2 ≤ k ≤ m. For any ν̄ ∈M define the functional

J (ν̄) :=

∫
R
|y|m|ν − ν̄|(dy).

The problem Ωm,Λ,m ≥ 2, consists in finding

Em(Λ) := min
ν̄∈M

J (ν̄) , (9)

under the constraints ∫
R
ν̄(dy) = Λ and

∫
R
ykν̄(dy) = µk, k = 2, . . . ,m− 1, (10)

where Λ ≥ minν̄∈Mm−1
ν̄(R), where for m ≥ 2 we set

Mm := {ν̄ ∈M :

∫
R
ykν̄(dy) = µk, k = 2, . . . ,m}, (11)

and M1 :=M.

The computation of minν̄∈Mm
ν̄(R) form ≥ 2 is a classical problem, known as the Hamburger problem.

A summary of known results on this problem is provided in Appendix A.

Proposition 20 The problem Ωm,Λ,m ≥ 2, admits a solution.

Proof. By Corollary 31, there exist at least one measure satisfying the constraints (10). For m ≥ 3, we
define by MΛ

m the set of all such measures. For m = 2, we define by MΛ
2 the set of all measures ν̄ ∈ M

satisfying ν̄(R) = Λ and
∫
R y

2ν̄(dy) ≤ C, where

C = 2

∫
R
y2ν(dy).

It is clear that the minimum in (9) is the same as the minimum over the set MΛ
m for any m ≥ 2.

Define

Ka := {y ∈ R : |y| ≤ a}, a > 0.

By Chebyshev’s inequality we have that

ν̄(R\Ka) =

∫
{|y|>a}

ν̄ (dy) ≤ 1

a2

∫
R
y2ν̄ (dy) , ∀ν ∈MΛ

m,

which yields the tightness of MΛ
m. By Prokhorov’s theorem, we have that the set MΛ

m is relatively sequen-
tially compact but, as MΛ

m is closed (see e.g., Chapter VII in Doob [6]), we also have that is sequentially
compact. The set {J(ν̄) : ν̄ ∈ MΛ

m} is bounded from below and, hence, it has an infimum, say Em (Λ).
Then, by the basic properties of the the infimum, we can find a sequence of real numbers of the form
{J (ν̄k)}k≥1 converging to Em(Λ). As MΛ

m is sequentially compact we can always find a sequence {ν̄kl}l≥1

that converges weakly to some ν̄∗ ∈ MΛ
m. But {J (ν̄kl)}l≥1, being a subsequence of the convergent se-

quence {J (ν̄k)}k≥1, must converge to Em(Λ). Hence, we only need to prove the lower semicontinuity of
the functional J, that is, if ν̄k converges weakly to ν̄ then lim infk→∞ J (ν̄k) ≥ J (ν̄) .

Let ν̄ ∈ MΛ
m. By the Hahn decomposition theorem, there exist disjoint measurable sets S+ and S−

such that S+ ∪ S− = R, ν − ν̄ is nonnegative on S+ and nonpositive on S−. The functional J(ν̄) can be
alternatively written as

J(ν̄) = sup
f∈L∞,‖f‖≤1

∫
R
|y|mf(y)(ν − ν̄)(dy),

=

∫
R
|y|mf∗(y)(ν − ν̄)(dy), with f∗(y) = 1S+(y)− 1S−(y),
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where L∞ is the space of bounded measurable functions endowed with the essential supremum norm.
This implies that

J(ν̄) ≥ sup
f∈C0,‖f‖≤1

∫
R
|y|mf(y)(ν − ν̄)(dy), (12)

where C0 is the space of continuous functions with compact support.
Fix ε > 0. By the monotone convergence theorem there exists A ∈ (1,∞) such that

J(ν̄)−
∫ A

−A
|y|mf∗(y)(ν − ν̄)(dy) ≤ ε.

Since the measure µ := |y|m(ν − ν̄) is a finite measure on R, both measures in its Jordan decomposition
are also finite and hence inner regular (see e.g. V.16 in [6]). Therefore, we can find two closed sets
B+ ⊆ S+ ∩ (−A,A) and B− ⊆ S− ∩ (−A,A) such that µ is positive on B+, negative on B− and
µ(R \ (B+ ∪ B−)) ≤ 2ε. By Lusin’s theorem, we can find an interpolation between 1B+ and 1B− . That
is, a function f ∈ C0 with ‖f‖ ≤ 1 such that f(y) = 1 for y ∈ B+, f(y) = −1 for y ∈ B− and f(y) = 0
for y /∈ (−A,A) with

µ {y ∈ R; |f − 1B− + 1B+ |(y) > ε} < ε.

Therefore, finally

J(ν̄)−
∫
R
|y|mf(y)(ν − ν̄)(dy) ≤ ε+

∫ A

−A
|y|m(f∗(y)− f(y))(ν̄ − ν)(dy) ≤ 3ε,

which, together with (12) means that

J(ν̄) = sup
f∈C0,‖f‖≤1

∫
R
|y|mf(y)(ν − ν̄)(dy),

because the choice of ε was arbitrary.
For a sequence (ν̄k) which converges weakly to ν̄, we have, for every f ∈ C0 with ‖f‖ ≤ 1:∫

R
|y|mf(y)(ν − ν̄)(dy) = lim inf

k

∫
R
|y|mf(y)(ν − ν̄k)(dy)

≤ lim inf
k

sup
f∈C0,‖f‖≤1

∫
R
|y|mf(y)(ν − ν̄k)(dy)

= lim inf
k

J(ν̄k).

Now, taking the sup with respect to f in the left-hand side, we obtain the desired result.
The following result provides a characterization of the solutions of Ωm,Λ, which will be useful in finding

explicit representations for small m.

Proposition 21 The measure ν̄ is a solution of (9) if and only if it satisfies the constraints (10), and

there exists a piecewise polynomial function P (y) = a0 +
∑m−1
i=2 aiy

i + |y|m such that P (y) ≥ 0 for all
y ∈ R, a function α : R 7→ [0, 1] and a positive measure τ on R such that

ν̄(dy) = ν(dy)1{P (y)<2|y|m} + α(y)ν(dy)1{P (y)=2|y|m} + (τ(dy) + ν(dy))1{P (y)=0}. (13)

Remark 22 If the measure ν is absolutely continuous with respect to Lebesgue’s measure, the expression
(13) simplifies to

ν̄(dy) = ν(dy)1{P (y)<2|y|m} + τ(dy)1{P (y)=0}.

Moreover, in the case m = 2q, q ∈ N, P (y) is a polynomial and the measure τ may always be taken to be
an atomic measure with at most q atoms (because a positive polynomial of degree m = 2q has at most q
distinct roots).
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Proof. Since the functional J is convex, a measure ν̄∗ which satisfies the constraints (10) is a solution
of (9) if and only if there exists a vector of Lagrange multipliers (p0, p2, . . . , pm) such that ν̄∗ minimizes
the Lagrangian L(ν̄, p) over all measures ν̄ ∈ M, and L(ν̄∗, p) > −∞. The Lagrangian for this problem
takes the form (dropping the terms which do not depend on ν̄):

L(ν̄, p) =

∫
R
|y|m|ν̄ − ν|(dy) +

∫
R
ν̄(dy)(p0 +

m−1∑
i=2

piy
i).

Set P (y) = p0 +
∑m−1
i=2 piy

i + |y|m. Let y0 ∈ R be such that P (y0) < 0, and consider the family of
measures ν̄a (dy) = aδy0

, where a > 0. Then, for any (p0, ..., pm),

L(ν̄a, p) =

∫
R\{y0}

|y|mν(dy) + |a− a0||y0|m + a

(
p0 +

m−1∑
i=2

piy
i
0

)
,

where a0 = ν({y0}). For a > a0, we have that

L(ν̄a, p) =

∫
R\{y0}

|y|mν(dy)− a0|y0|m + aP (y0) →
a→+∞

−∞.

Therefore, necessarily P (y) ≥ 0 for all y ∈ R. Now, as before, let the Jordan decomposition of ν̄ − ν be
given by ν̄ − ν = µ+ − µ−, where µ+ and µ− are supported on disjoint measurable sets. Then,

L(ν̄, p) =

∫
R
P (y)µ+(dy) +

∫
R
(2|y|m − P (y))(µ−(dy)− ν(dy)) +

∫
R
|y|mν(dy).

Then, it is clear that at optimum,

• µ+ should be equal to a measure with support {y : P (y) = 0}. Therefore in general, there will be
no uniqueness.

• µ− ≡ 0 on {y : 2|y|m − P (y) > 0}.

• µ− ≡ ν on {y : 2|y|m − P (y) < 0}. This follows because µ+ and µ− are supported on disjoint
measurable sets and µ− ≤ ν.

• µ− satisfies ν − µ− ≥ 0 on {y : 2|y|m − P (y) = 0}.

Combining these observations, we complete the proof.

Example 23 Let m = 2q, q ∈ N, and ν be absolutely continuous. Since there are m− 1 constraints (10),
the polynomial P must, in general, have exactly q distinct roots, otherwise there are not enough degrees
of freedom to satisfy all the constraints. Therefore, we shall restrict our attention to polynomials of the
form

P (y) = (y − a1)
2 · · · (y − aq)2

,

and the measure τ will be of the form

τ (dy) =

q∑
i=1

αiδai .

The roots {ai}qi=1 and the masses {αi}qi=1 : are found from the following system of m nonlinear equations:

q∑
j=1

aj

q∏
i 6=j

a2
i = 0,

∫
{(y−a1)2···(y−aq)2>2y2q}

ν (dy) +

q∑
i=1

αi = Λ,

∫
{(y−a1)2···(y−aq)2>2y2q}

ykν (dy) =

q∑
i=1

αia
k
i , k = 2, ..., 2q − 1.
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Obviously, in general, the solution to this system can only be approximated numerically and this does not
seem an easy task. For m ≤ 4, the solutions are quite explicit; they are discussed in the following section.

To complete the analysis we need to quantify the dependence of the optimal value of the error Em (Λ)
on Λ when Λ tends to infinity. This is achieved in the following section for small values of m and in
Section 5.2 for general m, under a regularity assumption on the Lévy measure.

5.1 Explicit examples for small values of m

Throughout this section we assume that the measure ν is absolutely continuous with respect to the
Lebesgue measure.

The case m = 2. We use the characterization of Proposition 21 (see also Remark 22). The function
P (y) is necessarily of the form P (y) = a0 + y2 for some a0 ≥ 0, and therefore the optimal solution is
given by

ν̄ε (dy) = 1{y2>ε}ν (dy) ,

where ε = ε(Λ) solves ν({y2 > ε}) = Λ. The approximation error E2(Λ) is given by

E2(Λ) = J(ν̄ε(Λ)) =

∫
{y2≤ε(Λ)}

y2ν(dy),

which can go to zero at an arbitrarily slow rate as Λ→∞.

The case m = 3. The function P (y) is now of the form P (y) = a0 + a2y
2 + |y|3 and, as P (y) = P (−y),

it suffices to study P (y), y ≥ 0. To be able to satisfy the constraints (10), the optimal measure must have
nontrivial atomic part. Hence, P (y) has to have at least one positive root. The nonnegativity restriction
on P (y) yields that P (y) must have exactly one positive root of multiplicity 2. Therefore, P (y) must be
of the form

P (y) = (y + ε)(y − δ)2, , y ≥ 0 ε > 0, δ > 0.

Since the coefficient in front of the first power of y is zero, we conclude that δ = 2ε and P (y) is necessarily
of the form

P (y) = (y + ε)(y − 2ε)2, y ≥ 0

P (y) = −(y + 2ε)2(y − ε), y < 0,

or, in other words, P (y) = |y|3−3εy2 +4ε3, for some ε > 0. It is now easy to see that an optimal solution
is given by

ν̄ε (dy) = 1{|y|>ε}ν (dy) + α1δ−2ε + α2δ2ε,

where ε = ε(Λ) solves ∫
{|y|>ε}

ν (dy) +
1

4ε2

∫
{|y|≤ε}

y2ν (dy) = Λ,

and

α1 + α2 =
1

4ε2

∫
{|y|≤ε}

y2ν (dy) .

The approximation error E3(Λ) satisfies E3(Λ) = o(Λ−1/2) as Λ→∞, since

E3(Λ) =

∫
{|y|≤ε(Λ)}

|y|3ν(dy) + 2ε(Λ)

∫
{|y|≤ε(Λ)}

y2ν(dy) ≤ 3ε(Λ)

∫
{|y|≤ε(Λ)}

y2ν(dy) = o(ε(Λ))

and

lim
Λ→∞

ε(Λ)2Λ = lim
ε↓0

ε2

∫
{|y|>ε}

ν(dy) + lim
ε↓0

1

4

∫
{|y|≤ε}

y2ν(dy) ≤ lim
c↓0

∫
{|y|≤c}

y2ν(dy) = 0.

However, the scheme with m = 4 achieves a better rate with the same computational cost.
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The case m = 4. The function P (y) is now of the form P (y) = a0 + a2y
2 + a3y

3 + y4. Once again,
for P to be nonnegative, the roots must have multiplicity 2 or 4, and to be able to satisfy the constraints
(10), we require that P have exactly 2 roots. Using the fact that the coefficient in front of the first power
of y is zero, we deduce that

P (y) = (y − ε)2(y + ε)2 = y4 − 2y2ε2 + ε4

for some ε > 0. Analyzing the function 2y4−P (y) = y4−ε4 +2ε2y2 it is easy to check that {2y4−P (y) >

0} = {|y| > ε
√√

2− 1}. Hence, the optimal solution is of the form

ν̄ε (dy) = ν(dy)1
{|y|>ε

√√
2−1}

+ α1δ−ε + α2δε,

where the constants α1 and α2 are determined from the moment constraints and satisfy

α1 =
1

2ε3

(
−
∫
{|y|≤ε

√√
2−1}

y3ν (dy) + ε

∫
{|y|≤ε

√√
2−1}

y2ν (dy)

)
,

α2 =
1

2ε3

(∫
{|y|≤ε

√√
2−1}

y3ν (dy) + ε

∫
{|y|≤ε

√√
2−1}

y2ν (dy)

)
,

and ε = ε(Λ) is found from the intensity constraint F (ε) = Λ, where

F (ε) =

∫
{|y|>ε

√√
2−1}

ν (dy) +
1

ε2

∫
{|y|≤ε

√√
2−1}

y2ν (dy) .

Note that F is strictly decreasing, continuous, and satisfies limε↓0 F (ε) = +∞ and limε↑+∞ F (ε) = 0,
which ensures the existence of a unique solution for F (ε) = Λ. Also note that∣∣∣∣∣

∫
{|y|≤ε

√√
2−1}

y3ν (dy)

∣∣∣∣∣ ≤ ε
√√

2− 1

∫
{|y|≤ε

√√
2−1}

y2ν (dy)

≤ ε
∫
{|y|≤ε

√√
2−1}

y2ν (dy) ,

which ensures the non negativity of α1, α2.
The worst case convergence rate can be estimated similarly to the case m = 3 and satisfies E4(Λ) =

o(Λ−1) as Λ → ∞. As we shall see in the next section, in the presence of a more detailed information
about the explosion of the Lévy measure at zero, this convergence rate can be refined.

Remark 24

1. The calculations of this section make it clear that as far as weak approximations are concerned, the
Asmussen-Rosinski approach of approximating the small jumps of a Lévy process with a Brownian
motion is not necessarily the only answer. In fact, the case m = 3 studied above leads to an
approximation which is asymptotically equivalent to the Asmussen-Rosinski method and the case
m = 4 leads to a scheme which converges at a faster rate, for the same computational cost.

2. Instead of taking σ̄ = 0, one may choose σ̄ which makes the second term in (8) equal to zero, which
leads, for m ≥ 3, to the following optimization problem for ν̄:

E ′m(Λ) := min
ν̄∈M

J (ν̄)

under the constraints∫
R
ν̄(dy) = Λ and

∫
R
ykν̄(dy) = µk, k = 3, . . . ,m− 1.

This problem assumes the use of the Asmussen-Rosinski approach to match the second moment of
ν. The analysis of this problem can be carried out using the same tools described above and leads
to similar results.
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5.2 Convergence rates for regularly varying Lévy measures

The notion of regular variation provides a convenient tool to study the convergence of our moment
matching schemes even in the cases when m is large and an explicit solution of (Ωm,Λ) is not available.
We refer to [3] for background on regular variation.

As usual, we denote by Rα the class of regularly varying functions with index α (at zero or at infinity
depending on the context). The following assumption, which is satisfied by many parametric Lévy models
used in practice (stable, tempered stable/CGMY, normal inverse Gaussian, generalized hyperbolic etc.)
may be used to quantify the rate of explosion of the Lévy measure near zero.

Assumption 25 There exists α ∈ (0, 2), positive constants c+ and c− with c+ + c− > 0 and a function
g ∈ R−α (at zero) such that the Lévy measure ν satisfies

ν((y,∞)) ∼ c+g(y) and ν((−∞,−y)) ∼ c−g(y) as y ↓ 0, (Rα).

Theorem 26 Let m be even and let the Lévy measure ν satisfy the assumption (Rα). Then there exists
a function f(Λ) with f ∈ R1−m/α as Λ→∞ such that the error bound Em(Λ) defined by (9) satisfies

cf(Λ) ≤ Em(Λ) ≤ cf(Λ)

for all Λ sufficiently large, and for some constants c, c with 0 < c ≤ c <∞. The function f is given explic-
itly by f(Λ) = (g←(Λ))mΛ, where g← is a generalized inverse of the function g appearing in Assumption
(Rα).

Remark 27

1. The regular variation implies that as Λ→∞, the error goes to zero as Λ1−mα times a slowly varying
factor (such as logarithm). To compute the explicit convergence rate, the exact form of the regularly
varying function g must be known. For example, if g(y) = y−α then

f(Λ) ∼ CΛ1−mα

for some strictly positive constant C.

2. In the case m = 4 it can be shown using similar methods that Em(Λ) ∼ Cf(Λ) for some strictly
positive constant C.

Proof. Throughout the proof, we let q = m
2 . To obtain an upper bound on the error, we construct a,

possibly suboptimal, measure satisfying the constraints which attains the desired rate. Let ε > 0, and
define

νε(dy) = ν(dy)1{|y|>ε} + ν̄ε(dy), (14)

where ν̄ε(dy) is the solution (minimizer) of the moment problem

Λ̄ε := min{ν̄(R) : ν̄ ∈M,

∫
R
ykν̄(dy) = µεk, k = 2, . . . ,m},

where we define µεk :=
∫
{|y|≤ε} y

kν(dy). Then,

Em(Λε) ≤ J (νε) :=

∫
R
ym|ν − νε|(dy)

≤
∫
{|y|≤ε}

ymν(dy) +

∫
R
ymν̄ε(dy) = 2

∫
{|y|≤ε}

ymν(dy), (15)

where

Λε := ν̄ε(R) =

∫
{|y|>ε}

ν(dy) + Λ̄ε.
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By Proposition 29,
Λ̄ε = inf{µε0 : {µεi+j}

q
i,j=0 ≥ 0 for some µε1}.

On the other hand, the matrix {µεi+j}
q
i,j=1 is (nonnegative) positive definite, because it is a moment

matrix of a measure. Therefore, by Sylvester’s criterion (applied here to lower right minors) we can write

Λ̄ε = inf{µε0 : det({µεi+j}
q
i,j=0) ≥ 0 for some µε1}

and also
Λ̄ε ≤ inf{µε0 : det({µεi+j1i+j 6=1}qi,j=0) ≥ 0}

But
det({µεi+j1i+j 6=1}qi,j=0) = µε0 det({µεi+j}

q
i,j=1) + det({µεi+j1i+j>1}qi,j=0)

and therefore

Λ̄ε ≤
∣∣det({µεi+j1i+j>1}qi,j=0)

∣∣
det({µεi+j}

q
i,j=1)

By integration by parts and Karamata’s theorem (Theorem 1.5.11 in [3]), we show that

lim
ε↓0

∫
(0,ε]
|y|pν(dy)

εp
∫

(ε,∞)
ν(dz)

=
α

p− α
, for all p > α.

and so

lim sup
ε↓0

Λ̄ε∫
|y|>ε ν(dy)

≤

∣∣∣det({ α
i+j−α1i+j>1}qi,j=0)

∣∣∣
det({ α

i+j−α}
q
i,j=1)

.

The matrix (Aij)
m
i,j=1 = ( α

i+j−α )qi,j=1 is positive definite because

〈z,Az〉 =

∫ 1

0

x−α−1
( q∑
i=1

zix
i
)2

dx.

Therefore, detA > 0 and there exits a constant C <∞ such that

Λ̄ε ≤ C
∫
|z|>ε

ν(dz)

for ε sufficiently small.
To sum up, we have found that there exist two positive constants C1 and C2 such that for ε sufficiently

small,

Em(Λε) ≤ 2

∫
{|y|≤ε}

ymν(dy) ≤ C1ε
m

∫
|y|>ε

ν(dy) (16)

Λε =

∫
|y|>ε

ν(dy) + Λ̄ε ≤ C2

∫
|y|>ε

ν(dy).

Let Λ(ε) :=
∫
|y|>ε ν(dy) and ε(Λ) := inf{ε : Λ(ε) < Λ}. Since Λ(ε) ∈ R−α, as ε ↓ 0, by Theorem 1.5.12

in [3], we also get that ε(Λ) ∈ R−1/α as Λ→∞.
Now, for a given Λ, consider the measure 14 with ε = ε(Λ/C2), and possibly an additional atom at

0 to satisfy the intensity constraint. This measure satisfies the constraints of Problem (Ωm,Λ) and, by
(16), has error bounded by

C1ε
m(Λ/C2)

Λ

C2
∼ C1C

m/α−1
2 Λεm(Λ),

so that the upper bound of the theorem holds with f(Λ) = Λεm(Λ) ∈ R1−m/α.
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To compute the lower bound, observe that

Em(Λ) ≥ min
ν̂∈M, ν̂(R)=Λ

J (ν̂) ,

and the explicit optimal solution for the problem in the right-hand side is given by

νε(dy) = ν(dy)1|y|>ε + ξν(dy)1|y|=ε,

where ε and ξ ∈ [0, 1] are such that
∫
|y|>ε ν(dy) + ξν({|y| = ε}) = Λ. This is justified by an argument

similar to the one in the proof of Proposition 21, with P (y) = a0 + |y|m since there are no constraints
except ν̂(R) = Λ. In particular, ε coincides with ε(Λ) introduced above. On the other hand, the error
functional associated to this solution satisfies

J(νε) =

∫
R
|y|m|ν − νε|(dy) ≥

∫
|y|<ε

|y|mν(dy) ∼ α

m− α
Λεm(Λ),

which proves the lower bound.

6 Description of the algorithm and numerical results

According to Section 5, our approach to find an optimal approximation for the Lévy measure starts
by setting µ̄ = 0 and σ̄ = 0. Hence, the solution of equation (3) between jumps satisfies the following
equation

Ȳt(x) = x+

∫ t

0

b̄(Ȳs(x))ds+

∫ t

0

σ(Ȳs(x))dBs, (17)

where

b̄(x) = b(x) + γ̄h(x),

γ̄ = −
∫
R
yν̄(dy).

This implies that the drift term of the continuous part will depend on ν̄ through the parameter γ̄.
Therefore, once we have fixed ν̄ the optimal approximation of the Lévy measure ν, we need to choose a
weak approximation method to solve equation (17) . We will consider the following approaches:

• Weak Taylor approximations: These methods are based on the Itô-Taylor expansion of the
solution of (17). This expansion is the stochastic analogue of the classical Taylor expansion, where
the role of polynomials is played by multiple iterated stochastic integrals. Truncating the expansion
at a certain degree of the iterated integrals we obtain an approximation method with global order of
convergence related to that degree, see Proposition 5.11.1 in [8]. We will consider the weak Taylor
approximations with global order of convergence 1,2 and 3, which we will denote by WT1, WT2
and WT3. Although the method is conceptually simple to understand, it presents some difficulties
in the implementation as we need to sample from the joint law of multiple stochastic integrals of
different orders. This makes the method less appealing from a practical point of view, especially
when the driving Brownian motion is multi-dimensional.

• Kusuoka-Lyons-Victoir methods: These methods are also based on stochastic Taylor expan-
sions. The idea is to approximate the expectation under the Wiener measure by the expectation
under a probability measure supported on a finite number of paths of finite variation. By con-
struction, the expectations of the iterated Stratonovich integrals, up to a certain degree, under
this new measure match the expectations of the corresponding iterated integrals under the Wiener
measure. Using the Stratonovich-Taylor formula one can deduce that the approximations obtained
have global order of convergence depending on the degree of the iterated integrals taken into ac-
count, see [12]. In particular we will consider the approximation schemes of degree 3 and 5, denoted
by KLV3 and KLV5, which give, respectively, global order of convergence 1 and 2. Deriving and
implementing these methods is not straightforward, see [7] for an account on these issues.
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• Ninomiya-Victoir method: The Ninomiya-Victoir method can be seen as a stochastic splitting
method. The idea is to find suitable small time approximations of the semigroup associated to the
solution of equation (17) . These approximations are written in terms of weighted products (com-
positions) of simpler semigroups associated to the so called coordinate processes and are deduced
using formal Taylor expansions of the semigroups involved. The main difference with respect to
the classical splitting methods is that, in the stochastic case, we need to find appropriate stochastic
representations of the semigroups in order to implement the Monte Carlo method. These repre-
sentations involve solving or approximating ODEs with random coefficients. We will consider the
algorithm given by Ninomiya and Victoir in [14], which has global order of convergence 2.

By using similar techniques as in [20], one can show that the operators induced by the weak approxi-
mation schemes above satisfy assumptions (M0) , (M) and (Rr) . Having fixed an optimal Lévy measure
ν̄ and a weak approximation scheme Ŷt for the continuous part we can apply the following algorithm to
obtain a sample of X̂1.

Algorithm to generate a weak approximation of X̂1

Requires:
The initial condition x0 ∈ Rd.
The optimal Lévy measure ν̄.
The weak approximation method Ŷt (x) , to solve Ȳt (x) , t ∈ (0, 1], x ∈ Rd

Compute λ̄ = ν̄(R) and γ̄ = −
∫
R yν̄(dy)

Set Tlast = 0, xnew = x0

Simulate the next jump time T ∼ Exp(λ̄)
While (T < 1− Tlast) do
{

Compute ŶT (xnew)
Simulate ∆, a jump from the Poisson random measure
with Lévy measure ν̄
Set xnew = ŶT (xnew) + h(ŶT (xnew))∆
Set Tlast = T
Simulate the next jump time T ∼ Exp(λ̄)

}
Compute Ŷ1−Tlast(xnew)

Set X̂1 = Ŷ1−Tlast(xnew)

Return X̂1

Applying, independently, the previous algorithm M times we obtain a sequence {X̂i
1}i=1,...,M and the

Monte Carlo estimator of E[f(X1)] is given by

1

M

M∑
i=1

f(X̂i
1).

We end this section with some numerical examples. We evaluate E[f(X1)], where X is the solution
of equation (1) with b(x) ≡ γ0h(x) and σ(x) ≡ σ0h(x). To approximate the Lévy process, we use the
optimal schemes presented in section 5.1 with m = 2, m = 3 and m = 4, and denoted, respectively, by
OA2, OA3 and OA4 in the examples below (here “OA stands for optimal approximation”). For solving
the continuous SDE between the times of jumps, we use the schemes WT1, WT2, WT3, KLV3, KLV5
and NV mentioned above. Finally, the process Z is taken to be a CGMY process, which is a Lévy process
with no diffusion component and Lévy density of the form

ν(x) = C
e−λ−|x|1x<0 + e−λ+|x|1x>0

|x|1+α
.
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The third component of the characteristic triplet is chosen in such way that Z becomes a martingale. An
algorithm for simulating the increments of Z is available [16], which makes it possible to compare our
methods to the traditional Euler scheme. Also, this process satisfies the assumption (Rα) of the previous
section, and allows us to illustrate the dependence of the convergence rates on the parameter α. Actually,
combining Theorems 11 and 26 we have the following result.

Theorem 28 Assume that the Lévy measure ν satisfies the condition (Rα), and that the approximation
scheme is obtained by choosing ν̄ to be a solution of Problem (Ωm,Λ) for m even, σ̄2 = 0 and µ̄ = 0, and

that it satisfies the hypotheses in Theorem 11. Then, for f ∈ C(2r+2)∨m
p , there exist positive constants

K(x,A, p, r) ∈ Cq, C(x) ∈ Cp+1 and a slowly varying function l such that

|E[f (X1)]− E[f(X̂1)]| ≤ C (x) ‖f‖Cmp l(Λ)Λ1−mα +K (x,A, p, r) ‖f‖C2r+2
p

Λ−r,

where Λ = ν̄(R).

We use 106 simulation paths in all examples. For the Euler scheme, all values are computed using
the same set of paths with 1, 2, 4, 8, 16, 32, 64, 128 and 256 discretization intervals. For the optimal
schemes, different paths are used for each point on the graph, and the different points are obtained by
choosing the values of the parameter ε which correspond to the values of λε :=

∫
{|x|>ε} ν(dx) in the

range [0.5, 1, 2, 4, 8, 16, 32]. Also, the computing time for each point has been normalized by the standard
deviation of the MC estimate, so that the times for all points correspond to the time required to get a
standard deviation of 0.001. The variance of the MC estimate is about the same for all values computed
with the optimal schemes. For the Euler scheme, the variance may be different, because, on one hand,
the simulation method from [16] makes use of a probability change which increases variance, and on the
other hand, we use a variance reduction technique for the Euler scheme (by taking E[f(x + h(x)Z1)] as
control variate) but not for the other schemes. In all the numerical examples below we take γ0 = 0.5,
σ0 = 0.3, λ+ = 3.5 and λ− = 2. Furthermore, for data set I, we take C = 0.5 and α = 0.5 (finite
variation jumps) and for data set II we take C = 0.1 and α = 1.5 (infinite variation jumps). These two
choices yield approximately the same variance of X1 and allow us to understand the effect of α on the
convergence rate.

For our first example, we take h(x) = x and f(x) = x. In this case, X is simply the stochastic
exponential of γ0t+σ0Wt +Zt, and the exact value of E[f(X1)] can be computed explicitly: E[f(X1)] =
eγ0 . Figure 1 plots the errors of the KLV schemes of different degrees and the NV scheme on a log-log
scale for data sets I and II. In this case, the three approximations of the Lévy measure, OA2, OA3 and
OA4, have very similar performance and we only plot the results for OA2. This happens because with
the choice f(x) = h(x) = x, we have E[f(X̄1)] = E[f(X1)] as soon as the approximation scheme for the
Lévy measure preserves the expectation of the Lévy process, which is the case for all three approximation
schemes OA1, OA2 and OA3. In other words, for this choice of f and h, the approximation of the Lévy
measure does not introduce any error. The error is therefore exclusively determined by the approximation
scheme which is used between the jump times. However, in this case, the KLV and NV methods perform
so well that all the errors are below the statistical error due to the Monte Carlo method and it is not
even possible to identify the actual order of convergence.

In our second example, we take h(x) = x still and f(x) = x2. The exact value of E[f(X1)] can also
be computed explicitly and is now equal to

E[X2
T ] = E[E(2Z + [Z,Z])T ] = exp{E[2ZT ] + E[[Z,Z]T ]}

= exp

{
2γ0T + σ2T + T

∫
R
y2ν(dy)

}
= exp

{
2γ0T + σ2T + TCΓ(2− α)(λα−2

+ + λα−2
− )

}
.

Figure 2 plots the errors of the weak Taylor schemes of different orders on a log-log scale for data sets I
and II, together with the theoretical error rates. In this case, one can clearly see the difference between
the three schemes for approximating the Lévy measure (OA2, OA3 and OA4) as well as the effect of the
parameter α.
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Figure 1: Errors of the cubature-based schemes for h(x) = x and f(x) = x. Left: parameters from data
set I. Right: parameters from data set II.

For α = 0.5 (upper three graphs), the error of approximating the Lévy measure is of order of Λ1−mα =
Λ−3 for OA2, Λ−5 for OA3 and Λ−7 for OA4. Therefore, in these graphs, the global error is dominated
by the one of approximating the diffusion part: we observe a clear improvement going from WT1 to WT2
and WT3, and no visible change going from OA2 to OA3 and OA4.

On the other hand, in the lower left graph, which corresponds to α = 1.5 and m = 2, the error of
approximating the Lévy measure is of order of Λ1−mα = Λ−

1
3 , which dominates the error of approximating

the continuous SDE for any of the three weak Taylor schemes, and determines the slope of the curves
in this graph. In this context, using the optimal scheme with m = 3 (lower middle graph) or m = 4
(lower right graph) leads to an substantial improvement of performance. In this case, we observe similar
behavior for m = 3 and m = 4 because the Lévy measure of Z is locally symmetric near zero, which
means that 3-moment scheme and 4-moment scheme actually have the same convergence rate.

The theoretical error rate of the Euler scheme is always 1
n , which corresponds to the straight solid

line on the graphs. The observed convergence rates appears slower than the theoretical prediction due to
our variance reduction method, which has better performance when the number of discretization dates
is small.

Finally, for comparison, we have repeated the same simulation experiments taking the diffusion com-
ponent equal to zero: σ0 = 0. The results, shown in Figure 3, are very similar to those obtained with
nonzero σ0, emphasizing the robustness of our approach.

A A moment matching problem

In this section we present an auxiliary problem related with the moment matching of finite measures.
We want to compute inf ν̄∈Mm

ν̄ (R), with Mm defined in (11), i.e., the smallest intensity for which
the moment constraints are feasible. This problem is very similar to the classical ’truncated Hamburger
moment problem’ which goes back to the works of Chebyshev, Markov and Stieltjes, the only difference
being that we do not impose a constraint on the first moment. Known results for the Hamburger problem
on an infinite interval can be summarized as follows [11]:

Proposition 29 Let m = 2q, q ∈ N and let {µk}mk=0 be given . There exists a measure ν̄ ∈ Mm with
ν̄(R) = µ0 if and only if the matrix {µi+j}qi,j=0 is nonnegative definite.
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Figure 2: Errors of the weak Taylor schemes for h(x) = x and f(x) = x2. Top: parameters from data set
I. Bottom: parameters from data set II.
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Figure 3: Errors of the weak Taylor schemes for h(x) = x and f(x) = x2. Top: parameters from data set
I. Bottom: parameters from data set II. The diffusion coefficient σ0 has been set equal to zero.
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Corollary 30 Let m = 2q, q ∈ N, and let {µk}mk=0 be given such that µk =
∫
R y

kν(dy), 2 ≤ k ≤ n
for some nonnegative measure ν. Then there exists a measure ν̄ ∈ Mm with ν̄(R) = µ0 if and only if
det({µi+j}qi,j=0) ≥ 0 for some µ1 ∈ R.

Proof. Using Proposition 29, it is enough to check that the matrix {µi+j}qi,j=0 is nonnegative definite.
By the definition of µk for k = 2, ..., n we have that the matrix {µi+j}qi,j=1 is nonnegative definite. Hence,
by the Sylvester’s criterion applied to the lower right corner minors of the matrix {µi+j}qi,j=0, we have
that in order for it to be nonnegative definite it is sufficient that det({µi+j}qi,j=0) ≥ 0.

Corollary 31 For (µk)mk=2 as in Corollary 30, the set of values µ0 for which there exists a measure
ν̄ ∈Mm with ν̄(R) = µ0 is of the form [µ∗0,∞).

The case when m is odd can be deduced from the previous one.

Corollary 32 Let m = 2q+ 1, q ∈ N. There exists a measure ν̄ ∈Mm with ν̄(R) = µ0 if and only if the
matrix {µi+j}q+1

i,j=0 is nonnegative definite for some µ1 ∈ R and µm+1 ∈ R+.

A simple matrix algebra computation then yields the following solutions for small m:

m 2 3 4 5

minν̄∈Mm
ν̄ (R) 0 0

µ2
2

µ4

µ2
2

µ4

B Some useful lemmas on the solutions of SDEs

In this section we will assume the notation established in the first section. In addition, X·(t, x) will
denote the flow associated with X, the solution of equation (1) .

Lemma 33 Assume that, for some integer p ≥ 1,∫
R
|y|p∨2

ν (dy) <∞, sup
ν̄∈A

∫
R
|y|p∨2

ν̄ (dy) <∞,

h, b, σ ∈ C1
b (R). Then, there exists a constant C > 0, which does not depend on ν̄, such that

E
[

sup
0≤t≤1

|Xt|p
]
≤ C (1 + |x|p) ,

E
[

sup
0≤t≤1

∣∣X̄t

∣∣p] ≤ C (1 + |x|p) .

The proof of the this lemma is a standard generalization of the proof for continuous SDE’s if one uses
Kunita’s second inequality (see Corollary 4.4.24 in Applebaum [1]).

Lemma 34 For integers p ≥ 2 and m ≥ 1 assume∫
R
|y|mp ν (dy) <∞,

h, b, σ ∈ Cmb (R). Then for any multi-index α with 0 < |α| ≤ m we have

sup
x∈Rd

E

[
sup
t∈[0,1]

∣∣∣∣ ∂α∂xαX1 (t, x)

∣∣∣∣p
]
<∞.

Proof. Follows from Theorem 70, Ch. V in [17].
Using the time invariance of Lévy processes one obtains the following result.
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Lemma 35 1. For 0 ≤ t ≤ s ≤ 1, Xs (t, x) and Xs−t (0, x) have the same law.
2. For 0 ≤ t ≤ s ≤ 1, Ȳs(t, x) and Ȳs−t(0, x) have the same law, where Ȳs(t, x) is the process defined

in (4).

Lemma 36 Let u (t, x) = E[f (X1 (t, x))], t ∈ [0, 1], x ∈ Rd. Assume (Hm,p) and f ∈ Cmp , for some
integers m ≥ 2 and p ≥ 0. Then u ∈ C1,m ([0, 1]× R) , u is a solution of the following partial differential
equation

∂u

∂t
(t, x) + bi (x)

∂u

∂xi
(t, x) +

1

2
σikσjk (x)

∂2u

∂xi∂xj
(t, x)

+

∫
|y|≤1

{u (t, x+ h (x) y)− u (t, x)− ∂u

∂xi
(t, x)hi (x) y}ν (dy)

+

∫
|y|>1

{u (t, x+ h (x) y)− u (t, x)}ν (dy) = 0 (18)

u (1, x) = f (x)

Furthermore, there exists C <∞ with∣∣∣∣∂αu∂xα
(t, x)

∣∣∣∣ ≤ C ‖f‖Cmp (1 + |x|p)

for all t ∈ [0, 1], x ∈ Rd and |α| ≤ m.

Proof. For d = 1, the derivative ∂u
∂x satisfies

∂u

∂x
(t, x) = E

[
∂f

∂x
(X1 (t, x))

∂

∂x
X1 (t, x)

]
.

The interchange of the derivative and the expectation is justified using Lemma 34. The other derivatives
with respect to x are obtained by successive differentiation under the expectation and the derivative
with respect to t is obtained from Itô’s formula applied to f(X1 (t, x)) using Lemma 35. Furthermore,
one obtains by a direct estimation the polynomial growth under (Hm,p) using lemmas 33 and 34. This
estimation involves the use of Hölder’s inequality with multiple exponents and the solution of an opti-
mization problem for these exponents in order to find the appropriate Hölder exponents allowing the use
of the above mentioned lemmas under the hypothesis (Hm,p). For the general case, d ≥ 2, one uses the
multivariate chain rule formula, known as Faà di Bruno’s formula, and similar reasonings apply.

Remark 37 For the integro-differential equation in Lemma 36 to make sense we have to impose the
first order moment of ν to be finite. The finiteness of higher order moments of ν allow us to prove
existence and boundedness properties of higher order derivatives of u(t, x), using Lemmas 33 and 34.
These properties of the derivatives of u(t, x) are crucial to obtain the main result in this paper, the error
expansion in Theorem 10.

References
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