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CHAPTER 1

Introduction and summary

1. Thesis overview

In this thesis we will attempt to apply the nonparametric Bayesian modeling strategy for the
estimation of the dependency structure for stationary time series and for second order stationary
random fields.

It is quite common in spatial models to use a parametric approach when modeling the dependency
structure. This usually consists of choosing a class of parametric functions, based on some a priori
information about the phenomenon under study, and the estimating of the unknown parameters
in the model from a set of observations. In this thesis we will only consider spatial models that
are second order stationary and that also have isotropic covariance function. It is not uncommon
to make rather strong model assumptions in spatial models to compensate for the incomplete
observations. The second order stationary supposition is in many situations plausible and a
quite usual assumption, see ? or ?. In such spatial models the class of exponential covariance
functions are by many regarded as the most useful choice of covariance functions in R1, cf. ?. For
second order stationary spatial models on Rd, where d > 1, with isotropic covariance functions,
the class of functions known as Matérn is considered the natural choice of parametric covariance
functions, see ?, ? or ?. The Bayesian strategy for such parametric models will involve placing
a prior distribution on the set of unknown parameters. For simple models this set will typically
consist of three parameters, say (µ, σ, ρ), which represent expectation, variance and correlation.

Various journal articles have dealt with nonparametric modeling of trend functions in spatial
models, also from the Bayesian perspective, see ?. These approaches are actually semiparametric,
since they use a nonparametric model for the trend and combine this with a typically parametric
model for the covariance function. Rather fewer attempts have been made to model both the
trend and the covariance function nonparametrically, and I am not aware of a single journal
article that deals with such an approach from the Bayesian perspective.

It is perhaps more common to use the nonparametric strategy when estimating the dependency in
time series models, since this can easily be done from the nonparametric estimation of the power
spectrum. We will restrict ourselves to only consider the class of stationary Gaussian time series.
For such models ? has shown that a large class of parametric covariance functions with finite
number of parameters falls into the class known as “locally asymptotic normal” considered by
Le Cam (1960 - 1970). This essentially means that the estimated parameters in such parametric
covariance models satisfy similar asymptotic properties as the maximum likelihood estimators.

The reason we will use the nonparametric Bayesian modeling scheme is that we would like to
have both the advantage of the flexible nonparametric models and also the benefit of a Bayesian
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1. THESIS OVERVIEW CHAPTER 1. INTRODUCTION AND SUMMARY

approach. By using nonparametric Bayesian models we are avoiding the problem of making
critical dependency assumptions by the possibility of choosing a wrong model.

The main goal of this thesis is not to change the world, but rather to suggest an alternative
solution to how we can model the dependency structure in some time series and spatial models.
The idea we present here will become easy to use and the a priori information may be included in
the model in a natural way. We will have some extra focus on the class of exponential covariance
functions since they are often used and possess some especially nice properties regarding the
construction of suitable prior distribution. We will also derive some of the large-sample properties
for the estimators in the stationary Gaussian time series models and show that these satisfy
exactly the properties we would hope for.

As mentioned, the idea is to use the nonparametric Bayesian approach to model the covariance
function in some time series and in spatial models. It is not obvious how this should proceed or
how one may attack such a problem since we want to be able to protect ourselves from making
covariance functions that are not valid, where valid means positive definite.

The solution to the positive definiteness problem is to use the connection between the spectral
density and the covariance function for random fields. The methods will turn out to be partly
similar to the nonparametric Bayesian distribution function estimation methods presented in the
articles of ? and ?. From ? we know that the covariance function for a spatial model on Rd and
the spectral density are connected with each other through the Fourier transformation pair

C(h) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

exp(iuTh)f(u) du, (1.1)

and
f(u) = (2π)−d

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp(−iuTh)C(h) dh,

for vectors u,h ∈ Rd, see also ? and ?. It is clear from equation (1.1) that if we want to place
a prior distribution on the set of covariance functions it is equivalent to place a corresponding
prior distribution on the set of spectral densities. The main result we will use in this thesis,
that also will ensure that the strategy above is acceptable, is known as Bochner’s theorem.
Bochner’s theorem states that a function C(h) is positive definite if and only if it has a spectral
representation given by

C(h) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

exp(iuTh)dF (u), (1.2)

where u,h ∈ Rd and dF (u) is a bounded symmetric measure. In the case of real valued random
fields with isotropic covariance function, representation (1.2) from Bochner’s theorem simplifies
into functions which satisfy the spectral representation

C(h) = 2d/2−1Γ(d/2)
∫ ∞

0
(uh)−(d/2−1)Jd/2−1(uh) dF (u), where h = ||h|| (1.3)

and Jν(t) is the Bessel function of the first kind and F is a nondecreasing function that is bounded
on [0,∞) and satisfy F (0) = 0, see ?. This means that in order to place a prior distribution
on the space of isotropic covariance functions it is sufficient to place a prior distribution on the
set of spectral measurers F that are nondecreasing, bounded on [0,∞) and satisfy F (0) = 0,
i.e. viewing F as a positive increment process bounded on [0,∞). Let F be a Lévy process
(in our context, this is a process with independent and nonnegative increments) that satisfies
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Pr{F (∞) < ∞} = 1, then F is a positive and independent increment process that is bounded
with probability 1 on [0,∞) and can therefore work as our prior distribution on the set of spectral
measures. Also from Bochner’s theorem we know that every random covariance function that is
constructed in this manner will become valid.

To be more specific we will throughout most of the thesis and in the examples assume that F is
a Gamma process, meaning that the F is an independent increment process where

dF (u) ∼ Ga(α(u), β(u))

and Ga(α, β) is the Gamma distribution with shape parameter α and rate parameter β, see ?,
? or ? for definition and examples of the use of the Gamma processes. The main reason for the
use of the Gamma process is the uncomplicated expressions for the expectation and variance.
This will make it straightforward and easy to determine how we should specify the parameters
in the process in such a way that it will reflect our a priori beliefs. Let F be a Gamma process
with parameters α(u) = b(u)f0(u) du > 0 and β(u) = b(u) > 0, where f0(u) is the spectral
density function that corresponds to our favorite and a priori guess for the isotropic covariance
function C0(h). Then from the properties of the Gamma distribution we have that the expected
covariance function is determine by

E[C(h)] = 2d/2−1Γ(d/2)
∫ ∞

0
(uh)−(d/2−1)Jd/2−1(uh)E[dF (u)] = C0(h), where h = ||h||

and h ∈ [0,∞), since we may interchange mean value operation and integral here, by the Fubini
theorem. Note that in the simple stationary time series model the necessary and sufficient require
(1.3) simplifies to finding a positive nondecreasing function F (u) defined on [0, π], where F (0) = 0
and F (π) <∞, such that

C(h) = 2
∫ π

0
cos(uh) dF (u),

for h = 0,±1,±2, . . ., see ?.

The thesis is divided into two main parts, in Chapter 2 and Chapter 3 we will consider stationary
Gaussian time series with unknown covariance function. In Chapter 4 we will try to extend the
ideas from Chapter 2 to the spatial models. To be specific we will consider second order stationary
Gaussian random fields over a continuous domainD ⊂ Rd with unknown and isotropic covariance
functions.

In Section 1 of Chapter 2 we will introduce the main concepts and theory we will need regarding
stationary time series, most of this are from the books ? and ?. In Section 1.1 we will establish the
connection between the power spectrum and the covariance function. Section 1.2 will discuss how
we can use the periodogram as a nonparametric estimator for the unknown power spectrum and
therefore also the covariance function. Further in Section 1.3 we will establish some properties
of the spectral measure, the integrated power spectrum, and extend some of the results from ?
in such a way that it will fit our nonparametric Bayesian framework.

In Section 2.1 we will introduce the main concepts of nonparametric Bayesian modeling and give
a short introduction to distribution function estimation. In section 2.2 and 2.3 we will show how
we can define a prior distribution on the set of valid covariance functions by viewing the spectral
measure as a random process, especially a Gamma process, and show how we can make posterior
inference through the use of Markov chain Mote Carlo simulations.
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2. CONCLUSIONS CHAPTER 1. INTRODUCTION AND SUMMARY

We will in Chapter 3 use the “principal part” given in ? as an approximation to the full mul-
tivariate Gaussian log-likelihood and show how this can be used to obtain asymptotic inference
about the spectral measure and the covariance function. We will also show that we obtain sim-
ilar asymptotic result if we use the discrete version of the “principal part” approximation, this
is often referred to as the Whittle approximation, to honor P. Whittle who first suggested this
approximation in the early fifties.

Chapter 4 will be a natural extension of the ideas of Chapter 2 and will also be a bit shorter
since some of the general ideas and concepts are already discussed in detail in Chapter 2. The
main reason why this Chapter 4 is shorter is that we do not have the nice approximation for the
multivariate Gaussian log-likelihood as we did in Chapter 3. In particular, various large-sample
results reached in Chapter 3 become much more complicated in the framework of Chapter 4,
therefore some of the topics dealt with of Chapter 3 will not be pursued in Chapter 4.

Section 1 will introduce the basic theory regarding spatial data analysis and random fields with
some extra attention on spatial prediction and Kriging. In Section 2 we will again show how
we can use the Gamma processes to construct prior distributions for the isotropic covariance
functions through the spectral measure. We will also show that two special classes of covari-
ance functions possess some especially nice properties and we will complete the section with an
extensive example as an illustration of the main ideas.

Appendix A is a short introduction to the Metropolis-Hastings algorithm, which is the MCMC
sampler we will use to make approximative inference about the posterior spectral measure. There
are some calculations and general theory in Appendix B and in Appendix C we give a short
introduction and a list of all the functions and routines written in R. Even though it is quite
common for master thesis, the R code will not be included in the appendix. The main reason
is that this would add another hundred pages to the paper. Those who are interested in a copy
of source files that contains all the routines, functions and examples used in the thesis may send
me an email at gudmunhh@student.matnat.uio.no.

2. Conclusions

As already mentioned in the previous section the intention of this thesis is to relax some of
the harsh conditions that are commonly assumed for stationary time series and in spatial data
analysis. The methods we have applied are outside the normal modeling framework. We have
nevertheless succeeded in the sense that we have been able to define a reasonable model, estab-
lished easy to use and meaningful prior distributions and we have also managed to show how
we can obtain posterior inference by the use of simulations. These three steps, model, prior and
posterior inference through simulations, can be thought of as the minimal demand for Bayesian
analysis. In many situations these stages are sufficient and there exist several articles that deals
with Bayesian statistics that do not continue the discussions after theses goals are achieved.

The natural extension and the fourth step will be to derive the asymptotic or large-sample
properties for the posterior parameters. In several models this becomes so complicated that it is
impractical to obtain and the researcher has to be satisfied with the numerical approximations
from the simulations. In the thesis we are able for the stationary time series model, by using
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some clever approximations, to obtain the large-sample properties associated with the posterior
distribution of the unknown covariance function.

The thesis is written within the classical framework of a master thesis. This is perhaps not the
most efficient medium in which to communicate new results, since they become parts of a long
and detailed story. Chapter 3, in particular has various new results that might be published
separately. I also hope that I will be able to write (together with my supervisor) an article this
autumn, where we present the main results from the thesis.

See also the concluding remarks at the end of Chapter 3 and 4 for more details and a longer
discussion.
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CHAPTER 2

Discrete time

This chapter is divided into two parts. The first section is a general introduction to the central
properties of stationary time series with some extra attention on the stationary Gaussian time
series and the connection between the power spectrum and the covariance function. In the second
part we will introduce the basic concepts regarding nonparametric Bayesian estimation. We will
derive meaningful prior distributions for both the covariance and correlation function by placing
equivalent prior distribution on the spectral measure (integrated power spectrum) and also show
how we can obtain posterior inference based on simulations.

In Section 1 will introduce the basic ideas and definitions regarding stationary time series, we will
also very briefly show how we can make predictions about future outcomes based on a observed
sequence. In Section 1.1 we will introduce the power spectrum, discuss some of its properties
and show how this function is related to the covariance and correlation function. Section 1.2 and
1.3 will be used to show how we can estimate the power spectrum and spectral measure from the
periodogram function based on a observed series. We will also introduce some of the large-sample
properties, which we will extend in a way that it will fit our nonparametric Bayesian framework.
Most of the theory presented in this section and some of the notation are based on the books ?
and ?.

1. Stationary time series

A time series Y (t) is defined as a family or sequence of random variables, {Y (t)}, indexed by
t, where t is often referred to as time and belongs to the index set T = {0,±1,±2, . . .}. We
will write the expectation at the time point t as E[Y (t)] = µ(t) and denote the variance at the
same time point by Var(Y (t)) = σ2(t). A time series Y (t) is defined to be strictly stationary or
strongly stationary if the distribution of the time series is invariant under translation, i.e.

Pr{Y (t1) < y1, . . . , Y (tk) < yk} = Pr{Y (t1 + h) < y1, . . . , Y (tk + h) < yk}

for any choice of time points t1, . . . , tk, where k ∈ N, and h = 0,±1,±2 . . .. A time series Y (t)
is said to be second order stationary if the expectation and covariance satisfy

E[Y (t)] = µ(t) = µ and Cov(Y (t+ h), Y (t)) = C(h)

for t, h = 0,±1,±2 . . . and where the covariance is defined in the usual way, i.e. Cov(Y (t +
h), Y (t)) = E[(Y (t+ h)− µ)(Y (t)− µ]. Normally we will work under the assumption that the
time series is stationary and has zero mean, this assumption is quite common, see ?. Suppose
Y (0), . . . , Y (n − 1) is a sample form a stationary time series Y (t) with expectation µ, then
X(t) = Y (t) − µ will become a zero mean time series with the same dependency structure as
Y (t), note that if µ is unknown it is not unusual to replace µ with the sample mean Ȳ (t).
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1. STATIONARY TIME SERIES CHAPTER 2. DISCRETE TIME

Therefore, given a sample from a stationary time series with expectation µ we are always able
to construct a zero mean series X(t) and work with this instead. In the case of a second order
stationary time series we will refer to the function C(h) as the covariance function, also if Y (t)
is second order stationary we have that C(0) = σ2(t) = σ2 and the correlation function will be
defined as the function R(h) = C(h)/C(0).

Let Y (0), . . . , Y (n−1) be a sample of size n from Y (t), a quite common estimate for the covariance
is

Ĉ(h) =
1

n− |h|

n−|h|∑
u=1

(Y (u)− Ȳ )(Y (u+ |h|)− Ȳ ) (1.1)

for h = 0,±1, . . . ,±(n − 1). The estimator (1.1) is in some literature known as the unbiased
covariance estimator, where the biased covariance estimator is estimator (1.1) where the (n−|h|)
term in the fraction is replaced with n. The biased estimators is often preferred since it has less
bias for large |h| and since in most situation it also has the least total mean squared error, see
Chapter 5 in ?. A perhaps more common method in covariance estimation is to assume that
C(h) = C(h|θ), i.e. that the covariance function belong to a class of parametric functions, and
estimate the unknown parameter θ from the observed data, see ? for a complete discussion of
parametric covariance estimation and the asymptotic behavior of the estimated parameters. We
will refer to the covariance function as valid if it satisfies the positive definiteness condition, i.e.

k∑
i=1

k∑
j=1

aiajC(ti − tj) ≥ 0 (1.2)

for any set of locations (t1, . . . , tk), real numbers (a1, . . . , ak) and k ∈ N. It is obvious that any
covariance function has to satisfy this property since

Var
( k∑
i=1

aiY (ti)
)

=
k∑
i=1

k∑
j=1

aiaj Cov(Y (ti), Y (tj)) =
k∑
i=1

k∑
j=1

aiajC(ti − tj),

which is defined to be nonnegative.

The next results sum up some of the main properties for the covariance function of a second
order stationary time series.

Lemma 1.1. Let Y (t), where t = 0,±1, . . ., be a second order stationary time series with covari-
ance function given by C(h). Then for h = 0,±1, . . .

i) C(0) ≥ 0.
ii) C(h) = C(−h).
iii) C(0) ≥ |C(h)|.
iv) C(h) = Cov(Y (t), Y (t+ h)) = Cov(Y (0), Y (h)).
v) If Ci(h) is a valid covariance function for i = 1, . . . , k, then

∑k
i=1 aiCi(h) is a valid

covariance function if ai ≥ 0 and ai ∈ R for all i = 1, . . . , k.
vi) If Ci(h) is a valid covariance function for i = 1, . . . , k, then

∏k
i=1Ci(h) is a valid

covariance function.

Proof. i) - v): Most of these properties are straightforward to verify and proofs for all of
them can be found in statistical textbooks treating time series.
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vi): It is sufficient to show that this is true for two arbitrary choices of valid covariance functions
since the general result will follow directly from this property. To prove this property we will
use a general result stated below, from Corollary 1.10 we have that C(h) is a valid covariance
function if and only if it can be expressed as

C(h) =
∫ π

−π
exp(iuh) dF (u)

where F (u) is a function with properties similar to a distribution function, see Corollary 1.10 for
details. If both C1(h) and C2(h) are valid covariance functions, then

C1(h)C2(h) =
∫ π

−π
exp(iuh) dF1(u)

∫ π

−π
exp(iuh) dF2(u)

=
1

F1(π)F2(π)

∫ π

−π
exp(iuh) dH1(u)

∫ π

−π
exp(iuh) dH2(u)

=
1

F1(π)F2(π)
E[exp(ihX1)]E[exp(ihX2)]

=
1

F1(π)F2(π)
E[exp(ih(X1 +X2))] =

∫ π

−π
exp(iuh) dF3(u)

where X1 and X2 are random variables with cumulative distribution functions given by H1(u)
and H2(u). The function F3(u) is defined as F3(u) = H3(u)/[F1(π)F2(π)], where H3(u) is
the convolution of H1(u) and H2(u). Since C1(h)C2(h) has the representation required from
Corollary 1.10 we know that the product of two valid covariance functions becomes a valid
covariance function, which completes the proof. �
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Figure 1.1: Stationary Gaussian time series with µ = 0 and covariance function C(h) = ρ|h|, where σ = 0.55,
ρ = 0.77 and n = 250.

Example 1.2. (Gaussian time series)
We will say that the random process Y (t) is Gaussian time series if the cumulative distribution
function

Pr{Y (t1) < y1, . . . , Y (tk) < yk}

is equal to the distribution of k-variate Gaussian random variable for any k ∈ N, note that this
implies that every Y (ti) is an univariate Gaussian random variable for every i = 1, . . . , k.
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We will now give two examples of simulated stationary Gaussian time series. The series in Figure
1.1 have covariance with longer range and lower variance than the series in Figure 1.3. Both are
displayed with their respective estimated covariances, Figure 1.4 and Figure 1.2, based on both
the biased and the unbiased nonparametric estimators given by equation 1.1.
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Figure 1.2: Estimated covariance based on the estimator (1.1) for the stationary time series in Figure 1.3, plotted
on the interval [0, 8] (left panel) and [0, 100] (right panel).
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Figure 1.3: Stationary Gaussian time series with µ = 0 and covariance function C(h) = ρ|h|, where σ = 2.22 and
ρ = 0.11.

The last concept that will be given in this section is the definition of a version of cumulants.
The reason for this is that ? among others uses results based on the cumulants throughout the
theory, in many concepts, and as a tool to prove several results related to time series.

Suppose Y (t), where t = 0,±1, . . ., is an r vector valued time series with components Ya(t) that
satisfy E[|Ya|r] < ∞ for all a = 1, . . . , r, then the joint cumulant function of order k is defined
as

ca1,...,ak(t1, . . . , tk) = cYa1 ,...,Yak (t1, . . . , tk)

= cum(Ya1(t1), . . . , Yak(tk))

=
∑
P

(−1)|P |−1(|P | − 1)!
∏
p∈P

E

[∏
j∈p

Yaj (tj)
] (1.3)
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Figure 1.4: Estimated covariance based on the estimator (1.1) for the stationary time series in Figure 1.3, plotted
on the interval [0, 8] (left panel) and [0, 100] (right panel).

where P runs through the the list of all partitions of (a1, . . . , ak) and p runs through the list of
all blocks of partitions of P , the notation cum stands for cumulant, or joint cumulant. We will
now work out some of the properties of cumulant functions through some examples, for a more
complete introduction to theory and other related properties see ?.

Example 1.3. (Properties of the cumulant functions)
The expectation, variance and covariance of a random variable can be expressed through the
first orders of their joint cumulant functions. Let Y (t), where t = 0,±1, . . ., be a time seres, then
from the definition of the cumulant (1.3) and for any choice of integers, l, l′ and l′′ we have that

cY (tl) =
∑
{{l}}

(−1)1−1(1− 1)!
∏

p∈{{l}}

E[
∏
j∈p

Y (tj)] = E[Y (tj)],

cY Y (tl, tl′) =
∑
P

(−1)|P |−1(|P | − 1)!
∏
p∈P

E

[∏
j∈p

Yaj (tj)
]
, where P = {{l, l′}, {{l}, {l′}}}

= (−1)1−1(1− 1)!E[Y (tl)Y (tl′)] + (−1)2−1(2− 1)!E[Y (tl)]E[Y (tl′)]

= E[Y (tl)Y (tl′)]− E[Y (tl)]E[Y (tl′)]

= Cov(Y (tl), Y (tl′))

cY Y Y (tl, tl′ , tl′′) =
∑
P

(−1)|P |−1(|P | − 1)!
∏
p∈P

E

[∏
j∈p

Yaj (tj)
]
,

where P = {the set of all all partitions of the set {l, l′, l′′}}

= E[Y (tl)Y (tl′)Y (tl′′)]− E[Y (tl)]E[Y (tl′)Y (tl′′)]− E[Y (tl′)]E[Y (tl)Y (tl′′)]

− E[Y (tl′′)]E[Y (tl)Y (tl′)] + 2E[Y (tl)]E[Y (tl′)]E[Y (tl′′)].

Remark 1.4. There exists another and perhaps more common definition of the joint cumulant
than equation (1.3). From ? we have that the joint cumulant, cum(Y (t1), . . . , Y (tk)), can
be expressed as the coefficients in the Taylor expansion of log(E[exp(i

∑k
j=1 Y (tj)θj)]). To be

precise, the different orders of a joint cumulant can be obtained from the coefficients in the Taylor
expansion of the logarithm of the characteristic function. In the the one dimensional case this
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1. STATIONARY TIME SERIES CHAPTER 2. DISCRETE TIME

become

log(E[exp(iY (t)θ)]) =
∞∑
j=1

cY1Y2···Yj (t1, . . . , tj)
1
j!

(iθ)j = iµY θ − σ2
Y

1
2
θ2 + . . . ,

where Yj = Y and tj = t for all j = 1, 2, . . .. In the case of a Gaussian time series we have from
the characteristic function that

log(E[exp(i
k∑
j=1

Y (tj)θj)]) = iµTθ − 1
2
θTΣθ,

which implies that derivatives of order greater than 2 vanish in the Taylor expansion and the
joint cumulant of order greater than 2 does not exist for a Gaussian time series.

1.0.1. Prediction. In this subsection we will very briefly explain the prediction setup within
the framework of Gaussian time series. The prediction of future outcomes in time series is a
large and important topic, but since we will always assume that we are within the class Gaussian
time series, the ideas and methods become fairly simple.

Let Y (t), where t = 0,±1,±2, be a stationary Gaussian time series with known expectation and
dependency structure given by the covariance function C(h), where h = 0,±1,±2 . . .. Suppose we
have observed n steps of the process Y = (Y (t), (Y (0), . . . , Y (n−1)), and that we wish to predict
the outcome at the next, or a future, locationm, typicallym is in the setm = n, n+1, . . .. We will
denote a predictor for the unobserved value Y (m) by p(Y , Y (m)) and let L(Y (m), p(Y , Y (m))),
to be precise we will assume squared-error loss, i.e

L(Y (m), p(Y , Y (m))) = (Y (m)− p(Y , Y (m)))2.

It is well known from classic decision theory that the optimal solution, the one that minimizes
the expected loss or Bayes Risk, is the conditional mean, i.e.

p0(Y , Y (m)) = E[Y (m)|Y ], (1.4)

where p0(Y , Y (m)) denotes the optimal predictor, see for example ?. We will illustrate the
concept with an example.

Example 1.5. (Prediction in stationary Gaussian time series)
Let Y (t) be a Gaussian time series with expectation E[Y (t)] = µ(t), where t = 0,±1,±2, . . .,
and with covariance function C(h), for h = 0,±1,±2 . . .. Suppose a sample Y = (Y (t),
(Y (0), . . . , Y (n−1)) is observed, let E[Y ] = µ and denote the covariance matrix of the vector Y
by ΣY . The goal is to predict the outcome at a future location m from the observed Y , where m
typically is in the set m = n, n+1, . . .. We will assume squared-error loss and from (1.4) we have
that the optimal predictor is the conditional mean. In order to determine the optimal predictor
we will need the joint distribution of the observations and the unknown outcome. Under the
assumption of a Gaussian time series the joint distribution is given by[

Y (m)
Y

]
∼ Nn+1

([
µ(m)
µ

]
,ΣmY =

[
σ2
m σTmY
σmY ΣY

])
,

where µ(m) = E[Y (m)], σ2
m = Var(Y (m)) and σmY = Cov(Y (m), Y ). From Remark 1.6 below

it is now straightforward to verify that the conditional expectation and variance are determine

12
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by the equations

E[Y (m)|Y ] = µ(m) + σTmY Σ−1
Y (Y − µ) and

Var(Y (m)|Y ) = σ2
m − σT0Y Σ−1

Y σmY .

Under squared-error loss the optimal prediction for the outcome at m is now given by

p0(Y , Y (m)) = µ(m) + σTmY Σ−1
Y (Y − µ), (1.5)

note that the optimal predictor (1.5) simplifies to p0(Y , Y (m)) = σTmY Σ−1
Y Y for time series with

expectation zero. We will return to this example later in the thesis when the complete model is
presented.

The following remark can be found in several textbooks in statistics and will be stated without
proof.

Remark 1.6. LetW be a (n×1) Gaussian random vector, that can be partition intoW = (U, V )T

with U of dimension (u× 1) and V of dimension (v = (n− u)× 1). If

E[W ] = E

[
U

V

]
=

[
µu

µv

]
and Var(W ) =

[
Σu Σuv

ΣT
uv Σv

]
,

then V |U follows a Gaussian distribution with mean and variance given by

E[U |V ] = µu + ΣuvΣ−1
v (V − µv) and Var(U |V ) = Σu − ΣuvΣ−1

v ΣT
uv. (1.6)

The next assumption is the Assumption 2.6.1 in ? and is fundamental in many of his results and
is usually the condition required in order to prove several theorems stated later.

Assumption 1.7. The times series Y (t) is a strictly stationary r vector-valued series with
components Yj(t), where j = 1, . . . r, all of whose moments exist, and satisfying

∞∑
u1,...,uk−1=−∞

|ca1,...,ak(u1, . . . , uk−1)| <∞

for a1, . . . , ak = 1, . . . , r and k = 2, 3, . . ..

In this thesis we will not be too much concerned with general r vector-valued series, we will
mostly focus on the one-dimensional case where the series is also Gaussian, then, according to
?, the assumption above is simplified and we may then rewrite Assumption 1.7 as follows.

Assumption 1.8. The time series Y (t) is a strictly stationary Gaussian series where all moments
exist and satisfy

∞∑
h=−∞

|C(h)| <∞.

13
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1.1. The power spectrum. We have now established most of the basic concepts regarding
stationary time series and we will now discuss one of the main topics needed in this thesis.
Throughout this section we will assume that Y (t), where t = 0,±1, . . ., is a real-valued time
series with mean E[Y (t)] = µY and covariance function Cov(Y (t+ h), Y (t)) = C(h), defined for
h = 0,±1, . . .. If the covariance function satisfies the restriction

∞∑
h=−∞

|C(h)| <∞,

then the power spectrum of the series Y (t) at frequency u is defined to be the Fourier transfor-
mation

f(u) =
1

2π

∞∑
h=−∞

exp(−iuh)C(h) for −∞ < u <∞. (1.7)

The power spectrum is non-negative, even and of period 2π with respect to u, which means that
we may take the interval [0, π] as the fundamental domain for f(u) since the whole function is
determined by its behavior on this interval, see ? or ?. We can also invert expression (1.7) and
write the covariance function as a function of the power spectrum

C(h) =
∫ π

−π
exp(iuh)f(u) du for h = 0,±1, . . . . (1.8)

As we shall see later, equation (1.8) will become of great importance and in combination with
Corollary 1.10 below we will have a very useful and general tool to create valid covariance
functions. Note that the variance of Y (t) can be expressed as

Var(Y (t)) = σ2
Y =

∫ π

−π
f(u) du.

We will define the integrated spectrum or spectral measure in the natural way

F (u) =
∫ u

−π
f(v) dv for − π < u < π, (1.9)

because of the periodicity and the evenness of f(u) we could also take the interval [0, π] as the
fundamental domain for F (u). It is quite common to work within the complex numbers when
studying the power spectrum and its related properties, the reason for this is that it is often
easier to wok within this framework and the results become more elegant. In the case of real
valued processes we can rewrite expression (1.7) and (1.8)

f(u) =
C(0)
2π

+
1
π

∞∑
h=1

cos(uh)C(h) for − π < u < π (1.10)

and

C(h) = 2
∫ π

0
cos(uh)f(u) du for h = 0,±1, . . . . (1.11)

see ? for details. We will define normalized power spectrum as f(u)/σ2
Y = f(u)/F (π) = h(u), for

u ∈ (−∞,∞), with fundamental domain u ∈ [0, π], then there exists a similar relation between
the normalized power spectrum and the correlation function as between the power spectrum and
the covariance function. From ? we have that

h(u) =
1

2π

∞∑
h=−∞

exp(−iuh)R(h) for − π < u < π.

14
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and
R(h) =

∫ π

−π
exp(iuh)h(u) du for h = 0,±1, . . . .

The normalized integrated spectrum is defined in the same way as the integrated power spectrum
(1.9), and for real valued processes there exist an equivalent simplification as (1.10) and (1.11)
for the normalized power spectrum and correlation function. For a complete introduction to
spectral analysis see ?.

From what we have seen so far it is clear that if the expectation and the dependency structure
or spectral measure is given we know everything we need to know about a certain time series.
This means that we in some sense are free to choose how we will define or work with time series,
we can choose to work within the time domain (covariance or correlation functions) or in the
frequency domain (power spectrum and spectral measures). The choice of domain will probably
depend on the situation and the study, and in some situations it might become necessary to work
back and fourth between the two domains.

The following two results reveal another strong argument for why it is desirable, and sometimes
necessary, to work in the frequency domain, both results can be found in ? with an argument
and are in a sense the discrete version of the Wiener-Khintchine Theorem given in Section 1 of
Chapter 4.

theorem 1.9. (Wold’s Theorem) A necessary and sufficient condition for the sequence R(h),
where h = 0,±1, . . ., to be the correlation function for a discrete time process Y (t), where t =
0,±1, . . ., is that there exists a function H(u), having the properties of a distribution function on
the interval (−π, π), (i.e. H(−π) = 0, H(π) = 1, and H(u) is non-decreasing), such that

R(h) =
∫ π

−π
exp(iuh) dH(u), for h = 0,±1, . . .. (1.12)

Corollary 1.10. A necessary and sufficient condition for the sequence C(h), where h = 0,±1, . . .,
to be the covariance function for a discrete time process Y (t), where t = 0,±1, . . ., is that there
exists a function F (u), having the similar properties of a distribution function on the interval
(−π, π), (i.e. F (−π) = 0, F (π) <∞, and F (u) is non-decreasing), such that

C(h) =
∫ π

−π
exp(iuh) dF (u), for h = 0,±1, . . .. (1.13)

In particular for real valued time series equation (1.13) simplifies to

C(h) = 2
∫ π

0
cos(uh) dF (u), for h = 0,±1, . . .. (1.14)

Note that Corollary 1.10 follows directly from Theorem 1.9.

The two results provide us with some quite flexible and general tools to construct or check
new covariance functions. Suppose we are given a sample from a time series with unknown
dependency structure and that the parametric function C(h|θ) is suggested as the covariance
function, then if it is clear that C(h|θ) does not possess the representation given in Corollary
1.10 we should not use it to explain the dependency.

Corollary 1.10 and Theorem 1.9 are perhaps more important as tools to construct new and valid
covariance or correlation functions. The advantage of the two results are the weak conditions for

15
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the functions F (u) and H(u) that are fairly easy to check compared to the positive definiteness
property. Note that we do not even require that F (u) is smooth, F (u) could for example be a
step function, which suggests the use of nonparametric methods in estimation of the covariance
function.

In the next section we will begin to discuss some ideas regarding the estimation of the power
spectrum and we will also derive some of its large-sample properties. In this thesis will mostly
be concerned with the covariance function and the power spectrum, but most of the ideas are
straightforward to use and generalize to the case of correlation functions. Before we end this
section we will show how we can obtain the power spectrum for some given covariance functions.

Example 1.11. Suppose Y (t), where t = 0,±1, . . ., is a time series with covariance function
C(h) = σ2ρ|h|, and we would like to find f(u). If we assume that Y (t) is a real valued process,
then

f(u) =
σ2

2π

∞∑
h=−∞

exp(−iuh)ρ|h| =
σ2

2π

[
1 + 2

∞∑
h=1

cos(uh)ρh
]
.

This motivates us to find the limit as the real part of the limit of the of the equivalent infinite
complex valued sum, which is much easier to solve, let c = log(ρ) then

1 +
∞∑
h=1

cos(uh)ρh = Re
∞∑
h=0

exp(ihu) exp(cu) = Re
∞∑
h=0

exp(ih+ c)u = Re
1

1− exp(c+ iu)

= Re
1− exp(c− iu)

1− exp(c+ iu)− exp(c− iu) + exp(2c)
=

1− ρ cos(u)
1− 2ρ cos(u) + ρ2

.

An explicit expression for the power spectrum is now given by

f(u) =
σ2

2π

[
1 + 2

1− ρ cos(u)
1− 2ρ cos(u) + ρ2

− 2
]

=
σ2(1− ρ2)

2π(1− 2ρ cos(u) + ρ2)

If we choose ρ = e−α we will get the common exponential covariance function C(h) = σ2 exp(−α|h|)
for h = 0,±1, . . .. Below we will give two concrete examples of the power spectrum and the spec-
tral measure and their respective covariance functions, see Figure 1.5 and 1.6
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Figure 1.5: Plot of power spectrum (left panel) and the corresponding covariance function (right panel) with
dependency with long range and medium variation.
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Figure 1.6: Plot of power spectrum (left panel) and the corresponding covariance function (right panel) with
dependency with short range and large variation.

Example 1.12. From, for example ?, we have that for c = − log(ρ) the following integral has
an exact solution

lim
M→∞

∫ M

−M
exp(iuh)

1
cπ(1 + (u/c)2)

du

= lim
M→∞

2
∫ M

0
cos(uh)

1
cπ(1 + (u/c)2)

du = exp(−ch) = ρh.

(1.15)

For a reasonably large constant M it follows form the above that

2
∫ Mπ

0
cos(uh)

1
cπ(1 + (u/c)2)

du = 2
∫ π

0
cos(Muh)

M

cπ(1 + (Mu/c)2)
du ≈ ρh.

Let f(u) = σ2M/(cπ(1 + (Mu/c)2), then from Corollary 1.10 we know that the covariance
function, C(h), given by

C(h) = 2
∫ π

0
cos(uh′)f(u) du = 2

∫ π

0
cos(uh′)

σ2M

cπ(1 + (Mu/c)2)
du

where h′ = Mh, is a valid covariance function and that C(h) ≈ ρh.

Example 1.13. In Section 2 in Chapter 4 we will introduce a concept known as the aliasing
effect. The aliasing effect is a term used for the problem that arise when we sample a continuous
time process at equidistant time points, see Section 2 of Chapter 4 or ? for a explanation. We
will now use the ‘solution’ to the aliasing effect problem to construct valid covariance functions
for time series models from covariance functions defied for general spatial models.

Let C(h), where h ∈ (−∞,∞) be a covariance function for a continuous time process over R1.
Suppose we know that this specific covariance function has power spectrum (spectral density)
given by f(u). Unfortunately we cannot use the given power spectrum f(u) directly to construct
covariance functions for stationary time series by equation (1.8) such that the discrete time
covariance function C1(h) satisfy C1(h) = C(h), for h = 0,±1,±2, . . .. Let f1(u) be a function
obtained from the power spectrum f(u) in the following way

f1(u) =
∞∑

j=−∞
f(u+ 2πj), (1.16)
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where u ∈ [−π, π]. From ? we have that the function f1(u) is exactly the power spectrum that
through equation (1.8) will result in a covariance function C1(h) which satisfies C1(h) = C(h),
for h = 0,±1,±2, . . .. It is clear that equation (1.16) provides us with a general method to
construct covariance functions for stationary time series with the same properties as covariance
functions defied for continuous time processes.

As an concrete example we will show a third method to how we can obtain the power spectrum
for the covariance function C(h) = ρ|h|. Let c = − log(ρ), then from equations (1.16) and (1.15)
we have that

f1(u) =
∞∑

j=−∞

1
cπ(1 + ([u+ 2πj]/c)2)

and C(h) = 2
∫ π

0
cos(uh)f1(u) du = ρ|h|

where u ∈ [−π, π].

Example 1.14. As a final example we will study a slightly different situation. Let Y (t), where
t = 0,±1, . . ., be a real valued time series with covariance function given by

C(h) =

{
σ2ρ|h|, if h is even
0, if h is odd

(1.17)

then the spectral function, f(u), is given as

f(u) =
σ2

2π

∞∑
h=−∞

exp(−iuh)ρ|h| =
σ2

2π

[
1 + 2

∞∑
h=0

cos(u2h)ρ2h

]
=
σ2

2π

[
1 + 2

∞∑
h=0

cos(2uh)(ρ2)h
]
.

From Example 1.11 it follows directly that we could write the spectral measure, f(u), as

f(u) =
σ2

π

[
1− ρ2 cos(2u)

1− 2ρ2 cos(2u) + ρ4
− 1

2

]
=

σ2(1− ρ4)
2π(1− 2ρ2 cos(2u) + ρ4)

, (1.18)

for u ∈ (−∞,∞).

1.2. The periodogram. Given a sample Y (0), . . . , Y (n− 1) of size n from the time series
Y (t), in this section we will start to study how we can estimate the power spectrum f(u) from
a given sample. Perhaps the most obvious and natural idea is to use the sample to estimate
covariance function Ĉ(h) from the equation (1.1) and then use relation (1.7) to estimate power
spectrum. Following this idea an estimate for the power spectrum is given by

f̂(u) =
1

2π

∞∑
h=−∞

exp(−iuh)Ĉ(h), (1.19)

even though the approach described here is natural, we will not follow this here, see ? for a
complete discussion of this approach.

Let Y (t), where t = 0,±1,±2, . . ., be a stationary time series with E[Y (t)] = µ and true power
spectrum f0(u), where u ∈ [0, π]. Let Y (0), . . . , Y (n − 1) be a sample of size n from the time
series Y (t), then the periodogram or second-order periodogram will be defined as

In(u) =
1

2πn

∣∣∣∣ n−1∑
j=0

exp(−iuj)Y (j)
∣∣∣∣2. (1.20)

The periodogram was first introduced by ? and was then used as a tool to find hidden peri-
odicities. The periodogram is now well known and widely used as an estimate for the power
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spectrum f0(u), but because of its nice properties we will in practice often rather use a weighted
or smoothed version of the periodogram, see below.
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Figure 1.7: The periodogram function based on the n first observations from the data of Figure 1.1
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Figure 1.8: The periodogram function based on the n first observations from the data of Figure 1.3

The following results show some of the main statistical properties of the periodogram, its expec-
tation, variance and the correlation between periodogram at different frequencies. The results
will reveal why the periodogram can be used as an estimator for the power spectrum, but also
why it is not the optimal choice of estimator. The results below are stated without proof and
can be all be found in ?.

theorem 1.15. Let Y (t), where t = 0,±1, . . ., be a time series with mean E[Y (t)] = µY and
covariance function given by Cov(Y (t + h), Y (t)) = C(h), where u, h = 0,±1, . . .. Suppose that
the covariance function satisfies ∑

h

|h||C(h)| <∞ (1.21)

then the periodogram is an asymptotically unbiased estimate for f(u), where u 6≡ 0 (mod 2π),
and we have

E[In(u)] = f(u) +
1

2πn

[
sin(nu/2)
sin(u/2)

]2

µ2
Y +O(n−1).

19



1. STATIONARY TIME SERIES CHAPTER 2. DISCRETE TIME

The need of the inequality (1.21) is not necessary for the periodogram to be an unbiased estimator,
it is sufficient to assume that

∑
h |C(h)| <∞, see ?.

theorem 1.16. Let Y (t), where t = 0,±1, . . ., be a real valued time series satisfying Assumption
(1.7) and let In(u) be the periodogram given by 1.20, then for u, v where u ≤ v and u, v 6≡
0 (mod 2π)

Cov(In(u), In(v))

=

([
sin(n(u+ v)/2)
n sin((u+ v)/2)

]2

+
[

sin(n(u− v)/2)
n sin((u− v)/2)

]2
)
f(u)2 +O(n−1)

Corollary 1.17. Assume the conditions in Theorem 1.15 and Theorem 1.16 are satisfied. Let
r, s be integers such that r, s, r ± s 6≡ 0 (mod n) and define ur = 2πr/n and vs = 2πs/n. Then

E[In(ur)] = f(u) +O(n−1),

Var(In(ur)) = f(u)2 +O(n−1) and

Cov(In(ur), In(vs)) = O(n−1).

From the results above it is clear that the periodogram will work as an estimator for the power
spectrum, but it is not optimal in the sense that it is not a consistent estimator. The variance of
In(u) will tend to a finite limit, i.e limn→∞Var(In(u)) = f0(u)2, for all u ∈ [0, π]. It will therefore
become impossible to reduce the uncertainty in the estimate below this limit by increasing
the number of observations. The low dependency between periodogram functions at different
frequencies explain why the periodogram has such irregular behavior, see Figure 1.7 and 1.8,
even though the true f0(u) will be expected to be fairly smooth. In the next theorem asymptotic
distribution of the periodogram will be established.

theorem 1.18. Let Y (t), where t = 0,±1, . . ., be a real valued time series satisfying Assumption
(1.7) and with true power spectrum f0(u). Let sj(n) be an integer with uj(n) = 2πsj(n)/n→ uj

as n→∞ for j = 1, . . . , J . Suppose 2uj(n), uj(n)±uk(n) 6≡ 0 (mod 2π) for 1 ≤ j ≤ k ≤ J and
n = 1, 2, . . .. Let the periodogram, In(u) be as defined in 1.20, then for j = 1, . . . , J In(uj(n)) is
asymptotical f0(u)× Exp(1) and asymptotically independent of each other.

1.2.1. The smoothed periodogram and other consistent estimators. In the previous section we
saw that the variance of the raw periodogram did not approach zero, this is a desirable property
of an estimator, and it suggests that the periodogram itself might not be the perfect choice
as an estimator for the power spectrum. The common solution to this problem is to choose a
smoothed or weighed version of the periodogram as an estimator. Let ω(u) be a suitable weight
function, see ? for several choices of ω(u), then the following expression will be referred to as a
weighted/smoothed estimator for the power spectrum

f̂ω(u) =
∑
ui∈Uu

ω(ui)In(ui),

where Uu is a set containing values in an neighborhood around u. In ? and ? it is shown that
for several classes of “natural” weight functions the weight periodogram is a consistent estimator
for the power spectrum. In the first paragraph of this section we mentioned an estimator for the
power spectrum based on the estimated covariance function (1.19). ? shows that this method
will create an unbiased estimate for the power spectrum, but again it is not consistent, and the
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solution is to use a wighted version. Let ω be an appropriate choice of weight function, see ? for
examples, then the estimator given by

f̂ω(u) =
1

2π

n−1∑
h=−(n−1)

ω(h) exp(−iuh)Ĉn(h),

is an unbiased estimator for the power spectrum. For a more complete introduction to power
spectrum functions based on the estimated covariance see ?.
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Figure 1.9: The Periodogram together with two different degrees of smoothed periodogram functions based on
the function (1.22). The estimates are based on the whole set of observations displayed in Figure 1.1

In this thesis we will not be too much concerned with the different types of weight estimators,
but there is one type we will study in a little more detail. The following estimator for the power
spectrum will be known as the smoothed periodogram. Assume that there exist integers r(n)
such that 2πr(n)/n are close to u, let m be some integer, where 0 < m < n, then the smoothed
periodogram is defined as

f̂m(u) =
1

2m+ 1

m∑
j=−m

In

(
2π[r(n) + j]

n

)
for 0 < ui < π. (1.22)

The next result is from ? and establishes some of the properties of smoothed periodogram.

theorem 1.19. Let Y (t), where t = 0,±1, . . ., be a real valued series satisfying Assumption 1.7
with true power spectrum f0(u). Let f̂m(u) be given by (1.22), then for 0 < u1, . . . , uJ < π let
rj(n) be integers such that uj(n) = 2πrj(n)/n→ uj for j = 1, . . . , J , then

E[f̂m(uj(n))] = f0(uj) and Var(f̂m(uj(n))) = f0(uj)2/m+O(n−1).

Also f̂m(uj(n)) and f̂m(uk(n)), for j, k = 1, . . . , J and j 6= k, are asymptotically independent
and

f̂m(uj(n)) L−→ f0(uj)× χ2
4m+2/(4m+ 2).

We will end this section with an example of the estimated covariance function based on the
periodogram and the smoothed periodogram, Figure 1.10. Note that estimate to the right, the
covariance estimated from the raw and unsmoothed periodogram, is the same as the biased
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covariance estimate in Figure 1.2. This is a common method to use when estimating the non-
parametric covariance function from data since it is several times faster, see also the fast Fourier
transformation in ? or ?.
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Figure 1.10: Estimated covariance based on the periodogram (left panel) and smoothed periodogram (right panel)
from the data displayed in Figure 1.1

1.3. Spectral measure estimation. We will now study an estimator for the spectral mea-
sure, F (u), where u ∈ [−π, π]. Because of the symmetric and periodic properties of f(u) we will
rewrite and redefine the spectral measure to the interval [0, π]. The spectral measure of a real
valued time series Y (t), where t = 0,±1, . . ., with power spectrum f(u) is given by

F (u) =
∫ u

0
f(v) dv, for u ∈ [0,∞]. (1.23)

From the properties of the periodogram, In(u), it seems reasonable to use this as an estimator
for the spectral measure. From the previous section we know that the periodogram is not a
consistent estimator, but Theorem 1.19 suggests that as an estimator for the spectral measure
the periodogram will work fine. We will denote the Estimated Spectral Measure by F̂ (u), where

F̂ (u) =
2π
n

∑
0< 2πj

n
<u

In

(
2πj
n

)
, for u ∈ [0,∞], (1.24)

see ?. The reason we define the sum over the values 2πj/n is that this provides the estimator
with some nice and easy to use properties, see Corollary 1.17 and Chapter 4 in ?. Before we
state the next theorem regrading the asymptotic properties of the estimator (1.24), we need to
introduce some new concepts.

Suppose Y (t), where t = 0,±1, . . ., is an r vector valued time series with components Ya(t)
that satisfy E[|Ya|r] < ∞ for all a = 1, . . . , r, then we define the k-th order cumulant spectrum
fa1,...,ak(u1, . . . , uk−1) ≡ fYa1 ,...,Yak (u1, . . . , uk−1) by

fYa1 ,...,Yak (u1, . . . , uk−1)

= (2π)−k+1
∞∑

h1,...,hk−1=−∞
ca1,...,ak(h1, . . . , hk−1) exp

(
− i

k−1∑
j=1

hjuj

) (1.25)

for −∞ < hj < ∞, a1, . . . , ak = 1, . . . , r, k = 2, 3, . . .. The definition (1.25) can be extended to
the case k = 1, by setting fa = ca = E[Xa(t)], for a = 1, . . . , r.
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theorem 1.20. Let Y (t), where t = 0,±1, . . ., be a real valued series with true power spec-
trum f0(u) that satisfying Assumption 1.7 and let F̂ (u) be as defined in (1.24). Then for
0 < u1, . . . , uJ < π define (v1, . . . , vJ) where vj =

√
n(F̂ (uj)− F0(uj)), and

F0(uj) =
∫ uj

0
f0(v) dv.

Then the vector (v1, . . . , vJ) is asymptotical multivariate Gaussian with expectation zero and
covariance matrix Σ with elements given by

Σk,l = 2π
∫ min(uk,ul)

0
f0(v)2 dv + 2π

∫ uk

0

∫ ul

0
fY Y Y Y (v, w,−v, 0) dv dw.

In the next corollary we state what happens in the case of a Gaussian time series, note that the
result follows almost directly from Theorem 1.20.

Corollary 1.21. Let Y (t), where t = 0,±1, . . ., be a real valued series with true power spectrum
f0(u) that satisfying Assumption 1.8. For 0 < u1, . . . , uJ < π let rj(n) be an integer such that
rj(n) satisfy 2πrj(n)/n→ uj as n→∞.

i) Then, for all choice of j, k, where j 6= k we have that In(uj) is distributed as f(uj) ×
Exp(1) and In(uj) and In(uk) are asymptotically independent as n→∞.

ii) Let F̂ (u) be given by (1.24) and for 0 < u1, . . . , uJ < π define (v1, . . . , vJ), where
vj =

√
n(F̂ (uj)−F0(uj)) and F0(uj) is the true spectral measure. Then as n approaches

infinity the vector (v1, . . . , vJ) converges in distribution to a multivariate Gaussian with
expectation zero and covariance matrix Σ with elements given by

Σk,l = 2π
∫ min(uk,ul)

0
f0(v)2 dv.

Proof. i) For a sample of size n of Y (t), where t = 0, . . . , n− 1, the Finite Fourier Trans-
formation dn(u) is define as

dn(u) =
n−1∑
t=0

exp(−iut)Y (t) −∞ < u <∞. (1.26)

From ? we have that for (u1, . . . , uk) ∈ (−∞,∞) the joint cumulant function of (dn(u1), . . . , dn(uk))
is given by

cum(dn(u1), . . . dn(uk)) = (2π)k−1∆n

( k∑
j=1

uj

)
fY ...Y (u1, . . . , uk−1) +O(1) (1.27)

where fY ...Y is given by (1.25) and ∆n(u) =
∑n−1

t=0 exp(−iut). Note that we have that |∆(u)| =
| sin(nu/2)/ sin(u/2)|, ∆n(u) = T , for u ≡ 0 (mod 2π), |∆n(u)| ≤ 1/| sin(u/2)| for all u ∈
(−∞,∞) and ∆n(2πr/n) = 0 for an integer r 6≡ 0 (mod n). From the result (1.27) we find that
the expectation and covariance of the finite Fourier transformation of a strict stationary time
series Y (t) are given by

E[dn(u)] = ∆n(u)E[Y (t)]

and
Cov(dn(u), dn(v)) = 2π∆n(u− v)f(u) +O(1).
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Since uj = 2πrj(n)/n and 0 < uj < π, for j = 1, . . . , J , it follows that E[dn(uj)] = 0 and
the variance and covariance satisfy n−1 Var(uj) = n−1 Cov(dn(uj), dn(uj)) = 2πf(uj) and
n−1 Cov(dn(uk), dn(ul)) = O(n−1), where k 6= l. Since dn(uj) is a sum of Gaussian variables
with complex weights, the finite Fourier transformation, dn(uj), follows a complex Gaussian
distributed with expectation 0 and variance 2πnf(uj). From the properties of the complex
Gaussian distribution we know that ifX follows a complex Gaussian distribution, X ∼ Nc(µ, σ2),
then ReX and ImX are independent and ReX ∼ N(Reµ, σ2/2) and ImX ∼ N(Imµ, σ2/2).
Further properties of complex numbers gives that the periodogram (1.20) could be written as

In(uj) =
1

2πn

∣∣dn(uj)
∣∣2 =

1
2πn

∣∣Re dn(uj)
∣∣2 +

∣∣ Im dn(uj)
∣∣2

= f(uj)
∣∣Re dn(uj)/

√
2πnf(uj)

∣∣2 +
∣∣ Im dn(uj)/

√
2πnf(uj)

∣∣2
which implies that In(uj) is distributed as f(uj) × Exp(1) for j = 1, . . . , J . Also In(uk) and
In(ul), for k, l = 1, . . . , J where k 6= l, are asymptotically independent, which follows from the
asymptotically independence of the finite Fourier transformation.

ii) The result follows as a direct consequence of Theorem 1.20 and Remark 1.4. �

All the results above follows the approach of ?, where everything is defined according to the
values uj(n) = 2πrj(n)/n where uj(n) → uj as n → ∞. Later in this thesis we will need
equivalent results for general vales u and the next two results consider this slightly different idea.

theorem 1.22. Let Y (t), where t = 0,±1, . . ., be a real valued series satisfying Assumption 1.8
and with true spectral measure F0(u), then for any choice of u where u ∈ (0, π)

F̃ (u) =
∫ u

0
In(w) dw a.s−−→

∫ u

0
f0(w) dw = F0(u). (1.28)

Proof. An argument is given in ? page 418. �

The following result is the natural extension of Corollary 1.21 to the case of general frequencies
u ∈ [0, π] and the new estimator F̃ (u) for the power spectrum.

Lemma 1.23. Let Y (t), where t = 0,±1, . . ., be a real valued series with true power spectrum
f0(u) satisfying Assumption 1.8 and let F̃ be as defined in Theorem 1.22. Let u1, . . . , um be an
arbitrary sequence of frequencies where −π < ui < π for i = 1, . . . ,m and positive integer m. Let
vj =

√
n(F̃ (uj) − F0(uj)), for all j = 1, . . . ,m, then (v1, . . . , vm) is asymptotically multivariate

Gaussian distributed with exception zero and covariance matrix Σ with elements

Σk,l = 2π
∫ min(uk,ul)

0
f0(w)2 dw.

Also if u, v ∈ (0, π) and u 6= v then F̃ (u) and F̃ (v) are asymptoticaly independent.

Proof. (Sketch) From Theorem 1.22 it is clear that all (v1, . . . , vm) will have expectation
zero. If we write

F̃ (uj) =
∫ uj

0
In(w) dw = lim

m→∞
(2π/m)

∑
2πj/m<uj

In(2πj/m)
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it is easy to see that it follows from Corollary 1.21 that (v1, . . . , vm) will become asymptotically
multivariate Gaussian distributed. All that remains to show is what happens with the covariance
matrix of (v1, . . . , vm). From Theorem 1.16 we have an explicit expression for the covariance
between to periodogram functions at different frequencies uk and ul, where uk, ul ∈ [0, π], then

Cov(In(uk), In(ul)) =


Cov(In(uk), In(ul)) ≤ 2f0(uk)2, if 0 < |uk − ul| < εn

f0(uk)2, if uk = ul

0, else
.

where εn → 0 as n→∞. Let wi = 2πi/m then it follows from ? and Theorem 1.16 that

Cov(F̃ (uk), F̃ (ul))

= lim
m→∞

(2π/m)2
∑
wi<uk

∑
wj<ul

Cov(In(wi), In(wj))

= lim
m→∞

(2π/m)2

( ∑
wi<min(uk,ul)

f0(wi)2

+ n−2
∑
i 6=j

∑
j 6=i

Cov(In(wi), In(wj)) + 2πnfY Y Y Y (wi, wj ,−wi, 0)
)

+O(n−2)

= lim
m→∞

(2π/m)2

( ∑
wi<min(uk,ul)

f0(wi)2

+ n−2
m∑
i=1

∑
j∈Ui

Cov(In(wi), In(wj)) + 2πnfY Y Y Y (wi, wj ,−wi, 0)
)

+O(n−2).

where Ui = {j | j = 1, . . . ,m and |wi−wj | < εn}. Assume that n approaches infinity so fast that
n/m→ 1 and Ui = ∅, then since we have limited ourselves to the study of Gaussian time seres,
we have that

lim
n→∞

nCov(F̃ (uk), F̃ (ul)) = lim
m,n→∞

n (2π/m)2
∑

wi<min(uk,ul)

f0(wi)2 = 2π
∫ min(uk,ul)

0
f0(w)2 dw,

which completes the proof. �

The last result in this section will be a generalization of Lemma 1.23 to covariance functions,
which still has the main focus in this thesis.

Corollary 1.24. Let Y (t), where t = 0,±1, . . ., be a real valued series hat satisfying Assumption
1.8 and has true covariance function C0(h) based on the power spectrum f0(u). Define the
estimator C̃(h) for the true covariance function by

C̃(h) =
∫ π

−π
exp(−iuh)In(u) du = 2

∫ π

0
cos(uh)In(u) du. (1.29)

Let h1, . . . , hm, where hj = 0,±1,±2, . . . and j = 1, . . . ,m, be an arbitrary set of lag distance and
define vj =

√
n[C̃(hj)−C0(hj)], for j = 1, . . . ,m. Then (v1, . . . , vm) is distributed according to a

multivariate Gaussian distribution with expectation zero and covariance matrix Σ with elements
given by

Σk,l = 4π
∫ π

0
[cos(u(hk − hl)) + cos(u(hk + hl))]f0(u)2 du.
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Proof. (Sketch) The asymptotic normality follows from Lemma 1.23 and it is clear that the
expectation of C̃(h), for any i = 1, . . . ,m is the true covariance function

E[C̃(hj)] =
∫ π

−π
exp(−iuhj)E[In(u)] du = 2

∫ π

0
cos(uhj)f0(u) du = C0(hj).

The remaining thing to show is the covariance between two arbitrary lag distances hk and hl.
We will use the same approach as in Lemma 1.23, define

C̃(hj) =
∫ π

−π
exp(−iuhj)In(u) du = lim

m→∞

4π
m

m∑
i=1

cos(uihj)In(ui), where ui = 2πi/m

then
Cov(C̃(hk), C̃(hl))

= lim
m→∞

Cov(
4π
m

m∑
i=1

cos(uihk)In(ui),
4π
m

m∑
i=1

cos(uihl)In(ui))

= lim
m→∞

16π2

m2

m∑
i=1

m∑
j=1

cos(uihk) cos(ujhl) Cov(In(ui), In(uj))

= lim
m→∞

8π2

m2

m∑
i=1

m∑
j=1

[
cos(uihk − ujhl) + cos(uihk + ujhl)

]
Cov(In(ui), In(uj)).

Under the same assumption as in Lemma 1.23 we know that if n approaches infinity fast enough,
i.e. such that n/m → 1 and the sets Ui defined in Lemma 1.23 are the empty sets for all
i = 1, . . . ,m, it follows that

nCov(C̃(hk), C̃(hl))

= n lim
m→∞

8π2

m2

m∑
i=1

m∑
j=1

[
cos(uihk − ujhl) + cos(uihk + ujhl)

]
Cov(In(ui), In(uj))

= 4π
∫ π

0

[
cos(u(hk − hl)) + cos(u(hk + hl))

]
f0(u)2 du.

�

As a final remark we will state another natural choice of estimator for covariance function.

Remark 1.25. Let Y (t), where t = 0,±1, . . ., be a real valued time series that satisfies the
conditions of Theorem 1.22. Then

C̃(h) =
∫ π

−π
exp(−iuh)dF̃ (u) = 2

∫ π

0
cos(uh)

[
F̃ (u+ du)− F̃ (u)

]
a.s−−→ 2

∫ π

0
cos(uh)

[
F0(u+ du)− F0(u)

]
= 2

∫ π

0
cos(uh)dF0(u) = C0(h),

for h = 0,±1,±2, . . ..
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2. Bayesian methods

We have already mentioned that there are two things that determine a stationary time series,
this is the expectation and the dependency structure. The easiest, and perhaps most common,
way to model these, given a sample of observations, is to estimate the expectation by the sample
mean and assume a parametric class of covariance, correlation or semivariogram functions for
the dependency and estimate the unknown parameters from the data. It is of course possible to
use Bayesian methods where the unknown parameters under study are assumed to be random
variables from a suitable a priori distribution that reflects our a priori belief, see ? and ? for
a complete introduction and discussion of the Bayesian approach to statistical inference. By
restricting ourselves to a specific class of parametric models we may make critical assumptions
about the phenomena under study that may lead to incorrect conclusions and results. To avoid
the perhaps crucial parametric model assumption we can use the more sensitive and robust class
of nonparametric models, see ? and ?.

In this section we will introduce and discuss how to use nonparametric Bayesian modeling to
make statistical inference about the dependency structure in stationary time series. In Section 2.1
there will be a short introduction to nonparametric and semiparametric Bayesian methods with
some focus on distribution function estimation, because of its historical value and the similarity
to our nonparametric approach to the dependency estimation in stationary time seres. In Section
2.2 we will introduce some a priori distribution for the class of covariance and the correlation
functions and discuss some of its properties. Section 2.3 will mostly be concerned with how we
can obtain posterior inference after a sample from a stationary time series is observed through
the use of Markov chain Monte Carlo simulation, also known as MCMC simulation, see Appendix
A.

2.1. Nonparametric and semiparametric Bayesian methods. Nonparametric Bayesian
models usually refer to Bayesian constructions with large numbers on unknown parameters, often
more than the number of observations or even infinitely many. It is therefore in some situations
natural to think of nonparametric Bayesian models as probability models on a suitable function
space. In nonparametric Bayesian analysis we do not make any model assumptions and we will
therefore avoid possible misclassifications as a result of an incorrect parametric model. We are
also able to include valuable a priori information which may lead, if our prior belief is not far
off, to more accurate models and precise inference. The nonparametric Bayesian approach has
become quite popular and is used in several different types of analysis, and with fast modern
computers it is now usually straightforward and fairly easy to obtain posterior inference through
simulation. For a brief introduction to some of the fields where nonparametric Bayesian modeling
is used see ?.

The term semiparametric model is used when referring to models that consist of parametric
and nonparametric parts. A semiparametric Bayesian setup for a stationary time seres could
perhaps be the case where a nonparametric Bayesian model was used to estimation the correlation
function while the mean and variance where assumed to be unknown random parameters from
a prior density.
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As an illustration we will very short introduce and explain the nonparametric approach to dis-
tribution function estimation. Let Y1, . . . , Yn be a random sample of independent and identically
distributed variables from an unknown distribution function F , the Bayesian approach requires
a probability model for the unknown distribution function F . In a nonparametric Bayesian
framework this involves placing a probability measure on the collection of distribution functions,
i.e viewing F as a stochastic process, see ?. Such probability measures are also often referred
to as random probability measures. ? introduced the Dirichlet process as a random probability
measure and a solution to the nonparametric Bayesian distribution function estimation. The
random distribution function F is said to be generated by a Dirichlet process if for any partition
B1, . . . , Bk of the sample space, the joint random vector (F (B1), . . . , F (Bk)) follows a Dirichlet
distribution with parameters (aF0(B1), . . . , aF0(Bk)), where F0 is our a priori guess for F and
a is a weight representing our a priori precision. The interpretation of F0 and a becomes clear
from the expressions for the expectation and variance for a given subset Bi, from the properties
of the Dirichlet distribution we have that

E[F (Bi)] = F0(Bi) and Var(F (Bi)) = F0(Bi)(1− F0(Bi)/(a+ 1).

? also suggest two properties that would be desirable for a random probability measures to
satisfy: i) the support of the prior distribution should be large, and ii) the posterior distribution
obtained given a sample of observations from the true probability distribution should be man-
ageable analytically. Today, 35 years later, property ii) could be replaced by a requirement that
a efficient simulation routine must be available.

See ? and ? for a more complete treatment of distribution function estimation and ? for a
extension of property i) by the use of mixed models. Other interesting articles concerned with
the topic of nonparametric Bayesian modeling are ?, ? and ?.

2.2. Prior distributions. In the following sections we will try to apply the nonparametric
Bayesian ideas as an approach for estimating the dependency structure in stationary Gaussian
time series. To be more precise, our main goal will be to model the covariance function from
the spectral measure by using ideas similar to the nonparametric Bayesian approach to density
estimation. The reason why we will model the covariance through the spectral measure will soon
become clear. We have already mentioned that in order to use the nonparametric Bayesian design
we need to place a probability measure on the function space consisting of all valid covariance
functions, this is done by specifying a random process as the prior distribution for the covariance
function, i.e. we will view the covariance function as a random process. Before we start the real
discussion on how to construct suitable nonparametric prior distributions, we will show that a
fairly simple and reasonable construction might lead to improper and useless results.

Example 2.1. Given a sample form a stationary Gaussian time series and suppose we are only
interested in the unknown covariance structure. Let the covariance functions that are within the
class of exponential functions be our prior guess. Then the set of covariance functions of main
interest is given by

{C(h) = σ2 exp(−φh) | φ > 0 and h = 1, 2, . . .}.

Note that this is a special case of the covariance function given in Example 1.11 and therefore we
know that all the functions in the set are valid. We now need to place a probability measure on
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the space of valid covariance functions and try to somehow concentrate it around the exponential,
which means we have to define a suitable stochastic process as the prior distribution for C(h).
Assume that σ2 is known and define the random C(h) by

C(h) = σ2 exp(−G(h)), for h = 0,±1, . . .

where G(h) might for example be a Gamma Process. To be more specific we will concentrate
the process around G0(h) = φh, where φ is determined from our a priori information. It is clear
that the random function C(h) is close to our prior belief C0(h) = σ2 exp(−φh) and the method
is quite easy to use. Unfortunately the random covariance functions described here will not
necessarily satisfy the positive definite condition, in other words, the random function C(h) will
not always become a valid covariance function, i.e. Pr{C(h) is a valid covariance function} < 1.
The easiest way to test if C(h) is valid is to use another method than the definition (1.2) to
check the positive definiteness property.

If a covariance function C(h) is valid, then for any k ∈ N and vector of locations (0, 1, . . . , k)
the covariance matrix Σ obtained from C(h), i.e. element i, j of Σ is given by Σi,j = C(|i− j|),
will only have positive eigenvalues.

Let C(h) be a random covariance function from the construction above, it is then easy to check
with a statistical software package, that for k = 3 it is possible for the corresponding covariance
matrix to have negative eigenvalues with a positive probability. This implies that the method
described above is not a correct routine to use in order to obtain random covariance functions.

Example 2.1 illustrates the fact that we have to be a little careful when we construct prior
distributions for nonparametric covariance functions since we always have to make sure that we
are within the class of valid functions. Motivated from Corollary 1.10 it makes sense to limit
ourselves to the set of covariance functions that are constructed from the spectral measures
F (u) defined by (1.9). By doing this we will have some simple and quite week conditions our
process need to satisfy in order to verify that our prior distribution will generate valid covariance
function. Since we know how to find the spectral measure, given a specific covariance function,
it will become easy to see what we have to concentrate our a priori spectral measure around.
If the posterior process is updated in the frequency domain we can also always be sure that
our posterior covariance function will become a valid function. Note that this limitation is not
necessarily a problem, or a real restriction (see Remark ??), first of all it will become quite easy
to include our a priori information regarding the covariance function by equation 1.7 and as we
shall see it is not to difficult to obtain posterior inference by using MCMC simulations.

Let Y (t), where t = 0,±1, . . ., be a stationary Gaussian time series with expectation zero and
true covariance function C0(h), where h = 0,±1, . . ., determined by the spectral measure F0(u),
where u ∈ [0, π]. In order to use the nonparametric Bayesian framework we need to place a
probability measure on the space of covariance functions. As we have argued earlier we will do
this by placing a probability measure on the collection of spectral measures in order to always
be sure that we are only working with the valid covariance functions. In other words we have to
view F as a stochastic process and it is clear from equation (1.8) that C(h) constructed in this
way also will become a valid random covariance function.
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Let F̄ (u) be a function on the interval [−π, π] defined by the function F (u), on u ∈ [0, π], in the
following way

F̄ (u) =


0 u = −π
F (π)− F (u) −π < u < 0
F (π) + F (u) 0 ≤ u ≤ π

. (2.1)

Let F be the set of all functions F (u) such that F̄ (u) defined according to (2.1) and satisfy the
conditions of Corollary 1.10, i.e. F̄ (u) is non-decreasing, F̄ (−π) = 0 and F̄ (π) < ∞. Then F
is the set of spectral measures with fundamental domain [0, π] that will lead to valid covariance
function and F is the set of functions which we will need to place a probability distribution.
Before we continue, note that we can in almost the same way construct the set H of normalized
spectral measures with fundamental domain [0, π] that will lead to valid correlation functions, see
Theorem 1.9. We will motivate the general idea by a simple example of how we can construction
random spectral measures as random step functions with a finite number of jumps.

Example 2.2. Let 0 = u0 < u1 < . . . < uM−1 < uM = π define a partition of the interval [0, π]
and let (∆F (u1), . . . ,∆F (um)), where ∆F (ui) = F (ui) − F (ui−1), be a vector of independent
random variables, where ∆F (ui) has prior density function given by πi(vi) and let the π(v) =∏m
i=1 πi(vi) define the joint density function for the whole vector. Let F (u) be the random

function defined as
F (u) =

∑
ui<u

∆F (ui), for 0 < u < π.

Note that F (u) defines a random step function on the interval [0, π]. Assume that the distribu-
tions of ∆F (ui), for all i = 1, . . . ,m, is such that F (u) satisfies the conditions of Corollary 1.10,
F (−π) = 0, F (π) <∞ and F (u) have to be non-decreasing, i.e. ∆F (ui) ≥ 0 and ∆F (ui) must
be bounded in probability for all i = 1, . . . ,m. If the function F (u) is extended in the natural
way to the interval [−π, π], by F (−π) = 0 and F (−u) ≡ F (u) for −π < u < 0, then F (u)
becomes a random spectral measure, it is clearly in the set F . The random covariance function
C(h) constructed by

C(h) =
∫ π

−π
exp(iuh) dF (u) = 2

m∑
i=1

cos(uih)∆F (ui)

will from Corollary 1.10 always become a valid covariance function. The density π(v) will be
specified according to our prior beliefs, i.e.

E[F (u)] = E[
∑
ui<u

∆F (ui)] =
∑
ui<u

E[∆F (ui)] =
∑
ui<u

∆F0(ui) = F0(u)

and
Var(F (u)) = Var(

∑
ui<u

∆F (ui)) =
∑
ui<u

Var(∆F (ui)) = σ2(u).

where F0(u) is the spectral measure that corresponds to C0(u), i.e

E[C(h)] = 2
m∑
i=1

cos(uih)E[∆F (ui)] = C0(h).

In order to place a probability measure on the collection of functions contained in F , we will have
to specifically a random process that will generate random functions F , defined on the interval
[0, π] that when extended in the natural way to [−π, π] will satisfy the conditions of Corollary
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1.10. There is no reason not to believe that there should not exist several types of processes that
will be suitable to generate such random spectral measures.

We can define a quite general class of possible prior distributions by letting F be a finite Lévy
process, i.e. a nonnegative independent increment process, that satisfies Pr{F (π) <∞} = 1. In
order to be specific we will assume that the random spectral measures F is a Gamma process
defined on the interval [0, π].

A random process G(u) with increments given by dG(u) = G(u + du) − G(u) will be referred
to as a Gamma process, if G(u) is an independent increment process where the increments are
distributed according to a Gamma distribution, i.e.

dG(u) ∼ Ga(α(u) du, β(u)), for u > 0 (2.2)

where Ga(α(u) du, β(u)) is the Gamma distribution with shape parameter α(u) du > 0 and rate
parameter β(u) > 0, for u > 0. The Gamma process is especially a Lévy process and is therefore
a nonnegative independent increment process. The process will also be finite and from simple
expressions for the expectation and variance it will become quite easy to translate and include
our a priori information about the dependency into the prior distribution. See for example ?, ?
or ? for a complete definition and different uses of the Gamma processes.

Let now F be a Gamma process with increments given as dF (u) = F (u+du)−F (u), and where
the increment distribution is specified by

dF (u) ∼ Ga(β(u) dF0(u), β(u)),

where dF0(u) = F0(u+du)−F0(u) and F0(u) ∈ F represent our prior belief. The rate parameter
β(u) will determine the precision or strength in our a priori guess, see below. The random function
defined by

F (u) =
∫ u

0
dF (u), for u ∈ [0, π] (2.3)

will be referred to as a random spectral measure and a random covariance function will be the
random function

C(h) = 2
∫ π

0
cos(uh) dF (u), for h = 0,±1,±2, . . . . (2.4)

From the properties of the Gamma Distribution and the independence of the increments it is
now straightforward to determine how the a priori information shall be included in the model.
For every h = 0, 1, 2, . . . we have that

E[C(h)] = E[2
∫ π

0
cos(uh) dF (u)]

= 2
∫ π

0
cos(uh)E[dF (u)] = 2

∫ π

0
cos(uh) dF0(u) = C0(h),

and the precision will be determined from the variance

Var(C(h)) = 4
∫ π

0
cos(uh)2 Var(dF (u))

= 2
∫ π

0
(1 + cos(2uh)) dF0(u)/β(u)

= 2
∫ π

0
β(u)−1 dF0(u) + 2

∫ π

0
cos(u2h)β(u)−1 dF0(u)

(2.5)
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There is one problem with the construction presented here, the expression for the variance, that
represents our strength in the a priori guess, consists of two parts where the first term does not
depend on h and will therefore become a constant. If we assume for a moment that the rate
parameter is a constant, i.e. β(u) = β, then the last term of expression (2.5) will become a scaled
version of C0(h) that approaches zero twice as fast, this means that

Var(C(h))→ 2
∫ π

0
β−1 dF0(u) = 2F (π)/β, as h→∞.

In other words, suppose we are particularly certain that the dependence will become arbitrary
close to zero as the separation between two different time points becomes large. We will then
probably wish to include this information in our model, but this will not be possible in the given
framework. The model we have described so far is in a sense “not good enough”, since it is
impossible to capture a very common belief about the dependency structure. Note that there
is at least one obvious reason why it might be desirable to let b(u) be an increasing function
and not a constant. The high end of the spectrum corresponds to short and rapid oscillations
in the covariance, then by forcing the posterior process to be close to the prior process for high
frequencies we might smooth out some of the noise from the observation. There is one important
topic we have not discussed, this is the support of our construction, unfortunately it was not
enough time to discuss this properly in this thesis, see the concluding remark at the end of the
next chapter for a remark on this subject. We will illustrate the ideas we have presented so far
with two examples that also have a solution to the problem with the constant variance.

Example 2.3. Assume that our prior guess for the covariance function is the class of functions
given by

Cov(Y (l), Y (k)) = C0(|l − k|) = C0(h) = σ2ρh, for h = 0, 1, 2, . . ..

We will now follow the ideas from the discussion above and define a prior distribution on the
spectral measure by a Gamma process and we will specify the distribution of the increments to
reflect our prior belief. Let dF (u) = F (u + du) − F (u) and dF (u) ∼ Ga(α(u) du, β(u)), where
α(u) = b(u)fπ(u) and β(u) = b(u), where fπ(u) is the power spectrum from Example 1.11 (the
index π indicates that this is our a priori guess) and b(u) is a positive real valued function. Then
the random covariance function is given by

C(h) = 2
∫ π

0
cos(uh) dF (u), for h = 0, 1, 2, . . .

which will always become a valid covariance function. For any h, where h = 0, 1, 2, . . ., the
expectation of C(h) at h is given by the expression

E[C(h)] = 2
∫ π

0
cos(uh)E[dF (u)] = 2

∫ π

0
cos(uh)fπ(u) du = σ2ρh

and the variance by

Var(C(h))

= 4
∫ π

0
cos(uh)2 Var(dF (u)) = 2σ2

∫ π

0
b(u)−1fπ(u) du+ 2σ2

∫ π

0
cos(u2h)b(u)−1fπ(u) du.

We have already mentioned the problem related to the variance expression, that it reaches a
finite limit for large values of h, in particular this situation the variance problem has an easy
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solution. First we will assume that b(u) = b to simplify and make the solution more explicit,
then we can rewrite the expression for the variance

Var(C(h)) =
σ2

b

[
2Fπ(π) + ρ2h

]
.

From Lemma 1.1 we know that the product of two valid covariance functions is also always
a valid covariance function, therefore if dF (u) ∼ Ga(α′(u) du, β(u)), where α′(u) = bfπ(u)
and β(u) = b, where fπ(u) is now a new prior guess that corresponding power spectrum for
the covariance function C(h) = σ2ρah, which is a straightforward and easy generalization of
Example 1.11. If we now combine the new random covariance function with a suitable choice of
deterministic function we obtain the two following results:

E[ρh(1−a)C(h)] = ρh(1−a)2
∫ π

0
cos(uh)fπ(u) du = σ2ρh(1−a)ρha = σ2ρh

and

Var(ρh(1−a)C(h)) = ρ2h(1−a)2σ2

∫ π

0
b(u)−1fπ(u) du+ 2σ2

∫ π

0
cos(u2h)b(u)−1fπ(u) du

=
σ2

b

[
2ρ2h(1−a)Fπ(π) + ρ2h].

This finale result gives us a quite large and flexible class of prior distributions for the covariance
functions that are of the form C(h) = σ2ρh. By adjusting the four hyper parameters (a, b, ρ, σ) we
are able to construct processes that are able to capture several different types of a priori beliefs.
The two parameters σ and ρ represent our prior guess for the unknown covariance function, b
controls the largest possible amount of variation, or the precision in our guess, and a determines
how fast this variation should converges to zero for increasing separation. There will be some
numerical illustrations based on simulations at the end of the next section.

In the following example we will show have we can use the Dirichlet process as a prior distribution
on the set of correlation functions.

Example 2.4. Let H be the set of functions H(u) defined on the interval [0, π] such that H̄(u),
defined by H(u) in the equivalent way as (2.1), on the interval [−π, π] satisfies the conditions of
Theorem 1.9. It is clear that every function H(u) in H will lead to valid a correlation function
R(h) by the expression

R(h) =
∫ π

−π
exp(iuh) dH̄(u) = 2

∫ π

0
cos(uh) dH(u), for h = 0, 1, . . ..

From section 2.1 it is clear that the Dirichlet process will be perfect as a prior distribution since
the normalized spectral measure has the same properties as a cumulative distribution function
on the interval [−π, π]. We will assume that H is a Dirichlet process and refer to it as a random
normalized spectral measure and this will be our prior distribution on the set of normalized
spectral measures. The covariance function constructed from the random spectral measure

R(h) = 2
∫ π

0
cos(uh) dH(u), for h = 0, 1, . . . ,

will be called a random correlation function and from Theorem 1.9 we known that R(h) con-
structed in this way always will become valid.
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The Dirichlet process is specified by two parameters, Hπ(u) and a, that represents the a priori
belief and the precision, from the properties of the Dirichlet distribution it is easy to see how we
should specify theses parameters.

E[R(h)] = 2
∫ π

0
cos(uh)E[dH(u)] = 2

∫ π

0
cos(uh) dHπ(u) = Rπ(h), for h = 0, 1, . . ..

where Rπ(h) is our prior guess for the correlation function. Since the increments of a Dirichlet
process is not independent the variance of the estimate will not have such a simple structure
as in Example 2.3. From Appendix B we know how to find the variance of a finite number of
Dirichlet distributed variables, by taking the limit we find that

Var(R(h)) = 4
∫ π

0

∫ π

0
cos(uh) cos(vh) Cov(dH(u), dH(v))

=
4

1 + a

∫ π

0
cos(uh)2 dHπ(u)− 4

1 + a

∫ π

0
cos(uh) dHπ(u)

∫ π

0
cos(vh) dHπ(v)

=
1

1 + a

[
2Hπ(π) +Rπ(2h)−Rπ(h)2

]
for h = 0, 1, . . ..

Again we have the same problem as in Example 2.3, the variance tends to a finite limit as
h → ∞, if we have the simple structure as in the previous example, for example R(h) = ρh

k ,
where k = 1, 2, . . . and h = 0, 1, 2, . . ., we can use the same trick where we combine a random
and a deterministic covariance functions.

In these two examples we have shown how we in general can construct prior distributions covari-
ance and correlation functions. We did also have a concrete solution to the problem with the
constant variance. Unfortunately I do not have a general solution to this problem, depending
on the situation we can always use the trick presented in the examples, but this will not always
work and it is not difficult to come up with examples where this solution is not possible, see also
the concluding remarks of the next chapter.

2.3. Posterior distributions. In this section we will investigate the properties of the pos-
terior distribution and try to make inference about the dependency structure after a sample from
a stationary time series is observed. In the case of finite parametric problems the inference from
the posterior distribution is obtained by using the fact that the posterior density is proportional
to the product of the prior density and the likelihood, i.e.

π(θ|data) ∝ π(θ)× Lik(data|θ).

As a introduction we will first complete the the discussion of the simple example we introduced
in the previous section, this falls into the class of finite parameter problems and we may obtain
the posterior distribution as described above.

Example 2.5. Let Y (0), . . . , Y (n− 1) be a sample from a stationary Gaussian time series with
expectation zero where the covariance structure and the true spectral measure is unknown. We
will assume that the unknown spectral measure F (u) is a step function with a finite number of
jumps located at points 0 < u1 < · · · < uM−1 < π, where M is much smaller than n. We can
then use the result from Example 2.2 where we defined a prior density for F (u) by the function
π(F ) = π1(∆F (u1)) · · ·πM (∆F (uM )), where πi(∆F (ui)) is the prior density for the unknown
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and random variable ∆F (ui) = F (ui)− F (ui−1), for i = 1, 2, . . . ,M . The posterior distribution
is now proportional to

π(F |data) ∝
m∏
i=1

πi(∆F (ui))× Lik(data|F ).

From log-likelihood given by equation (2.6) below we have that the log-posterior density of the
spectral measure is given by

log(π(F |data)) =
m∑
i=1

log(π(∆F (ui)))−
1
2

log(|Σ(F )|)− 1
2

(Y )TΣ(F )−1(Y ) + c∗,

where c∗ is a constant, Y T = (Y (0), . . . , Y (n − 1)) and ΣF is the covariance matrix that with
elements of the form

Σ(F )k,l = 2
m∑
i=1

cos(ui|k − l|)∆F (ui).

It is not easy or straightforward to determine the properties of the posterior distribution, the
parameters under interest are hidden within the covariance matrix and it is not clear how the
observed data will affect them. The easiest and perhaps most common solution in order to
solve such complicated problems and to make posterior inference is to use MCMC methods, see
Appendix A.

Let Y (0), . . . , Y (n− 1) be a sample of size n from a real valued stationary Gaussian time series
Y (t) with expectation E[Y (t)] = µ and true covariance function C0(h), where h = 0,±1,±2, . . .,
determined by the spectral measure F0(u) with fundamental domain [0, π]. To be concrete we
will assume that the time series Y (t) has expectation zero and that the covariance function is
isotropic. The likelihood function of Y (0), . . . , Y (n − 1) is a function of the unknown spectral
measure F (u) and is given by the multivariate Gaussian distribution as follows

Lik(data|F ) = (2π)−n/2|Σ(F )|−1/2 exp
(
− 1

2
(Y − 0)TΣ(F )−1(Y − 0)

)
where Y T = (Y (0), . . . , Y (n − 1)) and the elements of the covariance matrix Σ(F ) depends on
the spectral measure through

Σ(F )k,l = C(|k − l|) =
∫ π

−π
exp(iu|k − l|) dF (u) = 2

∫ π

0
cos(u|k − l|) dF (u),

where k, l = 0, 1, . . . , n. Further the logarithm of the likelihood function is now determine by the
function

Ln(F ) = lik(data|F ) = −n
2

log(2π)− 1
2

log(|Σ(F )|)− 1
2

(Y )TΣ(F )−1(Y )

= −1
2

log(|Σ(F )|)− 1
2

(Y )TΣ(F )−1(Y ) + c∗
(2.6)

where c∗ is a constant.

In the nonparametric situation we are concerned with processes and we have in a sense infinitely
many unknown parameters. From ? Chapter 1 we know that in order to specify the posterior
distribution for the whole process it is sufficient to specify the distribution for an arbitrary finite
set of increments of the process. Further, also from ? Chapter 1, we have that in order to specify
the process for any finite set of increments it is actually sufficient to specify the process for any
finite partition of its domain.
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Let k be any positive integer and 0 = u0 < u1 < . . . < uk = π be a partition of the interval [0, π]
and let (v1, . . . , vk) be the set of increments, where vi is defined as vi = ∆F (ui) = F (ui)−F (ui−1),
then the posterior distribution of v1, . . . , vk given a sample of observation has density proportional
to

π(v1, . . . vk|data) ∝
k∏
i=1

π(vi)× Lik(data|v1, . . . , vk). (2.7)

If the Y (0), . . . , Y (n − 1) is a sample from a stationary Gaussian time series with expectation
zero and true spectral measure F0(u), then the logarithm of the posterior density for any finite
set of increments is given as

log(π(v1, . . . vk|data)) =
k∑
i=1

π(vi)−
1
2

log(|Σ(v1, . . . , vk)|)−
1
2

(Y )TΣ(v1, . . . , vk)−1(Y ) + c∗

where c∗ is a constant, Y = (Y (0), . . . , Y (n − 1)) and Σv is the covariance matrix that with
elements of the form

Σ(v1, . . . , vk)k,l = 2
m∑
i=1

cos(ui|k − l|)vi, where k, l = 0, 1, . . . , n.

From the expression (2.7) it is not obvious how the posterior process is updated, but it will
certainly not be as refined as with the Dirichlet process and distribution function estimation in
section 2.1. For any finite set of increments it will always be possible to use MCMC methods to
make inference about the unknown process, see Appendix A. In several situations the approxi-
mative inference based on the MCMC simulations will be satisfying and accurate enough, and
we are also able to produce estimated functions with approximative confidence intervals for both
the spectral measure and covariance function. We can also predict the outcome at future time
points and for large simulated data sets we can investigate the approximative the large-sample
properties.

There is one problem with the setup above, if n is large we have to determine the inverse of a large
matrix Σ in order to calculate the likelihood function, where all the elements (or [n2 − n]/2 + 1
elements) in the matrix Σ are determined by a unique sum. In a normal simulation routine we
will need to do this calculation several times (perhaps millions) and even with a fast computer
this can take very long time even with a reasonable large set of observations. In Appendix A
there is a explanation of the simulation routine and some tricks we have used in order to try to
speed things up.

The complexity of multivariate Gaussian likelihood has in some sense become the crux of this
thesis, the intricate structure of the inverse and determinant of the covariance matrix makes it
hard to make exact inference or investigate asymptotic properties of the posterior process. For
some simple time series models, such as autoregressive model, there do exist explicit expressions
for the full log-likelihood, see ?, even with this simple model the expressions for the inverse and
determinant are still not easy to work with.

When we are studying the asymptotic or large-sample properties of an estimator we are only
interested in the limit case, when the numbers of observation approaches infinity. In the next
chapter we will se that there exists a approximation of the full log-likelihood that under fairly
weak conditions of the power spectrum will become arbitrarily close to the full log-likelihood in
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the limit. Let L̃n(F ) be the approximation to the log-likelihood and assume that the true power
spectrum is a parametric function with parameters θ1, . . . , θp, then under some mild conditions
we will specify later, the following two results will be satisfied as n→∞

n−1/2(Ln(F )− L̃n(F ))→ 0,

where Ln(F ) is the full Gaussian log-likelihood given by (2.6), and

1
n
E

[
∂

∂θk
Ln(F )

∂

∂θl
Ln(F )

]
→ Γ(θ)k,l and − 1

n

∂2

∂θk∂θl
L̃n(F )→ Γ(θ)k,l, where k, l = 1, . . . , p.

In other words the approximation and the full log-likelihood become arbitrary close as n gets
large, and the second derivatives, needed to estimate the Fisher’s information matrix, converge
towards the same limit.

We will conclude this section with an example based on simulated data that will illustrate most
of the concepts discussed here in this section.

Example 2.6. Let Y (0), . . . , Y (24) be a sample from a stationary Gaussian time series with
expectation zero and unknown covariance function, see Figure 2.1. Suppose we fore some reason
are convinced that these data are actually are realization from a stationary Gaussian time series
with covariance function

Cπ(h) = σ2
πρ

h, where h = 0, 1, . . . , 24.
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Figure 2.1: A simulated stationary Gaussian time series Y (t), for t = 0, . . . 24, with µ0 = 0 and true covariance
function C0(h) = σ2

0 exp(−φ0|h|), where σ0 = 2 and φ0 = 0.99 (left panel). The estimated covariance
(solid line, right panel) for the time series Y (t) (left panel) and the true covariance function (dotted
line).

From Example 1.11 we know that this covariance function is valid and from the same example
we have an exact expression of the power spectrum. Let fπ(u) be the power spectrum from
Example 1.11 that corresponds to Cπ(h) = ρ

|h|
π , we will then apply the method described in the

sections above to some. Our prior distribution is given by a Gamma process which is in turn
determined by its increment distribution,

dG(u) ∼ Ga(α(u), β(u)),

37



2. BAYESIAN METHODS CHAPTER 2. DISCRETE TIME

where u ∈ (0, π] and we will concentrate our prior around our a priori guess α(u) = b(u)fπ(u) du
and β(u) = b0 + b1u. We have chosen a simple function for β(u) instead of a constant, there is
at least two reasons for doing this. First note that the high end of the frequencies, i.e. when u
is close to π, corresponds short and fast oscillations of the covariance function and a decreasing
variance might smooth this effect, also a increasing β(u) function might help to stabilize the
simulations

In order to implement this construction it is necessary to do a numerical approximation, this
is typically done by dividing the domain of the power spectrum, i.e. the interval [0, π], into
equidistant subintervals. Note that we will use the midpoints of the intervals in order to make
the numerical approximation of the integral more accurate. Note that if the interval [0, π] is
divided into M subintervals of the length π/M , then the approximated covariance function
become periodic with period 4M and also symmetric, see Figure 2.2. This is not very surprising
since under the approximation, given a spectral measure F , we have that the covariance function
is given by

C(h) =
M∑
m=1

cos(πmh/M) [F (πm/M)− F (π(m− 1)/M)] =
M∑
m=1

cos(πmh) ∆F (πm/M),

where h = 0, 1, 2 . . ., which is obviously a periodic function.
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Figure 2.2: Plot of C(h) = σ2ρh, where ρ = 0.5, σ = 1, M = 10 and h = 0, . . . , 40.

This means that it is important and necessary to be careful then we shall decide how many
subintervals we will use. Because of the symmetry we should actually have more subintervals
than the largest lag distance, unfortunately an increase in the number of subintervals will make
simulation more unstable. In this example where Y (t) has largest lag of h = 24 are we going to
use 25 subintervals of the interval [0, π], i.e 0 = u0 < u1 < · · · < u24 < u25 = π, where ui = πi/25
for i = 1, . . . , 25.

To be specific we will concentrate our a priori guess around Cπ(h) = σ2
π exp(−φ|h|), where σπ = 2

and φπ = 2, and β(u) = 7 + 7u, se Figure 2.3 for the simulated exception of the random C(h)
and one single realization.

In Figure 2.4 is a plot of the expected posterior covariance function together with the the expected
covariance function from the prior and the covariance estimated from data, it is clear from this
figure that the a posterior covariance function is a weighted average.
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Figure 2.3: Estimated expected prior covariance function, i.e. E[C(h)] = σ2
π exp(−φπh), where σπ = 2 and φπ =

2, together with upper and lower 0.95-bound from the simulations (left panel). A single realization of
a the random C(h) (right panel). In both panels the dotted line is the true a priori expectation.

0 5 10 15 20

0
1

2
3

4

h

Figure 2.4: Estimated expected posterior covariance function, i.e. E[C(h)|data] (solid line), estimated covariance
from data (dashed line) and expected prior covariance function (dotted line).

We have already discussed that we are not complete satisfied with this construction, and the
natural extension is to consider the a priori function C(h) = exp(−aφπ|h|)C(h), where C(h) is
a random covariance function centered around Cπ(h) = σ2 exp(−(1− a)φπ|h|), where φπ and σπ
as above and a = 0.05. In Figure 2.5 is the estimated a priori expectation based on simulations
and in Figure 2.6 is the estimated posterior covariance function. It is clear that this reduces the
noise in the tail of the covariance function and force it to be close to zero for large h, but from
Figure 2.6 it looks like we have “lost” some information from data by doing this. In Figure 2.7
are the estimated density for Y (25)|data for both construction discussed in this example.
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Figure 2.5: Estimated expected prior covariance function, i.e. C∗(h) × E[C(h)] = exp(−aφπh) × σ2
π exp(−(1 −

a)φπh) = σ2
π exp(−φπh), where σπ = 2, φπ = 2 and a = 0.05, together with upper and lower 0.95-

bound from the simulations (left panel). A single realization of a random the C(h) (right panel). In
both panels the dotted line the is true a priori expectation.
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Figure 2.6: Estimated expected posterior covariance function, i.e. E[C(h)|data], from the deterministic times
random covariance function construction (solid line), estimated covariance from data (dashed line)
and expected prior covariance function (dotted line).
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Figure 2.7: Estimated distribution for Y (25)|data for the random covariance function construction (left panel)
and the deterministic times random covariance function construction
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CHAPTER 3

Asymptotic properties

In the previous section we have already mentioned the need for an approximation to the exact
multivariate Gaussian log-likelihood. This approximation should be fairly simple to work with
and in the limit the approximation should become arbitrary close to the exact log-likelihood.
In Section 1.1 we will introduce an asymptotic approximation to the full log-likelihood given in
?. This approximation is known as the ‘principal part’ to the log-likelihood and satisfies both
of the desired properties, it become arbitrary close for large n and it is sufficiently simple to
work with. In Section 1.2 we will discuss a related and discrete version of the principal part
which is also known as the Whittle approximation. We will also study some of the large-sample
properties of the spectral measure after a sample is observed in this simple construction. We
will continue the discussion of the large sample properties for more general spectral measures
after a sequence of data is observed in Section 2 and derive the main properties for the posterior
spectral measure and covariance function. Note that we sometimes will refer to the multivariate
Gaussian likelihood (2.6) as the full or exact log-likelihood rather than multivariate Gaussian
log-likelihood.

1. Approximations

1.1. The “principal part”. In the book by ? he suggest an approximation to the exact
multivariate Gaussian log-likelihood for stationary Gaussian time series with expectation zero.
The approximation is throughout the text referred to as the ‘principal part’ of the log-likelihood
and we will therefore also use this name. It is defined as a function of the power spectrum and
is given by

L̃n(F ) = −n
2

[
log(2π) +

1
2π

∫ π

−π
log(2πf(u)) du+

1
2π

∫ π

−π

In(u)
f(u)

du

]
. (1.1)

From equation (1.1) it is clear that the principal part of the log-likelihood will fit quite good
to our nonparametric approach. It will make all the computations much easier and also speed
up the numerical simulations since we do not need to invert any large matrices. The principal
part is an approximation of the real log-likelihood, therefore before we start we have to establish
how good the approximation is. Also note that in this section we are only interested in the
limit situations, as the number of observations approaches infinity, it is therefore sufficient to
check that the approximation is good enough in the situations where the number of observations
is large. At the end of Section 2.3 we mentioned two properties a good approximation should
satisfy. The approximation should at least become close to the real log-likelihood in the limit
and both expressions for the observed information should converge towards the same limit.

The following two results can be found in the first two chapters of ? and are exactly what we
need to verify that the principal part is a suitable approximation. Theorem 1.1 first shows that
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the difference between the approximation and the exact expression becomes small as the number
of observations increases.

theorem 1.1. Let Y (t), where t = 0,±1,±2, . . ., be a stationary Gaussian process with expecta-
tion zero, true covariance function C0(h), where h = 0,±1, . . ., and spectral density f0(u), where
u ∈ [−π, π]. Assume that the process Y (t) satisfies the following conditions

i) f0(u) ≥ m > 0, for −π < u < π, and

ii)
∞∑
h=1

h|C(h)|2 <∞,

then the “principal part” of the log-likelihood L̃n(F0) (1.1) and the exact log-likelihood Ln(F0)
(2.6) satisfies the following limit as n→∞

n−1/2(Ln(F0)− L̃n(F0))→ 0.

Proof. See Chapter 1 of ? for a proof. Note that the assumption that f(u) ≥ m on the
interval [0, π], for a positive number m, is not necessary, in ? it is shown that it is sufficient to
require that f(u) is positive on the same interval. �

The next result establishes exactly what we need in order to be able to show that the observed
information matrices from the principal part and the full log-likelihood converges to the same
limit.

theorem 1.2. Let Y (0), . . . , Y (n − 1) be a sample from a stationary Gaussian times series
with expectation zero and power spectrum f0(u). Assume that the power spectrum is a smooth
parametric function with parameters θ1, . . . , θp where all second-order mixed partial derivatives
exist, then as n→∞ we have that

1
n
I(θ)k,l =

1
n
E

[
∂

∂θk
Ln(F )

∂

∂θl
Ln(F )

]
→ 1

4π

∫ π

−π

∂

∂θk
log(f0(u))

∂

∂θl
log(f0(u)) du = Γk,l (1.2)

for every choice of θk and θl, where k, l = 1, 2, . . . , p.

Corollary 1.3. Let Y (0), . . . , Y (n − 1) be a sample from a stationary Gaussian times series
with expectation zero and power spectrum f0(u), where f0(u) ≥ m > 0 for u ∈ [−π, π]. Assume
that the power spectrum is a smooth parametric function with parameters θ1, . . . , θp where all the
second-order mixed partial derivatives exist and is bounded, then as n→∞ we have that

− 1
n

[
∂2

∂θk∂θl
L̃n(F )

]
a.s−−→ Γk,l or − 1

n

∣∣∣∣I(θ)k,l −
∂2

∂θk∂θl
L̃n(F )

∣∣∣∣ a.s−−→ 0. (1.3)

for every choice of θk and θl, where k, l = 1, 2, . . . , p and Γk,l is the limit (1.2).

Proof. (Sketch) The first thing we need is an expression for the partial derivatives of L̃n(F ),

∂2

∂θk∂θl
L̃n(F )

=− n

2
∂2

∂θk∂θl

[
log(2π) +

1
2π

∫ π

−π
log(2πf0(u)) du+

1
2π

∫ π

−π

In(u)
f0(u)

du

]
=− n

4π

∫ π

−π

[
fk,l0 (u)f0(u)− fk,l0 (u)In(u)

f0(u)2
+

2fk0 (u)f l0(u)In(u)− fk0 (u)f l0(u)f0(u)
f0(u)3

]
du.
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where fk0 (u) and fk,l0 (u) are the partial derivatives of f0(u) with respect to θk and/or θl. We
will divide the problem into two parts and show that the first fraction approaches zero and that
the second converges towards Γk,l. Since all the partial derivatives are bounded there exists a
constant M so large that fkθ (u), fk,lθ (u) < M for u ∈ [−π, π] and l, k = 1, . . . , p, also from the
conditions we have that f0(u) ≥ m > 0 for u ∈ [−π, π]. Then from Theorem 1.22 we do now
have that ∣∣∣∣ ∫ π

−π

fk,l0 (u)f0(u)− fk,l0 (u)In(u)
f0(u)2

du

∣∣∣∣ ≤ M

m2

∣∣∣∣ ∫ π

−π
f0(u)− In(u) du

∣∣∣∣ a.s.−−→ 0.

If we work out the expression Γk,l given in (1.2), we find that∣∣∣∣ ∫ π

−π

2fk0 (u)f l0(u)In(u)− fk0 (u)f l0(u)f0(u)
fθ(u)3

du− Γk,l

∣∣∣∣
=
∣∣∣∣ ∫ π

−π

2fk0 (u)f l0(u)In(u)− fk0 (u)f l0(u)f0(u)
f0(u)3

du−
∫ π

−π

fk0 (u)f l0(u)
f0(u)2

du

∣∣∣∣
≤ 2M2

m3

∣∣∣∣ ∫ π

−π
In(u)− f0(u) du

∣∣∣∣ a.s.−−→ 0.

We have now shown that −[∂2/(∂θk∂θl)L̃n(F )]/n is a sum of two parts that converges almost
surely towards zero and Γk,l, this completes the proof and we have shown that

− 1
n

∂2

∂θk∂θl
L̃n(F ) a.s.−−→ Γk,l, for every k, l = 1, . . . , p.

�

From ? we know that the two functions f0(u) and In(u) share some of the same properties, espe-
cially they are nonnegative, symmetric, and they are both periodic with period 2π. This means
essentially that if we know how f0(u) and In(u) behave on interval [0, π] we know everything we
need to know about the two functions and we will therefore as a standard use this interval as
the fundamental domain. From these properties it is now possible to rewrite the principal part
of the log-likelihood (1.1)

L̃n(F ) = n log(2π)− n

2π

[ ∫ π

0
log(f(u)) du+

∫ π

0

In(u)
f(u)

du

]
= n log(2π)− lim

m→∞

n

2π

[ m∑
i=1

log(f(ui)) ∆i +
m∑
i=1

In(ui)
f(ui)

∆i

]
where ∆i = ui(m) − ui−1(m) and ui ∈ [ui(m), ui−1(m)]. The reason we use the Riemann
definition of the integral is that this will become useful in the later sections. We can now further
rewrite principal part and find a new expression for L̃n(F ) with respect on ∆F (ui)

L̃n(F ) = n log(2π)− lim
m→∞

n

2π

[ m∑
i=1

log(f(ui)∆i/∆i) ∆i +
m∑
i=1

In(ui)∆i

f(ui)∆i
∆i

]

= n log(2π)− lim
m→∞

n

2π

[ m∑
i=1

log(f(ui)∆i) ∆i −m log(∆i) ∆i +
m∑
i=1

In(ui)∆i

f(ui)∆i
∆i

]

= lim
m→∞

− n

2π

[ m∑
i=1

log(∆F (ui)) ∆i +
m∑
i=1

I∗n(ui)
∆F (ui)

∆i

]
+ c∗,
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where c∗ is a constant, I∗n(ui) = In(ui) ∆i. Finally we will define

L̃∗n(F ) =
n

2π

∫ π

0

[
log(dF (ui))+

I∗n(ui)
dF (ui)

]
du ≡ lim

m→∞

n

2π

m∑
i=1

[
log(∆F (ui))+

I∗n(ui)
∆F (ui)

]
∆i. (1.4)

The expression for L∗n(F ) is constructed to fit our nonparametric Bayesian approach and its
meaning will become clear in the next sections. We will also introduce a likelihood element of
L̃∗n(F ) that will be denoted by dL̃∗n(u) and is defined such that

L̃∗n(F ) =
∫ π

0
dL̃∗n(v) dv = lim

m→∞

m∑
i=1

dL̃∗n(ui),

where ui is as defined above.

Remark 1.4. Let Y (t), where t = 0,±1,±2, . . ., be a stationary time series that satisfies the
conditions of Theorem 1.1 and assume that the true power spectrum f0(u) is constant on given
subintervals of the interval [0, π], i.e. f0(u) = f0(ui), for u ∈ [ui, ui−1] and all i = 1, 2, . . . ,M ,
where 0 = u0 < u1 < · · · < uM−1 < uM = π. Define ∆i = ui − ui−1 and ∆F0(ui) =
F0(ui)− F0(ui−1) = f0(ui) ∆i, then for a sample of size n from Y (t) it is possible to rewrite the
principal part of the log-likelihood as

L̃n(F0) = −n
2

[
log(2π) +

1
2π

∫ π

−π
log(2πf0(u)) du+

1
2π

∫ π

−π

In(u)
f0(u)

du

]

= −n
2

[
log(2π) +

1
π

M∑
i=1

log(2π∆F (ui)/∆i) ∆i +
1
π

M∑
i=1

∆i

∆F (ui)

∫ ui

ui−1

In(v) dv
]

= − n

2π

M∑
i=1

[
log(∆F0(ui)) ∆i +

∆i

∆F0(ui)

∫ ui

ui−1

In(v) dv
]

+ c∗.

where c∗ is a constant.

Before we continue the discussion of the principal part of the log-likelihood and derive some
asymptotic properties for the posterior spectral measure and covaraince function, we will discuss
the discrete version of the approximation.

1.2. The Whittle approximation. In this section will we introduce a discrete approxima-
tion of the multivariate Gaussian log-likelihood. This discrete approximation was first suggested
by Whittle in the early fifties and is therefor often referred to as the Whittle approximation. The
easiest way to obtain the Whittle approximation is to derive it from the discrete version of the
already established principal part approximation. We can write expression (1.1) as

L̃n(F ) = lim
m→∞

−n
2

[
log(2π) + log(2π) +

1
π

m∑
i=1

log(f(πi/m))
π

m
+

1
π

m∑
i=1

In(πi/m)
f(πi/m)

π

m

]

= lim
m→∞

−
[
2n log(2π) +

n

2m

m∑
i=1

log(f(ui)) +
n

2m

m∑
i=1

In(ui)
f(ui)

]
.

(1.5)

where ui = πi/m. The Whittle approximation is now obtained from equation (1.5) if we replace
m with n, the number of observation, we denoted the approximation by LW (F ) and it is defined
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as the expression

LW (F ) = −n log(2π)− 1
2

[ n∑
i=1

log(f(ui)) +
n∑
i=1

In(ui)
f(ui)

]
(1.6)

where ui = πi/n, for i = 1, . . . , n. The next lemma establishes that the Whittle approximation
is also close enough to the full multivariate Gaussian log-likelihood for a stationary Gaussian
time series.

Lemma 1.5. Under the same conditions as in Theorem 1.1 the Whittle approximation (1.6)
satisfies

n−1/2|LW (F )− Ln(F )| → 0 as n→∞,

where Ln(F ) is the full multivariate Gaussian log-likelihood.

Proof. (Sketch) Observe that it is possible to write

n−1/2|LW (F )− Ln(F )| = n−1/2|LW (F )− L̃n(F ) + L̃n(F )− Ln(F )| ≤

n−1/2|LW (F )− L̃n(F )|+ n−1/2|L̃n(F )− Ln(F )|

from Theorem 1.1 we know that n−1/2|L̃n(F )− Ln(F )| → 0 as n→∞, therefore the remaining
part is to show that n−1/2|LW (F ) − L̃n(F )| approaches zero as n → ∞. From the definitions
(1.1) and (1.6) we find that to show that n−1/2|LW (F )− L̃n(F )| → 0 it is equivalent to proving
that

n−1/2

∣∣∣∣ n∑
i=1

[
log(f0(ui)) +

In(ui)
f0(ui)

]
∆−

∫ π

0

[
log(f0(u)) +

In(u)
f0(u)

]
du

∣∣∣∣→ 0,

where ui = πi/n and ∆ = π/n, as n → ∞. Now since f0(u) is integrable log(f0(u)) must also
be integrable and therefor there exist an integer N1 such that for n ≥ N1 we have that

n−1/2|LW (F )− Ln(F )| ≤ n−1/2

(
δ +m−1

∣∣∣∣ n∑
i=1

In(ui)∆−
∫ π

0
In(u) du

∣∣∣∣).
From Theorem 1.22 and 1.20 we have that

n∑
i=1

In(ui)∆
P−→
∫ π

0
f0(u) du and

∫ π

0
In(u) du a.s−−→

∫ π

0
f0(u) du (1.7)

as n→∞. There exist now N2 such that for n ≥ N2 both convergences in (1.7) is satisfied and
N3 such that for n ≥ N3

m−1

∣∣∣∣ n∑
i=1

f0(ui)∆−
∫ π

0
f0(u) du

∣∣∣∣ ≤ δ′
and for n ≥ N where N = max(N1, N2, N3) we have now that

|LW (F )− Ln(F )| → (δ + δ′) <∞⇒ n−1/2|LW (F )− Ln(F )| → 0.

which completes the proof. �
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In order to make the Whittle approximation more suitable for a Bayesian nonparametric approach
we are going to rewrite expression (1.6). Let ∆F (ui) = F (ui) − F (ui−1) = f(ui) ∆i where
∆i = ui − ui−1 = π/n, then the new version of LW (F ) is given by

LW (F ) = −n log(2
√
nπ)− 1

2

[ n∑
i=1

log(∆F (ui)) +
n∑
i=1

I∗n(ui)
∆F (ui)

]
(1.8)

where I∗n(ui) = In(ui) ∆i. The next example illustrates a somehow natural approach to how we
can define a prior distribution for the unknown spectral measure in this discrete approach.

Example 1.6. Suppose the time series Y (t), where t = 0,±1, . . ., satisfy the assumption of
Lemma 1.5, then the Whittle Approximation given by (1.8) is a satisfying approximation to
the full likelihood (2.6). Let vi = ∆F (ui) = F (ui) − F (ui−1) for i = 1, . . . , n and where
∆ = ui − ui−1 = π/n, for the finite vector v = (v1, . . . , vn) let π(v) = π(v1) · · ·π(vn) be a prior
density for v where π(vi) = Inv-Gamma(α(ui) + c, β(ui)), where c is a number chosen such that
the desired order of moments exist, see Appendix B. The posterior distribution is then given in
the usual way as

π(v|data) ∝ π(v)× LW (F )

∝
n−1∏
i=0

{
v
−[α(ui)+c+1/2]−1
i exp

[
− I∗n(ui)/2 + β(ui)

vi

]}
.

(1.9)

From (1.9) it is easy to verify that v|data is a product of Inverse-Gamma densities which means
that the elements in the vector v are asymptotically independent after the data are observed.
The updated parameters for vi|data are α′(ui) = α(ui)+ c+1/2 and β(ui) = In(ui) ∆/2+β(ui).
The expectation and variance of the posterior density for a single vi|data are now found from
the properties of the Inverse-Gamma distribution and are given by

E[vi] =
I∗n(ui)

2α(ui) + 2c− 1
+

2β(ui)
2α(ui) + 2c− 1

and

Var(vi) =
2(I∗n(ui) + 2β(ui))2

(2α(ui) + 2c− 1)2(2α(ui) + 2c− 3)
=

2[(I∗n(ui))2 + 4I∗n(ui)β(ui) + β(ui)2]
(2α(ui) + 2c− 1)2(2α(ui) + 2c− 3)

.

Assume we have chosen α(ui) = ∆ and β(ui) = fπ(ui)∆, where fπ(u) is the power spectrum that
corresponds to our a priori beliefs about the covariance function for the time series Y (t). Moti-
vated from the asymptotic independency of the parameters and from the definition of Riemann
sum, we have that for the estimator F̂ the expectation and variance are given by

E[F̂ (u)|data] = E
[ ∑
πi/n<u

vj
]

=
1

2α(ui) + 2c− 1

∑
πi/n<u

In(ui) du+
2

2α(ui) + 2c− 1

∑
πi/n<u

β(ui)

→ 1
2c− 1

F0(u) +
2

2c− 1
Fπ(u),
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and

nVar(F̂ (u)|data) = nVar
( ∑
πi/n<u

vi
)

=
2

(α(ui) + 3)2(α(ui) + 1)

×
[
π
∑

πi/n<u

In(ui)2 du+ 2π
∑

πi/n<u

In(ui)β(ui) + n
∑

πj/n<u

β(ui)2

]

→ 2π
(2c− 1)2(2c− 3)

×
[ ∫ u

0
f0(v)2 dv + 2

∫ u

0
f0(v)fπ(v) dv +

∫ u

0
fπ(v)2 dv

]
.

A reasonable choice for c might be c = 2, as this will make sure that the prior density for vi does
have existing expectation and variance.

We will now derive an equivalent expression for the Whittle approximation as we did for the
principal part of the log-likelihood in Remark 1.4.

Remark 1.7. Let Y (t), where t = 0,±1,±2, . . ., be a stationary time series that satisfies the
conditions of Theorem 1.1 and assume that the true power spectrum f(ui), where ui = πi/n for
i = 0, . . . , n, is constant on equidistant subintervals of length π/M of the interval [0, π], where
M ∈ N and M < n. Then there exist integers m1, . . . ,mM , m and index sets U1, . . . , UM such
that

∑
jmj = n and for every j = 1, . . . ,M we have that mj ≥ m > 0 and for i ∈ Uj we have

that uj−1 < ui < uj and f(ui) = f(uj). Define ∆j = uj−uj−1 and ∆F (uj) = F (uj)−F (uj−1) =
f(uj)∆i then it is possible to rewrite the Whittle approximation given by (1.8) as

LW (F ) = −n log(2
√
nπ)− 1

2

[ M∑
j=1

mj log(∆F (uj)) +
M∑
j=1

∑
i∈Uj I

∗
n(uj)

∆F (uj)

]

= −1
2

M∑
j=1

[
mj log(∆F (uj)) +

1
∆F (uj)

∑
i∈Uj

I∗n(ui)
]

+ c∗ = L∗W .

(1.10)

where c∗is a constant, I∗n(ui) = In(ui) ∆j . Note that we might refer to expression (1.10) as the
modified Whittle approximation and we will also sometimes write it as L∗W (F ) =

∑
j ∆L∗W (uj).

Note that ∆L∗W (uj) from Remark 1.7 has the same shape as the Inverse-Gamma density, it is
therefor tempting to try to use a product of Inverse-Gamma densities as a prior distribution on
F since this will become the conjugate prior for the modified Whittle approximation. This idea
is in some sense related to the work of ?, he uses a different starting point but his conclusions
are similar to those we derive here. Note that since the independent increment process defied
by the Inverse-Gamma distribution does not exist, see Appendix B, it is impossible to generalize
this idea to the limit situation. In the following example we will show how the Inverse-Gamma
distribution will work as the a priori distribution for a finite product set of variables.

Example 1.8. Suppose the time series Y (t), where t = 0,±1, . . ., satisfies the assumption of
Lemma 1.5 and that the true spectral measure, F0(u), is a step function, then the modified
Whittle approximation given by (1.10) is a satisfying approximation to the full likelihood. Given
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a sample Y (0), . . . , Y (n−1) of size n, letM < n be an integer that is not too large and such that
mi > m > 0 for all i = 1, . . . ,M . Define ∆ = ui − ui−1 = π/M , vi = ∆F (ui) = F (ui)−F (ui−1)
and assume that π(v) = π(v1) · · ·π(vM ) is a product of Inverse-Gamma densities with respective
shape and scale parameters α(ui) + c and β(ui) where i = 1, . . . ,M . From equation (1.10) we
see that the posterior distribution π(v|data) is proportional to

π(v|data) ∝
M∏
i=1

v
−[mi/2+α(ui)+c]−1
i exp

[
−

M∑
i=1

1
2

∑
uj∈Ui I

∗
n(uj) + β(ui)

vi

]
which is proportional to a product of Inverse-Gamma densities that suggest that the parameters,
(v1, . . . , vM ), are asymptotically independency after the data are observed. The a posterior mo-
ments are now easily found from the properties of the Inverse-Gamma distribution and Theorem
1.19. For i = 1, . . . ,M the expectation of vi|data is

E[vi|data] =

∑
uj∈Ui I

∗
n(ui) + 2β(ui)

mi + 2α(ui) + 2c− 2
=

mi ∆F̂mi(ui)
mi + 2α(ui) + 2c− 2

+
2β(ui)

mi + 2 α(ui) + 2c− 2

→ ∆F0(ui),

where ∆F̂mi(ui) = f̂mi(ui) ∆, as n→∞, since n→∞ implies thatmi →∞ for all i = 1, . . . ,M .
The variance is further given by the expression

nVar(vi|data) =
2[mi ∆F̂mi(ui) + 2β(ui)]2

(mi + 2α(ui) + 2c− 2)2(mi + 2α(ui)− 2c− 4)

= k(mi)
[

2πn
miM

∆F̂mi(ui)
2

du
+

8πn
m2
iM

∆F̂m(ui)β(ui)
du

+
8πn
m3
iM

β(ui)2

du

]
since k(mi) = 1/[(1 + 2α(ui)/mi + (2c− 2)/mi)2(1 + 2α(ui)/mi + (2c− 4)/mi)]→ 1 as n→∞
we find that

nVar(vi|data)→ 2π∆F0(ui)2

∆
and in the case where F0(u) is differentiable we have that nVar(vi)→ 2πf0(ui) ∆.

In Example 1.8 we saw that as the amount of observed data increases the posterior parameters
approach the estimates from Theorem 1.19. This is in general a desirable property for a Bayesian
estimator, that the prior information should become negligible as the amount of observations
become large. This means that no matter which prior density we choose all solutions should
become equal in the limit. The next lemma proves that this is exactly the case for spectral
measure and the modified Whittle approximation.

In order to prove the next lemma we need a result regarding the remainder of Taylor expansions
from ?. We will repeat the general definition of the Taylor expansion.

Let f(x) be a smooth function of x that is infinitely differentiable in a neighborhood of a number
a. Then the following infinite sum is known as the Taylor expansion of f(x) about a

f(x) = f(a) +
1
1!
d

dx
f(x)(x− a) +

1
2!
d2

dx2 f(x)(x− a)2 + · · ·+ 1
k!

dk

dxk
f(x)(x− a)k +Rk(x)

where Rk(x) is the remainder and Rk(x) satisfy

Rk(x) =
1

(k + 1)!
dk+1

dxk+1
f(ζ)(x− a)k+1, where |ζ − a| ≤ |x− a|. (1.11)
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In order to prove the result we will show that the Taylor expansion of the log-posterior density
for a single ∆F (uj) converges to the log-density of a Gaussian distributed random variable as n
becomes large. We will also have to use property (1.11) for the remainder in order to complete
the proof. The technique suggested here is a well known method and is described in detail in
several textbooks in statistics.

Lemma 1.9. Let Y (t), where t = 0,±1, . . ., be a process with true power spectrum f0(u) which
satisfies the conditions of Lemma 1.5 and is constant on the subintervals of [0, π] such that the
assumptions of Remark 1.7 is satisfied. Given a sample Y (0), . . . , Y (n− 1) of size n from Y (t)
let πj(∆F (uj)) be any prior density for the unknown quantity ∆F (uj), such that πj(∆F (uj))
is bounded an has bounded derivative in a neighborhood of ∆F̂mj (uj). Then ∆F (uk)

∣∣data and
∆F (ul)

∣∣data are asymptotically independent, for k, l = 1, . . . ,M and k 6= l, also ∆F (uj)
∣∣data

converges in distribution to a Gaussian as n→∞, i.e.
√
n[∆F (uj)−∆F̂mj (uj)]

∣∣data d−→ N(0, 2πf0(uj)2 ∆j), a.s.

where ∆F̂mj (uj) = 1/mj
∑

i∈Uj In(ui) ∆i and ∆F̂mj (uj)
P−→ f0(uj) ∆j.

Proof. Let vj = ∆F (uj), v̂j = ∆F̂mj (uj) and wj =
√
n(vj − v̂j), where j = 1, . . . ,M , the

prior density of the scaled and centered variable wj is proportional to the density πj(wj/
√
n+ v̂j)

and the log-posterior density is a constant away from

log(πw(w1, . . . , wM
∣∣data)) = log(π(w′1, . . . , w

′
M

∣∣data)) + c∗

=
M∑
j=1

log(πj(w′j)) + log(Lik(w′1, . . . , w
′
M

∣∣data)) + c∗

≈
M∑
j=1

{
log(πj(w′j))−

1
2

[
mj log(w′j) +

1
w′j

∑
i∈Uj

I∗n(ui)
]}
.

where c∗ is a constant, w′j = wj/
√
n+v̂j , for j = 1, . . . ,M . From the structure of the log-posterior

density it is clear that the the unknown variables w1, . . . , wM will become asymptotically inde-
pendent after the data are observed. It is therefore sufficient, in order to prove the lemma, to
show that the result holds for an arbitrary wj , where j = 1, . . . ,m. Since we are able to split the
log-posterior density into log-prior and log-likelihood, the Taylor expansion of the log-posterior
density about zero is

log(πwj (wj |data)) = log(πj(wj/
√
n+ v̂j)) + c∗

= log(πj(v̂j |data)) +
∞∑
k=1

wkj
1
k!

dk

dwkj
log(∆L∗W (w′j))

∣∣
wj=0

+Rπ0 (wi) + c∗

where c∗ is a constant, ∆L∗W (u) is defined in Remark 1.7 and Rπ0 (wj) is the reminder of the
log-prior part of the Taylor expansion. From property (1.11) we know that the exists a number
ξ where |ξ| < |wj | such that the following is satisfied

Rπ0 (wj) = wj

[
d

dwj
log(πwj (wj))

∣∣
wj=ξ

]
= wj

[
n−1/2 d

dwj
log(πj(wj))

∣∣
wj=ξ/

√
n+v̂j

]
=

wi

n1/2π(ξ/
√
n+ v̂j)

d

dwj
π(wj)

∣∣
wj=ξ/

√
n+v̂j

.

(1.12)
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We are also able to obtain a general expression of the derivatives of the log-likelihood, then

dk

dwkj
log(∆L∗W (w′j))

∣∣
wj=0

= n−k/2
dk

dwkj
log(∆L∗W (wj))

∣∣
wj=v̂j

=
1

2nk/2

[
(−1)k−1(k − 1)!mj

v̂kj
−

(−1)kk!
∑

i∈Uj In(ui) ∆j

v̂k+1
j

]
=

(k − 1)!
2nk/2

[
(−1)k(k − 1)mi

(1/mj
∑

i∈Uj In(ui) ∆j)k

]

=
(−1)k−1(k − 1)!(k − 1)mj

2nk/2

[(
1
mj

∑
i∈Uj

In(ui) ∆j

)k]−1

,

for k = 1, 2, . . .. From this expression it is clear that the derivative of the log-likelihood becomes
zero when evaluated in wj = 0. Since we known that ∆j = π/M we can now write the Taylor
expansion of the log-posterior density as

log(πwj (wj |data)) = log(πj(v̂j |data))

− 1
2
w2
j

(
mjM

n

[
2π
(

1
mj

∑
i∈Uj

In(ui)
)2

∆j

]−1)
+Rlik

3 (wi) +Rπ0 (wi) + c∗i

where c∗i is a constant and Rlik
3 (wi) is the reminder of log-likelihood part of the Taylor expansion.

The first term in the Taylor expansion is a constant and in order to prove the result it is sufficient
to show that both Rlik

3 (wi) and Rπ0 (wi) become arbitrarily small for large n. From the assumption
that the prior is bounded and has bounded derivative it is clear that (1.12) approaches zero as
n→∞ as long as wj is bounded for all j = 1, . . . ,M . From the derivatives of the log-likelihood
and from property (1.11) we know that there exist a number ξ′, where |ξ′| < |wi|, such that

nk/2−1Rlik
k (wi) = wki

mj

2nk!

[
(−1)k−1(k − 1)!
(ξ′/
√
n− v̂j)k

−
(−1)kk!

∑
i∈Uj In(ui) ∆j

mj(ξ′/
√
n− v̂j)k+1

]
→ wki

1
2k!

[
(−1)k−1(k − 1)!

(f0(uj) ∆j)k
− (−1)kk!

(f0(uj) ∆j)k

]
= wkj

(−1)k−1(k − 1)Mk

2πkkf0(uj)k
≤ wkj

(−1)k−1(k − 1)Mk

2πkkmk
<∞

for k = 2, 3, . . . as long as wj is bounded, since v̂j
P−→ f0(uj) and ∆j = π/M , also from the

conditions of Lemma 1.5 we know that f0(u) ≥ m > 0, for u ∈ [0, π]. Especially this means that
Rlik

3 (wi)→ 0 as n→∞ if wj is bounded and all that remains now is to show that there exist a
constant c such that Pr{|wi| < c} = 1− ε as n→∞.

Under the assumption that the modified Whittle approximation is good enough, we have that
the posterior density for wj is proportional to

πwj (wj |data) ∝ πj(w′j)×
[
w′
−mj/2
j exp

(
− 1

2w′j

∑
i∈Uj

I∗n(ui)
)]

= πj(wj/
√
n+ v̂j)×

[
(wj/

√
n+ v̂j)−mj/2 exp

(
− mj v̂j

2(wj/
√
n+ v̂j)

)]
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The first term will become almost constant for large n and mj so all the “action” be in the last
term. Let Mn be the greatest integer such that (wj/

√
n + v̂j) > 0 for wi ∈ [−Mn,Mn], then

Mn →∞ as n→∞ and we have that for large n∫ Mn

−Mn

[
(wj/

√
n+ v̂j)−mj/2 exp

(
− mj v̂j

2(wj/
√
n+ v̂j)

)]
dwj =

√
nΓ(mj/2− 1)

(mj v̂j/2)mj/2−1
.

Then for a given constant c > 0 we have that as n→∞

(mj v̂j/2)mj/2−1

√
nΓ(mj/2− 1)

∫ c

−c

[
(wj/

√
n+ v̂j)−mj/2 exp

(
− mj v̂j

2(wj/
√
n+ v̂j)

)]
dwj

=
Γ(mj/2− 1, 2/mj + δj) + γ(mj/2− 1, 2/mj − δj)

Γ(mj/2− 1)
→ 1

where δj = 2c/[mj v̂j
√
n] and Γ(α, t) and γ(α, t) is the upper and lower incomplete Gamma

functions. This completes the proof since we have shown that the log posterior density of wj
converges towards

log(π(wj/
√
n+ v̂j |data)) = const.− 1

2
w2
i

[
2π
(

1
mj

∑
i∈Uj

In(ui)
)2

∆j

]−1

+ small

→ const.− 1
2
w2
j

[
2πf0(uj)2 ∆j

]−1

,

as n→∞, which is the log-density a Gaussian distribution with expectation µj = 0 and variance
σ2
j = f0(uj)2 ∆j . �

The next example illustrates Lemma 1.9.

Example 1.10. Assume that the same assumptions as in Example 1.8 is satisfied. But instead of
using prior based on a product of Inverse-Gamma densities, we will assume that the prior density
for v = (v1, . . . , vJ) is given by a product of independent πi(vi) such that π(v) =

∏
i πi(vi), where

πi(vi) follows a gamma distribution with shape parameter α(ui) and rate parameter β(ui). The
posterior distribution has density given by

π(v|data) ∝
M∏
i=1

πi(vi)× dL∗W (ui)

=
M∏
i=1

v
−[mi/2−α(ui)+1]−1
i exp

[
−

M∑
i=1

( 1
2

∑
uj∈Ui I

∗
n(uj)

vi
+ β(ui)vi

)] (1.13)

this implies that vi|data follows a distribution that is proportional to the product of a Inverse-
Gamma density and a Gamma density, see Appendix B. Let α′(u) = mi/2− α(ui) + 1, β′(ui) =
β′(ui) and γ′(u) = 1/2

∑
uj∈Ui I

∗
n(uj), then if 2

√
β′(ui)γ′(ui) is small enough we can use the

approximative version of the expectation and variance given by

E[vi|data] ≈ m∆F̂mi(ui)
mi − 2α(ui) + 2

→ ∆F0(ui)

and

nVar(vi|data) ≈ 2n(mi ∆F̂mi(ui))
2

(mi − 2α(ui) + 2)2(mi − 2α(ui))
→ 2π∆F0(ui)2/∆

as n→∞ as long as the numbers of intervals is fixed, see Appendix B.
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2. Asymptotic properties

We will now return to the principal part approximation and motivated from the previous section
we will now study some of the large sample properties of the posterior spectral measure and
covariance function. In the first lemma we will establish the equivalent result to Lemma 1.9 for
some more general situations. We will still assume that the true power spectrum is constant
on subintervals of [0, π], this is a somehow unnatural assumptions, but a sometimes a necessary
conditions in for example a discrete approximations. In the following two results we will extend
the results from Lemma 2.1 below to the general situation with smooth power spectrum and
general finite Lévy processes. From theses results it will become fairly straightforward to extend
the properties to covariance functions.

We will first establish the asymptotically distribution for the posterior spectral measures. We
will use the same technique as we did in Lemma 1.9 and apply the Taylor expansion on the
log-posterior density to show that this converges towards the log-density of a Gaussian random
variable.

Lemma 2.1. Let Y (t), where t = 0,±1, . . ., be a time series with true power spectrum f0(u) that
satisfies the conditions of Theorem 1.1 and is constant on the subintervals [ui, ui−1], where i =
1, . . . ,M and 0 = u0 < u1 < · · · < uM−1 < uM = π. Given a sample Y (0), . . . , Y (n−1) of size n
from Y (t) let the prior distribution for the spectral measure be given by a Lévy process, i.e. F is
a Lévy process. Let F (u) =

∫ u
0 dF (ω) and define ∆i = ui−ui−1 and ∆F (ui) = F (ui)−F (ui−1)

where πi(∆F (ui)) is the prior density for ∆F (ui) specified by the Lévy process and assume
that πi(∆F (ui)) is bounded with bounded derivative in a neighborhood of ∆F̃ (ui). Then for
i, j = 1, . . . ,M , we have that ∆F (ui)

∣∣data and ∆F (uj)
∣∣data are asymptotically independent for

i 6= j and that ∆F (ui)|data converges in distribution to a Gaussian distribution as n→∞, i.e.
√
n[∆F (ui)−∆F̃ (ui)]

∣∣data d−→ N(0, 2πf0(ui)2 ∆i), a.s.

and where ∆F̃ (ui) =
∫ ui

ui−1

In(ω) dv and ∆F̃ (ui)
a.s.−−→ F0(ui)− F0(ui−1) = ∆F0(ui).

Proof. Let vi = ∆F (ui), v̂i = ∆F̃ (ui) and ∆ = min(∆1, . . . ,∆M ), also from the conditions
of Theorem 1.1 we have that the spectral density is positive, i.e f0(u) ≥ m > 0, for u ∈ [0, π].
From Theorem 1.22 we do already know that

v̂i =
∫ ui

ui−1

In(v) dv a.s−−→
∫ ui

ui−1

f0(v) dv = ∆F0(ui), for all ui, where i = 1, . . . ,M,

further under the assumption of constant spectral density we have that ∆F0(ui) = f0(ui) ∆i ≥
m∆, for all i = 1, . . . ,M . Let wi =

√
n(vi − v̂i) be a scaled and centered version of vi, for all

i = 1, . . . ,M , then the posterior density of the vector (w1, . . . wM )
∣∣data is proportional to the

product of the prior density times the likelihood, i.e.

πw(w1, . . . wM |data) ∝
M∏
i=1

π′i(wi)× Lik(data|w1, . . . , wM )

∝
M∏
i=1

πi(wi/
√
n+ v̂i)× Lik(data|w1, . . . , wM ),
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where Lik(data|w1, . . . , wM ) is the multivariate Gaussian likelihood. Since we have assumed that
Y (t) satisfies the conditions of Theorem 1.1 we can use the principal part as an approximation to
the full the multivariate Gaussian log-likelihood. Under the assumption that the power spectrum
is constant on subintervals of a given partition of the interval [0, π] we can use the result from
Remark 1.4. Therefore the logarithm of the posterior density is now given by the following
approximation

log(π(w1, . . . , wM
∣∣data) =

M∑
i=1

log(πi(w′i)) + log(Lik(data|w′1, . . . , w′M )) + c∗

≈
M∑
i=1

log(πi(w′i))−
n

2π

M∑
i=1

[
log(w′i) ∆i +

∆i

w′i

∫ ui

ui−1

In(v) dv
]

+ c∗

=
M∑
i=1

{
log(πi(w′i))−

n

2π

[
log(w′i) ∆i +

∆i

w′i

∫ ui

ui−1

In(v) dv
]}

+ c∗

where c∗ is a constant and w′i = wi/
√
n+ v̂i. We know that the principal part approximation of

the log-likelihood is satisfactory for large n and it follows from the structure of the asymptotic
log-posterior density that wi and wj are asymptotically independent for all i, j = 1, . . .M where
i 6= j. Since the sequence of variables w1, . . . , wM are asymptotically independent and have
the same marginal posterior densities, it is sufficient to show that wi|data converges towards a
Gaussian distribution, for an arbitrary i = 1, . . . ,M , in order to prove the result. As mentioned
we will use the Taylor expansion of the log-posterior distribution of wi|data and show that this
converges towards the log-density of a Gaussian random variable.

From the proof of Lemma 1.9 we have that the derivatives of the log-likelihood part of log(π(wi/
√
n+

v̂i)) with respect to wi evaluated at zero are given by

n−k/2
dk

dwki
log(∆L̃n(wi))

∣∣
wi=v̂i

=
(−1)k−1(k − 1)!(k − 1)∆i

2πnk/2−1v̂ki
, for k = 1, 2, 3, . . .. (2.1)

From equation (2.1) above it is now easy to verify that the principal part of the log likelihood
reaches it maximum at v̂i. The Taylor expansion of log(π(wi/

√
n+ v̂i)) around zero can now be

expressed by

log(πi(wi/
√
n+v̂i))

= log(πi(v̂i|data))− 1
2
w2
i

[
2π
∆i

(∫ ui

ui−1

In(v) dv
)2]−1

+
∞∑
k=3

wki
(−1)k−1(k − 1)∆i

2πknk/2−1v̂ki
+Rπ0 (wi) + ci

= log(πi(v̂i|data))− 1
2
w2
i

[
2π
∆i

(∫ ui

ui−1

In(v) dv
)2]−1

+Rlik
3 (wi) +Rπ0 (wi) + c∗i

where c∗i is a constant. The first term is a constant and all we have to do is to show that the
remainder Rπ0 (wi) and Rlik

3 (wi) converge to zero as n approaches infinity. From equation (1.11)
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we know that there exist a number ξ, where |ξ|,≤ |wi|, such that

Rπ0 (wi) = wi

[
n−1/2 d

dvi
log(πi(vi))

∣∣
vi=ξ/

√
n+v̂i

]
=

wi

n1/2π(ξ/
√
n+ v̂i)

d

dvi
π(ξ/
√
n+ v̂i)

∣∣
vi=ξ/

√
n+v̂i

,

(2.2)

and for a general integer k we know that there exists a number ξ′, where |ξ′| ≤ |wi|, such that

Rlik
k (wi) =

1
k!

∆i

2πnk/2−1
wki

[
(−1)k−1(k − 1)!

(ξ/
√
n+ v̂i)k

− (−1)kk! v̂i
(ξ/
√
n+ v̂i)k

]
. (2.3)

Since the prior density is bounded and has bounded derivative, it is easy to see from (2.2) that
Rπ0 (wi) → 0 as n → ∞ as long as wi is bounded. Further we know from Theorem 1.22 that
v̂i

a.s−−→ F0(ui) − F0(ui−1) = ∆F0(ui) and from the conditions we know tha ∆F0(ui) ≥ m∆i,
where m > 0, therefore it is now easy to verify that for (2.3) we have that

lim
n→∞

nk/2−1Rlik
k (wi) = wki

(−1)k−1(k − 1)∆i

2πk∆F0(ui)k
≤ wki

(−1)k−1(k − 1)
2πkmk∆k−1

i

<∞

as long as wi is bounded and ∆i > 0. This implies that for all k > 2 we will have that Rk(wi)→ 0
as n→∞, if we are able to show that there exists a number c such that Pr{|wi| < c} = 1− ε for
all i = 1, . . . ,M . Under the assumption that the principal part approximation is good enough as
an approximation to the multivariate Gaussian log-likelihood, the asymptotic density for wi|data
is proportional to

πwi(wi|data) ∝ πi(w′i)× exp
(
− n

2π

[
log(w′i) ∆i +

∆i

w′i

∫ ui

ui−1

In(v) dv
])

= πi(wi/
√
n+ v̂i)×

[
(wi/
√
n+ v̂i)−n∆i/2π exp

(
− n∆iv̂i

2π(wi/
√
n+ v̂i)

)]
.

It follows now from Lemma 1.9 that for a given constant c > 0 we have that as n→∞

(n∆iv̂i/2π)n∆i/2π−1

√
nΓ(n∆i/2π − 1)

∫ c

−c

[
(wi/
√
n+ v̂j)−n∆i/2π exp

(
− n∆iv̂i

2π(wj/
√
n+ v̂j)

)]
dwi

=
Γ(n∆i/2π − 1, n∆i/2π + δj) + γ(n∆i/2π − 1, n∆i/2π − δj)

Γ(n∆i/2π − 1)
→ 1

where δj = 2c/[n∆iv̂i
√
n] and Γ(α, t) and γ(α, t) is the upper and lower incomplete Gamma

functions. This completes the proof since we have shown that for large n

log(πi(wi/
√
n+ v̂i)) = log(πi(v̂i|data))− 1

2
w2
i

[
2π
∆i

(∫ ui

ui−1

In(v) dv
)2]−1

+ ci + small

→ const.− 1
2
w2
i

[
2πf(ui)2∆i

]−1

as n → ∞ since 2πv̂2
i /∆i

a.s−−→ 2πF0(ui)2 ∆i = f0(ui)2 ∆i, which is the logarithm of a Gaussian
density with expectation zero and variance σ2, where σ2 = f0(ui)2 ∆i. �

The next corollary is a necessary extension of Lemma 2.1 in order to prove the final result.

Corollary 2.2. Let Y (t), where t = 0,±1, . . ., be a time series with true power spectrum f0(u)
that satisfies the conditions of Theorem 1.1. Given a sample Y (0), . . . , Y (n − 1) of size n from
Y (t) we will assume the same construction as in Lemma 2.1 and let 0 = u′1 < u′2 < · · · <
u′M ′−1 < u′M ′ = π be an arbitrary partition of the interval [0, π]. Then for i, j = 1, . . . ,M ′,
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∆F (u′i)|data and ∆F (u′j)|data are asymptotically independent for i 6= j and ∆F (u′i)|data con-
verges in distribution to a Gaussian distribution as n→∞, i.e

√
n[∆F (u′i)−∆F̃ (u′i)]

d−→ N(0,
∫ u′i

u′i−1

f0(v)2 dv), a.s. (2.4)

Proof. Let 0 = v0 < v1 < · · · < vK−1 < vK = π be a partition of the interval [0, π]
such that for every choice of u′i, where i = 1, . . . ,M ′, there exist a subset U ′i of elements from
{v1, . . . vK} such that

u′i − u′i−1 =
∑
vj∈U ′i

vj .

Suppose we are able to show that (2.4) is true for all vi, where i = 1, . . . ,K, then (2.4) will
automatically become true for all u′i, where i = 1, . . . ,M ′, since we can construct the variables
for larger subintervals as sums of independent variables over small subintervals.

First note that under the assumption that the true power spectrum is constant on subintervals
we have that for any partition 0 = v0 < v1 < · · · < vK−1 < vK = π of the interval [0, π] that
includes the discontinuity points of the true power spectrum, {u1, . . . , uM−1}, it is possible to
rewrite the approximation of the log-likelihood given in Remark 1.4 as

L̃n(F ) = − n

2π

M∑
i=1

[
log(∆F (ui)) ∆i +

∆i

∆F (ui)

∫ ui

ui−1

In(ω) dω
]

= − n

2π

M∑
i=1

[ ∑
vj∈Ui

[
log(∆F (vj)) ∆j +

∆j

∆F (vj)

∫ vj

vj−1

In(ω) dω
]]

= − n

2π

K∑
i=1

[
log(∆F (vi)) ∆j +

∆j

∆F (vj)

∫ vj

vj−1

In(ω) dω
]

where Ui = {vj | vj ∈ {v0, v1, . . . , vK} and ui−1 < vj < ui} and ∆j = vj − vj−1. Let now
0 = v0 < v1 < · · · < vK−1 < vK = π be the partition of [0, π] given by the two set of cut
points of {u′0, u′1, . . . , u′M ′} and {u0, u1, . . . , uM} and define ∆F (vi) = F (vi) − F (vi−1), ∆i =
vi− vi−1 and ∆ = min(∆1, . . . ,∆K). The posterior distribution of w1, . . . , wK have density that
is proportional to

π(w1, . . . , wK |data) ∝
K∏
i=1

πi(wi/
√
n+ v̂i)× Lik(data|w1, . . . , wK)

and by approximation of the log-posterior density we obtain the following

log(π(w1, . . . , wK |data))

=
K∑
i=1

log(πi(wi/
√
n+ v̂i)) + log(Lik(data|w1, . . . , wK)) + c∗

≈
K∑
i=1

{
log(πi(wi/

√
n+ v̂i))−

n

2π

[
log(∆F (vi)) ∆j +

∆j

∆F (vj)

∫ vj

vj−1

In(ω) dω
]}

+ c∗

where c∗ is a constant and the result follows now from Lemma 2.1 as long as ∆ > 0. �
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For the following result, let W (·) be a Brownian motion, i.e. a zero-mean normal process with
independent increments and Var{W (t) − W (s)} = t − s, for all intervals (s, t). In the next
master theorem we shall argue that the limit process of the standardized spectral measure given
data has a Brownian motion as the limit process, note that this is a type of Bernstein-von Mises
result, see ?, in the sense that an exact mirror result to Theorem 1.20 is reached. If a stochastic
process Zn has Z as a limit process, as n→∞, it means that the process Zn converges towards
Z in in the Skorokhod topology on the space D[0, π] of all right-continuous functions on [0, π]
with at most a finite number of discontinuities, see Chapter 3 in ?.

In order to show that our process has the right limit it is sufficient to show two things. We
have to show finite-dimensional convergence and tightness, see Chapter 3 in ?. It turns out that
finite-dimensional convergence follows almost directly from our earlier work, but it is much more
complicated to show tightness and we shall only give an argument why this should hold if F is
a Gamma process.

theorem 2.3. Let Y (t), where t = 0,±1, . . ., be a time series with true power spectrum f0(u)
that satisfies the conditions of Theorem 1.1 and assume that f0(u) is smooth for u ∈ [0, π]. Given
a sample Y (0), . . . , Y (n−1) of size n from Y (t) let the prior distribution for the spectral measure
be defined by a Gamma process. Then

Zn(t) =
√
n[F (t)− F̃ (t)]

∣∣data d−→W (2π
∫ t

0
f0(ω)2 dω), a.s. (2.5)

where F̃ (t) =
∫ t

0
In(ω) dω, F̃ (t) a.s.−−→ F0(t) and W (·) is a Brownian motion.

Proof. We will first show that we have finite-dimensional convergence. We know that in
order to prove that the finite-dimensional convergence property is satisfied it is sufficient to show
that that for any subinterval [u′i−1, u

′
i] of an arbitrary partition 0 = u′0 < u′1 < . . . < u′M ′−1 <

u′M ′ = π of the interval [0, π] we have that

Zn(u′i)− Zn(u′i−1) =
√
n(vi − v̂)

∣∣data d−→ N(0,
∫ u′i

u′i−1

f0(ω)2 dω)

Let 0 = u0 < u1 < · · · < uM−1 < uM = π be the coarsest partition of the interval [0, π] such
that there exist wi, where wi ∈ [ui−1, ui], that satisfies

|f0(wi)− f0(u)| < ε for all u ∈ [ui−1, ui]

and that ui− ui−1 > 0 for all i = 1, . . . ,K. It is now acceptable to assume that power spectrum
is constant on subintervals of the interval [0, π], i.e. f0(u) = f0(wi) for u ∈ [ui−1, ui]. Let
0 = v0 < v1 < · · · < vK−1 < vK = π be the partition of the interval [0, π] that is defined by the
two set of cut points {u′0, u′1, . . . , u′M ′} and {u0, u1, . . . , uM}. Let ∆ = min(∆1, . . . ,∆K), where
∆i = vi − vi−1, then result follows from Lemma 2.1 as long as ∆ > 0.

We will now give an argument why the the tightness property is satisfied. From ? we have that
in order to prove tightness it is sufficient to show that

E[(Zn(t)− Zn(s)2(Zn(u)− Zn(t))2] ≤ K[Gn(u)−Gn(s)]2,
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for all choices of t, s, u ∈ R and integers n. Under the assumption that the principal part
approximation is good enough this problems simplifies to show that E[(Zn(t) − Zn(s)2] <
K[Gn(t)−Gn(s)] and from Lemma 2.1 we have that if t > s, then

E[(Zn(t)− Zn(s))2] = nVar(F (t)− F (s)|data) = nVar(dF (ui)|data).

Further from Appendix B we know that if α(ui) and β(ui) are the respective parameters from
the Gamma process, then

nVar(dF (ui)|data) =
n2∆iv̂i
2πβ(ui)

[
Kν−1(κ)
Kν+1(κ)

−
(

Kν(κ)
Kν+1(κ)

)2]
where ν = n∆i/2π − α(ui) + 1, κ = (2n∆iv̂i/πβ(ui))1/2, v̂i =

∫ t
s In(w) dw and ∆i = t − s. In

order to find a explicit expression for the Gn function we will set s = 0, then

Gn(t) =
n2t

2πβ(t)

∫ t

0
In(w) dw

[
Kν′−1(κ′)
Kν′+1(κ′)

−
(

Kν′(κ′)
Kν′+1(κ′)

)2]
and ν ′ = nt/2π−α(t) + 1 and κ′ = (2nt

∫ t
0 In(w) dw/πβ(t))1/2. From Appendix B we know that

if the following is satisfied for large n

0 <
[
nt

∫ t

0
In(w) dw/2πβ(ui)

]1/2 ≤ [nt2M/2πβ(t)
]1/2 �√

nt/2π − α(t)

which implies that it is sufficient to assume that β(u) > K ′t, whereK ′ � 4M ,M = max0≤u≤π(f0(u))
and f0(u) is true power spectrum, then

Gn(t)→ 2πM2

K ′
t,

for all t as n→∞, which completes the argument. �

The next master corollary follows directly from the master theorem above.

Corollary 2.4. Let Y (t), where t = 0,±1, . . ., be a time series with true power spectrum f0(u)
that satisfies the conditions of Theorem 1.1. Given a sample Y (0), . . . , Y (n − 1) of size n from
Y (t) let C̃(h) be the estimator defined by

C̃(h) = 2
∫ π

0
cos(uh) dF̃ (u).

Then
√
n[C(h)−C̃(h)]

∣∣data

= 2
∫ π

0
cos(uh)

√
n[dF (u)− dF̃ (u)]

∣∣data d−→ 2
∫ π

0
cos(uh) dZ(u), a.s.

(2.6)

where Z(t) is the limit process form Corollary 2.3, i.e. Z(t) = W (2π
∫ t

0
f0(ω)2 dω).

Proof. From ? we have that for random processes Zn the following is always true

Zn(·) d−→ Z(·) ⇒ h(Zn(·)) d−→ h(Z(·)) (2.7)

if h is a functional that is continuous in supremum norm. Especially if the functional h is the
stochastic integral given by

h(Z) =
∫ π

0
g(t) dZ(t)
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then property (2.7) is true for all functions g(t) if g(t) is of bounded variation. Let g(t) = cos(th),
which is obviously of bounded variation, this is exactly the situation in the corollary and the
result follows now directly from Corollary 2.3. �

We will conclude this section with some examples that will illustrates the main ideas of the thesis
and the asymptotic properties.
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Figure 2.1: The whole odd-even time series Y (t), where t = 0, . . . , 399, ρ0 = 0.5 and σ0 = 2
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Figure 2.2: The same series as in Figure 2.1, where the even part of the series is marked, i.e Y (t), where t =

0, 2, . . . , 398.

Example 2.5. Let Y (t), where t = 0, 1, 2, . . . be a time series defined by

Y (k) ∼ N(ρY (k − 2), σ2(1− ρ2)), for k ≥ 2.

We can construct such a series by sampling to AR(1), both with ρ = ρ0 and σ0 = σ, and let the
sequence of realizations Y (0), Y (2), Y (4), . . . be from the first and sample Y (1), Y (3), Y (5), . . .
from the second. The idea is to use our nonparametric construction to estimate the predictive
density for the variable Y (n+ 1)|data and compare our solution with an AR(1) analysis. Since
Y (k) and Y (k + 1) is uncorrelated the AR(1) solution will result in ρ = 0 and the distribution
for Y (n+ 1)|data is therefore given gy

Y (n+ 1)|data ∼ N(0, σ̂2)
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where σ̂ is estimated from data. In this specific example we know from well-known theory that
the true distribution of Y (n+ 1) is given by

Y (n+ 1) ∼ N(ρ0Y (n− 1), σ2
0(1− ρ2

0)).

We will sample two sequences of length n1 = n2 = 200, see Figure 2.1 and 2.1, and with prior
distribution centered around C(h) = ρ

|h|
π , where ρπ = 0.1, with this many observations we will

expect that the a priori information will become almost completely forgotten and the answer will
therefore not in particular depend on the choice of ρπ.

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

h

Figure 2.3: The posterior covariance function with upper and lower 0.95-bound estimated form the simulations,
the dotted line is the a priori expectation

The posterior covariance function has clearly adopted the information from data, see Figure 2.3.
From Figure 2.4 we see that the AR(1) analysis fails and that our nonparametric succeeds in
finding the right density for Y (n+ 1)|data.
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Figure 2.4: Estimated density for the observation Y (400)|data (left panel) with true density (solid line) and the
wrong density (dotted line) based on the AR(1) model. In the left panel is the estimated density for
E[Y (n+ 1)]|data.

Example 2.6. In this example we will try to illustrate some of the large sample properties for
the posterior covariance function, in the three figures below we have estimated the density for
different combinations of specific values of the covariance functions given data, for three different
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length of observed series. These densities should become approximate Gaussian distributed in
the limit.

We have simulated samples from the stationary Gaussian time series Y (t), where t = 0, . . . , n−1,
with expectation zero and covariance function C0(h) = σ2ρ|h|, where σ = 2.50 and ρ = 0.5, for
n = (10, 100, 1000). We have centered our prior distribution around Cπ(h) = σ2

πρ
|h|
π , where

σπ = 0.95, ρπ = 0.5 and β(u) = 5 + 10u, we will also here assume that the effect from the prior
distribution vanish for the long sequences of observations.
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Figure 2.5: True value for C(1) ≈ 3.13, C(3) ≈ 0.78 and C(10) ≈ 0.061, the length of the simulated sequence is
n = 10.
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Figure 2.6: True value for C(1) ≈ 3.13, C(3) ≈ 0.78 and C(10) ≈ 0.061, the length of the simulated sequence is
n = 100.
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Figure 2.7: True value for C(1) ≈ 3.13, C(3) ≈ 0.78 and C(10) ≈ 0.061, the length of the simulated sequence is
n = 1000.

3. Concluding remarks

Through these chapters we have shown that it is possible to define model and estimate the covari-
ance and the correlation function in stationary Gaussian time series by using the nonparametric
Bayesian approach. We have introduced a large class of prior distributions and we have shown
that it is possible to derive approximative posterior inference by the use of simulations. We
have also derived some of the large-sample properties for the covariance function given data and
shown that in the end/limit the estimates from the Bayesian approach becomes arbitrary close
to the estimates given in the end of Section 1 in Chapter 2.

We have not used to much effort to discuss the correlation function and the prior construction
with the Dirichlet process. Anyhow we do believe that there exists a similar result as Corollary
2.4 for the correlation function with prior distribution on the normalized spectral measure given
by the Dirichlet process. This will involve finding the limit of the process

Zn(t) =
√
n

(
F (t)
F (π)

− F̃ (t)
˜F (π)

)∣∣data

that probably (from the work above) will have Brownian bridge as the limit.

The natural extension to the work presented in this thesis would be to assume that our process
is stationary with unknown expectation different from zero and place a prior distribution on
the unknown expectation µ. This will result in a semiparametric construction and there is not
necessary ant problem involved in placing a prior distribution on µ, most of the general framework
should hold, even the principal part approximation if we replace yi with y∗i = yi−µ. Things will
become a bit more complicated and this construction will probably not lead to independency
between the parameter µ and the spectral measure. Another idea is to place a prior distribution
on some or all of the hyper parameters in the set {a, b, σ, ρ} from Examples 2.3 and 2.4 or a
similar construction.

In the work of ? he mentions in the appendix to the first chapter that there exist similar results
as the principal part and Whittle approximation for the Gaussian random field over a discrete
domain D ⊂ Rd. There was unfortunately not enough time to study these references properly
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but at this point I do believe that it should be possible to extend some of the general results to
from Chapter 3 to second-order stationary random fields over discrete domains.

At the end of Section 2 of Chapter 2 we showed that there was some unsatisfactory properties
with our original construction, we showed that the variation for a given random covariance
function C(·) will approach a finite limit for increasing lag distances, i.e.

Var(C(h))→ c > 0, as h→∞

where c is a positive constant. This is not a desirable property, since we wish to be able to
construct prior distributions that are able reflect all of our a priori belief about the covariance
function. For some classes of covariance functions we had a natural solution by combining a
random covariance function with a deterministic covariance function from the same family in a
way that we did not change original structure. This is of course always possible to do, but in
most situations we will probably change the starting point and it is note a priori easy to find
suitable pairs of functions. Although we are always able to search for the optimal combination,
this topic need some more work to find good solutions to the most common models.

In Chapter 4 we derived some of the large sample properties for the posterior covariance function
and spectral measure. In all these constructions we assumed that the approximation provided
in ? is good and close enough to the real log-likelihood and there is still some work left to
prove that this is the case for almost any given situation. Note also that all the results were
developed are defined for the random covariance function alone and not the construction with
the a deterministic part. I will guess that it is still possible extend some of the work, but since
this necessarily will involve the use of the convulsion between tow power spectrum functions,
everything becomes more complicated.

An important topic in nonparametric Bayesian analysis is the support of the prior distribution.
We wish that our prior distribution has the largest support possible. This means that given a
covariance function C∗(·) we wish that there exist a positive probability that our random C(h)
will come close arbitrary close to this specific covariance function. In order to show this we have
to define a metric and a ε-neighborhood and prove that our random covariance function have a
positive probability to be within the ε-neighborhood of C∗(·) in our given metric, i.e.

Pr
{ ∞∑
h=1

|C∗(h)− C(h)|(1/2)h < ε

}
> 0

for any ε > 0. We do believe that our nonparametric construction has full support, i.e. that for
any covariance function C∗(·) and ε-neighborhood there is a positive probability that our C(h)
is in within this neighborhood.
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CHAPTER 4

Continuous time

This chapter will be a generalization of the ideas presented in the earlier chapters. In Chapter 2
we mainly concerned with discrete time processes, in this chapter we will try to extend some of
the concepts to general continuous time processes over a d-dimensional domain. Such processes
are often referred to as random fields or spatial processes. To be specific we will for the most part
restrict ourselves to the study of second order stationary Gaussian processes over a d-dimensional
domain D ⊂ Rd, where d = 1, 2, with isotropic covariance function. The main difference between
this and the previous chapters is that everything becomes much more complicated for random
fields and that we do not have such a nice approximations for the likelihood for Gaussian random
fields as we have for stationary Gaussian time series, see Chapter 3.

The level of ambition is accordingly not as high as in Chapter 3, because of this and since much
of the presentation is already made in the previous chapters the work here will be somehow less
formal. We will introduce most of the general theory for Spatial Statistics and Random Fields
in Section 1, the notation and results are mainly from the books ? and ?, both are excellent
and complete introductions to the topics of Spatial Statistics. We will use some extra time to
explain the concept of spatial prediction and Kriging. Both topics are large and important and
are fully discussed in ? and ?, for a more detailed treatment see ?. In Section 2 we continue
the work of Section 2 of Chapter 2 and carry the nonparametric Bayesian ideas developed for
stationary time series over to second order stationary Gaussian random fields. Since we do not
have any well-behaved approximation we have to rely entirely on use of MCMC simulations to
derive posterior inference.

1. Spatial data analysis

In spatial statistic, or spatial data analysis, the location of the observation is as important as
the amount observed at the specific location. We will denote the output of a spatial process by
Z(s), where s ∈ D is a vector of spatial coordinates and D is a subset of Rd. Note that if the
domain is discrete and D ⊂ R then Z(s) will become the time series discussed in the Chapter 2.
If the domain D is one dimensional and continuous we will refer to the Z(s) as a continues time
process and we will use the more common notation Y (t), where t will be referred to as time.
If the domain D is of dimension d, where d > 1, the process is usually called a random field,
or spatial process. The perhaps most common type of spatial processes are the continuous time
process and random field over a two-dimensional plane.

There are three main types of spatial data and they are all characterized by their domain,
see ? or ?. If the domain D is continuous and a fixed the data are said to be geostatistical,
where continuous is continuous in the normal Euclidian sense and fixed means that the points
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in the domain do not change, i.e., they are nonrandom. Note that the definition does not say
anything about the attribute Z(s), which can be either continuous or discrete. An example of
geostatistical data can be measures of air temperature done at fixed locations, in theory the
temperature could be measured everywhere and is therefore continuous, note that in this case
the attribute (temperature) is also continuous.

If the domain of the process is discrete and fixed we will say that the spatial model is lattice,
then D consist of a finite, or countable, set of nonrandom points or locations. An example might
be a country divided into regions where a certain type of event is recorded, this event could be
a disease, a special type of crime or some other incident.

The third type of data are point patterns, the main difference from the other two is that in point
patters the points in the domain are random. Often in a point pattern study the domain itself is
the main and interesting subject, not the size or amount observed. Examples of point patterns
are the locations of a certain type of plant in a forest, the locations of lightning strikes in Norway
or earthquakes around the world.

Our focus in this chapter will be the geostatistical data, the discrete or lattice type of models
is mentioned in the concluding remarks of the previous chapter. We will now give a little more
detailed discussion of random fields and establish some of the main concepts and theory needed
throughout this chapter.

A random field or spatial process over a domain of dimension d will be determined by

{Z(s)|s ∈ D ⊂ Rd},

where Z(s) is the output and s is a d-dimensional vector of coordinates, where D is either
continuous, or a set of discrete spatial locations. As mention earlier if d = 1 we call the process
a time process and we will write Y (t) rather than Z(s), and if d = 2 we will think D as a subset
of the Cartesian plane, which s = (x, y) as Cartesian coordinates.

It is sometimes more instructive to think of a spatial process as a random function produced by
a random experiment, rather than a sequence of random experiments indexed by their location.
We will then associate Z(s) with the value of the random function Z at position s where Z is the
complete surface generated by a random experiment. It is important to realize that a collection
of n spatial data are not a sample of size n, but rather an incomplete observation of one random
experiment, i.e. a sample of size one from a n-dimensional distribution. In many situations it is
unfortunately impossible to observe more than one independent realization of the same process.

In order to make inference we need to assume some restrictions about the random process,
this compensates to some degree for incomplete observation and the impossibility of making
repeated measures of the process. A random field is said to be strictly or strongly stationary if
the distribution is invariant under translation, i.e.,

Pr{Z(s1) < z1, . . . , Z(sk) < zk} = Pr{Z(s1 + h) < z1, . . . , Z(sk + h) < zk},

for all h and k, where k ∈ N, h ∈ Rd and s ∈ D ⊂ Rd. The strict assumption is sometimes
too harsh and not realistic in real life and in those cases it is more reasonable and common to
require stationarity of the moments rather than of the distribution itself. We will say that a
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random field is second-order or weakly stationary if the distribution of the field satisfies the two
conditions

E[Z(s)] = µ and Cov(Z(s), Z(s+ h)) = C(h), for h ∈ Rd, s ∈ D ⊂ Rd. (1.1)

Note that the spatial separation h will sometimes be referred to as a lag-vector. The function
C(h) is the covariance function and if C(h) does not depend on the direction, but only the
absolute distance between points, i.e. C(h) = C ′(||h||), we will say that the covariance function
is isotropic. If a random field do not itself satisfy second-order stationary property, but have
increments, Z(s)−Z(s+ h), which satisfy is second-order stationary property, we will say that
the random field is intrinsic stationarity. The intrinsic property of a random field is sometimes
defined by the property

E[Z(s))] = µ and
1
2

Var(Z(s)− Z(s+ h)) = γ(h), for h ∈ Rd, s ∈ D ⊂ Rd.

The function γ(h) is also known as the semivariogram of a spatial process. Note that for a
second-order stationary random field we have that γ(h) = C(0)−C(h) and we are in some sense
free to choose which one to work with, also Var(Z(s)) = C(0) = σ2 and the correlation function
is defined as R(h) = C(h)/C(0). As we did for time series we will define a covariance function
to be valid if it satisfies the positive definiteness property,

k∑
i,j=1

aiaj Cov(Z(si), Z(sj)) ≥ 0 (1.2)

for any set of locations (s1, . . . , sk) and real numbers (a1, . . . , ak). Note that for second-order
stationary random fields all the properties from Lemma 1.1 of Chapter 2 are satisfied for C(h).
Also if C(h) is a valid covariance function in Rd2 then C(h) will become valid covariance function
in Rd1 , where d2 > d1, but the opposite is not necessarily always true. A covariance function in
Rd is said to be separable if C(h) can be written as

C(h) =
d∏
i=1

Ci(hi), (1.3)

where h = (h1, . . . , hd) ∈ Rd and C(hi), for i = 1, . . . , d, is a covariance function in R. Note that
the separable property is usually not assumed unless the domain is separable in a natural way,
such as space and time. Before we continue with some results for the covariance and correlation
function we will define a random field as a Gaussian field if for any choice of positive integer k
the cumulative distribution function

Pr{Z(s1) < z1, . . . , Z(sk) < zn} (1.4)

is the same as for a k-variate Gaussian random variable.

The next result is known as Bochner’s Theorem and it provides us with the necessary conditions
we need to satisfy in order to construct prior distributions for the set of covariance functions.

theorem 1.1. (Bochner’s Theorem) A function C(h) is positive definite if and only if it has a
spectral representation

C(h) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

exp(iuTh)dF (u), (1.5)

where dF (u) is a bounded symmetric measure.
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We will sometimes refer to F (u) as the spectral measure as we did in Chapter 2, but in the case
where F (u) is differentiable, i.e. dF (u) = f(u) du it is common to use the name spectral density
for the function f(u), not power spectrum as we did in Chapter 2. Also note that from Bochner’s
Theorem it is easy to verify that if C(h) is a separable covariance function, it is sufficient to
check if C(hi) is a valid covariance function in R for all i = 1, . . . , d, in order to make sure that
C(h) is valid in Rd.

In the case of isotropic covariance functions Bochner’s Theorem simplifies to the following, see
?.

theorem 1.2. For d ≥ 2, a function C(h) is a valid isotropic covariance function for a random
field on Rd if and only if C(h) has the representation

C(h) = 2d/2−1Γ(d/2)
∫ ∞

0
(uh)−(d/2−1)Jd/2−1(uh) dF (u), for h ∈ R+

where Jν(t) is the Bessel function of the first kind and F is nondecreasing, bounded on [0,∞)
and satisfies F (0) = 0.

Since we only will be concerned with second-order stationary continuous time processes, which
have isotropic covariance function by construction, and random processes with isotropic covari-
ance functions. The version of Bochner’s Theorem for isotropic covariance functions above will
become our fundamental and main result for the rest of this chapter.

From ? we do also have that if
∫∞

0 hd−1|C(h)| dh < ∞ is satisfied, there exists an even more
simplified connection between the isotropic covariance function and the spectral density given
by the two equations

f(u) = (2π)−d/2
∫ ∞

0
(uh)−(d/2−1)Jd/2−1(uh)hd−1C(h) dh (1.6)

and

C(h) = (2π)d/2
∫ ∞

0
(uh)−(d/2−1)Jd/2−1(uh)ud−1f(u) dh (1.7)

for u, h ∈ R+.

For continuous time processes Bochner’s Theorem is known as The Wiener-Khintchine Theorem,
see ?.

theorem 1.3. (The Wiener-Khintchine Theorem) A necessary and sufficient condition for R(h)
to be a correlation function of some stochastically continuous stationary process Y (t), where
t ∈ R, is that the exist a function F (u) having the properties of a distribution function on
(−∞,∞) (i.e. H(−∞) = 0, H(+∞) = 1, and H(u) non-decreasing), such that, for all h, R(h)
may be expressed in the form,

R(h) =
∫ ∞
−∞

exp(iuh) dH(u).

It follows directly from The Wiener-Khintchine Theorem that we have a similar representation
for the covariance function as Corollary 1.10. We will not state this as a separate result here,
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but only observe that we have the following relation between the covariance function and the
spectral density

f(u) =
1

2π

∫ ∞
−∞

exp(−uh)C(h) dh =
1
π

∫ ∞
0

cos(uh)C(h) dh, for −∞ < u <∞, (1.8)

and
C(h) =

∫ ∞
−∞

exp(uh)f(u) du =
∫ ∞

0
cos(uh)f(u) du, for 0 ≤ h <∞, (1.9)

see ? for details. These two equation are very similar to those derived in Chapter 2, the only
difference is that we integrate over a larger domain. Again note that equation (1.8) provides us
with a method for how we always can find the corresponding spectral measure given a covariance
function. We will now introduce some basic and common choices of covariance functions and
their spectral measures for continuous time processes.

Example 1.4. Let Y (t), where t ∈ [0,∞), be a stationary Gaussian continuous time process
with expectation zero and covariance function C(h), where h ∈ [0,∞). In ? the spectral densities
for several common covariance functions is given, we will present some and rewrite them inspired
from the results of the previous chapter such that they will fit our nonparametric approach
presented in the next section.

Let C(h) = ρ−ah if c = a log(ρ) and ρ > 1 then the spectral density is given by

f(u) =
σ2

cπ(1 + (u/c)2)
, (1.10)

where the special case is to choose c = aφ then C(h) = exp(−aφh) which is known as the
exponential covariance function.

Let C(h) = ρ−ah
2 if c =

√
a log(ρ) and ρ > 1 then we have spectral density

f(u) =
σ2

2c
√
π

exp(−(u/2c)2), (1.11)

where the special case is c =
√
aφ and the covariance function become C(h) = σ2 exp(−aφh2),

which is often referred to as the Gaussian covariance function from the structural similarity with
the Gaussian distribution.

Let C(h) = σ2(1− hφ)I[0,φ](h), where I[a,b](h) is a indicator function, this covariance function is
known as the tent model, apparently from its shape, and the spectral density is given by

f(u) =
σ2

φπ

1− cos(u/φ)
(u/φ)2

. (1.12)

The next example introduces the classical solution of isotropic parametric covariance function
for second order stationary random fields.

Example 1.5. The Matérn class of covariance functions is an important and large class of
isotropic covariance functions in spatial data analysis. The Matérn class is also a common choice
of parametric class for second order stationary spatial processes with isotropic covariance function
in higher dimension, i.e. d > 1, the Matérn class is also often used for the time continuous
processes. There exist several different parameterizations for the Matérn functions, we will use
the following given in ?,

C(h) = φ(αh)νKν(αh), where φ > 0, α > 0, ν > 0 and h = ||h||, (1.13)
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where Kν(t) is the modified Bessel function of the second kind. The corresponding spectral
density is determined by

f(u) =
2ν−1φΓ(ν + d/2)α2ν

πd/2
(α2 + u2)−(ν+d/2), (1.14)

for u ∈ R+, and the relation between them are given by the equations (1.6) and (1.7).

Remark 1.6. It is possible to obtain the Gaussian covariance function as a special case from the
Matérn class by taking the limit ν →∞, see ?. It is more interesting for us that we are also able
to obtain the exponential covariance function from the Matérn class. This gives us an explicit
expression for the spectral density for a the exponential covariance function for all dimensions.

From ? we have that the K1/2(t) = (π/2t)1/2 exp(−t), then if φ = σ2(2/π)1/2 we find that

C(h) = φ(αh)1/2K1/2(αh) = σ2(2/π)1/2(αh)1/2(π/[2αh])1/2 exp(−αh) = σ2 exp(−αh)

where h = ||h||. Let α = log(ρ) then we have the first covariance from Example 1.4. It is now
straightforward to derive the corresponding spectral density, from Example 1.5 we do now have
that

f(u) = σ2

[
Γ(1/2 + d/2)α

π1/2+d/2

]
(α2 + u2)−(1/2+d/2), where u ∈ R.

This last remark is important for us since we would like to use the results from Chapter 2 to
construct prior distributions for the covariance function for random processes. From this result
we do now have everything we need in order to make make flexible prior distributions around the
class of exponential covariance functions in all dimensions. Before we extend the nonparametric
ideas from Chapter 2 we will briefly discuss how we can make predictions about future outcomes
in spatial data analysis.

1.1. Spatial prediction and Kriging. Let Z(s1), . . . , Z(sn) be a sample of geostatistical
data. As we have already mentioned earlier this sample can be interpreted as an incomplete
observation from the surface Z(s, ω), where ω represent a realization of an experiment.

A important topic in spatial data analysis is to predict the rest of the unobserved surface, or
a specific unobserved value Z(s0), where s0 ∈ D is a new location, from the observed sample.
If the distribution of the random filed is known the optimal predictor p(Z; s0) of Z(s0) under
squared error loss is the conditional mean as in Section 1 of Chapter 2. It is not unusual that
the distribution of the random field is not known or that it is unrealistic to assume a specific
distribution, in such situations it is common to restrict the search for optimal prediction to those
that are linear, this method is known as Kriging after the South African mining engineer D. G.
Krige.

We will first discuss the spatial prediction for second order stationary Gaussian processes and
show how a simple example of Bayesian posterior prediction. Then we will give a short intro-
duction to the simplest from of Kriging, also known as simple Kriging.
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1.1.1. Spatial prediction. Let {Z(s)|s ∈ D ⊂ Rd} be a random field, or random process, and
suppose that we observe the realization Z = (Z(s1), . . . , Z(sn)) from the true process, where
the locations (s1, . . . , sn) are known. The idea is to use the information in the observed data
to make inference about, or predict, the unknown outcome at a new location s0 ∈ D, this is
sometimes referred to as point prediction. A predictor of Z(s0) at the new location is denoted
by p(Z; s0), in the case of an optimal predictor, relative to some loss function, we will use the
notation p0(Z; s0) To be specific we will assume that we are working under squared-error loss,
i.e.

L(Z(s0), p(Z; s0)) = (Z(s0)− p(Z; s0))2,

and the optimal predictor is the one that minimizes the expected loss, also known as Bayes risk.
From Section 1.0.1 of Chapter 2 we know that under squared-error loss the optimal predictor is
the conditional mean

p0(Z; s0) = E[Z(s0)|Z]. (1.15)

In order to compute the conditional expectation we need the conditional distribution given the
observed data and the new unknown observation and in the case of a Gaussian random field this
can be done as we explained in Example 1.5 in Chapter 2 which is straightforward to extend to
random fields. To illustrate a future needed concept we will assume a slightly different model
and show how a simple Bayesian prediction scenario works out. First we have to introduce two
concepts form Bayesian theory.

In a Bayesian prediction setup suppose data, y, are realizations from a model with density given
by f(y|θ), where θ ∈ Θ is a unknown vector of parameters with priori density π(θ). If no data
are observed, or before the data are collected, the distribution of an unknown y0 is given by

p(y) =
∫

Θ
f(y,θ)dθ =

∫
Θ
f(y|θ)π(θ)dθ, (1.16)

and is often called the Prior Predictive Distribution of y. After we have observed data y we
would like to use the new information in the prediction of y0, then

p(y|y) =
∫

Θ
f(y,θ|y)dθ =

∫
Θ
f(y|θ,y)π(θ|y)dθ, (1.17)

is called the Posterior Predictive Distribution, or just the Predictive Distribution. Under squared-
error loss the optimal predictor, the one that minimizes expected loss (Bayes risk), is the condi-
tional mean of the posterior predicative distribution.

Example 1.7. Suppose Z(s) is a Gaussian random field that satisfies the decomposition

Z(s) = X(s)Tβ + ε(s), for s ∈ D ⊂ Rd,

where X(s) is a p-dimensional vector of known functions of s, β is a p-dimensional vector of
unknown parameters with known prior density π(β). This decomposition of the response as
trend or deterministic part and random noise is quite common in spatial statistic. Suppose
Z(s1), . . . , Z(sn) is an observed sample and assume the following hierarchical structure:

Z|β ∼ N(Xβ,ΣZ) and β ∼ N(µβ,Σβ),

where ΣZ is defined by a known covariance function C(h) and µβ and Σβ are both known
parameters that reflect our a priori beliefs about the unknown parameter β. In order to able to
make predictions about an unobserved location Z(s0) it is necessary to determine the posterior
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predictive distribution. From Remark 1.6 in Chapter 2 it is clear that f(Z(s0)|β,Z) in (1.17)
will become Gaussian and we need to determine the density of the posterior distribution π(β|Z),

π(β|Z) ∝ f(Z|β)π(β)

∝ exp(− 1
2

[(Z−Xβ)TΣ−1
Z (Z−Xβ) + (β − µβ)TΣ−1

β (β − µβ)])

∝ exp(− 1
2

[βT (Σ−1
β −X

TΣ−1
Z X)β

− βT (Σ−1
β µβ +XTΣ−1

Z Z)

− (Σ−1
β µβ +XTΣ−1

Z Z)Tβ]

− 1
2

[µTβ|ZΣ−1
β|Zµβ|Z])

∝ exp(− 1
2

(β − µβ|Z)TΣ−1
β|Z(β − µβ|Z))

which shows that the posterior distribution is Gaussian, with mean and covariance given by

µβ|Z = (Σ−1
β +XTΣ−1

Z X)−1(XTΣ−1
n Z + Σ−1

β µβ)

Σβ|Z = (Σ−1
β +XTΣ−1

Z X)−1.

where X is the matrix X = (X(s1), . . . , X(sn))T . Under the assumption of square-error loss we
are interested in the conditional mean, the optimal prediction. From the property of the double
expectation the mean could be written as

E[Z(s0)|Z] = Eβ[E[Z(s0)|β,Z]] =
∫
β

(Xβ + σT0ZΣ−1
Z (Z−Xβ))π(β)dβ (1.18)

and another way to write the covariance is

Var(Z(s0)|Z) = Eβ[Var(Z(s0)|β,Z)] + Varβ(E[Z(s0)|β,Z]). (1.19)

The exact solution to (1.18) and (1.19) can be found in ? who also treats other related prob-
lems where the assumptions are relaxed and prior distributions are defined on the remaining
parameters in the model.

E[Z(s0)|Z] = (X(s0)− σT0ZΣ−1
Z X)(Σ−1

β +XTΣ−1
Z X)−1Σ−1

β µβ

+ [σT0ZΣ−1
Z + (X(s0)− σT0ZΣ−1

Z X)(Σ−1
β +XTΣ−1

Z X)−1XTΣ−1
Z ]Z

Var(Z(s0)|Z) = (σ0 − σT0ZΣ−1
Z σ0Z)

+ (X(s0)− σT0ZΣ−1
Z X)(Σ−1

β +XTΣ−1
Z X)−1(X(s0)− σT0ZΣ−1

Z X)T .

The two solutions are not very informative in the way they are stated here, but on the other hand
the exact expressions do exist, in the models we will introduce later in this chapter the exact
solutions do not exist and we will have to use equations similar to (1.18) and (1.19) together
with MCMC simulation.

1.1.2. Kriging. Let {Z(s)|s ∈ D ⊂ Rd} be a random field where D is fixed and continuous
and let Z = (Z(s1), . . . , Z(sn)) be a sample of size n. Assume that the mean E[Z(s)] = µ(s) and
the covariance structure is known and therefore will also both E[Z] = µZ and Var(Z) = ΣZ be
known. The goal is to find the predictor p(Z, Z(s0)) of Z(s0) that minimizes E[(p(Z, Z(s0))−
Z(s0))2] and is linear, i.e. p(Z, Z(s0)) = λ0 + λTZ, where λ = (λ1, . . . , λn)T . From ? we have
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that the unique solution to the stated problem is given by λ0 = µ(s0)− λTµZ and λ = Σ−1
Z σ,

where σ = Cov(Z, Z(s0)) and the optimal linear predictor is given by

p0(Z, Z(s0)) = µ(s0) + σTΣ−1
Z (Z − µ) (1.20)

and is known as simple Kriging. The simple kriging solution is also the best linear predictor
under squared-error loss and is an unbiased estimator. Also from ? we have that the simple
kriging variance is given by

σ2
0 = σ2 − σTΣ−1

Z σ, (1.21)

where σ2 = Var(Z(s0)). From the equations above it is possible to show that simple kriging will
predict the exact observed value at the known locations, it is said to “honor the data”, which
is a desirable property for many predictors. The situation with constant but unknown mean is
known as ordinary Kriging and there exists an explicit and optimal linear unbiased predictor as
a solution, see ?, ? or ? for more about Kriging, Ordinary Kriging and other general types of
prediction in more general situations.

2. Bayesian methods

This section will in some sense be the natural extension of the ideas from Section 2 in Chapter 2 to
the case of continuous time processes. We will show that the framework developed for stationary
time series will become fairly easy to extend and use in order to make prior distributions for
isotropic covariance functions for random processes over a d-dimensional domain. The discussion
will be less detailed since the main ideas have already been introduced and discussed in Section
2 of Chapter 2. As we have already mentioned we do not have the nice approximations for
the multivariate Gaussian likelihood for continuous time processes such as we did for the time
series. We will therefore not be able to derive the explicit asymptotic behavior for the posterior
distribution and the only solution is to use simulation to study the posterior process properties.

The section is divided into two parts, we will in the first discuss some choices of prior distributions
and in the second section we will discuss how we can obtain posterior inference based on MCMC
simulations.

2.1. Prior distributions. Let {Z(s)|s ∈ D ⊂ Rd} be a second-order stationary random
process with expectation zero and unknown isotropic covariance function. We will follow the
same idea as in Section 2 of Chapter 2 and construct the prior distribution for the covariance
function by placing a prior distribution on the set of spectral measurers, i.e. view the spectral
measure F as a random process. The reason for this is the same as in the discrete time chapter,
that this is a simple and straightforward method to always be sure that we are working with valid
covariance functions. Therefore we will again be most concerned with the prior and posterior
distributions for the spectral measures which we will use to make inference about the covariance
function.

From Theorem 1.2 it is clear that all the random measure F needs to satisfy is to be a finite and
positive increment process. It would therefore be sufficient to assume that F is a Lévy process
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that also satisfies Pr{F (∞) < ∞} = 1. In order to more specific we will assume that F is a
Gamma process defined on [0,∞), i.e. F is a independent positive increment process, where

dF (u) ∼ Ga(α(u) du, β(u))

and Ga(α, β) is the Gamma distribution with shape parameter α and rate parameter β. We
will define F (0) = 0 and the common choice for the parameters will be α(u) = b(u)f0(u) du and
β(u) = b(u), where f0(u) is the spectral density determined by our a priori information. As in
Chapter 2 we will refer to the following function as a random isotropic covariance function

C(h) = 2d/2−1Γ(d/2)
∫ ∞

0
(uh)−(d/2−1)Jd/2−1(uh) dF (u), (2.1)

defined for h ∈ [0,∞), where F will be called the random spectral measure. Also we have that

E[C(h)] = 2d/2−1Γ(d/2)
∫ ∞

0
(uh)−(d/2−1)Jd/2−1(uh)f0(u) du = C0(h)

where h ∈ [0,∞), and it is clear that we should choose the spectral density f0(u) that corresponds
to our a priori guess for the covariance function. The variance of the random C(h) becomes

Var(C(h)) = 2d−2Γ(d/2)2

∫ ∞
0

(uh)−(d−2)Jd/2−1(uh)2f0(u)/b(u) du,

where h ∈ [0,∞). It is not obvious how different choices of β(u) will affect the variation in C(h)
for a general dimension d.

In the one-dimensional situation we can replace Theorem 1.2 with the simpler covariance ex-
tension of the Wiener-Khintchine Theorem 1.3. It is now fairly easy see how we should specify
α(u) and β(u) in order to reflect our prior beliefs from the expressions for the expectation and
variance as we did for time series. It is straightforward to verify that the expectation is given by

E[C(h)] = 2
∫ ∞

0
cos(uh)E[dF (u)] = 2

∫ ∞
0

cos(uh)α(u)/β(u) du, (2.2)

and the variance

Var(C(h)) = 4
∫ ∞

0
cos2(uh) Var(dF (u)) = 2

∫ ∞
0

[1 + cos(u2h)]α(u)/β(u)2 du. (2.3)

Our common choice is to choose α(u) = b(u)f0(u) du and β(u) = b(u) and the simple solution
will be to assume that b is a positive constant and f0(u) is the spectral density that corresponds
to our prior belief for the covariance function. As in Chapter 2 it is not obvious what the exact
expression for the variance becomes unless b(u) is a constant and we still get the separation of
the variance into two parts, one that becomes a constant and one that approaches zero for large
separation, as we did in the situation with stationary time series.

Note that there is at least one obvious reason why it might be desirable to let b(u) be an increasing
function and not a constant. The high end of the spectrum corresponds to short oscillations in
the covariance, then by forcing the posterior process to be close to the prior process for high
frequencies we might smooth out some of the noise from the observation. In the two following
examples we will show how we can obtain explicit solutions for two simple classes of covariance
functions for continuous time processes.
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Example 2.1. In Example 1.4 we introduced among others the class of covariance functions of
the form C(h) = ρ−ah, for ρ > 1 and h = [0,∞), for continuous time processes. The spectral
density is given by

f(u) =
σ2

cπ(1 + (u/c)2)
, for u ∈ [0,∞),

where c = a log(ρ) and we will define a prior distribution on covariance function with expectation
E[C(h)] = ρh by defining a suitable Gamma process as a prior distribution for the spectral
measure. We will use what we already know from the time series chapter on how to solve the
problem with the constant variance, i.e. we will combine a random and stochastic covariance
function. Let α(u) = b(u)f0(u) du > 0 and β(u) = b(u) > 0, where f0(u) is the spectral density
above where ρ is replaced with ρa, then

E[ρ(1−a)hC(h)] = 2ρ−(1−a)h

∫ ∞
0

cos(uh)E[dF (u)] = σ2ρ−ah

and

Var(ρ(1−a)hC(h)) = 2ρ−2(1−a)h

∫ ∞
0

(1 + cos(u2h)) Var(dF (u))

where both are defined for h ∈ [0,∞). If b(u) = b is a constant, then

Var(ρ(1−a)hC(h)) =
σ2

b
[2ρ−2(1−a)hF (∞) + ρ−2h] =

σ2

b
[ρ−2(1−a)h + ρ−2h],

where h ∈ [0,∞) and F0(∞) = 1/2 since f0(u) is the Cauchy density. The random covariance
function is now defined by the four parameters (a, b, ρ, σ) where (ρ, σ) controls the expected
structure of the covariance function and reflects our a priori beliefs. The parameter a determines
how fast the random covariance function will converges towards our a priori expectation and b
determines the amount of variation and reflects the precision in the prior guess.

It is not necessary to let b(u) be a constant, but we will not always get an explicit expression
for the variance of C(h) for every choice of b(u). We mentioned above why we perhaps might
want to let b(u) be a function and we will now show one possible choice. Assume that b(u) is of
the same form as the spectral density, b(u) = b + (u/d)2 where b, d is positive numbers, then it
is possible to show that

Var(ρ(1−a)hC(h)) =
σ2ρ−2(1−a)h

c2 − bd2

[
cd√
b
(1 + ρ′

−2
√
bh)− d2(1 + ρ−2ah)

]
,

where h ∈ [0,∞), c = a log(ρ) and ρ′ = exp(d).

Example 2.2. From the discussion in Example 2.1 it is clear that the we can use the same
construction to make random covariance functions that are close to the Gaussian, i.e. where
C(h) = ρh

2 . From Example 1.4 we have that the spectral density is given by

f(u) =
σ2

2c
√
π

exp(−(u/2c)2),

where u ∈ [0,∞) and c =
√
a log(ρ). Let F be a gamma process defined by the shape and rate

parameters α(u) = b(u)f0(u) du > 0 and β(u) = b(u) > 0, where f0(u)is the spectral density
above with ρ replaced by ρa, then

ρ(1−a)h2
C(h) = 2ρ(1−a)h2

∫ ∞
0

cos(uh) dF (u), (2.4)
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where h ∈ [0,∞), is a random covariance function which is always valid. The parameters
(a, b, ρ, σ) have the same interpretation as in Example 2.1. It is also possible to show that

E[ρ(1−a)h2
C(h)] = ρah

2
and Var(ρ(1−a)h2

C(h)) =
σ2

b
[ρ(1−a)h2

+ ρa2h2
]

for h ∈ [0,∞) and b(u) = b since F0(∞) = 1. If it is needed we could choose b(u) =
b exp((u/2d)2), where b, d are positive numbers which gives us a new expression for the vari-
ance

Var(ρ(1−a)h2
C(h)) = σ2ρ(1−a)h2 d√

c2 + d2

[
1 + exp(−(2hcd)2/[c2 + d2]

]
for h ∈ [0,∞).

Remark 2.3. From Remark 1.6, Theorem 1.2 and what we have already discussed in this section,
it is clear that we are always able to make quite flexible prior distributions that are close to the
exponential isotopic covariance function for random fields over a general domain D ⊂ Rd, where
d = 1, 2, . . .. Let F be a Gamma process as discussed above with parameters α(u) = b(u)f0(u) du
and β(u) = b(u). The spectral density f0(u) is given by

f0(u) = σ2

[
Γ(1/2 + d/2)α

π1/2+d/2

]
(α2 + u2)−(1/2+d/2), for −∞ < u <∞,

where α = log(ρa). Then

ρ(1−a)hC(h) = ρ(1−a)h2d/2−1Γ(d/2)
∫ ∞

0
(uh)−(d/2−1)Jd/2−1(uh) dF (u),

where h = ||h||, will be a random covariance function with expectation E[ρ(1−a)hC(h)] = ρ||h||.
It is clearly not straightforward to evaluate how different choices of b(u) functions will affect the
variation of C(h), but b(u) can always be set to a constant or be chosen so that it reduces high
frequencies variation of F .

2.1.1. Alternative Gamma Process Representation. In the Examples above we have for the
most assumed that the parameters for the Gamma Process are of the form α(u) = b(u)f0(u) du >
0 and β(u) = b(u) > 0, where b(u) often for simplicity is assumed to be a constant and f0(u)
is the spectral density that corresponds to our a priori guess for the covariance function C0(h).
For some reason it turns out that this construction is not very stable to simulate from by the
standard methods in R and for this reason we introduce the alternative parameterization for the
Gamma process, let α(u) = b(u) du > 0 and β(u) = b(u)/f0(u) > 0.

E[C(h)] = 2
∫ ∞

0
cos(uh)E[dF (u)] = 2

∫ ∞
0

cos(uh)fπ(u) du, (2.5)

and

Var(C(h)) = 4
∫ ∞

0
cos2(uh) Var(dF (u)) = 2

∫ ∞
0

[1 + cos(u2h)]fπ(u)2/b(u) du. (2.6)

This alternative parameterization turns out to much more stable to simulate from, but since the
expression for the variance involves f0(u)2 we do not get such a simple expression as we did with
the first parameterization. We do not necessary need an explicit expression, but in the next
example we show a possible solution for our favorite example.
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Example 2.4. Assume that f0(u) is the spectral density for the exponential model given in
Example 2.1 and we will use the alternative representation of the Gamma process given above.
Let β(u) = b, the expectation of the random covariance function is clearly not changed, if we try
to evaluate the variance we find that

Var(C(h)) = 4
∫ ∞

0
cos2(uh) Var(dF (u))

= 4
∫ ∞

0
cos2(uh)

σ2b

(πφ(1 + (u/φ)2))2b2
du = 2

σ2

bπ2φ2

∫ ∞
0

[1 + cos(2uh)]
1

(1 + (u/φ)2)2
du,

which is not straight forward to evaluate. If we instead assume that

β(u)−1 = (1 + (u/φ)2)k/
[ l∏
i=1

(bi + ciu
2)
]
,

where k = 1, 2 and normally l ≥ k, it is possible to solve analytically, suppose k = l = 2 then

Var(C(h)) =
σ2

πφ2(b2c1 − b1c2)

2∑
i=1

(−1)i+1

√
ci
bi

[
1 + exp(−2

√
bi/cih)

]
.

As a final remark to this section, assume that {Y (t)|t ∈ D ⊂ Rd} is a second-order stationary
Gaussian continuous time process with expectation zero and unknown covariance function C(h),
where C(h) is separable, i.e.

C(h) =
d∏
i=1

C(hi), where hT = (h1, . . . , hd).

Then it is straightforward to generalize the work we have done for one-dimensional random
covariance to produce prior distributions for the separable covariance function.

2.2. Posterior simulation. In Chapter 2 we concluded that the full multivariate Gaussian
likelihood was too complicated to use in order to make exact inference about the posterior process.
The solution to this problem was to introduce an approximation that was easier to work with
and that become arbitrarily close to the real log-likelihood in the limit. As far as I know there
does not exist such nice approximations for the likelihood of second-order stationary Gaussian
random field over a d-dimensional domain. For this reason we have to base our posterior inference
on the MCMC simulations. The Markov chain Monte Carlo simulation routine was also used in
Chapter 2 and there is a very brief explanation of the method and how this was implemented in
R in Appendix A and Appendix C.

Let Z(s1), . . . , Z(sn) be a sample from a second-order stationary Gaussian random field on a
d-dimensional domain with unknown isotropic covariance function. Following the ideas from the
previous section define a prior distribution for the spectral measure by defining a suitable Gamma
process, we do then know from the discussion in Chapter 2 that in order to specify the posterior
process it is sufficient to specify the posterior distribution for any finite collection of increments.
Let k ∈ N then the posterior distribution for the finite set of increments {dF (u1), . . . , dF (uk)}
is determined by the product of prior density and likelihood, i.e.

(dF (u1), . . . , dF (uk))|data ∝
k∏
i=1

π(dF (u))× Lik(data), (2.7)
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where Lik(data) is the multivariate Gaussian likelihood.

Before we continue and end this section with a large example we need to introduce an important
topic known as the aliasing effect. This discussion is necessary before we try to use our model
on some real/simulated data since we have to make everything discrete in order to do numerical
approximations.

Let Y (t), where t ∈ [0,∞), be a continuous time random process and assume that we observe
Y (t) at the time points t1, t2, . . ., where ti = ∆t× i for i = 0, 1, 2, . . .. From this construction it
is clear that we will lose some information about the dependency structure since do not observe
any observations that are closer than ∆t in time. We know that the spectral measure is closely
related to the covariance or correlation and it is not surprising that this construction will result
in some loss of information about the spectral properties as well. Actually we will only lose
information about the end high order frequencies of spectrum, see ?. We will not go into to too
much details about this, for a more complete discussion see ?, see also ? for methods regarding
alias free sampling. But there is one result we will need in order to avoid some possible mistakes.

Again let Y (t), where t ∈ [0,∞), be a continues time random process and suppose that we only
observe Y (t) at the time points t1, t2, . . ., where ti = ∆t × i for i = 0, 1, 2, . . .. Assume that
the covariance function of the real Y (t) is given by C0(h) with spectral measure F0(u), where
h ∈ [0,∞) and u ∈ (−∞,∞). Then the observed discrete process have covariance function given
by

C1(h) =
∫ π/∆t

−π/∆t
exp(iuh∆t) dF0(u), for h = 1, 2, . . . , (2.8)

where

dF1(u) =
∞∑

j=−∞
dF0(u+ 2jπ/∆t), for − π/∆t ≤ u ≤ π/∆t. (2.9)

Our main concern regarding the aliasing effect is in the construction of a priori distributions for
the spectral measure. We have already seen that in the case of a continuous time process the
spectral density is defined on the interval [0,∞) and for time series the corresponding process
where defined on the interval [0, π]. If a continuous time process is observed with equidistant
intervals of length ∆t, then from above, the random spectral measure must be specified for the
interval [0, π/∆t] or be redefined according to (2.9).

Remember that if we do a discrete approximation of the spectral density by dividing its domain
into an equidistant grid of length π/M , then the covariance function will become periodic with
period 2M . This means that we have to choose M so large that the covariance function explains
everything that we are interested in.

Example 2.5. This is a simple illustration of the basic concepts. Assume we have observed
a continuous time Gaussian process Y (t), for t = 0, 0.5, 1, . . . , 10, where the observations t =
{4, 4.5, 5, 5.5, 6} are missing. Assume also that the series is second order stationary and has
expectation zero and unknown covariance structure. From these observation we would try to
estimate the posterior covariance function and predict the the unobserved values.

The true process has covariance function given by C0(h) = σ2
0 exp(φ0|h|), where σ2

0 = 1 and
φ = 0.7. We will follow the idea from Example 2.2 and center our a priori distribution around
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Cπ(h) = σ2
π exp(−φπ|h|), where σ2

0 = 1, φ = 0.5, a = 0.1 and β(u) = 2 + 5u. Note that we have
to use the result from the aliasing effect paragraph to find the right spectral density.
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Figure 2.1: Simulated sequence Y (t), for t = 0, 0.5, . . . , 10, the grey points are the missing values.
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Figure 2.2: Estimated expected posterior covariance function (solid line), expected prior covariance function (dot-
ted) and covariance estimated from data (dashed line).
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Figure 2.3: The true data sequence with predicted values together with upper and lower 0.95-bound estimated
from the simulations.

3. Concluding remarks

In this chapter we have shown that the ideas from the stationary time series model can easily
be extended to the spatial models defined on a general domain D ⊂ Rd, where d ≥ 1. The main
goal for this chapter was to show that it was possible to do this and also to provide some simple
and useful models. We have in a sense solved both problems, we have extended the framework
from Chapter 2 and we have created a model setup that makes it possible to construct prior
distributions centered around the exponential for nonparametric isotropic covariance functions
defined for any random field on a general domain D ⊂ Rd, where d ≥ 1.

There is at least three natural unfinished problems associated with this chapter. The first is
to construct a flexible model for the prior for the whole class of Matérn functions, such as the
general exponential model given in Remark 2.3. At this point the only solution we have for
the general Matérn class is to combine different types of deterministic and random covariance
functions as explained in Chapter 2. The reason this is a natural extension is that the Matérn
class is the most common choice of class of parametric isotropic covariance functions for higher
order dimensional spatial analysis.

The second problem is the Metropolis-Hastings algorithm, the routine written in R works, but
it is awfully slow since we do have to invert a large matrix at every step. A solution to this
problem is to write some of the routine in C or Python (both can be incorporated in R) which
will speed up the calculations for the algorithm.

A third topic that needs a more complete discussion than what we were able to give here, is
the consequence of the aliasing effect together with the numerical approximation of the spectral
measure. Suppose we observe a continuous time process at equidistant time points with distance
∆data, and that we have approximated our spectral measure by using the method described in
the aliasing effect paragraph. Then if we have divided the domain of the spectral density function
into M piece then our covariance function will become periodic with period 2M∆data and also
C(h) = C(M∆data − h), for M∆data < h < 2M∆data. There exist work where people have
developed alias-free sampling methods, the problem is that this usually involves sampling at a
random rate which in turn will lead to very few equally spaced observations and less information
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about the dependency structure. Another solutions is of course to choose M very large, but
then we will have a problem getting our simulation routine to converge. A complete discussion
of nonparametric prior distributions for the spectral measure for continuous time process should
include a detailed treatment of this topic.

Note that some of the extensions suggested in the concluding remarks of the previous chapter
are natural suggestions here as well and will therefore not be repeated.
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Markov chain Monte Carlo simulation

In Bayesian data analysis is it not unusual that the posterior distribution become so complex that
it is impractical to make inference or derive large-sample properties for the parameters under
study. In such situations it is quite common to use simulation technique to make approximate
inference about the posterior distribution. The two main types of simulation algorithm that are
used is the Gibbs sampler and the Metropolis-Hastings algorithm, for a complete introduction to
these two methods see ? and ?, or for a more general introduction to posterior simulation in
Bayesian data analysis see Chapter 11 in ?.

In this thesis we will only use the Metropolis-Hastings algorithm which we will introduce very
briefly in next paragraph. The reason for this is that the Metropolis-Hastings algorithm in general
is easy and straightforward to implement, we do not necessarily need to calculate anything, it
works, but in its raw form and compared to the Gibbs sampler it might a very slow and time-
consuming algorithm.

Suppose the posterior distribution is determined by π(θ|data) ∝ π(θ) × Lik(data|θ), where θ is
a p-dimensional parameter vector. Then according to the Metropolis-Hastings algorithm we can
obtain a sample θ1, θ2, . . . from the posterior distribution by the following algorithm, see ?.

i) Draw a starting point θ0 from a starting distribution or choose the starting point θ0

based on some a priori information.
ii) Then for t = 1, 2, . . .:

(a) Draw θ∗ from a jumping distribution or proposal distribution Jt(θ∗|θt−1).
(b) Calculate the ratio of densities

r =
π(θ∗|data)Jt(θt−1|θ∗)
π(θt−1|data)Jt(θ∗|θt−1)

.

Note that in the case of a symmetric jumping distribution the jump densities cancel
out of the fraction, this is also known as the Metropolis algorithm.

(c) Set

θt =

{
θ∗ with probability min(r, 1)
θt−1 otherwise.

A common solution to determine if the routine has reached its target distribution is to start the
Metropolis-Hastings algorithm at several different locations and monitor the convergence of each
sequence. Hopefully all of them should converge towards the same limit, in ? page 296-297 they
suggest a measure based on a comparison of the within and between variation of each parameter.

As mentioned we will only use the Metropolis-Hastings algorithm in this thesis. The idea was
to write a quite general Metropolis-Hastings sampler (the basic framework), mostly consisting of
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nested loops, that were also able to perform some of the simplest strategies in MCMC simulation,
such as determine the jump variance based on accept ratio, use log-probability and do burn-in,
to make it more user friendly. But also leave all the cleverness to the user who has to define a
smart jumping distribution and also an accept/reject ratio that is fast enough to compute.

Figure 0.1 illustrates the Metropolis-Hastings algorithm, where the routine makes three attempt
to draw samples from a known bivariate Gaussian distribution.
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Figure 0.1: Three times four independent sequences of the Metropolis sampler for the bivariate Gaussian distri-
bution with correlation ρ = 0.7. i) The jump variance is on purpose set too low. ii) The same as in i),
but where the routine has searched for the jump variance that correspond to an accept ratio of 0.44.
iii) The same as in ii) but with 100 burn-in steps.

The Metropolis-Hastings algorithm and the related routines are all written as functions in the
software package R and the source code will not be included here, the main reason for this is
that it consist of several hundred lines of code and it would not be that interesting to read.
There is a little more complete explanation in Appendix C and for those who are interested
in a copy of all the source and examples files used in the thesis can send me an email at
gudmunhh@student.matnat.uio.no.

The main use of the Metropolis-Hastings algorithm will be to make approximative posterior
inference about the random spectral measure. The most time consuming task in this routine will
be to compute the covariance matrix, its determinant and inverse in the multivariate Gaussian
likelihood. The covariance matrix is an n × n - matrix, where n is the number of observations,
also every element is determined by an integral. In order to make posterior inference about
the random spectral measure F we have to approximate the covariance matrix Σn(F ) by doing
numerical integration. Let Σ̂n(F ) be the the numerical approximation of Σn(F ), where the
elements in Σn(F ) is approximated by the numerical integration, i.e.

Σn(F )k,l = 2
∫ π

0
cos(u|k − l])dF (u) ≈ 2

m∑
i=1

cos(ui|k − l])∆F (ui) = Σ̂n(F )k,l

where m is a positive integer such that the partition 0 = u0 < u1 < · · · < um−1 < um = π is
dense enough to make the approximation suitably accurate. In order to speed up the algorithm
we will use two small tricks, first observe that

Σn(F ) ≈ Σ̂n(F ) = Σ̂n(F (ui)) + · · ·+ Σ̂n(F (um)) = ∆F (u1)Σ̂n(u1) + · · ·+ ∆F (um)Σ̂n(um)
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where ∆F (u1), . . . ,∆F (um) are the increments and Σ̂n(ui) is the matrix with elements given by

Σ̂n(ui)k,l = 2 cos(ui|k − l|).

If the sequence of matrixes Σ̂n(u1), . . . , Σ̂n(um) are computed and stored in an array at the
beginning of the routine we will save a lot of computing time since it is faster to find and obtain
an element in a register than to compute the whole sequence at every iteration. Also if we always
keep track of the updates we can save the covariance matrices at every iteration, its determinant
and inverses, and use them to save computing time in the next iteration.

Let ∆F (u1), . . . ,∆F (um) be the increments in the discrete approximation to the random process
and that the prior distribution is the Gamma process discussed in Chapter 2 and 4. We will then
use two different methods in the MCMC simulation routine, a ‘safe’ method where we update one
increment at the time and a ‘fast’ method where we will update the whole sequence of increments
at every iteration.

If we are updating the increments one by one, then for every iteration in the Metropolis-Hastings
algorithm we will have to run through every element in the vector (∆F (u1), . . . ,∆F (um)). This
is of course very time consuming, but it is stable, easy to implement and ‘safe’ in the sense that
not many things can go wrong. The jumping distribution will be given by

Jj(∆F (uj)∗|∆F (uj)t−1) ∼

{
U [∆F (uj)t−1 − di, ∆F (uj)t−1 + di] if ∆F (uj)t−1 − di < 0
U [0, ∆F (uj)t−1 + 2di] else

where U [a, b] is the uniform distribution on the interval [a, b]. The variation in the jump distri-
bution is given by the parameter di and can be determined by a search for a desired accept ratio.
Note that the jumping distribution cancels out of the accept ratio and we can therefore use the
simpler Metropolis algorithm to obtain samples from posterior processes. In order to be precise
the logarithm of the accept ratio is given by the expression

log(r) = (αj − 1) log(∆F (uj)∗/∆F (uj)t−1)− βj [∆F (uj)∗ −∆F (uj)t−1]

+ lik
(
∆F (u1), . . . ,∆F (uj)∗, . . . ,∆F (um)

)
− lik

(
∆F (u1), . . . ,∆F (uj)t−1, . . . ,∆F (um)

)
.

where lik
(
∆F (u1), . . . ,∆F (um)

)
is the logarithm of the multivariate Gaussian likelihood and

the first line that depends on the parameters αj and βj is what is left from the prior density.

We will also do MCMC simulation runs where we will update all the increments in the vector
(∆F (u1), . . . ,∆F (um)) at every iteration. This strategy is much faster than the method de-
scribed above, but everything becomes a bit more complicated. In this case we will use the jump
distribution that is in the same family as the prior distribution and the density is given by

J(F ∗|∆F t−1) =
m∏
i=1

Ga(bi dF (ui), bi)

where Ga(α, β) is the Gamma distribution with shape parameter α and rate parameter β. The
variation can be determined by the search for a desired accept ratio. In this situation we have
to use the Metropolis-Hastings routine since the jump distribution is obviously not symmetric.
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The logarithm of the accept ratio is now given by

log(r) =
m∑
j=1

[
log(fj(∆F (uj)∗|αj , βj)− log(fj(∆F (uj)t−1|αj , βj)

+ log(fj(∆F (uj)t−1|bj ∆F (uj)∗, bj)− log(fj(∆F (uj)∗|bj ∆F (uj)t−1, bj)
]

+ lik
(
∆F (u1)∗, . . . ,∆F (um)∗

)
− lik

(
∆F (u1)t−1, . . . ,∆F (um)t−1

)
.

where fj(u|α, β) is the Gamma density with shape parameter α and rate parameter β. The first
line in the expression above is the prior, the second line is the correction for the asymmetry in
the jumping rule and the last line is the log-likelihood of the multivariate Gaussian distribution.

We will end this short introduction with some final remarks. As we have mentioned it is very time
consuming to determine the inverse of a large matrix, another problem is that the covariance
matrix in the multivariate Gaussian likelihood becomes singular as a result to the numerical
approximation. A solution to this is to add a small number to the diagonal, this helps the
numerical calculation and will not make a critical change in the results.

A second problem is that when we ask the computer for a Gamma distributed random variable
with expectation close to zero and moderate variance, the software often returns a numerical
zero. This should not be possible and causes the Metropolis-Hastings algorithm to fail, see the
accept ratio. A acceptable solution turns out to be to replace the numerical zero value with a
small positive number, this does not seem to alter the solution in any way.

Also we have to consider the aliasing effect, see Section 2 in Chapter 4, the point is that there
is a connection between the numerical approximation of the spectral measure and the distance
between the observed sample. Another numerical problem is that the covariance function will
become periodic if the partition of the domain of the power spectrum is not dense enough. These
problems will also be pointed out in the examples.

At last we will of course in the case of a stationary Gaussian time series, where the number of
observations is large enough, use the approximations to the full log-likelihood we refer to as the
principal part. This approximation does not involve any matrixes and is therefore several times
faster and safer to use than the routine based on the full multivariate Gaussian likelihood.
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Calculations

1. A density based on the Gamma and Inverse-Gamma density

Let Y be a random variable distributed according to the Inverse-Gamma distribution with shape
parameter ν and scale parameter γ , then Y has density function given by

f(y) =
γν

Γ(ν)
y−ν−1 exp(−γ/y), for y > 0. (1.1)

The expectation of Y is given by E[Y ] = γ/(ν − 1) and if ν > 2 then the variance of Y exists
and is determine by Var(Y ) = γ2/[(ν − 1)2(ν − 2)].

We will now derive a density function that is proportional to the product of an Inverse-Gamma
density and a Gamma density. Let Z be the random variable with the density described above
and assume that the Gamma density has has shape parameter α′ and rate parameter β, and
that the Inverse-Gamma density is as described in equation (1.1). Then the random variable Z
has density function given by

fZ(z) =
γα/2

2βα/2Kα(2
√
βγ)

z−α−1 exp
[
− βz − γ

z

]
(1.2)

where Kκ(t) is the modified Bessel function of the second kind and α = ν − α′ + 1. This follows
directly from the expression of the moment generating function of a Inverse-Gamma distributed
random variable, i.e.

E[exp(tY )] =
∫ ∞

0
exp(ty)f(y) dy =

2(−γt)ν/2

Γ(ν)
Kν(

√
−4γt), for t ≤ 0.

It is now easy to find expressions for the expectation and the variance of Z,

E[Z] =
(
γ

β

)1/2Kα−1(2
√
βγ)

Kα(2
√
βγ)

and Var(Z) =
γ

β

Kα−2(2
√
βγ)

Kα(2
√
βγ)

− γ

β

(
Kα−1(2

√
βγ)

Kα(2
√
βγ)

)2

. (1.3)

In order to make the expressions more informative we will derive some approximations, but first
we need some properties of the modified Bessel function of the second kind. From ? we have
that

i) Kκ(t) = K−κ(t),

ii) Kκ+1(t) = Kκ−1(t) +
2κ
t
Kκ(t),

iii) Kκ(t) ≈ Γ(κ)
2

(
t

2

)−κ
, if κ > 0 and 0 < t�

√
κ+ 1.

If the difference
√
κ+ 1−t become large or t→ 0 then we can in a sense replace the approximation

in property iii) with a limit. From these properties we can now derive limit versions of the

87



2. INVERSE-GAMMA PROCESS CHAPTER B. CALCULATIONS

expectation and variance. Assume that ν > α, we can find limit expressions for the expectation
and variance from 1.3 as

E[Z] ≈
(
γ

β

)1/2 Γ(α− 1)(βγ)−α/2+1/2

Γ(α)(βγ)−α/2
=
γ

α
=

γ

ν − α′ + 1
, if 0 <

√
4βγ �

√
α.

and

Var(Z) ≈ γ

β

{
Γ(α− 2)(βγ)−α/2+1

Γ(α)(βγ)−α/2
−
[

Γ(α− 1)(βγ)−α/2+1/2

Γ(α)(βγ)−α/2

]2}
=

γ2

α2(α− 1)
=

γ2

(ν − α′ + 1)2(ν − α′)

if 0 <
√

4βγ �
√
α− 2.

2. Inverse-Gamma process

We will in this section argue that the Inverse-Gamma process, i.e. the independent positive
Inverse-Gamma distributed increment process, does not exist, by showing that a very simple
type of Inverse-Gamma process becomes a nonrandom constant process. Let Yt be a Inverse-
Gamma process define by

Yt =
m∑
j=1

Yj

where Yj ∼ Inv-Gamma(α, β) and α = a/m+ 2 and β = b/m, then

E[Yt] =
b

a/m+ 1
→ b and Var(Yt) =

b2

(a/m+ 1)2a
→ b2

a
.

In order to show that the Inverse-Gamma process exist we need to show that has a Lévy repre-
sentation, and the first step towards this is to show that Yt has Laplace transformation of the
form

E[exp(−θYt)] = E[exp(−θYj)]m = exp(−M(θ)), as m→∞. (2.1)

The easiest way to show (2.1) is to work with the core L(fj(y)) = E[exp(−θYj)] and show that
it is possible to write the expression (2.1) as

E[exp(−θYt)]m =
[
1−M(θ)/m+O(1/m2)

]m → exp(−M(θ)), as m→∞.

In this case the process do not exist, and we will prove this by showing that E[exp(−θYt)]m →
exp(−θ), which is the Laplace transformation for a plain nonrandom constant.

Let Yj follow an Inverse-Gamma distribution, then Yj has density fj(u) given by (1.1) with
parameters α = a/m + 2 and β = b/m. The expectation and variance of Yj do then exist and
we have that the Laplace transformation of Yj is determined by

L(fj(y)) = E[exp(−θYj)] =
2(βθ)α/2

Γ(α)
Kα(

√
4βθ)

=
2(θb/m)a/2m+1

Γ(a/2m+ 2)
Ka/m+2(2(θb/m)1/2), for θ ≥ 0
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where Kν(t) is again the modified Bessel function of the second kind. Because of the Bessel
function it is not easy to verify the limit of E[exp(−θYj)]m, it is therefore necessary to simplify
the expression. From 11.3.27 in ? we have that

∫ t

0
uvKν−1(u) du = −tνKν(t) + 2ν−1Γ(ν) ⇒ Kν(t) = 2ν−1t−νΓ(ν)− t−ν

∫ t

0
uvKν−1(u) du.

We will also need a series representation for the modified Bessel function of the second kind given
by

Kν(t) =
π

2 sin(πν)

( ∞∑
k=0

1
Γ(k − ν + 1)k!

(t/2)2k−ν −
∞∑
k=0

1
Γ(k + ν + 1)k!

(t/2)2k+ν

)

for ν /∈ Z. Let z =
√

4βθ and µ = a/m+ 2, then by using 11.3.27 from ? we have that

L(fj(y)) =
2(z/2)µ

Γ(µ)
Kµ(z) = 1− 21−µ

Γ(µ)

∫ z

0
uµKµ−1(u) du

= 1− 2−(a/m+1)

Γ(a/m+ 2)

∫ 2(θb/m)1/2

0
ua/m+2Ka/m+1(u) du

and from the series representation we find further that

L(fj(y)) = 1− 21−µ

Γ(µ)

∫ z

0
uµKµ−1(u) du

= 1− 21−µ

Γ(µ)

∫ z

0
uµ

π

2 sin(πν)

( ∞∑
k=0

1
Γ(k − ν + 1)k!

(u/2)2k−ν

−
∞∑
k=0

1
Γ(k + ν + 1)k!

(u/2)2k+ν

)
du

where ν = µ− 1. If u is now integrated out we find that

L(fj(y)) = 1− 21−µ

Γ(µ)
π

2 sin(πν)

( ∞∑
k=0

1
Γ(k − ν + 1)k!

(1/2)2k−ν
∫ z

0
u2k−ν+µ du

−
∞∑
k=0

1
Γ(k + ν + 1)k!

(1/2)2k+ν

∫ z

0
u2k+ν+µ du

)

= 1− 21−µ

Γ(µ)
π

2 sin(πν)

( ∞∑
k=0

1
Γ(k − ν + 1)k!

(1/2)2k−ν z2k−ν+µ+1

2k − ν + µ+ 1

−
∞∑
k=0

1
Γ(k + ν + 1)k!

(1/2)2k+ν z2k+ν+µ+1

2k + ν + µ+ 1

)

= 1− 21−µ

Γ(µ)
πzµ+1

2 sin(πν)

( ∞∑
k=0

1
Γ(k − ν + 1)k!

(z/2)2k−ν 1
2k − ν + µ+ 1

−
∞∑
k=0

1
Γ(k + ν + 1)k!

(z/2)2k+ν 1
2k + ν + µ+ 1

)
.
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Since z = θb/m, µ = a/m+ 2 and ν = a/m+ 1 we are now able to simplify the expression above
and obtain the following expression for the Laplace transformation of Yj ,

L(fj(y)) = 1− 21−µ

Γ(µ)
πzµ+1

2 sin(πν)

(
1

Γ(1− ν)
(z/2)−ν

1
1− ν + µ

)
+O(1/m2)

= 1− 1
m

π

Γ(−a/m) sin(π(1 + a/m))
θb

Γ(2 + a/m)
+O(1/m2).

The final thing we need is a formula from ? also known as Euler’s reflection formula which stats
that

π

Γ(−a/m) sin(π(1 + a/m))
= Γ(1 + a/m).

It now follows from the above that since Γ(1 + a/m) → 1, Γ(2 + a/m) → 1 as m → ∞ and by
Euler’s reflection formula that

lim
m→∞

L(fj(y))m = lim
m→∞

E[exp(−θY )]m

= lim
m→∞

[
1− 1

m

π

Γ(a/m) sin(π(1 + a/m))
θb

Γ(2 + a/m)
+O(1/m2)

]m
= exp(−θb).

3. Properties of the Dirichlet distribution

Let (Y1, . . . , Yk) be distributed according to a Dirichlet distribution with parameters (a1, . . . , ak),
we will write (Y1, . . . , Yk) ∼ Dir(a1, . . . , ak). Let a0 =

∑k
i=1 ai then for every i where i = 1, . . . , k,

we have that E[Yi] = ai/a0 and Var(Yi) = [ai(a0 − ai)]/[a2
0(a0 + 1)], for i, j = 1, . . . , p and i 6= j

we have Cov(Yi, Yj) = −aiaj/[a2
0(α0 + 1)]. Now the expectation and variance for the sum

b1Y1 + · · ·+ bkYk, for any set of real numbers b1, . . . bk is given by

E[
k∑
i=1

biYi] =
k∑
i=1

biE[Yi] =
a1b1 + . . .+ akbk

a0

and

Var(
k∑
i=1

biYi)

=
k∑
i=1

k∑
j=1

bibj Cov(Yi, Yj)

=
k∑
i=1

bibi Var(Xi) +
∑
i 6=j

bibj Cov(Yi, Yj)

=
k∑
i=1

bibi
ai(a0 − ai)
a0(a0 + 1)

−
∑
i 6=j

bibj
aiaj

a2
0(a0 + 1)

=
1

a0(a0 + 1)

[ k∑
i=1

b2i ai −
k∑
i=1

biai

k∑
j=1

bjaj

]
.
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APPENDIX C

R

# This is just a short overview of some of the main functions
# written in R, for a complete explanation see the source files.

# function.R
#

# Functions:

# Calculate the Covariance Function From the Power Spectrum
#
covariance.f <- function(h, power) {}

# Estimate the Covariance From Data
#
covariance.e <- function(t, data, mu = NULL) {}

# Estimate the Covariance Based on the Periodogram
#
covariance.e.p <- function(u, data, time) {}

# Calculate the Covariance Matrix From a Covariance function or
# power spectrum
#
covariance.m <- function(u, cov.func = NULL, power.func = NULL) {}

# Calculate the Exact, Whittle or Principal Part of the log-likelihood
#
likelihood <- function(time, data, power.s = NULL, spectral.m = NULL,

method = c("Dzhaparidze", "Whttle", "Gaussian")) {}

# Calculate the Smoothed Periodogram
#
periodogram.s <- function(u, data, time, m) {}

# Calculate the Periodogram
#
periodogram <- function(u, data, time) {}
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# MCMC:

# Calculate the Covariance Function for a Single Spectral Measure From a
# Metropolis-Hastings Routine
#
covariance.mcmc.f <- function(h, u, v) {

# Calculate the Covariance Matrix for a Single Spectral Measure From a
# Metropolis-Hastings Routine
#
covariance.mcmc.m <- function(t, u, v) {

# Returns Mean, Variance and Upper and Lower 0.95-Bound for any Type of Data
# From a Metropolis-Hastings routine
#
mcmc.summary <- function(mcmc, conf.int = 0.95, cut = 0) {}

# Returns Mean, Variance and Upper and Lower 0.95-Bound for the Covariance
# Function From a Metropolis-Hastings routine
#
mcmc.covariance.summary <- function(mcmc, lag, conf.int = 0.95,

cut = 0, cov.d = NULL) {}

# Prediction:

# Returns the Estimated Densities and Mean (for Kriging) From a Single
# New Observation
#
prediction.time <- function(mcmc, new, data, time, nr = 100) {}

# Returns the Estimated Densities and Mean (for Kriging) From a Vector
# of New Observations
#
prediction.times <- function(mcmc, new, data, time, nr = 100, conf.int = 0.95) {}

# plot.R
#

# Plot the Spectral Measure From a Metropolis-Hastings Routine
#
mcmc.measure.plot <- function(mcmc, conf.int = 0.95, gamma.para = NULL, cut = 0) {}

# Plot the Covariance Function From a Metropolis-Hastings routine
#
mcmc.covariance.plot <- function(mcmc, lag, conf.int = 0.95, cut = 0,
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cov.true = NULL, cov.d = NULL) {}

# prior.R
#
# Jump Distributions and Accept Ratio for the Metropolis-Hastings Algorithm
# Needed in Order to Sample From the Prior Distribution

# post.R
#
# Jump Distributions and Accept Ratio for the Metropolis-Hastings Algorithm
# Needed in Order to Sample From the Posterior Distribution

# metropolis.0.1.0.R
#
# The Metropolis-Hastings algorithm and a Test for Covergence, See
# the Source File for Details
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