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Abstract

Hierarchical models defined by means of directed, acyclic graphs are a power-
ful and widely used tool for Bayesian analysis of problems of varying degrees
of complexity. A simulation based method for model criticism in such models
has been suggested by O’Hagan in the form of a conflict measure based on
contrasting separate local information sources about each node in the graph.
This measure is however not well calibrated. In order to rectify this, alter-
native mutually similar tail probability based measures have been proposed
independently, and have been proved to be uniformly distributed under the
assumed model in quite general normal models with known covariance matri-
ces. In the present paper, exploiting the property of pivotality, we extend this
result to a variety of models. An advantage of this is that computationally
costly pre-calibration schemes needed for some other suggested methods can
be avoided. Another advantage is that non-informative prior distributions
can be used when performing model criticism.

Key words: Cross validation, data splitting, information contribution, MCMC,
model criticism, pivotal distribution, pivotal quantity, pre-experimental dis-
tribution, p-value
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1 Introduction

Bayesian hierarchical models are a very flexible and convenient tool for
analysing complex data, which has become a standard methodology over the
last decades due to the invention of MCMC techniques that can be handled
by increasingly powerful computers. The methodology allows the modeller
to represent an understanding of the underlying structure of the problem by
means of a directed acyclic graph, with nodes in the graph corresponding
to data or parameters, and directed edges between parameters representing
conditional distributions. Analysis of such models gives intuitively appeal-
ing inference based on posterior probability distributions for the parameters.
However, there are numerous possibilities for making wrong judgements in
the process of specifying such a model, and methods for checking the ade-
quacy of the model are needed. Sometimes a model can be checked indi-
rectly by comparison with other candidate models through a model compar-
ison technique, such as predictive methods, maximum posterior probability,
Bayes factors or an information criterion. But even the winner in such a com-
parison may not be an adequate model, and methods for critizising models
in the absence of any particular alternatives are also needed. By means of
such methods, an initial candidate model can be assessed, and if necessary
modified and elaborated on, leading to a new candidate model that again is
checked for adequacy, and so on. This kind of pattern for the model building
process is suggested in Box (1980), section 1.

There are many methods for checking the overall fit of the model or an
aspect of the model of special interest. Most of these methods are based on
locating a test statistic or a discrepancy measure in some kind of a reference
distribution, thereby resulting in a p-value. Box (1980) uses the prior pre-
dictive distribution of some checking function or test statistic as a reference
for the observed value of this checking function, see Box (1980), section 1.3.
This requires an informative and realistic prior distribution, which is not
always available or even desirable. Indeed, as pointed out in Bayarri and
Castellanos (2007), in an early phase of the model building process it is often
convenient to use noninformative or even improper priors, avoiding costly
and time consuming elicitation of prior information. Moreover, even when a
model has passed an initial test for adequacy, relevant prior information may
not be available, and noninformative priors are used also for the inference.

Non-informative prior distributions represent no problem for the poste-
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rior predictive p-value (ppp) of Gelman, Meng and Stern (1996), which uses
the posterior distribution as reference. But this method can be very con-
servative due to double use of data, see Bayarri and Berger (2000), Bayarri
and Castellanos (2007), Hjort, Dahl and Steinbakk (2005) (hereafter referred
to as HDS) and Dahl (2006). HDS suggests a prior predictive calibration
scheme (cppp) to remedy this, using the ppp-value as a test statistic in its
own right. This method is however very computer intensive, and again realis-
tic, informative priors are needed. The partial posterior predictive p-value of
Bayarri and Berger (2000) avoids both these problems, but may be difficult to
compute and interpret in hierarchical models. Some more informal graphical
and numerical methods based on test statistics that are pivotal quantities are
suggested in Johnson (2007). The various plots and numerical measures may
help in suggesting parts of the model that may need further investigation, but
the decisive characterization of a part of the model as being in discordance
with the data seems to be based on a supplementary cppp-analysis as sug-
gested in HDS. In Dey et al. (1998) a type of discrepancy measure that can
be applied for each node in a graph is constructed. However, their method
is also highly computer intensive. Moreover, the procedure is in principle of
the prior predictive type, and requires informative priors in order to make
sense.

In the present paper we focus on methods for checking the modelling
assumptions at each node of the graphical network. Such methods may iden-
tify parts or building blocks of the model that are in discordance with reality,
and can give useful information about where in the model adjustments or fur-
ther elaboration may be needed. We adopt the basic perspective of O’Hagan
(2003) (OH), which is to view any node in the graph as receiving information
from two disjoint subsets of the neighbouring nodes, either in the form of a
conditional probability density or a likelihood, or a combination of these two
kinds of information sources. Our aim is to check for inconsistency between
such subsets. OH suggests a measure of conflict based on normalizing these
information sources to have equal height 1, and measuring the height of the
graphs at the point where they intersect. Bayarri and Castellanos (2007)
shows that this measure tends to be quite conservative. Moreover, consider-
ing a normal model, Dahl, G̊asemyr and Natvig (2007) (DGN) shows that
for several reasons the measure of OH is poorly calibrated, leading to false
warning probabilities that vary substantially between models. By addressing
the different sources of inaccuracy, and in particular by instead normalizing

3



the information sources to probability densities, DGN modified the mea-
sure of OH to an approximately χ2-distributed quantity under the assumed
model. In G̊asemyr and Natvig (2009) (GN) these densities were instead
used to define tail probability based conflict measures that were shown to
be uniformly distributed in quite general linear normal models with fixed
covariance matrices. Similar conflict measures were also defined in Marshall
and Spiegelhalter (2007) (MS) in the less general setting of checking for out-
liers among the second level parameters in a random effects model. The
conflict measures of DGN, GN and MS are excellently reviewed in Presanis
et al. (2013), which also applies these conflict measures in complex cases of
medical evidence synthesis. In Dias et al. (2010) this methodology is used
to check for inconsistency in multiple treatment comparison of randomized
clinical trials.

In the random effects model considered in MS, the nodes of interest are
the group specific means. There may exist estimators that are sufficient
statistics for these group specific means. In that case, outlier detection at
the group level can also be based on cross validation, measuring the tail
probability beyond the observed value of the statistic in the posterior pre-
dictive distribution given data from the other groups. This is considered the
gold standard in MS. The aim of their alternative measure, which is well
defined also in the absence of such sufficient statistics, is to match this mea-
sure as closely as possible. They show that if all conditional distributions
in the model description are normal with fixed covariance matrices, the two
measures match exactly. To further substantiate the sensibility of their new
measure, they show in their appendix A3 that this equivalence result holds
also for more general location distributions. The requirements are that the
scale parameter is known, that the conditional density for the estimator given
the group mean is symmetric, and that the difference between the estimator
and the mean is a pivotal quantity.

In the present paper we will exploit the property of pivotality further.
We show that symmetry is not needed for the above mentioned equivalence
result, and that it applies beyond the case of location distributions. More
importantly, we show that in various kinds of models, pivotality of condi-
tional distributions used in the model specification implies that the conflict
measures of GN are uniformly distributed under the assumed model. Fur-
thermore, we show that this uniformity holds in models based on several
frequently used distribution functions, by using data transformations and
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reparametrizations. Hence, at least in these situations the measures of GN
have comparable interpretations across different models, and can be used
without computationally costly pre-calibrations schemes, such as the one
suggested in HDS, and are therefore in particular well suited for model crit-
icism in models using non-informative prior distributions.

The paper is organized as follows. Section 2 contains the necessary back-
ground material, including the definitions of the conflict measures given in
DGN and GN. This section also briefly addresses computational issues, and
presents a new result that is relevant in this context. The proof is given
in the appendix. Section 3 discusses the concept of pivotality in relation to
the conflict measures. The uniformity results announced above are given in
Sections 4, 5 an 6. The latter section also contains the extension of the above
mentioned equivalence result of MS. Section 7 discusses various aspects of
the theory.

2 Directed acyclic graphs and node-specific

conflict

2.1 Directed acyclic graphs and Bayesian hierarchical
models

A large and important class of Bayesian hierarchical models can be repre-
sented and visualized by means of directed acyclic graphs, DAGs. An ex-
ample discussed extensively in OH is the random effects model with normal
random effects and normal error terms, defined by

Yi,j ∼ N(λi, σ
2), λi ∼ N(µ, τ 2), j = 1, . . . , ni, i = 1, . . . ,m. (1)

In general we identify the nodes or vertices of the graph with the unknown
parameters θ and the observed data y. The latter are the realizations of
the random vector Y, and are represented by the bottom nodes, having only
directed edges pointing towards them. The parameters, the components
of θ, are also considered as random variables in our Bayesian framework.
In general, if there is a directed edge from node a to node b, then a is a
parent of b, and b is a child of a. We denote by Ch(a) the set of child
nodes of a, and by Pa(b) the set of parent nodes of b. More generally, b is
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a descendant of a if there is a directed path from a to b, and in that case,
a is an ancestor of b. The set of descendants of a is denoted by Desc(a),
and for convenience is defined to contain a itself. The directed edges encode
conditional independence assumptions, indicating that given its parents, a
node is assumed to be independent of all other non-descendants. Hence,
given the vector µ of top level nodes the joint probability distribution of all
the other parameters ν and variables Y is of the form

p(y,ν) =
∏
y∈y

p(y|Pa(y))
∏
ν∈ν

p(ν|Pa(ν)). (2)

A prior distribution π(µ) is specified for the top level parameters µ, and the
inference is based on the posterior distribution π(θ|y).

This set up can be generalized in various directions. The nodes may be
allowed to represent vectors, both at the parameter and the data levels, and
conflict analysis in such models is considered in GN. Instead of DAGs one
may consider chain graphs, as described in Lauritzen (1996), with undirected
edges representing mutual dependence as in Markov random fields. Scheel,
Green and Rougier (2011) introduces a graphical diagnostic for model criti-
cism in such models.

2.2 Information contributions

Although the representation of a Bayesian hierarchical model in terms of a
DAG is not necessarily unique, and in some cases just may be a convenient
way to model the uncertainty underlying the observed data, the represen-
tation is often meant to reflect an understanding of the structure of the
problem. By looking for a conflict associated with the different nodes in
the DAG we may therefore put our understanding of this structure to test.
We may also identify parts of the model that behave in an exceptional way,
possibly deciding to give this part exceptional treatment.

OH argues that for each node λ in such a model one may in general think
of each neighbouring node as providing information about λ, and that it is of
interest to consider the possibility of conflict between these sources of infor-
mation. The parents of λ provide information through the term p(λ|Pa(λ)),
which can be thought of as a local prior information source. On the other
hand, each child node γ of λ provides information through p(γ|Pa(γ)), which
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we think of as a local likelihood information source, whether γ is an ob-
served variable or an unobserved parameter. Together these types of factors
determine the full conditional distribution of λ given all the observed and
unobserved variables in the network, i.e.

p(λ|(y,θ)−λ) ∝ p(λ|Pa(λ))
∏

γ∈Ch(λ)

p(γ|Pa(γ)). (3)

Here (y,θ)−λ denotes the vector of all components of (y,θ) except for λ.
It is often of interest to contrast the local prior information with the like-

lihood information source formed by multiplying the factors p(γ|Pa(γ) for all
child nodes γ ∈ Ch(λ). In DGN this product is normalized to a probability
density function denoted by fc, which we will call the likelihood informa-
tion contribution, while the local prior density is denoted by fp and called
the prior information contribution. These information contributions contain
unknown parameters, and are hence integrated with respect to posterior dis-
tributions for these parameters to form what we now will call integrated in-
formation contributions (iic) gc and gp. In this construction a key to avoid the
conservatism of the OH measure is to prevent dependence between the two
information sources by introducing a suitable data splitting Y = (Yp,Yc),
and condition the parameters of fp on yp and the parameters of fc on yc.

Definition 1 For a given parameter node λ, denote by βp the vector whose
components are Pa(λ), and by βc the vector whose components are

∪
γ∈Ch(λ)

({γ} ∪ Pa(γ))− {λ}. (4)

Let Y = (Yp,Yc) be a splitting of the data Y. Define the densities fp, fc,
the prior respectively likelihood information contributions, by

fp(λ;βp) = p(λ|βp), fc(λ;βc) ∝
∏

γ∈Ch(λ)

p(γ|Pa(γ)) (5)

Define the integrated information contribution (iic) densities gp, gc by

gp(λ) =
∫
fp(λ;βp)π(βp|yp)dβp, gc(λ) =

∫
fc(λ;βc)π(βc|yc)dβc, (6)

and denote by Gp, Gc the corresponding cumulative distribution functions.
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Note that βc may contain data nodes. The second integral in (6) is then
taken only with respect to the random components of βc, i.e. the parameters
in βc. If βc contains no parameters, then gc and fc coincide.

The set of information sources linked to a specific node may in general be
combined in different ways, potentially revealing different types of conflict
about the node. This leads to a modification of Definition 1 where βc does
not contain all child nodes of λ, the others being instead included in βp
together with their parent nodes. This is natural e.g. in the context of outlier
detection among independent observations with a common mean. Note that
βp and βc may then be overlapping, containing common coparents with λ.
The definitions given in (5) are then modified as follows. Denote by γ the
vector whose components are the child nodes of λ contained in βc, and by γ1

the rest of the child nodes, i.e. the set of child nodes contained in βp. The
information contributions are then given by

fp(λ;βp) ∝ p(γ1|Pa(γ1)p(λ|Pa(λ)), (7)

fc(λ;βc) ∝ p(γ|Pa(γ)). (8)

In (7), p(λ|Pa(λ)) is replaced by the prior density π(λ) if λ is a top level
parameter. The corresponding iic densities are defined by (6) as before.

2.3 Node-specific conflict measures

The conflict measure c2λ of DGN is defined as

c2λ = (EGp(λ)− EGc(λ))2/(varGp(λ) + varGc(λ)) (9)

The χ2
1-distribution is the yardstick for measuring the level of conflict as-

sociated with c2λ. The conflict measures of GN are based on the same iic
distributions, but focus on tail behaviour, and use the uniform distribution
on [0, 1] as reference distribution. The set up in GN is also more general by
allowing likelihood information contributions to be based on a subset of the
likelihood information sources and combining the rest with the local prior,
cf. (7) and (8). For a given pair Gp, Gc of iic distributions let λ∗p and λ∗cbe
independent samples from Gp and Gc respectively. Let G be the cumulative
distribution function for δ = λ∗p − λ∗c . Define
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c3+λ = G(0), c3−λ = Ḡ(0)
def
= 1−G(0) (10)

and

c3λ = 1− 2 min(G(0), Ḡ(0)) = 2|G(0)− 1/2|. (11)

The c3+λ -measure is also very similar to the P conf
λ measure suggested in MS,

aimed at detecting outlying groups or units in a three level hierarchical model,
where the second level parameters are location parameters for group specific
data. However, the measure is interpreted as a p-value, with small values
indicative of conflict, and is hence aimed at detecting the same divergent
behaviour as the c3−λ measure of GN.

GN also defines a measure based on defining a tail area in terms of the
density g of G, namely

c4λ = PG(g(δ) > g(0)) (12)

In a simulation study of the c2λ-measure in DGN using a warning level
equal to the 95 percent quantile of the χ2

1-distribution, a false warning prob-
ability of close to 5 percent is obtained for a normal random effects model
with unknown variance parameters as in (1), and also in similar random ef-
fects models with heavytailed t- and uniformly distributed random effects.
Also with respect to detection power this measure performs well when com-
pared with a calibrated version of the OH measure. In a general normal
model described by a DAG, with fixed covariances and with the basic im-
proper prior distribution 1, the c3 and c4-measures are equivalent. They
are shown in GN to be uniformly distributed pre-experimentally, i.e. their
distributions as functions of a Y which is distributed according to the as-
sumed model are uniform, regardless of the true value of the basic location
parameter. Another way of stating this is that we obtain a proper p-value
by subtracting these measures from 1.

In the following sections, exploiting the property of pivotality, we ex-
tend the theoretical analysis of GN from normal models to models involving
various non-Gaussian distributions.
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2.4 Integrated information contributions as posterior
distributions

In most cases the conflict measures of DGN and GN are based on samples
from Gp and Gc. Definition 1 suggests obtaining such samples by running an
MCMC algorithm to generate posterior samples of the unknown parameters
in βp and βc from the respective posterior distributions, and then generate
samples λ∗p and λ∗c from the respective information contributions for each such
sample. This procedure is straightforward if the information contributions
are standard probability densities. If not, the generation of samples can often
be handled in practice by using the fact that under certain conditions on the
data splitting the distributions Gp and Gc can be interpreted as posterior
distributions conditional on yp and yc respectively, the latter based on the
improper prior π(λ) = 1, independently of the coparents.

Theorem 1 Suppose that the data splitting satisfies

Yc = Y ∩ [∪
γ∈Ch(λ)∩βc

Desc(γ)], Yp = Y −Yc, (13)

the latter expression by abuse of notation meaning the components of Y not
present in Yc. We then have

gp(λ) = π(λ|yp)

and, specifying as prior density

π(λ|Pa(Ch(λ) ∩ βc)− λ) = 1, (14)

gc(λ) = π(λ|yc)
.

The proof is given in the appendix.
In the case when Ch(λ) consists of data nodes, this condition is satisfied

if

Yc = Ch(λ) = βc ∩Y, Yp = Y −Yc.

In DGN this splitting was compared with two other splittings and found to
be optimal with respect to detection power for the conflict measure c2λ, which
is also a well calibrated measure under this splitting. Throughout the rest of
the paper we will assume that the condition (13) is satisfied.
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3 Pivotality, transformations and reparametriza-

tions

The iic distributions and the corresponding conflict measures depend on the
choice of parametrization. On the basis of experience so far, it is not unrea-
sonable to believe that in practice the conflict measures are fairly robust to
changes in parametrization. However, our focus in the present paper will be
to identify circumstances under which this non-invariance can be handled in
a theoretically satisfactory way.

Consider a specific node in the DAG, and denote by φ the parameter
corresponding to this node in a standard parametrization of the model. Sup-
pose for simplicity that Yc = Ch(φ). Assume that there exists a sufficient
statistic Yc and an alternative parametrization λ, being a strictly monotonic
transformation λ(φ), such that Yc − λ is a pivotal quantity, i.e. the density
for Yc given λ is of the form

p(yc|λ) = fYc(yc|λ) = f0(yc − λ) (15)

for some known density function f0. In the present paper we will for con-
venience also term fYc(yc|λ) a pivotal density and the corresponding cdf
FYc(y|λ) a pivotal distribution function when (15) is satisfied. We will regard
a parametrization satisfying (15) as a canonical or reference parametrization
if it exists, as opposed to the standard parametrization involving φ. Ac-
cordingly, the conflict measures given in (9),(10), (11)and (12) are preferably
defined in terms of this canonical parametrization.

By Theorem 1, samples λ∗c from Gc may be obtained by MCMC as poste-
rior samples from π(λ|yc) when the splitting satisfies (13) and, in accordance
with (14), λ has the improper prior π(λ) = 1. However, we may alternatively
run an MCMC algorithm in the standard parametrization, using the prior
density |dλ/dφ| for φ, to obtain samples φ∗c from π(φ|Yc), and then calcu-
late λ∗c = λ(φ∗c). To represent the iic distribution Gp(λ), we may calculate
λ∗p = λ(φ∗p)for samples φ∗p from π(φ|yp). Now the c4λ-measure can be calcu-
lated from (12), using a kernel density estimate of g(δ) based on correspond-
ing samples δ∗ = λ∗p − λ∗c . However, if we limit attention to the c3λ-measure
(11) and its one-sided versions (10), we may use the samples from π(φ|yc)
and π(φ|yp) directly. Indeed, assuming that λ is an increasing function of
φ, the condition λ∗p ≥ λ∗c is equivalent to the condition φ∗p ≥ φ∗c . Hence, the
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probability G(0) that λ∗p − λ∗c ≤ 0 can be estimated as the proportion of
sample values for which φ∗p ≤ φ∗c .

4 Data - prior conflict; application to nor-

mal variance parameters and some com-

mon survival distributions

The main result of this section is Theorem 2, stating that for a pure data -
prior conflict, the c3 - and c4-measures are uniformly distributed if the density
at the data level is pivotal. We also demonstrate how this pivotality condition
can be met for a normal variance parameter as well as for some common
survival distributions by means of transformations of the parameter and a
sufficient statistic. We motivate the general theoretical results by focusing
on the case of a normal variance parameter, and start by demonstrating
the existence of a parametrization for which a sufficient statistic for this
parameter has a pivotal density.

Suppose that Yc consists of independent normal variables Y1, . . . , Yn with
known expectations µ1, . . . , µn and common, unknown variance σ2. Define
the associated sum of squares S2 =

∑n
i=1(Yi − µi)

2, which is a sufficient
statistic for σ2. Then, conditional on σ2, U = S2/σ2 is χ2-distributed with
n degrees of freedom. Hence, U has density

fU(u) = (1/2n/2Γ(n/2))u(n/2)−1 exp(−u/2)

.

Let V = log(S2), and define ρ = log(σ2). Hence, U = exp(V − ρ). Conse-
quently, du/dv = exp(v − ρ), and the density for V is

fV (v) = (1/2n/2Γ(n/2)) exp((n/2)(v − ρ)) exp(− exp(v − ρ)/2). (16)

Hence, V − ρ is a pivotal quantity, and the density for V is indeed pivotal in
the parametrization ρ = log(σ2) according to our terminology.

Part of the proof for Theorem 2 reappears in other arguments as well,
and is hence formalized as a lemma.

Lemma 1 Suppose the child node part of the data splitting is a scalar Yc
with density of the form
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fYc(y|λ) = f0(y − λ),

where f0 is a known density function. If λ∗p and λ∗c are independent variables
from the iic distributions Gp and Gc respectively, and g is the density function
for δ = λ∗p − λ∗c, then given Yc = y we have

g(δ) =
∫
fYc(δ + y|λ)gp(λ)dλ

.

Proof: Define the density g0(x) = f0(−x). Then by the special case of (6)
where βc = yc contains no random parameters, the iic density gc(λ) given
Yc = y is proportional to

fYc(y|λ) = f0(y − λ) = g0(λ− y).

Since
∫
g0(λ − y)dλ = 1, we have gc(λ) = g0(λ − y). Hence, noting that

δ = λ∗p − λ∗c implies that λ∗c = λ∗p − δ, we have

g(δ) =
∫
gc(λ− δ)gp(λ)dλ =

∫
g0(λ− δ − y)gp(λ)dλ =∫

f0((δ + y)− λ)gp(λ)dλ =
∫
fYc(δ + y|λ)gp(λ)dλ,

as asserted.
Now consider the model

Y ∼ FY(y|λ), λ ∼ Fλ(λ),

where Fλ is an arbitrary informative prior distribution. Here we think of
this prior distribution as representing part of the randomness in the data
generating process, rather than subjective uncertainty about the location of
a fixed but unknown λ. An alternative perspective on this is discussed in
section 7. The corresponding densities are denoted by fY and fλ. If con-
trasting the prior density with the likelihood fY(y|λ) indicates a discrepancy
between the prior and likelihood information contributions, we will use the
term data-prior conflict for this discrepancy. The following theorem deals
with this kind of conflict. Note that in this situation the Yp-part of the data
splitting is empty.

Theorem 2 Suppose the conditional density for the scalar variable Y given
the parameter λ is of the form fY (y|λ) = f0(y − λ), and that λ is generated
from an arbitrary informative prior density fλ(λ). Then the data-prior con-
flict measures about λ are pre-experimentally uniformly distributed both for
the c3λ- and c4λ-measures.
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Proof: According to the model the density for Y is f(y) =
∫
fY (y|λfλ(λ)dλ.

Let F be the corresponding cdf. Noting that in this situation, the parent
node iic density gp coincides with the prior density fλ, it follows from Lemma
1 that

g(δ) =
∫
fY (δ + y|λ)fλ(λ)dλ = f(δ + y). It follows that G(0) = F (y). Since

F (Y ) is uniformly distributed if Y is distributed according to the model, we
have that G(0) is pre-experimentally uniform. Consequently, by (10) and
(11) the c3λ-measures are uniform.

Let I(·) be the indicator funtion. the c4λ-measure of (12) is

PG(g(δ) > g(0)) =
∫
I(g(δ) > g(0))g(δ)dδ =

∫
I(f(δ+y) > f(y))f(δ+y)dδ =∫

I(f(x) > f(y))f(x)dx = P F (f(X) > f(y)) = 1−R(f(y)),

where R is the cdf of f(X) when X ∼ F . The pre-experimental uniformity
follows, since also Y ∼ F , and hence f(Y ) ∼ R. This completes the proof.

Returning to the normal case introduced at the beginning of this section,
we can apply Theorem 2 to the pivotal quantity V − ρ, concluding that
regardless of the prior distribution of ρ, all our conflict measures for ρ are
uniform. As shown at the end of the previous section, with σ2 corresponding
to φ and ρ corresponding to λ, for the c3-measure, the theorem also applies
in the standard parametrization if we define gc(σ

2) as the posterior density
based on the improper prior π(σ2) = 1/σ2) instead of π(σ2) = 1. The iic
density gc for σ2 is then inverse gamma with shape parameter n/2 and scale
parameter S2/2.

Theorem 2 also applies if Y consists of n independent observations from
an exponential distribution with failure rate β. In that case, the sum Y of the
observations is a sufficient statistic. It is well known that Y is gamma dis-
tributed with shape parameter n and scale parameter β. Hence, the density
for Y is proportional in both y and β to

βnyn−1 exp(−βy).

Define V = log(Y ), ρ = − log(β). Then dy/dv = exp(v), and hence the
density for V is proportional to

exp(n(v − ρ)) exp(− exp(v − ρ))

,

showing that V −ρ is a pivotal quantity. The prior density for β that should
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be used when the original parametrization is applied, is

π(β) = −dρ/dβ = 1/β,

and the corresponding posterior density = iic density gc is gamma with shape
parameter n and scale parameter Y . Essentially the same argument can be
used if Y consists of n independent observations from a gamma distribution
with known shape parameter α and unknown scale parameter β, using that
the sum Y of the observations is gamma distributed with shape parameter
nα and scale parameter β in that case. This argument also covers the case
when the components of Y have a common inverse gamma distribution, since
their inverses then are gamma distributed with the same parameters.

Furthermore, if each component Yi, i = 1, . . . , n of Y has a Weibull den-
sity

βαyα−1 exp(−βyα)

with α known, then Zi = Y α
i is exponentially distributed with failure rate

β. Hence, referring to the exponential case, V = log(
∑n
i=1 y

α
i ) has a pivotal

density expressed by means of the parameter ρ = − log(β). Again, π(β) =
1/β is the relevant prior distribution in the usual parametrization.

Finally, we note that if Yi, i = 1, . . . , n are independent, lognormally dis-
tributed variables, then obviously V =

∑n
i=1 log(Yi) is a normally distributed

variable which is sufficient and has a pivotal density. Hence, Theorem 2 can
be used also in this case.

5 Data - data conflict

Suppose all components of Y have distributions determined by the same
parameter λ. Suppose we want to contrast information contributions from
separate parts of Y about λ, and define the splitting (Yp,Yc) accordingly.
Focusing on this kind of possible conflict, we assume complete prior ignorance
about λ, and accordingly assume that λ has the improper prior π(λ) = 1.
Hence, recalling (7) and (8) we contrast the information in fc(λ; Yc) with that
in fp(λ; Yp). Since there is no prior information incorporated in fp , the two
information contributions in principle play symmetric roles. It is therefore
natural to use the term data - data conflict in this context. However, as a
particular application one may think of Yc as a scalar variable representing a
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possible outlier in order to justify the p vs. c, i.e. prior vs. child, notation also
in this situation . Theorem 3 below shows that the c3- and c4-measures are
pre-experimentally uniformly distributed in this case if there exists sufficient
statistics Yc respectively Yp for Yc respectively Yp for which Yc−λ and Yp−λ
are pivotal quantities.

Theorem 3 Suppose that the conditional densities for the scalar variables
Yp and Yc given the parameter λ are of the form

fYp(y|λ) = fp,0(y − λ), fYc(y|λ) = fc,0(y − λ).

Assume λ has the improper prior π(λ) = 1. Then the data - data conflict
measures about λ are pre-experimentally uniformly distributed both for the
c3λ- and c4λ-measures.

Proof: With no nuisance parameters and with the improper prior π(λ) = 1,
the iic distribution Gp for λ has density gp,0(λ−yp), where gp,0(x) = fp,0(−x).
By Lemma 1 we have

g(δ) =
∫
fYc(δ + y|λ)gp(λ)dλ =

∫
fc,0(δ + yc − λ)gp,0(λ− yp)dλ =∫

fc,0(δ + yc − yp − (λ− yp))gp,0(λ− yp)dλ =

fc,0 ∗ gp,0(δ + yc − yp).
Defining Fc,0 ∗ Gp,0(x) =

∫ x
−∞ fc,0 ∗ gp,0(u)du, it follows that G(0) = Fc,0 ∗

Gp,0(yc−yp). Now Fc,0∗Gp,0 is the cdf for a variable of the form Zc+U , where
Zc and U are independent, and where Zc ∼ Fc,0(zc), U ∼ Gp,0(u), i.e. of Zc−
Zp, where Zp ∼ Fp,0(zp). Hence, Fc,0 ∗Gp,0(Zc−Zp) is uniformly distributed.
We denote by λ0 the true, unknown value of λ. Since clearly Zp, Zc have
the same distributions as Yp − λ0, Yc − λ0 respectively, it follows that also
G(0) = Fc,0 ∗Gp,0(Yc− Yp) is uniformly distributed pre-experimentally. This
takes care of the c3λ-measures.

From the equation

G(δ) = Fc,0 ∗Gp,0(δ + yc − yp)
and the fact that Fc,0 ∗ Gp,0 is the distribution function for Yc − Yp, the
uniformity of the c4λ-measure follows by the same proof as in the previous
section, by replacing f by fc,0 ∗ gp,0 and y by yc − yp in the proof. This
completes the proof.
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As an application, consider a model where Yr consists of independent
normal variables with common variance σ2, r = p, c . Assume doubt can be
raised as to whether the two sets of variables have the same variance. Then
the group specific sums of squares S2

p and S2
c are sufficient statistics, and the

differences log(S2
p)− log(σ2) and log(S2

c )− log(σ2) are the pivotal quantities
needed to make Theorem 3 applicable.

Theorem 3 can also be applied if the components of Yc and Yp are log-
normally or exponentially distributed, or gamma, inverse gamma or Weibull
with known shape parameter, since pivotal quantities based on sufficient
statistics exist for these distributions.

In general, sufficient statistics do not necessarily exist. However, if all
components of Yp and Yc have pivotal densities, the following lemma can be
used to show that at least there exist pivotal quantities based on summary
statistics Yp and Yc for respectively Yp and Yc.

Lemma 2 Suppose Y1, . . . , Yn are independent given λ, and that Yi has den-
sity fi(yi|λ) = fi,0(yi − λ), i = 1, . . . , n. Suppose λ has the improper prior 1,
and define Y = E(λ|Y). Let λ0 be the true value of λ. Then the distribution
of Y − λ0 does not depend on λ0, and is hence a pivotal quantity.

Proof: We have

Y − λ0 = (
∫

(λ− λ0)
∏
fi(Yi|λ)dλ)/(

∫ ∏
fi(Yi|λ)dλ) =

(
∫

(λ−λ0)
∏
fi,0((Yi−λ0)− (λ−λ0))dλ)/(

∫ ∏
fi,0((Yi−λ0)− (λ−λ0))dλ) =

(
∫
η
∏
fi,0((Yi − λ0)− η)dη)/(

∫ ∏
fi,0((Yi − λ0)− η)dη).

Since the distribution of each of the variables Yi − λ0 is independent of λ0,
it follows that the same is true for Y − λ0, as asserted.

With appropriate pivotality conditions for each component of the vec-
tors Yc,Yp, depending on the same parameter λ, Lemma 2 applies to Yr =
E(λ|Yr), r = c, p. Assuming π(λ) = 1, the conflict measures between gc and
gp could intuitively be approximated by similarly defined conflict measures
between π(λ|yc) and π(λ|yp). Applying Theorem 3 it follows that these con-
flict measures are uniformly distributed. A similar argument can be used
also in connection with Theorem 2.
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6 Random effects models

Suppose λ is a group specific parameter in a random effects model, but not
necessarily with normal conditional distributions as in (1). Let Yc consist
of the variables whose realizations are the observations for the individuals
belonging to this group. Let Yp be the corresponding vector for individuals
belonging to all other groups in the model. In this situation MS defines

a conflict p-value p conf
λ , based on independent samples from π(λ|yp) and

π(λ|yc) in the same way as the c3+-measure of GN based on samples from
gp and gc. In this situation, by Theorem 1 gp(λ) = π(λ|yp). If the posterior
distribution π(λ|yc) is based on the improper prior π(λ) = 1, then also
gc(λ) = π(λ|yc). Hence, the two conflict measures are identical in this case,
i.e.

p conf
λ = c3+λ . (17)

Suppose now that Yc is a statistic for Yc with density fYc(·|λ) and cdf FYc(·|λ).
MS then also defines the cross-validatory p-value

P mix
λ =

∫
FYc(yc|λ)π(λ|yp)dλ. (18)

In GN this quantity is considered as a special case of the c3+-measure, viewing
Yc as a node in the DAG for which the Dirac measure at the observed value yc
provides a degenerate point mass information contribution, and accordingly
denoted by c3+Yc . Hence,

c3+Yc = P mix
λ (19)

In Appendix A3 MS shows that if λ is a location parameter with prior density
π(λ) = 1, and if Yc is a sufficient statistic whose density is symmetric, and
for which Yc − λ is a pivotal quantity, then

P mix
λ = p conf

λ . (20)

Bearing in mind equations (17) and (19), part a) of the following theorem
says that the identity (20) holds even if the density for Yc is not symmetric.
Part b) represents an extension of Theorem 3 to a genuinely hierarchical
model.

18



Theorem 4 a) Suppose the conditional density for the scalar variable Yc
given the parameter λ is of the form fYc(y|λ) = f 2

c,0(y − λ). Then

c3+Yc
def
=

∫
FYc(yc|λ)π(λ|yp)dλ = c3+λ

.

b) Suppose in addition that λ and the scalar variable Yp are independent
given the parameter µ, whose prior distribution is π(µ) = 1, and have
conditional densities of the form

fλ(λ|µ) = f 1
c,0(λ− µ), fYp(yp|µ) = fp,0(yp − µ).

Then the conflict measures c3λ and c4λ are pre-experimentally uniformly
distributed.

Proof: It follows from Lemma 1 that

g(δ) =
∫
fYc(δ + yc|λ)gp(λ)dλ.

Hence,

c3+λ = G(0) =
∫
FYc(yc|λ)gp(λ)dλ.

Part a) follows, since by Theorem 1

gp(λ) = π(λ|yp).
To prove part b), define gp,0(x) = fp,0(−x). We then have that π(µ|yp) =

gp,0(µ− yp). It follows that

gp(λ) =
∫
fλ(λ|µ)π(µ|yp)dµ =

∫
f 1
c,0(λ− µ)gp,0(µ− yp)dµ =∫

f 1
c,0(λ− yp − (µ− yp))gp,0(µ− yp)dµ = f 1

c,0 ∗ gp,0(λ− yp).
Arguing as in the proof of Theorem 3, with f 2

c,0 replacing fc,0 and f 1
c,0 ∗ gp,0

in place of gp,0, we therefore obtain

g(δ) = f 2
c,0 ∗ (f 1

c,0 ∗ gp,0)(δ + yc − yp).
It follows that

G(0) =
∫ 0
−∞ g(δ)dδ = (F 2

c,0 ∗ F 1
c,0) ∗Gp,0(yc − yp).

Denoting the true value of µ by µ0, we have that F 2
c,0 ∗ F 1

c,0(yc − µ0) and
Fp,0(yp − µ0) are the true distribution functions of Yc and Yp respectively.
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Again we may argue as in the proof of Theorem 3 to show that G(0) is pre-
experimentally uniformly distributed, proving the result for the c3-measures.
The result for the c4-measure is also proved as in the proof of Theorem 3.

In the case of a random effects model where all conditional densities in
the model description are pivotal, we may use the construction of Lemma
2 to obtain summary statistics satisfying the conditions of part b). To see
this, suppose that the parameter λ of part b) represents one out of k + 1
groups, and that Yc = E(λ|Yc) is the statistic representing the data for this
group. Then Yc has a pivotal density by Lemma 2. For i = 1, . . . , k let
Yi = (Yi,1, . . . , Yi,ni

), and let Yp = (Y1, . . . ,Yk). Allowing for individual
covariates, we assume that for i = 1, . . . , k, j = 1, . . . , ni the variables Yi,j
have densities of the form

fYi,j(y|λi) = f 2
i,j,0(y − λi)

and are independent given λ1, . . . , λk. Furthermore, allowing for covariates
also at the group level, we assume that λ1, . . . , λk are independent given µ,
with densities

fλi(λi|µ) = f 1
i,0(λi − µ).

Define Yi = E(λi|Yi), i = 1, . . . , k. Then, by Lemma 2 the density of Yi at
y given λi is of the form f 2

i,0(y − λi). It then follows that the corresponding
density given µ is∫
f 2
i,0(y − λ)f 1

i,0(λ− µ)dλ = f 2
i,0 ∗ f 1

i,0(y − µ),

so that Yi − µ is a pivotal quantity. Also, the variables Y1, . . . , Yk are inde-
pendent given µ. Then, using Lemma 2 again, it follows that the statistic
Yp = E(µ|Y1, . . . , Yk) has the property that Yp − µ is pivotal. Hence, the
conditions of part b) of Theorem 4 are satisfied, as asserted.

In the special case when λ, λ1, . . . , λk are the group mean parameters
in a normal model with fixed group-specific variances, the above construc-
tion leads to the sufficient statistic Yc = E(λ|Yc) = Ȳc, as well as Yp =
E(µ|Ȳ1, . . . , Ȳk), which is a weighted average of the observed group means,
weighted by the respective precisions, which is also sufficient. Hence, the c3λ-
and c4λ-measures based on the full data are uniformly distributed in this case.

In general we do not suggest actually computing statistics by means of the
construction of Lemma 2, nor to base conflict analysis on them. The point is
to show that our conflict measures, when based on statistics retaining much
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of the information about location in the full data, are uniformly distributed.
We might therefore expect that the conflict measures based on the full data
are not too far from being uniform. However, it is interesting to note that if
in a random effects model, such as the one described above, Yi = E(λi|Yi) is
a sufficient statistic with respect to λi, then Yi is sufficient also with respect
to µ, whether the densities involved are pivotal or not. Indeed, the assumed
sufficiency implies that π(λi|yi) = π(λi|yi). It follows that

π(µ|yi) =
∫
π(µ|λi)π(λi|yi)dλi =∫

π(µ|λi)π(λi|yi)dλi = π(µ|yi),
which depends on yi only through yi.

We conclude this section with an example of a non-Gaussian random
effects model where our conflict measures are approximately uniformly dis-
tributed.

Example. Suppose that given λ1, . . . , λk the variables Yi,j are independent
and exponentially distributed with failure rates λi, j = 1, . . . , ni, i = 1, . . . , k.
Furthermore, assume that λ1, . . . , λk are gamma distributed with known
shape parameter α0 and unknown scale parameter β. Let Yi =

∑ni
j=1 Yi,j.

Then Yi is a sufficient statistic for Yi, and is gamma distributed with shape
parameter ni and scale parameter λi. It follows that the density of Yi at y
given α0, β is

p(y|α0, β) =
∫

(λni
i /Γ(ni))y

ni−1 exp(−λiy)(βα0/Γ(α0))λ
α0−1
i exp(−λiβ)dλi =

(βα0yni−1/(Γ(ni)Γ(α0))
∫
λni+α0−1
i exp(−(y + β)λi)dλi =

(Γ(ni + α0)/(Γ(ni)Γ(α0))(β
α0yni−1)/(β + y)ni+α0 .

Dividing both numerator and denominator in the last fraction by yni+α0 we
obtain

p(y|α0, β) = (Γ(ni + α0)/(Γ(ni)Γ(α0))((1/y)(β/y)α0)/(1 + β/y)ni+α0). (21)

This may be transformed into a pivotal density by the transformation Vi =
log(Yi) and the reparametrization ρ = log(β). A uniform prior distribution
for ρ in this parametrization leads to the prior π(β) = 1/β in the standard
parametrization.

Define Ui = Yi/(ni + α0). By approximating the denominator (1 +
β/(ni + α0)ui)

ni+α0 of (21) by exp(β/ui) we see that Ui is approximately
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inversely gamma distributed with shape parameter α0 and scale parameter
β. It follows that

∑k
i=1 1/Ui is approximately gamma distributed with shape

parameter kα0 and scale parameter β. Hence, we have approximately that
V = − log(

∑k
i=1 1/Ui) is a sufficient statistic whose density given ρ is pivotal.

Suppose now that the parameter λ of interest has the same density as
λ1, . . . , λk and is the failure rate for another group of exponentially dis-
tributed variables, collected in the vector Yc. Defining W = the logarithm
of the sum of these observations, and ψ = − log(λ), we have that W is suffi-
cient, and that the density for W given ψ and the density for ψ given ρ are
pivotal. In view of Theorem 4b), using the canonical parametrization ρ, ψ,
we conclude that c3ψ and c4ψ are approximately uniformly distributed pre-
experimentally. Adhering to the standard parametrization β, λ, this applies
also to the c3λ-measure if we define gc(λ) ∝ p(Yc|λ)(1/λ) and π(β) = 1/β.

It is worth noting that in this example the exponential distributions
could be replaced by gamma distributions with known shape parameters
α, α1, . . . , αk and scale parameters λ, λ1, . . . , λk. The only change in the
above calculations is that ni must be replaced by αini.

7 Discussion

In the present paper we have exploited the property of pivotality to show that
the c3- and c4-measures of conflict at the node level of Bayesian hierarchi-
cal models are uniformly distributed under the assumed model in a number
of situations. The normal case with fixed covariance matrices was already
covered in GN. Obviously, more cases can be covered by using pivotality of
the skew normal distribution (Azzalini (1985)), as well as the t-distribution.
Furthermore, the numerical results in DGN for the alternative c2-measure
indicate that the presence of nuisance parameters may not represent a se-
rious obstacle. In addition, based on the construction of Lemma 2 we may
expect the conflict measures to be approximately uniformly distributed in
many other situations where the conditional distributions used in the model
description are pivotal. Hence, it seems likely that these measures can be
used in a wide variety of models without the need for computationally costly
calibration.

Our results suggest defining the conflict measures in terms of a parametriza-
tion λ for which Yc−λ) is a pivotal quantity, if possible, and due to Theorem
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1 serve as a pragmatic argument for choosing the prior density π(λ) = 1 in
that case. This choice is also in accordance with the recommendation given
in section 1.3 of Box and Tiao (1992) of choosing a locally uniform prior for
a parameter with respect to which the likelihood is data translated, i.e. of
the form

h(λ− f(yc))

,

for some function f of yc. This is not quite the same as pivotality of f(Yc)−λ,
since the density of f(Yc) may contain a multiplicative factor depending
on yc) but not on λ, but pivotality is a special case. As discussed in sec-
tion 3 of the present paper, the calculations can nevertheless be performed
through posterior parameter samples arising from a more familiar, standard
parametrization, based on a relevant, non-uniform prior.

A strategy that may be useful in some cases is suggested by the discussion
of Box and Tiao (1992), section 1.3. They argue that data translatedness can
be achieved approximately in some cases by calculating the absolute value of
the second derivative of the logarithm of the likelihood, evaluated at the ml-
estimator λ̂. Defining π(λ̂) proportional to the square root of this quantity,
an approximately data translated likelihood is obtained by extending this
formula to a possibly improper prior π(λ). The desired parametrization is
then given by the equation

dψ/dλ = π(λ).

As discussed at the end of section 3, we need not solve this equation if
we only want to calculate the c3-measures (10) and (11). The procedure
can be used also for discrete distributions. For a Poisson distribution with
parameter λ, Box and Tiao (1992) shows that the relevant prior is π(λ) =
1/
√
λ. For a binomial distribution with parameter p, the relevant prior is

π(p) = (p(1 − p))−1/2. MS contains a binomial case study, where conflict
measures are calculated for infant mortality rates after heart surgery for
each of 12 hospitals in England, and the exceptionally high mortality rate
connected to one specific hospital is found to represent a significant deviation
from the model.

In models where the property of pivotality can not be applied, as for in-
stance when discrete distributions are involved, and theoretical or numerical
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support of any other kind has not yet been given, the measures should be
used with caution.

With the exception of Section 4, the theory of the present paper assumes
non-informative prior distributions. This is in line with the argument of
Bayarri and Castellanos (2007) that time consuming and costly elicitation
of expert based prior distributions should be avoided in the initial phases of
the model building process. In contrast, even in cases when inference is to
be based on non-informative priors, either because an objective analysis is
desirable, or because prior information is too weak to be of any use for the
inference, HDS suggests in section 9.3 to construct informative priors solely
for the purpose of allowing use of a prior predictive approach for model
evaluation. We find this suggestion rather unappealing. In our framework,
the conflict measures are uniformly distributed regardless of the value of the
basic parameters.

As for Section 4, we study conflict linked to an informative prior assumed
to be part of the data generating process. In this context, the exact value
of the basic parameters is part of the modelling assumptions to be checked.
Hence, throughout the paper our framework would allow the traditional fre-
quentist interpretation that on average a certain proportion of the correct
modelling assumptions that are checked for, will be found suspicious.

In the model described in Theorem 2 of section 4, the data node measures

such as c3+Yc , corresponding to P mix
λ of MS, cf. equations (18) and (19), can

also be viewed in this way. Alternatively the same mathematical set up could
be used in the context of measuring conflict between an observed value and
a prior predictive distribution expressing subjective uncertainty about Yc. A
value close to 1 of this or any of the other conflict measures may indicate that
this prior distribution is not well founded, for instance because the informa-
tion used to construct the prior is either less relevant or weaker than believed,
or because the method for translating this information into a prior distribu-
tion is inappropriate. A similar perspective can by adopted in the parameter
node context of Theorem 2. Assuming hypothetically that the parameter
node λ had been observable, and observed to take the value λobs, we would
measure the conflict between this observed value and the predictive prior
by the number Fλ(λobs) = Gp(λobs). Now λ is in reality not observable.
However, in section 5 of GN it is shown that c3+λ is the expected value of this
quantity with respect to the distribution Gc(λ). The uniform distribution of
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c3+λ demonstrated in Theorem 2 then arises partly from subjective, epistemic
uncertainty expressed in Fλ and partly from alleatory uncertainty or natural
variability expressed in FYc . This comment applies also in the context of
Section 5 and 6, if we replace the improper prior used in these sections by
an informative one. In our view, uniformity of the conflict measure under
all these sources of uncertainty is still the natural ideal criterion for being a
well calibrated conflict measure, the fulfillment of which ensures comparable
assessment of the level of conflict independently of the model, distributional
assumptions, location in the network and size of the data set.

One way to harmonize use of informative, epistemic priors with the set
up of Sections 5 and 6, is to assume that informative priors arise out of a
state of complete ignorance at some time point in the past, after which data
of the same kind as yp observed prior to the present time are used to obtain
an updated prior. The term ”pre-experimental” should then refer to the
situation at this hypothetical time point in the past.
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Appendix A. Interpretation of iic distributions

as posterior distributions

If Yp contains no descendant nodes of λ, then λ is independent of Yp given
Pa(λ). If we also let βp = Pa(λ), it is easy to see from (6) that

gp(λ) = π(λ|yp). (22)

In this Appendix we go beyond Definition 1, allowing for information con-
tributions of the form (7) and (8), cf. also section 5 of GN. Under certain
conditions on the data splitting we generalize (22) to situations where βp
contains some child nodes of λ, while βc contains the rest of these nodes. We
also show that under other conditions on the splitting,

gc(λ) = π(λ|yc) (23)

if λ has a uniform prior distribution. It turns out that for any way of dis-
tributing disjoint parts of Ch(λ) to βp and βc, the conditions for (22) and
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(23) to hold are met simultaneously for exactly one data splitting, namely
the splitting given by (13).

A1. The child node information contribution

Case 1, the data node case.
Suppose first that Yc consists of the child nodes of λ in βc. This means

that βc = (Yc, ξ), where ξ consists of the coparents with λ for Yc. Assume,
in accordance with (14), that π(λ) = π(λ|ξ) = 1. Then by Bayes theorem

fc(λ; yc, ξ) ∝ p(yc|λ, ξ) = p(yc|λ, ξ)π(λ|ξ) ∝ π(λ|yc, ξ).

By (6) it therefore follows that

gc(λ) =
∫
fc(λ; yc, ξ)π(ξ|yc)dξ =

∫
π(λ|yc, ξ)π(ξ|yc)dξ = π(λ|yc),

in accordance with (23).

Case 2, the parameter node case.
Next, suppose that βc = (γ, ξ), where γ consists of parameter child nodes

of λ. The parameters in ξ are coparents with λ for γ. Assume Yc consists
of data descendant nodes of γ, formally

Yc ⊆ [∪
γ∈Ch(λ)∩βc

Desc(γ)]. (24)

Then λ is independent of Yc given γ. Assume as before that π(λ) = π(λ|ξ) =
1. Then, by the same argument as in case 1 we have

fc(λ;γ, ξ) = π(λ|γ, ξ).

By the independence between λ and Yc given γ it follows that

gc(λ) =
∫
fc(λ;γ, ξ)π(γ, ξ|yc)dγdξ =

∫
π(λ|γ, ξ)π(γ, ξ|yc)dγdξ =∫

π(λ|γ, ξ,yc)π(γ, ξ|yc)dγdξ = π(λ|yc),
in accordance with (23).

A2. The parent node information contribution

We will assume that λ has parent nodes. The case of λ being a top level
parameter without parents, as in Section 5, can be dealt with in a similar
way.
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Case 1, the data node case.
Suppose first that the subvector Y1 of Yp consists of child nodes of λ,

the other components of Yp being independent of λ given the parent nodes
of λ. Denote by ξ the coparents with λ for Y1, and by µ the parent nodes of
λ. Assume λ and ξ are independent. Let βp = (y1, ξ,µ). Then the parent
node information contribution is

fp(λ; y1, ξ,µ) ∝ p(y1|λ, ξ)p(λ|µ).

By Bayes theorem

π(λ|yp, ξ,µ) = π(λ|y1, ξ,µ) ∝ p(y1|λ, ξ,µ)π(λ|ξ,µ) =

p(y1|λ, ξ)p(λ|µ) ∝ fp(λ; y1, ξ,µ).

Hence, from (6)

gp(λ) =
∫
fp(λ; y1, ξ,µ)π(ξ,µ|yp)dξdµ =∫

π(λ|yp, ξ,µ)π(ξ,µ|yp)dξdµ = π(λ|yp),
in accordance with (22). Hence, if data child nodes appearing in Yp consti-
tute the child node part of βp, then Gp is a posterior distribution given yp.
This also agrees with the condition of A1, case 1 that Yc consists of the child
nodes of λ in βc. Moreover, recalling that any node is a descendant of itself,
both conditions agree with (13), and consequently Theorem 1 is proved in
the data node case. In this case (13) essentially says that the splitting cor-
responds to the partition of Ch(λ) into child and parent node information
contributions.

Case 2, the parameter node case.
Next, suppose βp is of the form γ1, ξ,µ, where γ1 = Ch(λ) ∩ βp is a

subvector of Ch(λ) consisting of parameter nodes, ξ are coparents with λ for
γ1, assumed independent of λ, and as before µ are the parent nodes of λ.
Supppose that

Yp ⊆ Y −Y ∩ [∪
γ∈Ch(λ)∩βc

Desc(γ)]. (25)

Let the subvector Y1 of Yp consist of descendant nodes of γ1. By (25), the
other components of Yp are independent of λ given µ. Hence, λ and Yp

are independent given βp, and by this conditional independence and Bayes
theorem we have
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π(λ|γ1, ξ,µ,yp) = π(λ|γ1, ξ,µ) ∝ p(γ1|λ, ξ,µ)π(λ|ξ,µ) =

p(γ1|λ, ξ)p(λ|µ) ∝ fp(λ;γ1, ξ,µ).

Hence, from (6)

gp(λ) =
∫
fp(λ;γ1, ξ,µ)π(γ1, ξ,µ|yp)dγ1dξdµ =∫

π(λ|γ1, ξ,µ,yp)π(γ1, ξ,µ|yp)dγ1dξdµ = π(λ|yp),
in accordance with (22). Hence, if parameter child nodes γ1 appear in the
fp information contribution, then Gp is a posterior distribution given yp as
long as all data descendant nodes of λ included in Yp are also descendants
of γ1, which is a consequence of (25). By letting Yp contain all such data
descendant nodes of γ1, and hence letting Yc consist of all data descendant
nodes of γ = Ch(λ)∩βc, (24) is also satisfied, and Gc is a posterior distribu-
tion given yc. Combining (24) and (25) precisely leads to the splitting (13),
proving Theorem 1 in the parameter node case.

Specializing to the standard set up of Definition 1, where Ch(λ) ⊆ βc,
we see that the requirement for (13) and hence Theorem 1 to hold in both
cases is that Yc consists of all data descendant nodes of λ, while Yp consists
of the rest of the data nodes.
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