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Preface

The business of the statistician is to catalyze the scientific learning process.

George E. P. Box (1919-)

From an early age, | have always been interested in

research and man’s quest for better knowledge about the
world around him. My first introduction to statistics
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learn more about the variations of seabird populations
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a design where I counted the seabirds in a specific area
3-7 times a week. With this design, I counted birds
for a little over one year, and my parents taught me
about mean, median and some other statistical methods
suitable for drawing conclusions from my material. With

my mterest‘m néture, everybody th(?ught I was going to "My first statistics”
become a biologist, but fate wanted it another way. And

looking back one may also see some signs of a coming statistician.

Several years later, I attended a statistical course at the University of
Oslo, and soon realized that this was an ideal way for me to combine my
interest in applied mathematics, information technology and general reseach.

Later, while 1 was teaching at the Section of Medical Statistics, 1 was
introduced to Petter Laake, who showed me his ideas which later became
the basic for this thesis. Since then, I have participated in several projects
and teaching assignments at the Section of Medical Statistics, and I am now
looking forward to continued work here in an expanding group with superb
colleagues and work environment.

I wish to thank Petter Laake, Inge Helland, Bjgrn Mgller, Nils Lid Hjort,
Thore Egeland and Kare Osnes for many helpful remarks and considerations.
Petter Laake has been the best supervisor I could get, and it is with great
pleasure I now look back on my first glimpse of the statistical research field.
And last but not least, I also wish to send a special thanks to Harald Weedon,
my family and my girlfriend Susanne for support and help with my written

English.

Harald Fekjer, Universily of Oslo, June 15, 1999
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Aim of study

Mathematics seems to endow one with something like a new sense.

Charles Darwin (1809-1882)

During the last decade, the mixed effects model has become one of the
most used statistical models in medical research. Traditionally, estimation
in mixed effects model has been done using different kinds of quadratic sums
methods, but with increased computing power and new software, methods
like restricted Maximum Likelihood (ML) and Gibbs sampling have gained
popularity.

This raises several questions about the efficiency of the different estima-
tion methods, both generally and relative to each other. For some estimation
methods we have analytical solutions for the distributions, but with unbal-
anced designs, analytic solutions become very hard or impossible to find.
This means that we have to rely on simulation studies. One of the first such
simulation studies was published by Swallow in 1981 (Swallow 1981), followed
up with Swallow & Monahan (1984). Later, there have been many articles
on other special cases, which often where based on a special application, but
to my knowledge no large studies have been published to this date.

Swallow & Monahan (1984) is the classical article which contains many
interesting results, but some questions still remain. One example of this is
the performance of the Gibbs sampler. At the time of Swallow & Monahan’s
article this estimator was almost in no practical use, but it has since then
become quite popular. Other central questions arise around the different
testing methods used in mixed effects models. Today the Wald test is imple-
mented in several statistical packages, but is this a good choice? (e.g. Does
perform reasonable well, as it does in most fixed effects cases?). The aim
of this study is to shed some light on these questions, and to come up with
practical advice for uses of estimation and testing methods in mixed effects
models.
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Chapter 1

Introduction to random and
mixed effects models

All models are wrong, but some are useful

George E. P. Box (1919-)

From elementary statistical courses, the standard regression model is well
known:

Y=X0+¢
where:

e X = X, is the design (covariate) matrix.
o 3 = 3,41 is the parameter vector.

® ¢ = &, is the error (rest) term,
with € = (e1,... ,&,) and & ~ N(0,02).
(E.g. independent normal distributed error terms.)

As we can see, the model is based on independent observations. This is
a relevant model for some simple designs, but in many practical cases we
have data that do not fulfill this assumption. One classical example of this
is repeated measurements, where we in most cases will have an individual
effect that creates dependent observations.

One solution to this problem could be to include the individual effect in
the parameters. This is done by giving each individual its own parameters,

9



10 Introduction

something that in practice leads to very many parameters. This can some-
times work for data with many replications, but in most cases we soon run
into problems of overparametrization. These problems arise as we estimate
a large number of parameters from a relatively small dataset. The added
parameters increase the uncertainty in the model, and with few repetitions
for each individual the model will often “collapse” without giving any good
estimates for the parameters.

As overparametrization leaves the standard method useless in many prac-
tical cases, we must look for other methods that better include dependencies
from designs such as repeated measurements. In this chapter, we will give a
brief introduction to the mixed effects models, that solves this problem by
adding so called random effects to the standard regression model.

1.1 Mixed effect models; Theory and exam-
ples

Statistics often involve dealing with repeated measurement data. It could be
data from various fields such as medicine, economics and biology. This could
typically be samples over time for each individual. One example of this is
plotted in figure 1.1, where we find repeated CD4 measurements for patients
in a clinical trial for AIDS patients!.

Since data can be modeled in many different ways, we have to make some
assumptions regarding the underlying model to perform an analysis. Maybe
the most obvious model would be to assume that each person has his/hers
own basic linear curve, with some noise around it. If we now assume that
both this noise, the individual intercepts and the individual slopes, all are
normally (Gaussian) distributed, we encounter a normal linear mixed effects
model. If we now have m observations, this model can be written in the
following form for each individual:

Y=XB+Za+¢
where:

e X = X,,,, is the design (covariate) matrix of the fixed effects.

e 3 = B,x1 is the parameter vector for the fixed effects.

!Data are from example 10.10 in SAS system for mixed effects models (Littell et al.
1996).
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Figure 1.1: Example of repeated measurement data; CD4 levels from a clin-
ical trial for AIDS patients (plotted only for clinck number 5).

o 7 = Zmx, is the design (covariate) matrix for the random effects.

® a = a,y; is the vector of random effects effects with a = (ay,... , o)

and o; ~ N(0,02)).

® ¢ = £, Iis the error term, with the variation of the observation (as
sampling error etc.). It can be written as ¢ = (e1,... ,&n), with &; ~

N(0,c02).

Remarks:

o We can assume that « has zero mean, because any mean can be included
in the fixed effects.

e We can also write the model as: N(z3,¥), where ¥ is the variance-
covariance matrix of both the random eflects and the error term.

e This model is written for one individual, but it is also possible to express
a general formula for all individuals. In this case, we must repeat some
of the random effects terms several times.

In the clinical AIDS trial, X will be the covariates connected to the visits,
( will be the parameters for the overall population curve and ¢ the measuring
error and stochastic variation around the model. This is the usual linear
model we have seen in the introductory courses in statistics, but because
we have repeated measurements we must extend the model somewhat. We
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therefore introduce the term Za for the individual effects. Here Z has two
columns (71, Z,), where Z; is the intercept and 7 the slope. In the next
chapter, we will see how we for this model can make some estimates of
both the population slope, the individual variation and the variation of each
observation. This could typically be used for observing effects of two different
treatments (see figure 1.2).

30

25

~— Placebo
—— Treatment

20

State of disease
15

10

Visit number

Figure 1.2: Typical repeated measurements data from a clinical trial.

Another example is the measurement of yield in ten types of winter wheat
under different amounts of preplant moisture in the soil, shown in figure 1.3%.
In this example we see that the linear structure is much more distinct, with
a clear linear trend.

In addition to these linear models, we could also have non-linear struc-
tures as seen in figure 1.4. These data are from a biochemical experiment
measuring velocity in cells with and without treatment by Puromycin®, and
here we see that the curves increase to a point, for then to slowly stabilize.

ZData from example 7.2.1 in SAS system for mixed effects models (Littell et al. 1996).
3Example from S-PLUS 4 manual “Guide to Statistics” (Data Analysis Products Di-
vision MathSoft Inc. 1997).
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Figure 1.3: Example of mixed effects data with clear linear structure; Yield
in ten types of winter wheat.
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Figure 1.4: Example of data suitable for a non linear mixed effects model;
Velocity in cells with and without treatment by Puromycin.
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21 21 20 14 7 41
27 11 19 24 15 42
29 18 20 30 18 35
17 9 11 21 4 34
19 13 14 31 28 30

1223 27 27
29 2

20

20

Table 1.1: Data suitable for a random component model; Nitrogen measure-
ments along the Mississippi River.

The mixed effects model could also be generalized with other distributions
than the normal (gaussian). Some common examples of this include binomial
and logistic distributions. All in all, the mixed effect model is a superset of
generalized linear models (GLM), with its wide set of different distributions.

Good sources for learning more about mixed models, are: “Tutorial in
Biostatistics; Using the General Linear Mixed Model to analyse unbalanced
repeated measurs and longitudinal Data” (Chaan, Laird & Slasor 1997),
“Methods and Applications of Linear Models” (Hocking 1996) and “SAS
system for Mixed Models” (Littell et al. 1996).

1.2 One special case: The random effects model

One common special case of the mixed effects model, is the random effects
model. In this model the fixed effect is just a constant, and the mixed effects
have no curve or other pattern. This model makes the estimation somewhat
easier, and frequently occurs in nature.

One example of this is the repeated measurement of nitrogen levels from
the Mississippi river®. In this example we have repeated measurements from
several places along the river, and wonder both about the variation within
and between the different places. The data are shown in table 1.1, and
plotted in figure 1.5.

“Data are from example 4.2 in SAS system for mixed effects models (Littell et al. 1996).
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Figure 1.5: Example of a random component model; Nitrogen measurements
from the Mississippi River.

As the data are unbalanced with just one random effect, this model is
called a one-way unbalanced random effects model, and can be written as:

Y=p+a +e;
where:

e 4 is a fixed constant
e a is the random effect with a; ~ N(0,02) fori=1,....,m

e ¢;; is the variation of the observation (as sampling error etc.)
with e;; ~ N(0,0%) fori =1,....,mand j = 1,....,n,

Later, we shall use this model in our study of different estimating and
testing methods. This model is chosen as it is both simple, perspicuous and
in widespread use, while it still properly can give us some hints of what
happens in the more complex cases of mixed effect models.
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Chapter 2

Estimation and testing in
mixed effects models

Everything should be made as simple as possible, but not simpler.

Albert Einstein (1879-1955)

In the previous chapter we have seen the model for mixed effects. This
model can serve as a setting for the analysis, but for any practical use of
the model we will need methods for estimating the unknown parameters.
Estimation in mixed effects models has traditionally been done by different
kinds of quadratic sums methods, but the development in computer power
has opened up new possibilities such as likelihood based approaches and
Gibbs sampling. In this chapter we will give a brief introduction to the most
common estimation and testing methods used in mixed effects models.

2.1 Estimation methods for random and mixed
effects

2.1.1 Analysis of variance (ANOVA) based estimation

The traditional method of estimating random components is through the
quadratic forms of the ANOVA table. The basic method is to equal the
observed sum of squares to their expectation, and solve the equations to find
the estimates. One example of this for the balanced one-way random effects
model, is shown below:

17



18 Estimation and testing theory

Source of variation | Degrees of freedom | Sum of squares Expected mean
sum of squares

Between m—1 Z:n:l(gz —7.)° or4al/n

Within mn —m Yoy Z?Zl(yij ~9.)" | ol

Table 2.1: Sum of squares for balanced random effects model.

Y=p+a+te;
where:
e 4 1s a fixed constant.
e o; is the random effect with o; ~ N(0, 0'3).

e ¢;; is the variation of the observation (as sampling error etc.) with

Eij ™~ N(0,0‘?).

e:=1,....,mand y=1,...,n

To find the ANOVA estimate for o2, we first equal the within sum of
squares (see table 2.1) to its expectation:

doimy 2y (Wi = 9;)% = (mn —m)&2.
And then solve this equation with regards to %, and get

52 = 2 E?;l(yij_yi.)2

€ mn—m

As for o2, we then find the 02 ANOVA estimate by using the sum of
squares, but this time we start with the between sum of squares (see table

2.1):

2t 2m (W =)t = (m = 1)(65 + 82/n)
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2
a’

Then we solve this equation with regards to 7, and get

Soimy 2 (m =y )P = (m = 1)(67 + 62 /n) &

Y (v =7.)?

m—1

=

This basic method works well for balanced designs. Under normality
assumptions it gives us the best quadratic unbiased estimator (e.g. the unbi-
ased quadratic based estimator with the smallest variance), and is in almost
all cases easy to compute. In addition it does not depend on any normal
distribution assumptions for the basic estimating theory, and gives unbiased
estimators even for non normal distributed data.

ANOVA for unbalanced designs

However, for unbalanced designs the basic ANOVA method does not give
a unique solution. To address this problem, Henderson in 1953 described
three different methods of generalizing the ANOVA approach to deal with
unbalanced models. These methods have been named Henderson Method I,
IT and III or estimation based on Type I, II and III quadratic forms. They
differ only by the quadratics uses in the estimation process. Below we will
give a short introduction to the these three methods:

Henderson Type I

Henderson Type I uses quadratic forms that are analog to the one used in
standard analysis of variance. For the unbalanced random effects model with
7 =1,....,n;, these quadratic forms are found in table 2.2.

To find the ANOVA estimate for o2

2, we again equal the within sum of
squares to its expectation, which gives

m n;

i=1 j:l(y’ij - yi.)Q :(E?; n; — m)&i-

Then we solve the equation with regards to 2, to get the estimate for the
error term and get

5‘2 _ Yt Z]n;‘l(yi]—ﬂﬁf
e YLy ni-m )
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Source of variation | Sum of squares Expected sum of squares
Between Doy i@ =) (N =iy /N)og + (m —1)o?
Within 2oy 2o Wi = U:)* | (30 i —m)o?

Table 2.2: Sum of squares for unbalanced random effects model. N is the
total number of observations (E.g. N =" n;).

As for the estimation of o2, we use the same method as for the balanced
case, and set the between sum of squares equal to its expectation. Using this
we get the following equation:

2t =)t = (N = 2L [N)6s + (m—1)57

When solving this equation with regards to 62, we get

52 — Ly mi( =y ) —(m=1)o?
a — N->7 nZ/N

=1 "%

In this example the quadratic forms are sum of squares, but in some other
cases Hederson Method I gives us quadratic forms which are not non-negative
definite, and hence also not sum of squares.

As the ANOVA estimator for balanced designs, Hederson Method T is
usually quite easy to compute. It works fine in variance component models,
but can not be used in mixed effects models. The model can in some ways
be adapted to mixed effects (by treating the fixed effects as random etc.),
but these approaches give biased estimats.

Henderson Method II:

Henderson Method IT extends Method I to mixed effects model. In conduc-
tion Method II, we first treat the random effects as fixed, and then estimate
the parameters by least squares. We then use these parameters to “remove”
the fixed effect, by subtracting the estimated fixed effect term. In the end
we use Method I on the “corrected” data.

Using the notation from section 1.1, this means treating X3+ Za as fixed
effects, estimating (3 through least squares, and using Henderson Method I
at Y — X[.
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This method works well on mixed effects data with no interaction be-
tween fixed and random factors, but with interaction between terms, this
model gives biased estimates. Henderson method II is usually fairly easy to
compute, but no analytic formulas for sampling variances are known.

Henderson Method III:

Henderson Method IIT uses quite a different approach than the first two
methods. Instead of using analogs to the sum of squares from standard
analysis of variance, it rather uses conventional least squares analysis of non-
orthogonal data. In practice this means fitting an overparameterized model
and sub-models, and using the rest terms as quadratic forms for the estima-
tion process. One example of this is illustrated in Searle (1987).

Henderson Method III gives unbiased estimates even in mixed effects
models with interaction between fixed and random factors, but there is no
unique solution for the Henderson Method III estimate. This because there
are too many sums of squares available, and there are no rules for which set
of sums of squares to use. There is also no analytic proof that its sums of
squares have any optimal properties for estimating variance components, but
the method has turned out to be quite useful in practical applications. The
method is also somewhat more demanding to compute than method I and
IT, but with today’s fast computers this is usually no problem.

In our simple example of a one-way unbalanced random effects model, this
approach gives different formulas for estimation. Still, the actual estimates
are in practice the same.

2.1.2 MINQUE / MIVQUE

In 1971, Rao (Rao 1971a) (Rao 1971b) proposed an alternative estimating
method for random effects models. This method now goes under the name
Minimum Norm Quadratic Unbiased Estimation (MINQUE). This method
minimizes an (Euclidean) norm under the restrictions that the estimator is
a quadratic form of the observations and unbiased. In practice this method
will need priors for both the random components and error term. Using
the N(z3,%) notation for the mixed effect model (found in section 1.1), we
can write these priors in one covariance matrix (9, which include both the
random components and the error term.

For one linear combination of the random effects a’¢, the estimation is
done using the quadratic form y'Qy. For this quadratic form we let @) be
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the symmetric matrix which minimizes tr(QX(Q¥(), under the conditions
@X =0 and tr(QX;) = a;. Here ¥, refers to the correlation matrix for the
random effect corresponding to ¢;.

Swallow & Searle (1978), deduced several estimators based on this method
for some common designs. As we see in their article, this method does not
have do be solved by iteration. This makes the method more suited for larger
datasets than the ML, and REML estimators introduced in the next section.
In addtion, the MINQUE does not require any normality assumptions, and
is therefore useful even when we the underlying distributions are unknown.

In practice the most common priors are @ = 0 and ¢ = 1, as these
priors leads to especially easy calculations. MINQUE with these priors are
often referred to as MINQUE(0). Similarly, the term MINQUE(1), refer to
MINQUE with priors « =1 and ¢ = 1.

If data are multinormally distributed, this estimator is the unbiased
quadratic form estimator of the smallest variance. This has led to the term
minimum variance quadratic unbiased estimator (MIVQUE). In the bal-
anced random effects setting, MIVQUE gives us the same estimates as the
ANOVA estimates, regardless of the choice of priors. In the unbalanced case
the equations are easily solved numerically.

MINQUE could also be solved recursively, letting the estimations of last
iteration be the priors of the next iteration. Under normality assumptions
this leads us to the REML estimate.

2.1.3 Maximum Likelihood (ML)

From section 1.1, we remember that the mixed effects model: Y = X3 +
Za+ ¢, could be expressed as a multivariate normal distribution N (X3, Y),
where ¥ includes both the variance of the random effects and error term. We
now use the likelihood for the multivariate normal distribution, to find the
likelihood for each individual in our mixed effects model:

L (/87 ) | X) = |27T'E|_%e_%[(mﬁ_“)lz_l(fﬁ—ﬂ)]

Because the individuals are independent, this means the joint likelihood be-
comes

1

L(B,E]X)=nZ, {|27r2|_%e_i[(fiﬁ—#)'z_l(mﬁ—u)] }
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which gives the following log-likelihood:

L(3,21X) = —3{mlog{|2a%]} + 31, [(w:B — p)' 7" (2:8 — p)] }

If we maximize this for the balanced random effects model, we get the
same estimates as we deduced for the ANOVA method. Still, for the unbal-
anced cases we get different estimates, and for these cases we do not get any
explicit analytic formula. So for the unbalanced model we must use some sort
of numerical methods for an interative solution of the equation. In practise
this is often done by variants of the Newton-Raphson algorithm (Lindstrom
& Bates 1988).

Even for quite complex models, modern computers usually find the Max-
imum Likelihood estimates pretty fast, as the likelihood in most cases is easy
to maximize. One example of this is the likelihood for the Mississippi river’s
levels of nitrogen data mentioned in section 1.2. As we see from figure 2.1
and 2.2, it has a smooth one topped likelihood that is easily maximized.

2.1.4 Restricted Maximum Likelihood (REML)

As we shall see later on the Maximum Likelihood has one obvious weakness.
Because of the estimation of the fixed effects, it gives a moderate bias for
the random components. With this in mind, Patterson & Thompson (1971)
suggested one modification of the Maximum Likelihood method to deal with
the problem of biased estimates. The method has been named REML. This
usually stands for Restricted Maximum Likelihood, but a more appropriate
term would be Residual Maximum Likelihood, as it works on the residuals
after estimation the fixed effects.

Instead of maximizing the likelihood as a whole, it divides the likelihood
into two parts. This division is done so that the first part is invariant to
the fixed effect X3, while the rest is dependent on X3. Using this, we
can estimate the fixed effects from the part that is dependent on X3, and
estimates for the random effects from the part that is invariant to X3. With
this approach we can get unbiased estimates for the random effects, because
we estimate the random effects without the problem of uncertain fixed effects.
In practice this gives slightly adjusted estimates of the random components,
while the fixed effect estimates remain intact.

From section 1.1, we remember that the mixed effects model can be writ-

ten as Y = N(X(3,Y), where ¥ includes both the random effects and the
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Likelihood function of Mississippi nitrogen level data
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Figure 2.1: Likelihood funtion for the Mississippi river’s levels of nitrogen
data mentioned in section 1.2. Values are relative to the max value.
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Likelihood function of ,Missi’s"sj'ippi;,nri‘;rogen level data
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Figure 2.2: A closer view of the likelihood function seen in figure 2.1.

error term. One way of obtaining a likelihood for the random effects which
is invariant to the fixed effect X3, is through the transformation Y* = AY,
where A = T — X(X'X)™'X’. The new matrix Y™ is now singular of rank
N — p, where N is the number of observations and p is the number of fixed
parameters. Knowing this, we only would want to use N — p rows of the
matrix in the estimation. It can be shown (Searle & Henderson 1979) that
the likelihood for this new data matrix Y™ is invariant to X3, and that the
estimates remain the same for any choice of the N — p rows from Y™*.

This transformation can also be presented with some other equations, like
Hocking (1996), who deduced two new likelihoods. Still, both methods give
the same estimates and the following log-likelihood for the random effects X:

L(X|X) =
1+hg(ﬁ%”

—%log %] — %log | X'E-1X| — z;plogr’E—lr — 22 ]og
Compared to the following likelihood for the ML approach:

L(X|X)=—1log|X| — 2logr'E~"r — 2[1 4 log (27 /n)],

where r = y— X (X'EX) X~ 'Y~y and p is the rank of X. (See Littell et al.
1996.)
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Bayesian vs. frequentist inference

Frequentist Bayesian

probability long-run subjective
frequency uncertainty
parameters  fixed but not fixed
unknown
data not fixed fixed
but known (likelihood
principle)

computation maximization integration

/ \

usually was
casy hard

Figure 2.3: Difference of Bayesian and frequentist views. Slide from W. R.
Gilks’s BUGS course in Oslo, Norway, 1997.

As the Maximum Likelihood (ML) estimator, the Restricted Maximum
Likelihood (REML) estimator is quite easy to find even for complex models
using numerical methods combined with modern computers. For a discussion
of an implementation of both the M. and REML estimates, see Harville1977.

2.1.5 Bayesian estimation: The Gibbs sampler
ANOVA, MINQUE, MLL and REML are all called frequentist methods, as

they assume that the estimates aim for true underlying parameters that have
created the data through some sort of random process. One totally different
approach is the Bayesian, where we assume that both observation (data) and
model parameters are random quantities. With this we assume some sort of
apriori distribution of the parameters, and use Bayes formula to find the
estimates. This leads to different interpretations than the more traditional
frequentist estimates we have seen earlier, something that is shown in figure

2.3.

With probability model p(8| D) for data D, model parameters 6§ = (64, 6,, ..., 0k),
and prior distribution of models parameters p(6), we use Bayes’s theorem:

. 6)p(6|D
p(01D) = th5simm
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to find the posterior distribution p (6 | D). With this we can find estimates
for any feature of the model, with:

E[f(0)|D] = [ [ (0)p(6]D)db

In many cases these features will be parameters, for which we can choose

F(0)=0.

In practice, it is almost impossible to solve F [f () | D] analytically for
all but the most simple cases. This because we will have to solve very com-
plicated and often multivariate integrations. This has long been the barrier
for using Bayesian analysis in practice, but the recent advances in computer
power have opened a new approach called Monte Carlo (MC) integration.
Monte Carlo integration uses samples 0',62, ..., 0" from the posterior distri-

bution p (6 | D), and a numerical estimate of E [f (8) | D] = Zf\;l (0.

One question in Monte Carlo integration is how to draw the samples. The
most obvious would be independent samples, but this is often complicated
and very computer intensive. And it is really not compulsory to draw in-
dependent samples, as long as the Markov chain forgets its past after some
repetitions. With this approach, we find the Markov chain via an transition
kernel p and 0"+ ~ p(0 | 6), where #'*! is independent of ', 0%, ..., 0°~! given
0°. If now all  can be reached from #' (irreducibility), the Markov Chain
converges in distribution to its stationary distribution as 1 — oc.

Sampling directly from p(f | 6%) can often be done with adaptive rejection
sampling, but sometimes even that can be difficult and we may have to use
the Metropolis-Hastings algorithm. In our study just plain Gibbs sampling
as above works, so there is no need for the Metropolis-Hastings algorithm.
A good source for learning more about Markov chain Monte Carlo methods

is Gilks, Richardson and Spiegelhalter (1996).

2.2 Distributions of the estimates

We have now learned about several different estimation methods in variance
and mixed effects models, but how well do these estimates perform in prac-
tice? And should some be favored for certain designs?

In the study of estimators performance there are three different approaches:
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1. Theoretical studies of the estimates exact distributions.
2. Theoretical studies of the estimates limit distributions.

3. Simulations studies.

When available the first of these methods is usually preferred, as it gives
precise results that are easily generalized for many parameter values. In
the cases without any known exact distribution, we often have some limit
distribution that are relevant to large sample data. This looks good on
paper, but we have no general rule for what “large sample data” are, and
many real world datasets are so small that the distribution of estimates often
is very different from the theoretical large sample distribution.

These problems, and the fact that often even limit distributions are not
available, lead us to the use of simulation studies. Also when limit distribu-
tions are available, simulation studies can be very important, as they can give
us valuable information about the requirements for the limiting distribution.
In addition, such studies can show us the distribution for small sample where
the limit distributions do not work properly.

Historically, simulation studies have been hard to perform because of
the calculations involved, but the revolution in computer power makes an
increasing number of situations suited for simulations studies. Smart moves
in the estimation and simulation process often increase the speed of this
evolution.

2.2.1 Known theories for the distributions of the esti-
mates:

Frequentist methods:

In the study of the performance of the frequentist estimating methods for
mixed effects models, we will see use of all three methods for evaluating
estimators discussed in the previous section. In this section we will present
theory for exact and asymptotical distributions, while we later on will discuss
result from simulations studies.

In the very basic setting of a balanced random effects model with normal
distributions, we remember that REML, ANOVA and MINQUE (with all

priors) all give the same estimates. In this case it is easy to compute the
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exact distribution of the estimates, as we know the distributions of all the
quadratic forms that are used in the estimation process. This is also true for
ANOVA estimation in other balanced mixed effects models, as the quadratic
forms in balanced mixed effects models have the following distribution.

The quadratic form s; = y' Ay, with expectation A, has the following distri-
bution in the balanced mixed effects model:
3~ X%rt,O) for the random effects and error term,

where r; is the degreas of freedom assiated with s; quadratic form.

(e.g. Chi-square distribution with r; degrees of freedom.)

A 1y
t Ttvﬁo‘tXto‘tXt

St X2< for the fixed effects,

where o, X; refers to the s; specific part of the fixed effects Xa,
and r; is the degreas of freedom assiated with s; quadratic form.

(For proof see Hocking 1996.)

In the balanced random effects model, we remember from earlier examples
that the ANOVA estimates are:

5’2 _ Z?;l Z?:l(yi]_yi.)2

€ mn—m

As we see, these estimates are based on the following two quadratic forms:

2 m n

Sa =21 (Ui —Y.) and Se = 2ui=1 j:1(yij - 7:.)%
where s, is the between sum of squares, and s. the within sum of squares.

Using the above theorem, this gives the following distributions for the quadratic
forms:

2 2
= / £ — /
\a U2+ag ~d Xm—l a,nd Ae 0_(23 ~o Xm*n_m’
a n

where A, = F (s,) and A\, = F (s.).
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This leads to the following distributions for the estimates:

) o2 2

g, ™~ mn—me*n—m
24 %e 2
~2 sat 2 oe 2
G, ™~ (m— )Xm—l - (mn—m) Xmxn—m

As we see, the distribution of &2 is a combination of two chi-square dis-
tributions. In practice we have no tables for this distribution, but it can be
evaluated using numeric integration.

As both the MINQUE (for any prior) and REML estimaties are equal to
the ANOVA estimaties for this model, this distributions are also valid for
the MINQUE and REML estimators in the one-way random effects model.
Using the same theory, we can also find distributions for the estimates in
other balanced designs. It can be shown that this is the minimum variance
unbiased estimator, and therefore in some sense is an optimal estimator (For
proof see Hocking 1996). As Maximum Likelihood here is just an adjustment
of the denominator for the REML estimate, we could also easily deduce the
distribution for the ML estimate.

This theory is also valid for balanced mixed effects and nested random
effect models, but there are no known theory for the unbalanced cases. Still,
we have some knowledge about some special cases:

e MINQUE is locally the unbiased quadratic estimator of minimum vari-
ance for the correct a priori values.

e The ANOVA method I and III give unbiased estimators, and for many
models the variance of method I estimates are known (Searle 1971).

e For the Maximum Likelihood there is no known general exact distribu-
tion, but we could use the standard limit theory for ML-estimates. Un-
der this theory the estimates are asymptomatically unbiased for large
samples, and have the following distribution:

R 2 R
V0, —0) =4 N{0,J(0)"'}, where J(0) = —Ee%,w

This is the general asymptomatical Maximum Likelihood theory for
“large samples”. In the simplest cases of fixed effect models, this just
relates to a sample size n as n — oo, but in mixed effects models with
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unbalanced designs it is not totally clear what this means, and we will
need some specifications of the requirements for this large sample the-
ory.

In Hartley & Rao (1967) such assumptions are described. The ba-
sic of these requirements is that the total number of observations shall
increase to infinity in such a way that the number in each subclass shall
always remain less than some “universal constant”. For the unbalanced
one-way random effects model seen in section 1.2, this will refer to the
number of individuals increasing to infinity (e.g. m — oo0). The goal of
these assumptions is to ensure estimability, consistence and asymptotic
efficiency.

As both ML, and REML have the same limits as the sample sizes in-
creases, this theory is also valid for the REML estimator. For further
discussions about the minium requirements of the REML estimator in
the mixed effects model, see Jiang (1995).

As E@% often are quite hard to find analytically, it is often
evaluated numerically. This is especially practical when we solve the
maximum likelihood equations with the Newton-Raphson algorithm,
as the second derivatives of the log likelihood are available upon com-
pletion of the estimating process.

% analytically, and
Searle (1970) developed some very practical formulas for the linear

Still, it is sometimes possible to deduce Ej

mixed eflects case.

2.2.2 Bayesian methods: The apriori distribution

For the Bayesian estimation methods, the a posteriori distributions are quite
a different story than the distributions of frequentist estimators. Given a
correct numerical solution of the equations, the a postriori distributions are
the correct distributions for the given set of priors. If we have used known
prior information for the priors, this gives us a correct picture. On the other
side, in the situation when we have tried to supply uninformative priors, the
a postriori distribution has no logical interpretation.

Still, we have some theory for the postrior distribution of non informative
priors. If the priors are unifomly distributed over all the possible values, the
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maximum of the postriori distribution will equal the ML estimates. This
could easily be deduced for the Bayesian formula, by setting the prior distri-
butions as uniform.

In all our earlier examples of random effect models, no such non infor-
mative priors are available to find. This as the parameter space for random
effects usually span all positive values, and there is no uniform distribution
that could span an infinite scale. Still, we can however in practise find priors
that for all relevant values are pretty close to this aim. This again makes
the distribution theory relevant as the number of observations increases, and
the effects of the priors become less significant. How well this distribution
work in small and moderate samples, will be dependent both on the num-
ber of observations and the choice of prior, and is something that should be
investigated further in chapter 5.

2.3 Tests in mixed effects models

There are many different testing methods in mixed effects models , and re-
cently there has even been written one book exclusively on this topic (Khuri,
Mathew & Sinha 1998). In this section we will present the most commonly
used methods, and look at some examples for the hypothesis of no variance
component (e.g. Hg: o2 = 0) in the one-way balanced random effects model.

2.3.1 The Wald-test

The Wald-test is based on the asymptotically Maximum Likelihood theory
from section 2.2.1. The test is in wide use in fixed effects models, and have
proven to be quite useful for practical applications. It is included in most
introductory courses in statistics, even thought it is often not given a specific
name or accurate definition.

The Wald test takes the Maximum Likelihood estimate, and uses the
Maximum Likelihood theory that tells us that this estimate is asymptotically
normal distributed around the true value. Based on this, it then deduces a
test statistic that can be evaluated by the normal distribution table. For
the test that a parameters is zero, the test statistic will be on the form

estimate

—~<stmate (E.g. estimate divided by its standard deviation).

var(estimate)

As an example, we can use the very basic version of a fixed effects model:

z; ~ N(p,o) for i = {1,2,3,... ,n}. In this model the Wald test of Hy :
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@ = 0, will have a test statistic of \/%, where T = %Z;Zl z; and 0% =
% Z;Zl (z; — 7)’. Asymptotic Maximum Likelihood theory now tells us that
this test statistic is standard normally distributed. In fact, exact distribution
theory tells us that the test statistic is Student t distributed with n degrees
of freedom.

For the hypothesis that a special variance components is not present,
the test statistic will be the Maximum Likelihood estimate of the variance
component divided by its estimated standard deviation. In many cases, this
standard deviation is unknown, but an approximation can always be found
numerically by the asymptotic variance of the estimate (see section 2.2.1). In
practice this approximation has become the standard method, as it is easy
to implement in statistical software packages.

As an example we can look at the balanced one-way random effects model
(see section 1.2). In this model we can get variance estimates for the esti-
mates using both the “Classical” asymptotically based method, and exact
distribution theory. Both these approaches are shown below:

2
a

Exact formula for the 52 variance (under ML-estimation):

From section 2.1.1, we remember that the Maximum likelihodd estimated

. . A 52 .
in a one-way balanced random effects model is 62 = p — 2=, Using

this we find that
mo— N2 2
var <&2) = var <Zi:1(y2' v.) — £>

a,
<n251 Se )
= var — ,
m n* (mn —m)

where 512 307, (¥;, —9.)" and se = 355, D0 (v — ¥i)
Because of independence of s; and s, (see Hocking 1996), we get that

S1 Se S1 Se
var | — — ——— | = var (—) 4+var | ————

1 1
= —var (s1) +

m n?* (mn —m)?

var (s.).

To find the variance of s., we use the distribution theory found in section
2.2.1, which gives that
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j—_é ~ inn—'m
This means that var ( ¢) = 2(mn —m), and solving this with regard to
var(s.), we get that var(s.) = 2 (mn —m)o?.

As for var(s.), we again use distribution theory from section 2.2.1, and find
that

51

o2+

ae NXm 1

This gives Var< L ) = 2(m — 1), and solving with regard to var(s;) we
+
get

var (s1) = 2 (m — (0 N %)

Uzo-a 0-6
=2(m—1) o} +22 " +—= -

n

Now we can use these results to find var (62):

. 1 1
var (02) = anr (s1) + Yy — m)Qvar (se)

1 4 o005 O 1 s
ZWQ(m—l) Ja—I—QT—I—E +n2*(mn—m)22(mn_m)ge
_Qm—l - zaz_l_ag + 204
T m?2 n? n?x (mn —m)’

Asymptotic variance for 5> (under ML-estimation):

From section 2.2.1, we remember that we could get an approximation for
the variance of 52 by using general asymptotic theory for the maximum like-
lihood estimates:

9*log f (V;.0)

V(B = 0) = N0, (00)7'} where J () = —Eg——

For this model asymptotical theory here refers to the number of individuals
increasing to infinity (e.g. m — oo). For further information about asymp-
totical assumptions in mixed effects models, see Hartley & Rao (1967).
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To find —EQW, we used that the likelihood for the one-way balanced

random effects model. Written on the alternative N(z3, %) form described
in section 1.1, this likelihood become:

flz) = 2aX[2 exp {—} (z — p) 27" (& — p) },
where ¥ = 02D, (J'J) 4 Imo? and J is a vector of n ones.

This gives a log-likelihood of

log f(z) == log [225| + {~4 (¢ — p) ©7' (& — p) }.

Taking the derivative twice, we get that

d%log f (Y3, 0) 0* {—%bg |27r2|} 0? {—% (z—p) S~ (z — ,LL)}

o000 9000 9000
0? {—%log |27r2|} 1 20, X0
- 9000 —3 [E G907 aag] ‘

For finding Z_I%E_l%, we use that

20 = D, (J'J) and X7 = Lya + B (Do (J'T) = Lyem),

2
doz

(n—1)oi+og _ o0&
2motrory and B = ety

where a =
This gives us

-1 %29 __ 1
% do2 ~ mnoi+o2>

and

STIEENTIES = D, (J') 2

o2 o2 (no2402)

This means that

_ nm?

n
(no2+02)° } T (no2+02)*

139 yv-13%3| _
tr |2 —80_32 80_3}_m*n{
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And finally we now have that the asymptotic variance for &2 is

0006
B 1 20 ., 2A1]”
—[‘ (‘5)““ {E 902" a_azH

var (62) = J(0)™" = [—an] _

4 o202 ot
2 (aa +2-=e 4 —2>

m

To summarize the two methods for calculation of var(é%), we have an
exact variance given by

2.2 4 4
~2 -1 4 g.0 o 20
var (Ua) 277:712 <Uﬂ 2 en B n;> n2%( .

mn—m)’

while the asymptotic variance is

2.2 4
~2 2 4 .0 a
var (Ua) E (0-&_|_‘2%_|_ n_;>

Remark: The same techniques could be used for the Wald test build on the
REML estimator, causing only in small corrections of the final results.

This again gives us the following test statistics:

A2
Exact: T
\/2mm—_21 (U + 20603 + ) + n2*(frf3—m)
52

a

Asymptotic: v
2 (a %% 4 )

m— 2
oot

Comparing these test statistics, we see that as m increases 27~

In addition will the — (mn o

] term usually be quite small, so the asymptotlc
variance will in most cases make a fairly good estimate of the true variance.
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In real world examples the asymptotical approximation is also especially
easy and effective to implement, as we in Maximum Likelihood estimation al-
ready get %, when maximizing with the Newton-Raphon algorithm.
In practice it is also implemented in many statistical packages like the SAS

system.

For the standard definition of the random effects model seen in section 1.2,
the null hypothesis o2 = 0 should refer to a boundary point of the parameter
space. This should at first look indicate that the asymptotic theory will
have boundary problems. Still, we can show that this is not the case, as an
equivalent hypothesis do not have these problems.

Remember the alternative definition of the mixed effects model in section
1.1. Here we could write the model as N(z(3,Y), where ¥ is the variance-
covariance matrix of both the random effects and the error term. For the
one-way balanced random effects model, this gives a covariance matrix of
Y = 02 lpum + 02Dy, (J'J), where J is a vector of n ones. Writen on this
form, o2 can be defined to take both positive and negative values. Using
this defintion, the test 0 < 0 should not result in any boundary problems.
For positive values of the estimates, the test statistic for this model will be
identical to the one in the standard definition of the model. This again means
that it also take the same asymptotic distributions for positive values. Since
the asymptotical theory is valid for this alternative model, the theory will
also be valid in the 62 = 0 test for the standard definition of the model, all

rejections of the test is positive estimates.

2.3.2 Likelihood ratio based testing

In likelihood based testing, we use the following asymptotic large sample
distribution:

Let [ be the log maximum likelihood under the Hy restriction, and /5 be the
maximum likelihood solution without this restriction. Then
—2log A = 2(I = I§) =4 X} under H,

where A = [}/1%, and p is the differences in dimensions of the parameter space
with and without the Hy restriction.
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(E.g. Under Hy, —2log A converges to a chi-square distribution with p degrees
of freedom when the number of observations increases.)

Asymptomatical theory here have the same assumptions as in section
2.2.1. For the unbalanced one-way random effects model (see section 1.2), this
will refer to the number of individuals increasing to infinity (E.g. m— oo).

Using numerical calculations, it is generally fairly straightforward to find
[5 and [7. This is especially true when we use Maximum Likelihood esti-
mates, as we then already have found values for the unrestricted maximum
likelihood. Still, this method uses quite a bit computer power, as we need to
do perform several maximum likelihood estimations.

For the one-way random effects model, the hypothesis of no random com-
ponent refers to Hy: o2 = 0. This gives p = 1, [ as the log-likelihood under
the one-way random effects model and [ is the log-likelihood for a fixed
effects model with just one constant term and a normal distributed error
term.

2.3.3 The F-test

In the cases where we know the distributions of the quadratic forms, it is also
possible to deduce a test statistics with known distribution under Hy. This
includes most balanced designs, using distribution theory from section 2.2.1.
Using the known distributions under Hy, we then can deduce tests with exact
p-values under Hy. Since the test statistic follows the F distribution, these
tests are called F-tests.

As an example, we can take the balanced one-way random effects model
from section 1.2. Using the within and between sums of squares from section
from 2.1.1, and the distribution theory from section 2.2.1, we now get the
exact distributions of these sums of square:

54 Sq P
Aa o2 " Xm-

24 %
O'a—l-ne

Se se

2
)\_ 7 ™ Xmxn—m
€ a;

Combining these, we get the test statistic

Sq/(m—1)

5./ (m*n—n)’
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which under Hy : 02 = 0 take the a i—‘;F (m —1,m*n —n) F-distribution.
This gives us a test with a correct significant level under Hy. In some sense

this test is optimal, but we do still not know its power under Ha.

As we see, these tests are easily deduced in most balanced designs, but in
most unbalanced design such tests impossible to deduce using exact distribu-
tion theory. In some of these cases it is possible to deduce approximate tests,
with some modifications of the corresponding test in the balanced design (see
Hocking 1996). One example of this is the unbalanced one-way random ef-
fects design, where we can build an approximate test from the corresponding
test in the balanced design.
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Chapter 3

Estimation methods in
practical use

The mathematician, carried along on his flood of symbols,
dealing apparently with purely formal truths,

may still reach results of endless importance for

our description of the physical universe.

Karl Pearson (1857-1936)

After learning about the different models, two questions arise:

e Which models are in practical use today?

e Does it really matter what kind of model we use?

3.1 Estimation methods in common statisti-
cal packages

In most practical cases, all the estimation methods mentioned in the previ-
ous chapter require quite a lot of calculations. Historically, this has restricted
the use of the mixed effects models among researchers, but in the last decade
mixed effects models have been included in many of the most popular sta-
tistical packages and the use has flourished. Today, probably almost all
applications of the model is done with one of the preprogrammed packages,
and these packages should give us a good idea of which estimation methods
are in daily use.

41
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Statistical | ANOVA MINQUE ML REML
package
R - - Lme Lme
(0.64) (Beta version) | (Beta version)
S-PLUS - Varcomp Lme Lme
(4.5 / 5) (0,1) & varcomp & varcomp
SAS Proc Proc Proc Mixed Proc Mixed
(6.12) Varcomp Varcomp & Varcomp & Varcomp

(Type T) (0,1)
SPSS Type 1 Available Available Available
(9.0) & 111 (0,1) & (1,1)
Statistica | Type I, I Available Available Available
(99) & 111
Table 3.1: Mixed effects estimation methods in some common statistical

packages - March 1999. Default methods in bold font, and command line
routines are given by its name (like Lme, Varcomp, etc.). As we see, both
SAS and S-PLUS have two different set of routines for mixed effects models.
Available priors for MINQUE are shown in parenthesis.

Frequentist methods

Mixed effects models have traditionally been analyzed using different sorts
of frequentist methods. In table 3.1, we see which frequentist methods that
are implemented in some of the most common statistical programs. Readers
should be especially aware of the default methods, as many users probably
apply these methods without further notice. As we can see in table 3.1, the
default methods vary between all the different models. This probably means
that all methods are in widespread practical use.

For practical use today, SPSS is one of the most user friendly packages
with a well organized graphical user interface. Still, it has its limitations, with
a somewhat limited output and a restriction to just random effect models.
For mixed effect models and a more comprehensive output, we have to go
with other packages. Among these, SAS has a very comprehensive output,
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Statistica provides easy analyzing through a graphical user interface, and
S-PLUS delivers especially good graphics (such as trellis graphs) and a very
flexible and powerfull set of modeling tools.

In the fast developing field of mixed models, there are also many new soft-
ware packages on its way, that for the time being are in beta releases. Among
the most interesting are the new NLME 3.0 library for S-PLUS (Pinheiro &
Bates 1997), which will be integrated in the upcoming S-PLUS 2000 release
(due summer 1999). These new routines promise easier use, new graphics,
comprehensive output, and methods for analyzing an even wider sets of mod-
els.

Other interesting upcoming releases includes a port of the S-PLUS NLME
library (including Ime-routines) to the open source R system. This will give
users of both Linux, UNIX and Window a powerfull free package for analyzing
mixed effect models.

All in all, mixed effect models is for the time being one of the fastest
developing fields in statistical computing. For further information on these
packages, see references on page 115. In addition to these packages, we also
have many other packages with mixed effects models such as Minitab, BMDP
and MLwiN.

Bayesian methods

For a long time, Bayesian estimation has mostly been of theoretical interest,
but recent progress in computing power and software has opened for practical
use of these alternative estimation methods. One of the first such revolutions
came with the BUGS package. This is a freeware program for Bayesian
analyzing using the Gibbs sampler, which Cambrigde MCR Biostatistics Unit
released for several operation systems during the first half of the nineties.
This package opened for easy Bayesian analysis through a command line
interface, and with the commercial release of Winbugs version 1.0 in 1998,
we also got a Bayesian package with a graphical interface.

With these new Bayesian software packages, Bayesian methods have al-
ready come in pretty widespread use, and in the future Bayesian methods
will probably also be included in several standard statistical packages. For
the mixed effects models, these methods often give especially easy modeling
properties (Gilks et al. 1993). This has given random and mixed effect mod-
els a special position as one of the premier examples of practical applications
of Bayesian methods like the Gibbs sampler.
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For further information about the BUGS package, see reference on page 115.

3.2 Different estimation methods - One nu-
merical example

As we now have seen, the statistical packages implement different estimation
methods, but does this have any practical consequences?

To shed some light on this, we have used six different estimation methods
on one dataset. Two of these methods, the MINQUE and Gibbs sampler,
require priors. For the MINQUE, we have chosen the two “classical” priors.
Both these priors have o2 = 1, but one with ¢ = 0 and the other with
o2 = 1. These are called MINQUE(0,1) and MINQUE(1,1).

When it comes to the Gibbs sampler, we have also chosen two sets of
priors. The first of this, Gibbs sampling - “Default”, is taken from the ran-
dom effects example in the BUGS creators examples collection (Spiegelhalter,
Thomas, G. & Gilks 1996). These are u ~ N(0,1e+10), o2 ~ T'(0.001,0.001)
(Here T' refers to the gamma distribution) and o2 ~ T'(0.001,0.001). Re-
T, and variance of {3, so that
this means the prior for both the variance component and error term has
expectation 1 and variance 1000. As an alternative we have also used the
prior p ~ N(0,1e +10), 2 ~ I'(1,1) and o2 ~ I'(1,1). This gives the priors
for both the variance component and error term an expectation and variance

member that I'(r, ) has an expectation of

of one. We will discuss this choice of priors further in section 5.2.2. Using

these priors, each Gibbs sampler estimate is the mean of 10 000 steps from
the Monte Carlo chain.

These methods are then used on the nitrogen levels in the Mississippi
river data shown in section 1.2. This resulted in the estimates in table 3.2,
and as we can see the estimates vary considerably. This motivates studies
of the estimates performance, so we can give users some practical advice on
which methods to use on their data. In the next two chapters, we shall have
a look at some earlier studies and perform a new one.
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Estimation method Estimated variance of Estimated varince of
random effect (o2) error term (o2)
ML 51.3 42.7
REML 63.3 42.7
MINQUE(0,1) 45.8 51.4
MINQUE(1,1) 62.6 42.7
ANOVA 56.2 42.6
Gibbs sampling - “Default” 103.1 46.2
Gibbs sampling - Alternative 57.2 45.3

Table 3.2: Estimates for the Mississippi nitrogen level data. See the text for
information about which priors are used for the Gibbs sampling estimates.
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Chapter 4

An overview of earlier Monte
Carlo studies

The number of transistors on a chip doubles every two years.

Dr. Gordon Moore (1929 - )

In the last chapter, we saw an example of how much the different estimates
can vary in mixed effects models. This raises several questions about the
estimators performance, and which estimators are recommended for practical
use in different situations. As we saw in section 2.2, there are three different
approaches for studying estimators performance: Theoretical studies of the
exact distributions, use of asymptotical (limit) distributions and simulation
studies. We also learned that there were no known exact distribution for
many of the estimators in some of the most central mixed effect model
designs. For some of these cases, we had limited distributions, but even
then, we often do not know how these apply for small samples. This leaves
us with the third solution, simulation studies, and in this chapter we shall
have a look at some earlier simulation studies of methods for analyzing mixed
effect models.

Early days - Numerical studies

For a long time, simulation studies in mixed effects models were practically
impossible, because of the large calculations involved. This can easily be
understood by noting the fact that even on moderate data sets, Maximum
Likelihood (ML) estimations were often not advisable in practice, since the
calculations grew too large for the available computing power.

In the seventies and eighties, this began to change as the computers grew
more powerful and became widely available. This soon resulted in some sim-
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ulation studies such as Maddala & Mount (1973) and Miller (1979). Maddala
& Mount (1973) looked at methods of estimating the slope coefficient in the
mixed effects models, while Miller (1979) compared ML and REML estima-

tors in the two-way balanced random effects model.

We also saw some articles deducing formulas for expectations and vari-
ances in some special cases, and then using this to evaluate some estimators.
The first such study was done by Swallow and Searle in 1978, in which they
compared ANOVA and MINQUE estimators for a one-way random effects
model with unbalanced data. From earlier, we remember that both these esti-
mators are unbiased, so they could use the variances as a reasonable measure-
ment of the estimators performance. Swallow and Searle deduced formulas
for these variances, and applied them to 13 different unbalanced one-way
random effect model designs, with ¢2 = {1/2,1,5,10,20} and o2 = 1.

In this study they found that:

e In many situations, the variation of the ANOVA variance component
estimates (of ) is far from the lower bound of the MINQUE estimator.
In practice, the MINQUE with prior 02 = ¢? = 1, is significantly better
in estimating the variance component (o2) than the ANOVA estimates.
A notable exception is for a small variance component, where there is
little difference at o2 = 1/2.

e For the ANOVA estimates of the error term (¢2), the variance is very
near to the lower bound for an unbiased estimator. With o2 = ¢2 =
1 as priors, the MINQUE estimates perform significantly worse for
large variance components (o2), but for small and moderate values the
MINQUE with these priors gives results very near the theoretical lower

bound for an unbiased estimator.

Three years later, Swallow followed up with a new article (Swallow 1981).
In this article, he looked at the same design as in 1978, but with several
different alternatives of priors for the MINQUE estimator. He then found
that when the true ¢2/c2 is not too small (e.g. larger than =~ 1), and the
ratio of the prior variance component versus prior error term (e.g. 2,/0%))
is not severely underestimated, the MINQUE estimate has a variance very
near the lower bound and is more efficient than the ANOVA estimator.

This leads to the following advice for applied statistics:
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In the choice between ANOVA and MINQUE estimates in unbalanced
one-way classification designs, MINQUE is usually a good choice when ¢2/0? >
1, but we should be careful not to underestimate the ratio of the prior vari-
ance component versus prior error (c2,/c2). This is especially true if we
are interested in estimation of the variance component (c?2), while the esti-
mation of the error term (¢?2) is somewhat more robust. It can be shown
(Hartley, Rao & LaMotte 1978) that MINQUE with o2, = 0 gives especially
easy computations. This has led to the MINQUE(0)' being implemented in
many statistical packages, but Swallow’s (1981) study shows that this is a
dangerous estimator for data with large o2 /c?2.

4.1 The first large simulation study: Swallow
& Monahan

The first comprehensive simulation study was done as early as 1984 by Swal-
low and Monahan. In this article they compared ANOVA, MINQUE(0),
MINQUE(A)?, REML, ML, and the adjusted ML estimator.

The study was made possible through relatively fast computers and a
smart trick. Since the subgroup means and subgroup sum of squares are
sufficient for the estimators, it is not necessary to simulate individual data.
Instead, they simulated the subgroup means and subgroup sum of squares,
and used these values to find the estimates. In addition, they dropped every
set of data where the REML and ML routines failed to converge in 20 inter-
actions. This happend very rarely, but still means quite a lot for the total
computating time. All in all, this article is very interesting and illuminat-
ing, and became the breakthrough article about the efficiency of different
estimators in random effects models.

As we in most practical applications will suppose that all variance com-
ponents are positive (e.g. o2 > 0), Swallow & Monahan have chosen to set
all negative values to zero.

For the estimation of the variance component (¢2), Swallow & Monahan

find the following:

'MINQUE(0) is the MINQUE estimator with priors ¢, = 0 and ¢2, = 1.

MINQUE(A) is the MINQUE estimator with the ANOVA estimates as prior.

3ML with adjustment of degrees of freedom, in an attempt to solve the problems of
bias.
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In most cases, all the estimators have only a moderate bias. One ex-
ception is the ML, estimator, which has a significant downward bias for
large values of ¢2. In addition, all the other estimators take a substan-
tial upward bias in most cases with small variance components (o2).
This is contributed by the truncation of negative values, which ruins

the theory that both REML, MINQUE(0), MINQUE(1) and ANOVA

are unbiased.

For large variance components (e.g. large o2/0?), ANOVA and espe-
cially the MINQUE(0) estimator, have a considerable larger variance
than the other estimates.

The ML estimator often has a significantly lower variance than all the
other estimates. This can partly be attributed to the combination of
underestimation and truncation of negative values. The bias adjusted
ML-estimate is less influenced by this, and in most cases takes a sub-
stantially larger variance than the standard ML estimate.

For some severely unbalanced designs, the REML and to some degree
the ANOVA, ML and MINQUE(A) estimates have a considerably larger

variance than the theoretically lower bound for an unbiased estimator.

In most cases not mentioned earlier, all the estimators have variances
quite near the lower bound for an unbiased estimator. For large vari-
ance components (¢2), the variance is generally slightly over the lower
bound. On the other hand, estimators for small variance components
(e.g. < 1) sometimes (even) dip below the lower bound. This especially
low variance can be attributed to the truncation of negative values,
which we remember also gives us somewhat biased estimates even with

the REML, MINQUE(0), MINQUE(A) and ANOVA methods.

For the estimation of the error term (o?), Swallow & Monahan found the

following:

e All estimators have very little bias.

e All estimates have variances near the lower bound for an unbiased

estimator, except MINQUE(0), which becomes a very poor estimator
as the variance component and number of individuals (N) increases.
Comparing the estimators, they also found a tendency for a somewhat
lower variance of the ML estimates.



Farlier Monte Carlo studies 51

As for the speed of convergence, Swallow & Monahan found that both
ML and REML usually converge very rapidly. With todays relatively fast
computers, this is no longer so important, but for especially large datasets

the MINQUE(0) can be a reasonable solution.

4.2 Other studies

After Swallow & Monahan (1984), several simulation studies have been pub-
lished. Some of these have been simulation studies of special cases or non-
standard estimators, while most studies have been a combination of an ap-
plication and some related simulations. An example of the first is Yu, Searle
& McCulloch 1994, who among other things look at the maximum likelihood
estimator for non-normal distributions.

An example of a study combining an application with some simulation
results is Giesbrecht & Burns (1985). In this article, they developed a two-
stage analysis based on a mixed effects model, and they have done a moderate
amount of simulations on this new theory. Another such study is Engel &
Buist (1996), who look at an alternative to maximum likelihood estimation
in a mixed effects model.

4.3 Still unsolved questions

Although there have been quite a lot of simulation studies in recent years,
there are still several central questions which remain unanswered. These
include:

1. In addition to the variance and mean, how are the other properties
of the estimators, like the distributions that are used for confidence
intervals and testing?

2. How well does the Gibbs sampler with “uninformative priors” perform
in comparison to the other estimates?

3. Which testing methods are best for mixed effects models?

In the next two chapters, we will try to shed some light on these questions.
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Chapter 5

A Monte Carlo study of the
different estimation methods

The pure and simple truth is rarely pure and never simple.

Oscar Wilde (1854-1900)

As we have seen in the previous chapter, there are still several unanswered
questions about the properties of the different estimating methods used for
mixed effects models. In this chapter, we will present a new study, which
aims at some of these questions. As a start, we will repeat most of Swallow &
Monaham (1984), but take a somewhat more in-depth look at the estimators
properties. Later, we also will include the increasingly popular Gibbs sampler
estimating method.

Designs used in this study

In this study, we have limited the models to different designs of the one-
way random effect model. This model was chosen as it is both in wide use,
and it i1s the simplest and most perspicuous mixed effects model. Still, it
can also properly give us some hints of what happens in the more complex
models like multilevel models and mixed effects with a random regression
coefficient. This must, however, be examined further, and is a good theme
for new studies. As we remember from section 1.2, the model can be written
as:

Yij=p+ai+e;
where:

e i is a fixed constant.
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Design number Number of observations
1 m=3,n; ={3,5,7}
4 m=6,n;=43,3,5,5,7,7}
11 m=9,n;=4{1,1,1,1,1,1,1,19,19}
12 m=3,n; =42,10,18}
20 m=3,n; =13,6,6}
21 m==6,n;=13,3,6,6,6,6}

Table 5.1: Unbalanced designs included in this study.

Design number Number of observations
m=3,n; =42,2,2}
m=3,n; =15,5,5}

m=6,n; =45,5,5,5,5,5}
m=10,n; =4{2,2,2,2,2,2,2,2,2,2}
m=10,n; =4{5,5,5,5,5,5,5,5,5,5}

O~ OH| W| —

Table 5.2: Balanced designs included in this study.

e o is the random effect with a; ~ N(0, c2).

e ¢;; is the variation of the observation (as sampling error etc.), with

Eij N(O,Jz).
e:=1,...mand y=1,.....n;
(An example of this model in practical use is shown is section 1.2.)

This is the general model, under which we have simulated with p = 3
and o2 = 1 for different values of m, o2 and n;. We have chosen fix u at
a specific value, but this choice has no influence on the random component
estimators. As for o2, it has some effect, but only through the ratio of 02 /02
and for the general scale of the estimates.

Varying m and n;, we have constructed several different small and medium
sized designs. These designs aim to span a wide range of situations commonly
found in practical work, while still also giving us some ideas about how
different values of m and n; affect the different estimates. To ease this work,
we have given each balanced and unbalanced design a unique number. The
designs mentioned in this study are shown in table 5.2 and 5.1, where the
number of observations refer to ni,ng,....,n,,. For the unbalanced design
number 1, this means that n; = 3, ny = 5 and ng = 7, while m = 3. E.g.
three observations, with 3, 5 and 7 replications.



A Monte Carlo study of the diflerent estimation methods 55

As one will notice, the unbalanced design number 1, 4, 11 and 12 are
analog to Swallow & Monaham 1984 and several other earlier studies. This
allows us to see the results in a wider setting, with possibilities to easily draw
comparisons with earlier works.

The actual choice of designs had three main goals:

e Spanning a broad range of practical situations.
e Focus on the situations with significance differences.

e Open for several sorts of comparisons across the different designs.

As most of these estimates show small differences for large designs, we
have focused on small and medium sized designs. In the unbalanced designs,
we have chosen two moderately unbalanced designs (no. 3 & 6), and two dif-
ferent sort of strongly unbalanced designs (no 11 & 12). In addition we have
made two designs (no. 20 & 21) that are especially suitable for comparison
with analog balanced designs.

For the balanced designs, we have simulated under both small (no. 1
& 3) and moderate designs (no 7 & 9), using both a moderate and small
number of repetitions. In addition, one design (no. 6) has been included for
comparison with the analog unbalanced designs.

During our work, we have also simulated under several other design, that
have not been included in this presentation. As for the design number, there
is no system or analog between balanced and unbalanced design. Unbalanced
design number 1 to 12 are from Swallow & Monahan (1984), while our ad-
ditional designs are given number 20 and 21. As for the balanced design, all
designs are “new”, and the only reason for the missing design are that the
test simulations was done for a wider set of designs.

When not otherwise stated, all calculations for one design are done using
the same 5000 simulated datasets.

5.1 Frequentist estimators: ML, REML, MINQUE
and ANOVA

In the balanced case, we remember that Maximum Likelihood (ML) and

all MINQUE and ANOVA variants give the same results. And as for the
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Restricted Maximum Likelihood estimator (REML), it only takes a small
shift to gain unbiasness. In practice, this leaves us with very little or no
difference, so a comparison of the different frequentist estimation methods
are only interesting in the unbalanced designs.

The basic study of this situation was done by Swallow & Monaham in
1984, investigating the bias and mean square error of a wide range of fre-
quentist estimators. As we mentioned, we will start with repeating the most
central designs and estimators in this study.

In this work, we have used a larger number of observations (100 000 vs.
10 000 datasets). This is done as we get a substantial uncertainty in esti-
mating of variance of random components'. We have also loosened Swallow
& Monahan’s demand of convergence in 20 interactions, and set this limit
to 50 interactions. Another difference is that we have chosen to include es-
timates from the datasets which have not converged. For this choice there
are arguments for both approaches, and we chose the opposite of Swallow &
Monahan (1984) to check out the effect of this choice.

As Swallow & Monahan (1984), we have used the “theoretical lower bound
for a quadratic unbiased estimator” as a scale for the mean square errors of
the o2 estimates. From section 2.1.2, we remember that in mixed effects
models with normality assumptions, the unbiased quadratic estimator with
lowest variance is the MIVQUE estimator using the true value as priors.
Formulas for this variance can be found in Swallow & Searle (1978).

The result of the simulations are shown in table 5.3 and 5.4. Compar-
ing this with the results in Swallow & Monahan (1984), we find that the
results are very near to those of the earlier article, with no practical relevant
differences.

The equivalent results from Swallow & Monaham are discussed in section
4.1. As Swallow & Monaham, we find that in most cases, all estimators
perform reasonably well. One exception is for large values of 02 /02, where

ANOVA and especially MINQUE(0) have a considerable larger variance than

the other estimates.

In the choice between the estimators, the Maximum Likelihood estimator
(ML) is generally a good choice, with a very low mean square error. Still, it
also has its weaknesses. It is quite computer intensive, and gives a somewhat

Looking at Swallow & Monaham 1984, we notice that the last decimals are very
uncertain, and only useful for comparisons with the other methods.
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o2 (with a2 = 1) | 0] 02] 1] 5

Design no. 1 {3,5,7}:

ML Bias 0.035 | -0.069 | -0.379 | -1.748

MSE ‘

otnrs | 0220 | 0.349 | 0.515 | 0.554
REML Bias 0.085 | 0.056 | 0.023 | -0.016

MSE

otnrs | 0796 | 0.872 | 0.969 | 0.995
MINUEQ(0) Bias 0.079 | 0.050 | 0.021 | -0.001

MSE

otnrs | 0689 | 0.907 | 1.142 | 1.240
ANOVA Bias 0.084 | 0.053 | 0.022 | -0.007

quers | 0.727| 0.841 | 0.994 | 1.053
QUELB 0.049 | 0.179 [ 1.500 | 27.300
Design no. 4 {3,3,5,5,7,7}:
ML Bias 0.033 | -0.043 | -0.197 | -0.863

MSE

otnrs | 0353 | 0.581 | 0.760 | 0.763
REML Bias 0.055 | 0.019 [ 0.007 | 0.007

MSE

oters | 0729 | 0.872| 1.003 | 1.000
MINUEQ(0) Bias 0.051 | 0.017 [ 0.006 | 0.024

MSE

otnrs | 0639 | 0934 | 1.252 | 1.358
ANOVA Bias 0.055 | 0.018 | 0.006 | 0.016

ovrrs | 0-694 | 0.844 | 1.035 | 1.081
QUELB 0.018 | 0.070 [ 0.599 | 10.900
Design no. 11 {1,1,1,1,1,1,1,19,19}:
REML Bias 0.072 [ -0.014 | -0.219 | -0.753

otnrs | 9045 | 1547 | 1.121 | 0.990
REML Bias 0.146 | 0.108 | 0.031 | -0.007

MSE

otnrs | 18967 | 2.551 | 1.370 | 1.190
MINUEQ(0) Bias 0.084 | 0.053 [ 0.020 | -0.009

MSE

otnrs | 7075 | 2409 | 3.324 | 5.258
ANOVA Bias 0.145 | 0.093 [ 0.026 | -0.006

MSE

oiers | 13103 | 1.845 | 1.461 | 1.926
QUELB 0.006 | 0.085 | 0.678 | 8.300

Table 5.3: Frequentist estimation on unbalanced design no. 1, 4 and 11.
MSE = “Mean Sqaure Error” and QUELB = “Theoretical lower bound for

a quadratic unbiased estimator”.
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0'3 (with O'z =1) 0 0.2 1 5

ML, Bias 0.017 | -0.085 | -0.389 | -1.738
MSE

ourrs | 0406 | 0.441 | 0.539 | 0.558

REML Bias 0.057 | 0.039 | 0.020 | 0.009

MSE_ 1 9190 | 1.115 | 1.005 | 1.004

QUELB
MINUEQ(0) Bias 0.038 | 0.020 | 0.010 | -0.007

MSE_ 1 0,771 | 1.086 | 1.510 | 1.751

QUELB
ANOVA Bias | 0.048 | 0.025 | 0.011 | -0.002
MSE
e | 1032 0.909 | 1178 | 1.344
QUELB 0.012 | 0.125 | 1.430 | 27.200

Table 5.4: Frequentist estimation on unbalanced design no. 12: {2,10,18}
MSE = “Mean Sqaure Error” and QUELB = “Theoretical lower bound for

a quadratic unbiased estimator”.

biased estimator. On the other hand, the REML estimator gives a theoretical
unbiased estimator?, but often gives a considerably larger mean square error.

As we have seen, these results give us clear indicators about the efficiency
of the estimators, but some questions are still unanswered:

e What is the distribution of the estimates? Is it possible to assume
normal distribution for confidence intervals and testing?

e How strongly are the different estimates correlated? Are some differ-
ences common under the true model, or does large differences indicate
that we have the wrong model?

e How is the likelihood for small values of ¢2? Is it difficult to maximize
in these limiting situations?

In the remainder of the section, we will try to answer these questions.

5.1.1 Distributions of ¢? estimates

The distribution of the estimates are important for both confidence interval
and testing theory. For large samples, the asymptomatically normal distri-
bution theory tells us that the Maximum Likelihood estimates should follow
a normal distribution, but how well does this extend to small samples?

2In practice, the REML estimator takes a slight bias because of truncation of negative
values.
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Figure 5.1: Distributions of o, estimate under balanced design no. 1: {2,2,2},
compared to normal distribution (dotted line). (Density is found using S-
PLUS default density-function.)

In figure 5.1, 5.2, 5.3 and 5.4, we see plots of simulated® Maximum Likeli-
hood estimates of the variance component (o?2) for several balanced designs.
These are then compared with a normal distribution with the same expecta-
tion and variance.

Looking at figure 5.1, we see that the distributions under o2 = 0 have a
shape fairly near the normal distribution even with just 3 (!) individual (m)
and two repetitions (n) for each individual. Still, it has somewhat large tails,
something that in hypotheses testing (using the Wald test) can contribute
2 = 0 hypotheses. Comparing this to
balanced design number 3 (seen in figure 5.2), we find that there is little
help in increasing the number of repetitions, as the distribution even gets

somewhat skewed with a small tail towards large estimates. On the other

to too many rejections of the Hy: o

side, larger number of individuals (see figure 5.3 and 5.4) give us a very good
approximation to the normal distribution.

3From earlier, we remember that the exact distributions in the balanced designs are
known. T have, however, chosen to use simulated data, as exact calculation of the density
would require large numerical intergrations. In practice, this would probably use much
more processor power than simulations with the same level of precision.
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Figure 5.2: Distributions of o, estimate under balanced design no. 3: {5,5,5},
compared to normal distribution (dotted line). (Density is found using S-
PLUS default density-function.)

The fact that the distribution sometimes is further from the normal distri-
butions with more repetitions, can probably be attributed to the distribution
being a combination of two different chi-square distributions, where the num-
ber of individual (m) and repetitions (n) give different weights for the two
distributions (see section 2.2.1). We also remember from section 2.3.1, that
the asymptotic theory was dependent on the number of individuals (m), not
only on the total number of observations.

As o2 increases, this approximation to the normal distribution gets much
less distinct. Even for 02 = 0.2, we get an asymmetrical distribution with
pronounced tail to the right. Larger values of o2 further increase these differ-
ences from the normal distribution. However, looking at figure 5.3, we find
that these differences from the normal distribution disappear quite quickly as
the number of individual (m) increases. Looking at figure 5.1 and 5.2 versus
figure 5.3 and 5.4, we can conclude that it looks like the approximation relies
heavily on the number of individuals (m), while the number of repetitions
(rn) has only a very small impact.

Going to the unbalanced cases, we find plots of the unbalanced design
number 1 (n; = {3,5,7}) and 20 (n; = {3,6,6}) in figure 5.5, with the cor-
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Figure 5.3: Distributions of o, estimate under balanced design no. 9:
{5,5,5,5,5,5,5,5,5,5}, compared to normal distribution (dotted line). (Density
is found using S-PLUS default density-function.)

responding balanced design (number 3: n; = {5,5,5}) shown as a dotted
line*. Here we see that for not truncated estimates, there are only moderate
differences between the distributions in these balanced and moderately un-
balanced design. This again means that our conclusions from the balanced
designs also are valid for these moderately unbalanced designs. Looking at
figure 5.6, these differences increase somewhat when the number of observa-
tions increases, but are still not very large.

Conclusions:

Based on visual examination, we generally find that the distributions are
quite near the normal distribution, if we do not have very few individuals (m)
combined with a moderate or large random component (¢2). This gives us
an indication that the asymptotical maximum likelihood theory and related
methods will work even for moderate samples, something we will investigate
further when looking at the Wald test in section 6.1. In general, it looks like
the Wald test will have somewhat high level of rejects (of the Hy: o2 = 0

a

“For both lines, the plots are just for positive non-truncated values, but the density is
scaled with the number of truncated values.



62 A Monte Carlo study of the diflerent estimation methods

N
il —
23 /\ =3
(2] (%2}
5 .
o3 / S /
2 - —_— e i S
o o
-1.5 -1.0 -05 0.0 0.5 1.0 -1 (0] 1 2
Random component = O Random component = 0.2
«©
< =
o
= = =
g 2 3
5] o O
O o [Tl
(= <
o
o S~ o J ,,,,,,,,
o o
(0] 2 4 (0] 5 10 15
Random component = 1 Random component = 5

Figure 5.4: Distributions of o, estimate under balanced design no. T:
{2,2,2,2,2,2,2,2,2,2}, compared to normal distribution (dotted line). (Density
is found using S-PLUS default density-function.)

hypotheses), while confidence intervals should work fairly well.

5.1.2 Correlations of random component (0?) estimates

In table 5.5, and figure 5.7, we find correlations between the different es-
timates in the unbalanced design number 4 (n; = {3,3,5,5,7,7}). As we
see, there is very good correlation between the different estimates, with an
almost linear correlation between the ML, (Maximum Likelihood) and REML
(Restricted Maximum Likelihood) estimators.

Comparing table 5.5 and 5.6, there seems to be little influence on the
correlations of both sample size or the size of the true variance component
(¢2). On the other hand, table 5.7, 5.8 and figure 5.8 indicate that the degree
of unbalance in the model strongly affects the correlations, with a pronounced
reduction in correlation as the models become more unbalanced. This should
not come as a surprise, as we remember that all estimators are equal in the
balanced case, except for a small bias adjustment for the REML estimate.
We also notice that ML, and REML are still quite close to each other even
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Figure 5.5: Distributions of o, estimate under unbalanced design no. 1:

{3,5,7} (top) and no. 20: {3,6,6} (bottom), compared to balanced design
number 3 (dotted line). Truncated (negative values) are taken into account,
but not shown. (Density is found using S-PLUS default density-function.)
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Figure 5.6: Distributions of o, estimate under unbalanced design no. 21:
{3,3,6,6,6,6} (bottom), compared to balanced design number 6 (dotted line).
Truncated (negative values) are taken into account, but not shown. (Density
is found using S-PLUS default density-function.)

ANOVA MINQUE(O) REML ML

True 2 =0

ANOVA 1 0.92 0.98  0.96
MINQUE(O) | 0.92 1 0.92  0.92
REML 0.98 0.92 1 0098
ML 0.96 0.92 098 1

True o2 = 1

ANOVA 1 0.97 0.96  0.96
MINQUE(O) 0.97 1 0.86  0.86
REML 0.96 0.86 1 ~1
ML 0.96 0.86 ~1 1

Table 5.5: Correlations of different estimates of o, under unbalanced design

no. 4 : {3,3,5,5,7,7}.
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ANOVA MINQUE(O) REML ML
ANOVA 1 0.97 0.98  0.98
MINQUE(O) | 0.97 1 0.91 091
REML 0.98 0.91 T =~
ML, 0.98 0.91 ~1 1
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Table 5.6: Correlations of different estimates of o, with true value 1 under

unbalanced design no. 1 : {3,5,7}.

True o, = 0

ANOVA MINQUE(O) REML ML
ANOVA 1 0.36 0.80  0.65
MINQUE(O) 0.36 1 0.32 0.34
REML 0.80 0.32 1 0.85
ML 0.65 0.34 0.85 1
True o, =1

ANOVA MINQUE(O) REMIL ML
ANOVA 1 0.96 0.68 0.70
MINQUE(O) 0.96 1 0.46  0.49
REML 0.68 0.46 1 0.99
ML 0.70 0.49 0.99 1
True o, =5

ANOVA MINQUE(O) REMIL ML
ANOVA 1 0.97 0.58  0.59
MINQUE(O) 0.97 1 0.40 0.41
REML 0.58 0.40 1 ~ 1
ML 0.59 0.41 ~ 1 1

Table 5.7:

Correlations of different estimates of o, under unbalanced design

no. 11: {1,1,1,1,1,1,1,19,19}.
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ANOVA MINQUE(O) REMI ML
ANOVA 1 0.76 0.89  0.78
MINQUE(O) 0.76 1 0.55  0.38
REML 0.89 0.55 1 0.86
ML 0.78 0.58 0.86 1

Table 5.8: Correlations of different estimates of o, with true value 0 under
unbalanced design no. 12: {2,10,18}.
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Figure 5.7: Estimates of o, with true value 1 under unbalanced design no. 4

: {3,3,5,5,7,7}.
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Figure 5.8: Estimates of o, with true value 0 under unbalanced design no.

11: {1,1,1,1,1,1,1,19,19}.

in distinctly unbalanced designs, something that probably can be attributed
to their close theoretical origin.

Conclusions:

As the models become more unbalanced, the REML, ML, ANOVA and
MINQUE(0) estimates can show considerable differences. These differences
occur both between ANOVA - MINQUE(0), MINQUE(0) - REML/ML and
ANOVA - REML/ML. The only exception is the REML and ML estimates,
which in nearly all cases are very closely correlated. There are relatively
small effects on the correlations as the number of observations increases. For
practical work, this tells us that some differences are quite common even
when we are estimating under the correct model.

5.1.3 How is the likelihood for small values of ¢2?

Is it hard to maximize the likelihood? Do we gel limil problems for small
variance components (c2)?

To throw some light on this, we have plotted the likelihood for some of
the simulated designs under 62 = 0. One example of this is shown in figure
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5.9. As we can see, the likelihood is easy to optimize even for an unbalanced
design with small values of o2, as it has a smooth surface with just one
unique top point. This is also supported by the likelihood formula, as it for
this simple example is a quadratic form of the observed data.

5.2 Bayesian estimation using Gibbs sampler

As discussed in section 3.1, Bayesian estimation using the Gibbs sampler has
become quite popular in recent years. Still, there have been very few studies
of its performance, both absolute and relative to the standard frequentist
approaches. This probably has several reasons, based on both technical,
practical and methodical issues.

The main reason is probably the historical division between statisticians
believing in (and using) the frequentist and Bayesian approaches. Still, there
are several other problems concerning the numerical difficulties, the large
number of calculations involved and problems of comparison to such different
approaches. In this section, we will discuss some of these problems, and then
perform a somewhat limited simulation study. In practice, it is difficult
to perform a real comparison of the two methods, but we hope this study
will give us some hints of the performance of Bayesian estimates, and can
probably make a good foundation for further studies.

5.2.1 Philosophical issues; Comparing the different ap-
proaches

One of the first questions in comparing Bayesian and Frequentist methods,
is whether these quite different approaches really can be compared to a sim-
ulation study. To answer this question, we must make a distinction between
the two different situations where Bayesian statistics are used:

e When we have information in addition to the data that we want to
incorporate in the model.

e When we use the Bayesian approach without any prior information, and
just aim at choosing so-called “objective” or “noninformative priors”.
This could be done either because we like the Bayesian interpretations,
or want the easy modeling capabilities of Bayesian methods, or have
problems with implementation of a complex frequentist model.

(see figure 5.10 for arguments for using Bayesian methods)



69

A Monte Carlo study of the diflerent estimation methods

: ‘0 ¥'0_20 O
E3uibs Saneion

......

‘09:'07° 0200
vﬁ%;wmxww aAne|Sd

__ I
7 \\\
Ll
%

o)
3
Q
[}
Q
s
=
<
—
]
p—]
<
m)
wo—
M__
E W
< T
=R~
da
dO
m__
N3
= b
£ <
==
Ul e
o B
S g
wn I~
Rt
£
= ..
S —
= g
¢ £
2
— a0
(@)
w8
o
= Z
B E
~ g



70 A Monte Carlo study of the diflerent estimation methods

Why be a Bayesian 7

e Bayesian analysis is simple in principle
— just work out posterior distribution.

e Bayesian computation is now feasible.

e Frequentist methods become ad-hoc for
complex models and data.

e Frequentist methods often rely on
asymptotics: problems with complex
models and multimodal likelihoods.

e Frequentist random-effects models allow
distributions on some parameters: looks
like a Bayesian approach.

e All models contain a subjective element
anyway.

Figure 5.10: “Why be a Bayesian?” - Slide from W. R. Gilks’s BUGS course,
Oslo, Norway 1997.

In the first of these cases, we really have quite a different objective with
our Bayesian estimate than with the traditional frequentist estimates. This
means that a simulation study would only be meaningful as measurement of
the impact from different priors.

In the case of “noninformative priors”, we aim in some sense at the same
objective, but with somewhat different interpretations of the final results.
In this case, some will prefer either a Bayesian or frequentist method just
because of its interpretations, but my personal belief is that users in practice
are more concerned with predicting and how much they can learn from their
data, than the different ways of looking at probability.

With this in mind, we will compare both approaches and see how well they
are doing in predicting the true values. Still, we have many important issues
about both the basis for the analysis and the final interpretations, so the
results in this thesis is only one of many questions we must consider when
choosing between the two different approaches.

From section 2.2.2, we also remember that except for possible numerical
problems, the Bayesian methods give the correct a posteriori distribution for
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the given priors. When we have the correct answer, does it make any sense
to compare the resull with different methods?

In many ways, this question has the same answer as the previous one;
When we have prior information, it is interesting to study the effect of dif-
ferent priors, but not the efficiency of the estimate as a predictor. In the
situation where we aim for “noninformative” priors, the theoretical a poste-
riori distribution given the priors make little practical sense, as our choice of
priors are neither unique nor theoretically superior to other priors.

5.2.2 Design and limitation of the simulation study

In addition to the theoretical problems seen in the previous section, we face
several other questions when performing simulation studies of the Gibbs sam-
pler. Some of these are:

Choice of priors:

As the priors for the Gibbs sampler can have a huge impact on the estimates,
we should take care in the choice of priors. Optimally, we should simulate
for a wide range of priors, but in order to limit this study, we have chosen to
concentrate on just two sets of priors. This is a clear limitation of the study,
and other priors should be included in further studies. The choice of priors
are:

“Default” prior: These priors are taken from the random effects exam-
ple in the BUGS examples collection (Spiegelhalter et al. 1996). As these
probably are chosen by many BUGS users, we have for convenience called it
“BUGS Default” (or just “default”). This set of priors is:

p~ N(0,1le 4 10)
o2 ~T(0.001,0.001) (Gamma distribution)
o2 ~T(0.001,0.001) (Gamma distribution)

Remember that I'(r, ) has an expectation of T, and variance of {7. This
gives us an expectation 1 and variance 1000, for both the variance compo-
nent and error term priors. To some degree, this makes the priors pretty
uninformable, as they span all their possible values with a reasonable expec-
tation. We also note that this has some parallel to the choice of MINQUE(1),
as both have expectation 1 for both the random and error component.
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Figure 5.11: Posterior distribution of Gibbs sampler estimate on Mississippi

data. (Using S-PLUS density function with n=30 and width=10.)

“Alternative prior” (“alt”-prior): In our second set of priors, we have
also kept the expectation of both random and error component as 1, but with
a much more moderate variation. This is done as the “default” prior with
its large variation can open for some pretty extreme values, that can make
a considerable impact on our estimate. These priors are called “alternative
prior” (or just “alt”-prior), and is defined as:

pu~ N(0,1e+ 10)
ol ~T(1,1)
o2 ~T(1,1).

Both these prior distributions will have some limit problems under ¢ = 0,
as the Gibbs sampler never could take negative values and P(X = 0) = 0.
One practical consequence of this is that the posterior distribution in practice
never could take have zero mean or median. This gives the Gibbs sampler a
handicap under o2 = 0, and is something that should be investigated further
in future studies.

Choice of estimate from the a posteriori distribution:

From section 2.1.5, we remember that the basic Bayesian analysis just gives
us a posteriori distribution. In many ordinary studies, we can just settle for
this distribution, but in simulation studies, we will have to choose a point
estimate to generalize the results from the vast amount of simulations. In
practice, this leaves us with many possible point estimates based on the a
posteriori distribution. Some of these are:
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1. Posterior mean
This is probably the most widely used method. It is implemented in
BUGS, and is frequently used in the BUGS manual.

2. Posterior median
This method is a more numerically robust alternative to the posterior
mean, but also with a slightly different aim.

3. Maximum of the posterior distribution
When the priors are uniformly distributed on the whole parameter
space, this refers to the Maximum Likelihood solution. We can con-
struct such priors for some cases, but for our random effects models we
have no such priors, as the parameters can take all positive values (and
no uniform distribution can span over an infinite scale).

The effect of these priors can be shown on the Mississippi river data from
section 1.2. On these data, the posterior mean gives an estimated random
component of 103.1 (“default”) / 57.2 (“alternative”), while the posterior
median gives values of 69.9 (“default”) / 41.4 (“alternative”). And seen in
figure 5.11, the maximum of posterior distribution for the “default”-priors
come in the mid thirties, while the “alternative”-priors come in the mid
twenties. From these calculations, we see that the different point estimates
can give very different values, but for this study, we will limit it to the first
method as it probably is the one most commonly used in practice.

Numerical problems - convergence

From section 2.1.5, we remember that the Monte Carlo integration is based
on the Markov Chain coverages in distribution to its stationary distribution.
Furthermore, we use a given number of observations from the stationary
distribution to calculate the posteriori distribution. Using this, we have two
possible traps:

1. Has the Markov Chain converged in distribution to its stationary dis-
tribution?

2. Do we have enough observations from the stationary distribution to get
a good estimate of the posterior distribution?

In practice, it is recommended to check these properties by looking at the
Markov Chain. For the BUGS package, this is usually done by the free S-
PLUS CODA package (or the new BOA package available for both S-PLUS

and R versions). Examples of CODA are shown in figure 5.11, where we
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Missisippidata Missisippidata - Alternative prior
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Figure 5.12: Analysis of Markov Chains (CODA output) for Gibbs sampler

estimation on Mississippi river nitrogen levels data.

see an analysis of step 1001 to 11 000 of the Markov Chain estimation for
the Mississippi river data from section 1.2. As we see, it looks like the first
1000 drawings (the so-called “burnin”) has brought the Markov Chain to its
stationary distribution. Still, there are some pretty extreme values, which
indicate that we would need a large number of observations from this sta-
tionary distribution. For this, 10 000 observations are probably just enough
to make a reasonable estimate.

Both these problems suggest using a quite long Markov Chain, but in
practice, we must balance this against the available computer power. In
most cases, the BUGS manual suggest to start with 1000 drawings, by which
the Markov Chain usually converge. After that, it takes 10 000 drawings for
the actual estimate. With increasingly powerful computers, these numbers
often could be increased somewhat, but in a simulation study, this would
be quite difficult as it involves several thousand estimates. Even at 10 000
drawings, memory problems arise and we have selected to save just one of
every ten observations. This makes the estimates somewhat more unstable,
but is generally much better than just using a short Markov Chain (as the
sampled drawings are less dependent of each other). Small tests we have
done, suggest that these numerical problems only have a limited impact, but
we still have an extra uncertainty in our estimates.

Ideally, we would look at every Markov Chain to check for numerical
problems, but with estimates for 5000 datasets this would be impossible in
practice. For this reason, we have included not just the mean and the mean
square error in the analysis of the simulation results, but also the median
and the Interquartile Range (the distance between the 25 and 75 percentile).
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These measurements have the advantage of being more robust for extreme
values, that could arise from numerical problems.

5.2.3 Simulation results

Using the methods and choices described in the previous section, table 5.9
shows simulation results for the variance component on balanced design num-
ber 3 (n; = {5,5,5}). As we see, the Gibbs sampler with “default” priors
suffers from a huge variance and large bias for this very small dataset. This
is most visible for the mean and mean square error, but also the more nu-
merically robust measurements of median and interquartile range perform
well below the Maximum Likelihood estimator. Generally, the Gibbs sam-
pler with alternative priors performs much better, but still it has a long way
to go in comparison with the Maximum Likelihood estimator.

In table 5.10, we see the result of increasing the number of observations to
the moderate dataset of balanced design number 9 (n; = {5,5,5,5,5,5,5,5,5,5}).
As we see, the differences quickly decrease when the number of observations
increases. The Maximum Likelihood estimate is still the clear “winner” as
the best predictor, but the differences is much smaller. In the choice between
the two different Gibbs samplers, there are no longer a clear favorite. For

small values of o2 (e.g. o2

< 1), the “default” priors give very good esti-
mates, that are very close to the Maximum Likelihood estimate. For larger
o, the “default” priors still suffer from a notable bias and variance.

To summarize, this study indicates that even very vague “uninformative”
priors have a considerable impact on small datasets. For these datasets, the
Maximum Likelihood estimator is a much better predictor than the Gibbs
sampler (when there is no prior information available for the construction of
good priors). Still, only moderate increases in observations decreases these
differences considerably, as the Gibbs sampler quickly gets properties quite
close to the Maximum Likelihood estimator.

Comparing the unbalanced design number 1 (n; = {3,5,7}) in table 5.11,
with the balanced design number 3 (n, = {5,5,5}) in table 5.9, we see that
the effects of a slightly unbalanced model are very small. Overall the result
almost matches the corresponding balanced model, with only a slight gain
for the Maximum Likelihood and a slightly less precise “default” - Gibbs
sampler. Looking at table 5.12, we see that the differences still are quite
small for the strongly unbalanced model number 12 (n; = {2,10,18}). As a
conclusion, it looks like our results for the balanced designs also are valid for
the unbalanced designs.
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Regarding the correlations between the two different methods, we find
in figure 5.13 plots for the 100 first estimates of balanced design number
1 (n; = {5,5,5}) with 0, = 1. As we see, there are very good correlations
between the Maximum Likelihood estimator and Gibbs sampler with alterna-
tive priors. On the other hand, there is only a moderate correlation between
these estimates and the Gibbs sampler with “default” priors.

For small variance components (see figure 5.14), the correlation almost
vanishes, while the degree of unbalance in the model seems to have little

effect (figure 5.15 and 5.18).

The most distinct effect seems to come from the number of observations,
and looking at figure 5.16 we see that a large number of observations gives
us almost a linear correlation between the different estimates. Combined
with small variance components (see figure 5.17), these correlations get less
distinct, but are still visible.

Conclusions:

When the number of observations increases, the connection between the
Gibbs sampler and Maximum Likelihood estimate increases to an almost
linear correlation. This occurs already on quite moderate datasets if the
variance component is not too small. In small datasets, the correlations
varies quite a lot with the different choices of priors, and the Gibbs sampler
estimates are often far from the Maximum Likelihood estimate. As for the
degree of unbalance in the underlying design, the effect is very small both on
the estimates and the correlations between the different estimates.

Remark: In contrast to the earlier study of frequentist methods, negative
Maximum Likelihood estimates are not truncated in this study. This is done
in order to see clearer what happens in the correlation plots.
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o? Bias of mean Bias of median
std Alt ML | Std Alt ML
0 1.07 1.29 -0.07| 048 1.24 -0.09
0.2 1.87 1.24 -0.13| 059 1.14 -0.21
1 703  1.05 -041| 1.79 0.70 -0.65

29.79 0.69 -1.81 |11.58 -1.06 -2.91

o? Mean square error Interquartile Range
Std Alt ML Std  Alt ML
0 21.27 1.73  0.03 | 0.57 0.20 0.17

0.2 54.04 169 0.10 | 1.49 035 0.30
1 1865.94 2.17 0.80 | 6.43 0.95 0.83
16955.38  30.19 15.85 | 29.11 4.98  3.56

Table 5.9: Gibbs sampler estimation on balanced design no. 3: {5,5,5}. Std
= Gibbs sampler with “stadard” priors, Alt = Gibbs sampler with “alter-
native” priors and ML, = Maximum Likelihood estimate (for comparison).

o Bias of mean Bias of median

Std  Alt ML | Std Alt ML
0 0.07 0.44 -0.02 | 0.05 0.43 -0.03
0.2 0.03 0.37 -0.04 |-0.05 0.34 -0.07
1 0.24 0.24 -0.11] 0.14 0.14 -0.19
5 1.34 0.09 -0.56 | 0.92 -0.24 -0.85

o Mean square error | Interquartile Range
Std  Alt ML | Std At ML
0 0.01 0.20 0.01 | 0.04 0.07 0.12
0.2 0.05 0.16 0.03| 0.23 0.17 0.23
1 0.61 0.32 0.27] 098 0.64 0.66
11.34 573 499 | 3.98 3.07 279

Table 5.10:  Gibbs sampler estimation on balanced design no. 9:
{5,5,5,5,5,5,5,5,5,5}. Std = Gibbs sampler with “stadard” priors, Alt =
Gibbs sampler with “alternative” priors and ML. = Maximum Likelihood
estimate (for comparison).
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o? Bias of mean Bias of median
std Alt ML | Std Alt ML
0 1.13 131  0.04 | 051 1.26 0.00
0.2 .92 1.25 -0.07 | 0.64 1.16 -0.20
1 584 1.06 -0.40| 1.66 0.70 -0.68

29.84  0.71 -1.74 | 12.11 -0.95 -2.78

o? Mean square error Interquartile Range

Std Alt ML Std  Alt ML
0 2752 1.79 0.01 | 0.64 0.21 0.00
0.2 91.38 1.72  0.06 | 1.46 0.34 0.17
1 435.09 267 0.78 | 6.22 0.96 0.87

42500.58 26.18 14.68 | 30.13  5.33  3.91

Table 5.11: Gibbs sampler estimation on unbalanced design no. 1: {3,5,7}.
Std = Gibbs sampler with “stadard” priors, Alt = Gibbs sampler with “al-
ternative” priors and ML = Maximum Likelihood estimate (for comparison).

ol Bias of mean Bias of median
Std Alt ML Std Alt ML
0 0.82 1.27 0.02] 0.37 1.21 0.00
0.2 1.75 1.21 -0.09| 054 1.12 -0.20
1 .08 1.10 -0.36| 2.19 0.74 -0.64

27.29 0.64 -1.81 |11.15 -1.07 -2.86

o? Mean square error Interquartile Range
Std Alt ML Std  Alt ML
0 2540 1.72  0.01 | 044 0.19 0.00

0.2 21875 1.68 0.05| 1.44 0.32 0.15
1 6982.55 253 081 | 6.98 1.04 0.90
12070.89 27.00 14.98 | 27.14 5.05 3.76

Table 5.12:  Gibbs sampler estimation on unbalanced design no. 12:
{2,10,18}. Std = Gibbs sampler with “stadard” priors, Alt = Gibbs sam-
pler with “alternative” priors and ML = Maximum Likelihood estimate (for
comparison ).
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Figure 5.16: BUGS vs. ML on balanced design no. 9: {5,5,5,5,5,5,5,5,5,5}

with 02 =1.
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Figure 5.17: BUGS vs. ML on balanced design no. 9: {5,5,5,5,5,5,5,5,5,5}

with o2 = 0.
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Chapter 6

A Monte Carlo study of
different testing methods

A beautiful theory, killed by a nasty, ugly little fact!
Thomas Henry Huxley (1825-1895)

As we saw in section 2.3, there are several different testing methods in
mixed effects models. This leaves two questions for the applied statistician:

e Does the choice of testing method really matter?

e And if yes; What methods are recommended for the different situa-
tions?

Today, SAS is one of the leading statistical packages. As one of the first to
include mixed effects models, its Proc Mixed routines have become one of the
most used packages for analyzing mixed effects data. In figure 6.1, we find
an output from the SAS Proc Mixed routine performed on the Mississippi
river data (from section 1.2).

As we can see, the SAS runs a Wald test that gives us a p-value of 0.08!
(e.g. 8 %) for the hypothesis of non variance component (E.g. Hy: o2 = 0).
This is clearly not significant on any reasonable level, but doing the same test
using Likelihood ratio theory, we find a p-value of 0.00018 (e.g. 0.0 18%).
So:

e Why do we see such large differences?

'As random effects only can take positive values, Hg: o2 = 0 should only be tested
as a one-sided test (E.g. H,: 02 > 0). In spite of this, SAS uses its standard two sided
p-value (Pr > |Z]), and users must in practice divide this p-value by 2.

83
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Design number Number of observations
10 m =5, n;, = {10,10,10,10,10}
17 m=30,n; ={2,2,2,2,2,...,2,2}
20 m=30,n; =15,5,5,5,5,5,...,5,5}

Table 6.1: Additional balanced designs for the study of different testing
methods. For the other balanced designs, see chapter 5.

e What are the “true p-values” under Hy for the different methods?
o Which methods give the best power under H;?

¢ And ultimately; Which tests are recommended for practical use?

In this chapter, we will try to answer these questions both by simulations
and some theoretical considerations. During this work, we will focus on the
balanced one-way design, but this study has probably also some relevance
for unbalanced designs. Still, this is a question that must be investigated
further in new studies.

Design of study

For the study of different testing methods, we have used balanced design
number 1, 3, 7 and 9 described in section 5. These designs are chosen as they
represent small and medium designs, with a small and moderate number of
replications. In addition to these designs, I have also included three new
designs seen in figure 6.1. These designs are added so that we see what
happens with a somewhat larger number of individuals or replications. As
for the simulation of estimating methods in chapter 5, we have chosen to fix
p as 3 and o2 as 1. Under this we have simulated under Hy: o2 = 0 and

different values of Hy : ¢ = {0.1,0.2,1,5,25}.

As for the Wald test, exact distributions of the quadratic forms are known.
In theory, we could use this to evaluate the Wald-test through theoretical
work, by deducing the exact distribution of 2. This would, however, in prac-
tice include huge algebra, that probably would lead to such large equations
that it would be very hard or impossible to use it in any direct evaluation
of the practical consequences. For this reason, we would probably end up
needing numerical tables anyway. In addition, the simulations also give us
direct comparisons with other methods, as all tests are done on the same
datasets. Also for a comparison with the other methods, the results of the
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Qutput 4.1 The Results of Using PROC MIXED to Obtain REML Estimates of the
Variance Components and to Obtain Estimated BLUP for Each INFLUENT

Covariance Parameter Estimates (REML)

Cov Parm Ratio Estimate Std Error Z Ppr > |z
INFLUENT 1.48438019 63.32114984 45.23148440 1.40 0.1615
Residual 1.00000000 42.65830963 10.85707766 3.93 0.0001

Figure 6.1: Exsample of SAS Proc Mixed routine on the Mississippi river
data (see section 1.2) from the book “SAS System for Mixed Models” (Littell
et al. 1996).

F-test under Hy given (even we know from section 2.3.3, that the F-test gives
exact significant levels).

6.1 Simulation of different testing methods

In table 6.2 to 6.8, we find simulation results for the different testing methods;
three variants of the Wald test, the Likelihood ratio test and the F-test. For
more information on these tests, see section 2.3.

The tables show the proportions of tests rejected for different significant
levels (5 % and 1 %), simulated under Hy (¢2 = 0) and different values of
Hy (62 = {0.1,0.2,1,5,25}). The optimal test would reject Hy for all tests
performed under Hy, while still never rejecting Hy when it is correct (e.g.
o2 = 0). In practice, there is no such test, and we aim at a test that has
the highest proportion of rejections under H; (called power), while still not

rejecting more tests under Hy than the chosen significant level.

This leads us to two criteria for evaluation of the different testing methods
used in mixed models:

1. Do the tests keep the limit of rejected tests under Hy, set by the sig-
nificant level?

2. How is the test’s power under H;? (E.g. proportions of rejected tests
under H;.)

The results for the different tests may be summarized in the following
conclusions:
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(3]

Level | HO 1 2 1 5 25
F 0.05 | 0.048 0.064 0.072 0.177 0.514 0.837
0.01 | 0.008 0.014 0.018 0.042 0.206 0.609
LR 0.05 | 0.019 0.028 0.036 0.079 0.327 0.720
0.01 | 0.003 0.005 0.010 0.022 0.121 0.461
Wald 0.05 | 0.000 0.000 0.000 0.000 0.000 0.000
(REML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.000 0.000 0.000 0.000 0.000 0.000
(ML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.212 0.260 0.287 0.495 0.799 0.948
(Hop) 0.01 |0.172 0.212 0.236 0.432 0.758 0.937

Table 6.2: Proportion of Hy: a2 = 0 tests rejected for balanced design no. 1:
{2,2,2}.

Level | H, 1 2 1 5 25
F 0.05 | 0.050 0.119 0.188 0.537 0.855 0.970
0.01 |0.012 0.032 0.074 0.337 0.757 0.945
LR 0.05 | 0.010 0.028 0.068 0.320 0.743 0.943
0.01 | 0.002 0.008 0.023 0.181 0.640 0.914
Wald 0.05 | 0.000 0.000 0.000 0.000 0.000 0.000
(REML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.000 0.000 0.000 0.000 0.000 0.000
(ML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.114 0.217 0.304 0.649 0.900 0.979
(Hop) 0.01 |0.071 0.151 0.234 0.583 0.876 0.975

Table 6.3: Proportion of Hy: 0 = 0 tests rejected for balanced design no. 3:
{5,5,5}.
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(3]

Level | HO 1 2 1 5 25
F 0.05 | 0.051 0.089 0.125 0.481 0.971 1.000
0.01 | 0.010 0.020 0.037 0.219 0.882 0.999
LR 0.05 | 0.025 0.040 0.066 0.328 0.937 1.000
0.01 | 0.004 0.010 0.017 0.129 0.801 0.998
Wald 0.05 | 0.016 0.029 0.048 0.270 0.912 1.000
(REML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.021 0.035 0.056 0.298 0.926 1.000
(ML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.192 0.276 0.352 0.783 0.996 1.000
(Ho) 0.01 | 0.132 0.204 0.265 0.694 0.992 1.000

Table 6.4: Proportion of Hy: 02 = 0 tests rejected for balanced design no. 7:
{2,2,2,2,2,2,2,2.2.2}.

Level | H, 1 2 1 5 25
F 0.05 | 0.050 0.292 0.494 0.913 0.992 1.000
0.01 | 0.009 0.129 0.300 0.838 0.986 0.999
LR 0.05 | 0.009 0.122 0.289 0.831 0.986 0.999
0.01 | 0.002 0.049 0.159 0.739 0.980 0.998
Wald 0.05 | 0.000 0.004 0.033 0.522 0.954 0.997
(REML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.000 0.006 0.041 0.554 0.959 0.997
(ML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.041 0.260 0.462 0.905 0.991 1.000
(Ho) 0.01 | 0.016 0.162 0.345 0.858 0.988 1.000

Table 6.5: Proportion of Hy: 02 = 0 tests rejected for balanced design no.
10: {10,10,10,10,10}.
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(3]

Level | HO 1 2 1 5 25
F 0.05 | 0.051 0.214 0.406 0.952 1.000 1.000
0.01 |0.012 0.076 0.207 0.883 1.000 1.000
LR 0.05 | 0.016 0.092 0.237 0.898 1.000 1.000
0.01 | 0.002 0.028 0.105 0.798 0.999 1.000
Wald 0.05 | 0.001 0.008 0.043 0.675 0.996 1.000
(REML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.001 0.013 0.057 0.711 0.997 1.000
(ML) 0.01 | 0.000 0.000 0.000 0.000 0.000 0.000
Wald 0.05 | 0.103 0.341 0.539 0.971 1.000 1.000
(Hop) 0.01 | 0.055 0.223 0.418 0.955 1.000 1.000

Table 6.6: Proportion of Hy: a2 = 0 tests rejected for balanced design no. 9:
{5,5,5,5,5,5,5,5,5,5}.

Level | H, 1 2 1 5 25
F 0.05 | 0.048 0.125 0.225 0.907 1.000 1.000
0.01 | 0.009 0.035 0.073 0.732 0.999 1.000
LR 0.05 | 0.017 0.064 0.130 0.828 1.000 1.000
0.01 | 0.005 0.016 0.037 0.612 0.999 1.000
Wald 0.05 | 0.061 0.152 0.266 0.927 1.000 1.000
(REML) 0.01 | 0.006 0.024 0.048 0.662 0.999 1.000
Wald 0.05 | 0.056 0.143 0.250 0.920 1.000 1.000
(ML) 0.01 | 0.006 0.022 0.046 0.656 0.999 1.000
Wald 0.05 | 0.161 0.315 0.478 0.979 1.000 1.000
(Hop) 0.01 | 0.097 0.213 0.355 0.954 1.000 1.000

Table 6.7: Proportion of Hy: o2 = 0 tests rejected for balanced design no.

a

17. (30 individuals with 2 observations each.)
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(3]

Level | H, 1 2 1 5 25
F 0.05 | 0.053 0.417 0.776 1.000 1.000 1.000
0.01 | 0.013 0.203 0.567 1.000 1.000 1.000
LR 0.05 | 0.020 0.262 0.641 1.000 1.000 1.000
0.01 | 0.003 0.115 0.419 1.000 1.000 1.000
Wald 0.05 | 0.110 0.569 0.870 1.000 1.000 1.000
(REML) 0.01 |[0.017 0.243 0.619 1.000 1.000 1.000
Wald 0.05 | 0.105 0.549 0.861 1.000 1.000 1.000
(ML) 0.01 | 0.017 0.239 0.611 1.000 1.000 1.000
Wald 0.05 | 0.214 0.723 0.937 1.000 1.000 1.000
(Ho) 0.01 | 0.153 0.641 0.904 1.000 1.000 1.000

Table 6.8: Proportion of Hy: o2 = 0 tests rejected for balanced design no.
20. (30 individuals with 5 observations each.)

F-test

From section 2.3.3, we know that the F-test is based on an exact distribution.
This gives us an exact p-value under Hy, so the most interesting part in this
simulation study becomes the power under H;. Looking at table 6.3, we see
that the F-test performs quite well. As shown in table 6.6 and 6.8, this is
especially true when the number of observations increases. A comparison of
table 6.2, 6.3 and 6.4, shows that this applies to both increases in the number
of observations and individuals.

Likelihood ratio (LR) - test

Loking at table 6.3, we find that the Likelihood ratio test is fairly good,
but quite conservative with significant levels several times under the correct
value. From the larger designs of table 6.5, 6.7 and 6.8, we find that this is
not solved either by increasing the number of individual (m) or repetitions
(n). With this exception, the test performs very well with performance close
to the analog F test with equal “real significant level”. Anyway, we will in
practice not have the possibility to calibrate the Likelihood ratio test, so that
the F-test will in practical applications give us somewhat better power (under
Hy). Still, there are many cases where there is no precise F-test available,
and in these cases there is probably not very much to gain from using an
approximate F-test.
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Remark: The Likelihood ratio test is based on standard Maximum Likeli-
hood estimation (not REML), and we have allowed rejection only for positive
values of o2 (e.g.: All tests with negative o2 estimates have not been rejected).

Wald test

In the tables, we find three different variants of the Wald test. For all these
tests, we have chosen to base the variance estimates on the asymptotic value.
This is done because it is implemented in several statistical packages, and is
probably the most commonly used approach today.

The first two variants of the Wald test are the “classical” methods for the
ML (Maximum Likelihood) and REML (Restriced Maximum Likelihood)
estimates. These are named Wald-REML and Wald-ML.

In addition to these two “classical” methods, we have introduced a third ap-
proach: Note that o2 = 0 under Hy. For some designs, this can be used in
the estimating the standard deviation of the o2 estimate. One example of
this is in the one-way balanced design, where we have the formulas for the
standard deviation and easily can set o2 = 0. (Remark: To my knowledge,
this has no elementary extension to the unbalanced case.)

Looking at the simulation results, the probably most striking result is
that both the standard methods of the Wald test often never rejects the Hy
hypothesis, even for quite large differences. For the very small designs of
balanced design number 1 and 3 (see table 6.2 and 6.6), this happens both
at 5% and 1% significant level. While for the somewhat larger designs of
balanced design 7, 9 and 10 (see table 6.4, 6.5 and 6.6), it happens only
for the 1% significant level. Also, for 5% significant level in balanced design
number 9, these Wald tests are very conservative with a true significant level
just above zero. This gives the tests very low significant levels under Hy, but
with equally low power under H;. With such a low power, both these tests
are in practice useless for these quite small designs. In some cases, they can
even do more harm than good, as they often do not reject Hy for data that
at a first look really look as a clear rejection of Hy. As illustrated in figure
6.2, these tests have particularly trouble with low significant levels.

Increasing the number of observations, both versions of the standard Wald
test give much better power. At first look, this seems very good (see balanced
design number 17 in table 6.7), but looking at table 6.8, the test also some-
times gives too high significant levels (under Hp). In practice, this would be
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Figure 6.2: Proportion of tests rejected at different significant levels for design
no. 7:{2,2,2,2,22,2.222} (left) and no. 9: {5,5,5,5,5,5,5,5,5,5} (right) and
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quite dangerous, as it leads to too large probability of rejecting Ho (E.g. too
large probability of type I error).

Allin all, the standard Wald test gives quite uncertain results. Sometimes
it will never reject Hp, while in some other designs it gives significant levels
well over the correct value. For practical purposes, this means that the test is
quite dangerous, and could not be recommend for use in small and medium
sized designs.

As for the new third approach, The “Wald - Hy”, this test gives us totally
different results. It has very good power under H; for all designs, but except
for design number 10, it also gives us way too large significant leves (under
Hy). As this leads to all too large probability of rejecting Ho, this test can
not be recommended for any practical purposes.

6.2 Theoretical considerations

In the preceding section, we have seen considerable problems with some com-
monly used testing methods. At first look, these results may seem quite
strange, and in this section, we will present some theoretical considerations
that can shed some light on what goes wrong with these methods.

1.00
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6.2.1 Why does the Wald test give so uncertain re-
sults?

As seen in section 6.1, the Wald test will for some designs never reject Hy,
while it for other designs gives too high significance levels. Comparing table
6.4 and 6.6, it even sometimes performs worse with more observations. As
shown below, this probably is a combination of several problems concerning
use of the Wald test for random components.

Why does the Wald test for some designs never reject Hy?

In most cases of fixed effects, the standard Wald test performs fairly well,
but what goes wrong with the theory in the case of random components?

To answer this question, we must go back to our assumptions for the
Wald test. The most commonly discussed assumptions in connection with
fixed effects are:

1. The estimator should take an approximately normal distribution.
2. We should have a fairly good estimate of the standard error.

Looking at the first of these assumptions, we remember that we discussed
the distribution in section 5.1.1. Here, we sometimes found a considerable
deviance from the normal distribution when we had a small number of indi-
viduals (m) combined with a moderate or large variance component. Still,
under Hy, these deviancies from the normal distribution, with a tail towards
large values, should give too many, not too few, rejections of Hy. Comparing
the test results with the distributions found in section 5.1.1, we also find
that the Wald test sometimes never rejects Hy even when the estimates dis-
tributions are quite close to the normal distribution. We could also suspect
the standard error estimate, but as shown in section 2.3.1, the asymptotical
theory gives a very good estimate of the true value in the balanced one-way

design.
Are there any more assumptions behind the Wald test that could go wrong?

Going back to the asymptotical Wald-test theory, we find one more as-
sumption; The standard error estimate should be independent of the estima-
tor. This is no problem for fixed effects, but what happens when we use this
theory on random components?

Using the variance estimate from section 2.3.1, we find that the Wald test
statistic is
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In this formula, we find 52 in both the numerator and denominator, as the
standard deviation estimate depends heavily on 52. As shown in figure 6.3,
we see that this dependence in practice can be almost linear. This gives much
larger estimated standard error for large estimates. In practice, this makes
it very hard to get tests rejected, as the standard error of the estimate more
or less eats up the gain of a large estimate.

This chould be illustrated algebraically, by letting 2 = z in the test
observator equation:

Z
£ = bl
1
2?4254 —
9 n n
m

and solving the equation with regards to . This gives us one (possible)
solution for positive values of z:
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Using this, we find that each design has an absolute maximum limit for
the possible z value. This is particularly visible for designs with a small
number of individuals, where this limit becomes quite small (For exsamples
of this see figure 6.4). If we extend this limit either by a very small p-value
or too few individuals, the differences between o and o? will never make a
difference, as the Wald test under this scheme never will reject Hy, regardless
of the observed data (!).

Another example of the effect of covariance between an estimate and
its standard deviation, is shown in figure 6.5. Her we have simulated 1000
datasets with 10 standard normal distributed observations. In this fixed
effects case, the estimates and its standard deviations are independent, and
as shown in the left figure, the test statistic for positive values is quite close
to the right side of the normal distribution. If we now sort these estimates
and standard deviations by size, we get the figure on the right side. In this
figure, the mean has dropped from 0.90 to 0.74, and we have almost none
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Figure 6.5: Simulated example of test statistics, with and without correlation
between the estimates and it’s standard deviation. Normal case to left, and
the hypothetical case with correlated estimated and it’s standard deviation
to the left (where the values matched by size). Out of 1000 datasets, figures
are just for the 520 positive test statistic, as only these have relevance to
one-sided testing.

large values left. This again gives the test very low probability of rejecting
Hy.

As we see, the correlation between the estimators and its standard deriva-
tion, tells us why the standard Wald test often never rejects Hy at all for
small designs. From the previous section, we also remember the new “Wald -
Hy” test. As we in this test set 0 = 0, it does not suffer from the same prob-
lems of covariance between the estimate and its standard deviations as the
standard Wald tests. And as we have seen in the simulations, this method
also does not suffer from the same problems of to few rejections of Hy (but
actually have another problem of all too high significant levels).

As an exact demonstration of the problems with correlated standard
derivations, we have perform a hypothetical Wald (ML) test without any
correlations between the estimate and its standard deviation. This was done
by randomly mixing the estimates and its standard deviations from our 5000
simulated datasets. The result is a Wald test with exactly the same distribu-
tion of both the estimates and standard deviations, but with no correlations
between these values. The practical consequence of this for balanced design
number 7, with significant level 0.01, is shown in table 6.9. As we see, the
test without correlations often rejects Hy, and even has a somewhat too high
significant level.
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Hy A 2 1 ) 25
0.080 | 0.110 | 0.134 | 0.266 | 0.412 | 0.457

Table 6.9: Hypothetical case: 0.01 level Wald (ML) test for balanced de-
sign no. 7: {2,2,2,2,2.2222 2} without correlated estimated and standard
deviation (E.g. Simulated estimates and standard deviations are randomly
matched). In real life this test never rejected Hy.

Why does the Wald test sometimes perform worse with more ob-
servations?

Looking at the simulation results in section 5.1.1, we find that the distribu-
tions of the variance components are sometimes somewhat skewed, with a
tail towards large estimates. Under Hy, this should give higher probability
of rejecting the Hy hypothesis. Still, we often get a very conservative test for
small designs, as the correlation between the estimates and its standard devi-
ation (as discussed in the previous section) gives us much smaller probability
of rejecting Hy.

In figure 5.3 and 5.4, we see that an increase the number of repetitions
gives a distribution of the estimates somewhat closer to the normal distribu-
tion. Comparing the different designs shown in figure 6.4, we find that the
effect of correlated estimates depends almost totally on the number of indi-
viduals, with little impact of the number of repetitions. As we then increase
the number of repetitions, we get lower power as the effect of a non normal
distribution decreases. Normally, this would give us a more correct test, but
since we already are far below the correct significant level, because of corre-
lated estimates and standard deviation, this actual gives us a somewhat less
precise, not a better test.

For the simulations, this is shown in a comparison of table 6.4 and 6.6.
In practice, this gives a quite special situation, where the Wald test for
these designs perform worse with more observations (!). Another example
showing that more observations sometimes does not give us a better Wald
test, is comparison of table 6.6 and 6.8. Here, the increase in the number
of individuals, reduces the effect of correlated estimates and its standard
deviations, leaving us with a too high significant level for the larger design
(because of the somewhat skewed distribution of the variance component
estimate).
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Why does the “Wald - H,” test give so high significant levels?

As seen in section 6.1, the “Wald - H,” test gives in almost all cases too high
level of significance. This could probably mainly be atributed to the way we
have estimated 2. As for the 2 estimate to be independent of the &2, it
is estimated under the random effects model. The “Wald - Hy” test is only
rejected for positive values of &2,
up some of the model variation that is really from o2, Under Hy, this gives a
general underestimation of o2. As a consequence, we get a too low estimated

standard deviation, which again results in too many rejections of Hj.

and for these values, the 62 estimate takes

6.2.2 Why is the likelihood test so conservative?

Looking at table 6.3, we find that the likelihood ratio test performs accept-
ably, but very conservatively. At first look, this could be blamed on the
test’s asymptotical nature, but looking at table 6.2 versus table 6.8, we see
that the real significance levels are almost unchanged when the number of
observations increases (e.g. n and m increases). So why is the asymptotical
theory not working properly?

From the likelihood ratio theory, we remember that we should take the
maximum log-likelihood under the Hy limitation, and divide it by the max-
imum log-likelihood for the full model. But are we really doing this? Have
we not introduced the limitation that o2 > 0 on the full model?

This can easily be demonstrated by the alternative way of writing the
mixed effects formula. From section 1.1, we remember that the mixed effects
formula could be written as N(z3,X), where ¥ includes both the random
effects and the error term. In this model, ¥ can be seen as a covariance
matrix. This includes the possibility of negative covariances, but in our
definition of the random components, we have limited the distribution to
positive values.

The effect of allowing negative values in balanced design number 1 to
9, can be seen in table 6.10. As we see, most rejections are really done for
negative values. Including these negative values, the real p-values come much
closer to the intended p-value. Actually, the likelihood ratio test that allows
negative values, is the correct likelihood test in reference to the asymptotical
theory, while our test gets a serious boundary problem. A general theory for
correction of such problems is presented in Self & Liang (1987), but no such
corrections are implemented in today’s leading statistical packages.
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Design p=.05 p=.01
Ballanced no. 1: {2,2,2} 0.127 (0.019) | 0.042 (0.003)
Ballanced no. 3: {5,5,5} 0.156 (0.010) | 0.056 (0.002)
Ballanced no. 7: {2,2,2,2,2,222.2.2} | 0.071 (0.025) | 0.015 (0.004)
Ballanced no. 9: {5,5,5,5,5,5,5,5,5,5} | 0.071 (0.016) | 0.018 (0.002)

Table 6.10: Proportion of o2 = 0 tests rejected under Hy: o, = 0, with
rejection for negative values. Results without rejection of negative values are
shown in parenthesis for comparison.

For applied statistics, this leads us to assume that most Likelihood Ratio
tests for random effects are quite conservative tests. This again shows us how
dangerous a choice the Wald test is, as it for the Mississippi river data (see
section 6) gives a p-values very much larger than the (probably) somewhat
conservative Likelihood ratio test.



Chapter 7

Conclusions

Science is the systematic classification of experience.

George Henry Lewes (1817-1878)

7.1 Summary

In this study, we have looked at estimation and testing in the increasingly
popular field of mixed effects models. The classical work on evaluating the
different estimation methods for these models was done by Swallow & Mon-
aham in 1984. As a start, we have repeated much of this study, and then
expanded the scope of the study by including several additional issues. In
this work, we have come across some new and quite interesting findings,
which have been presented in chapter 5 and 6.

Probably, the most important of these results has come in an area which
Swallow & Monaham did not include in their study; Different methods for
testing (the existence of random effects) in mixed effects models. In chapter
6, we compared the three most common approaches for such tests; The Wald
test, the Likelihood ratio test and the F-test. To my knowledge, no other
studies have evaluated the different testing methods used in mixed effects
models, so these results should be new to the statistical community.

Not surprisingly, the Likelihood ratio and F-tests perform somewhat bet-
ter than the Wald-test. Still, the differences shown in this study will probably
come as a surprise to many statisticians. In some quite small designs, it is
even shown that the Wald test for quite reasonable significant levels never
will reject Hy - regardless of the observed differences. This gets better when
we increase the size of the designs, but for moderat designs the Wald test
often gives too high significant levels under Hj.
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In contrast to earlier belief (Thompson & Beacon 1998, Littell et al. 1996),
we show that the Wald test’s problems with random effects in small designs
is mostly due to correlations between the estimate and its standard deviation
estimate, and not to skewed or bounded distributions. This happens as we,
in contrast to ordinary fixed effects models, work with variance components
that are included in their own standard deviation estimate.

In practice, this makes the Wald test a quite dangerous choice for practical
application. Still, the test is implemented in leading statistical packages (such
as the SAS system), and is probably in widespread use in many different fields
(For an example of this, see Taylor, Pickering, Lord & Pickles 1998). As for
the other tests, it is shown that the Likelihood ratio test have some boundary
problems for random effects, that lead to a somewhat conservative test.

All these findings are supported both by simulation studies and some
theoretical work, and lead to recommendations for applied statisticians and
developers of the many new routines for analyzing mixed effects models.

In addition to the comparison of different testing methods, we have also
looked at several other issues concerning methods for analyzing mixed effects
models. The most important of these results is probably an evaluation of the
Bayesian Gibbs sampler for “uninformative priors”. In this simulation study,
it is shown that the Gibbs sampler converges quite fast to the Maximum
Likelihood estimate, as the number of observations increases. For practical
purposes, this shows that the Gibbs sampler probably can be a good choice
for complex situations where it is difficult to implement standard frequentist
methods.

7.2 Recommendations for applied statisticians

In the last chapters, we have studied the performance of many different
estimation and testing methods in mixed effects models. To some degree, the
differences between these methods have a unique academic interest, but for
the applied statistician or University teacher, one question stands out; Which
methods are recommended for practical use in the different situations?

For developers of statistical software, this question has become especially
important. During the last decade, mixed effects models has gone from being
a specialized modeling tool only used by professional statisticians, to a quite
ordinary method for analyzing data in many different fields and professions.
The basic ideas behind mixed effects models are somewhat more advanced
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than ordinary regression, but still do not require deep mathematical reason-
ing. In practice, I believe that the use of this model has been limited rather
by the opportunity to perform the analysis, than by the actual understanding
of the model. This has now began to change, as leading statistical software
packages now are building user friendly graphical interfaces to the basic ver-
sions of the mixed effects models. This makes the model available to a much
wider audience, but also makes the choice of default methods very important,
as many of these new users probably are not familiar with the advantages
and limitations of the different methods.

Based on this and the earlier studies, my recommendations to practical
statistics and developers of statistical software are presented in the next
section.

7.2.1 Recommended estimation methods

In this study, we have seen that even under the correct model, we can ex-
perience large differences between the different estimating methods as the
designs become unbalanced. In the choice between the different estimation
techniques, we must to some degree choose between different priorities:

e Minimizing the mean square error
e Unbiased estimation
e Easy modeling properties

e Fast compilations

Considering these priorities, I want to give the following general advices to
users mixed effect models:

o As a general rule, the Maximum Likelihood (ML) estimator is a good
choice.

o If we want an unbiased estimate, we may choose the Restricted Max-
imum Likelihood (REML) estimator, but it also gives a somewhat
larger mean square error than the more traditional Maximum Like-

lihood (ML) estimator.

e For fast compilations, the ANOVA and MINQUE(0) are good choices.
On the other hand the MINQE (0) estimator, and to some degree the

ANOVA estimators, can sometimes give a considerably larger mean
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square error than the Maximum Likelihood (ML) approach. This is
most evident for considerably unbalanced models combined with a large
ratio of o2/c?.

If we have additional information to the data, the Bayesian Gibbs sam-
pler has the advantage of making it easy to include this information in
the model (as priors).

For many practical applications, the Gibbs sampler will give especially
easy modeling properties, and even for “noninformative priors” it often
gives results quite near the Maximum Likelihood estimate. Still, the
estimates rely heavily on the priors for small amounts of data, and
the Gibbs sampler is not recommended in the smallest designs without
special information available for choosing the priors. These problems
can to some degree be reduced by a good choice of “noninformative
priors”, but the Maximum Likelihood (ML) estimator is overall a much
better predictor for small designs.

Recommendations for developers of statistical software:

Maximum likelihood (ML) is a good choice as default method, as it
performs well in most situations. REML, MINQUE(0) and Gibbs sam-
pler have all its specialities, and could be usefull to implemented as
alternatives.

7.2.2 Recommended methods for testing random com-

ponents

In contrast to different estimation methods, we have a fairly simple goal in
evaluating the different testing methods. We want a test with the highest
possible power (under Hy), while the true significant level never extends our
desired significant level. Based on this, I will give the following advice for
applied statistician:

o In contrast to most fixed effects cases, the Wald test will often have very

lower power in testing random effects for small designs. On the other
side, 1t sometimes gives too high true significant levels for moderate
designs. For this reason, the Wald test is usually not advisable for
testing random effects. This is particularly true for low significant levels
and small samples, where the Wald test sometimes never rejects H; at

all.
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e In the choice between the F and likelihood ratio test, the F test has
somewhat better power under H;. Still, the likelihood ratio test per-
form fairly well, and it is usually no unnecessary to make an approxi-
mated F test in the cases where no F test is available. In practice, the
general advice will be to stick with the Likelihood ratio lest, except for
the cases where we need a test with extra good power under balanced
designs.

e Recommendations for developers of statistical software:
As the Likelihood ratio test is available and performs well both in
balanced and unbalanced models, I will recommend it as the default
testing method. In addition, it may be useful to implement the F-test
as an option, as it gives somewhat better power in balanced models.

As for the practical implementation of the Likelihood ratio test, to-
day’s statistical packages mostly implement it by printing the deviance
for the full model. With this approach, the user will then have to run
the analysis for the reduced models, and then calculate the p-value by
hand. With increasingly fast computers, my option is that the time
has come for a direct calculation of the Likelihood ratio test. With
many parameters, this will require some computing time, but in prac-
tice, this will probably be faster for advanced users, and make the test
more available for novice users.

7.3 Basis for further studies

Still, several questions remain unanswered and make up good basis for further
studies. These questions include:

1. Regarding testing:

— How well does this simulation study of different testing methods ex-
pand to unbalanced designs?

— In the light of the debate regarding the principles behind testing
against zero effect, we might ask how well these simulation results ex-
pand to tests with alternative definitions of Hy? (E.g. Tests of clinical
relevant differences - No just a difference)

— Find out whether Monte Carlo tests could be useful for making bet-
ter testing methods in unbalanced mixed effect models (For an example
of a simulation study of Monte Carlo tests, see Dimakos 1995.).
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— Take a more detailed look at some theoretical aspects, like the rela-
tionship between the likelihood ratio and F tests.

Regarding estimation:

— Further check the assumptions and effect of different priors for the
Gibbs sampler. It could also be interesting with a more in depth look at
the theoretical sides regarding comparison of frequentist and Bayesian
methods.

— Look at different methods for confidence intervals, such as Boot-
strapping and Likelihood based theory.

— Study estimating (and testing) in a more general setting. This could
include more complex linear mixed effect models, multi level models,
non-normal distributions, non-normal links and misspecified mixed ef-
fects models.

— Study numerical routines and efficiency for large datasets.

3. See how these results are linked to some practical cases.



Appendix A

Computer algorithms and
“tricks”

As in all simulation studies, this thesis is based on a considerable amount of
programming. In this appendix, we will shed some light on this part of the
work, and reveal some “tricks from behind the scenes”.

A.1 General programming principles

As seen in table A.1, the basic simulations alone are done for 11 different
estimating and testing methods. These methods are combined with several
designs, for a total of 95 combinations. Under each of these combinations,
we again have different values of ¢2/c2. In addition to this, we still have
some methods such as the likelihood test without the o > 0 restriction, that
are not included in these numbers. All in all, this makes up several hundred
cases under which we have simulated just for these published data.

In the process, we have also performed simulations on several other com-
binations and models. Examples of this is a study of mixed effects model
with random regression parameter, and a study of the effect on o? estimates

Number of Designs Combinations

methods of 6%/0?
Frequentist estimation 4 13 4
Testing 5 7 6
Bayesian estimation 2 4 4

Table A.1: Basic simulations for this study.
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from truncation of negative values of o2. In the end, these studies did not
give results which were interesting enough to be included in this thesis.

As we see, there has been a large number of different situations to simu-
late, and in this process there are especially three important issues:

1. How can we minimize the probability of programming errors?
2. How can we reduce the need for computer power (computing time)?

3. How can we ease the work of performing the simulations?

The first issue can be dealt with using different tests of consistency with
known theory and earlier studies. In this thesis several such tests are per-
formed. Some examples are:

e The procedures for simulating random effects data, are tested by draw-
ing large number of observations and comparing row and column dif-
ferences with their theoretical expectations.

e The procedures for frequentist estimates are compared to results in

Swallow & Monaham (1984).

e Several procedures are tested for large scale data and compared to limit
theorems.

Another method of minimizing the probability of programming errors,
are through the use of pre-programmed and well tested packages. Many of
our calculations have been done using such procedures.

In addition to these tests, we have focused strongly on making functions
and objects modular and reusable. Using these principles, the source code
gets much smaller and more perspicuous. This eases the work tremendously,
and gives tests mentioned earlier a much wider validity. To implement these
principles, we have largely used the object-oriented S language for both the
simulations and the following analysis. This language is today incorporated
in the S-PLUS and R statistical packages, and the inventor John M. Cham-
bers expresses the goal of the S language as “To turn ideas into software,
quickly and faithfully”. For more information about the S language, see

Venables & Ripley (1997) and Chambers (1998).

In order to reduce the need for computer power, we used binary routines
for all computer intensive tasks like the REML, ML and Gibbs sampler esti-
mators. This is done as the S interpreters are quite slow compared to binary
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code. For all these tasks, we have found pre-coded routines, and have chosen
to use them as they probably are quite well optimized.

In my S routines, there are also to some degree a choice between mak-
ing fast specialized functions, or making general reusable functions. In this
choice, we have mostly preferred making the routines reusable. This is done
since it in this study only has a small impact on the total consumption of
computing time, as most of the time is used in the computer intensive binary
routines. For the ML, and REML estimating routines, we could have used
sufficience principles as shown by Swallow & Monham (1984), but in this
study we have found this not to be worth the extra work and the problems
with a less surveyable and well tested source code.

A.2 Simulating datasets with random effects

Using the principles of modular and reusable source code, all datasets (bal-
anced and unbalanced) are generated using the same S function. This func-
tion is shown below

’’mixnub’’ <- function(x, antm, alfav, s) {

# X - The fixed effect.

# Antm - A vector of reputations for the different

# individuals. To simulated serval datasets,

# repeat this vector with ‘‘rep(c(...),n)’’.

# alfav - The standard deviation of the random effect.
# s - The standard deviation of the error term.

maxantm <- max(antm)

n <- length(antm)

alfabeta <- rep(l,maxantm)

res <- t(matrix(rep(x * alfabeta,n),maxantm))

# ‘‘res’’ is the matrix for the simulation results.

# We simulated the random effect:
if ((alfav==0)==F) {
z <- matrix(rnorm(n,0,1),n)
res <- res + z %*% alfabeta * alfav

by

# We simulated the error term:
if (s>0) {
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for(i in 1:n) {
res[i,1l:antm[i]]<-res[i,1:antm[i]]+rnorm(antm[i],0,s)
if (antm[i]<maxantm)
res[i, (antm[i]+1) :maxantm] <- NA
t
b
else {
for(i in 1:n)
if (antm[i]<maxantm) res[i,(antm[i]+1) :maxantm] <- NA

return(res)

3

To generate two sets of data from the unbalanced design number 1 (n; =
{3,5,7}) with p = 3, 0, = 0.1 and 0. = 1, we can now use the following
command:

> mixnub(3,rep(c(3,5,7),2),.1,1)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.753024 3.845164 2.106750 NA NA NA NA
[2,] 2.621491 1.263815 3.599750 1.523219 2.618191 NA NA
[3,] 2.275264 2.034738 4.006103 2.140304 2.574507 2.917348 2.883158
[4,] 2.099634 3.081872 2.248927 NA NA NA NA
[6,] 3.370456 2.076941 1.849028 2.715241 3.415091 NA NA
[6,]1 2.909810 1.145729 2.519810 2.171350 3.443843 3.526429 3.462820

These data are good for matrix operations, but several pre-programmed
S functions need data as S dataframes. The following function is used for
this convention:

mix <- function(mixres) {
n <- dim(mixres)[1]
m <- dim(mixres) [2]
res <- matrix(c(rep(0, times = (n * m * 2))), n * m,)
res[, 1] <- sort(rep((1:n), times = m))
res[, 2] <- as.vector(t(mixres))
res <- data.frame(res)
names (res) <- c(’’subj’’, ’’ysim’’)
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Estimate Calculation metode

Balanced case estimates | Custom built matrix operations

ML & REML varcomp function

& lme-rutine (Pinheiro & Bates 1995)
MINQUE(0) varcomp function
ANOVA Custom built matrix operations
Wald-tests Custom built matrix operations
F-test Custom built matrix operations
LR-tests Ime-routine (Pinheiro & Bates 1995) and

some custom built matrix operations

Table A.2: S-PLUS routines used in this study.

return(res)

b

A.3 Functions for frequentist estimation and
testing

All frequentist estimation and testing is done using the S-PLUS package,
which is a super set of the S language. How the different estimates are
calculated are shown in figure A.2. As we see, several functions are custom-
built, and all the functions take up around 450 lines of S code. To both
simplify the code and reduce the calculations, the Wald-tests uses results
from the estimation. Still, the implementation of testing methods is quite
complex, and takes up around 320 of the 450 lines of code.

The S language is usually quite slow for simulations, as both implemen-
tations available today (S-PLUS and R) only include S as an interpreted
language. For this reason, most simulation studies using S, includes their
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own user generated binary code for numerical intense tasks. This binary
code is made by programming languages such as C or C++, and is called
from within the S language. This is generally the advisable approach, but in
this study all the numerically intensive tastes like ML, REML etc. could be
found in the S-PLUS package. These functions are probably well optimized,
so there was no need for a custom build binary code. ANOVA, Wald-test
etc. are all programed via matrix operations, that are calculated quite rapidly
using the S language.

As an example of a custom built S function, “finnall3” is shown below.
This function is the basic function for estimation in the unbalanced case.

’7findall3’’ <- function(mixdata,design) {

# mixdata - Data generated using the mixnub function.
# design - Specification of the design as

# a vector of the number of repetitiomns.
obs <- sum(design)

m <- length(design)

obs?2 <- m*max(design)

ant <- dim(mixdata)[1]/m

frig <- obs - m

konsd <- sum(design~2)

frig2 <- obs - konsd/obs

res <- matrix(0, ant,8)

mixdataf <- mix(mixdata)

datamix <- data.frame(subj=factor(mixdataf$subj)
,ysim=mixdataf$ysim)

is.random(datamix$subj) <- T

for(i in 1:ant) {
datamix2 <- datamix[(1+(i-1)*obs2):(i*obs?2),]
datamix2 <- datamix2[(datamix2[,2]!=’’NA’’),]
# Maximum Likelihood estimate:
resml <- varcomp(ysim~subj,datamix2,method=’'ml’’)
res[i,1] <- resml$variances[1]
res[i,2] <- resml$variances[2]
# Restricted Maximum Likelihood estimate:
resreml <- varcomp(ysim~subj,datamix2,method=’’reml’’)
res[i,3] <- resreml$variances[1]
res[i,4] <- resreml$variances[2]
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# MINQUE(O) estimate:

resming <- varcomp(ysim~subj,datamix?2)

res[i,5] <- max(0,resminq$variances([1])

res[i,6] <- max(0,resminq$variances([2])

# ANOVA estimate:

mixd <- mixdatal[(1+(i-1)*m):(i*m),]

res[1,8] <- sum((mixd - apply(mixd,1,mean,na.rm=T))"2
,na.rm=T)/frig

res[1,7] <- max(0, (sum((apply(mixd,1,mean,na.rm=T)
-mean(mixd,na.rm=T)) "2
*design)-(m-1)*res[i,8])/frig2)

b

return(res)

3

A.4 Bayesian estimating - Using the BUGS
package

Today, S-PLUS has no functions for Bayesian estimation, and implementing
the Gibbs sampler in S would have resulted in a huge consumption of com-
puter time. An alternative could have been a general programming language
such as C, but to get a fast and stable implementation of the Gibbs sampler,
this would have required a considerable amount of programming.

As an alternative, we have the “classical BUGS” software package for
UNIX. This is a very fast implementation of the Gibbs sampler, but it is
made for estimating one dataset at a time. To come around this problem, we
have used a little trick; All the simulated data for one combination (of design
and parameters) are imported as one dataset, and the model is specified as
identical independent parts that makes up one model for each dataset. In this
way, we get the total simulation problem on a multidimensional level, which
can be solved as one large model by the BUGS package.

As an example of this, the BUGS routines for the “default” priors of
unbalanced design number 1 (n; = {3,5,7}) are shown below.

model smixef;
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const
BATCHES = 3, # Number of individuals (n).
SAMPLES = 7, # Maximum number of observations (m).

NRSIM = 5000, # Number of simulations.
0BS = 15000; # Total number of batches (= BATCHES*NRSIM).

var
y [OBS,SAMPLES] , mu[BATCHES,NRSIM], b[BATCHES,NRSIM],
theta[NRSIM], tau.within[NRSIM], tau.between[NRSIM],
sigma2.within[NRSIM], sigma2.between[NRSIM];

data y in ’’simdata.txt’’;
inits in ’’smixef.in’’;

# Model spesification:
for (m in 1:NRSIM) {
for (i in 1:BATCHES) {
for (j in 1:SAMPLES) {
y[i+((m-1)*BATCHES),j] “dnorm(b[i,m], tau.within[m]);
t
b[i,m] <- theta[m] + muli,m];
muli,m] “dnorm(0, tau.between[m]);
b
t

# Priors:

for (n in 1:NRSIM) {
thetaln] “dnorm(0.0, 1.0E-10);
tau.within[n] “dgamma(0.001, 0.001);
sigma2.within[n] <- 1/tau.within[n];
tau.between[n] “dgamma(0.001, 0.001);
sigma2.between[n] <- 1/tau.between[n];

To use this model specification, we export the simulated S-PLUS datasets
to plain text files and supply one file with priors. This code is then run in

BUGS using the following BUGS commands:

compile(’’smixef.bug’’)
update(1000)
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monitor(sigma2.between, 10)
update(10000)
stats(sigma2.between)

q0
At last, the results are imported in S-PLUS for further analysis.

A.5 Running the simulations

The functions mentioned earlier give us methods for performing the simula-
tions, but running actual simulations still requires a large list of commands.
As an example, only the repetition of parts of Swallow & Monaham 1984 (see
section 5.1), needed 764 lines of S code (scripts). (Remark: This is partly be-
cause the simulation had to be divided into different S calls, to solve S-PLUS
memory management problems).

As we can see, this is a considerable amount of work and raises problems
of possible misprints. As a solution to these problems, several of the S scripts
have been generated via C-programs. This eases the work, and minimizes
the probablity of mistyping. All these programs are around 100 lines of code.

A.6 Analyzing the results

As in the case of the frequentist estimation, the analyzing is done using
S-PLUS with widespread use of custom made functions. These functions
include several hundred lines of code, and one example is shown below:

’’plotbal’’<-function(simdata,m,n,sizeofrc) {

This function plots the distributions of the ML estimator
for balanced data. The function plots distributions for 4
different random components under one design, and the results
are compared to the corresponding normal distribution.

simdata List of vectors of REML estimates.
m Number of repetitions.
n Number of observations.

H O H R R H

sizeofrc List of sizes for the true random component.

# Divides the screen into 2x2 blocks:
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screens <- split.screen(figs = c(2,2))
for(i in 1:4) {

3

screen(screens[i])

simd <- remlml(simdatal[[i]][,3:4],m,n)

# ‘‘remlml’’ is a custom built function to convert

# estimates from REML to ML for the balanced design.

#

# We use the S-PLUS function ‘‘density’’ for

# estimation the density of the simulated estimates:

dl <- density(simd)

# We find the corresponding normal distribution:

dn <- dnorm(di$x,mean(simd),sqrt(var(simd)))

# We use ‘‘matplot’’ to plot both graphs:

matplot (matrix(rep(d1$x,2),50) ,matrix(c(di$y,dn),50)
,type=’’1’’,xlab=paste(’’Random compoent = ’’,
as.character(sizeofrc[i])),ylab=’’Density’’)

close.screen(, T)




Appendix B

Computer resources

B.1

Computer systems used in the study

Most of the simulations have been done using S-PLUS under the IBM AIX
platform (UNIX). One notable exception is the Gibbs sampling, which has
been done using the BUGS software (Spiegelhalter, Thomas, Best & Gilks
1995) on both Linux and AIX platforms. Plots and figures are created in
S-PLUS under HP-UX UNIX, Linux and Windows NT.

B.2 Software & dataset references

Some statistical programs with mixed effects models

BUGS:
http://www.mrc-bsu.cam.ac.uk /bugs/

R:
http://stat.auckland.ac.nz/r/r.html

SAS:

http://www.sas.com/

S-PLUS:
http://www.mathsoft.com/splus/

SPSS:
http://www.spss.com/

Statistica:
http://www.statsoft.com/
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Mixed effects add on routines:

¢ NLME / LME for R:
http://www.ci.tuwien.ac.at /R /src/contrib/PACKAGES.html

¢ NLME / LME for S-PLUS:
http://cm.bell-labs.com/cm/ms/departments/sia/project /nlme/

General longitudinal data routine for S-PLUS:
(including mixed effects)

e OSWALD for S-plus
http://www.maths.lancs.ac.uk/Software/Oswald/

Datasets used in this study
e Datasets are from “SAS System for Mixed Models” (Littell et al. 1996),

and can be found at:

ftp://ftp.sas.com/pub/publications/A55235
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About this thesis:

In this thesis, we have studied statistical methods for analyzing data with
repeated measurements. Such data occur in a large number of fields from
medicine to economics and technology. An example is the clinical AIDS trial
mentioned in section 1.1, where the development of the disease is measured
over time for each patient.

With repeated measurements, we often get data that do not fulfill the
independent requirements of most standard statistical methods. For the
study of these kinds of data, the most correct model is in many cases the
“Mixed Effects Model”. For this model, we have many different methods
for estimation and testing. In this thesis, we perform a study where we
compare some of these methods through simulations. In several cases, this
study reveals large differences between the different methods. This findings
are also supported by some new theoretical considerations.

An example is the comparison of the Wald and the Likelihood ratio tests
found in chapter 6. Here, the default method in the leading statistical pack-
age SAS, needs several times as many data to reveal true differences as the
alternative Likelihood ratio test. Still, this thesis shows that even the Like-
lihood ratio test is, in practice, a quite conservative test.

Other interesting results includes a study of the increasingly popular
Gibbs sampler. In this study, we show that the Gibbs sampler with “uninfor-
mative priors” quite fast converges to the Maximum Likelihood estimate, as
the number of observations increases. Based on these and other results, I con-
clude with advises for applied statisticians, university teachers, researchers
from other fields, producers of statistical packages and others who are using
mixed effects models in their daily work.

Harald Fekjer,
Section of medical statistics, University of Oslo, June 1999

How you gather, manage, and use information will determine whether
you win or lose.

“Know your numbers” is a fundamental precept of business.

(From “Business @ the Speed of Thought”, Warner Books, 1999.)

William (Bill) H. Gates (1955-)




