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1. Introduction

An aneurysm is an abnormal bulge of a blood vessel, which often occurs in arteries in the
vicinity of the Circle of Willis, part of the brains blood supply. These cerebral aneurysms may
grow and occasionally rupture, causing a serious condition called subarachnoid hemorrhage
(stroke), i.e., bleeding in and around the brain. This condition often leads to serious brain
damage or death [3,4]. Worldwide, there are about 10.5 cases per 100,000 person years of
subarachnoid hemorrhage caused by aneurysm rupture [5].

In Section 2 the medical background of aneurysms and blood flow is outlined, and factors
contributing to aneurysm development are presented. It is not known exactly what triggers
aneurysms to initiate, grow and occasionally rupture. In an attempt to better our under-
standing of cerebral aneurysm development, numerical models may be used to simulate the
blood flow and arteries in and around the Circle of Willis.

To model blood flow, one needs to solve the Navier-Stokes equations. These equations arise
from the simple principles of conservation of energy, momentum and mass, and are truly
magnificent in that they seem to model any fluid qualitatively correct. In Section 3, the
Navier-Stokes equations are derived.

In this thesis, a Navier-Stokes solver has been modified from the project nsbench1. The
implementation is done as described in Section 4, and the implementation is verified by
comparing to exact solutions in Section 5. Throughout the text small code snippets are
found to illustrate the implementation of problems discussed, and in Appendix A some larger
sections of code can be found. All the source code, as well as animations of the simulations
done can be found at http://folk.uio.no/oyvinev/master.

By using computer models to simulate the blood flow in arteries, much more information
can be gathered than what physical experiments can provide. Both the spatial and temporal
resolution of the simulations are far superior to any measurement methods currently available.
In simulations, both the pressure and the velocity field is known at any point of the flow
domain. These simulations can be done causing minimal disturbance to the patient, as
only a digital 3D-image2 of the area of interest is needed to perform simulations. This
also minimizes both the geographical and time limitations of physical experiments, as the
simulations may be performed anytime, anywhere. They may also be performed several
times, using different physical parameters, e.g. to simulate different treatment methods.

However, a problem with the simulations is accuracy. Although the Navier-Stokes equations
may be solved to a very high precision, these solutions are heavily dependent on the applied
boundary conditions and physical parameters, as well as the computational domain. All
these factors are highly patient specific, and patient specific data are often unavailable or
inaccurate.

1https://launchpad.net/nsbench/
2The images are produced by using either computed tomography (CT) or magnetic resonance imaging
(MRI).
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Figure 1.1: A classical textbook representation of the Circle of Willis and surrounding arteries.

The physical domain is usually specified by converting data from a digital 3D-image to a
mathematical description over which the governing equations are to be solved. These images
usually have a quite coarse resolution, making it difficult to get an accurate description of,
in this case, the cerebral aneurysm and the surrounding vessels. This problem is addressed
to some extent in Section 6.

To accurately describe blood flow, a model for the viscosity and density of blood must
be prescribed. These parameters again depend on the composition of blood. It has been
observed that the blood behaves as a non-Newtonian fluid, i.e. the viscosity is not constant.
However, most of the studies done on cerebral aneurysm blood flow assume blood to behave
as a Newtonian fluid, i.e. the viscosity is constant. The effects of this assumption is addressed
in Section 6 and Section 7.

Boundary conditions are necessary to describe the nature of the flow flowing in and out of
the domain. They often involve a prescribed inflow velocity or flux, and a prescribed pressure
at the outlets. Often, no patient specific data is available, and thus, a common approach is
to use average values measured in a different group of patients. This may differ much from
what is the actual case, as the anatomy and flow patterns in the Circle of Willis are very
individual. Effects of different boundary conditions are studied in Section 7. In the same
section, uncertainty about the composition of blood is also addressed, in the context of a
hypothesis regarding aneurysm rupture in women.

Even though many things are still unknown on what causes aneurysm growth and rupture, the
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viscous force of wall shear stress (WSS) seems to be of special importance. Because of this,
we will use this effect to benchmark the effects of the previously mentioned uncertainties.
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2. Medical Background

2.1. Cerebral aneurysms

Cerebral aneurysms are most common in and around the Circle of Willis, a network of arteries
at the base of the brain. With a risk of rupturing and causing a hemorrhage into and around
the brain, they are considered a serious cerebrovascular disorder. The size and form of
cerebral aneurysms vary greatly, from aneurysms that are barely distinguishable from the
vessel, to aneurysms which may be more than 50 mm in diameter. Compared to the average
diameters of some of the arteries in and around the Circle of Willis (see Table 2.1), it is
not difficult to recognize the severity of this condition. The common shapes of cerebral
aneurysms are shown in Figure 2.1. In Section 6 a single saccural aneurysm at the middle
cerebral artery (MCA) bifurcation is segmented out and studied, and in Section 7 twelve
different saccular MCA aneurysms are studied.

Artery Average diameter [6] [7] Percentage of cerebral
aneurysms [8]

Posterior Cerebral Artery 2.2mm -
Posterior Communicating Artery 1.4mm 25%
Internal Carotid Artery 4.2mm 7.5%
Anterior Cerebral Artery 2.3mm -
Anterior Communicating Artery 1.9mm 30%
Middle Cerebral Artery 2.5mm 20%

Table 2.1: Arteries in an around the Circle of Willis.

(a) Fuseform (b) Saccular/sidewall (c) Saccular/
bifurcation

Figure 2.1: Classification of aneurysms.

The exact reasons for aneurysm initiation, development and rupture are largely unknown.
However, some factors have been identified to contribute, e.g. environmental factors such as
smoking, alcoholism and hypertension [3,9]. It is also known that people with an asymmetric
or incomplete Circle of Willis are more prone to develop aneurysms [10]. There are also sex
related differences, as the rupture risk for women is 1.6 times that of men [5].
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2.2 Blood properties

Aneurysm rupture-risk is often seen in coherence with the aneurysms size and location, along
with the patients age and medical history, among others [11]. However, hemodynamic forces
such as pressure and WSS also seem to have considerable effects on aneurysms towards
growth and rupture [12].

An aneurysm is a diseased vessel. Healthy arteries consist mainly of three layers; the intima,
the media and the adventitia [13]. The endothelial cells of the intima reacts to external stimuli
exerted by blood flow, by signalling the muscle cells in the media such that the artery flexes,
and thus reduces the mechanical stresses. This process is known as mechanotransduction.
In aneurysms, this response is damaged. In aneurysm walls, both the endothelial cells and
muscle cells are depleted, and the wall thickness may be reduced to about 25% of that of a
healthy artery. Thus, the walls are more brittle and less responsive to mechanical stimuli.

High WSS (above 40 Pa) is known to cause damage to the endothelial cells [14], but even
too low WSS might cause inflammatory responses in the vessel walls [15]. This supports the
hypothesis that WSS may be significant in predicting aneurysm development.

To avoid aneurysm rupture, different treatment methods may be applied, such as surgical
clipping or endovascular coiling. These procedures are however costly [16], and there are
associated risks with the different types of treatment [17]. Thus, one would not want to
perform treatment unnecessary. It is therefore vital to gain a thorough understanding of the
physical aspect of aneurysm rupture, to make sure the correct treatment is applied.

2.2. Blood properties

Blood does not behave like a Newtonian fluid such as e.g. water. Due to its composition of
blood cells, platelets, proteins etc. it displays some noteworthy non-Newtonian properties.
There are also sex related differences in the composition of blood which may affect the blood
viscosity, and thus also the viscous forces that blood exhibits on the vessels.

The average adult human body (70 kg) has about 5 liters of blood [18]. Its density is close
to water, approximately 1056 kg/m3 [19], which means that blood amounts to about 7-8%
weight of the average adult. The blood cells found in blood are red blood cells, white blood
cells and platelets. These elements are suspended in a liquid called plasma, which is mainly
water (about 92%) and proteins. Plasma accounts for 55% of whole blood by volume, and
behaves like a Newtonian fluid.

Of the remaining 45%, as much as 95% is red blood cells, and thus, the effects of platelets and
white blood cells on the rheology3 of blood are very small. The non-Newtonian characteristics
mainly arise from the interaction between red blood cells and some of their properties. The
percentage of blood volume accounted for by red blood cells, is referred to as the hematocrit
level. Typical hematocrit levels are 38-43 in normal blood, and values are typically lower
for women than for men. The hematocrit level also changes with age, especially in women
around menopausal age. A hypothesis made is that this change explains or partly explains

3Rheology is the study of flow of materials.
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2.2 Blood properties

Figure 2.2: Illustration of a core layer formed by red blood cells and a boundary consisting of
plasma.(Reprinted with permission from Kundu, Cohen: Fluid Mechanics, 4th edi-
tion. [20])

why women have a greater risk of aneurysm rupture. This hypothesis will be studied to some
extent in Section 7.5.

The viscosity of blood is, due to its composition, not constant as in a Newtonian fluid. At
low shear rates the red blood cells tend to connect and form microstructures called rouleaux.
As the shear rate increases, these formations are ripped apart, and the viscosity decreases.
This effect is a viscoelastic property of blood. The response to changes in shear rate are not
instantaneous, and thus defines a thixotropic response.

In arteries in and around the Circle of Willis, the shear rates are usually so high that these
formations no longer occur. However, the distribution of blood elements is not uniform. At
higher shear rates the red blood cells tend to form a core layer in the center of the vessels,
leaving a boundary layer of much less viscous plasma. This means that the viscosity increases
further away from the vessel wall. Because the shear rate is higher towards the walls of the
blood vessel, this can be seen as a shear thinning effect. It has been shown that this effect
is the predominant one in blood flow similar to ours [21], and thus, it is this effect which will
be the main focus in this thesis.

There are many different models for the viscosity of blood. Seven different non-Newtonian
viscosity models have been implemented in this thesis for comparison and analysis, and they
are all presented in Section 3.3.
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3. Modeling blood

3.1. Mathematical Model

The Navier-Stokes equations are the mathematical description of all fluid motion. The
equations are a system of partial differential equations which solves the pressure field p
and the velocity field u for any given fluid density ρ and kinematic viscosity µ, along with
boundary and initial conditions. They arise from the physical principles of conservation of
mass and momentum. In this section, the Navier-Stokes equations for incompressible flow
will be derived [20,22,23,24].

The main mathematical theorem needed to derive the Navier-Stokes equations is the following
theorem:

Theorem (Reynold’s transport theorem). Let Ω(t) ⊂ R3 be a material volume. Assume
f : Ω(t)× [0, T ]→ R and f differentiable. Then the following holds

d

dt

∫
Ω(t)

f(x, t) dΩ(t) =
∫

Ω(t)

∂f(x, t)
∂t

dΩ(t) +
∫

∂Ω(t)

f(x, t)u · n dS (3.1)

where u is the velocity of the material.

Conservation of mass

Now consider an arbitrary material volume Ω(t) ⊂ R3 filled with fluid without sources or
sinks. By the mass conservation principle we must have

d

dt

∫
Ω(t)

ρ dΩ(t) = 0

Applying Reynold’s transport theorem, we get
d

dt

∫
Ω(t)

ρ dΩ(t) =
∫

Ω(t)

∂ρ

∂t
dΩ(t) +

∫
∂Ω(t)

ρu · n dS = 0

By using Green’s theorem to the surface integral in the above expression to get∫
∂Ω(t)

ρu · n dS =
∫

Ω(t)

ρ∇ · u dΩ

we can reformulate the expression as a volume integral:∫
Ω(t)

∂ρ

∂t
+ ρ∇ · u dΩ(t) = 0.
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3.1 Mathematical Model

For this to be true for an arbitrary volume Ω(t), the expression inside the integral must be
equal to zero. In the special case of incompressibility ρ is constant, and we are left with the
continuity equation for an incompressible fluid,

∇ · u = 0. (3.2)

Conservation of momentum

Consider again the material volume Ω(t), and assume constant density. Newton’s second
law of motion states that the time derivative of the linear momentum of the system is equal
to the sum of forces acting upon it:

d

dt

∫
Ω(t)

ρu dΩ(t) =
∑

F. (3.3)

Applying Reynold’s transport theorem elementwise to the left hand side, and then integration
by parts to the surface integral yields

d

dt

∫
Ω(t)

ρu dΩ(t) =
∫

Ω(t)

∂(ρu)
∂t

dΩ(t) +
∫

∂Ω(t)

(u · n)ρu dS

=
∫

Ω(t)

∂(ρu)
∂t

dΩ(t) +
∫

Ω(t)

ρu · ∇u + ρ(∇ · u)u dΩ(t)

=
∫

Ω(t)

ρ
∂u
∂t

+ ρu · ∇u dΩ(t)

where the continuity equation ∇ · u = 0 is used in the last step.

The forces acting on the fluid can be either body forces denoted as f (e.g. gravity) or surface
forces (pressure, viscous forces), given as the Cauchy stress tensor, which is defined as

σ(u, p) = 2µε(u)− pI

where

ε(u) = 1
2
(
∇u + (∇u)T

)
,

i.e., the symmetric gradient.

Following Newton’s third law of motion, the surface force at a surface within our volume is
counterweighted by an opposite surface force. Thus, the only contribution to the system as
a whole we get from surface forces, are from the surface itself. We can then write the sum
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3.2 Units

of forces as ∑
F =

∫
Ω(t)

f dΩ(t) +
∫

∂Ω(t)

σ · n dS

=
∫

Ω(t)

f +∇ · 2µε(u)−∇p dΩ(t)

by using Green’s theorem. Hence we have two volume integrals who should be equal for an
arbitrary volume, meaning that the integrands must be exactly equal. We are thus left with

ρ

(
∂u
∂t

+ u · ∇u
)

= f +∇ · 2µε(u)−∇p (3.4)

∇ · u = 0 (3.5)

which are known as the Navier-Stokes equations for an incompressible flow.

3.2. Units

The units used for blood modeling differ through literature. Most commonly used is the
standard SI units or the cgs (centimetre-gram-second) system. Some non-SI units are also
common, in particular the mmHg unit for measuring blood pressure, which is commonly
used in medicine. In this thesis, the length unit is chosen as millimetre to best get a grasp
of the size of the arteries modelled. The mass unit is chosen as grams to keep a conversion
factor (from SI units) of 1 for the Pascal unit used to measure pressure and shear stress.

Quantity Unit Unit symbol
Length Millimetre mm
Mass Gram g
Time Second s

(a) Base units.

Quantity SI Unit Used unit Conversion factor
Velocity m

s
mm
s 103

Pressure Pa = kg
m·s2

g
mm·s2 1

Stress Pa = kg
m·s2

g
mm·s2 1

Mass density kg
m3

g
mm3 10−6

Dynamic viscosity Pa · s = kg
m·s

g
mm·s 1

Kinematic viscosity m2

s
mm2

s 106

(b) Derived units.

Table 3.1: Units used.
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3.3 Viscosity Models

3.3. Viscosity Models

As mentioned in Section 2.2, the viscosity of blood displays some non-Newtonian effects, in
particular that blood is a shear-thinning fluid. Thus, the viscosity depends on the shear rate,
which is given by

γ̇ =
√

2‖ε(u)‖F
where ‖ · ‖F denotes the Fröbenius norm.

from dolfin import *

class ViscosityModelBase:
#Base class for all viscosity models
def __init__(self,options,mesh):

#Store options
self.options = options

#Common viscosity model parameters
self.rho = self.options["rho"] #g/mm^3

self.mesh=mesh
self.scalar = FunctionSpace(mesh, "DG", 0)
self.nu = Function(self.scalar)

def gamma(self,u):
# Returns the shear rate
return pow(0.5*inner(grad(u)+transpose(grad(u)),

grad(u)+transpose(grad(u))), 0.5)

Listing 3.1: Implementation of the base class common for all viscosity models.

To simulate the properties of blood flow as well as possible, several models for the viscosity
have been implemented. Seven different non-Newtonian models will be studied in this thesis,
and a direct comparison between them can be seen in Figure 3.1, which shows the viscosity
as a function of γ̇.

Of the seven models, five use parameters collected from the same data set. These incorporate
asymptotic viscosities for zero and infinite shear stress, and an overview of the models along
with their respective material parameters are given in Table 3.2. The other two, a Casson
type model and a power-law model, both incorporate the hematocrit level to predict the
viscosity.

The power-law type model implemented, has a viscosity function given by

µ = kγ̇(n−1). (3.6)
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3.3 Viscosity Models

Model µ(γ̇)−µ∞
µ0−µ∞ Material constants

Powell-Eyring sinh−1(λγ̇)
λγ̇ λ = 5.383 s

Cross 1
1+(λγ̇)m λ = 1.007 s, m = 1.028

Modified Cross 1
(1+(λγ̇)m)a λ = 3.736 s, m = 2.406, a = 0.254

Carreau (1 + (λγ̇)2)(n−1)/2 λ = 3.313 s, n = 0.3568

Carreau-Yasuda (1 + (λγ̇)a)(n−1)/a λ = 1.902 s, n = 0.22, a = 1.25

Table 3.2: Parameters for five of the seven viscosity models for blood, with µ0 = 0.056Pa s and
µ∞ = 0.00345Pa s. Material parameters have all been collected from [25].

An extension of this model to be used in blood modeling has been developed by Walburn
and Schneck [26]. This incorporates the hematocrit level as a parameter by using

k = C1e
C2H

n = 1− C3H

where H is the hematocrit fraction, and C1, C2 and C3 are constants chosen from viscometer
data4 as

C1 = 0.00148, C2 = 5.12, C3 = 0.499.

The main weakness of this model is that it does not incorporate an asymptotic viscosity
when the shear rate tends to infinity. Thus, this model might predict an unphysical viscosity
at high shear rates.

The final model implemented is a Casson model. The Casson equation for viscosity in a
shear thinning fluid is given as [27,28]

µ = τy
γ̇

+
2√µ∞

√
τy√

γ̇
+ µ∞ (3.7)

where τy is the yield stress of blood. The Casson model parameters can be modified to
incorporate plasma viscosity, cell rigidity and hematocrit level in the following ways [29,30]:

τy = 0.02687H3 µ∞ = η0Tk(1−H)−2.5

where the plasma viscosity is chosen to be η0 = 0.00145Pa s [31] and the cell rigidity index
number is chosen to be Tk = 0.62 [32,33]. Unless noted otherwise, the hematocrit (H) will be
kept constant at 40%.

4A viscometer is an instrument to measure the viscosity of a fluid.
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3.4 Initial Conditions

from viscosityModelbase import *

class ViscosityModel(ViscosityModelBase):
"Carreau viscosity model"

def __init__(self,options,mesh):
ViscosityModelBase.__init__(self,options,mesh)

# Model-specific parameters
self.l = 3.3135
self.n = 0.3568

# Asymptotic viscosities
self.mu_0 = 0.056 #Pa*s
self.mu_inf = 0.00345 #Pa s

def __call__(self,u):
gamma = self.gamma(u)

mu = (1.0+(self.l*gamma)**2.0)**((self.n-1)/2.0)
*(self.mu_0-self.mu_inf)+self.mu_inf

self.nu.assign(project(mu/self.rho, self.scalar))

return self.nu

Listing 3.2: Implementation of the Carreau viscosity model.

Note from the implementations seen in Listing 3.1 and Listing 3.2 that the viscosity is
projected onto a Discontinuous Galerkin (DG) function space of order 0. In other words, in
the implementation, the viscosity is assumed to be locally Newtonian.

3.4. Initial Conditions

In order to solve the Navier-Stokes equations, we need to prescribe initial conditions at a
time t = t0 for both the velocity and the pressure. How these initial conditions are chosen
is not very significant, as the solutions will tend to "forget" the initial state of the fluid as
simulations run. However, one should at least use initial conditions which satisfy the Navier-
Stokes equations. One possibility is to choose a steady-state solution as initial conditions,
but for simplicity the initial conditions used in this thesis are simply u = 0 and p = 0, and
then allowing the simulations to run long enough to "forget" the initial state.
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3.5 Boundary Conditions

Figure 3.1: Plots of viscosity versus shear rate for the different viscosity models.

For the simulations where a pulsatile flow is studied, the simulations are run for 3 cardiac
cycles to reach a periodic flow, and results are reported from the fourth cycle.

3.5. Boundary Conditions

At the vessel walls the no-slip condition is imposed. That is, because of molecular adher-
ence between the fluid and the wall, the velocity relative to the wall will be equal to zero.
Throughout this thesis, we will only work with rigid walls, meaning that the no-slip condition
reduces to u = 0 at the wall. The assumption of rigid walls is clearly a simplification, as
blood vessels respond to the blood flow by expanding and contracting. However, the walls in
cerebral aneurysms are much stiffer than their surrounding arteries [34], which to some extent
validates the assumption. Using elastic walls would also be much more computationally de-
manding, and there is little data quantifying the responsiveness of the vessel walls in cerebral
aneurysms.

At the outlets, homogeneous Neumann conditions are prescribed for the velocity (∇u·n = 0).
The pressure is prescribed by using a resistance boundary condition, taking into account the
physiology of arteries downstream . The resistance boundary condition is given as

p = p̂+ C

∫
Ω

(u · n) dS
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3.5 Boundary Conditions

def boundary_conditions(self, V, Q, t):
#Create boundary conditions.
bv0 = DirichletBC(V, Constant((0.0,0.0,0.0)), self.bc_markers,1)
bv1 = DirichletBC(V, self.inflow_function, self.bc_markers,2)
bp0 = DirichletBC(Q, Constant(0), self.bc_markers,3)

bcu = [bv0,bv1]
bcp = [bp0]
return bcu, bcp

Listing 3.3: Implementation of the boundary conditions on simple geometries with a single outlet.

Artery C (Pa · s ·mm−3) Radius (mm)
Thoracic artery 0.18 9.99
External Carotid Artery 5.43 1.50
Middle Cerebral Artery 5.97 1.43
Anterior Communicating Artery 8.48 1.20
Posterior Communicating Artery 11.08 1.05

Table 3.3: Resistance boundary coefficients.

where p̂ is the mean intracranial pressure. This is set equal to 0 because the incompressible
Navier-Stokes equations only depend on the pressure gradient, and not on the pressure itself.
The value of the coefficient C for arteries of different sizes have been gathered from [35] and
is given in Table 3.3. Note how this constant increases with decreasing radius. For the
simple models with only one outlet, homogeneous Dirichlet conditions are prescribed for the
pressure.5

As an inflow condition both a prescribed pressure and a prescribed velocity has been con-
sidered. Prescribing a pressure at the inlet would depend on the viscosity model, because
the pressure drop will depend on the internal forces, which is a function of the viscosity.
Also, since there have been better access to velocity measurements and velocity profiles,
a velocity inlet condition was chosen. As a fully developed laminar flow velocity profile is
parabolic (see Section 5.1), a parabolic inlet profile has been imposed on all simulations
throughout this thesis. For modeling the blood flow in the Circle of Willis, this simplification
is shown to be a decent approximation, given a sufficient entrance length [36]. In simulations
on aneurysm geometries, a time-dependent pulsatile inflow condition was used to scale the
parabolic velocity profile.

In Section 7, we investigate how some of the assumptions made on the boundary conditions
may affect the solution.

5Because of a scaling error in the implementation discovered late in the process, the resistance boundary
condition intended in Section 6 was effectively a homogeneous Dirichlet condition instead.
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3.6 Stress Calculation

def OutflowBoundaryValue(self, i):
n = FacetNormal(self.mesh)
flux = dot(self.u,n)*ds(i)
Q = assemble(flux,mesh=self.mesh,

exterior_facet_domains=self.bc_markers)
C = 5.97
p0 = 0
R = C*Q+p0
return R

Listing 3.4: Implementation of the resistance boundary condition.

3.6. Stress Calculation

The WSS is calculated from the traction vector T , which in turn is defined from the stress
tensor σ as

T = σn.

The WSS is the viscous force working parallel to the vessel wall. That is, it is the tangential
component of the traction vector. Written in mathematical notation, the WSS-vector is
given as

τw = T − (T · n)n. (3.8)

Figure 3.2: Illustration of WSS.

The pressure is a force working perpendicular to the surface, and thus plays no role in wall
shear stress distribution. Hence we can neglect this term from σ in our computations to
increase efficiency. The implementation is seen in Listing 3.5.

In this thesis we only work with the magnitude of the WSS, and thus we from now on denote
the WSS as τw := ‖τw‖.
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3.7 Final Model

def compute_stress(self):
if self.stress is None:

DG = FunctionSpace(self.mesh,"DG",0)
self.tau = Function(DG)
m = TestFunction(DG)

scaling = 1/FacetArea(self.mesh)
n = FacetNormal(self.mesh)

#Stress calculation
sigma = self.rho*self.nu*(grad(self.u)

+ grad(self.u).T)
T = -sigma*n
Tn = inner(T,n) #Scalar
Tt = T-Tn*n #Vector

self.stress = scaling*m*sqrt(inner(Tt,Tt))*ds

assemble(self.stress, tensor = self.tau.vector())

return self.tau

Listing 3.5: Implementation of the WSS calculation.

3.7. Final Model

Assumptions made on the final model are

• Body forces such as gravity are negligible

• Rigid and no-penetration walls

• Incompressibility

• The thixotropy of blood is negligible, i.e. the viscosity is not time-dependent

• A locally Newtonian viscosity

• Isothermal flow
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3.7 Final Model

The final model we end up with is thus

∂u
∂t

+ u · ∇u = ∇ · 2νε(u)− 1
ρ
∇p

∇ · u = 0
u(x, 0) = 0
p(x, 0) = 0


for x ∈ Ω

u = 0 for x ∈ Γw
u = u0 for x ∈ ΓI
p = p0 for x ∈ ΓO

where ν = µ
ρ is the kinematic viscosity, Ω is our domain and Γw, ΓI , ΓO are the vessel wall,

the inlet and the outlet(s), respectively, whose union is ∂Ω and intersection is empty.
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4. Numerical methods

4.1. Incremental Pressure Correction Scheme (IPCS)

Reconsider the Navier-Stokes equations for incompressible fluid flow:
∂u
∂t + u · ∇u = ∇ · 2νε(u)− 1

ρ∇p
∇ · u = 0

}
for x ∈ Ω. (4.1)

The Navier-Stokes equations are difficult to solve due to their nonlinear nature, the combina-
tion of a hyperbolic and a parabolic term, constraints on the solution, and the fact that there
are two unknowns present. There are several algorithms designed to deal with these issues,
and their performance in terms of speed and accuracy depend very much on the nature of
the problem. However, according to tests on a variety of problems, the Incremental Pressure
Correction Scheme (IPCS), has proved to be a relatively good approach [37].

The IPCS is an operator-splitting algorithm. This is done by using a known approximation
to the pressure in (4.1), and thus removing one unknown from the equation. We start by
discretizing in time. The time discretization is done using the backward Euler difference
scheme, u̇ ≈ un−un−1

∆t . The non-linear terms can be linearized in several ways. By evaluating
the convection semi-implicit as un−1 · ∇un instead of fully explicit, the CFL-constraint6 is
much less restrictive on the choice of time stepping in terms of stability. Evaluating the
viscosity as ν := ν(un−1), we are left with a linearized set of equations to be solved at each
time step, known as the Oseen equations:

un + ∆tun−1 · ∇un −∆t∇ · 2νε(un) + ∆t
ρ
∇pn = un−1

∇ · un = 0.
(4.2)

However, pn is still unknown here. We wish to find an approximated value for the velocity
field, u∗ ≈ un, by replacing pn with the known pn−1 in the equation above. We are thus
left with the simpler equation

u∗ + ∆tun−1 · ∇u∗ −∆t∇ · 2νε(u∗) + ∆t
ρ
∇pn−1 = un−1. (4.3)

The divergence-free condition on u∗ is not needed to solve this equation, but we are still
interested in finding a solution un that is divergence-free. By defining a function for the
velocity correction as uc = un − u∗, it is clear that by subtracting (4.3) from (4.2), and
noting that ∇ · un = 0⇒ ∇ · uc = −∇ · u∗, we get a new set of equations for uc:

uc + ∆tun−1 · ∇uc −∆t∇ · 2νε(uc) + ∆t
ρ
∇Φn = 0

∇ · uc = −∇ · u∗
(4.4)

6The Courant-Friedrichs-Lewy (CFL) condition describes the limitations on the time stepping based on the
flow velocity and the spatial discretization.
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4.2 The Finite Element Method (FEM)

where Φn = pn − pn−1. However, the operator splitting here is a first order approximation,
O(∆t). Thus, without decreasing the order of the approximation, we can simplify the above
equations to the following:

uc + ∆t
ρ
∇Φn = 0

∇ · uc = −∇ · u∗
(4.5)

which is reducible to a Poisson problem,

∆Φn = ρ

∆t∇ · u
∗. (4.6)

The boundary conditions used to solve this equations depend on the kind of boundary con-
ditions applied to the original problem. Solving this, the corrected pressure and velocity field
are easily calculated through pn = Φn + pn−1 and un = u∗ − ∆t

ρ ∇Φn.

Quickly summarized, the IPCS is done in four steps:

1. Calculate the tentative velocity u∗ by replacing the unknown pressure pn with the
known approximation pn−1.

2. Solve the Poisson equation ∆Φn = ρ
∆t∇ · u

∗, where Φn = pn − pn−1.

3. Calculate the corrected pressure pn = Φn + pn−1.

4. Calculate the corrected velocity un = u∗ − ∆t
ρ ∇Φn.

4.2. The Finite Element Method (FEM)

In many areas of science, partial differential equations (PDEs) needs to be solved. An
analytical approach to solving these may be very difficult, time demanding and in many cases
exact solutions are non-existent. Numerical methods are used to approximate a solution to
a given PDE. Where exact solutions often are required to lie in infinite dimensional function
spaces, a numerical solution is found in a function space with finitely many degrees of
freedom.

The Finite Element Method (FEM) is a method for solving differential equations. Compared
to the more common finite difference method, it may seem more difficult to grasp, but it has
its clear advantages. Its main advantage is how it can be adapted to complicated domains
with varying mesh size. Using FEniCS to implement this method also provides a very simple
way to vary the geometry over which the equations are to be solved. For the applications
needed in this thesis, this property comes in very handy, as the domains studied range from
simple two-dimensional channels to complex three-dimensional models of blood vessels.

Given a PDE, the Finite Element Method follows a few steps:

1. Define the weak form of the equation.

2. Discretize the domain and define a finite dimensional function space in which to search
for an approximate solution.
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4.2 The Finite Element Method (FEM)

3. Define the discretized weak form of the equation.

4. Reduce the problem to a system of algebraic equations.

5. Solve or approximate a solution of the algebraic equations.

A general partial differential equation can be expressed as

Find u ∈ V such that
Lu = f (4.7)

where V is a function space, L : V → V ′ is a spatial differential operator and f ∈ V ′. The
weak form is then found by introducing a suitable test space V̂ and defining a bilinear and
linear form

a(u, v) := [Lu](v)
(f, v) := f(v)

and writing the problem as

Find u ∈ V such that
a(u, v) = (f, v) ∀v ∈ V̂ (4.8)

If u solves this equation, we say that u is a weak solution to the original equation. The weak
solution is (generally) found in an infinite dimensional function space (e.g. a Sobolev space).
Thus, for the numerical approach, we need to find a finite dimensional subspace in which to
search for an approximate solution. That is, we want to move from the infinite dimensional
problem (4.8) to the finite dimensional problem

Find u ∈ Vh such that
a(u, v) = (f, v) ∀v ∈ V̂h (4.9)

where Vh ⊂ V , dimV̂h <∞ and dim(Vh) <∞.

The process of finding these finite dimensional subspaces are where the finite elements are
introduced. A commonly used definition is the one introduced by Ciarlet [38], and given here
as in Brenner, Scott [39], along with a definition for the nodal basis:
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4.2 The Finite Element Method (FEM)

Definition (Finite element). Let

(i) K ⊆ Rn be a bounded closed set with nonempty interior and piecewise smooth bound-
ary (the element domain),

(ii) PK be a finite-dimensional space of functions on K (the space of shape functions)
and

(iii) NK = {N1, N2, . . . , Nk} be a basis for P ′K (the set of nodal variables)

Then (K,P,N ) is called a finite element.

Definition (Nodal basis). Let (K,P,N ) be a finite element. The basis {φ1, φ2, . . . , φk} of
P dual to N (i.e. Ni(φj) = δij)is called the nodal basis of P.

By using these two definitions, we can discretize our domain Ω. We discretize by choosing
τ = {(K,P,N )1, (K,P,N )2, . . . , (K,P,N )k} such that⋃

i=1,...,n
Ki = Ω

and

int(Ki)
⋃
int(Kj) = ∅ for i 6= j.

The set of PK ’s is then a finite dimensional function space over Ω, denoted by Vh, in which
we can search for an approximate solution. By inserting an anzats, uh =

∑
Uiφi, for the

formulation of our approximated solution and replacing the test function with an arbitrary
basis function φj we can write out the problem as a variant of (4.9)

Find uh ∈ Vh such that

a(uh, φj) = (f, φj), j = 1, . . . , n (4.10)

where Vh ⊂ V , dimV̂h <∞ and dim(Vh) <∞.

This equation can then be reduced into a finite number of algebraic equations, which can
then be solved to find our approximated solution.
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4.3 FEM applied to IPCS

4.3. FEM applied to IPCS

Let u,v be vectors, A,B be matrices and n be the outward pointing normal on the domain
Ω. For this section, we introduce the following notation:

Notation Meaning
〈u,v〉

∫
Ω u · v dx

〈An,v〉∂Ω
∫
∂ΩAn · v dS

〈A,B〉
∫

Ω tr(ABT ) dx

Weak formulation

To apply the finite element method to IPCS, we need to define the weak formulation of
equation (4.3) and (4.6) to obtain our linear and bilinear forms. For simplicity, we write u
instead of u∗. We start by rewriting (4.3) as

1
∆tu + un−1 · ∇u−∇ · 2νε(u) = 1

∆tu
n−1 − 1

ρ
∇pn−1 (4.11)

To find the weak formulation for this equation, we multiply with a test function v and
integrate over the domain. For simplicity, the weak formulation of the left hand side and
right hand side are done separately.

LHS of (4.11):

a1(u,v) =
∫
Ω

( 1
∆tu + un−1 · ∇u−∇ · 2νε(u)

)
· v dx

= 1
∆t

∫
Ω

u · v dx +
∫
Ω

(un−1 · ∇u) · v dx−
∫
Ω

∇ · 2νε(u) · v dx

= 1
∆t 〈u,v〉+

〈
un−1 · ∇u,v

〉
+
∫
Ω

tr (2νε(u)∇v) dx−
∫
∂Ω

ν∇un · v dS

−
∫
∂Ω

ν(∇u)Tn · v dS

= 1
∆t 〈u,v〉+

〈
un−1 · ∇u,v

〉
+ 〈2νε(u),∇v〉 −

〈
ν(∇u)Tn,v

〉
∂Ω
.

Note that the term
∫
∂Ω ν∇un ·v dS vanishes. This is because the test function v is defined

to be identically equal to zero on the part of the boundary where Dirichlet conditions are
imposed, and homogeneous Neumann conditions are applied to the velocity on the remaining
parts of the boundary.
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4.3 FEM applied to IPCS

RHS of (4.11):

L1(v) =
∫
Ω

( 1
∆tu

n−1 −∇pn−1
)
· v dx

=
∫
Ω

1
∆tu

n−1 · v dx−
∫
Ω

∇pn−1 · v dx

= 1
∆t

〈
un−1,v

〉
+
∫
Ω

pn−1∇ · v dx−
∫
∂Ω

pn−1v · n dS

= 1
∆t

〈
un−1,v

〉
+
〈
pn−1,∇ · v

〉
−
〈
n, pn−1v

〉
∂Ω

Equation (4.6) written can be written in weak form by multiplying with a scalar test function
q and integrating over the domain:

a2(Φn, q) =
∫
Ω

q∆Φn dx

= −
∫
Ω

∇Φn · ∇q dx +
∫
∂Ω

q∇Φ · n dS

= −
∫
Ω

∇Φn · ∇q dx−
∫
ΓI

q
ρ

∆tu
c · n dS −

∫
ΓW

q
ρ

∆tu
c · n dS +

∫
ΓO

q∇Φ · n dS

= −
∫
Ω

∇Φn · ∇q dx

L2(q) =
∫
Ω

q
ρ

∆t∇ · u
∗ dx

The surface terms vanishes from a2 because uc|ΓW
≡ 0, uc|ΓI

≡ 0 and the Dirichlet
boundary condition prescribed for the pressure on the outlet, results in q|ΓO

≡ 0.

Both weak forms are now in the form formalized in (4.8). The uniqueness of a solution
follows from the Lax-Milgram theorem. Notice how the degree of the derivative reduces
from the original problem. Hence, the notation weak formulation. For Φ and u to solve
these equations, they must lie in the Hilbert spaces

H1(Ω) =
{
v : Ω→ R

∣∣∣∣ ∫
Ω

‖v‖2 + ‖∇v‖ dx <∞
}

(4.12)

H1(Ω) =
{

v : Ω→ Rd
∣∣∣∣ vi ∈ H1(Ω) for i = 1, . . . , d

}
. (4.13)

Finite element formulation

We have unlimited choices of finite dimensional function spaces in which to search for our
solution, but we will focus only on two. The partitioning τ of the domain is done by
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4.3 FEM applied to IPCS

# Define function spaces
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)

# Test and trial functions
v = TestFunction(V)
q = TestFunction(Q)
u = TrialFunction(V)
p = TrialFunction(Q)

#Tentative velocity
a11 = (1/k)*inner(v,u)*dx
a12 = 2.0*inner(epsilon(v), nu*epsilon(u))*dx \

-inner(v, nu*grad(u).T*n)*ds
a13 = inner(v, grad(u)*u0)*dx

L1 = (1/k)*inner(v,u0)*dx \
+1/rho*inner(epsilon(v), p0*Identity(u.cell().d))*dx \
-1/rho*inner(v, p0*n)*ds

# Pressure correction
a2 = inner(grad(q), grad(p))*dx
L2 = inner(grad(q), grad(p0))*dx - rho*(1/k)*q*div(u1)*dx

# Velocity correction
a3 = inner(v, u)*dx
L3 = inner(v, u1)*dx - k/rho*inner(v, grad(p1 - p0))*dx

Listing 4.1: Implementation of the weak formulation.

simplexes Ki, i.e. triangles or tetrahedra, dependent on the dimension of the domain. Over
each simplex, one defines polynomials of degree one or two, P1 or P2. These are known
as Lagrange elements, and are illustrated in Figure 4.1. From this, we can define finite
dimensional function subspaces of the Hilbert spaces introduced in the previous section,
namely

CGq =
{
v : Ω→ R

∣∣∣∣ v ∈ H1(Ω) and v|Ki ∈ Pq for Ki ∈ τ
}

(4.14)

CGq =
{

v : Ω→ R
∣∣∣∣ v ∈ H1(Ω) and v|Ki ∈ [Pq]d for Ki ∈ τ

}
. (4.15)

CG denotes Continuous Galerkin. The condition that any function of CGq or CGq lies in a
Hilbert space is what makes them continuous.
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4.3 FEM applied to IPCS

Figure 4.1: First and second order Lagrange elements for 2 and 3 dimensions (taken from [40]).

The polynomials are evaluated at nodes at each simplex. Each node has a corresponding
basis function, which is defined to equal 1 at the node, and zero at all other nodes. Because
of these basis functions, we can make an anzats of our solution to be linear combinations of
these, i.e.

uh =
N∑
i=1

Uiφi

Φh =
M∑
i=1

Φiζi,

where Ui and Φi are unknown. Since our solution must satisfy our weak form for all v and
q, they must in particular satisfy the equation for arbitrary test functions φj and ζj . Thus,
we can write our finite dimensional problems as

a1(uh, φj) =
N∑
i=1

Uia1(φi, φj) = L1(φj)

a2(Φh, ζj) =
N∑
i=1

Φia1(ζi, ζj) = L2(ζj)
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4.3 FEM applied to IPCS

This is actually a system of linear algebraic equations. By writing Aij1 = a1(φi, φj), Aij2 =
a2(ζi, ζj), Lj1 = L1(φj) and Lj2 = L2(ζj) we can rewrite our problem as the matrix-vector
equations

A1U = L1

A2Φ = L2

where U and Φ are our unknown vectors.

The full implementation to solve the system in a time loop is seen in Listing 4.2. The assemble
calls create the matrices and vectors. Note that much of the assembly is done outside the
time loop. This is done to increase efficiency, and can be done to the parts of the system that
are not time-dependent. The full systems are solved using a generalized minimal residual
method along with an incompressible LU (ILU) or algebraic multigrid (AMG) preconditioner.
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4.3 FEM applied to IPCS

#Assemble matrices
A11 = assemble(a11)
A12 = assemble(a12)
A13 = assemble(a13)
A2 = assemble(a2)
A3 = assemble(a3)
A1 = A11+A12+A13
b = assemble(L1)

# Time loop
self.start_timing()
for t in t_range:

# Get boundary conditions
bcu, bcp = problem.boundary_conditions(V, Q, t)

# Update viscosity if needed, and reassemble
if(str(viscositymodel) is not "Constant"):

nu.assign(viscositymodel(u0))
assemble(a12, tensor=A12)

assemble(a13, tensor=A13)
A1.assign(A11+A12+A13)

# Compute tentative velocity step
assemble(L1, tensor=b)
[bc.apply(A1, b) for bc in bcu]
solve(A1, u1.vector(), b, "gmres", "ilu")
# Pressure correction
assemble(L2,tensor=b)
[bc.apply(A2, b) for bc in bcp]
solve(A2, p1.vector(), b, ’gmres’, ’amg_hypre’)
# Velocity correction
assemble(L3,tensor=b)
[bc.apply(A3, b) for bc in bcu]
solve(A3, u1.vector(), b, "gmres", "ilu")

# Update
self.update(problem, t, u1, p1,nu)
u0.assign(u1)
p0.assign(p1)

Listing 4.2: Solving the linear systems at each time step in a time loop.
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5. Verification of implementation and numerical experiments

To check the implementation for convergence and to check different properties of the ap-
proximations, we look at Newtonian laminar flow in straight tube and channel with radius
a. To these problems one can derive exact solutions of the Navier-Stokes equations, given
a set of boundary conditions. Since the focus of this thesis is the effects of WSS, the exact
solution for WSS is the benchmark of convergence.

In our test case, we use a simple model of the female middle cerebral artery (MCA) with
physical parameters gathered from [6,41], a commonly used Newtonian blood viscosity and a
high average velocity to stress test the stability of our model,

V = 750 mm/s
a = 1.21 mm
L = 20 mm
µ = 0.00345 Pa · s

where a is the radius and L is the length of the channel/tube. The corresponding Reynold’s
number7 is

Re = 2ρV a
µ
≈ 555.

The 2D-mesh is created from the FEniCS built-in mesh Rectangle. To get a 3D-mesh of a
cylinder where the refinement of the mesh could easily be changed, a modifiable mesh was
created from code using the FEniCS module MeshEditor. The source code of this can be
found in Appendix A.

5.1. Exact solutions

We start by deriving an exact solution for a straight, cylindrical tube with radius a. To
take advantage of the symmetry of the tube, the Navier-Stokes equations for a Newtonian,
incompressible fluid are rewritten in cylindrical coordinates [20] where x is the direction of the
tube

∂ur
∂t

+ (u · ∇)ur −
u2
θ

r
= −1

ρ

∂p

∂r
+ ν

(
∇2ur −

ur
r2 −

2
r2
∂uθ
∂θ

)
∂uθ
∂t

+ (u · ∇)uθ + uruθ
r

= − 1
ρr

∂p

∂θ
+ ν

(
∇2uθ + 2

r2
∂ur
∂θ
− uθ
r2

)
∂ux
∂t

+ (u · ∇)ux = −1
ρ

∂p

∂x
+ ν∇2ux.

(5.1)

In a fully developed, laminar flow in a straight tube, the flow is only in the direction of the
tube, and none of the variables depend on θ. We therefore denote the x-component of the
velocity simply as u from now on.

7The Reynold’s number is a dimensionless number which is the ratio of the inertial to the viscous forces.
Traditionally, a Reynold’s number of less than 2100 indicates laminar flow (as opposed to turbulent flow).
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5.1 Exact solutions

Figure 5.1: Laminar flow in a straight channel/cylinder.(Reprinted with permission from Kundu,
Cohen: Fluid Mechanics, 4th edition [20]).

The first momentum equation above reduces to

−∂p
∂r

= 0.

The pressure is thus only dependent of x. The third equation reduces to

−dp
dx

+ µ

r

d

dr

(
r
du

dr

)
= 0

The first term can only be a function of x and the second term can only be a function of r
(since the flow is assumed fully developed). Thus, both terms must be constant. Integrating
twice gives

u = r2

4µ
dp

dx
+A ln r +B.

The velocity must be bounded, hence, A=0. The no-slip condition at the wall (r = a) gives
B = a2

4µ
dp
dx . Thus, we are left with a parabolic velocity distribution across the tube of the

form

u = r2 − a2

4µ
dp

dx
(5.2)

The shear stress in cylindrical coordinates may be written as

τ = µ

(
∂ur
∂x

+ ∂u

∂r

)
.

In our special case, the shear stress distribution reduces to

τ = µ
du

dr
= r

2
dp

dx
.

Which means that the magnitude of the WSS is exactly equal

τw =
∣∣∣∣a2 dpdx

∣∣∣∣ (5.3)
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5.2 2D results

A two dimensional straight channel

The derivation above also applies for the 2D case of a straight channel. We can find dp
dx by

our average flow velocity, V , which is known through our inlet boundary condition, and can
be expressed as

V = 1
2a

a∫
−a

u dy = − a
2

6µ
dp

dx

Meaning that an exact solution of the WSS can be written as

τw = 3µV
a

Using our parameters, the exact WSS to an accuracy of 4 decimals is

τw = 6.4153 Pa. (5.4)

A three dimensional cylindrical tube

The average velocity in our fully developed flow can be written as

V = 1
πa2

a∫
0

2π∫
0

u dθ dr = − a
2

8µ
dp

dx
.

Meaning that in the three dimensional case, the WSS can be written as

τw = 4µV
a

which, in our test case, to an accuracy of 4 decimals, amount to

τw = 8.5537 Pa. (5.5)

5.2. 2D results

P2-P1 vs P1-P1

Two different sets of elements will be compared. P2-P1 elements denote a quadratic approx-
imation of the velocity fields (CG2) and linear approximation of the pressure field (CG1),
and P1-P1 denote a linear approximation for both the velocity field and the pressure field.
To compare P2-P1 against P1-P1 elements, we study the solution where the flow is fully
developed and has reached steady state. To ensure that the solution is fully developed, the
velocity inlet condition on the velocity is set to be parabolic. It is not known exact how long
it will take the solution to converge to a steady state solution (this depends on the fluids
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5.2 2D results

dt(s)\h(mm) 5.00e-1 2.50e-1 1.25e-1 6.25e-2
8.00e-2 7.37e-1 6.49e-2 2.34e0 6.89e0
4.00e-2 1.00e-3 2.02e-2 6.69e-2 1.56e-1
2.00e-2 2.00e-6 1.30e-5 3.40e-5 5.30e-5
1.00e-2 2.60e-5 1.90e-5 1.20e-5 2.50e-5
5.00e-3 1.30e-5 1.10e-5 1.20e-5 1.70e-5
2.50e-3 9.00e-6 8.00e-6 1.10e-5 1.70e-5
1.25e-3 1.40e-5 9.00e-6 1.00e-5 1.60e-5

Table 5.1: 2D-results for the relative error in WSS. P2-P1 elements.

dt(s)\h(mm) 2.50e-1 1.25e-1 6.25e-2 3.13e-2
8.00e-2 6.84e-1 5.03e-1 1.14e0 4.55e0
4.00e-2 8.76e-2 2.63e-2 2.47e-2 1.01e-1
2.00e-2 9.10e-2 4.18e-2 2.08e-2 1.02e-2
1.00e-2 9.10e-2 4.18e-2 2.07e-2 1.02e-2
5.00e-3 9.10e-2 4.18e-2 2.07e-2 1.01e-2
2.50e-3 9.10e-2 4.18e-2 2.07e-2 1.01e-2
1.25e-3 9.10e-2 4.18e-2 2.07e-2 1.01e-2

Table 5.2: 2D-results for the relative error in WSS. P1-P1 elements.

initial state), so a reference value time of T=0.265s was chosen by running the model at a
very fine time stepping.

The error reported is the relative L2-error of the WSS over a small area of the wall in the
middle of the channel. The cell size, h, is the smallest circumradius of a cell in the mesh,
and all meshes are practically uniform. Results of the P2-P1 and P1-P1 simulations can be
seen in Table 5.1 and Table 5.2 respectively. The meshes used in the P2-P1 simulations are
coarser, due to the fact that there are more unknowns per cell in P2-elements.

The results for P2-P1 elements are very close to the exact solution, and the deviation can
probably be explained by the numerical solution not being completely fully developed and
steady state. The P1-P1 elements show a nice, approximately linear convergence with h,
however, it does not compare to P2-P1 elements in terms of accuracy.

The time stepping seems to have relatively little influence on the convergence. We can only
see some signs of convergence in ∆t on the finest meshes on P2-P1 elements. This is hardly
a surprise, seeing as we only study a steady state solution. However the solution does need
to converge to this steady state, which it seems to do at a fairly large time step.
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5.2 2D results

Model WSS (Pa) Abs. deviation (Pa) Rel. deviation (%)
Newtonian 6.4153 0.0 0.0
Carreau 6.8690 0.4537 7.1
Carreau-Yasuda 6.6408 0.2255 3.5
Cross 6.4802 0.0649 1.0
Modified Cross 6.9653 0.5500 8.6
Powell-Eyring 6.5535 0.1382 2.2
Casson 6.2413 -0.1740 -2.7
Power-law 5.0620 -1.3533 -21.1

Table 5.3: Predicted WSS by the different non-Newtonian models.

WSS (Pa) Abs. deviation (Pa) Rel. deviation (%)
Newtonian 6.4153 0.0000 0.0
Diam. -15% 7.5474 1.1321 17.6
Diam. -10% 7.1281 0.7128 11.6
Diam. -5% 6.7529 0.3376 5.5
Diam. +5% 6.1098 -0.3055 -4.8
Diam. +10% 5.8321 -0.5832 -9.1
Diam. +15% 5.5785 -0.8368 -13.0

Table 5.4: Effects of geometric uncertainties.

Non-Newtonian models

To get an idea of the difference in WSS the different viscosity models will predict, all the
different models are implemented using the same parameters as for the Newtonian results in
the previous section. In these simulations, the convection term was set equal to zero, as this
ensured a fully developed flow profile in the relatively short channel. The results are seen in
Table 5.3.

As expected from Figure 3.1 the results deviate quite a bit from the Newtonian result. Only
the Casson and power-law models predict a lower shear stress than the Newtonian model.
Figure 5.2 shows the different fully developed velocity profiles for the Modified Cross and the
power-law model, as these differ most from the Newtonian result, and the Casson model. As
shown, the velocity profile of the non-Newtonian viscosity models are somewhat flattened.
Note how even though the difference between the velocity profiles may seem very small, the
difference in WSS may still be significant.
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5.2 2D results

Figure 5.2: Comparison of fully developed velocity profiles.

Geometric sensitivity

There is a lot of uncertainty related to the physical parameters when using patient specific
data. The resolution of the images taken of the brain may be very poor compared to the
actual size of the vessels of interest, and thus a source of error arise. With a resolution of 2
pixels/mm, it is not unreasonable to assume at least a measurement error that in our test
case would amount to 5-15% difference in the diameter of the vessel. Thus, we wish to see
how much effect on the WSS such geometrical uncertainty will have. The results can be
seen in Table 5.4. These results are directly comparable to the 3D-case, as can be seen from
the derivation of the exact solutions in Section 5.1.

We see that the geometric insecurity seems significant, and compared to the non-Newtonian
models this seems to dominate the significance of the non-Newtonian effects. However,
these are only preliminary results, and more care will be taken in addressing the matter in
Section 6.
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5.3 3D results

dt(s)\h(mm) 1.10e0 6.60e-1 4.00e-1 2.80e-1
8.00e-2 - - 1.96e-1 2.24e-1
4.00e-2 3.59e-1 - 1.04e-1 6.80e-2
2.00e-2 - - 7.35e-2 4.51e-2
1.00e-2 - 2.05e-1 8.06e-2 3.57e-2
5.00e-3 - 1.99e-1 9.05e-2 5.07e-2
2.50e-3 3.69e-1 2.03e-1 9.08e-2 5.20e-2
1.25e-3 3.70e-1 2.04e-1 9.08e-2 5.20e-2

Table 5.5: 3D-results for the relative error in WSS. P2-P1 elements.

dt(s)\h(mm) 4.00e-1 2.00e-1 1.50e-1 1.00e-1
8.00e-2 9.47e-2 1.51e-2 4.69e-2 1.39e-1
4.00e-2 1.04e-1 5.18e-2 3.91e-2 2.44e-2
2.00e-2 1.14e-1 6.43e-2 5.25e-2 3.87e-2
1.00e-2 1.10e-1 5.86e-2 4.80e-2 3.53e-2
5.00e-3 1.09e-1 5.58e-2 4.38e-2 2.87e-2
2.50e-3 1.07e-1 5.51e-2 4.30e-2 2.83e-2
1.25e-3 1.07e-1 5.52e-2 4.29e-2 2.83e-2

Table 5.6: 3D-results for the relative error in WSS. P1-P1 elements.

5.3. 3D results

P2-P1 vs P1-P1

The results for the three dimensional cylinder have been obtained in a similar fashion as
those for the two dimensional channel.

The results differ quite a bit from the 2D-results. This is because in this 3D-model, the
curvature of the cylinder wall needs many cells to be accurately described. Since this is the
case, the P1-P1 elements have a major advantage in that they are by far more computationally
efficient than the P2-P1 elements, and thus, more cells can be used. The effect this has on
the accuracy can clearly be seen in Table 5.5 and Table 5.6.

The convergence rate for the P1-P1 elements seems to be almost linear, whereas the P2-P1
elements seems to demonstrate a better convergence rate. Some instability were seen on the
lower resolution meshes for P2-P1 elements.
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5.4 Conclusions

Figure 5.3: Computational needs for three dimensional P2-P1- and P1-P1 elements.

Efficiency

Whether P2-P1 elements or P1-P1 elements are to be preferred depend on the efficiency. The
selected refinements for Table 5.5 and Table 5.6 are chosen such that their computational
needs are similar, and that they are within range of what is computationally possible with
larger models, i.e. aneurysm models. A comparison of the computational needs of the
different elements can be seen in Figure 5.3.

5.4. Conclusions

For the computational power available here, the P1-P1 elements are clearly favorable.

The time step needed seems quite large, but there are several things not taken into account in
these simulations. Both the operator splitting and linearization of the viscosity term introduce
errors of order of order O(∆t). Secondly, these simulations are run with a constant inflow
condition, rather than a pulsatile inflow, which will be used in our aneurysm simulations.
Therefore, a time step of ∆t = 1.25e − 3 is chosen for all simulations in the following
chapters.

44



6. Analysis of simulations on a single aneurysm

Many different factors might contribute to inaccuracies in our simulations. Both geometric
sensitivity and non-Newtonian effects have been mentioned and treated to some extent in
Section 5 but will be addressed again in this section. The effects of varying the hematocrit
level will also be studied in this section. The selected geometry on which to perform these
studies, is a saccular aneurysm located at the bifurcation of the middle cerebral artery, in a
female patient of age 70. It is a medium sized aneurysm with a volume of approximately
350mm3 and a diameter of 10mm. The aneurysm is known to have ruptured at a later time.

The aneurysm has been segmented from CT-images in three different ways, using VMTK [42].
This particular set of CT-images had a voxel size8 of 0.39mm x 0.39mm x 0.7mm.

This is a qualitative study in order to get an idea of what kind of differences arise between
different assumptions on geometry and viscosity. A quantitative approach to assess the effects
of the assumption of Newtonian vs non-Newtonian flow is done in Section 7.4. Similarly, a
quantitative approach to assessing the effect of a change in hematocrit is done in Section 7.5.

(a) Cross section (b) Isosurface (c) Zoom-in on aneurysm

Figure 6.1: The CT images which the aneurysm has been segmented from.

6.1. Models

Assumptions on flow

The aneurysm geometry studied differs from a typical "textbook" aneurysm geometry. As
CT images do not depict the flow velocity or direction of the flow, but merely an intensity,
the images provide an idea of where there is blood, but some assumptions need to be made
on where there is blood flow. The aneurysm is depicted from different angles with labeled
inflow and possible outflow in Figure 6.2.

The assumption made is that all the vessels around the aneurysm are in fact arteries, and
that the blood flows out through both outlets A,B and C, and that the arteries from B and

8Voxel size is the three dimensional equivalent to pixel size.
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6.1 Models

Figure 6.2: The aneurysm seen from two different angles

C reconnect downstream. Other possible interpretations are that blood flows out through
only A and C or only A and B, leaving the remaining arteries without a direct connection
with the aneurysm. This clearly demonstrates the uncertainty related to medical images of
a coarse resolution.

Generating the models

The CT image is a greyscale image, with high intensity levels where the blood concentration
is high, i.e., in arteries and veins. However, exactly where the limit for what is the inside of
a vessel and what is not is difficult to say. Thus, three different levels (100, 120, 140) have
been used as a lower threshold for what is to be interpreted as arteries when segmenting the
image. The upper and lower threshold is chosen at the extremes, such that it just captures
the basic geometry of the vessels. The middle value is chosen as the mean value of the two
extrema. All three thresholds seem to capture the basic geometry well.

(a) Low threshold (b) Medium threshold (c) High threshold

Figure 6.3: Outlines of the geometry for the different thresholds

To smoothen the surface, different VMTK [42] scripts were used. In the script vmtklevelsetseg-
mentation, the input parameters were chosen to preserve the characteristics of the geometry
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6.1 Models

(a) Low threshold (b) Medium threshold (c) High threshold

Figure 6.4: Final models

as

• NumberOfIterations: 300

• PropagationScaling: 0.15

• CurvaturScaling: 0.0

• AdvectionScaling: 1.0.

In the script vmtksurfacesmoothing the smoothing parameters were chosen as recommended
at the VMTK website, namely

• Passband: 0.1

• Iterations: 30.

The input parameters were the same for all models. A short cylindrical extension of approx-
imately one diameter was added to the inlets to enable a completely parabolic inlet profile.
The final models are depicted in Figure 6.4. Notice how the smoothing seem to have af-
fected the geometry by comparing Figure 6.3 to Figure 6.4. The final smoothed models
seem much more similar than the simple threshold segmentation, which might indicate that
the smoothing parameters are quite significant for the simulations. This matter will not be
addressed here.

The volumes of the low, medium and high threshold were 560, 571 and 558mm3 respectively.
Even with a possibility of some differences arising from clipping the surface at different places,
this clearly indicates that the three different thresholds have produced very similar geometries.

Meshes

The meshes created from the models were also created using VMTK. Efforts were made to
refine the resolution where most needed. That is, the aneurysm itself have a finer resolution
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6.2 Simulations

Figure 6.5: MCA velocity profile

than the inlet and outlets. This was done using the user-contributed script vmtkdijkstradis-
tancetopoints. A boundary layer was also added, as any errors occurring close to the wall
may give rise to significant errors in the calculation of WSS. The finale meshes were created
using the script vmtkmeshgenerator.

Inlets and outlets were marked using FEniCS Meshbuilder.

All three meshes have a total cell count of approximately 1,300,000 cells.

6.2. Simulations

The inlet velocity is set to be parabolic (see Section 3.5). The spatial peak velocity is
determined by using a pulsatile flow profile gathered from a similar-aged female patient
undergoing cerebrovascular treatment, at a heart rate of 75 bpm. It has been scaled to a
timed average of 575mm/s, which has been found to be an average flow velocity in the
MCA, in women over 60 [43]. The flow profile is depicted in Figure 6.5.

The WSS was of special interest. It was measured over the full aneurysm surface, which was
manually selected using Meshbuilder (see Figure 6.6). Efforts were made to ensure that the
equivalent areas were marked in all three segmented geometries.

In the simulations where a Newtonian viscosity model is used, the viscosity is assumed to be
µ = 0.00345Pa · s.
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6.3 Visualization of results

Figure 6.6: Aneurysm marking seen from different angles.

6.3. Visualization of results

Paraview [44] was chosen to visualize the results. In the following sections both the velocity
changes and WSS changes are compared with respect to geometry, hematocrit levels and
non-Newtonian effects. Two different methods were chosen to compare the velocity. First,
a single point inside the aneurysm was chosen, and the velocity magnitude was measured
there for comparison through a full cycle. This point was assumed to be representative of
the aneurysm interior. Secondly, a slice in the middle of the aneurysm was extracted (see
Figure 6.7), where the velocity magnitude was compared at both systole and diastole. The
direction of the flow has not been compared in this chapter.

Figure 6.7: Slice through the middle of the aneurysm to compare the velocity magnitudes.

To compare the WSS, three different viewing angles were chosen to best view the difference
over the whole aneurysm dome.

In most visualizations, both the velocity magnitude and the WSS was compared relatively

49



6.4 Geometric effects

to reference values (uR , τR). These relative values was calculated as follows

DuR(u(x),x) = ‖u(x)‖ − ‖uR(x)‖
‖uR(x)‖

DτR(τ,x) = τ(x)− τR(x)
τR(x)

6.4. Geometric effects

To assess the geometric sensitivity, simulations were run using all of the three different
segmentations, with a Newtonian viscosity model. The reference values were chosen as the
results from simulations on the medium threshold geometry.

Velocity

Figure 6.8: The figure shows velocity magnitude measured at a point in the middle of the aneurysm,
for all three different geometries, over one full cycle.

The results seen in Figure 6.8 show surprisingly large deviations from the reference value,
particularly at systole. At end systole, the velocity magnitude for the high threshold are, for
a short period of time, over three times as large as the reference. One would expect the high
threshold geometry to predict higher velocities inside the aneurysm as the volumes of the
arteries and the aneurysm would be smaller. Similarly, one would expect lower velocities for
the low threshold geometry. However, the way the inlet condition has been set, this effect is
dampened by the reduction in cross sectional area at the inlet which affects the inlet flux of
the about 5% from the low threshold geometry to the high threshold geometry. It is however
possible to see a slight tendency of these velocity differences.
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6.4 Geometric effects

(a) Low threshold (b) Medium threshold (c) High threshold

Figure 6.9: The figure shows systolic velocity magnitude in a slice through the aneurysm for the
different geometries. The velocity magnitude ranges from 0 to 1000 mm/s.

(a) Low threshold (b) Medium threshold (c) High threshold

Figure 6.10: The figure shows diastolic velocity magnitude in a slice through the aneurysm for the
different geometries. The velocity magnitude ranges from 0 to 500 mm/s.

We see in Figure 6.9 and Figure 6.10 that the differences seen in Figure 6.8 is difficult to
see in this slice. There is very little difference overall, but particularly at diastole, the flow
patterns seem almost equal. Thus, even though there can be locally quite large deviations,
the general properties of the flow do not seem to change dramatically.

Wall shear stress

Figure 6.11 shows that the average WSS is hardly affected at all by the different geometries.
In fact, the largest deviation from the reference value at the medium threshold geometry
is below 5% over the full cycle. However, there is still a question whether the distribution
has changed. When considering the small changes seen in the velocity distribution, one
would not expect any major differences in WSS distribution either. Looking at the systolic
distribution of WSS in Figure 6.12, it is clear that this is in fact the case. Similar results can
be seen at diastole (Figure 6.13), hardly any change is seen in the distribution of WSS.
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6.5 Non-Newtonian effects

Figure 6.11: The figure shows average WSS measured over the aneurysm surface, for all three
different geometries, over a full cycle.

(a) Low threshold (b) Medium thresh-
old

(c) High threshold

Figure 6.12: The figure shows systolic WSS seen from different angles, for all three different geome-
tries. The range is from 0 to 40 Pa.

6.5. Non-Newtonian effects

To evaluate the non-Newtonian effects four different viscosity models were implemented. A
Newtonian viscosity model was chosen as a reference. The Casson model was chosen because
it incorporates hematocrit and a yield stress, and the Modified Cross and Power-law models
were chosen on basis of the results in Section 5, as these two showed the largest deviation
from the Newtonian WSS values (see Table 5.3 ).
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6.5 Non-Newtonian effects

(a) Low threshold (b) Medium thresh-
old

(c) High threshold

Figure 6.13: The figure shows diastolic WSS seen from different angles, for all three different ge-
ometries. The range is from 0 to 12 Pa.

Velocity

Figure 6.14: The figure shows velocity magnitude measured at a point in the middle of the aneurysm,
for all four different viscosity models, over a full cycle.

Looking at the velocity in the interior point in Figure 6.14, we see a generally nice cor-
respondence to the velocity profile applied to the inlet. However, there seem to be more
high-frequent changes at this point than at the inlet, which might indicate some instability
in the flow. One might expect that the shear-thinning behaviour of the implemented non-
Newtonian models would cancel out some of the high frequencies, but any such effects (if

53



6.5 Non-Newtonian effects

(a) Newtonian (b) Casson (c) Modified Cross (d) Power-law

Figure 6.15: The figure shows velocity magnitude at systole. (a) Shows the reference velocity magni-
tude for the Newtonian model used as reference. Top row of (b)-(d) shows the velocity
magnitude for the non-Newtonian models, and the bottom row of (b)-(d) shows the
relative magnitude difference for the non-Newtonian models, compared against the
Newtonian model. The velocity is ranging from 0 to 1000 mm/s, and the relative
magnitude is ranging from -30% to 30%.

present) are very hard to see.

From Figure 6.15 and Figure 6.16 we see that the local non-Newtonian effects might be
much more significant than what Figure 6.14 predicts. The relative differences between
the different models seem very large in parts of the aneurysm. Note that the large relative
differences occur mainly where the flow velocity is low. In the areas of high velocity, the
non-Newtonian effects are barely noticeable at all. Note also that there seem to be much
more significant differences in flow pattern at systole than at diastole. This corresponds well
with Figure 6.14, where there are clearly more high frequency difference at systole than at
diastole.

Wall shear stress

Figure 6.17 shows that the Casson and Modified Cross models both predict very similar av-
erage WSS compared to the Newtonian model. The power-law model predicts a significantly
lower WSS, and this is likely related to the lack of an asymptotic viscosity as the shear rate
increases. As the shear rates in these calculations reach as high as 20000s−1, it is no surprise
that it predicts quite different results compared to the other models.

When looking at a more detailed view, as in Figure 6.18 and Figure 6.19, we see that the
local differences might be very significant. The Casson-model predicts a very similar WSS
distribution to that of the Newtonian, with only a few smaller areas that are clearly different
from the Newtonian model. The Modified Cross seem to predict quite different result in
the areas of low WSS, and it seems to generally produce slightly higher WSS overall. The
power-law model predicts significantly lower WSS in areas of high WSS, and higher in areas
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6.5 Non-Newtonian effects

(a) Newtonian (b) Casson (c) Modified Cross (d) Power-law

Figure 6.16: The figure shows velocity magnitude at diastole. (a) Shows the reference velocity
magnitude for the Newtonian model used as reference. Top row of (b)-(d) shows
the velocity magnitude for the non-Newtonian models, and the bottom row of (b)-
(d) shows the relative magnitude difference for the non-Newtonian models, compared
against the Newtonian model. The velocity is ranging from 0 to 500 mm/s, and the
relative magnitude is ranging from -30% to 30%.

Figure 6.17: The figure shows average WSS measured over the aneurysm surface, for all four viscosity
models, over a full cycle.

of low WSS.

Comparing systole to diastole, the models seem to agree much more at diastole than at
systole, as expected from the results regarding the velocity differences.
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6.5 Non-Newtonian effects

(a) Newtonian (b) Rel. Casson (c) Rel. Mod.
Cross

(d) Rel. Power-
law

Figure 6.18: The figure shows systolic relative differences in WSS, seen from different angles. Col-
umn (a) shows the Newtonian reference value. Columns (b)-(d) shows the differences
measure for the different viscosity models, relative to the Newtonian value.. The WSS
range from 0 to 40 Pa, and the relative differences range from -30% to 30%.

(a) Newtonian (b) Rel. Casson (c) Rel. Mod.
Cross

(d) Rel. Power-
law

Figure 6.19: The figure shows diastolic relative differences in WSS, seen from different angles. Col-
umn (a) shows the Newtonian reference value. Columns (b)-(d) shows the differences
measure for the different viscosity models, relative to the Newtonian value. The WSS
range from 0 to 12 Pa, and the relative differences range from -30% to 30%.
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6.6 Effects of different hematocrit levels

6.6. Effects of different hematocrit levels

To assess the effects of different hematocrit levels, the Casson model was implemented with
three different levels of hematocrit, 37.5%, 40% and 42.5%. The Casson model incorporates
the hematocrit level in both the yield stress and the asymptotic viscosity as the shear rate
increases. The results of the simulations run with a hematocrit value of 40% are selected as
the reference values, and the low and high hematocrit values are compared to these.

Velocity

Figure 6.20: Velocity magnitude measure at a point in the middle of the aneurysm for the different
hematocrit levels.

From Figure 6.20, it is difficult to see any clear tendencies in the blood velocity inside
the aneurysm. However, at late diastole and early systole, it seems as though the higher
hematocrit predicts higher velocities. This is in one way surprising, as the higher hematocrit
yields higher viscosity, and would thus intuitively produce slower blood flow. However, in our
simulations, we do not prescribe any pressure at the inlet, and thus, the simulations might
compensate for a higher viscosity by predicting a higher pressure drop.

Studying the velocity magnitude in Figure 6.21 and Figure 6.22, we see again that there are
locally large differences, especially at diastole. We note that at the higher hematocrit the
blood flow is seemingly less chaotic, i.e., the velocity gradient seems smaller. At diastole, we
see results contradicting the results seen in Figure 6.20, as the blood velocity seems slightly
higher for the low hematocrit flow, than the high hematocrit flow. This is evidence that
studying local changes might not tell the full story.
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6.6 Effects of different hematocrit levels

(a) Reference hematocrit (b) Low hematocrit (c) High hematocrit

Figure 6.21: The figure shows velocity magnitude at systole, ranging from 0 to 1000 mm/s. On the
left is the reference velocity magnitude with a hematocrit level of 40%. The top row
shows velocity magnitude at low and high hematocrit levels. The bottom row shows the
relative magnitude difference compared to the reference velocity, ranging from -30% to
30%.

(a) Reference hematocrit (b) Low hematocrit (c) High hematocrit

Figure 6.22: The figure shows velocity magnitude at diastole, ranging from 0 to 500 mm/s. On the
left is the reference velocity magnitude with a hematocrit level of 40%. The top row
shows velocity magnitude at low and high hematocrit levels. The bottom row shows the
relative magnitude difference compared to the reference velocity, ranging from -30% to
30%.
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6.6 Effects of different hematocrit levels

Wall shear stress

Looking at the average WSS through a full cycle in Figure 6.23, we see a clear tendency of
higher WSS at higher hematocrits. This is expected, as the higher hematocrit will predict
higher viscosity, and the WSS is expected to be proportional to the viscosity (see Section 5).
However, Figure 6.24 and Figure 6.25 clearly shows that locally, the effect may work opposite.
As noted on velocity, the higher hematocrit seems to produce a lower velocity gradient, and
thus might be responsible for lowering the WSS. This seems to be true in areas of low WSS,
but it does not seem to weigh up for the effects of heightened viscosity.

At the areas of high WSS, an increased hematocrit level predicts heightened WSS.

Figure 6.23: Average WSS measured over the aneurysm for the different hematocrit levels.
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6.6 Effects of different hematocrit levels

(a) Refer-
ence

(b) Relative
difference at
low hemat-
ocrit

(c) Relative
difference at
high hemat-
ocrit

Figure 6.24: The figure shows velocity magnitude at systole. (a) Shows the reference velocity mag-
nitude for the model using 40% hematocrit as reference. Top row of (b)-(c) shows
the velocity magnitude for the low and high hematocrit models, and the bottom row
of (b)-(c) shows the relative magnitude difference for the low and high hematocrits,
compared against the medium hematocrit model. The velocity is ranging from 0 to
1000 mm/s, and the relative magnitude is ranging from -30% to 30%.

(a) Refer-
ence

(b) Relative
difference at
low hemat-
ocrit

(c) Relative
difference at
high hemat-
ocrit

Figure 6.25: The figure shows velocity magnitude at diastole. (a) Shows the reference velocity
magnitude for the model using 40% hematocrit as reference. Top row of (b)-(c) shows
the velocity magnitude for the low and high hematocrit models, and the bottom row
of (b)-(c) shows the relative magnitude difference for the low and high hematocrits,
compared against the medium hematocrit model. The velocity is ranging from 0 to
500 mm/s, and the relative magnitude is ranging from -30% to 30%.
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7. Quantitative analysis

In this section four different effects are studied:

• Neglecting the shear thinning (non-Newtonian) behaviour of blood (Section 7.4).

• A heightened hematocrit level (Section 7.5).

• Increased flow velocity/flow rate at the inflow (Section 7.6).

• Using resistance boundary conditions, instead of constant pressure boundary conditions
at the outlets(Section 7.7).

A quantitative approach has been made, as 12 different saccular MCA aneurysms of different
types, sizes and shapes were used as test geometries. Methods for measuring the effects have
been derived, and the effects have been studied through one cardiac cycle on each aneurysm.

The studies done on increased hematocrit and increased inflow is motivated from a medical
point of view, and although the main focus here will be the errors this might introduce into
the numerical simulations, the results can also be regarded as preliminary research on how
these changes might affect aneurysm development.

All the results can be found in Section 7.4-Section 7.7. The perhaps most interesting results
are those produced by increasing the inlet flow (Section 7.6), as these were the results
that most consistently and significantly contradicted expectations by showing a much larger
increase in WSS than expected from known theory.

7.1. The aneurysms and meshes

All the 12 aneurysms studied have been segmented from CT images using VMTK, where
a user-contributed script (vmtkmeshclipcenterlines) was used to automate isolation of the
aneurysm dome, such that no error would arise from human discretion.9. An example of
this isolation is seen in Figure 7.1. The classification of the aneurysms, along with some key
properties associated with them, can be seen in Table 7.1.

All meshes have between 800,000 to 1,200,000 cells, so that the computational time required
would be similar. However, there are large density differences, as the average cell volumes
range from 1.27e-4 to 1.30e-3mm3.

7.2. Simulations

The simulations were run using the same inlet flow profile as depicted in Figure 6.5. Using
data from [43], we find that a suitable value for a time-averaged peak velocity is 695 mm/s,
and the inlet flow profile is scaled accordingly.

9This work had already been done in connection with a previous research project at Simula Research Labo-
ratory.
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7.3 Methods for measuring difference between solutions

Patient Classification Volume (mm3) Surface area (mm2) Ruptured
M1 Sidewall 212 193 No
M2 Bifurcation 33 61 No
M3 Bifurcation 54 80 Yes
M5 Sidewall 43 63 No
M8 Bifurcation 13 26 No
M9 Bifurcation 18 31 Yes
M11 Bifurcation 509 357 Yes
M12 Bifurcation 278 208 Yes
M15 Sidewall 33 59 No
M16 Bifurcation 265 236 Yes
M18 Bifurcation 24 50 No
M20 Bifurcation 251 197 No

Table 7.1: The table describes some important properties of the aneurysms studied.

(a) Full mesh (b) Segmented aneurysm

Figure 7.1: The figure shows how an aneurysm has been segmented from the mesh.

In all comparisons two different sets of solutions has been produced, one for each set of input
parameters. One is used as a reference to measure the effect in question.

As the simulations were run, the velocity field, pressure field and the WSS were saved in
XML-files at at every 5th time step, producing vector and scalar fields for further analysis over
one cardiac cycle. A script was later used to load these solutions, and calculate functionals
for the differences in WSS and velocity at each time step. The source code of this script can
be found in Appendix A. The isolation of the aneurysms is taken advantage of to mainly
study the solution and the WSS inside the aneurysm dome and on the aneurysm surface.

7.3. Methods for measuring difference between solutions

To measure the differences between the two sets of solutions produced, two metrics and
norms are introduced. One for the differences in the velocity field within the aneurysm
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7.3 Methods for measuring difference between solutions

dome, and one for the differences in WSS over the aneurysm surface. Both metrics require
that the WSS and the velocity field in one of the two sets of solutions is used as a reference,
denoted as (τR,uR). The WSS and velocity field of the solution to be compared against the
reference is denoted as (τC ,uC).

Velocity metric

The velocity metric is defined as

SuR(uC) = 1− βe−a − γe−m

where

a = 1
π

cos−1
( uR · uC
‖uR‖‖uC‖

)
0 ≤ a ≤ 1

m = ‖uR − uC‖
‖uR‖

0 ≤ m

and β + γ = 1 are weights, which here was chosen as β = γ = 1
2 . It is easy to see that a

large value corresponds to a large difference in the velocity field. This metric was calculated
at each vertex inside the aneurysm.

To get a measure for the difference in velocity field over the entire aneurysm, we introduce
the mean L1-norm of this metric,

Du = 1
VA

∫
ΩA

SuR(uC) dx,

= 1
VA
‖SuR(uC)‖

L1
(
ΩA

)
where ΩA is the aneurysm dome with corresponding volume VA.

Wall shear stress metric

The WSS metric was calculated at each facet as

TτR(τC) = 1− e−t

where

t =
∣∣∣∣τR − τCτR

∣∣∣∣ 0 ≤ t
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7.3 Methods for measuring difference between solutions

To get a measure for the difference in WSS, the mean L1-norm over the aneurysm surface
of this metric is applied,

Dτ = 1
SA

∫
∂ΩA

TτN (τC) dS,

= 1
SA
‖TτR(τC)‖

L1
(
∂ΩA

)
where ∂ΩA is the aneurysm surface with corresponding surface area SA.

Notes on the metrics

The two metrics introduced can be compared to a simpler approach, such as e.g. Ŝ =
βa+γm or T̂ = t. Where these measures are unbounded, the metrics S and T are bounded.
The WSS metric is bounded by 0 ≤ TτR(τC) < 1 and the velocity metric used is bounded by
0 ≤ SuR(uC) < 1− 1

2e
−1 ≈ 0.816. It is also clear that S < Ŝ and T < T̂ . This is a desired

effect, as any differences in areas of low velocity or low WSS might be given unjustifiable
focus using the metrics Ŝ or T̂ (small absolute difference, large relative difference).

Other

In the following sections, some simple statistics has been used to compare solutions, and
determine the significance of the results. This has been done by using the MatLab function
ttest10. All assumptions made and explanation of values used is found in the documentation
of this function. A significance level of 5% has been used.

In some sections the pressure drop over the aneurysm has been reported. This has been
calculated from "probe locations" one vessel diameter before and after the aneurysm, within
the artery. The average pressure drop is calculated as such:

∆p = 1
N

N∑
j=1

(pi − pj),

where pi is the pressure at inlet probe location, pj is the pressure at outlet j and N is the
number of outlets after the aneurysm.

10http://www.mathworks.com/help/toolbox/stats/ttest.html
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7.4 Non-Newtonian effects

7.4. Non-Newtonian effects

Only two different viscosity models have been considered, as an attempt has been made to
quantify the non-Newtonian effects. A solution using a Newtonian model has been used
as reference, and is compared to a solutions using the Casson model. To isolate the non-
Newtonian differences, it was important that the Casson model converged to the Newtonian
viscosity as the shear rate approached infinity. That way, the only differences occurring were
in fact due to the shear thinning and yield stress terms of the Casson model. Hence, by
using the Casson model as described in Section 3.3, we set the Newtonian viscosity to be
µ = µ∞, where µ∞ is the asymptotic viscosity of the Casson model (≈ 0.00322Pa s).

Results

Figure 7.3 shows the resulting difference measures, plotted against time. First of all, note
thatDu andDτ are quite different; in some of the aneurysms, they are as large as 0.2 for both
Dτ and Du. This suggests that the non-Newtonian effects might be of some significance in
some of the aneurysms, most notably in aneurysms M3, M5, M12 and M16. However, in
most of the aneurysms, the values of the norms are below or around 0.1, indicating much
less significant effects of the non-Newtonian properties.

The differences seem to be at their highest at diastole and/or early systole, where the
corresponding inlet velocity is at its lowest. The differences seem to be at their lowest at
peak systole. This might indicate that lower velocities increase the importance of the non-
Newtonian effects, but it is worth noting that not all the simulations show the same effect,
e.g., aneurysm M2 seem to have the highest differences at end systole.

Seeing as the differences between the aneurysms is quite large, efforts have been made to find
out why. A natural starting point was to measure the average shear rate in all aneurysms,
as this is how the viscosity models differ. Comparisons of the average shear rate to time-
averaged Du and Dτ , can be seen in Figure 7.2, and they are quite compelling. As expected
from the shear thinning nature of the Casson model, the differences are clearly largest in the
aneurysms which predicts the lower shear rate. There are some deviations to this tendency,
e.g. the small differences measured at a shear rate of approximately 140s−1. It seems as
though the non-Newtonian effects are negligible when the average shear rate exceeds 500s−1,
but since our simulations only predicted three geometries with these kinds of shear rates,
there is not enough data to draw any certain conclusions. However, there is a very strong
indication that the non-Newtonian effects decrease as the shear rate increase.

To get a better understanding of what causes an increase of the non-Newtonian effects, four
aneurysms have been selected for a more thorough analysis, displayed in Figure 7.4-Figure 7.7.
Aneurysms M3 and M12, which by far show the most significant differences of the four, have
very few similarities. In aneurysm M3, there is very little blood flow within the aneurysm
dome, and the velocities are close to zero. In M12, there is much blood flow, and the flow
pattern seems much more disturbed than in M18 and M20. When studying the metric S we
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7.4 Non-Newtonian effects

see a clear tendency of much higher values where the blood flow is practically non-existent.
The same applies for the WSS. In the areas of very low WSS, the non-Newtonian effects are
by far more significant than in areas of high WSS.

The actual values of the predicted WSS is summarized in in Table 7.2. The maximum
deviation in average WSS is -4.42%, and the maximum deviation in maximum WSS is -
2.83%. In Section 5 we showed a linear relation between viscosity and WSS. Thus, we
would expect the Casson model to predict higher WSS, due to a higher viscosity. This
might be the case for average WSS, but this is not measured with statistical significance
(mean=0.41%, P=0.22). However, the Casson model actually predicts lower maximum WSS
(mean=-2.31%, P=0.0091) than the Newtonian model.

No correlation is seen between the type of the aneurysm and the non-Newtonian effects.
There are sidewall aneurysms that both predict quite high non-Newtonian significance (M5,
M15), and another one that predicts very low non-Newtonian significance (M1). The same
applies for the bifurcation aneurysms.

The size of the aneurysm does not seem to be of importance.

Figure 7.2: The figure shows the time averagedDu andDτ plotted against time- and space-averaged
shear rate, measured from the Newtonian results over a full cycle.

66



7.4 Non-Newtonian effects

(a) M1 (b) M2 (c) M3

(d) M5 (e) M8 (f) M9

(g) M11 (h) M12 (i) M15

(j) M16 (k) M18 (l) M20

Figure 7.3: The figure shows the non-Newtonian effects for each aneurysm over a full cycle. The
blue line is Du and is scaled by the left axis. The dotted, red line is Dτ and is scaled by
the right axis. All plots use the same axes.
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7.4 Non-Newtonian effects

Aneurysm WSS Functional Newtonian Casson Rel. diff

M1 Time averaged 3.638 3.665 0.75%
Max 44.176 43.912 -0.60%

M2 Time averaged 5.168 5.195 0.54%
Max 46.341 44.378 -4.24%

M3 Time averaged 3.149 3.145 -0.11%
Max 76.393 70.94 -7.14%

M5 Time averaged 1.491 1.457 -2.29%
Max 36.211 35.0 -3.34%

M8 Time averaged 2.341 2.378 1.57%
Max 57.434 56.729 -1.23%

M9 Time averaged 6.844 6.998 2.24%
Max 66.566 62.173 -6.60%

M11 Time averaged 4.751 4.756 0.10%
Max 40.065 40.16 0.24%

M12 Time averaged 2.947 2.968 0.73%
Max 44.927 44.41 -1.15%

M15 Time averaged 2.903 2.902 -0.05%
Max 101.288 101.23 -0.06%

M16 Time averaged 3.419 3.449 0.87%
Max 46.888 46.689 -0.42%

M18 Time averaged 4.517 4.516 -0.03%
Max 44.383 44.131 -0.57%

M20 Time averaged 1.289 1.297 0.61%
Max 59.512 57.994 -2.55%

Table 7.2: The table shows WSS functionals for the different aneurysms, and compare the Newtonian
functionals to the Casson functionals. The Time averaged is the space averaged WSS
over the full cycle, and the Max value is the extreme value for the full cycle. All WSS
values are in Pa. The difference reported is in %, relative to the Newtonian result.
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7.4 Non-Newtonian effects

(a) Velocity field (b) WSS

Figure 7.4: M3

(a) Velocity field (b) WSS

Figure 7.5: M12

(a) Velocity field (b) WSS

Figure 7.6: M18

(a) Velocity field (b) WSS

Figure 7.7: M20

Figure 7.4-Figure 7.7: The figures show selected aneurysms for comparison, taken at the time step
where M3 and M12 showed the largest non-Newtonian effects. M18 and M20 were both evaluated
at early diastole. Columns (a) show the velocity, taken at a slice through the aneurysm. The top row
shows the velocity magnitude, and the bottom row shows the metric S. Columns (b) show the WSS
from a selected angle. The top row shows the magnitude of the WSS, and the bottom row show the
metric T .
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7.5 Effects of increased hematocrit

7.5. Effects of increased hematocrit

The average age of aneurysm rupture is 52 years [45]. As already mentioned in Section 2.1,
women are more likely than men to suffer from aneurysm rupture. In their late forties
and early fifties, women go through menopause. The average age has been reported to be
51.7 [46]. This is very close to the average rupture age, and thus triggers the hypothesis of
correlation.

During menopause, the physiology of women change. Of particular interest here, is the
change in blood properties. In the Tromsø Study [47] performed at the University Hospital
of North Norway, hematocrit levels were studied in a large group of patients. This revealed
an increased hematocrit level of about two percentage points from pre-menopausal to post-
menopausal age for women, a change not seen in men in the same age span (see Figure 7.8).
This figure also shows a higher hematocrit level for smokers than non-smokers, in particular
for women. Smoking is a known factor in aneurysm rupture risk, and perhaps this can be
explained or partially explained by the increase in hematocrit.

Figure 7.8: The figure shows the average hematocrit for women and men, categorized as smokers
and non-smokers, stratified in 10-year intervals.

The analysis has been done using the Casson model, which incorporates the hematocrit
level. Simulations were run with hematocrit levels of 38% and 40%. The effects of increased
hematocrit were then measured, using the solution produced with hematocrit level of 38%
as reference.
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7.5 Effects of increased hematocrit

Results

As seen in Figure 7.9, the resulting metrics show almost identical results to what was found
when assessing the non-Newtonian effects (Figure 7.3). Thus, discussion regarding the
metrics can be found in Section 7.4.

Looking closer at the differences in pressure drop in Table 7.3, the increase in hematocrit
seem to indicate a slightly higher pressure drop, but the data does not show this tendency
with significance (mean=1.57%, P=0.087). The deviations may be quite significant in some
aneurysms, as the change in pressure drop are as high as 7.1% in aneurysm M8.

The WSS changes is summarized in Table 7.4. The only significant change found was in
average WSS. This increases with increased hematocrit (mean=1.56%, P=0.026). No sig-
nificant changes is found regarding maximum WSS (mean=-1.14%, P=0.54). The changes
vary quite a bit, as the changes in maximum WSS range from -12.7% (M3) to 5.7% (M1).
The average WSS range from -3.2% (M5) to 5.2% (M9), however only one aneurysm indi-
cates a decrease in average WSS when increasing the hematocrit level.

Aneurysm Low hematocrit High hematocrit Rel. diff
M1 68.7 72.1 4.9%
M2 108.6 112.9 4.0%
M3 217.7 213.8 -1.8%
M5 51.4 53.1 3.3%
M8 29.7 31.8 7.1%
M9 155.1 159.5 2.8%
M11 135.3 134.2 -0.8%
M12 131.8 133.7 1.4%
M15 22.6 22.1 -2.2%
M16 117.4 118.5 0.9%
M18 65.3 64.8 -0.8%
M20 66.6 66.6 0.0%

Table 7.3: The table shows the average pressure drop in Pa over the aneurysms.
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7.5 Effects of increased hematocrit

(a) M1 (b) M2 (c) M3

(d) M5 (e) M8 (f) M9

(g) M11 (h) M12 (i) M15

(j) M16 (k) M18 (l) M20

Figure 7.9: The figure shows the effects of increased hematocrit level for each aneurysm over a full
cycle. The blue line is Du and is scaled by the left axis. The dotted, red line is Dτ and
is scaled by the right axis. All plots use the same axes.
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7.5 Effects of increased hematocrit

Aneurysm WSS Functional Low hematocrit High hematocrit Rel. diff

M1 Time averaged 3.576 3.665 2.49%
Max 41.553 43.912 5.68%

M2 Time averaged 5.079 5.195 2.29%
Max 47.643 44.378 -6.85%

M3 Time averaged 3.145 3.145 0.01%
Max 81.298 70.940 -12.74%

M5 Time averaged 1.505 1.457 -3.19%
Max 36.551 35.000 -4.24%

M8 Time averaged 2.283 2.378 4.14%
Max 55.039 56.729 3.07%

M9 Time averaged 6.650 6.998 5.24%
Max 69.555 62.173 -10.61%

M11 Time averaged 4.699 4.756 1.20%
Max 38.571 40.160 4.12%

M12 Time averaged 2.917 2.968 1.76%
Max 44.657 44.410 -0.55%

M15 Time averaged 2.879 2.902 0.81%
Max 96.926 101.230 4.44%

M16 Time averaged 3.380 3.449 2.04%
Max 45.165 46.689 3.37%

M18 Time averaged 4.488 4.516 0.63%
Max 43.396 44.131 1.69%

M20 Time averaged 1.281 1.297 1.24%
Max 58.586 57.994 -1.01%

Table 7.4: The table shows WSS functionals for the different aneurysms, and compare the low
hematocrit functionals to the high hematocrit functionals. The Time averaged is the
space averaged WSS over the full cycle, and the Max value is the extreme value for the
full cycle. All WSS values are in Pa. The difference reported is in %, relative to the low
hematocrit result.
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7.6 Inlet boundary condition

7.6. Inlet boundary condition

In this section the differences made by increasing the inlet velocity and thus the inlet flux
has been studied. The previously used time-averaged peak velocity of 695mm/s has been
compared to a lower time-averaged peak velocity of 535mm/s. The low velocity solution
was used as reference, as we thus also could get an idea of how increased blood flow affect
the WSS in the aneurysm. This corresponds to an increase in inlet flux by 33%.

Results

Figure 7.10 shows the measures for the different inlet velocities. These are all very high. Du
almost never drops below 0.2 for any aneurysm, and it reaches as high as 0.45. Dτ is rarely
below 0.5, and reach as high as 0.85. From this it seems as though the effects on WSS is
far greater than the increase in blood flow would suggest.

It seems as though the effects are largest at early systole and through diastole, where the
blood flow is at the lowest. This is as expected, as this is where the relative increase of
blood flow is largest. However, this effect is not visible in all aneurysms, as M12 and M16
most notably show large difference at systole as well. This might indicate a change in flow
patterns.

Aneurysm Low inflow High inflow Rel. diff
M1 45.0 73.5 63.3%
M2 73.7 114.9 55.9%
M3 105.3 212.6 101.9%
M5 32.9 53.7 63.2%
M8 21.6 32.4 50.0%
M9 101.2 161.4 59.5%
M11 77.6 134.7 73.6%
M12 80.7 135.4 67.8%
M15 12.1 21.9 81.0%
M16 71.0 119.9 68.9%
M18 37.6 64.7 72.1%
M20 38.3 66.8 74.4%

Table 7.5: The table shows the average pressure drop over the aneurysms.

In Table 7.5 we see the pressure drop over each aneurysm. As with WSS, the pressure drop
also show an increase much greater than the increase applied to the inlet, with an average
increase of 69.3%.

In Table 7.6 we see a massive increase in both average and maximum WSS. The time
averaged WSS is as much as doubled (M5) with the high inflow condition, and is on average
72.8% greater than for the low inflow condition. The maximum WSS show a very similar
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7.6 Inlet boundary condition

behaviour, with an average increase of 73.6%. Both the average and maximum WSS show
a significant higher increase than the 33% increase in inlet flow, with a P-value of less than
10−4.

The differences in WSS is also clearly more prominent in the aneurysm part of the mesh, as
seen in Table 7.7. This might indicate that the aneurysm itself is particularly sensitive to
changes in inflow, compared to the surrounding arteries.
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7.6 Inlet boundary condition

(a) M1 (b) M2 (c) M3

(d) M5 (e) M8 (f) M9

(g) M11 (h) M12 (i) M15

(j) M16 (k) M18 (l) M20

Figure 7.10: The figure shows the effects of increased flow for each aneurysm over a full cycle. The
blue line is Du and is scaled by the left axis. The dotted, red line is Dτ and is scaled
by the right axis. All plots use the same axes.
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7.6 Inlet boundary condition

Aneurysm WSS Functional Low inflow High inflow Rel. diff

M1 Time averaged 2.192 3.709 69.20%
Max 25.362 44.505 75.48%

M2 Time averaged 3.150 5.261 67.05%
Max 24.784 43.948 77.32%

M3 Time averaged 1.896 3.163 66.81%
Max 36.439 70.672 93.95%

M5 Time averaged 0.686 1.450 111.31%
Max 17.335 35.160 102.83%

M8 Time averaged 1.427 2.415 69.16%
Max 30.761 58.681 90.76%

M9 Time averaged 4.762 7.139 49.92%
Max 40.334 61.652 52.85%

M11 Time averaged 2.833 4.799 69.38%
Max 26.622 41.396 55.50%

M12 Time averaged 1.754 2.987 70.33%
Max 29.163 45.060 54.51%

M15 Time averaged 1.622 2.919 79.97%
Max 65.009 105.215 61.85%

M16 Time averaged 2.088 3.477 66.49%
Max 29.743 48.027 61.47%

M18 Time averaged 2.557 4.537 77.45%
Max 24.935 44.916 80.14%

M20 Time averaged 0.738 1.299 76.12%
Max 31.802 58.539 84.08%

Table 7.6: The table shows WSS functionals for the different aneurysms, and compare the low inflow
functionals to the high inflow functionals. The Time averaged is the space averaged WSS
over the full cycle, and the Max value is the extreme value for the full cycle. All WSS
values are in Pa. The difference reported is in %, relative to the low inflow result.

Section Average change in WSS 95% confidence interval
Full mesh 46.1% [44.0%, 48.3%]
Aneurysm 72.8% [63.7%, 81.8%]
Mesh without aneurysm 42.3% [40.3%, 44.4%]

Table 7.7: The table shows the difference in average WSS in selected parts of the mesh.
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7.7. Effects of a resistance boundary conditions

There are several different outlet pressure boundary conditions which may be reasonable to
assume when modelling blood flow in and around the Circle of Willis. The simplest boundary
condition is the zero pressure boundary condition which is enforced by setting p = 0 at all
outlets, and this is commonly used. In this thesis we have used a resistance boundary
condition which takes into account the downstream vasculature. In this section the tools
introduced at the start of this chapter, has been used to study the differences these two
boundary conditions make on the blood flow and WSS in our 12 aneurysms.

The solutions produced with a resistance boundary conditions is used as reference.

Results

In Figure 7.11, we see the corresponding difference metrics of the different outlet boundary
conditions. Note that there are large differences between the aneurysms. Also note how some
of the aneurysms display larger differences through parts of the cycle. This might come as
a result of a changed flow pattern, whereas a constant difference metric might indicate a
strengthening or weakening of the original flow pattern.

Figure 7.12-Figure 7.13 show some of the changes in flow patterns. Note that the patterns
might change quite significantly within the aneurysm and toward the outlets, because of the
change in pressure gradient induced by the outlet boundary conditions. Also note that the
flow around the inlets show almost no difference at all, indicating that the outlet conditions
does not have any effect on the flow prior to the bifurcation. Looking again at Figure 7.11,
we see that this explains why the difference metrics in aneurysm M15 are so small, as this
aneurysm lies prior to the bifurcation.

In Table 7.8 the changes in outlet flux are summarized. It would be natural to predict that
large changes in flux would correspond to large changes in the difference metrics. Comparing
the flux changes to the difference metrics in Figure 7.11, we see that this is clearly not the
case. E.g., M3 show hardly any difference in outlet flux, but quite significant changes are
recorded by the difference metrics. Also, seeing as the difference metrics of e.g. aneurysms
M5 and M8 are very similar, one might expect similar changes in outlet flux, however, this
is not the case, as M5 predict a small change, whereas M8 predict a much higher change in
outlet flux.

Looking at the changes in WSS given in Table 7.9, we see that the changes in some aneurysms
are very large, whereas in others they are clearly negligible.

In general it seems very hard to predict which aneurysms will be more affected by the
choices made regarding outlet boundary conditions, but as seen, the changes might be
highly significant.
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7.7 Effects of a resistance boundary conditions

(a) M1 (b) M2 (c) M3

(d) M5 (e) M8 (f) M9

(g) M11 (h) M12 (i) M15

(j) M16 (k) M18 (l) M20

Figure 7.11: The figure shows the effects of a different outlet boundary condition for each aneurysm
over a full cycle. The blue line is Du and is scaled by the left axis. The dotted, red
line is Dτ and is scaled by the right axis. All plots use the same axes.
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7.7 Effects of a resistance boundary conditions

(a) Resistance (b) Zero pressure (c) S

Figure 7.12: The figure shows the changed flow pattern in aneurysm M2, with the corresponding
difference metric S.

(a) Resistance (b) Zero pressure (c) S

Figure 7.13: The figure shows the changed flow pattern in aneurysm M16, with the corresponding
difference metric S.
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7.7 Effects of a resistance boundary conditions

Aneurysm Traction free BC Resistance BC Rel. diff.
M1 1336 1658 24.1%
M2 482 737 53.0%
M3 760 763 0.4%
M5 558 594 6.5%
M8 219 320 46.2%
M9 597 883 47.8%
M11 1729 1793 -3.7%
M12 727 803 10.5%
M15 606 697 15.0%
M16 688 978 42.1%
M18 76 252 231.6%
M20 365 403 10.4%

Table 7.8: The table shows the time averaged flux at a chosen outlet in each aneurysm, and the
difference from the traction free to the resistance boundary condition. The outlet chosen
is the outlet which showed the largest relative difference.
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7.7 Effects of a resistance boundary conditions

Aneurysm WSS Functional Resistance Traction free Rel. diff

M1 Time averaged 3.709 5.050 36.15%
Max 44.505 63.466 42.60%

M2 Time averaged 5.261 5.544 5.38%
Max 43.948 46.011 4.69%

M3 Time averaged 3.163 3.186 0.73%
Max 70.672 70.781 0.16%

M5 Time averaged 1.450 1.351 -6.83%
Max 35.160 33.897 -3.59%

M8 Time averaged 2.415 2.714 12.42%
Max 58.681 61.671 5.10%

M9 Time averaged 7.139 7.247 1.51%
Max 61.652 96.742 56.92%

M11 Time averaged 4.799 4.751 -1.01%
Max 41.396 41.405 0.02%

M12 Time averaged 2.987 2.997 0.35%
Max 45.060 45.997 2.08%

M15 Time averaged 2.919 2.924 0.16%
Max 105.215 105.320 0.10%

M16 Time averaged 3.477 3.428 -1.40%
Max 48.027 49.594 3.26%

M18 Time averaged 4.537 4.621 1.86%
Max 44.916 43.097 -4.05%

M20 Time averaged 1.299 1.244 -4.27%
Max 58.539 61.801 5.57%

Table 7.9: The table shows WSS functionals for the different aneurysms, and compare the resistance
BC functionals to the zero pressure BC functionals. The Time averaged is the space
averaged WSS over the full cycle, and the Max value is the extreme value for the full
cycle. All WSS values are in Pa. The difference reported is in %, relative to the resistance
BC result.
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8. Discussion

8.1. Qualitative results

After analyzing the geometric effects, non-Newtonian effects and effects of different hemat-
ocrit levels presented in Section 6, it is difficult to say anything about which of these effects
is most significant. However, what is clear is that both the blood flow and the WSS distribu-
tion are qualitatively the same; the flow does not seem to change direction, and the areas of
high WSS does not seem to change. That being said, the local changes might be relatively
large, especially in areas of low flow velocity and low WSS.

The geometric effects were difficult to compare relative to each other, as the meshes used in
the simulations are different, and thus also the vector and scalar fields produced. However,
determining the threshold value when segmenting the CT images does not seem to be
crucial in achieving correct blood flow. However, a recently published article by Gamburato
et al. [48] showed that the surface smoothing of the vascular geometry is significant for the
WSS distribution.

As for the non-Newtonian effects we saw the clearest differences where the velocity and WSS
was low. There were large differences between the models, and the power-law model stood
out in particular, and predicted significantly lower WSS. Because not all of these viscosity
models had the same asymptotic value, they are not suitable for a direct comparison with
the Newtonian model to determine the non-Newtonian effects such as i.e. shear thinning.

The different hematocrit levels showed a somewhat strange behaviour when looking at the
velocity magnitude. The effects of changed hematocrit are very difficult to conclude anything
from after these investigations, but this subject was studied more closely later.

Overall, we saw that the differences seemed more important at systole than at diastole, with
a possible exception for the non-Newtonian models, where the diastolic differences in WSS
seemed to be just as significant as at systole.

8.2. Quantitative results

The results of Section 7 is quite compelling, and a summary can be seen in Table 8.1. How
boundary conditions are set, seem to have very large effect on the forces created by blood
flow in cerebral aneurysms. Parameters related to blood viscosity seem to be of much less
significance, however, several interesting conclusions may still be drawn from the results.

Neglecting the non-Newtonian effects will cause a significant change in the predicted maxi-
mum WSS. One should definitely be aware of this when simulating this kind of blood flow,
but it does not defend the approximately 25% additional computational time required. Gam-
burato et al. [48] concluded that non-Newtonian effects should not be neglected when using a
patient specific geometry, however, the results of this thesis shows that the non-Newtonian
effects may well be neglected if the patient specific boundary data is unknown or uncertain.
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8.2 Quantitative results

Description Effects on Mean (%) SD (%) P-value

Taking non-Newtonian
effects into account.

Average WSS 0.411 1.097 0.221
Max WSS -2.305 2.526 0.009
Pressure drop 0.353 1.484 0.428

Increasing hematocrit
from 38% to 40%.

Average WSS 1.555 2.100 0.026
Max WSS -1.136 6.166 0.537
Pressure drop 1.567 2.889 0.087

Increasing peak inflow
velocity by 30% from
535mm/s to 695mm/s.

Average WSS 72.766 14.280 0.000
Max WSS 73.565 16.617 0.000
Pressure drop 69.300 13.402 0.000

Using zero-pressure BCs
on outlets as opposed to
resistance BCs.

Average WSS 3.754 11.262 -
Max WSS 9.405 19.345 -
Pressure drop -1.206 25.665 -

Table 8.1: Summary of the results of Section 7. The Mean column describes the average change
made on the 12 aneurysms, from the reference solution to the solution with the respective
parameter change. The SD column describes the sample standard deviation. The P-value
describes the probability that the hypothesis of zero change is true. Values of special
interest highlighted in bold. No P-values are calculated for the different outlet boundary
conditions, as no valid assumption on distribution can be made.

The effects of the physiologically motivated increase in hematocrit level was also deemed
significant, with an average increase in WSS of 1.555%. As it is natural to assume that
this effect is, in general, not dependent of the choice of boundary conditions, this result is
definitely interesting. Without taking into account other potential physiological effects of
menopause, the increase in hematocrit might help explain help explain why the average age
of cerebral aneurysm rupture are so similar to the average age of menopause.

Perhaps the most surprising results were produced by increasing the inflow flux. As the
calculations in Section 5 show, one would expect a similar proportional relationship between
the inflow flux and the WSS. However, this is clearly not the case. The effects on the
forces, both WSS and pressure, are much greater than what a proportional relationship
would suggest.

The different outlet boundary conditions in some cases yielded surprisingly similar solutions.
However, in others, there were major differences. Which aneurysms showed the greatest
differences were difficult to predict, thus, this is a very possible source of error when simulating
blood flow in cerebral aneurysms.
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8.3 Conclusion and further research

8.3. Conclusion and further research

It seems clear from the results produced in this thesis, that from the different tests that has
been done, the applied boundary conditions show the greatest sensitivity to change when the
WSS is used as a measure. This would suggest than in future studies, more in vivo, patient
specific measurements would be of great use, to more accurately prescribe realistic boundary
conditions.

However, compelling results may still be made without these data. E.g., the hematocrit
increase studied in this thesis showed an increase in average WSS. This result should by
no mean be disregarded simply because we do not have patient specific data available, as
it is natural to assume that this effect would be present with any set of realistic boundary
conditions.

In this thesis, some sets of parameters have been tested for sensitivity, but there are many
other possible sources of inaccuracies. E.g. the assumption of rigid walls or the effects of
changing heart rate. These are both, to some extent, unanswered questions.

Results from this thesis might also in itself inspire further work. The results of increasing
the inflow flux for example, showed an unexpected relationship between flux and WSS.
An hypothesis to consider is that this relationship is perhaps quadratic; the inflow flux
was increased by a factor of 1.333, whereas the average WSS increased by a factor of
1.728(=(1.315)2). To test this hypothesis the inflow flux would have to be varied, and the
corresponding WSS changes noted.

Much work is thus still left to be done in this area of research, but with time our understanding
improves, measurement instruments are getting more accurate and computational power
increase. We may thus have good hopes that simulations of this kind can one day be used
in medicine as a diagnostic tool, and as an instrument to determine necessary treatment.
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A. Source code

A.1. Cylinder mesh

def create_mesh(self):
#Create mesh
N = self.N
nz = int(N*self.z1)

if(nz%2 is not 0):
nz = nz+1

mesh = Mesh()
editor = MeshEditor()
editor.open(mesh,3,3)

#Create vertices
no_of_vertices = nz*((N+1)*(N+1) + N**2)
editor.init_vertices(no_of_vertices)
no_of_cells = (nz-1)*12*N**2
editor.init_cells(no_of_cells)

vertex=0
for iz in range(nz):

z = self.z0+iz*(self.z1-self.z0)/(nz-1)
for iy in range(N+1):

y = -self.r+2.0*self.r*iy/N
for ix in range(N+1):

x = -self.r+2.0*self.r*ix/N
if(abs(x) < DOLFIN_EPS and abs(y) < DOLFIN_EPS):

x_trans = x
y_trans = y

else:
xx = 0.5*(x+y)
yy = 0.5*(-x+y)
x_trans = xx*(abs(xx)+abs(yy))/sqrt(xx*xx+yy*yy)
y_trans = yy*(abs(xx)+abs(yy))/sqrt(xx*xx+yy*yy)

editor.add_vertex(vertex,x_trans,y_trans,z)
vertex = vertex+1

for iy in range(N):
y = -self.r + 2.0*self.r*(iy+0.5)/N
for ix in range(N):

x = -self.r + 2.0*self.r*(ix+0.5)/N

if(abs(x) < DOLFIN_EPS and abs(y) < DOLFIN_EPS):
x_trans = x
y_trans = y

else:
xx = 0.5*(x+y)
yy = 0.5*(-x+y)
x_trans = xx*(abs(xx)+abs(yy))/sqrt(xx*xx+yy*yy)
y_trans = yy*(abs(xx)+abs(yy))/sqrt(xx*xx+yy*yy)

editor.add_vertex(vertex,x_trans,y_trans,z)
vertex = vertex+1

#Create cells
cell = 0

n = no_of_vertices/nz
for iz in range(nz-1):

for iy in range(N):
for ix in range(N):

v0 = iz*(N+1)**2 +iy*(N+1)+ix+iz*N**2
v1 = v0+1
v2 = v0+(N+1)
v3 = v1+(N+1)
v4 = v0 + (N+1)**2-iy

v5 = v0+n
v6 = v5+1
v7 = v5+(N+1)
v8 = v6+(N+1)
v9 = v5+(N+1)**2-iy

editor.add_cell(cell,v4,v9,v5,v6)
cell = cell+1
editor.add_cell(cell,v4,v0,v1,v6)
cell = cell+1
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A.2 Inlet flow profile

editor.add_cell(cell,v4,v0,v5,v6)
cell = cell+1

editor.add_cell(cell,v4,v6,v8,v9)
cell = cell+1
editor.add_cell(cell,v1,v3,v4,v8)
cell = cell+1
editor.add_cell(cell,v1,v4,v6,v8)
cell = cell+1

editor.add_cell(cell,v4,v9,v7,v8)
cell = cell+1
editor.add_cell(cell,v4,v2,v3,v8)
cell = cell+1
editor.add_cell(cell,v4,v2,v7,v8)
cell = cell+1

editor.add_cell(cell,v4,v5,v7,v9)
cell = cell+1
editor.add_cell(cell,v0,v2,v4,v7)
cell = cell+1
editor.add_cell(cell,v0,v4,v5,v7)
cell = cell+1

editor.close()

return mesh

A.2. Inlet flow profile

class InflowExpression(Expression):
def __init__(self):

Expression.__init__(self)

def eval_data(self, value, data):
value[0] = -data.normal().x()
value[1] = -data.normal().y()
value[2] = -data.normal().z()

def dim(self):
return 3

def initiate_inflow(self):
MCAtime = numpy.array([ 0., 27., 42., 58., 69., 88., 110., 130.,

136., 168., 201., 254., 274., 290., 312., 325.,
347., 365., 402., 425., 440., 491., 546., 618.,
703., 758., 828., 897., 1002.])/(75/60.0)/1000

scale = 695
#Create interpolated mean velocity in time
y1 = numpy.array([ 390. , 398.76132931, 512.65861027, 642.32628399,

710.66465257, 770.24169184, 779.00302115, 817.55287009,
877.12990937, 941.96374622, 970. , 961.2386707 ,
910.42296073, 870.12084592, 843.83685801, 794.7734139 ,
694.89425982, 714.16918429, 682.62839879, 644.07854985,
647.58308157, 589.75830816, 559.96978852, 516.16314199,
486.37462236, 474.10876133, 456.58610272, 432.05438066, 390. ])/574.211239628*scale

# Define the spline for enough heart beats
k = int((self.T+1)/max(MCAtime))
n = len(y1)

y = numpy.zeros((n-1)*k)
time = numpy.zeros((n-1)*k)

for i in range(k):
y[i*(n-1):(i+1)*(n-1)] = y1[:-1]
time[i*(n-1):(i+1)*(n-1)] = MCAtime[:-1]+i*max(MCAtime)

spline = intpol.UnivariateSpline(time,y,k=3, s=0)

# Create parabolic profile
V = VectorFunctionSpace(self.mesh, "CG",1)
A = assemble(Constant(1)*ds(2), mesh=self.mesh, exterior_facet_domains=self.bc_markers)
p = project(Expression(("x[0]", "x[1]", "x[2]")), V)
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A.3 Script to load solutions

# Find radius and center of inlet
r = sqrt(A/DOLFIN_PI)
center = []
for i in range(3):

center.append(assemble(p[i]*ds(2), mesh=self.mesh, exterior_facet_domains=self.bc_markers)/A)

# Create a function of inward pointing vectors at the inlet
m = TrialFunction(V)
inflow_profile = Function(V)
assemble(inner(InflowExpression(),m)*ds(2), tensor=inflow_profile.vector(), exterior_facet_domains=self.bc_markers)

# Scale the inflow function to a parabolic profile with max magnitude of 1
N = len(inflow_profile.vector())
for i in range(N/3):

n1 = inflow_profile.vector()[i]
n2 = inflow_profile.vector()[N/3+i]
n3 = inflow_profile.vector()[2*N/3+i]
norm = sqrt(n1**2+n2**2+n3**2)

if(norm > 0):
x = p.vector()[i]
y = p.vector()[N/3+i]
z = p.vector()[2*N/3+i]
d_c = sqrt((center[0]-x)**2+(center[1]-y)**2+(center[2]-z)**2)/r

inflow_profile.vector()[i] = n1/norm*(1-d_c**2)
inflow_profile.vector()[N/3+i] = n2/norm*(1-d_c**2)
inflow_profile.vector()[2*N/3+i] = n3/norm*(1-d_c**2)

return inflow_profile, spline

A.3. Script to load solutions

The following Python script is used to load the solutions of Section 7, and calculate the
metrics of Section 7.3 along with some other quantities. This is quite computationally
demanding, and thus, we have used the Instant module to do the most demanding calculation
in inline C++. This dramatically improves performance. All the results are written to file,
so that they can easily be accessed.

#!/usr/bin/env python

import sys, time
from dolfin import *
import subprocess
import os
import instant
import matplotlib
matplotlib.use(’Agg’) # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
from numpy import arccos, mean, max, min, nonzero, arange, array

cpp_vel_diff = """
void dabla(dolfin::GenericVector& S, dolfin::GenericVector& un, dolfin::GenericVector& uc,

double beta, double gamma, dolfin::GenericVector& aneurysm) {
uint N = S.size();

double m = 0;
double a = 0;
double s = 0;

double un_mag = 0;
double uc_mag = 0;
double unuc = 0;
double diff_mag = 0;

for (unsigned int i=0; i < N; i++) {
un_mag = sqrt(pow(un[i],2)+pow(un[N+i],2)+pow(un[2*N+i],2));
uc_mag = sqrt(pow(uc[i],2)+pow(uc[N+i],2)+pow(uc[2*N+i],2));
unuc = uc[i]*un[i]+uc[N+i]*un[N+i]+uc[2*N+i]*un[2*N+i];
diff_mag = sqrt(pow(un[i]-uc[i],2)+pow(un[N+i]-uc[N+i],2)+pow(un[2*N+i]-uc[2*N+i],2));

m = diff_mag/(un_mag+DOLFIN_EPS);
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A.3 Script to load solutions

a = 0;
if(un_mag > 0) {

double val = unuc/(un_mag*uc_mag+DOLFIN_EPS);
if(val > 1.0) {

a = 0.0;
} else if(val < 0.0) {

a = 1.0;
} else {

a = 1/DOLFIN_PI*acos(val);
}

}

s = (1-beta*exp(-m)-gamma*exp(-a))*aneurysm[i];
S.setitem(i,s);

}
}
"""

cpp_tau_diff = """
void dabla(dolfin::GenericVector& T, dolfin::GenericVector& taun,

dolfin::GenericVector& tauc, dolfin::GenericVector& aneurysm) {
uint N = T.size();

for (unsigned int i=0; i < N; i++) {
double t = 0;
double diff = taun[i]-tauc[i];
if(diff < 0) {

t = -diff/(taun[i]+DOLFIN_EPS);
} else {

t = diff/(taun[i]+DOLFIN_EPS);
}
t = t*aneurysm[i];

t = 1-exp(-t);
T.setitem(i,t);

}
}
"""

cpp_vect_magnitude = """
void dabla(dolfin::GenericVector& un_mag, dolfin::GenericVector& un, dolfin::GenericVector& aneurysm) {

uint N = un_mag.size();
double mag = 0;

for (unsigned int i=0; i < N; i++) {
mag = sqrt(pow(un[i],2)+pow(un[N+i],2)+pow(un[2*N+i],2));
mag = mag*aneurysm[i];
un_mag.setitem(i,mag);

}
}
"""

include_dirs, flags, libs, libdirs = instant.header_and_libs_from_pkgconfig("dolfin")
headers= ["dolfin.h"]
vel_diff = instant.inline(cpp_vel_diff, system_headers=headers,

include_dirs=include_dirs, libraries = libs, library_dirs = libdirs)
tau_diff = instant.inline(cpp_tau_diff, system_headers=headers,

include_dirs=include_dirs, libraries = libs, library_dirs = libdirs)
vect_magnitude = instant.inline(cpp_vect_magnitude, system_headers=headers,

include_dirs=include_dirs, libraries = libs, library_dirs = libdirs)

#Return the shear rate
def gamma(u):

return pow(0.5*inner(grad(u)+transpose(grad(u)), grad(u)+transpose(grad(u))), 0.5)

#Calculate the pressure drop over the aneurysm
def pdrop(p, patient):

if patient == "m1":
x0 = array((93.70 ,80.68 ,69.97 ))
x1 = array((100.10 ,80.59 ,65.58 ))
x2 = x1

if patient == "m2":
x0 = array((119.22 ,105.01 ,82.23 ))
x1 = array((124.58 ,108.93 ,79.27 ))
x2 = array((121.42 ,107.06 ,78.46 ))

if patient == "m3":
x0 = array((104.54 ,98.74 , 64.17 ))
x1 = array((104.85 ,103.44 ,64.56 ))
x2 = array((107.72 ,96.74 , 59.59 ))

if patient == "m5":
x0 = array((105.46,102.47, 58.69 ))
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A.3 Script to load solutions

x1 = array((108.97, 105.29, 60.48 ))
x2 = x1

if patient == "m8":
x0 = array((62.33 ,125.52 ,69.15 ))
x1 = array((59.68, 128.57, 70.63 ))
x2 = x1

if patient == "m9":
x0 = array((120.09, 133.15, 65.04 ))
x1 = array((125.66, 132.06, 65.85 ))
x2 = array((121.56, 137.90, 64.47 ))

if patient == "m11":
x0 = array((103.25, 95.62, 47.98 ))
x1 = array((105.42, 96.58, 39.32 ))
x2 = array((105.27, 99.94, 52.73 ))

if patient == "m12":
x0 = array((111.26, 111.71, 57.20 ))
x1 = array((112.15, 116.90, 58.78 ))
x2 = array((115.41, 110.99, 52.80 ))

if patient == "m15":
x0 = array((101.82, 81.56, 62.05 ))
x1 = array((97.10, 79.78, 63.80 ))
x2 = x1

if patient == "m16":
x0 = array((78.09, 130.46, 59.64 ))
x1 = array((74.98, 127.69, 57.28 ))
x2 = array((69.83, 134.24, 63.42 ))

if patient == "m18":
x0 = array((133.34, 124.65, 37.80))
x1 = array((136.47, 123.87, 37.59))
x2 = array((133.57, 127.64, 37.73 ))

if patient == "m20":
x0 = array((32.09, 95.58, 107.17))
x1 = array((32.00, 92.28, 106.77))
x2 = array((29.65, 96.51, 109.07 ))

values0 = array((0.0, 0.0, 0.0))
values1 = array((0.0, 0.0, 0.0))
values2 = array((0.0, 0.0, 0.0))
p.eval(values0, x0)
p.eval(values1, x1)
p.eval(values2, x2)

pressuredrop = values0[0] - (values1[0] + values2[0])/2.0

return pressuredrop

def main(args):
logging(False)
dolfin.parameters["allow_extrapolation"] = True

#Load command line arguments
if(len(args)>=3):

data_set = args[0]
refinement = args[1]
patients = args[2:]

elif(len(args)==2):
data_set = args[0]
refinement = args[1]
patients = ["m1", "m2", "m3", "m5", "m8", "m9", "m11", "m12", "m15", "m16", "m18", "m20"]

else:
print "Wrong number of arguments!"

for patient in patients:
#Set the correct folders where the saved solutions are found, based on the data set
if data_set == "nonnewtonian":

reference_folder = "nonnewtonian/results/quantitative/"+str(refinement)+"/"+str(patient)+"/constant/"
comparison_folder = "nonnewtonian/results/quantitative/"+str(refinement)+"/"+str(patient)+"/casson/"
save_folder = "readoutput/nonnewtonian/"

elif data_set == "hematocrit":
reference_folder = "hematocrit/results/quantitative/"+str(refinement)+"/"+str(patient)+"/casson/0.38/"
comparison_folder = "nonnewtonian/results/quantitative/"+str(refinement)+"/"+str(patient)+"/casson/"
save_folder = "readoutput/hematocrit/"

elif data_set == "pressurebc":
reference_folder = "reference/results/quantitative/"+str(refinement)+"/"+str(patient)+"/constant/"
comparison_folder = "pressurebc/results/quantitative/"+str(refinement)+"/"+str(patient)+"/constant/"
save_folder = "readoutput/pressurebc/"
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elif data_set == "inletbc":
reference_folder = "inletbc/results/quantitative/"+str(refinement)+"/"+str(patient)+"/constant/"
comparison_folder = "reference/results/quantitative/"+str(refinement)+"/"+str(patient)+"/constant/"
save_folder = "readoutput/inletbc/"

else:
print "Did not recognize argument: ", data_set
exit(1)

#Load mesh and aneurysm mesh
mesh = Mesh("reference/data/Aneurysms/meshes/"+str(refinement)+"/"+str(patient)+"_"+str(refinement)+".xml.gz")
aneurysm_mesh = Mesh("reference/data/Aneurysms/meshes/aneurysms/aneurysm_"+str(patient)+".xml.gz")

#Define function spaces
DG = FunctionSpace(mesh, "DG", 0)
V = VectorFunctionSpace(mesh, "CG", 1)
Q = FunctionSpace(mesh, "CG", 1)
q = TestFunction(Q)

#Create a DG0 function representing the aneurysm
aneurysm_DG = Function(DG)
av_DG = aneurysm_DG.vector()

#Compute the aneurysm part of the mesh (aneurysm=1, not aneurysm=0)
print ’Computing aneurysm surface/volume vector’
for c in cells(mesh):

p = Point(c.midpoint().x(), c.midpoint().y(), c.midpoint().z())
if aneurysm_mesh.any_intersected_entity(p)>0:

av_DG[c.index()] = 1.0

#Create a CG1 function representing the aneurysm
aneurysm_Q = project(aneurysm_DG, Q)
av_Q = aneurysm_Q.vector()

for i in range(len(av_Q)):
if(av_Q[i] < 0.5):

av_Q[i] = 0.0
else:

av_Q[i] = 1.0

#Compute volume and surface area of the aneurysm
volume = assemble(aneurysm_Q*dx, mesh=mesh)
surface = assemble(aneurysm_DG*ds, mesh=mesh)
print "Aneurysm volume: ", volume
print "Aneurysm surface area: ", surface

#Define lists
time = []
Du = []
Dt = []
um = []
tmr = []
tmc = []
gammas = []
pdrops_r = []
pdrops_c = []
min_wss_reference = []
min_wss_comparison = []
max_wss_reference = []
max_wss_comparison = []

#Iterate through the saved solutions, one for each fifth timestep
for i in range(1,129):

print "Timestep: %4d Time: %4f" %(i, 0.8*(i-1)/128)
time.append((0.8*(i-1)/128))

#Load velocity vectors
u_r = Function(V, reference_folder+"u_"+str(i)+".xml")
u_c = Function(V, comparison_folder+"u_"+str(i)+".xml")

#Calculate the velocity differences
S = Function(Q)
beta = 0.5
g = 0.5
vel_diff(S.vector(), u_r.vector(), u_c.vector(), beta, g, aneurysm_Q.vector())
s = 1/volume*assemble(S*dx, mesh=mesh)
Du.append(s)

#Calculate (reference) velocity magnitude
u_mag = Function(Q)
vect_magnitude(u_mag.vector(), u_r.vector(), aneurysm_Q.vector())
um.append(1/volume*assemble(u_mag*dx, mesh=mesh))

#Load WSS
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tau_r = Function(DG, reference_folder+"tau_"+str(i)+".xml")
tau_c = Function(DG, comparison_folder+"tau_"+str(i)+".xml")

#Calculate WSS differences
T = Function(DG)
tau_diff(T.vector(), tau_r.vector(), tau_c.vector(), aneurysm_DG.vector())
t = 1/surface*assemble(T*ds, mesh=mesh)
Dt.append(t)

#Calculate average WSS
tau_av_n = 1/surface*assemble(tau_r*aneurysm_DG*ds, mesh=mesh)
tau_av_c = 1/surface*assemble(tau_c*aneurysm_DG*ds, mesh=mesh)
tmr.append(tau_av_n)
tmc.append(tau_av_c)

#Calculate max and min WSS
tau_r_aneurysm = tau_r.vector().array()*aneurysm_DG.vector().array()
tau_c_aneurysm = tau_c.vector().array()*aneurysm_DG.vector().array()
max_wss_reference.append(max(tau_r_aneurysm))
max_wss_comparison.append(max(tau_c_aneurysm))
min_wss_reference.append(min(tau_r_aneurysm[tau_r_aneurysm>0]))
min_wss_comparison.append(min(tau_c_aneurysm[tau_c_aneurysm>0]))

#Calculate the pressure drops
p_r = Function(Q, reference_folder+"p_"+str(i)+".xml")
p_c = Function(Q, comparison_folder+"p_"+str(i)+".xml")
pdrops_r.append(pdrop(p_r, patient))
pdrops_c.append(pdrop(p_c, patient))

#Calculate (reference) shear rate
gamma_n = gamma(u_r)
gamma_n = 1/volume*assemble(gamma_n*aneurysm_DG*dx, mesh=mesh)
gammas.append(gamma_n)

#Plot Du and Dt
ax1 = plt.subplot(111)
plt.plot(time, Du, ’b-’)
plt.xlabel("Time (s)",fontsize=20)
ax2 = plt.twinx()
plt.plot(time, Dt, ’r--’)
filename = save_folder+str(patient)+".png"
plt.savefig(filename, bbox_inches=’tight’, pad_inches=0.1)
plt.clf()
plt.cla()

#Print all functionals
f = open(save_folder+str(patient)+".out", ’w’)
f.write("************ERRORS************\n")
f.write("Average D_u: %s \n" %str(sum(Du)/len(Du)))
f.write("Average D_u: %4f \n" %(sum(Du)/len(Du)))
f.write("Average D_t: %s \n" %str(sum(Dt)/len(Dt)))
f.write("************FLOW************\n")
f.write("Average velocity: %s \n" %str(sum(um)/len(um)))
f.write("Average shear rate: %s \n" %str(sum(gammas)/len(gammas)))
f.write("************WSS************\n")
av_r = sum(tmr)/len(tmr)
av_c = sum(tmc)/len(tmc)
f.write("Average WSS Newtonian: %s \n" %str(av_r))
f.write("Average WSS Casson: %s \n" %str(av_c))
f.write("Average WSS diff: %s \n" %str((av_c-av_r)/av_r*100))
f.write("-----------\n")
f.write("Max WSS Newtonian: %s \n" %str(max(max_wss_reference)))
f.write("Max WSS Casson: %s \n" %str(max(max_wss_comparison)))
f.write("Max WSS diff: %s \n" %str((max(max_wss_comparison)-max(max_wss_reference))/max(max_wss_reference)*100))
f.write("-----------\n")
f.write("Min WSS Newtonian: %s \n" %str(min(min_wss_reference)))
f.write("Min WSS Casson: %s \n" %str(min(min_wss_comparison)))
f.write("Min WSS diff: %s \n" %str((min(min_wss_comparison)-min(min_wss_reference))/min(min_wss_reference)*100))
f.write("************PRESSURE************\n")
avp_r = sum(pdrops_r)/len(pdrops_r)
avp_c = sum(pdrops_c)/len(pdrops_c)
f.write("Average pdrop Newtonian: %s \n" %str(avp_r))
f.write("Average pdrop Casson: %s \n" %str(avp_c))
f.write("Average pdrop diff: %s \n" %str((avp_c-avp_r)/avp_r*100))
f.write("-----------\n")
f.write("Max pdrop Newtonian: %s \n" %str(max(pdrops_r)))
f.write("Max pdrop Casson: %s \n" %str(max(pdrops_c)))
f.write("Max pdrop diff: %s \n" %str((max(pdrops_c)-max(pdrops_r))/max(pdrops_r)*100))
f.write("************NORMS************\n")
f.write(str(Du))
f.write("\n------------\n")
f.write(str(Dt))
f.close()
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if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))
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