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Introduction

In this thesis we consider a group action of G on a set X. We then construct five
closely related C*-algebras, namely R, (G, X), Reon(G, X), R (G, X), Re(G, X)
and R?(G, X).

The algebra R.(G, X) will be the uniform Roe algebra as defined in [16]. In
Chapter 2 we highlight when the different algebras coincide. In particular, we
see will see that

Re(G,G) = R (G, G) ~ Reon(G, G).

Hence motivating the the study of R,.(G, X) and R.on (G, X) as an analogue of
the uniform Roe algebra.

We will particularly be interested in how well our constructed algebras car-
ries information of the group. However, this approach is not new. A lot of
information regarding group properties can already be deduced from these con-
structions. The construction R, (G, X) is particularly well-studied. We will thus
be interested in seeing how properties of R, (G, X) carry over to Reon(G, X).

In Chapter 3 we investigate how well the “twisted Roe algebra”, R?(G, G),
carries information of the group. We are here inspired by the well-known result
that states that R, (G, G) is nuclear if and only if G is exact, and produce a
natural generalization to RY(G,G). As we shall see, no information regarding
exactness of G is lost when passing to the twisted setting. The results thus
motivates RZ(G, X) as a potential candidate for a generalized Roe algebra.

Whenever G acts freely on X, the algebras R.on(G,X), R,.(G,X) and
RZ(G, X) behave nicely when G is exact.

There has been much recent work on the algebra R,(G, X), for instance
in the article [17]. In Chapter 4 we (partially) extend one of these results to
Reon (G, X). Often we shall see that Reon (G, X) is easy to work with, and the
last result in Chapter 4 will motivate further study of this algebra. In particular
we see that the link between Fglner nets, non-paradoxicality and non-proper
infinite projections form a tight bond with R0, (G, X).

In the last chapter we will study an interesting C*-subalgebra of R, (G, G),
namely AP(G) X, G, the one obtained from the almost periodic functions.
In the Abelian case, we shall give a characterization of a class of C*-subalgebras
of this subalgebra. In the last section we give some motivation as to why
AP(G) X7, » G becomes a highly interesting C*-subalgebra.

I would like to thank my advisor Erik Christopher Bédos for invaluable help,
inspiration and guidance through the making of this thesis.






Chapter 1

Fundamentals

1.1 Preliminaries

In this section we shall review some fundamental definitions, as well as establish
the basic notation to be used in the rest of the thesis.

1.1.1 Group actions

Most of the discussion here can be found in any book on algebra, see for instance
[13]. For a set X, we let Perm(X) be the group of permutations on X.

Definition 1.1.1. A left group action of a group G on a set X is a homomor-
phism 7 : G — Perm(X). In this setting we say that G acts on X from the
left.

When there is no risk of ambiguity, we will often just refer to a left group
action as a group action.

Whenever we have a group action 7 : G — Perm(X) we will use the sugges-
tive notation

gr =7(g)x re X, g€eq.

We shall say that a group action 7 : G — Perm(X) is free whenever for all
g9,h € G and z € X the equality 7(g)z = w(h)z implies ¢ = h. Whenever we
have a group G the action of G on itself will be by left multiplication. It is easy
to see that this becomes a free group action.

We may also extend this discussion to the case of C*-algebras, a dicusion of
which may be found in say [7] or [21].

Definition 1.1.2. Let A be a C*-algebra and G a discrete group. A group
action of G on A is a homomorphism « : G — Aut(A).

To simplify notation later, we will use the following definition.

Definition 1.1.3. A C*-dynamical system is a triple (4, G, «) where A is a
C*-algebra, G a discrete group and « an action of G on A.
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1.1.2 Vector spaces associated with discrete groups and
sets

Let X be any discrete set. We may always form the ¢P-space of X, defined as

{f: X = Clsupey |f(z)] <0} p=oc.

We will also equip the ¢P-spaces with the familiar norm

_[Ceexlf@P)'? 1<p<oo )
||f||€p(X){sup{|]i((x)x€X} b ferx).

It is relatively easy to show that ¢7(X) becomes a complete normed vector space
with the above norm, though we will omit a proof here.
We also define the J-functions as follows:

0z(y) = {1 vy

0 otherwise.

A case which we will be particularly interested in (partly explained by Propo-
sition 1.1.7) is the case p = 2. We may equip ¢?(X) with an inner-product (-, -),
defined as _

(€0 = &a)x)  &Cel(X).
reX
Notice also that the set {d, | * € X} becomes an orthonormal basis for £2(X).

It is well-known ¢°°(X) becomes a C*-algebra with the pointwise product

and involution defined as conjugation. Also note that whenever we have a

left group action of a discrete group G on X, we get an induced group action
Tx : G — Aut({>*°(X)) defined by

x(9)f(x) = f(g~ ).

Whenever we are in the setting of a group action of G on X, we shall equip
£>°(X) with the action 7x.

For any Hilbert space H we shall as usual let B(H) denote the space of
bounded linear operators on H and U(H) the group of unitaries on H.

We start of by a surprisingly useful lemma.

Lemma 1.1.4. Let X be a set and ¢ € Perm(X) such that then the map
¢ 2(X) — (2(X) defined by

PE)=Eo¢  Eel(X),

is a unitary operator on (*(X).

As a result the map ad(¢) = r : B(f*(X)) — B({%(X)) is a x-isomorphism.
Proof. Let &,¢ € £%(X), then
(9(6),€) = D _ &((@)<(x)

zeX

= &@)( (@)

zeX
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Hence ¢~> = ng:l. It is easy to see that
godl=¢lod=1,

so ¢ is indeed unitary.
The last assertion follows immediately. O

Remark 1.1.5. As a result of the above lemma (and a small computation), we
see that we get a group action

ax : Perm(X) — Aut(B(£*(X)))
given by ~
ax(¢) = ad(p) ¢ € Perm(X).
1.1.3 Representations of groups and C*-algebra

Definition 1.1.6. Let A be a x-algebra. A x-representation of A is a pair
(m,H) where H is a Hilbert space and 7 : A — B(H) is a *-homomorphism.
We say that 7 is a representation of A on H.

In this case we say that a x-representation (m, H) is faithful if 7 is injective.

Proposition 1.1.7. Let X be a discrete set. There is a faithful x-representation
of £°(X) on £%3(X), given by the mapping

Mx : £2(X) — B(*(X)),
where
[Mx(H)©](t) = fF(1)&(t) for € € #(X),t € X.
Proof. The mapping is well-defined as

Do F @A) < 1w ey Y @) = (1117 ) 12ll x),

zeX reX

for f € (>°(X), h € £2(X). Further, we easily see that the mapping is linear
and multiplicative. To see that it respects the x-operation, let f € ¢°°(X) and
hi,hy € £2(X), then there is the simple, though dull, task of writing out the
inner product in £:

(Mx(f) = 3" FOhOha(t) = Y i () F(O)ha(t) = (hy, M(F)(h2)),

teX teX

and hence (Mx (f))* = Mx(f).
We also see that My is injective. Indeed, suppose £>°(X) > f # 0, and pick
x € X such that f(x) # 0, then

[Mx (f)(62)] (z) = f(2)da(x) = f(x) # 0,
and hence we get a faithful *-representation of £°°(G) on £2(X). O

Using the above proposition, we shall sometimes abuse notation and consider

(2(X) C B((X)).
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Definition 1.1.8. Let G be a discrete group. A wunitary representation of G is
a pair (m, H) where 7 : G — U(H) is a group homomorphism. We say that the
representation (m, H) is finite dimensional if H is finite dimensional.

Proposition 1.1.9. Let G be a discrete group acting on a set X from the
left. The map \x : G — B({*(X)) given by Ax(9)&(z) = (g~ ) is a unitary
representation of G in B(£%(X)) with Ax(9)* = Ax (g™ ).

Proof. 1t is easy to see that Ax becomes a homomorphism. Obviously, if we
have Ax(9)* = Ax(¢g!) for each g € G, then \x(g) is unitary. This is just a
tedious calculation of the inner product: For &, ¢ € £2(X) and g € G we have

D (0,6 = 3 o e

zeX
=Y g H(gw)l(gn)
reX
= ((z)Axg HE(x)
zeX
= (¢ Ax (g7 HE). O

Whenever we have a C*-dynamical system (A, G, ), we want to know when
the representations of G and the *-representations of A play nicely together.
More precisely we make the following definition.

Definition 1.1.10. Let (A, G, «) be a C*-dynamical system. A covariant rep-
resentation of (A, G, ) is a triple (u,m, H) such that (u, H) is a unitary repre-
sentation of G on H and 7 is a *-representation of A on H satisfying

u(g)m(a)u(s)” = n(a(g)a) foralla € Aand g € G.

It is quite easy to come up with examples of covariant representations, in
fact we have already seen one.

Lemma 1.1.11. Let G be a discrete group acting on a set X from the left. Then
the triple (A\x, Mx,?*(X)) is a covariant representation for the C*-dynamical
system (£°(X),G,1x).

Proof. This is again just writing out the definitions:

x (9)Mx (/)Ax (9)"(€)] (z) = flg™ w)é(x)
= [Mx (mx(9)(£))&] (x),

for z € X, f € (®(X), £ € 2(X). As such we see that

Ax (9)Mx (f)Ax(9)" = Mx(7x(9) ),

and we are done. O

1.2 Crossed products

In this section we consider a discrete group G with an action a : G — Aut(A) on
some unital C*-algebra A. Now given the action, we wish to form a C*-algebra
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containing both A and the action of G on A. As a first step we shall construct a
intermediate x-algebra which we will complete in two different norms to obtain
the full and reduced crossed product. Most of our definitions are acquired from
[7, Section 4.1].

Consider the vector space C.(G, A) consisting of finitely supported® func-
tions from G to A. We make the convention that for any g € G we let
g € C.(G,A) be the function mapping g to 14 € A and everything else to
0 € A. Using this convention we may view C.(G, A) as the set of finite sums

D_ s
geG

where a4 € A for all g and all but finitely many of the a, are non-zero.
We define a product *, between two such finite sums as

(Zaw) * o, (Z bhh> = Z aga(g)(br)gh,
geG heG g,heG
and their involution as
(Sow) = Sats e
geG geG

Given these operations, one easily checks that C.(G, A) becomes a *-algebra.
Given a covariant representation (u, 7, H) of (A, G, «), it is easy to construct
a #-representation m x u : C.(G, A) — B(H) by

(m x u)(z agg) = Z m(ag)u(g) Z agg € Co(G, A).
geG geEG geG

A quick check shows that this indeed becomes a *-representation of C.(G, A).

1.2.1 Full (universal) crossed product
We use the following definition from [7].

Definition 1.2.1. Let G be a discrete group with an action a : G — Aut(A)
on some C*-algebra A. We define the universal norm on C.(G, A) to be

\|z]|u = sup {||m()|| | 7 : Cc(G,A) — B(H), H is a Hilbert space,

mTisa * —homomorphism}.

We furthermore define the full crossed product, A x4 G to be the completion
of C.(G, A) with respect to || - ||.

Now, || - || does indeed become a norm on C.(G, A) (and not just a semi-
norm), as we can always construct a faithful x-representation of C.(G, A) when-
ever we have a faithful x-representation of A (this will become clear when we
discuss reduced crossed products). We also get the following useful universal

property.

Lactually, compactly supported continuous functions, but as G is discrete, this reduces to
finitely supported functions
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Theorem 1.2.2. Let (A, G, «) be a C*-dynamical system, and assume (u, 7, H)
is covariant representation for (A, G,«). Then m X u extends uniquely to a *-
homomorphism A x, G — B(H).

Proof. See e.g. [7, Proposition 4.1.3]. O
An immediate consequence of this is the following corollary.

Corollary 1.2.3. Let G be a discrete group with an action o : G — Aut(A) for
some C*-algebra A. Suppose (u,m, H) is a covariant representation of (A, G, )
on some Hilbert space H, and let C be the C*-algebra generated by u(G) and
w(A) in B(H). Then there is a surjective x-homomorphism o : A X, G — C.

Whenever G is a discrete group with a left-action on a set X, we shall
denote R, (G, X) = £>°(X) X, G. If G acts on itself by left translation, we let
R.(G) = Ru(G, G).

1.2.2 Reduced crossed product

Because of the universal norm, the universal crossed product is often difficult
to work with. We thus introduce the reduced crossed product.

Let G be a discrete group with an action o : G — Aut(A) on some C*-
algebra A. Let m: A — B(H) be a x-representation of A on a Hilbert space H.
We define a new *representation, p, of A on H ® (2(G) by

pr(a)(€ @ 0g) = m(a(g™")(a))(€) ® J.

By an easy calculation one sees that the representations 1 ® A\g and p, form
a covariant representation for the action of G on A. We thus get an induced
s-representation of C.(G, A) on H ® ?(G) with pr x (1® Ag).

Definition 1.2.4. Let G be a discrete group with an action o : G — Aut(A) for
some C*-algebra A. If m : A — B(H) is a faithful -representation of A, we define
the reduced crossed product, A X, G as the closure of pr X (1@ Ag)(Ce(G, A))
in B(H @ (*(Q@)).

It can be shown that the reduced crossed product is in fact independent of
the choice of *-representation =, see for instance [7, Proposition 4.1.5]. Using
the map a — pr(a) we may always identify A as a subalgebra of A X, G, so
we will sometimes abuse notation and assume A C A X, G.

Owing to Corollary 1.2.3, we see that the reduced crossed product is just a
quotient of the full crossed product.

One of the benefits with the reduced crossed product is that we get a con-
ditional expectation, as the next proposition shows.

Proposition 1.2.5. Let (A, G, «) be a dynamical system. Then there is a faith-
ful conditional expectation E : A o, G — A such that

E(Z agg) = Qe Z aq9 € C.(G, A).

geG geG

Proof. See [7, Proposition 4.1.9]. O



1.3. CROSSED PRODUCTS CONCRETELY REPRESENTED ON (*(X) 9

Whenever G is a discrete group with a left-action on a set X, we shall
denote R, (G, X) = (°(G) X+, » G. If G acts on itself by left translation, we let
R.(G) = R.(G,G). This is one of the usual ways of defining the Roe algebra
in the language of C*-algebras.

1.3 Crossed products concretely represented on
(X))

We shall see that there is a more natural approach to the construction of the
crossed product in the cases we are interested in.

Indeed, whenever we have a group action of G on X, we get the covariant
representation (Ax, Mx) of ((*(X),G,7x) on ¢?(X) (by Lemma 1.1.11), so
it seems unecessary to form the covariant representation pp, X (1 ® Ag) on
(X)) @ 2(G).

Definition 1.3.1. Let G be a discrete group with a left action on a set X. We
define the concretely represented Roe algebra on ¢2(X), denoted Reon(G, X),
as the closure of (Mx x Ax)(C.(G,£>*(X))) in B(¢*(X)). Whenever G acts on
itself by left translation, we shall let Reon(G) = Reon (G, G)

As in the case of the reduced crossed product, we have a conditional expec-
tation of Reon(G, X) onto £°(X).

Proposition 1.3.2. Let G be a discrete group with a left action on a set X. The

map E = MxoF : Reon(G, X) = Mx (£2°(X)) where F : Reon(G, X) — £°(X)
1s defined by

[F(&)] (z) = (€(62),02) & € Reon(G, X), z € X,
is a faithful conditional expectation of Reon(G, X ) onto Mx (£° (X)) C Reon(G, X).
Proof. Now, E is obviously a projection, as
[F(Mx ()] () = ([Mx ()] (62),02) = f(x)  fel(X), ze€X.
Using elementary properties of the inner product and the fact that My is con-
tractive, it is quite easy to see that E is contractive, hence we may conclude

that E is a conditional expectation by [7, Theorem 1.5.10].

To see that it is faithful, observe that whenever R o, (G,X) 2 T > 0 in
B(f*(X)) and £(T) = 0, then (T4,,d,) =0 for all z € X, so T = 0. O

Lemma 1.3.3. Let G be a discrete group acting freely on a set X. Then the
conditional expectation E : Reon(G, X) = Mx (£°(X)) satisfies

E(x(g) = {1 9=cc

0 otherwise.
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Proof. This is an easy calculation, as for x € X we have

F()\(g))(.%‘) = <)‘X(g)5m;5w>

= <599L’ﬂ 6:13>
)1 gx=x
0 otherwise
_ )1 g=ec
" )0 otherwise

since the group action was free. O

As in the case of the reduced crossed product, we may view R.on (G, X) as
a quotient of R, (G, X), since (Ax, Mx,¢*(X)) is a covariant representation of
(4>(X),G,7x), so Corollary 1.2.3 gives us a surjection

Ru(G, X) = Reon (G, X).

1.4 Twisted crossed products and Roe algebras

One may generalize the construction of a crossed product to a case when we
do not directly have a group action on a unital C*-algebra. Rather we shall
be concerned with the case when we up to a twist have a group action on a
C*-algebra.

Definition 1.4.1. Let G be a discrete group. A cocycle-crossed action of G on
a unital C*-algebra A is a tuple (o, o) where a: G — Aut(4) and 0 : G x G —
U(A) satisty

1. a(g)a(k) = ad(o(g, k))a(gk) for all g,k € G
2. o(g,h)o(gh,k) = [a(g)(o(h, k)] o(g, hk) for all g, h,k € G
3. o(g,eq) =0(eg,9) =1forall g € G.

Definition 1.4.2. A twisted C*-dynamical system is a triple (A, G, «, o) where
A is a unital C*-algebra, G a discrete group and («, o) a cocycle-crossed action
of G on A.

Remark 1.4.3. Notice that whenever we have a cocyle-crossed (o, o) action
of a group G on some commutative C*-algebra A (which is the case we are
interested in), or more generally if o takes values in the center of A, Z(A), « is
a group action on A as

[a(g)a(k)] (a) = [ad(o (g, k))(gk)] (a)

for all g,k € G and all a € A.
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Owing to the above remark, we shall be chiefly interested in appending some
“twist” o to an already given group action. This will luckily make things a lot
easier for us, but it will also produce an extra layer of generalization for our
definition of the Roe algebra.

We shall consider C.(G, A) equipped with a new conjugation and multipli-
cation. Namely, we shall define for finite sums dec ag9, Y pec bnh € Ce(G, A)

(Z %9> =Y o997 ") lg)(a;-1)g

g9

and

() « (S0 = 3= avatotmpto o

g h 9,.h€C

As we only specifically consider the reduced twisted crossed product, we will not
define the universal twisted crossed product, but the reader should rest assured
that it can be done quite similar to Definition 1.2.1.

As in the case of the (untwisted) reduced crossed product, we start with a
faithful representation 7 : A — B(H) for some Hilbert space H. We then define
the representation p, : A — B(H ® ¢*(G)) as we did for the untwisted case.
Then we define the representation A\, : G — B(H ® (?(G)) by

Ao (9)(E® ;) = [ﬂ(a(x_lg_l,g))f] ® Og ¢eH g red.
Lastly we define the representation Py , : C.(G, A) — B(H ® (*(G)) by

Prs Z agg | = Zpﬂ(agp‘o(g) Z agg € C.(G,A).

geG geG

Definition 1.4.4. Let G be a discrete group with cocycle-crossed action («, o)
on a C*-algebra A faithfully represented on a Hilbert space H via m. We define
the reduced twisted crossed product Ax¢, ,. G as the completion of Py ,(C.(G, A))
in B(H ® *(Q)).

As in the case of the (untwisted) reduced crossed product, the definition of
A xg . G is actually independent of faithful representation.

Suppose G acts on a set X. We wish to find ¢ : G x G — U(>®(X))
such that (7x,0) form a cocycle-crossed action of G on £>°(X). As ¢*°(X) is
commutative, part one of Definition 1.4.1 is trivially satisfied. An easy choice
of o is to let o(g,h) € T be constant for each g,h € G. As 7x(g)(f) = f for
all constant functions f € ¢>°(X) and all g € G, part two of Definition 1.4.1
reduces to

o(g,h)o(gh,k) = o(h,k)o(g, hk) g, h, k € G.
This equation is just the requirement for o to be a scalar-valued 2-cocycle. More
precisely, we use the definition found in [3, Definition 2.1].

Definition 1.4.5. Let G be a discrete group. A normalized 2-cocycle on G is
amap o : G x G — T such that

o(g,h)o(gh, k) = o(h,k)o(g,hk) — g,h, ke G

and
o(g,eq) =olea,9) =1 geG.
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We will primarily be interested in the case when o : G x G — U({>°(G)) is
obtained through some 2-cocycle, that is when

a(g,h) =6(g,h)1le=(x) (1.1)

for some 2-cocycle 6. We shall abuse notation somewhat and call 0 : G x G —
U(£>*(X)) a 2-cocycle whenever it obeys (1.1) for some 2-cocycle 4.

In the case when (), o) form a cocycle-crossed action of G on £*°(X) we shall
denote RZ(G, X) = £>*(X) x2_, G. Whenever we are in the case when G acts

TX,T

on itself by left translation, we set R7(G) = R2(G, X).

1.5 Coarse geometry

The “traditional way” of defining the Roe algebra is through coarse geometry,
which perhaps more closely links the Roe algebra to John Roe.

The exposition here could be made a lot more general, but we shall concen-
trate on the situation of C*-algebras. Moreover the reader should note that one
may make broader definitions in most cases, see for instance [16].

We shall presently move our attention elsewhere, and from now on we shall
emphasize less that the action of a group gives rise to an operator on a Hilbert
space. Rather, the role of the group action shall be a little more subtle. Though
before we bring group actions into this, we shall need to define some extra
notation.

Let X be any set, and let E1, F5 be subsets of X x X. We define the inverse
of F, denoted El_l, by

E1_1 = {(xlaxQ) | (IEQ,’Il) S E1}7
and we also define the composition of F1 and Fs, denoted Ej o E5 by
Ey 0 Ey = {(x1,22) | 3z € X such that (x1,2) € By, (x,22) € Ea}.

Similar to the definition of a topological structure, we make the core defini-
tion for coarse spaces.

Definition 1.5.1. Let X be a set, and £ a family of subsets of X x X. We say
that £ is a coarse structure for X if £ contains the diagonal and is closed under
finite unions, inverses, compositions and subsets.

As in the case of topology, we may also consider coarse structures generated
by a family of subsets.

Proposition 1.5.2. Let X be a set, and a & a family of subset of X x X. Then
there is a smallest family € of subsets of X x X containing € such that £ is a
coarse structure on X.

Proof. The proof is the standard one using intersection, see for instance [16,
Proposition 2.12]. O

Whenever we are in the situation of Proposition 1.5.2 we shall call £ the
coarse structure generated by E.

We are now ready to introduce the group action into the picture of coarse
geometry.
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Definition 1.5.3. Let G be a discrete group with an action on a set X. We
define the G-saturation of a subset F of X x X to be {(gx,9y) | (z,y) € F,g €
G}.

Whenever G is a discrete group acting on a set X, we shall equip X with the
coarse structure £ generated by the G-saturations of finite subsets of X x X.
For an arbitrary set X, we define supp T for an operator T' € B(¢?(X)) by

suppT = {(z,y) € X x X | T(5,)(x) # O}.
Whenever a set X has a coarse structure &£, we shall let
Ctrl(€) = {T € B(*(X)) | suppT € £} .

We say that Ctrl(€) are the operators on £2(X) with controlled propagation with
respect to &.

Lemma 1.5.4. Let X be a set with a coarse structure €. Then Ctrl(E) becomes
a x-algebra.

Proof. Tt is easy to see that all linear combinations of operators in Ctrl(£) are
contained in Ctrl(€). Furthermore, for T, S € Ctrl(£) we see that

supp TS C suppT osupp S € £.
—— ——
e e

So suppT'S € &, hence T'S € Ctrl(€).
Furthermore, we see that if (z,y) € X x X, then

T(02)(y) = (Toz, 0y) = (02, T"0y) = T*(0,) ().
Hence supp T = (supp7*)~1, so T* € Ctrl(£) whenever T € Ctrl(€). O

We define the wniform Roe algebra, C:(E) as the closure of Ctrl(€) in
B(¢*(X)) with respect to the operator norm. Owing to the above lemma, we
see that C(€) becomes a C*-algebra.

Whenever we are in the setting of a group G acting on a set X from the
left, we shall denote R (G, X) = C;(Ez). Whenever G acts on itself by left
translation, we shall let R.(G) = R.(G, G).
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Chapter 2

The link between the
constructions

There are special cases when the various definitions of the crossed products
and the uniform Roe algebra coincide. The only time we can guarantee they
all coincide will be in the case of an amenable group acting on itself by left
translation.

2.1 Coarse geometry and R..,(G)

Our first proposition will reveal as how the controlled operators on £2(G) are
related to C.(G, £ (G)).
We first need to make a little lemma. We use # to denote set cardinality.

Lemma 2.1.1. Let G be a discrete group. Then
Ea =& ={F CGxG|F satisfy (2.1)}

where
#{m_ly | (z,y) € F} < oc. (2.1)

Proof. To see this, observe that if £ C G x G is finite, we have
{(92)7 192" | g € G, (z,2") € B} = {a™ "2 | (x,2) € E},

and the latter set is obviously finite as F is finite. This shows that the G-
saturations of F is in £’. We also see that whenever F' C G x G satisfies
condition (2.1) we may define E = {(eg,z"'y) | (x,y) € F}, which is finite.
Then

{(gz,92") | (z,2') € B, g € G} = {(9,927"y) | (z,y) € F, g€ G} D F,

and so we see that all the elements in £ must be in Eg, i.e. £’ C Eg.

Now, as the diagonal obviously fulfils condition (2.1), and the action of
inverses, composition and finite unions also preserves condition (2.1), we see
that £ becomes a coarse structure on G. Hence £; C £ and we are done. [

15



16 CHAPTER 2. THE LINK BETWEEN THE CONSTRUCTIONS

Theorem 2.1.2. Whenever G is a discrete group, we have a *-isomorphism
Reon(G) ~ Re(G).
Proof. We first need to shift R.(G) by inversion. So we define the map
¢o:G—=G
by ¢(g9) = ¢! and define & : B(?(G)) — B(*(G)) as in Lemma 1.1.4, that is

K(T)(E)() =T(E0d)(9(z)) €€ 3(G),z€G,TeBQ)).
With these definitions Ctrl(g) ~ x(Ctrl(€g)). Notice that T € s(Ctrl(€g))

whenever
#{oy™ " | T(6,-1) (27 ") #0} < 0
We shall first show that Mx X Ag(C.(G,£*(Q))) = k(Ctrl(€g)). This is,
however, easy. Let T =}  _p fsAc(g9) € B({>°(G)) be a finite formal sum
where {f;}, € £°(G). For z,y € G we have

(O F2a(9)8,)(@) = (O f4(99)0y) (@) = fuy1 ().
geG geG
So
{zy™" | T(8y)(2) # 0} = {ay™" | fay-1(2) # O}
The latter set is finite, as there are only finitely many g € G such that f, # 0,
hence T' € x(Ctrl(Eg)).
Conversely, assume T' € k(Ctrl(€g)). For g € G define f, € £>°(G) by
Jo(x) =T (64-1,)(x). We see that f, # 0 for only finitely many g € G, as
00 > #{ay™" [ T(3,)(x) # 0}
> #{ﬁx_lg ‘ T((Sg—lw)(x) 7& 0}
=#{geG|fs #0}.
So by a simple calculation we may decompose T as a finite sum
T= z fora(9)-
geG
Thus T € Mx xAg(Ce(G,£>2(G))), so we get equality of Mx xAg(C.(G,L=(G)))
and £(Ctrl(€g)). We thus produce
Re(G) ~ k(R(G)) = (Ctrl(€g)) = Reon(G). O

Remark 2.1.3. The role of « in the above proof is rather subtle. Basically
what we have done is to move the operators in Ctrl(€g) to operators whose
support are contained in sets of the form

#{zy™" | (z,y) € suppT} < oo.

This actually gives us another coarse structure on GG, but it coincides with the
right group action of G on itself.

Owing to the above remark we define a new coarse structure on G by
&' ={ECGxG|#{zy " |(z,y) € B} < oc}.

We will need this structure in a later chapter.
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2.2 Ren(G,X) and R, (G, X)

We shall show that when things play nicely, Reon (G, X) ~ R,.(G, X) for suitable
G and X. Nevertheless we start with an example where things go wrong:

Example 2.2.1. Set G = Z/n for some 1 < n € N and let G act on X =
{1,...,n} with the trivial action, that is

gr=2x forallz € X, g € G.
Then, as the operator Ax(g) on ¢?(X) is the identity for all g € G we see that
Reon(G, X) = Mx (6%(X)) C B(*(X)),
o)
Reon(G, X) = Mx(0>° (X)) ~{A € M, »,(C) | Ais a diagonal matrix}.
Meanwhile we see that
dim C.(G,£*(X)) =n-n > dim Reen (G, X)

hence

Reon(G, X) 2 R (G, X).

What failed in the above example is simply that the action, in some sense,
did not describe the group G in any meaningful way. Our intuition leads us to
the case of a free action of G on X. It will actually be Lemma 1.3.3 that saves
the day.

Theorem 2.2.2. Let G be a discrete group with a free action on a set X. Then
Reon(G, X) ~ R, (G, X).

Proof. Let ¢ : Ry(G, X) = Reon(G,X) and ¢ : Ry (G, X) = R, (G, X) be the
surjective *-homomorphisms we get from Corollary 1.2.3. We will show that
ker ¢ = ker ¢ and thus get that

Reon(G, X) 2Ry (G, X))/ kerp = Ry (G, X)/ kerp ~ R,.(G, X).

Let E : R(G,X) — £°(G) be the conditional expectation in Proposition
1.2.5 and let F': Reon(G, X) — £°°(X) be as in Proposition 1.3.2. Consider

S f49 € Cu(GL 0% (X)).

geG

Then
F(¢(Z f99)) = F(Z Mx (fg)Ax(9)) = feq

geG geG

(by Lemma 1.3.3 and the fact that F' is a conditional expectation), likewise we

have
E($( £49)) = feo-

geG
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We thus see that £ o ¢|c, (g .e=(x)) = F 0 ¥|c. (e (x))- S0 as Co(G, (X)) is
dense in R, (G, X) we see that Eo¢ = F o).
Assume z € ker ¢, and assume x > 0. Then

but as ¥(x) > 0, we must have 1(x) = 0 since F' was faithful, so z € ker .
Conversely, assume x € kerty and = > 0, then again we get by the same
argument that x € ker ¢. Hence we have

kerip N {x € Ry (G, X) | x>0} =ker¢ N {z € R, (G, X) | x > 0},
but then ker ) = ker ¢, and we are done. O

Corollary 2.2.3. Let G be a discrete group. Then
Rr(G) 2 Re(G) = Reon(G).

Proof. Immediate from Theorem and Theorem 2.1.2. [

2.3 R,(G) and R,(G)

This material is quite classical and essentially well known. We will therefore
mostly just refer to proofs found in other articles where needed. Basically we
will see that R, (G, X) ~ R, (G, X) are isomorphic whenever G is amenable.

There are several (equivalent) definitions of amenability, but we will use the
following.

Definition 2.3.1. Let G be a discrete group. We say that G is amenable if
there exists a linear functional m : £>°(G) — C such that

1. m(ra(g)f) = m(f) for all g € G and f € £°(G) (m is 7¢- or simply
G-invariant);

2. m is a state.
We are now ready to state our main theorem in this section(without proof):

Theorem 2.3.2. Let G be an amenable group with a left action on a set X.
Then
R(G,X) ~Ryu(G, X).

Proof. Easy consequence of |7][Theorem 4.2.6]. O

We will give another characterization of this theorem in Corollary 3.4.4.



Chapter 3

On nuclearity

In this chapter we shall extend a result known in the case of (untwisted) reduced
crossed product to the case of twisted crossed products. We will also investigate
how well amenability of 75 extends to amenbility of 7x. Though before we do
this, we need to extend our vocabulary.

3.1 Group C*-algebras

We are going to review the concept of group C*-algebras, a concept usually
introduced without the crossed product construction. But to save time, we will
just make the constructions through the reduced crossed product.

Let G be a discrete group. We notice that we may let G act trivially on the
C*-algebra C. We call this action ¢q.

Definition 3.1.1. Let o be a scaler 2-cocycle. We define the reduced o-twisted
group C*-algebra, denoted C* (G, o), to be

C*(G,0) =C x,,., G.

Whenever o = 1 we set

CH(@Q) = C*(G, o).

Identifying Cly(g) C £>°(G) as a G-invariant C*-subalgebra of £>°(G), we
see that we may consider C*(G, o) as a C*-subalgebra of R7(G).

3.2 Nuclear and exact C*-algebras

There are several equivalent definitions of nuclear C*-algebras, but because it
turns out it is the best fitting for our purposes we shall use a variant of the one
found in [7].

Definition 3.2.1. Let A be a C*-algebra. We say that A is nuclear if there
exists a sequence of contractive completely positive maps ¢,, : My, x, (C) — A
and ¥, : A — My, , (C) such that for all a € A

[|¢n © 9 (a) —al| = 0.

19
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A classical problem in C*-theory has been determining when the algebraic
tensor product of two C*-algebras has a unique C*-norm. This is known to be
true in the case where at least one of the two C*-algebras is nuclear, and the
common definition of nuclearity of a C*-algebra is that A is nuclear if and only
if A® B has a unique C*-norm for all C*-algebras B. The two definitions are
equivalent, as seen in |7, Theorem 3.8.7].

A weaker notion than a nuclear C*-algebra is the notion of an exact C*-
algebra.

Definition 3.2.2. Let A be a C*-algebra. We say that A is exact whenever there
exists a faithful x-representation = : A — B(H) with contractive completely
positive maps ¢, : A = Mg, x, (C) and 9, : My, x, (C) — B(H) such that

[|tn, © pn(a) — w(a)|] — O for all a € A.
Definition 3.2.3. We say that a group G is ezact whenever C(G) is exact.
As the next lemma shows, being exact is weaker than being nuclear:

Lemma 3.2.4. Let A be a nuclear C*-algebra, and suppose B C A is a subal-
gebra, then B is exact.

Proof. Pick a faithful representation 7 : A — B(H). As A is nuclear, we
obviously see that m(A) is nuclear since 7 becomes a *-isomorphism onto its
image, and it is enough to show that 7(B) is an exact C*-algebra.

By nuclearity of A we may pick maps ¢, : m(A) — My, »,(C) and ¢, :
My 0, (C) — 7w(A) according to Definition 3.2.1. Now, the map ¢n|~(p) is
obviously still contractive completely positive for each n. We may view the
inclusion ¢ : w(B) — B(H) as a faithful representation of 7(B) on H. Moreover
we may consider 1, as map into B(H) for each n, and it will still be contractive
completely positive. Lastly, we see

[|9n © p(m(b)) —i(m(b))]| =0  for all b € B,
and hence we are done. O

There is a canonical way to prove Lemma 3.2.4, namely to first show that
a subalgebra of an exact C*-algebra is exact, and that a nuclear C*-algebra is
exact. We will no’t need these results, so our direct proof will suffice.

The following, which is a known result, shed some light on the relation
between nuclearity, exactness and groups.

Theorem 3.2.5. Let G be a discrete group. Then the following are equivalent:
1. G is ezact.
2. R.(Q) is nuclear.

Proof. See for instance [7, Theorem 5.1.6]. O

Our goal in this chapter is to extend this result to the case of twisted actions.

3.3 Technicalities

Before we start out on our main proof, we are going to need some technicalities.
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3.3.1 Hilbert C*-modules

We shall make a slight digression into the world of Hilbert C*-modules, simply
to establish notation and vocabulary. For a (close to) complete discussion one
should consult [12].

Definition 3.3.1. Let A be a C*-algebra. A right A-module is a vector space
X with a multiplication - : X x A — X such that

z-(ab)=(x-a)-bforalla,be Aand x € X.
2. (z+y)ra=xz-a+y-aforalaec Aand z,y € X.
3. xz-(a+b)=xz-a+z-bforallz € X anda,be A
4 XNz-a)=(Az)-a=xz-(Aa)forallac A, x € X and X € C.

The last point in the above definition is often omitted, but we include it to
simplify later definitions.

Definition 3.3.2. Let A be a C*-algebra. A pre-Hilbert A-module is a right
A-module equipped with a map (, )x : X x X — A satisfying the following

L (y, e +vy)x = My, z)x +v{y,2)x for all z,y,z2 € X and \,v € C.

o

z,y)x = (y,z)% for z,y € X.

z,y-a)x = (z,y)x -afor z,y € X and a € A.

= W

(
.
.
. {x,x)x >0 for all z € X, with equality if and only if 2 = 0.

We shall omit the subscript X on the map ( , ) whenever the space X is
clear from the setting.

It can be shown that whenever A is a C*-algebra and X is a pre-Hilbert A
module, then the map (, ) satisfy the Cauchy-Schwartz inequality, that is

1l < @) Kyl @y eX,

see for instance [12, Proposition 1.1] for a proof. An easy consequence of this is
that the function || - ||x : X — R defined by

lzllx = VI(z, )] zeX

is a norm on X.

Definition 3.3.3. Let A be a C*-algebra. A Hilbert A-module is a pre-Hilbert
A-module X which is complete with respect to the norm || - || x.

Example 3.3.4. Let A be a C*-algebra. The most trivial example of a Hilbert
A-module is A itself with multiplication defined as

T-a=zxa T,a €A,
and (, Ya:Ax A— A defined as

<xvy>A = x*y T,y € A.
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It is easy to check that this is becomes a pre-Hilbert A-module, with

lalla = VIl{a,a)ll = Vlla*al| = llal| a4,

Hence the norm induced by (, )4 coincides with the original norm on A. Thus
A becomes a Hilbert A-module.

Definition 3.3.5. Let A be a C*-algebra, and X,Y two Hilbert A-modules.
We say that a map T : X — Y is adjointable if there exists amap T* : Y — X
such that

(v, T(x)y = (T"(y),z)x ze€X,yeY.

Following the notation from [4], we define a couple of spaces associated to a
Hilbert A-module. Whenever X is a Hilbert A-module, we define

L(X)={T: X — X | T adjointable},

and
I(X)={T: X — X | T is linear, bounded and invertible}.

In addition whenever G is a group, we define

XC={T:G— X| Z(T(g),T(g»X converges in the || - || norm of A}.
geG

We can make X into a Hilbert A-module with the inner product defined as

(T.S)xe = > (T(9).5(9))x  T.5€ X,
geG

the multiplication being defined by
(T-a)(g)=T(g) a geGacATeXC.

Also note that C.(G, X), the set of X-valued function from G with finite sup-
port, is trivially contained in X G,

We borrow the definition of amenability for group actions on a C*-algebra
from [7, Definition 4.3.1].

Definition 3.3.6. Let G be a discrete group. An action o : G — Aut(A) on
a unital C*-algebra A is amenable if there exists a net {T;}; C C.(G, A) such
that

1. 0< Ti(g) € Z(A) for all i and g € G.
2. lim; ||(s *q T;) — Ti||ac = 0 for all s € G.
3. (T3, T;) g = 1 for all 4.

The first theorem sheds some light on the relation between exactness and
amenability.

Theorem 3.3.7. Let G be a discrete group. The following are equivalent:

1. G is exact.
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2. The action of G on £>°(G) is amenable.
Proof. See [7, Proof of Theorem 5.1.7]. O

An importance consequence of amenability of an action is the following the-
orem, which should be compared to Theorem 2.3.2 to see the link between
amenability of groups and C*-algebras.

Theorem 3.3.8. Let (A,G,a) be a C*-dynamical system. If G acts amenably
on A then A Xg, G~ Ax,G.

Proof. See [7, Theorem 4.3.4]. O

Before we introduce our next result, we need to define some notation that is
found in [4].

Definition 3.3.9. Let (a,0) be a cocycle crossed action of a group G on a
C*-algebra A. An equivariant representation of the twisted dynamical system
(A,G,a,0) on a Hilbert A-module X is a pair (p,v) where p: A — £(X) and
v: G — Z(X) such that

a(g)(a)) = v(g)p(a)v(g)~" for g€ G, a € A

g)v(h) = ad,(o(g, h))v(gh) for g,h € G

1.

N
e = =
\SD
—~

(x,2")) = (v(g)z,v(g)x’), for g € G and z,2" € X

3 (
4. v(g)(z-a) = (v(g)x) - a(g)(a) for g € G, z € X and a € A,

ad,(a)r = p(a)z - a* r € X,aclU(A).

Example 3.3.10. It is easy to come up with an example of an equivariant
representation for a twisted dynamical system (A4,G,«,0). Let X = A and
equip A with its canonical A-module structure. Then we may define

p: A= L(A)

by p(a)b = ab for a € A and v : G — Z(A) by v(g) = a(g) for g € G. Then
trivially all the conditions for an equivariant representation are satisfied.

We then define a weaker notion than amenability, but as we will see, it will
suffice for our purposes.

Definition 3.3.11. Let (o, o) be a cocycle crossed action of a group G on a C*-
algebra A. We say that the dynamical system (A4, G, «, o) has the weak approxi-
mation property if there exist an equivariant representation (p,v) of (4, G, «, o)
on some A-module X and nets {¢}; and {n;}; in X satisfying

1. there exists some M > 0 such that [|&]] - ||n:|] < M for all 4.

2. for all g € G and a € A we have

lim )~ (& (h). pla)u(g)mi(g~'h)) = a.

heG
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The following is a rather useful consequence of the weak approximation prop-
erty.

Theorem 3.3.12. Assume (4,G,«,0) is a twisted C*-dynamical system with
the weak approximation property. Then A X, G is nuclear if and only if A is
nuclear.

Proof. See [4, Theorem 5.11]. O
We are going to need the following useful observation.

Proposition 3.3.13. Suppose (A,G,a,0) is a twisted C*-dynamical system
such that

o(G,G) C Z(A).
If the action « is amenable, then (A, G, a, o) has the weak approximation prop-
erty.

Before we prove the proposition, we make a small note. By Remark 1.4.3
we know that « indeed becomes an ordinary group action on the C*-algebra A,
hence it makes sense to talk about amenability of a.

Proof. Let {T;}; C C.(G, A) be as in Definition 3.3.6 for the action a. Further
define the equivariant representation of (A, G, a,0) on A as in Example 3.3.10.
Put {&}i = {n:}: = {T;};. Now, obviously the nets are in A“ as they specifically
lie in C.(G, A). Furthermore, as T;(g) € Z(A) for all g € G, the second part of
in Definition 3.3.9 just becomes

14 =Y &) algm(g 'h)|| -0  forallgeG.
heG

Observe that for g € G we have by a direct computation

114 =Y &lgh) (@) M) =11 Y Ti(9)* = Y &ilgh)* elg) (m(h))|

heG heH heG
=1 Y_ Tu(h)* = Y Tu(gh)alg)(Ti(h)]]
heG he@
= I Y Tu(h)* = Tu(h)a(g)(Ti(g~ " h)||
heG heG
=1 > Tu(h) (Ti(h) — lg)(Ti(g~"h))) ||
heG

= (T3, Ti = g %o Ti)|
<|ITillac||Ti = g *a Tillac — 0

Now, as
(T;,T;) =1 foralli e N
we obviously have that ||&]|| - ||7:|| is uniformly bounded.
We have thus produced an equivariant representation of (A4,G,«, o) with
the desired nets {¢;} and {n;} and hence we are done. O

Lemma 3.3.14. Let G be an exact group, and let o : G x G — UL (G)) be a
2-cocycle. Then RZ(G) is nuclear.
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Proof. By Theorem 3.3.7 we known that the action of G on ¢*°(@G) is amenable,
and hence by Proposition 3.3.13 the system (¢*°(G), G, 7, 0) has the weak ap-
proximation property. Since £>°(G) is nuclear (it is Abelian) we get by Theorem
3.3.12 that RZ(G) is nuclear. O

We also need to go the other way around, that is to show that G is exact
whenever RY(G) is nuclear. Actually, we will go a bit further and show that
C(G, o) is exact if and only if C}(G) is exact. We shall follow the method used
in [7] closely, but we are going to be rather careful when adding the twist. First,
we need a little definition, again borrowed form [7].

Definition 3.3.15. Let G be a discrete group. A postive definite kernel is a
bounded function k : G x G — C such that the matrix

(k(s,1))ster
is positive for any finite subset F' C G.
Brown shows the following theorem.
Theorem 3.3.16. Let G be a discrete group, the following are equivalent:
1. G is exact;

2. For any finite subset E C G and ¢ > 0 there exists a positive definite
kernel k : G x G — C such that

{(z,y) € G x G | k(z,y) #0} € &'

and
sup{|k(s,t) — 1| | st € B} <e.

Proof. See [7, Theorem 5.1.6]. O

We produce a simple lemma, the proof of which follows closely to that of the
proof of [7, Theorem 5.1.6], we only make slight adjustments where needed.

Lemma 3.3.17. Let G be a discrete group and o : GXG — T a scalar 2-cocycle.
If C*(G,0) is exact, then C}(G) is exact.

Proof. We will show that item ii) of 3.3.16 holds, and thus get the desired result.
Let E be a finite subset of G. Define K : G x G — C} (G, 0) by

K(s,t) =o(t,t 7 o(s7, 8)* Ao (8) Ao (£)* s,t€G.
Set
F = Span{K (s,t), K (s~ ', t), K(s,t ™), K(s™ ', t7 ) | s,t € G,st™* € E}.

Then we may, by [7, Exercise 3.9.5] find a finite subset £’ C G containing FE
such that we have a unitary completely positive map ¢ : B((2(E")) — B(¢*(G))
satisfying

|z = ¢(peraper)|| < €|zl z€F,
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where pg : £2(G) — (?(E’) is the projection. Set ¢ : B({?(G)) — B({3(G)) as
Y(x) = ¢(prraxprs). Then define k: G x G — C by

k(s.t) = (0(K(5,))6,,8,)  s,teG.

Pick a finite subset S = {s1,...,5,} € G, and set A = (k(s,t))s,tes, then for
xeC”

(Az, x) E k(si, s;)Tix;
= E K (si,55))0s,,0s,)Ti1;

- Z<1/)(K(5i7 §j))2j0s;5 Tids;)
i

931651 x1§sl
= (Y((K(54,55))i5) : : N D2
ZTn0s, T O,

To see that this is non-negative, observe first that the matrix (K(s;,s;)); ; is
positive in M, ,(C*(G, o)) since we may decompose

.
a;

—_—
K(si,s5) = o(s; ', 8:)* Ao (5:) o (s5, s{l))\g(sj)* i,j=1,...,n,
—_————

a;
so |7, Example 1.5.13| tells us that (K(s;,s;));; is positive. Furthermore, v
is completely positive, being the composition of two completely positive maps,

hence we see that (Az,z) > 0.
Observe that for s, € G we have k(s,t) =0 if £/ N (st"1E") = (), hence

suppk = {s,t € G | k(s,t) # 0} C {s,t € G | st~ 'z =y for some z,y € E'}
={s,t € G|st™' =2~y for some z,y € E'}
={s,tcG|st™' € B''E},

but as E''E’ is finite, we see that supp k € 551.
At last, a simple calculation tells us that

K(s,t)6; = o(t,t Vo(s™!,s $) Ay ()% 0
t,t Nea(s™ ,s* (7( Yo(t, t™H* Ao (t71)6;
“Hro(s, )N (st )0y
Dot s st o (s, 6701y
Do(s™ st Ho(s,t7h) 4,

o(s—1,s)
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So whenever s,t € G and st~! € E we have

0t,0s) — 1]
5t755> - <6sa55>|
5t - 53763>|

Where the last inequality follows by choice of ¢. O

Corollary 3.3.18. Let G be a discrete group and 0 : G x G — T a scalar
2-cocycle. Then the following are equivalent:

1. CX(G) is exact;
2. Cx(G,o0) is exact.

Proof. Suppose C;(G) is exact, then RZ(G) is nuclear by Lemma 3.3.14, hence
Cr(G,0) is exact (as C}(G,0) is a C*-subalgebra of R7(G)). The opposite
direction is just Lemma 3.3.17. O

And now to our concluding theorem of this section.

Theorem 3.3.19. Let G be a discrete group and o : G Xx G — T a scalar
2-cocycle. Then the following are equivalent.

1. G is exact
2. R(G) is nuclear.

Proof. Immediate from the previous results. O

3.4 Amenability of free group actions

Our goal is to extend one direction of Theorem 3.3.7 to the case of a group G
acting freely on a set X.

Proposition 3.4.1. Let G be an exact group with an action on a set X, and
suppose there exists a map ¢ : X — G where ¢(gx) = gop(x) for all g € G and
x € X. The action of G on £>°(X) is then amenable.

Proof. By Theorem 3.3.7, we know that the action of G on £*°(G) is amenable.
So pick {T;}; C C.(G,€°(Q)) according to Definition 3.3.6. Then by using
the map ¢ we may define for each T € C.(G,£*(G)) a T € C.(G,{>(X)) by
T(g)(x) = T(g)(é(z)). Consider the collection {T;}; C Ce(G,¢>(X)). Obvi-

ously T;(g) > 0 for all g € G as T;(g) > 0. And we see that for all z € X we
have

(T B o) = 3 ([10)] @) = 3 (1500) (62))) = 1

geG geG
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in other words o
(T3, Ti) goo (x)0 = Lgoo(x)-

For f € (°(G) define f € £*°(X) as f(z) = f(¢(x)). Notice that

x(9)(f)(x) = fle(g™" - 2)) = flg7 " (6())) = Ta(9) f (@),

forge G,z € X, f € {(G).
Now for i express T; as a finite sum

T; = Z Jig9

geG

for {fi g}gec C £°(G). We then see that

s« T = Z’TX g)Sg = Z(Tg(s)fiwg)sg =51

geG geG

Further we see that for T' € C.(G, (*°(G)) we have

HTHzoo(X)G—HZT Hew X)—||ZT ||é°° X))

geG geqG
<T@ T@)lle= () = 1Tl (e
geqG

Thus for s € G we produce

)
<limfls+T; = Til o= (a)) = 0-
Hence G acts amenably on £>°(X). O

We shall need a little technical lemma (which luckily for us is easy to prove
and statel!):

Lemma 3.4.2. Let G be a discrete group acting freely on a set X. Then there
isis a map ¢ : X — G such that ¢(gz) = gd(z) for allg € G and x € X.

Proof. We define an equivalence relation ~g on X by
T ~g Yy < x= gy for some g € G.

Then we may partition X into equivalence classes under ~¢, and by the axiom
of choice, we may form the set U consisting of one element from each equivalence
class. Then we may for x € U define a bijective G-map ¢, : Gx — G by

¢ (y) = g where y = gz for some g € G.

This is well-defined as y = gx = ¢’z implies ¢’ = g by the freeness of the action.
Furthermore, we see that

oz (h(gx)) = ¢ ((hg)x) = hg = ho,(gz) for h,g € G.
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Then we may define the map ¢ : X — G as follows:
o(y) = 02 () ify € Gx for z € U.

Now, for g € G and = € X, we have

¢(g9z) = go(z)
since this equality holds for each ¢,. O

Remark 3.4.3. The assumptions in the above lemma can not be loosened.
Indeed, suppose G acts on a set X and suppose there is a map ¢ : X — G such
that ¢(gz) = go(x) for all g € G and all x € X. Then if the action of G on X
is not free, we may pick zo € X and g € G where g # e such that gxg = xg.
Then ¢(z¢) = ¢p(gxo) = gp(xo), but this implies g = e, a contradiction.

Thus we are able to produce the following corollary.

Corollary 3.4.4. Let G be a discrete, exact group acting freely on a set X.
Then the following holds.

1. The action of G on £>°(X) is amenable;
2. Rp(G, X) = Reon(G, X) ~ Ry (G, X) is nuclear;
3. ifc: GxG—=UWI>P(X)) is a 2-cocycle, then RZ(G, X) is nuclear.

Proof. Combine Proposition 3.4.1 with Lemma 3.4.2 to get the first assertion.
And combine the first assertion with Theorem 3.3.12, Theorem 3.3.8 and Propo-
sition 3.3.13 to get the second assertion.

The last assertion is obtained by the first assertion, Proposition 3.3.13 and
Theorem 3.3.12. O
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Chapter 4

Some properties of Reon(G, X)

In this chapter we will primarily be interested in some fundamental properties
of Reon(G, X) deduced from Fglner nets.

4.1 Fglner nets and Szego-pairs

4.1.1 Foglner nets

For an action of a discrete group G on a set X, we want to see what happens
when X has a Fglner net. We will use the following definition of a Fglner net
from [18].

Definition 4.1.1. Let G be a discrete group acting on a set X. We say that a
net of finite, non-empty subsets {F;};c; C X is a Fglner net for the action of

G on X if S(gF.AF,)
. g « «
lim —>———>=0 forallged.
i #(F.) g

Here
AAB =(AUB)\ (ANnB) for subsets A and B of X.

We shall also use the following definition for a Fglner net in a C*-algebra,
borrowed from [2].

Definition 4.1.2. Let A be a C*-subalgebra of B(H) for some Hilbert space
H, and suppose A contains the identity operator of B(H). Let || -||1 be the the
trace class norm on B(H) as defined in [15] , in other words

ITlls = Y (I Tle,2) T € B(H),

TER

where FE is an orthonormal basis for H. We say that a net of non-zero finite
dimensional projections {p, o C B(H) is a Fglner net for A C B(H) if for all
a€A
i |9Pa = Paall
im————

=0. 4.1
el 1)

The following lemma is quite useful for us, but it also shows (some) of the
relation between Fglner nets for group actions and Fglner nets for C*-algebras.

31
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Lemma 4.1.3. Let G be a discrete group acting on a set X, and suppose {Fy}
is a Fylner net for the action of G on X. For each «, let p, : £2(X) — (*(X)
be the projection of £2(X) onto (*(F,), i.e.

f(x) x € F,

€ X, fel}(X).
0 otherwise fora / (X)

pa(f)(x) = {

Then {pa} is a Folner net for Reon(G,X) C B({*(X)).

Proof. Consider an element of the form a = fAx(g) € Reon(G, X) where f €
¢°(X) and g € G. For arbitrary o and = € X we have

[(FAx(9)pel (6:) = {f(gx)zsg.w veF,

0 otherwise,
and
flg )04 gz € Fy
[Pa(fAx(9))] (6z) = I )
0 otherwise.
Hence
0 x ¢ FoU(g™ " Fa)
0 z€ (g7 FoNFy)
(a‘poé - paa)(ém) - _
f(gx)(sgz RSN \ (g 1Fa)
7f(gl‘)5gm T e (g’lFa) \ F,.
So then

lape — paclli = > (|apa — paaldz, d2) < > || |apa — paald.||
rzeX rxeX

= Z l[(apa — Paa)dz|]

rzeX

= > Ifg- o)

TEFLA(g—1F,)
S H(FaA(g T F) I lle (x)-
It is quite easy to verify that

||pa||1 = #(Fa)

Hence we see that

- F)A(g~'-F, -
pon Moo = poall _ o #(EDAG™ - Fo)) =)

im 0.
o Hpa”l o #(Fu)

Now consider any finite sum of the form

0= fohx(g) € Mx x Ax(Ce(G, ¥(X))).

geG
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By computation we see that

||apa _paaHl ||Zg€G(fg)‘X(g>pa _pafg)\X<g)>||1

= lim
|Ipalls o [Ipall1
< Z lim Hf.q)‘X(g)pa _pafg)\X(g)Hl
=2 0N Pl
=0.

Where we were able to exchange limits as the sum was finite.

To extend the result for the whole of R, (G, X) take an arbitrary element
a € Reon (G, X) and pick a sequence {an}neny C Mx X Ax(C.(G,£>(X))) such
that a,, — a. We readily see that for any o and n € N we have

l|apa — paalls < [[(apa — Pat) — (anpa — Patn)|l1  |l@anpa — Patn|lx

pall = Pl T bl
_ |(a = an)pa — pala —an)l|s l|anpa — paanli
|Ipally l[pallt
2lla = anll [Ipalls . ll@nPa — Padnll
el Pl
_ Ha_anH + Hanpa _paanHl7
palll

in other words we have

Hapa _paa”l

lim < |la — anll.
o lpall
So
o Do = ol _
o lpalh
since lim, o ||a — an|| = 0. O

4.1.2 Szego-pairs
We use the definition of a Szegé-pair found in [2].

Definition 4.1.4. Let A be a C*-subalgebra of B(H) containing the identity
operator. A Szeg6-pair for A C B(H) is a pair ({pa }a, @) where {ps}, is a net
of finite dimensional orthogonal projections in B(H) and ¢ is a state on A such
that

i)
1 2L = Co(R
1331; - =9@)  geC®)
for all self-adjoint a € A where {Af,..., A}, } is the eigenvaluelist of pnalp,
(with repetitions).
We shall make good use of the following theorem

Theorem 4.1.5. Suppose A is a C*-subalgebra of B(H) for some Hilbert space
H. Then a pair ({pa}, @) is a Szegd pair for A C B(H) if and only if the
following two conditions hold
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1. {ps} is a Folner net for A C B(H).
2. ¢(a) = lim, = Tr(pga) for all a € A.

Mo

Proof. See |2, Theorem 6 )] O

We wish to make a stronger connection between Fglner nets for group actions
and Szegé-pairs. For any discrete group G acting on a set X with a Fglner net
{F,}, we define the net of states {¢r, } on £>°(X) by

1 o0
or. (f) = mm;jaf(x) fere(x).

We can not always guarantee that the net converges, but as the following lemma
shows, we can always pick out a convergent subnet.

Lemma 4.1.6. Let G be a discrete group acting on a set X, and suppose {Fy} o
is a Fplner net for the action of G on X. Then we may pick a subnet {F,,} of
{Fo} such that ¢r, converges in the weak*-topology to a G-invariant state ¢
on >*(X).

Proof. We easily deduce that
lpp.ll =1

for each a. So {¢g, }, is contained in a weak*-compact set by Alaoglu’s theorem,
and hence we may pick a weak™-convergent subnet {¢r, }i of {#F, }o. Then we
obviously have that {¢r, (f)}i converges for each f € £>°(X). And for g € G
and ¢ we have '

or, (X @) — 6m (DI < —— S (@)

- #Fai x€Fa; Ag=1Fy,
' AglF,
< WUH@O@(X) — 0.
Hence
orx(0)f) = limor, (rx(0)) =lm s Y f@) = limo, (1) = 0(1).

2€g—1Fa,

so ¢ is indeed G-invariant.
To see that it is a state, observe that for each ¢ we have

¢r., (1) =1=llor, ||
Thus ¢(1) =1 and hence ¢(1) = ||¢||, so ¢ is a state. O

Lemma 4.1.7. Let G be a discrete group acting on a set X, and suppose {Fy} o
is a Fglner net for the action of G on X such that the net {¢r (f)}a converges
for each f € £°(X). Define the state ¢ as

o(f) =limor, (f) [ €=(X).

Then the pair ({Fuo}ta,® o F) is a Szegs-pair for Reon(G, X).
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Proof. By Theorem 4.1.5 it suffices to show that

¢(F(a)) = lim 1 Tr(paa) for all a € Reon(G, X),

a ng

where p, is the orthogonal projection of £2(X) onto £%(F,). But this is almost
immediately true, since for each a we have for a € Reon(G, X)

Tl"(paa) = Z <poca5w; 5£>

zeX

> (ads, d,).

zeF,

Moreover, we have

Combining these two gives us

¢(F(a)) = lim N Tr(paa) for all a € Reon (G, X),

a Mg
so we are done. O

One can combine Lemma 4.1.7 with Lemma 4.1.6 to see that any Fglner net
for a group action may be subnetted to produce a Szegd pair for Reon (G, X).

4.2 Traces
Proposition 4.2.1. Let G be a group acting on a set X, and let
F:Reon(G,X) = £°(X)

be defined as in Proposition 1.3.2. Then for any Tx -invariant state ¢ on £>°(X),
@ o F' becomes a tracial state on Reon(G, X).

Moreover, whenever ¥ is a tracial state on Reon (G, X) the function oMy :
£>®(X) — C becomes a Tg-invariant state on £>°(X)

Proof. We divide the proof of the first assertion into two steps.

Tracial: Let
S=Y " forx(9),T = hx(k) € Mx x Ax(Ce(G,£°(X))).
geG keG
Then

S fAx(9) (Z th(’C)) =" fyrx(9)(he)Ax (gk),

e keG geG keG



36 CHAPTER 4. SOME PROPERTIES OF Rcon (G, X)

while

(Z mx(k)) (Z ngX<g>) = 3 3 e (B () i (ko).

keG geG geG heG

So all we need to check is that ¢(F (frx(g)(h)Ax(gk))) = ¢(F(rx (k)(f)hAx(kg)))
for all g,k € G and f,h € £°(X). But for x € X we see that
F(f7x(9)(WAx (9k))(x) = (0z, fTx (9)(R)Ax (gF) )
= > 50 fWh(gy) Ox (gk)(0)) (y)

yeX

= > W) FWh(g )6 (gr)z ()

yeX

= f@)h(g™2)d(gr)a ().
Likewise, we see that:
F(rx (B)(f)hAx (kg))(z) = f(k~ @) h(2)d(kg)a (7).
Notice that

fk—lz)h(z) = (kg)x
0 otherwise,

while
f(@)h(g~tz) == (gk)z
0 otherwise.

From this we see that

7x (k) (F(7x (k)(f)hAx (kg))) (z) = {g(k_lx)h(g_l(k%)) Iz‘c_hivjisig.k)(k_ "
_[FETORE) @ = (kg)a
o otherwise.
=F(frx(g)(h)Ax(gk))(z)

g,keG

= ) 6(F(rx(k)(f)hAx (kg)))

g,k€eG

F ((Z hidx (k) (D fg)\x(g)))]

keG geG

= o[F(ST)]

=¢
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as ¢ is invariant under the action of G.
Now take any two element &, ( € Reon(G, X ). We may find sequences

{gn}neN - MX X )\X(CC(Gvgoo(X))) and {Cn}neN - MX X )‘X(Cc(Gvgoo(X)))

such that &, — &, (, — (. Then we see

¢(F(£Q)) = o(F(( lim &,)( lim ()
¢(F( lim_&,Cn

Jim ¢(F(EnCn
Jim (P (Gan
= ¢(F( im &
= ¢(F(¢E)).

)
)
)
)

Hence ¢ o F' is tracial.

State: We shall show that 1 = ¢(F (1)) = ||¢ o F||. But ¢(F(1)) = ¢(1) =
[|#|] = 1. As F is a norm one projection, we get

¢ o F|| = sup {|(¢ 0 F)(§)| | § € Reon(G, X), [I€]] =1}
=sup {|o(f)| | f € =(X),|Ifll = 1}
=lloll =1

Hence ¢ o F' is a state.
To show the last assertion, assume 1) is a tracial state on Reon (G, X). Then
¥ o Mx becomes a state on £°°(X) since

|t o Mx|[ Z 9o Mx (1) = ¢(1) = ||| =1 = [|¢h o Mx].

Sol=1voMx(1)=|[tpoMx]|

Finally, we use the fact that (Mx, Ax, £?(X)) form a covariant representation
of (¢ (X), G, 7x) to show that o Mx is G-invariant. Let g € G and f € £*°(X),
then

wOMX(TX(g)f):ﬂJ()\X(g)MX( ) (9)*)

So ¥ o Mx is indeed G-invariant. O

4.2.1 Paradoxicality, traces and properly infinite projec-
tions

We conclude this chapter with a nice theorem reviewing the role of Ron (G, X)
as a measure of finiteness. This will be made precise when we are ready to state
our theorem.

First we need to review the basic concept of a paradoxical decomposition.
For a full treatment of the subject, see e.g. [20] or [19].
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Definition 4.2.2. Let G act on a set X. We say that £ C X is G-paradozical if
there exists pairwise disjoint subsets Ay, ..., Ay, B1,..., By, of E and elements
J1s---39n, R1,. ..,y in G such that

E= Lnj gidi  and  E=|JhB
i=1 ]

By Tarski’s Theorem (see [20]) we know that F is G-paradoxical if and only
if there is a G-invariant finite additive set function p : P(X) — [0, 0o] such that
u(E) € (0,00).

Before we can state our theorem, we need a little definition found in [17].

Definition 4.2.3. Let A be a C*-algebra. We say that a projection p € A is
properly infinite if there exist partial isometries z and y in A such that

r=y'y=p and xx® +yy* < x.

Theorem 4.2.4. Let G be a discrete group acting on a set X. Then the fol-
lowing are equivalent.

1. There is a Folner net for the action of G on X;
2. £°(X) has a G-invariant state;

3. Reon(G, X) has a tracial state;

4. X is not G-paradoxical;

5. 1x is not properly infinite in Reon (G, X).

Remark 4.2.5. The implications 3)< 4) < 5) is known for R,.(G, X) in a more
general setting, see [17, Proposition 5.5]. The interesting case is thus when G
does not act freely on X.

Proof. The implications 1) = 2) < 3) is clear from Lemma 4.1.6 and Propo-
sition 4.2.1. The direction 2)= 1) is given by [18, Theorem 2.3]. 4)< 2) is a
consequence of Tarski’s theorem.

To see that 3) = 5), assume for contradiction that 1x is properly infinite
in Reon (G, X) and Reon (G, X) has a tracial state ¢. Pick x and y according to
Definition 4.2.3, then

0<d(lx —zx” —yy*) = ¢(1x) — p(zz™) — d(yy") = 1 — ¢(a"x) — d(y"y) = —1.

So we get a contradiction.

The direction 5)= 4) is also proved by contradiction. Assume 1x is not
properly infinite, but X is G paradoxical. Then [17, Proposition 4.3] asserts
that we may find z,y € C.(G, (> (X)) satisfying

o*r =y'y = 1x and x2* +yy* < 1x.

So 1x is properly infinite in R ., (G, X), a contradiction. O



Chapter 5

Almost periodic functions

The concept of almost periodic functions was first introduced by Harald Bohr,
and the early formulations were something like that found in [6]:

“Almost periodicity of a function f(z) in general is defined by this
property:
The equation

fle+7)=f(=)

is satisfied with an arbitrary degree of accuracy by infinitely many
values of 7, these values being spread over the whole range from —oo
to 400 in such a way as not to leave empty intervals of arbitrarily
length”

Unfortunately, the definition does not make sense for an arbitrary topological
group G, but there is a useful generalization which is found in for instance [11].

Definition 5.0.6. Let G be a group. We say that f € £°°(G) is almost periodic
if the set

Hull(f) = {7a(9)f | g € G}

is compact in £>°(G) with respect to || - ||ge ().

We shall denote the set of almost periodic functions in ¢*°(G) by AP(G).
Whenever G is a topological group with a topology 7, we denote by AP(G,T)
the almost periodic continuous functions on G.

For a group G and an element g € G we define A(g) : £°(G) — £*(G x G)
by

Al (D] (z,y) = flzgy)  =,y,9€ G, felZ(G).

Furthermore we define pg : G — Aut(¢>°(G)) by

pa(9)f(x) = f(zg) g,z €G.

The following properties are essentially well known.

Proposition 5.0.7. Let G be a group, and f € £°(G) The following are equiv-
alent:

1. f is almost periodic,

39



40 CHAPTER 5. ALMOST PERIODIC FUNCTIONS

2. {pc(9)f | g € G} is compact in £L°(G);

3. {A(g)f | g,h € G} is compact in (G x G);

Proof. See for instance [11, Theorem 18.1]. O

For our purposes the following is rather important.

Theorem 5.0.8. Let G be a group. Then AP(G) becomes a Tg-invariant unital
C*-subalgebra of £°(G).

Proof. This is just [11, Theorem 18.3] translated into C*-language. O

An important consequence of the above theorem is that we get an action of
G on AP(Q) by restricting the action 7¢ : G — Aut({>*(G)) to AP(G). Hence
we are able to form the reduced crossed product AP(G) X, G.

A surprisingly useful result about almost periodic functions is the following
theorem found in [14].

Theorem 5.0.9. Let G be a discrete group and f € AP(G). Then the convex
hull generated by {tc(g9)f | g € G} contains exactly one constant function.

Proof. See [14, page 169]. O

Remark 5.0.10. An important consequence of the above theorem is that when-
ever f € AP(G) is a non-zero function, the 7g-invariant C*-algebra generated
by f must contain the constant functions.

5.1 The Bohr compactification

The main results here are essentially well-known. We will give the abstract
definition of the Bohr compactification, then show in a later section that it does
in fact exist.

Before we begin with the main theory of this section, we need to make a
small remark. Whenever G is a topological group (not necessarily discrete), we
get a continuous left action 7¢ : C(G) — C(G) given by 7¢(f)(z) = f(g ')
for g,z € G.

Definition 5.1.1. Let G be a discrete group. The Bohr compactification of
G, denoted Bohr(G), is a compact Hausdorff group Bohr(G) with a continuous
homomorphism ¢ : G — Bohr(G) such that i(G) is dense in Bohr(G) and such
that for all continuous group homomorphisms ¢ : G — K where K is a compact
Hausdorff group, there is a continuous homormophismg?) : Bohr(G) — K making
the following diagram commute
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Bohr(G) can be constructed in a rather easy manner using Tychonoff’s the-
orem and the Peter-Weyl theorem, though we are actually going to construct
the Bohr compactification in a less obvious way, so we will hold of any proof of
existence as of now. Rather, we will use the remainder of this section to show
some nice properties of the Bohr compactification.

Using the definition, it is easy to see that the Bohr compactification of a
group must be unique up to unique isomorphism.

Before we state our next proposition, we need a little technical lemma.

Lemma 5.1.2. Let G be a topological group. Suppose there is a continuous
homomorphism i : G — K for some compact Hausdorff group K. If f € C(K),
then foie€ AP(G).

Proof. Consider the map 9 : C(K) — £°°(G) given by ¢¥(f) = f oi. Note that
1) is continuous with respect to the uniform topology on C'(K) and ¢*°(G).
Suppose f € C(K), and consider the set of translates of ¥(f),

{ra(9)v(f) |9 € G} = {4 (rx (i(9))f) | g € G}
Cy({rk(x)f |z € K})
Define I' : K — {7x(x)f | z € K} by
I'(k)=1x(k)f keK.

Then I' is continuous (when we equip {7k (z)f | = € K} with the topology it
inherits from the uniform norm). We deduce that

{ra(9)v(f) | g € G} C I(K).

But as K is compact and I'" and v are continuous, we know that ¢(I'(K)) is
compact, and being a subset of a Hausdorfl space, we know that ¢(I'(K)) is
closed. As ¥(I'(K)) is closed, we see that

Hull(f) € 9(T(K)).
Hence Hull(f) is compact. O
The next proposition is well-known, see for instance [10, Théréme 16.2.1]

Proposition 5.1.3. Let G be a discrete group. Then there is a x-isomorphism
Y : C(Bohr(G)) — AP(G) given by

P(f)(@) = fli(z)) [ e C(Bohr(G)),z € G.

Proof. We divide the proof into several steps.
Well-defined: This is just 5.1.2.

Injectivity: Let f1, fo € C(Bohr(G)) where f; # fo. Then we may pick
an open set U C Bohr(G)) such that 0 ¢ (f1 — f2)(U), but since i(G) is dense
in Bohr(G), UNi(G) # D so froi# faoi.

Surjectivity: Let f € AP(G). Then we may consider the group

{rc(9)lna(s) | 9 € G} C Iso(Hull(f)),
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where Iso(Hull(f)) is the set of isometries from Hull(f) to Hull(f). Since Hull(f)
is a compact metric space, Iso(Hull(f)) becomes compact Hausdorff space, hence
we may form the completion F' = {7¢(9)|nun(s) | 9 € G}, which is then a com-
pact Hausdorff group. Now, consider the continuous group homomorphism
r: G — F given by

7(9) = 76(9)[run(s) g€G.

By the universal property of the Bohr compactification, we may pick 7 : Bohr(G) —
F such that roi =r.

We may consider the continuous map ¢ : F' — C given by ¢(S) = S(f)(eq)
for S € F, hence we may define f € C(Bohr(G)) by f(z) = q(#(z~")) for
x € Bohr(G). Then we see that for g € G

f(il9) = a((i(9)™") = a(r(9™")) = 769~ ) (f)(ec) = f(9)

whence ¥(f) = f. O

Remark 5.1.4. The above proposition actually completely characterizes the
Bohr compactification of a discrete group, as we will see later in Theorem 5.2.20.

We will be able construct a “compactification” of G for smaller subalgebras
of AP(G). These compactifications will replace Bohr(G) in the sense of the
above proposition. This will be made clear in the next section.

5.2 The hull

For a discrete group G we wish to solve the following problem: Given a set
F C AP(G), we wish to give a description a C*-algebra which is the smallest
C*-algebra containing F' and all of it translates under G. This leads us to the
construction of the hull.

5.2.1 A motivating example

The following example is rather simple, but carries with it a lot of the motivation
for what we are going to do later.

Example 5.2.1. Consider the group Z acting on itself by left translation. De-
fine the function f : Z — C given by

f(n) = e« a€R, neZ.
First we will show that

Hull(f) ~ f(Z)) c 84,

and conclude that f is almost periodic (as f(Z) is compact). Define the map
¥ Hull(f) — f(Z) by ¥(&) = £(0) for £ € Hull(f). We will show that ¢ is an
isometry, hence a homeomorphism (as we get both injectivity and surjectivity
from the isometry property).

Whenever n,xz € Z we have the equality

7z(n) f(z) = PTMI = ePeTM = f(z)r(n) £(0).
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So as a result we have

lrz(m) fIl = I1f1] [72(n) f(O)] = |7z(n) f(0)].
In other words
Iz (n) fI| = [¢(7z(n) f(0))]
Now take any ¢ € Hull(f) and pick a sequence {ng}ren C Z such that

Tz(nk) f — €.

Owing to the above calculations, we have

lell = Jim [[rz(ox) fll = Jimn [72(ne) £ (0)] = [€(0)]

As a result we have [|¢]| = |£(0)] = |[¢¥(§)]. So we get an isometry. Hence
Hull(f) ~ f(Z).
Trivially, -
Sp(f) = f(Z).

Hence by the Gelfand theorem we have a *-isomorphism

C*(f) = C(f(Z2)).
But for n € Z, we have
(rz(n) F(0) f)(k) = "R =y (n) f (k) k€ Z.

And since 77(n) f(0)f € C*(f), we must have 77(n)f € C*(f). In other words,
we must have that the smallest C*-algebra containing 77 (n)f for all n € Z is
(*-isomorphic to) C(f(Z)) (since Hull(f) obviously is dense in f(Z)). Hence

C*({rz(n)f | n € Z}) ~ C(f(Z)) ~ C(Hull(f)).

5.2.2 The construction
Inspired by [5, Section 2.3] we make the following definition.

Definition 5.2.2. Let G be a discrete group. Let F' C £°(G) and define

S(F) ={{9:}i € G| {9:}: is a net such that A(g;)(f) converges in

(G x G) for all f e F}. (5-1)

Define a relation ~p on S(F') by
{gitier ~r {hj}jes & gfjn) |1A(g:)(f) — A(hy)(f)[| = 0 for all f € F,
where I x J is ordered by the product order, that is (4,5) < (¢/,4') if and only
if i <4 and j < j'.

Remark 5.2.3. The observant reader might notice that the condition (5.1) is a
tad stronger than the one found in [5], but the two are equivalent in the Abelian
case.
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A slight generalization of [5, Proposition 1] yields the following result.

Proposition 5.2.4. Let G be a discrete group. The set S(F') becomes a semi-
group under the multiplication

{gi} -{h;}y =Agihs}igy  {gid {hy} € S(F).

And the relation ~p is an equivalence relation that respects the operation on
S(F). Moreover S(F)/ ~p becomes a group with inverses given by compo-
nentwise inversion, identity element being the equivalence class of the constant
sequence g, = eq for allm € N.

Proof. First we wish to show that whenever {g;}; and {h,}, are elements of
S(F), then {g;h;}; ; is an element of S(F'). So pick an arbitrary f € F' and let
€ > 0. As the nets {A(g;)f}: and {A(h;)f}; are Cauchy in £*°(G), we may pick
(40, jo) such that for all (i,7) > (i0, jo) and (¢',5") > (io, jo) we have

1A(g:) f = Algin) fI| < e and ||A(hy) f = Ahy) | < e

Then we have

[[A(gih;) f — Algirhj) Il < [|A(gihy) f — Algirhj) f]|
+ [|A(girh;) f — Algirhi) fl]-

Looking at each of the terms on the right hand side, we have for z,y € G

|f(zgihjy) — f(zgirh;y)| = f(2gi(h;y)) — f(gi (hjy))| <€,
as ||A(g:) f — A(gir) f]| < e. And likewise, as ||A(h;)f — A(h;) f|| < € we obtain

|f(xgihjy) — f(zgihyy)l = |f((xgi)hiy) — f((2gi)hjry| < e
Thus we get for z,y € G and (4, ), (¢/,5’) as above that

[ [ACgihs)(N)] (2, y) = [Algirhy ) ()] (2, y)] < [[A(gihi) ()] (2,y)
= [Algirhy) (NN (@, 9) | + [[Agirhy ) ()] (2, y) — [Algirhy ) ()] (2, y)] < 26,

and hence

1A (gih;)(f) = Algirhy ) (] < 2.
As the net {A(g;h;)f}i,; is Cauchy, and £°°(G x G) is complete, it converges in
(>°(G x G). As f was arbitrary, we see that {g;h;};; € S(F).

Now, it is easy to see that the multiplication is associative, so we see that
we get a semigroup.

Before we show the last statement of the proposition, we show an a little
remark. Now for {g;}; € S(F) we wish to show that {g;'}; € S(F). Pick io
such that ||A(g;)f — A(g;)f|| < € for all 4,5 > iyp. Let the map §: G x G —
Aut(¢>°(G x G)) be defined as

[8(z,y)H] (g, h) = H(gx,yh),
for z,y,9,h € G, H € {*(G x G). We readily see that for each x,y € G the
map B(z,y) is a x-automorphism with B(z,y)~* = B(x~1,y~1)). Hence we get
1AGg ) = Alg; DIl = 118(gi, 95) (Alg; ) f = Algy DA
= llA(g;)f — Alga) fI| < e
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The last equality follows as

[B(gi9;) (Alg; ) f = Alg; D )] (@,y) = flgig; "giv) — fzgig; " 9;v)
= f(zg;y) — f(zgiy)
= [A(g;)(N] (z,y) — [Alg:) ()] (z,9)

for z,y € G.

The relation ~ g is obviously reflexive and symmetric, and an easy applica-
tion of the triangle inequality shows that it is also transitive, hence an equiva-
lence relation.

Now suppose {g;}i, {gj};, {hr}x and {h;}, are elements of S(F') such that

{9i}i ~r {g;};  and  {ha}x~r {h,}o.

We want to show that {g;hr}ir ~F {gghi,}jﬂj. So let ¢ > 0, and choose
(%0, Jo, Ao, ¥o) such that for (i,7, A, v) > (io, jo, Mo, ¥o) we have

IAGgi) f — Algy)fll <e/2 and  [|A(hA)f — AR fI] < €/2.
Then we see that for (i, j, \, v) as above we have

[[A(giha) f = Agihy ) FII < [JA(giha) f = Agiha) fIl + [|A(g5ha) f — Algsh,) £l

Moreover for x,y € G we have

[[A(giha) f] (2, y) — [A(gjha) f] (2, 9)| = [f (mgihay) — f(zgihay)| < €/2

hence [|A(gihx) f — Algiha) f]] < €/2.
Similarly we obtain |[A(gjhy)f — A(gjhy,) f|| < €/2. Thus we have

1A(giha) f = Algih ) FIl < [[A(giha) f = Algiha) fIl + [1A(g5ha).f — Algihi, ) f]]
<e€/2+¢/2

= €.

Solim; jx,u) [[A(giha) f—=A(gjh;,) fI| = 0, which implies {giha}ix ~F {gjhi, }j-
Hence the relation ~p respects the semigroup operation. Furthermore we see
that whenever {g;}; € S(F), we have {g; *}; € S(F), and {gig; '} = {g; *9:} =
{ec}i ~F {€c}nen. So we see that the constant sequence g, = e becomes the
identity element in S(F)/ ~p. O

Remark 5.2.5. There is a subtle point in the above proposition. As we are
working with arbitrary nets in G, we will not get an identity element of S(F’), as
different index sets of elements would give different results for the multiplication
of an element with its inverse. So we do in fact need to divide out by the
equivalence relation to get a group.

We shall denote the group S(F')/ ~p constructed in Proposition 5.2.4 by
Qp. For an element {g;}; € S(F), we shall denote by (g;) its image in Qp.
For each f € F we get a pseudometric, dy on Qp defined as

dy((gi), (hy)) =1im [|ACga) f = ARy )fI] (90), () € Q.
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It is easy to see that this is well-defined with respect to ~p using the continuity
of the || - |[goc ()-norm.

We shall equip 2r with the topology with neighborhood basis at x € Qp
given by the sets

Upy,. g l6,2) ={y € Qp | dy,(z,y) < efori=1,...,n}
for f1,...,fn € F and € > 0.
This also respects the group structure, as the following lemma shows.

Lemma 5.2.6. Let G be a discrete group, F C £>°(G). Then Qp is a topological
Hausdorff group.

Proof. We want to show that the multiplication and inversion operations are
continuous.

Multiplication:  Let {z,},{ya} € S(F), and let Uy, ¢ (e (z,yr)) be a
neighborhood around (z,y)) for fi,...,fm € F and € > 0. We see that
whenever (z) € Uy, .y, (e/4,(2,)) and (y,) € Uy, . 1, (e/4,(yx)) we have
fori=1,...,m

dy, (=) (o), (zya)) = T (|A(2Gy,) fi = Alwayr) fill

IVELE)

and for (¢, j, A\, v)

|A(y,) fi — Alzya) fil| = Sup, | fi(azy,b) — fi(az,y\b)]

a’7

< sup |fi(aziy,b) — fi(azjysb)| + sup |fi(aziysd) — filaz,y\b)| < €/2,
a,beG a,beG

so dy, ((x5)(yy,), (.)(yx)) < € and hence (25)(y;) € Uy, 1., (6 (2.92))-

Inversion: Let {z,}, € S(F), and pick a neighborhood Uy, ¢, (€, (x,)"")
for fi,...,fm € F and € > 0. Then whenever (z}) € Uy, _y, (€ (z,)7") we
have fori=1,...,m

dfi((x;‘)_la (xb)_l) = lgjn HA('%‘;)JCZ - A(xL)le

= lim sup \fi(ax;_lb) - fz‘(a%_lb”

L1 a,beG
= lirjn asl?epG |f (e’ a,b) — flax! a2, b)
=lim sup |f(ax,b) — f(az)b)| < €

L a,beG

hence (3’3;-)_1 €Uy, fm(e (z,)7h).

Hausdorff: If z # y in Qp, then there exists f € F such that € = d¢(z,y) > 0.
Hence Uy(e/2,2) N Uys(€/2,y) = 0 and we have found two open sets separating
x and y. O

We also note that we have an inclusion of G into S(F) given by g — {gn }nen
where g, = g for all n € N. Thus we also get a homomorphism ip : G — Qp
induced by this inclusion.

The following is a collection of useful lemmas.
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Lemma 5.2.7. Let G be a discrete group and F a subset of £°(G). Then the
set ip(G) is dense in Qp.

Proof. Let {g,}, € S(F), f1,...,fm € F, and set h; = lim, A(g,)f;.- Choose ¢o
such that ||A(g,f — hi|] < e for all « > 1o and i € {1,...m}. Then

lim [|A(g.) fi = Algio) fil| < Tim [|A(g.) fi = hall +Tim |7 — A(gu, ) fill <.

Hence Z'F(gbo) € Ufl ----- fm (67 (gb))' O

Lemma 5.2.8. Let G be a discrete group, and let F C F' C AP(G). Then
there is a continuous surjective homomorphism

prr Q= Qp

given by
p((9:)) = (9:)  for (g:) € Qpr.

Proof. First we must show that the map is well-defined. Let {g;}; € S(F").
Since {A(g;)f}: converges for all f € F, it specifically converges for all f € F,
hence we get a group homomorphism S(F’) — S(F). And it is easy to see that
whenever {g;}; ~r {g};, then {g;}i ~r {g]};, hence we get a homomorphism

pZQF/ —)QF,

given by p((g;)) = (g;)- It is clear that the map is Lipschitz for each pseudonorm
dy, it is also continuous.

Now, whenever x € Qp we may pick a net {z;}ie;r C G such that ip(x;)
converges to x in Qp. Define

D ={FE C F | E finite}

and order D by inclusion. For each EJ € D we may pick a subnet {z;,()}jess

such that {A(x;,;))f}; is convergent for each f € E (as {A(g)f |g € G} is
compact). Furthermore, for each E € D and i € I we may choose pug(i) such
that ig(pg(i)) > 4. Order D x I with the product order, and define the net

{ZE.i}(B0epx1 by i

B = Tip(pp ()
Then {Zg;} € S(F') as for each f € F’ we see that the net {A(zg ;) f} converges
(just pick (E,i) > ({f},40) for some iy), and we have that

prr((Tpi)) =@

by construction. O

Lemma 5.2.9. Let G be a discrete group and f € AP(G). Then Qpy ~
{Al9)f |9 € G}
Proof. Define r : Q¢py — {A(g)f | g € G} by 7((9:)) = lim; A(g;)f. Then it is
easy to see that r is both injective and surjective by construction. Furthermore
45((9:)+ (1)) = lim 1A ()] = Ak,
=l %}%(A(gi)f — Al N

= [Ir((9:)) = r((hy))ll
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for (g:), (hi) € Q4yy, hence the map is an isometry. Especially it is a homeo-
morphism. O

Lemma 5.2.10. Let G be a discrete group and F C AP(G). Then Qp is
compact.

Proof. For each f in F' we have a continuous homomorphism

Pr sy - = Q.

Furthermore, by Lemma 5.2.9 and Lemma 5.0.7 we see that {0y, is compact
Hausdorff. The product [] fer {25y thus becomes a compact Hausdorff space.
The set

C=qzge [] Qs lgeCuay(f)=ign9)
fer

is closed in erF Qs and hence compact. Define the map P : Qp — C
by P(z)(f) = pps(x). Then P is continuous as each pp sy is continuous.
Furthermore, we see that P is injective as

P(z) = P(y) if and only if df(z,y) =0 for all f € F.

Furthermore we see that it is surjective, and so Qr ~ C. But C is compact,
hence Q2 is compact. O

5.2.3 A description of the subalgebras of AP(G)

In [8], H. W. Davis defines a neighborhood system which we shall use in this
section. For a discrete group G and F C AP(G), we shall set

Ar =C"({ra(9)f.pc(9)f | g € G}) C AP(G).

Definition 5.2.11. Let G be a discrete group, and F' C AP(G). We define
the topology generated by F, denoted T (F) to be the topology generated by the
basis of open sets of the form

Viota(6,2) ={z € G | [|A(2) fi = A2)fil| <ei=1,...,n},
fore>0,f,....,fn € F,z€G.

Lemma 5.2.12. Let G be a discrete group and F C AP(G). Then G equipped
with the topology T (F) is a topological group.

Proof. We will show that multiplication and inversion is continuous.

Multiplication: Let z,y € G. Consider a fundamental neighborhood of
xy of the form Vy, 5. (e,zy) for fi,...,f, € F and € > 0. Whenever 2’ €
Vi fa(€/2,2) and y € Vy, 1, (€/2,y) we have for j =1,...,n:

.

1AE"Y) f; = Aly) fl] < NNAGY) 5 = Aly) 1]+ [[A@y) f; = Aley) fi]] < €

sox'y' € Vi, g (€, 2y).

.....
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Inversion: Let z € G and pick a fundamental neighborhood of 2! of the form
Vi g (e;z™ ) for fi,..., fn € F and € > 0. Then whenever 2’ € Vy, 1 (e, 2)
we have for j=1,...,n

1605 = A5 = sup f(aa's’ab) - f(aa'so)
= [[A(z) f; — A@") £l
<e€
sox' "t eV p(e,x™h). O
We then get a useful description of some of the C*-subalgebras of AP(G).
Proposition 5.2.13. Let G be a discrete group, and F C AP(G). Then
Ap = AP(G, T(F)).

Proof. From [8, Theorem 3.3] we know that Ap = AP(G,T(Ar)). Moreover
we readily see that the topology T(F) makes all f € F continuous. Since
product, sums, limits (in the uniform topology) and left and right translations
of continuous functions are continuous, we see that all functions in Ap are
continuous with respect to T (F'), hence

AP(G, T(Ar)) = Ar C AP(G,T(F))
Meanwhile, as 7(F) C T(Ar) we have
AP(G, T(Ar)) C AP(G, T(F))
and we are done. O

We need two small technical lemmas.

Lemma 5.2.14. Let G be a discrete group and F C AP(G), and equip G with
the topology T (F). Then the map ip : G — Qp becomes continuous.

Proof. We will show that ig is continuous around eg. Let € > 0 and pick
f1,-.., fn € F. Then we may consider the neighborhood generated by f1, ..., fu,
namely

Upy,...ta (e eq) = {(zn) € Qp | dyf,((2n), (eq)) < efori=1,...n}.
Whenever « € Vy, . 7. (€, eq) we see that
ir(z) € Up,..f. (6 €c)
hence we are done. O
And now to our main result of this section.
Theorem 5.2.15. Let G be a discrete group, and FF C AP(G). Then the map
P Ap — C(Qp)

defined by
O(f)=foir  f€Ap.

18 a *-isomorphism.
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Proof. The map 1 is well-defined as iy is continuous with respect to 7 (F') and
f oip is an almost periodic function by Proposition 5.1.2. Furthermore we see
that as the image of i is dense in Qp, 1) is injective (just use the same argument
as in the proof of Proposition 5.1.3). }

For surjectivity, pick £ € Ap. We wish to define £ : Qp — C such that

&(z) = &(ip(x)). First we will show that the function ¢ : ip(G) — C defined by
C(x) =E&(y) ifip(y) =z forye Gand z € Qp
is both well-defined and continuous. It is well-defined as for 3,3’ € G
ir(y) ~rir(y)

whenever y and 3y’ can not be separated by a fundamental neighborhood in
T(F). More precisely, whenever fi,...,f, € F and € > 0 we have that y €
Vi, 5. (6,9), hence any continuous function with respect to the topology 7 (F)
must be have the same value on y and y'.

Moreover we see that it is continuous as

eV  f.(z6) & ip(x) €Up,. 1.,ir(2),€) z,2€G,e>0.

Now, let 2 € Qp and pick a net {z;} C G such that lim;ip(z;) = . We
want to show that {{(z;)}; converges. For e > 0 we may, as Hull(¢) is compact,
pick a finite number of elements g1, ..., g, € G such that

n

Hull(€) € | B(re(g; )&, o)

i=1
Furthermore, we may pick a neighborhood U of e in T (F') such that
I7a(g; DE(z) — 1algy Délea) <e  i=1,....n

whenever z € U. Then we may pick 4o such that x;lxj € U whenever 19 < i, 7.
We thus see that for i,j > ip we may select k& € {1,...,n} such that

Ta(z; )¢ € Blra(gy )¢, ).
We then have
€ (2:) — &(x5)] = Ira(z; E(ea) — Ta(z; ez xy))|
< Jralz; Hélea) — algy DElea) + Iralgy éea) — talgy ) (@ z;))]
+ |ra(gy )@y tey) — ez ) (@ ey)] < 3e.

Hence {&(x;)}; converges in C, so we may define £ : Qp — C by £(z) = £(ip(z;)),
and hence

Remark 5.2.16. Notice that there is an action of G on Qg through
gr =1ip(g)x ge G xeQp.
Hence we get an induced action 75 : G — Aut(C(QF)) by
7r(9)f(x) = f(ir(g) " x).
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There is an interesting consequence of the above theorem. We see that
whenever we have a chain

FCFEkKC---F,C--- CAP(G)
of inclusions we get a reverse chain of surjections of compact groups

5.2.4 A non-Abelian example

We shall make an example akin to that of Example 5.2.1.

Example 5.2.17. Let G be a discrete group(the interesting case here is when
G is non-Abelian), and (u, H) a finite dimensional unitary representation of G.
Let {e1,...,en} C H form an orthonormal basis for H, and define the coefficient
functions ¢; j : B(H) - Cfor¢,j =1,...,n by

Ci,j(T) = <T6¢,€j> T e B(H)

Then define f; ; : G — C by f; ; = ¢; 5 o u.
We first show that each f;; is almost periodic by exhibiting a continuous
surjection U — Hull(f) for a compact set U. Define U as

U={u(g)" | g € G} CUH).

The closure of U is obviously compact in U (H) (as it is a closed, bounded subset
of a finite dimensional vector space). Furthermore, we may define

P:U —(~(Q)

by
P(v)(g) = (vu(g)ei,e;)  velUgeQG.

Notice that P is indeed continuous by elementary properties of the inner prod-

uct. To see that P(U) C Hull(f), we calculate for h, g € G that

P(u(g)*)(h) = (u(g)*u(h)ei, ;) = (u(g~ h)ei, e;) = 6 (g) fi i (h).

so P(U) C Hull(f), hence P(U) C Hull(f) since P is continuous and Hull(f) is
closed.

To see that P is surjective, take any & € Hull(f) and pick a sequence
{gn}nen C G such that 76(g,)f — €. Then, as U is compact, we may pick a
subsequence {gy, }ren of {gn }nen such that {u(gy,, )}ren converges in U. Then
for x € G we have

§(z) = lim (ulga,) u(@)es,ej) = lm Plu(gn,))(@) = P(lm u(ga,))(z),

k—o0 k—o0

so we see that P is surjective. Hence Hull(f; ;) is the image of U, a compact
set, under P, so Hull(f; ;) is compact.
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Now, let F={f;;|¢,j=1...,n} C AP(G). Foreach f; ; € Fand g,h € G
we have
76(9) fi.;(h) = (u(g) u(z)e;, ;)
= (u(z)es, u(g)e;)

k=1

= 3 (e ulg)e;) (u(@)es ex)
k=1

= Z<€k7u<g)ej>fi,k(l’)
k=1

and likewise we have
pa(9)fig() =Y (ul(g)es, ex) (u(@)ex, e5) = Y (u(@)ex, ;) f ; ().
k=1 k=1

So we see that C*(F') contains all the left and right translates of G, so
C(F)=Ar ~C(Qr).
We may easily compute kerip: If g € kerip then for ¢, =1,...,n we produce
(u(@)ulg)u(z)ei, e5) = (u(y)uleq)u(z)e;, ej) = (u(x)u(y)ei,e;) =,y €G.
since A(g) fi,; = Alec) fij-

In particular for y = z = eg this reduces to
(u(g)ei, ej) = (e, e;).

Hence u(g) = I, so g € ker u. Conversely, assume g € ker u, then

(u(y)u(g)u(e)ei, e;) = (u(y)ulec)u(x)es e;)

for all x,y € G. Hence g € kerip. We thus see that kerip = ker u.
We shall actually come back to this example in the next section.

Remark 5.2.18. The above example actually characterizes the almost periodic
functions on G. As shown in [10, Théréme 16.2.1], the almost periodic func-
tions are just the uniform closure of the span of coefficient functions of finite
dimensional unitary representations.

5.2.5 The relation to the Bohr compactification

We are actually going to show that the space {2 4p(g) becomes the Bohr com-
pactification of G for any discrete group G. But first a little lemma.

Lemma 5.2.19. Let G be a discrete group, and suppose there is a homo-
morphism ¢ : G — K such that ¢(G) is dense in K and such that the map
¢: C(K) = AP(G) defined by

o(f)=food  [feC(K),
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is a x-isometry. Then for every finite dimensional unitary representation (u, H)
of G there is a conlinuous finite dimensional representation (u, H) of K such
that o ¢ = u.

Proof. Let (u,H) be a finite dimensional unitary representation of G. Let
e1,...,en be a orthonormal basis for H. By Example 5.2.17 we know that
the coefficient functions f; ; : G — C (as defined in Example 5.2.17) are almost
periodic. Hence for each f; ; we may pick an extension f” € C(K) such that
g{)(f”) = f;;. But then we may form the function @ : K — U(H) by the
equation
(u(k)ei, ej) = fij(u) i,j=1,...,nand u € K.

Now, @ is well-defined as @(¢(g)) € U(H) for all g € G, and hence by density
we see that (k) € U(H) for all ¥ € K. Tt is a homomorphism as it is a

homomorphism on 1 (G), hence we have our desired finite dimensional unitary
representation. O

To prove the next theorem, we shall use the idea usually used to construct
the Bohr compactification of a group. See for instance [10, Théréme 16.1.1].

Theorem 5.2.20. Let G, K and ¢ be as in Lemma 5.2.19. Then K is the
Bohr compactification of G.

Proof. Let I' be a compact Hausdorff group, and suppose there is a continu-
ous homomorphism ¢ : G — I'. As an immediate consequence of the Peter
Weyl theorem, we may pick a collection of finite dimensional representations
{(ui, H;)}i of T such that (), keru; = {er}.

Furthermore, we may consider the continuous homomorphism

w:T — [Ju(H)
by
u(h)(i) = ui(h)  hel.

As ker u = ), ker u;, we see that I' ~ u(I"). Notice also that u becomes a home-
omorphism between I' and C' (as it is a continuous bijection from a compact
space). Furthermore, we see that u o ¢ becomes a finite dimensional unitary
representation of GG, hence we may use Lemma 5.2.19 to produce finite dimen-
sional unitary representation (4;, H;) of K. We may again define a continuous
homomorphism @ : K — [[, U(H;) by

a(k)(i) = (k)  keK.

As w(Y(g)) = u(¢(g)) € C, we know that a(K) C C by density of ¢(G) in K.
At last we define ¢ : K — T' by ¢ = u~! o @, then

S(1(9)) = u (@((9))) = u M (u(¢(9))) = dlg) g €G.
So K ~ Bohr(G). O
Corollary 5.2.21. Let G be a discrete group. Then Q4p(q) ~ Bohr(G).

Proof. Easy consequence of Theorem 5.2.20 and Theorem 5.2.15. O
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5.2.6 The Abelian case

We started the section with an example involving the Abelian group Z, and we
saw the relation between the Z-invariant C*-algebra generated by a character on
Z and the continuous functions on the hull of the character. Later we went on
to consider general (possibly non-Abelian) groups, and things got a tad worse.
But we see that whenever G is abelian, for f € £°(G) the set {A(g)f | g € G}
isomorphic to Hull(f) through the the map d : £*°(G x G) — £°°(G) given by
d(H)(z) = H(z,eq) for H € £>°(G x G), so we see that the example can indeed
be carried out to full generality. That is, we get the following corollary.

Corollary 5.2.22. Let G be a discrete Abelian group. If f € AP(G) then
C(ra(9)f | g € G) ~ C(Hull(f)).

Proof. This is just a special case of Theorem 5.2.15 and Lemma 5.2.9 (and the
fact the Hull(f) ~ {A(g)f | g € G}. O

5.2.7 On subalgebras of AP(G) %, G

In the Abelian case we get a nice characterization of some of the C*-subalgebras
of AP(G) X1y r G.

Corollary 5.2.23. Let G be an Abelian discrete group. Suppose
BCAP(G) Xy r G

is a C*-subalgebra containing the set
{1@Xg) g €G}.

Then
BNA~C(Qpna)-

In particular
B = C(QBﬁA) ><17~—F77« G

Proof. This is the simple matter of observering that whenever B is as in the
Corollary, BN A is Tg-invariant. As G was Abelian, we see that B N A is also
pc-invariant, hence Theorem 5.2.15 states that

BN A~ C(Qpna).

5.3 Ideals in AP(G) and AP(G) X,,, G

We end this chapter with a slight motivation as to why AP(G) is an interesting
subalgebra of £>°(G).

There is an immediate consequence of theorem 5.0.9 which relates to the
ideals of AP(G).

Lemma 5.3.1. Let G be a discrete group, then the Tg-invariant ideals in AP(G)
are precisely AP(G) and {0}.
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Proof. Assume I € AP(QG) is a G-invariant ideal of AP(G) and I # {0}. Pick
f € I where f # 0. We may, by possibly replacing f with ff, assume that
f > 0. Let C be the convex hull generated by {r¢(9)f | ¢ € G}. Since I
is a G-invariant ideal, C' C I. By Theorem 5.0.9 we have a constant function
K € C C I, but then as f > 0, we know that K > 0, hence 1 = K 'K € I, so
I =AP(G). O

Though the above theorem does suggest that AP(G) X, G is simple, we
can not make that conclusion without being sure that AP(G) separates the
ideals in AP(G) X, - G. Fortunately, there is a class of groups where we can
guarantee that AP(G) %, » G also becomes simple.

We use the definition of maximally almost periodic found in [9].

Definition 5.3.2. Let G be a Hausdorff topological group. We say that G is
mazximally almost periodic if there exists an injective continuous homomorphism
i: G — K for some compact Hausdorff group K.

The next result is a fun application of our construction of Qp, though the
result is well known.

Theorem 5.3.3. Let G be a discrete group, then G is mazximally almost pe-
riodic if and only if for every x € G there exists a finite dimensional unitary
representation (u, H) of G such that u(z) # 0.

Proof. Assume that for each z € G we may pick a finite dimensional unitary rep-
resentation (u,, H,) such that u,(z) # 0. In Example 5.2.17 we saw that each u,,
gives rise to a set F); of almost periodic functions. Furthermore, kerip, = keru,.
We may form the product

I1 ©=.

re

which is compact by Tychonoff’s theorem. And we get a continuous map

i:G— []or

zeG

by
i(9)(x) =ir,(9) z€X.

But 7 is injective, as

keri = ﬂ kerip, = ﬂ ker u, = {0}.

zeG zeG

Hence G is maximally almost periodic.

Conversely, assume we have an injective homomorphism i : G — K for some
compact Hausdorff group K. Then as K is Hausdorff, we may for each z € X
pick a unitary finite dimensional representation (u,, H,) such that u,(z) # 0
(this is again an easy consequence of the Peter-Weyl theorem). Then we get
induced representations (u, o i, H;) of G, and as i was injective, w;,)(i(x)) #
0. O

It also turns out it is enough to consider when the map i : G — Bohr(G) is
injective:
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Lemma 5.3.4. Let G be a discrete group. Then G is mazimally almost periodic
if and only if the map i : G — Bohr(G) is injective.

Proof. If i : G — Bohr(G) is injective, G is maximally almost periodic. Con-
versely, assume G is maximally almost periodic and pick an injective continuous
homomorphism j : G — K for some compact Hausdorff group K. We may pick
7 such that the following commutes

G4j>K

%

Bohr(G).
But if 4 is not injective, j can not be injective, so ¢ must be injective. O

Now, we notice that G acts on Bohr(G) by gz = i(g)x for ¢ € G and
x € Bohr(G). So whenever G is maximally almost periodic, we see that the
action of G on Bohr(G) is free. Thus, we get the following theorem.

Theorem 5.3.5. Let G be a mazximally almost periodic group. Then
AP(G) 7 G
is simple.

Proof. Immediate from [1, Theorem 3. O
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