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Rotation in an exact hydrodynamical model
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We study an exact and extended solution of the fluid dynamical model of heavy ion reactions and estimate the
rate of slowing down of the rotation due to the longitudinal and transverse expansion of the system. The initial
state parameters of the model are set on the basis of a realistic (3 4 1)-dimensional fluid dynamical calculation
at TeV energies, where the rotation is enhanced by the buildup of the Kelvin-Helmholtz instability in the flow.
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I. INTRODUCTION

In peripheral heavy ion collisions the system has angular
momentum. It has been shown in hydrodynamical compu-
tations that this leads to a large shear and vorticity [1].
Furthermore when the quark-gluon plasma (QGP) is formed
with low viscosity [2], interesting new phenomena may occur
like rotation [3], or turbulence, which shows up in the form of
a starting Kelvin-Helmholtz instability (KHI) [4,5].

Surprisingly, the effects arising from the nonvanishing
initial angular momentum in fireball hydrodynamics can
be studied with the help of exact and explicit, analytic
solutions of the equations of hydrodynamics. The pioneers
to the application of the hydrodynamical method to high
energy particle and nuclear collisions initially neglected the
effects from the nonvanishing angular momentum: Belenkij
and Landau [6] considered the 1 4 1 dimensional explosion
of a nonexpanding region of very high energy density,
while Hwa [7] and Bjorken considered [8] a boost-invariant,
already asymptotic expansion such as the initial condition
of a (1 + 1)-dimensional expansion governed by relativistic
hydrodynamics.

However, if the collision of two protons or two heavy ions
is not exactly head-on, there is a nonvanishing initial angular
momentum present in the initial conditions, which was for
a long time neglected. However, rather recently, numerical
investigations of relativistic hydrodynamics [1-5], as well
as exact and explicit analytic solutions of relativistic and
nonrelativistic hydrodynamics, were found for rotating fluids
[9,10]. It took 35 years after the publication of the first exact,
nonrotational solution in a similar class [11] to find and publish
rotating solutions of the hydrodynamics, a long road with
lots of surprises and unexpected turns, that were recently
briefly summarized in Ref. [10]. In Ref. [12], the anti-de
Sitter/ conformal field theory (AdS/CFT) holography method
is used to study the QGP created in heavy ion collisions. The
authors chose two types of velocity profiles, which do not
favor instability classically, and they used the planar black
hole geometry to compute the fluid shear by using parameters
predicted in Ref. [4]. The discussion shows that for the
two clasically stable configurations in the holographic model
instability develops very slowly for lower chemical potentials,
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but turbulence may still exist for high chemical potentials. The
finding of these rotating solutions started to shed more light
on the effects of rotation, which plays a very important role
[13] in shaping the events in astrophysical, hydrodynamically
evolving systems, in turbulence, or in eddy and vortex
formation in fluid dynamics. This is the motivatation for the
subject of the present paper, which evaluates numerically some
of the important characteristics of the fireball (like the size of
the fireball along the axis of rotation and the size of the fireball
in the plane perpendicular to the rotation) for quasirealistic
initial conditions and compares it with the case when the initial
angular momentum is negligible, or is neglected.

Based on Ref. [4] we can extract some basic parameters of
the rotation obtained with the fluid dynamical model numerical
Particle in Cell Relativistic (PICR). These parameters are
extracted from model calculations of Pb+ Pb collisions
at /syy =2.76A TeV and at the impact parameter of
b = 0.7bp,x, with high resolution and thus small numerical
viscosity. Thus, in this collision the KHI occurs and enhances
rotation at intermediate times, because the turbulent rotation
gains energy from the original shear flow. The turbulent
rotations lead to a rotation profile where the rotation of the
external regions lags behind the rotation of the internal zones.
This is a typical growth of the KHI. See Table I.

The initial angular momentum of the system is large, L, =
—1.05 x 10*Ah in a midperipheral collision. This arises from
the precollision state. In Refs. [1,3,4] the same initial state (IS)
model is used before the PICR fluid dynamical model is started.
The IS model [14,15] describes the first 4 fm/c time period
after the moment when the Lorentz contracted, thin projectile
and target slabs [like in the Color-glass Condensate (CGC)
model] penetrate each other. The matter is then divided into
longitudinally (z-directed) expanding (fire)streaks. The [x,y]
transverse plane is divided into surface elements according
to the resolution of the PICR model, and each element
belongs to one streak. The streak expansion is described
in a one-dimensional classical Yang-Mills field, spanned
by the color charges at the two ends of the streak. This
field slows down the expansion due to the large string-rope
tension. The IS dynamics satisfies the momentum conservation
streak by streak, and this way the total angular momentum
of the IS is also exactly conserved. During the IS model
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TABLEI. Time dependence of some characteristic parameters of
the fluid dynamical calculation presented in Ref. [4]. R is the average
transverse radius (R ~ v/XZ); Y is the length of the system in the
direction of the axis of the rotation y; 6 is the polar angle of the
rotation of the interior region of the system measured versus the z
directed, beam axis, of the reaction plane, [x,z] plane; R and Y are
the speeds of expansion in radial and rotational axis directions; and
w is the angular velocity of the internal region of the matter during
the collision.

t Y Y 0 R R w

(fm/c) (fm) (©) (rad) (fm) (© (c/fm)
0.0 438 090  0.000 368 060  0.0175
2.0 6.18 088  0.035 487 084  0.0350
40 791 084  0.105 6.56 097  0.0520
6.0 954 080  0.209 849  0.86  0.0700
8.0 11.09 076 0349 1021 081  0.0350
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TABLE II. Time dependence of characteristic parameters of the
exact fluid dynamical model [10]. R is the transverse radius, Y is the
(rotation-axis-directed) length of the system, R and Y are the speed of
expansion in transverse and axis directions, 6 is the angle of rotation,
and w is the angular velocity of the matter.

t Y Y 0 R R w
(fm/c) (fm) (c) (rad) (fm) (o) (c/fm)
0.0 4000 0300 0.000 2500 0250  0.150
1.0 4349 0393  0.135 2.852  0.441 0.115
2.0 4776 0458 0235 3360 0567  0.083
3.0 5258 0.503 0307 3970 0.646  0.059
4.0 5777 0534 0358 4642 0696  0.044
5.0 6322 0555 0397 5356 0729  0.033
6.0 6.886 0.571 0426 6.096 0.752  0.025
7.0 7462 0582 0449 6.856 0.767  0.020
8.0 8.049 0.591 0467 7.629 0779  0.016

the dynamics is one dimensional (1D) (z), with z-directed
velocities only, but the expansion is different in different
transverse points.

After 4 fm/c of the IS model, local equilibrium is reached
and the PICR (3 4+ 1)D fluid dynamical model starts (with
t =0 fm/c fluid dynamical model time). Then, due to the
fluid dynamical development and equilibration, the x-directed
velocity starts to increase and the average of the z-directed
velocity decreases. This way the angular momentum is exactly
conserved in the (3 4+ 1)D fluid dynamical calculation. Thus
the x-directed velocity or otherwise the rotation in the
horizontal plane starts up delayed. This is a fully realistic
model of the initial longitudinally transparent nonequilibrium
dynamics and the subsequent equilibration of rotation on a
larger scale [4].

As the initial conditions and initial times in the exact model
and in the PICR (3 4 1)D model are not identical we have
matched the time coordinates such that fex,eq = O fm/c in the
exact model corresponds to t = 3 fm/c in the full (3 + 1)D
calculation.

If we compare the rotation of the horizontal plane (x-
directed velocity) only, then the PICR model and the exact
model are becoming similar at t = 6 (fexaer = 3) fm/c and
after (see Tables I and II). If however, we estimate the average
of the z-directed velocity also, and consider then the average of
the x- and z-directed velocities, the two models are becoming
similar already at ¢t = 4 (fexact = 1) fm/c and after. Thus, the
applicability of the exact model with the parameters chosen
here, starts approximately after 1 = 5 fm/c on the time scale
of the PICR model. The radius, R, parameters are matched to
each other in the two models so that in the (3 4+ 1)D model
at the same time moments, t =5 and 8 fm/c, the radii are
8.49 and 10.21 fm for a sharp matter surface, while in the
exact model the corresponding radii are 3.97 and 5.36 fm,
respectively (i.e., about half of the previous values) but these
represent the width parameter of an infinite Gaussian matter
distribution.

The initial part of the (3 + 1)D model describes the equi-
libration of the rotational flow from the initial shear flow; the
rotation then leads to a maximal, azimuthally averaged angular

velocity. Then the system expands and the angular velocity
decreases. The exact model, assuming uniform rotation, can
only describe this second phase of the process. It is important
to mention that the KHI facilitates the equilibration and speed
up of the rotation and leads to an earlier and bigger maximal
angular velocity. In this case the applicability of the exact
model is more extended in time and spans the range between
the equilibration of the rotation and the freeze-out. At lower
beam energies and small impact parameters (i.e., at lover
angular momentum) the time span of the applicability of the
exact model should be tested separately.

We want to use these fluid dynamical calculations to test
a new family of exact rotating solutions [10], which may
provide more fundamental insight to the interaction between
the rotation and the expansion of the system. This model offers
a few possible variations; here we chose the version /A to test.
We change the axis labeling of Ref. [10], so that the axis of the
rotation is y while the transverse plane of the rotation is the
[x,z] plane. Thus the values extracted from the results of
the fluid dynamical model [4] should take this into account.
The initial radius parameter, R, corresponds to the system size
in the x or z direction in the hydrodinamical model, and we
assume an x,z symmetry in the exact model. The rotation axis
is the y axis in the hydrodinamical model and now also in the
exact model. The exact model assumes azimuthal symmetry, so
it cannot describe the beam-directed elongation of the system,
but this is arises from the initial beam momentum, and we
intend to describe the rotation of the interior part of the reaction
plane and the rotation there.

In Sec. II we recapitulate some of the central results of
Ref. [10] for clarity and so that the paper is self-contained.
New studies start in Sec. III.

II. FROM THE EULER EQUATION TO SCALING

In Ref. [10] it is assumed that the temperature and the
density have time-independent distributions with respect to a
scaling variable: s = r2/X?* +r2/Y? +r2/Z* . Now instead
we assume azimuthal symmetry and thus use the correspond-
ing cylindrical coordinates instead of (x,y,z). However, we
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also use the coordinates in length dimension, (r,,7y,r,), SO
that

To=p, To=T7,0, T'y=0Y.

These represent the so-called “out, side, long” directions. The
boundary values of these coordinates are then (R,S,Y). The
scaling variables can be introduced as

Sp = r;/Rz’ Sy = ;’;/S2 sy = rf/Yz,

where S is the roll length on the outside circumference,
starting from ¢y =0 and Sy =0 at 7, S = Ry, ¢ = w,
and this displacement is orthogonal to the longitudinal and
transverse displacements. The internal roll lengthisr, = ¢ r,,
the corresponding velocity is v, = wr,, and so v, = w’r.
On the other hand, from the scaling of r,, it follows that
rlz) = R? Sp.

Nevertheless, in case of these scaling variables the distribu-
tions of density and temperature, n(s) and 7T (t,s), should not
depend on s, or r,, just on the radius and the longitudinal
coordinates. Therefore in this work we introduce another

scaling variable:
S =5, +Sy.

Our reference frame is then spanned by the directions
(rp,ry,ry). In this case due to the azimuthal symmetry the
derivatives 0s/0r, vanish. In this coordinate system the
volume is V = 27 RY.

The derivatives R(to) and Y (tp) in this exact model should
not equal the ones obtained from the fluid dynamical model,
because in the more realistic model the density and velocity
profiles do not agree with the exact model’s assumptions. Also
initially in the realistic fluid dynamical model the angular mo-
mentum increases in the central region due to the developing
turbulence, while in the exact model it monotonously decreases
due to the scaling expansion.

For simplicity we also assume that the equation of state
(EoS), € = €(n, p), with a constant « is

€ =«xkp and p =nT, H
where n is the conserved net baryon charge and T is the
temperature.

Now we calculate Eq. (15) in Ref. [10]:

nm@, +v-V)v=-Vp. 2)

For the variables of this equation we have

V l/K V
T = ]})(70) T(S), n = HOVOV(S),
3)

L ik
T(s)

and in addition in Ref. [10] it is assumed that the temperature

and the density have time-independent distributions with

respect to the scaling variable s.
Thus, for the right-hand side of Eq. (2):

—Vp=-VnT

1/k .
— —HOET()(%) Ve_%fn Td(l:,)

v(s) =
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Vo (VO _ipaw [ 1\ 1
= _nO_TO — e 20 Tw | —— Vs
|4 1% 2 )T(s)

—amQ/ V" (Lo, + e )
Ry )

where y = 1/k and 0 = — .

Using the p, ¢, and y coordinates, the rotation would show
up as an independent orthogonal term. However, the closed
system has no external torque, and the internal force from the
gradient of the pressure is radial, which does not contribute
to tangential acceleration. The change of the angular velocity
arises from the angular momentum conservation in the closed
system as a constraint, so we do not have to derive additional
dynamical equations to describe the evolution of the rotation.

Now for the left-hand side of Eq. (2), the velocity, v =
v(t,r,,ry,Ty), scales as

R Y
vV =1v,e,—Vye,+V,e, = Erpep—a)rpew+?ryey. (5)

Let us first calculate the time derivatives for the components
(see, e.g., Ref. [16]):

v, = E—R—z — o |r
P I\R R? r

. . . 6
R Yy y? ©
vy = —ORTp: vy = A7l a
The other term of the comoving derivative gives
R? R Y2
v-Viu= 72l + W20y + ikt (7
Adding Egs. (6) and (7) we get
mn(d,+v - V)v, = mn[(R/R) — 0*1r,, ®)

mn(d,+v - Vv, = mn(Y/Y)r..

Then the equality of the right-hand side and the left-hand
side of the Euler equation (2) leads to the ordinary differential
equations. Multiplying the two nonvanishing equations with
R? and Y?, respectively, yields

. ) . T < Vo ) Y
RR-W/R° =YY =—|—], )
m\V
where W = w}Rj. Notice that from the angular momentum
conservation @ = woRg / R2, thus the rotational term, R%2w? in
the equation, takes the form W/ R2.

Notice that due to the EoS the pressure is proportional to
the baryon density 7, just like the right-hand side of the Euler
equation; therefore the equation of motion does not depend on
n or ng.

III. CONSERVATION LAWS

If we want to calculate the energy of the whole system, then
we should actually integrate it for the whole volume, V. Thus,
not only the scaling of v = (v,,v,,v,) but the particle density
distribution n(s) will also play a role. )

The rotational energy at the surface is Esige = %mS 2 =

%mszz, and if we express w via w( using the relation
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w= a)oRé/Rz, then Esige = W/RZ, i.e., just as before. The
expansion energy at the surface is Eou = %mRz, and for the
longitudinal direction, & ong = %m Y2

For the interior we can calculate the radial and longitudinal
expansion velocities and the corresponding kinetic energies,
as well as the kinetic energy of the rotation. In the evaluation
of the internal and kinetic energies the radial and longitudinal
density profiles of the system should be taken into account.

We now assume that the temperature profile is flat, and
consequently the density profiles are Gaussian and separable
[17]. With this approximation the different integrated energies
are calculated. The boundary of the spatial integrals can be
set to infinity or to finite values (s,p, synm) as well. To be
consistent with the earlier exact model results we integrate
now to infinity, the integrals are finite.

Adding up the kinetic energies yields

Ex = %mNB(otzR2 + @R’ + ﬂzYz), (10)

where a2 =42 CnIB(%SyM)IC(%SpM) and
B? = 4v2 Cola(s,m)Ip(Esyan), where C, =
1/12/2 14(0.55,01) 15(0.55,31)].!

Now we extend the boundaries to infinity; thus &> = 2 and
B*=1.

Here o? and B2 are time independent, because they depend
on the scaling variables only. If we divide this result by the
conserved baryon charge, N, we get

Ex
Np

Based on the EoS € = kp = «knT, one can calculate the
compression energy also based on the density profiles of
n(s) and €(s) = k n(s)T. Here we made the same simplifying
assumptions on the density profiles as before.

Then volume integrated internal energy and net baryon
charge will have the same density profile, normalized to Ng:

= %m[az(RZ—Fszz) + B*Y?. (11)

Einc :K/pdV =K/anV =k NgTo(Vo/ V)Y C,

| 0o, [ [ ds,
X — 2w R°Y v(s) ds, —
14 o Jo VSy

Vo\”
=kNpTo(Vo/ V) = KT0<7) , (12)

where C,, is the normalization constant.

IV. REDUCTION TO A SINGLE
DIFFERENTIAL EQUATION

Now following the method of Ref. [17], we study the
following combination:

F = 13} R* + B*Y?) = 8,(¢*RR + YY)
= o’R> + B2Y? + o*RR + B*YY. (13)
au) =1 —exp(—u), Ipu) =7 O(/u), Ie()=1—(+

u)exp(—u), Ip(u) = gfb(«/ﬁ) — Jue™, where ®(u) = erf(u) =
% o exp(—x?)dx [18]
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. 2
Here we used the notation 9, = % and 97 = 337

replace the last two terms, >R R and S2Y Y, by using Eq. (9),
i.e., we use the Euler equation (2). Then we obtain

o
QrR2Y)r’
On the other hand from the energy conservation, Eiy = Ej +
E;n, we get that

Lot Lo poon 2 W 2k Q
— | R4V ey K
Nom — 2| ¢ R e et o Ry

where we used the EoS and thus the parameter « now appears
in the expression of the energy.
Now, if our EoS is such that

K = (@*+8%) /2, (16)

then F = 2Ey,/(Ngm) = const., and in the same type of
calculation as in Ref. [17], we can introduce

U%(t) = «®*R*(t) + B2Y*(1), (17)

Now we can

. , 14
F=o’R*+ Y+ oﬂﬁ + (@*+8%) (14)

}, s)

which satisfies

32 (@’ R* + B°Y?) = 3IU(1) = 2F. (18)
Thus, the solution of Eq. (18), can be parametrized as

U(t) = A(t — 10> + B(t — 1p) + C, (19)

where

. . T
A=’ R+ BY] + P W/RS + @ 5)
B = 2a’RyRy + 28%Y, Y, (20)

C = o’ R} + 2Y;.
Let us take one of the Euler equations from Eq. (9),

Q

Y= Yoy @D

and express R? in terms of UZ2(z), which is known based on
the energy conservation:

R*(t) = (U*(0) = B*YP) . 22
This leads to a second-order differential equation for Y (¢):

. o (0]
Y= Yo o—pry

which can be solved. Then R(¢) and R(¢) are given by Egs. (22)
and (14), respectively.

In the main steps we followed Ref. [17]; however it turned
out that the modified last step of the method provides a more
straightforward solution. We show that the model provides an
excellent and simple semianalytic tool to study the effects and
consequences of an expanding and rotating system.

We used the Runge Kutta [19] method to solve this
differential equation. We need the constants Q and W as well
as the initial conditions for R and Y.

Based on the fluid dynamical model calculation results,
presented in Table I, we chose the following parameters:

= f(¥.0), (23)

024901-4



ROTATION IN AN EXACT HYDRODYNAMICAL MODEL

900 T T T T T T T T T

750 E

600

450

300

(MeV/nucleon)

150 4

FIG. 1. (Color online) The time dependence of the kinetic energy
of the expansion, Eg, of the internal energy, Ej,, and the rotational
energy, Eq, per nucleon in the exact model with the initial conditions
described above. The kinetic energy of the expansion is increasing, at
the cost of the decreasing internal energy and the slower decreasing
rotational energy. The rotational energy is decreasing to half of the
initial one in 2.1 fm/c.

Ty = 250 MeV, m = 939.57 MeV, and wy = 0.15 ¢/fm. For
the internal region we take the initial radius parameters as Ry =
2.5 fm and R = 0.25 ¢, and we disregard the larger extension
in the beam direction, because our model is azimuthally
symmetric and because the beam-directed large elongation
is a consequence of the initial beam-directed momentum
excess, which is converted into rotation in the course of the
initial equilibration only. In this exact model the rotation axis,
denoted by Y, corresponds to the out of plane, y direction in
the fluid dynamical model (and not to the beam direction).
Due to the eccentricity at finite impact parameters, with an
almond-shaped profile, the initial out of plane size is larger
than the in plane transverse size, so we chose Yy = 4.0 fm
and Y = 0.3 c. Because the exact solution is able to describe
the monotonic expansion, and so the steady decrease of the
rotation, we start from an initial angular velocity higher than
that shown by the fluid dynamical model, PICR, because the
angular velocity was measured versus the horizontal plane
where the angular velocity starts from zero.

With these initial parameters the exact model yields a
dynamical development shown in Table II. According to
expectations the radius, R, and the axis directed size, Y,
are increasing, the angular velocity, w decreases, The total
energy is conserved, while the kinetic energy of expansion
is increasing, and that of the rotation and internal energy are
decreasing. See Fig. 1.

The change of the expansion velocity is shown in Fig. 2.
The expansion velocity is increasing in both directions. While
in the axis, y, direction the velocity increases from 0.4 t0 0.5 ¢
in 8 fm/c time, the radial expansion increases faster, in part due
to the centrifugal force from the rotation. The radial expansion
velocity increases by nearly 10% due to the rotation, which
is significant, while the expansion in the direction of the axis

PHYSICAL REVIEW C 90, 024901 (2014)

o
N

t (fm/c)

FIG. 2. (Color online) The time dependence of the velocity of
expansion in the transverse radial direction, vg, and in the direction
of the axis of the rotation, vy.

of rotation is hardly changed. In both cases the expansion in
the radial direction is large. This is due to the choice of a
small initial radius parameter. This exact, perfect fluid model
overestimates the radial expansion velocity due to the lack
of dissipation and the freeze-out happens earlier than 8 fm/c
because at this time the size of the system is already reaching
16 fm (see Fig. 3) larger than the estimates based on two
particle correlation experiments. At the same time, although
the rotation is nonrelativistic, the Hubble flow terms are large
and the Hubble flows are relativistic. This problem is not new,
it is also present in Ref. [15] and in earlier exact models.
The radial (directional Hubble) solutions go smoothly over to
a relativistic exact solution of hydrodynamics [20]. Because
the velocity of rotation decreases faster asymptotically than

(fm)

2 T T T T T T
0 2 4 6 8
t (fm/c)

FIG. 3. (Color online) The time dependence of the radial, R, and
the y-axis-directed size, Y, of the expanding system. As the y directed
velocity is initially larger and its change is relatively smaller the
change of the rate of increase is hardly visible.
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the Hubble flow, the rotation is not expected to influence
essentially the asymptotic relativistic behavior of the flow.
The more rapid velocity change arises partly from the
centrifugal acceleration of the rotation, but also from the fact
that the initially smaller transverse size increases faster in the
direction of equal sizes in both directions. See Fig. 3.

V. CONCLUSIONS

In conclusion, the exact model can be well realized with
parameters extracted from detailed, high-resolution, 3 4 1D
relativistic fluid dynamical model calculations with the PICR
code. The exact model describes a system with with one single,
uniform o representing the whole matter at a given moment of
time. Depending on the impact parameter, the system size, the
beam energy, and the transport properties, the uniform flow
can develop from the initial shear flow at different times. It is
important to know when this time is reached in a collision and
with which parameters. Then this will enable us to conclude
about the material parameters and the equilibration dynamics.
The exact model provides us with a simple and straightforward
tool to give a precise estimate about the time moment when
the rotation equilibrated and the parameters of the matter
at that moment.

The exact model can be used as a tool, when the rotations
can be detected at freeze-out. Then it provides an estimate of
the rate of decrease of angular speed and rotational energy

PHYSICAL REVIEW C 90, 024901 (2014)

due to the expansion in an explosively expanding system. This
indicates that the effects of rotation can be observable in case of
rapid freeze-out and hadronization, and the rate of conversion
from rotational energy to expansion can be studied in detail
depending on the parameters of the model.

At the same time these studies also show that the initial
rotation is also influencing the rate of decrease of rotation.
Here especially the enhancement of the initial rotation due
to the KHI is essential, although this is a special (3 4+ 1)D
instability, which in itself cannot be included in the exact
rotational model. Still the presence of the KHI is essential to
generate the rotation, and thus the observation of the rotation
is strongly connected to the evolving turbulent instability in
low-viscosity QGP.

Due to the difference of the time evolution between the
numerical and the exactly solvable hydrodynamical models at
early times one expects that the predictions of the two models
in the sector of penetrating probes (dilepton spectrum, direct
photon spectra, elliptic flow, Hanbury Brown and Twiss effect)
will be different and these differences later on can be used to
explore the mechanism of equilibration.
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