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1 Introduction

Optimization is a large discipline of mathematics, and loosely said con­

cerns finding the best solution to some given problem. Numerous branches

exist within the field of optimization, such as linear optimization, con­

vex optimization, and integer optimization. Typically an optimization

problem has a function to minimize or maximize over a given domain,

and the problem might be easy or hard to solve, depending on both the

objective function and the feasible domain. Some problems might be

solved in a time polynomially proportional to a measure of the size of

the problem, while other problems have not yet been, or can never be,

solved faster than exponentially proportional to the size of the problem.

When solving a problem by hand any big problem can become almost

impossible to solve because of its sheer size, but with the aid of fast

computers mathematicians today can solve bigger and bigger problems.

In particular more and more real world problems can be solved to opti­

mality with the emerging possibilities.

1.1 Transportation planning

One of the branches of real world problems that certainly benefits from

optimization theory is transportation planning. In countless scenarios

one or more kinds of commodities are to be transported between differ­

ent locations, and it is often desirable to find the best way of doing this.

What the defines the best way can be different from problem to problem,

but some examples are:

• Routing traffic through a city, with as little congestion as possible.

• Routing internet traffic, with as little delay as possible.

• Routing containers between harbors, while transporting empty ones

as short distances as possible.

Now in the case of routing traffic through a city, another possible

criterion to consider could be minimizing the total travel time of all the

commuters, and yet another could be minimizing the difference between

desired and actual departure and arrival times for all commuters. And

of course a combination of any of these criteria could be used. This is

then the quantity we wish to minimize in our problem, and a function to

compute this quantity is required for any mathematical optimization to

be done. The mathematical model of our problem is what allows us to do
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this calculation; it is a mathematical representation of our problem, and

as such has a way of representing the traffic throughout the network

in a precise and quantitative way. We can then use the mathematical

model to check which different traffic routings are the best with regard

to our choice of minimization goal. It is very important that the chosen

mathematical model has properties that resemble those of the original

problem. Often finding a good mathematical model is not very hard,

but finding one that is not too complex for efficient optimization to take

place might be harder. Typically this transportation kind of problem

is regarded as a network problem where the network is represented as

a graph, and each edge in the graph has a cost associated to it that

depends on the amount of traffic flowing along it.

Another interesting viewpoint in traffic problems is that of each com­

muter, assuming the users of the network behave according to the ego­

istic goal of minimizing their own travel time in the network. This is by

many considered the situation that will occur in a real world traffic net­

work, and the "solution" we get from this approach can differ from the

solution to the similar optimization problem of e.g. least travel time. In­

terestingly the user approach yields a solution that is often much worse

in terms of total travel time. Bridging the gap between these two solu­

tions to the traffic flow problem might, at least for the environmentalists,

be of great interest.

1.2 This text

In this thesis we will have a look at the problem of optimally routing

traffic through a network that does not have enough capacity for all

the traffic to follow the same, fastest route. I will also try to compare

the optimal solution to the user solution that is assumed to occur if

no measures are taken to direct the traffic. In order to do this I will

need a mathematical model for both problems, which might be slightly

different from one another. The models used to represent the networks

will in both cases be directed graphs with cost functions along each of

the arcs. In addition I will need optimization theory to find the optimal

solution to the given problems. In the simplest case we can use linear

optimization, but might need other areas for the general case.

The outline of the thesis will be as follows: I will give the basic termi­

nology of the text in section 2, and then go on to describe our problem

and different varieties of it in section 3. Section 4 will be used to exam­

ine theoretical results that may be applied to our problems. In section 5
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I will conduct my own analysis of the problems, using the theory from

the previous section, and section 6 will contain a short discussion of

what I have achieved in the thesis.
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2 Background theory

This section will contain an overview of terminology and concepts used

in the rest of the text. This will be from the fields of graph theory and

optimization (in particular linear optimization).

2.1 Graphs

A graph is a structure used to describe how different entities are related

to each other, through the means of representing each entity and each

relation by nodes and edges, respectively. More precisely an undirected

graph (or just graph) G consists of a set of nodes V and a set E of pairs

of these nodes. Each edge e = (v1, v2) or v1v2 represents a connection

between these two nodes. The nodes are said to be the endpoints of e,

and v1 and v2 are said to be adjacent. The edge is also incident to each

of the nodes, and vice versa. Two edges are adjacent if they are incident

to a common node.

If we demand that the set of pairs of nodes be a set of ordered pairs,

we obtain a directed graph, or digraph for short. It is then also common

to name the nodes vertices and the edges arcs instead, and the set of

arcs is called A instead of E. In this case an arc a = v1v2 represents a

connection from v1 to v2, but not the other way. These nodes are called

the source and target of a respectively. Note that removing the direction

of the arcs in a directed graph simply yields an undirected graph often

referred to as the underlying (undirected) graph. When using the term

graph without qualification we might mean undirected or directed graph,

based on the context.

Throughout this section I will give definitions for undirected graphs,

with supplements for the directed case where needed .

The degree of a node is the number of edges incident to it. For a

vertex we distinguish the indegree, which is the number of arcs entering

the vertex, and the outdegree, which is the number of arcs leaving the

vertex.

2.1.1 Walks and paths

A walk in a graph is an alternating sequence of nodes and edges

(v0, v0v1, v1, . . . , vn−1vn, vn) starting and ending with a node, such that

for each edge in the walk the preceding and succeeding nodes are the

endpoints of that edge. For a digraph they must be the source and target

of the arc, respectively. A walk is closed if it begins and ends with the
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Figure 1: An example graph

same node, and open if not.

A walk in which each node is present only once (except possibly the

first and last nodes, which may be the same) is called simple, and are

walks that often occur naturally as solutions to various problems. Think

for instance of the problem of finding a shortest path through a graph.

Intuitively we may believe this to always be a simple walk, and this will

indeed be proven true later in the text. (At least for graphs where such

a path exists.)

A walk that is both open and simple is called a path, whereas a closed

and simple walk is called a cycle. A cycle with only one edge is called a

loop. A (directed) graph containing no (directed) cycles is called acyclic.

A (directed) graph is (strongly) connected if for any node there exists a

path to any other node, and each subgraph H = (U, F),U ⊂ V, F = U ∩E
such that U is connected is called a component of G. A directed graph

where for any pair of vertices there exists a path from one of the nodes

to the other is weakly connected.

All graphs in this text are henceforth assumed to be connected, unless

otherwise stated.

2.1.2 Trees

Contained in the set of all possible graphs are several interesting subsets

or classes of graphs. Among the most important of these are trees. A

tree is a connected graph with no cycles. This, however, implies a few
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other properties that the trees must have.

Theorem 2.1 For a graph G = (V , E) the following are equivalent:

a) G is connected and acyclic.

b) G is connected, and |V | = |E| + 1.

c) Between any pair of nodes in G there exists exactly one unique path.

Figure 2: A tree with an s − t­path highlighted

2.1.3 Distance, weighted graphs

The notion of distance comes to mind when thinking of a traffic network,

be it distance in terms of travel time or in terms of spatial distance.

There is also a corresponding definition of distance in graphs.

Definition 2.1 The length of a walk is equal to the number of edges in it.

This leads us to the following definition of distance.

Definition 2.2 The distance between two nodes is equal to the length of a

shortest walk between them. If no such walk exists the distance is defined

to be ∞.
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This may be used to define a metric in any undirected graph.

i d(v1, v2) = 0 ⇐⇒ v1 = v2

Follows from the definition.

ii d(v1, v2) = d(v2, v1)

Any path from v1 to v2 is also a path from v2 to v1 with the same

length, when reversed.

iii d(v1, v2)+ d(v2, v3) ≥ d(v1, v3)

Any path from v1 to v2 with length l1 can be combined with a path

from v2 to v3 with length l2 to form a path from v1 to v3 with

length l1 + l2.

In a directed graph this measure of distance only yields a metric on the

underlying undirected graph, because the symmetry requirement fails.

We will still define the distance between vertices v1 and v2 in a directed

graph as the length of a shortest path from v1 to v2.

Expanding the definition of a graph to also include a function l : E →
R we get a weighted graph, where l(e) is the length (or weight) of edge e.

These weights are often assumed to be non­negative, i.e. l : E → R+, and

this will also be the case in this text. Now we can give another definition

of length and distance in a graph:

Definition 2.3 The (weighted) length of a walk is equal to the sum of the

lengths of the edges in it.

If we assume the length of each edge to be 1 we see that we recover the

first definition of length. We will hereby mean the weighted length/distance

whenever we say length/distance.

2.1.4 Capacity, flows

In a road network, the internet, or in any other real life network in which

commodities are transported there is some kind of limit to how much

stuff can be moved around during unit of time. In a graph this capacity

constraint is easily added as another function c : E → R+ where c(e)

denotes the maximum amount of commodity that can be moved along

the edge e in one time unit. We will, however, also be interested in the

direction of flow along each edge, and because of this we hereby switch

our attention over to the directed graphs for the rest of the text.

When working with flow in graphs we also have a function f : A → R+
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Figure 3: The distance from s to t is 6.

where f(a) denotes the flow currently assigned to arc a. The cost of

assigning a flow f(a) along the arc a is

f(a)l(a) (1)

and the total cost of a flow f is then defined:

Definition 2.4 The cost of a flow f is
∑

a∈A

f(a)d(a)

Thinking of a flow situation in which the picture is not altered over

time we realize that for each vertex the inflow and the outflow must be

equal. Now some nodes may have an innate supply of commodity, such

that the flow out into the graph from such a node node is greater than

the flow into it. This is a node with a positive supply, and it is called a

source. In the opposite case the node is a sink, with a negative supply.

We define the supply function b : V → R such that for each source s we

have b(s) > 0, for each sink t we have b(t) < 0 and for all other nodes

v we have b(v) = 0. We can then characterize a balanced flow.

Definition 2.5 The flow f is balanced if for each vertex v ∈ V we have
∑

a∈δout(v)

f(a) = b(v)+
∑

a∈δin(v)

f(a) (2)

where δout(v) denotes the leaving arcs of v and δin(v) denotes the en­

tering arcs.
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This is also called the flow conservation property, and will be assumed

to hold for any flow f unless otherwise stated.

Definition 2.6 A flow that satisfies both the flow conservation property

and also the capacity constraint

0 ≤ f(a) ≤ c(a) ∀a ∈ A (3)

is called a feasible flow.

For a feasible flow we also talk about the value of the flow, which is

Definition 2.7 The value of a s − t­flow f is
∑

a∈δout(s)

f(a) =
∑

a∈δin(t)

f(a)

Figure 4: A graph with costs and capacities on each arc, and a feasible

flow in the same graph.

2.2 Optimization

The most general form of an optimization problem may be written

max{f(x) : x ∈ D}

or

min{f(x) : x ∈ D}

where D is some domain called the feasible region. Multiplying f(x)

with −1 we see that the two problems are really the same. About such

a general problem there is not much to be said, and thus optimization

problems are divided into several categories according to the form of

both f and D:
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• If both f and D are convex we have convex optimization

• If f is also linear and D is a polyhedron we have linear optimization

or linear programming

• If D is a finite set we have combinatorial optimization

• If D is also the integer points of a polyhedron we have integer

programming

We will in this section look at minimizing a linear function over a poly­

hedron, which is then linear programming. Our aim is to see that all

polyhedron are a combination of polytopes and finitely generated cones,

and that a linear function over such a domain obtains its minimum value

in a vertex of the domain, unless the minimum is unbounded.

2.2.1 Convex sets, cones

An import kind of set is the convex set.

Definition 2.8 A set C ⊂ Rn is convex if for any pair of points c,d ∈ C
and for any 0 ≤ λ ≤ 1 we have

λc + (1− λ)d ∈ C

i.e. any convex combination of the two points is again in C.

Examples of convex sets are Rn the n−dimensional real space, In the

n−dimensional solid square box and Dn the n−dimensional ball.

Similar to the convex set we have the convex cone.

Definition 2.9 A set C ⊂ Rn is a convex cone if for any x,y ∈ C we also

have

λx + µy ∈ C,λ, µ ≥ 0

i.e. any conical combination of the two points is again in C.

Note that the convex cone is also convex.

We define the intersection and sum of two sets X,Y .

Definition 2.10 The intersection of two sets X, Y is given by

X ∩ Y =
{
z : z ∈ X, z ∈ Y

}

Definition 2.11 The sum of two sets X, Y is given by

X + Y =
{
x + y : x ∈ X,y ∈ Y

}
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We can easily verify that convex sets and convex cones are closed under

both intersection and sum.

A useful construction is the convex hull of a set X.

Definition 2.12 The convex hull conv.hull(X) of a set X is the intersection

of all sets containing X. Subsequently it is the minimal convex set (with

regard to inclusion) containing X. If X is finite conv.hull(X) is a polytope.

Although this definition is rather abstract, it can be shown that the defi­

nition is equivalent to a more useful characterization.

Theorem 2.2 For a set X ⊂ Rn we have

conv.hull(X) =
{
x : x = λ1x1 + · · · + λmxm, xi ∈ X,

∑

i

λi = 1, λi ≥ 0
}

If X is finite there exists a subset X′ ⊂ X with |X′| = n+ 1 such that each

x can be expressed uniquely as a convex combination of points in X′, and

X′ are then the vertices of the polytope of X.

Again we have the similar definition of the cone of a set X.

Definition 2.13 The cone cone(X) of a set X is the smallest convex cone

containing X. If X is finite cone(X) is finitely generated.

Again it can be shown that the definition is equivalent to a more useful

characterization.

Theorem 2.3 For a set X ⊂ Rn we have

cone(X) =
{
x : x = λ1x1 + · · · + λmxm, xi ∈ X,λi ≥ 0

}

If X is finite there exists a subset X′ ⊂ X with |X′| = n such that each x

can be expressed uniquely as a convex combination of points in X′.

2.2.2 Halfspaces and polyhedron

The polytopes and cones are closely related to another kind of convex

set, the polyhedron, which is the intersection of a finite number of half­

spaces.

Definition 2.14 A halfspace H ⊂ Rn is a subset of Rn such that there

exist a vector r ∈ Rn, r ≠ 0 and a real number δ ∈ R such that

H = {x : r Tx ≤ δ}
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Since scalar products commute with vector addition in Rn, we see imme­

diately that all halfspaces are also closed convex sets.

Similar to the halfspace we have the hyperplane.

Definition 2.15 A hyperplane P ⊂ Rn is a subspace of Rn such that there

exist a vector r ∈ Rn and a real number c ∈ R such that P = {x : r Tx =
c}.

A hyperplane is also called an affine subspace, and in the case when

c = 0 a linear subspace.

Definition 2.16 A polyhedron P ⊂ Rn is an intersection of finitely many

halfspaces. I.e.

P = {x : Ax ≤ b}

where A is a m×n matrix that determines the m halfspaces that P is an

intersection of.

Since a halfspace is a closed, convex set, any intersection of halfspaces

is also a closed, convex set. So all polyhedron are then closed and con­

vex. And intuitively they look very much like polytopes and cones. The

relation between the different kinds of sets are given by the following

theorem.

Theorem 2.4 Any polyhedron P is a sum of a polytope Q and a finitely

generated cone C, i.e.

P = Q+ C

, where Q and P have the same vertex set. If P is bounded it equals the

polytope Q (or C is empty).

For a proof refer to [1] This means that everything that is true for poly­

topes (or sums of polytopes and finitely generated cones) is also true

for bounded (or general) polyhedron! Due to the explicit definition of

the polytopes and finitely generated cones it is often easier to prove

attributes of these, than it is for the polyhedron with their implicit defi­

nition.

The converse to this theorem is also true, but for us this theorem is of

most interest, as we will see in a moment.
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2.2.3 Linear Programming

Misleading as the name may be, Linear Programming (LP) has little to do

with actual programming, but concerns rather the problem of finding the

maximum of minimum value of a linear function over a convex domain.

To this end several algorithms have been developed over the years, and

among those that stand out are the Simplex algorithm and the interior

point methods. Formally we have the objective function (i.e. the function

to maximize or minimize, and we will hereby assume minimization) f :

P → R where P is the domain polyhedron P = {x : Ax ≤ b}. Our problem

is thus to find

min{cTx : Ax ≤ b}

where A is the constraint matrix of the LP problem.

Intuitively the LP problem is very easy to solve, as the sets for which

the objective function have a constant value are hyperplanes. Thus solv­

ing an LP problem is really just the same as moving this hyperplane

along its normal vector, decreasing the value of the objective function,

until it reaches the boundary of the convex domain. This intuition also

tells us that the minimum value of the the objective function is attained

in at least one of the vertices of the domain, if at all. The objective

function might decrease along a direction in which the polyhedron is

unbounded. In this case we say that the LP problem is unbounded. The

other extreme case is when the polyhedron is empty, i.e. no solution

exists at all. This is an infeasible LP problem.

Of course finding the solution to an LP problem is not as easy as

intuition leads us to believe, but this is where the power of theorem

(2.4) can be used:

Theorem 2.5 For a feasible and bounded LP problem the optimal value

is always attained in a vertex of the domain polyhedron.

Proof. We start with the case of a bounded LP problem. For a non­

empty polytope Q and a linear function f : Q → R the minimum of f is

attained in a vertex of Q. Let Q have vertices v1, . . . , vn. Then any point

x ∈ Q can be written

x = λ1v1 + · · · + λnvn, λI ∈ [0,1],
∑
λi = 1

Now since f is linear, we get

f(x) = f(λ1v1 + · · · + λnvn)

= λ1f(v1)+ · · · + λnf(vn) ≥ min{f(v1), . . . , f (vn)}
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Since any bounded polyhedron is also a polytope, we then have for

bounded LP problems that the minimum is attained in a vertex. Now

we might have an LP problem where the domain is unbounded, but

the minimum value for the objective function might still exist and be

finite. Proving that the optimal value here is attained in a vertex as

well requires some extra details. Assume now that the polyhedron P

is unbounded and has at least one vertex, and that f has a bounded

minimum value that is attained in P . Now we know that P = Q + C
where C is nonempty. Assume that there exists a vector z ∈ C such that

f(z) = f(0)+d,d > 0. But then f(nz) = f(0)+nd, and since nz ∈ C f
is unbounded, which contradicts the assumption that the problem was

bounded. Thus f(z) ≤ f(0) for all z ∈ C, and we may examine only

the points in P of the form x + y,x ∈ Q,y ∈ C where y = 0, that is

we may consider only the points of the polytope Q. Now since we know

that the minimum value is attained in the polytope Q, we also know that

it is attained in a vertex of Q, which is again a vertex of P by (2.4).

2.2.4 The dual problem

An important theorem in linear programming concerns a problem re­

lated to an original LP problem, called the dual problem. For an LP prob­

lem

min{cTx : Ax ≤ b,x ≥ 0}

the dual problem is

max{bTy : ATy ≥ c,y ≥ 0}

Now the famous duality theorem states that if both the original and the

dual problems are feasible, then their optimal solutions are the same:

Theorem 2.6 (LP duality theorem) For a linear optimization problem and

its dual we have min{cTx : Ax ≤ b,x ≥ 0} =max{bTy : ATy ≥ c,y ≥
0} if both problems are feasible.

For a proof refer to [5].

In the case that one of the problems is infeasible we can make use of

Farkas’ lemma to show that the other problem must be unbounded. Not

so much a lemma as a theorem, it states the following:

Theorem 2.7 (Farkas’ lemma) The system Ax = b has a nonnegative

solution if and only if there is no vector y satisfying yTA ≥ 0, yTb < 0.

For a proof refer to [1]
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2.2.5 Convex optimization

Not to be confused with a convex set is a convex function

Definition 2.17 A function f : D → R is convex if for any x1, x2 ∈ D and

0 < λ < 1 we have

f(λx1 + (1− λ)x2) ≤ λf(x1)+ (1− λ)f (x2)

The field of convex optimization concerns minimizing or maximizing

convex functions over convex domains. Thus linear optimization is a

subfield of convex optimization.

Several algorithms exist for solving convex optimization problems, and

among the most significant is the Frank­Wolfe algorithm. Briefly this al­

gorithm works as follows:

Start with an initial guess at the solution, x0. Then approximate the

objective function with a linear approximation around xi, and solve the

resulting LP­problem, obtaining the solution x′i . Now use a convex com­

bination of xi, x
′
i as xi+1, and do a new approximation around xi+1. Ter­

minate when some criterion is met, e.g. improvements are less than

some ǫ for each iteration.

The Frank­Wolfe algorithm does not give an exact solution, but rather an

approximation to the optimal solution. Unfortunately the improvements

made in each iteration of the algorithm decrease rapidly, and obtaining

an accurate approximation might require a large amount of iterations,

each consisting of constructing and solving a linear optimization prob­

lem. Nevertheless the algorithm is often used for convex optimization

problems.

2.2.6 Complexity

The complexity of an algorithm refers to roughly how many operations

need to be performed for the algorithm to terminate. The complexity of

a problem equals the smallest complexity of a solution algorithm.

Complexity is used as a measure of how long time a problem will take

to solve, based on some measure of problem size. For instance we can

consider the problem of finding max(S) for some finite set S of integers.

A fastest algorithm that solves this problem is

max = S(1)

for (i = 2; i <= |S|; i++)

if (S(i) > max) max = S(i)

return max
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If |S| = n this algorithm performs roughly n loops, of which roughly

log2(n) contain four operations, and the rest contain three. In total this

is 3n + log2(n) operations. However keeping exact track of the number

of operations is not of very much interest for the average algorithm

theoretician. When n grows large it is clear that 3n dominates log2(n),

so our algorithm has a running time which is roughly 3n. Again constant

terms are not really significant. When comparing 3n to n2 it is clear that

for large enough values of n the extra term n dominates the term 3,

and so it is customary to also strip all constants. Thus we end up with a

running time roughly proportional to n for our algorithm, or we say that

it has complexity O(n) ­ at the order of n. And the problem of finding

the largest of n integers then also has complexity O(n).

Note that if we made the assumption that the integers in S were sorted,

a fastest algorithm would simply be

return S(|S|)

which clearly has complexity O(1).

We usually consider the algorithms that have complexity O(nm) for

some fixed m, the polynomial algorithms, to be good. And of course

the lower the exponent m, the better. If the complexity of an algorithm

is O(en) we say that the time is exponential, which is bad. Many prob­

lems have exponential complexity, and these are ones we’d rather not

solve precisely. In these cases approximation algorithms with polyno­

mial complexity may often be used to find an approximate solution of

the problem instead.
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3 The traffic routing problem

In fact there is not the traffic routing problem, but this involves rather

a large amount of related problems. In the introduction the following

examples were given:

• Routing traffic through a city, with as little congestion as possible.

• Routing internet traffic, with as little delay as possible.

• Routing containers between harbors, while transporting empty ones

as short distances as possible.

There was also a mention of the situation in which traffic is not directed

in any way. and that this could lead to another traffic routing. These

listed situations are examples of system optimal routing where we try

to minimize some measure of badness. On the other hand this second

situation would be a user equilibrium where the behavior of the users

decide the solution. Both scenarios can be studied using static network

flow formulations.

In addition one might add the dimension of time, leading to some slightly

harder problems. An example of this could be to route a given amount

of traffic through a network over time, and in such a way that the total

travel time of all the traffic was minimized. This would typically involve

avoiding congestion, and would be calculating the dynamic system op­

timal routing. On the other hand one could also study how this traffic

would route itself if no interference was done, and thus obtain the dy­

namic user equilibrium. Much effort is also being put into researching

the relation between the system and user equilibria, as finding a way

to use e.g. proper taxing to obtain a user equilibrium that equals the

system optimal solution would be rather splendid in a lot of real world

scenarios.

3.1 Traffic model

In order to bring the real world problem of examining traffic in road

networks over to the mathematical workbench, we need a model that

represents the original problem. This subsection will draw some out­

lines for such models.

We always represent the network in question as a directed graph where

traffic flows along the arcs of the graph. Now the two most important

factors that characterize a stretch of road in the real world is, at least
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for me, the speed at which traffic flows and the amount of traffic that

there is room for along the road. Typically these two are inversely pro­

portional, something we see if we assume that each car desires to have a

certain amount of time to the car in front. Then this distance increases

proportionally with the speed of the car, and the amount of cars there

are room for per length then decrease. Let’s say that a sensible amount

of time to have between two cars is τ. In a sense this determines an

absolute capacity on this road, where the inflow rate of traffic cannot

be greater than
1
τ

cars per time unit for each lane of the road. But in

fact there is another mechanism that causes slowdown before this limit

is reached: When the concentration of cars is rather high, and one car

breaks, the one behind it will also have to break immediately to retain

the τ time distance to the car in front. But the second car does probably

not react instantly to the car in front, and thus has to break more than

the first car in order to stay far enough behind. Now the third car, be­

hind the second one, will have to break even more, and so on.

This all leads us to think of the travel time along a stretch of road as

a non­decreasing function of traffic concentration. And of course the

actual length of the road also factors into the travel time as one would

expect.

So we represent the network as a digraph where each arc has a latency

function la(xa), la : R+ → R+ dependent on the flow assigned to the

arc. Note that this is the function we use as the length of each arc when

considering the network only as a graph. This latency function is usually

assumed to be convex and nondecreasing, and so we will assume here.

In addition each arc may have a capacity constraint c(a), c : A → R+,

but when the cost function is increasing, this might also play the role of

a capacity in limiting the amount of flow assigned to the arc.

In the dynamic case we cannot use the simple network flow model

anymore, but must expand of change the traffic model to describe the

added time dimension. In this case our latency functions are often much

more complex, consisting of differential equations or the like, to accom­

modate for queues and variable latency situations. However this will not

be the main focus of this text, and when examining the dynamic prob­

lems I will assume the latency functions to be of a rather simple kind

that allows for only a small expansion of the network flow model.

Each traffic agent must have an origin and a destination, but since we

are not treating the commuters individually we use sources and sinks of

continuous flow. Since it is significant where the flows run from and to,

we have to treat travelers originating from a vertex s and destined to a

vertex t differently from other travelers, that is we need to distinguish
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s − t­flows from all other flows for each pair (s, t). To this end we in­

troduce one commodity for each origin­destination pair, and index these

with i ∈ I. Thus we have |I| flow functions fi(a), fi : A → R+, and the

total flow along arc a is

xa =
∑

i∈I

fi(a)

Everyone knows how boring it is to be stuck in traffic jams. In fact

most people would agree that spending time at home of at work is

preferable to spending it in a car or on a bus altogether. So we assume

that all traffic agents are interested in minimizing their time spent in

traffic; their travel time. And of course the travel time experienced by

one traffic agent is equal to the sum of the travel time along each road

of the agent’s route, from origin to destination, or in other words the

length of the path (or route) the traveller takes in the network.

In the dynamic cases another assumption we make is that each of our

commuters have got a certain time they wish to arrive at their destina­

tion (and possibly also a desired departure time). And when too many

have the same desired arrival time the roads get crowded at some time

intervals, causing congestion and delays. In this case each commodity

has it’s own departure cost function g(t), g : R → R+ and arrival cost

function h(t), h : R → R+. Both of these are assumed to be convex, and

to avoid that spending time in traffic is preferable to spending time at

home or at work we also require that h′(t) ≥ −1, ∀t and g′(t) ≤ 1, ∀t.
To avoid congested traffic situations we can consider routing traffic

along alternative paths to relieve the most heavily used roads. Another

possibility is to hurry or delay departures such that not everyone enters

the network at the same time. But how do we route traffic? The general

assumption is that each traffic agent does exactly what’s best for them­

selves, i.e. totally selfish behavior. And as we shall see this may cause

much more congestion than what is indeed necessary! Finding a way

to make the selfish user equilibrium and the altruistic system optimal

solution coincide will be the ultimate goal of this analysis.

3.2 Static system optimum

The first problem we will look at is finding the system optimal routing

in a static setting. The motivation for this problem is that we wish to

route a static flow ­ perhaps the peak traffic causing the usual jams in

cities during the morning and afternoon hours ­ through a given traf­

fic network. The data we are given is the network itself, represented
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as a graph, where each arc has a travel time function (or latency func­

tion) dependent on the flow along it. The arcs may also have capacity

constraints. In addition we have a set origin and destination pairs, each

with a flow of a certain magnitude that needs to flow between them.

Each of these pairs correspond to one commodity.

What we wish to do is minimize the total travel time of all commuters.

The total travel time of all traffic is given by:

∑

a∈A

xala(xa) (4)

where xa is the total flow along arc a and l is the latency function giving

the travel time along the arc as a function of traffic flow. Now this flow

is a composition of flows between several origin­destination pairs. Let

these pairs be indexed by the set I, and let fi(a) denote the amount of

flow of commodity i along arc a, such that

xa =
∑

i∈I

fi(a)

We also require flow conservation of each of the i flows. If bi(v) is the

supply of commodity i at vertex v we can express these constraints as

∑

a∈δout(v)

fi(a) = bi(v)+
∑

a∈δin(v)

fi(a) ∀v ∈ V, i ∈ I (5)

In addition we have non­negativity constraints on the flows:

fi(a) ≥ 0 ∀a ∈ A, i ∈ I (6)

and capacity constraints along each arc:

∑

i∈I

fi(a) ≤ c(a) ∀a ∈ A (7)

This is quite a problem to solve, but if we study it more closely we

see that all our constraints are linear equalities or inequalities. In other

words our feasible domain is a polyhedron. Since the latency function

is convex we see that our problem fulfills the criteria for being a convex

optimization problem! Thus we know one way of solving it, although a

rather general and possibly not very efficient way. In an attempt to gain

some more insight into this problem, I will look at some special cases of

it later, in section 5.
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3.3 Static user equilibrium

The second problem I will consider is finding the user equilibrium rout­

ing in a static setting. The motivation for this problem is to calculate

what flow we will actually get in a given network if we let the users de­

termine the flow of traffic. Another aim is to find some characterizations

of these user equilibria, which may then be used in making a system op­

timal solution become a user equilibrium by taxation. The data we are

given is exactly the same as in the system optimal problem above.

How to solve this problem is not intuitively easy, but we can start with

the famous principle of Wardrop:

Postulate 3.1 (Wardrop’s first principle) The journey times in all utilized

routes are equal, and equal to or less than those which would be experi­

enced by a single vehicle on any unused route.

An equivalent formulation, viewing each traffic agent as a player, is that

the user equilibrium is a Nash equilibirum:

Postulate 3.2 In a user equilibrium no traffic agents can improve their

travel times by unilaterally changing routes.

This definition can not be used directly to calculate the user equilib­

rium, as the number of players is too great. We don’t even treat them

individually in our flow model. Luckily we can formulate an optimization

problem that gives us the user equilibrium! Consider the function

∑

a∈A

∫ xa

0
la(x)dx (8)

where

xa =
∑

i∈I

fi(a)

We want to show that this function actually is minimal exactly when the

postulates above hold. Let vertices s, t be the source and sink of fi for

some i ∈ I, let P,Q be two s − t­paths, and assume the cost of P is less

than the cost of Q. Now let Ap be the arcs in p that are not also in q,

and similarly for Aq. Then
∑

a∈Ap

la(xa) <
∑

a∈Aq

la(xa)

and shifting a flow of magnitude δx from q to p changes the value of

(8) by
∑

a∈Ap

∫ xa+δx

xa

la(x)dx −
∑

a∈Aq

∫ xa

xa−δx
la(x)dx (9)
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which is negative for sufficiently small δx since la is non­decreasing.

Thus all paths between each origin­destination pair have equal cost when

(8) is minimal. And we can formulate the problem of finding the user

equilibrium as minimizing (8) subject to the same constraints (5 ­ 7) as

the system optimal problem.

Again the assumption that each latency function is convex (or just

non­decreasing, in fact) makes this a convex optimization problem, solv­

able by known algorithms. I will also look at special cases of this prob­

lem later, as well as compare the user equilibrium flow and the system

optimal flow in the same network.

3.4 Dynamic system optimum

The third and by far the hardest problem is that of finding a system

optimal solution to a flow that changes over time. The motivation here

is that we have a certain amount of traffic we want to route through a

given network, as opposed to a flow of a certain magnitude. Now all the

traffic can not be moved at the same time due to capacity constraints,

so we must spread it out over a period of time. This period of time is

assume to be t ∈ [0, T] For the commuters this means the extra cost of

departing and arriving at less than optimal times. We expect the system

optimal solution to respect this, by finding a routing of the traffic that

minimizes both time spent in traffic and deviations from the preferred

departure and arrival times.

For the traffic planner it means we are no longer dealing with flows and

capacities along the arcs as real numbers, but as real valued functions

fi(a, t) of arcs and time. Thus we have a vastly larger domain to opti­

mize over.

In addition we must be able to calculate the travel time along each arc at

any given time τ, and we need a latency model for doing this. Now this

calculation is dependent not only on the inflow at t = τ, but also the

inflow to the arc at all times t < τ We assume that inflow at t > τ does

not influence the travel time at t = τ, and this is called causality of our

latency model. This ensures that we can in fact calculate the travel time

at τ = t if we know the inflow and travel times up to this point of time.

It should also be impossible to arrive at an earlier time by choosing the

same route, but departing later. This encompasses the FIFO, or queue,

principle; the First In are the First Out. Lastly we require that the total

outflow from each arc must equal the total inflow to that arc, which is the

conservation of traffic. We end up with inflow functions f ini (a, t), x
in
a (t),

25



outflow functions f outi (a, t), xouta (t) and latency functions la(x
in
a , t) for

each arc a at time t, where again

xina (t) =
∑

i

f ini (a, t)

and similarly for xouta , f outa . The relation between xouta and xina needed

to satisfy the conservation of traffic is given by

xouta (t + la(x
in
a , t)) = x

in
a (t)

1

1 + δ
δt
la(x

in
a , t)

(10)

and similarly for f ini (a, t), f
out
i (a, r + la(xina , t)). This is obtained by

differentiating the integral of inflow up to time t and outflow up to time

t + la(xina , t), which must be equal.

The FIFO principle directly translates as

la(x
in
a , t)+∆t ≤ la(xina , t +∆t)

which implies
δ

δt
la(x

in
a , t) ≥ −1

And in addition we assume that whenever xina (t) > 0 we have

δ

δt
la(x

in
a , t) > −1

These are all properties that need to be satisfied by our latency model,

and the models that are usable in this sense range from very simply to

very complex. The model I choose later in the text is quite simple.

We are ready to state the dynamic system optimal traffic routing

problem:

The total travel time of all traffic agents is given by

∑

a∈A

∫ T

0
xina (t)la(x

in
a , t)dt (11)

Assuming each commodity has a common departure cost function gi(t)

and arrival cost function hi(t), denoting the source and sink of com­

modity i by si, ti, and letting

bi(v, t) =
∑

a∈δout(v)

f ini (a, t)−
∑

a∈δin(v)

f outi (a, t)
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denote the difference in outflow and inflow of commodity i at vertex v

at time t, the total departure and arrival time deviation cost is

∑

i

∫ T

0
bi(si, t)gi(t)− bi(ti, t)hi(t)dt (12)

Thus the minimization in the dynamic system optimality problem is

min
{ ∑

a∈A

∫ T

0
xina (t)la(x

in
a , t)dt +

∑

i

∫ T

0
bi(si, t)gi(t)− bi(ti, t)hi(t)dt

}

(13)

such that the below constraints all hold.

The flow balance constraints, when allowing excess traffic to remain

temporarily at each vertex, are for the non­source or ­sink vertices of

commodity i ∫ t

0
bi(v, τ)dτ ≤ 0 (14)

or written out
∫ t

0

∑

a∈δout(v)

f outi (a, τ)dτ ≤

∫ t

0

∑

a∈δin(v)

f ini (a, τ)dτ (15)

with the inequality replaced by an equality at time t = T . If we do

not allow excess traffic to remain at internal vertices, we replace the

inequality with an equality at all times. For the source vertex si the

inequality is relaxed by adding bi on the right hand side

∫ t

0
bi(si, τ)dτ ≤ bi

and for the sink ti the equality at time t = T is

∫ T

0
bi(ti, τ)dτ = −bi

Note that the supplies at sources and sinks are not given explicitly as

functions of time, but are consequences of flow balance and total supply

at the terminal time t = T .

In addition the capacity constraints

xina (t) ≤ c(a, t) (16)

and the non­negativity constraints

fi(a, t) ≥ 0 (17)
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apply as usual.

In this case we are very far from having solved the problem, even

though we have formulated it precisely. The unknowns are no longer

points in R, but functions from R+ into R+. This is a problem since the

optimization methods we have mentioned will no longer be applicable.

In addition the latency functions la(x
in
a , t) are functions of xina , which

are themselves functions of t, and the functions la may not at all be

simple; maybe even inexpressible.

3.5 Dynamic user equilibrium

Finding the dynamic user equilibrium will not be treated as a separate

problem here, but I will look at some characterizations of dynamic user

equilibrium flows in the analysis concerning the system optimal case.

The reason for this is twofold: The problem is rather hard, and I am

not as interested in finding the user equilibrium as I am in finding the

system optimal solution. What I am interested in is rather conditions

that ensures a flow is a user equilibrium.
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4 Existing work and solution algorithms

As expected both optimization and graph theory in general, and traffic

planning specifically, has received lots of attention through the years,

and the amount of articles on the latter is vast. This section contains

the theory and algorithms I have found useful for solving to the traffic

assignment problems, and most of it is general theory found everywhere

in the literature.

4.1 Distance and shortest paths

In section 2 we defined the length of a walk as the sum of the length

of each edge in the walk, counting multiplicity. We also defined the

distance from one node s to another t as the length of a shortest walk

from s to t, but we never said how to find this distance. This is clearly

something we might be interested in. Let’s try to solve this problem in a

graph where all edges have length 1:

One way of doing this could be to try all possible walks from s to t, and

find the minimum of the lengths of these. But there is one problem: if

the graph contains any (directed) cycle reachable from s we will end up

trying to go through this cycle one time, two times, three times and so

on to each time form a different walk. This produces infinitely many

different walks, and we will never terminate our search for the shortest

walk!

Let us therefore try to focus our attention on just the simple walks, or

paths, from s to t. Again we might try all different paths from s to t and

use the length of one of the shortest ones as the distance. Since there are

only finitely many nodes in our graph any path will be of finite length,

and we thus have only a finite amount of possible paths to examine.

This number might nevertheless be horrendously huge! Imagine a graph

with n nodes, where there is an edge between any pair of nodes. This

is called the complete graph of order n. Then the number of different

s − t­paths is
n−1∑

i=1

(i− 1)!

(
n− 2

i− 1

)

Considering that a graph with 100 nodes is not at all large, this certainly

is a problem.

A different approach is needed. We will pursue a simple but nice idea

that actually inspires several more advanced algorithms later on:

Knowing all nodes reachable from s in k steps, find all nodes reachable
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in k+1 steps. When node t is encountered in the l­th step, we have that

the length of a shortest walk from s to t is exactly l. Let’s describe an

algorithm, called a breath first search (BFS), in more detail:

Let Vi, i = 0 . . . |V | be the set of nodes reachable from s in minimum i

steps. Let U be the set of unvisited nodes, let d(s, t be the distance from

s to t and let π : V → V be a mapping we will use to determine the actual

shortest path from s to any other node.

Initialization V0 ← {s}, Vi ←∅ ∀i > 0

U ← V \ V0

d(s, s) ← 0, d(s, u)←∞ ∀u ∈ U
k← 1

Loop while t ∉ Vk and k < |V |:
for v ∈ Vk:

for u ∈ δout(v)∩U :

d(s,u) = k
π(u)← v
Vk+1 ← Vk+1 ∪ {u}
U ← U \ {u}

k← k+ 1

When the algorithm terminates we will have calculated d(s, t), and we

can also find the reverse of the walk used to reach t by repeatedly ap­

plying π , beginning with π(t).

Theorem 4.1 The breadth first search algorithm finds a shortest path

from s to t, if such a path exists.

Proof. Assume that t ∈ Vk for some k, and also that the nodes in Vi
are precisely the nodes reachable from s in minimum i steps. Then

d(s, t) = k after the termination of the algorithm is in fact the distance

from s to t. Since each application of π on a node in Vi yields a node

in Vi−1 we will reach a node in V0 after k steps, beginning with t. This

node must be s, and reversing the direction we find a path from s to t of

length k.

We must show that the nodes in Vi are precisely what we claim they are,

and will do so by induction on i:

For i = 0 the claim is obviously true. Now assume the claim holds for

i = 0 . . . l. Then for u,v as in the loop section of the algorithm a path

from s to u of length l + 1 is easily obtained by combining a path from

s to v with the edge (v,u). Assume that there exists a path from s to u

with length j < l+ 1. Then u ∈ Vj , and has thus already been removed

from U , contradicting the assumption that u ∈ U .
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Now assume that t ∈ U after the algorithm terminates. Thus d(s, u) =
∞. We must show u ∈ U ⇐⇒ no walk from s to u exists.

⇒:In a graph with n nodes (of order n) there are no paths of length ≥ n.

This is because in a path each node is visited only once, and at each step

a new node is visited, making the maximum possible length of a path

n−1. So if t is not reachable from s in n steps, we can conclude that no

path of any length exists from s to u.

⇐: If there exists a walk from s to t, there must also exist a path from s

to t, obtained by eliminating all cycles from the walk. So if no walk from

s to t exists, neither does a path of any length, so t is unreachable from

s and remains in U through the whole algorithm.

Directly from the algorithm we can also see that the algorithm is

quite fast:

Corollary 4.1 The above algorithm finds a shortest path from s to t in at

most |E| steps, if such a path exists.

Proof. Each edge is processed exactly one time.

Thus we have not only obtained an algorithm for finding a shortest

path (and the distance) between a pair of nodes (or vertices!), but we

have also obtained a fast algorithm. And the idea we have used here, of

examining the ’closest’ nodes first, will be the basis of more advanced

algorithms later, among which the Dijkstra­Prim algorithm is probably

the most famous.

4.2 Weighted shortest path

In the section above we assumed all edges had length 1. We will now

look at the case where the length of each edge may be any positive real

number. Finding a shortest path between a pair of nodes is not quite as

easy as when all edges have unit length, but thanks to Dijkstra and Prim

there exists a not too difficult algorithm nonetheless. We will define and

prove the algorithm for directed graphs:

We want to find the shortest path from s to t for all t ∈ V . We assume

that G has no directed cycles of negative length.

Let U be the set of unvisited nodes, let f : V → R+ be the s−v­distances

we wish to calculate and let π : V → V be used for keeping the reverses

of the shortest paths from s to all visited nodes v .
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Initialization U ← V
f(s)← 0, f (t)←∞ ∀ t ∈ U \ {s}

Loop while U ≠∅:

find u ∈ U s.t. f(u) = min{f(u) : u ∈ U}
for a = uv ∈ δout(u) s.t. f(v) > f(u)+ l(a):
f(v)← f(u)+ l(a)
π(v) ← u

U ← U \ {u}

Theorem 4.2 The function f gives the distance (of a shortest path) from

s to t for all t ∈ V . If no such path exists the distance is ∞.

Proof. Let d(s, t) be the distance from s to t. We will show that for

each u chosen in the loop, we have f(u) = d(s,u). Thus f(u) =
d(s, u) ∀ u ∈ V \ U by induction. Clearly this holds initially, when

V = U . Note that f(u) ≥ d(s,u) ∀ u ∈ V always holds, since f(u)

is the length of some path from s to u. Now assume f(u) > d(s, u).

Then a shortest s − u­path (s, a1, v1 . . . , vn−1, an, u) must pass through

U . Let i be the smallest index for which vi ∈ U . Now if we can show

f(vi) ≤ d(s, vi) ≤ d(s,u) < f(u), we have a contradiction to f(u)

being minimal. So we need to show f(vi) ≤ d(s, vi): If i = 0 then

f(vi) = f(s) = 0 = d(s, s) = d(s, vi). If i > 0 then we must have

f(vi) ≤ f(vi−1)+ l(vi−1vi) = d(s, vi−1)+ l(vi−1vi) = d(s, vi).
It can also be show that the running time of the algorithm, with the set

U implemented as a heap, is rather good:

Theorem 4.3 The Dijkstra­Prim shortest path algorithm (with heaps) has

a running time of O(|A|log2(|V |)).

A typical use for the Dijkstra­Prim algorithm is to find the shortest path

through a graph for someone who wishes to travel from one place to an­

other in the graph, but since this is such an abstract notion the algorithm

obviously has many uses. For instance it can be used for determining

maximum flows through graphs when applied repeatedly to a series of

residual graphs, as we shall see later in this section. Another smart use

of it is to construct a graph in such a way that finding a shortest path

through it solves another, maybe more confusing, problem.

In the case the graph has negative cost arcs we can no longer use Di­

jkstra’s algorithm to find shortest paths. But in this case we we can still

use the Bellman­Ford algorithm for the same purpose. This algorithm

looks perhaps more like the breadth first search. Assume we want to

find the shortest s −v­paths in the graph, for some s. Let f and π be as
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Figure 5: Snapshot of the Dijkstra­Prim algorithm. The vertices are la­

beled with the order in which the are chosen, and arcs used for the

shortest paths are dashed. u is the next vertex to be picked. w is not

examined at all yet.
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above.

Initialization f(s)← 0, f (v)←∞ ∀v ∈ V \ {s}
Loop for i = 1 . . . |V |:

for a = uv ∈ A:

if f(u)+ l(a) < f(v):
f(v)← f(u)+ l(a)
pi(v)← u

Theorem 4.4 The Bellman­Ford algorithm computes a shortest s− t path

in O(|A||E|) time, if such a path exists.

For a proof refer to [1].

Note that in the case when G contains a negative cost directed cycle

this can be detected by examining π . If applying π several time results

in returning to some vertex, then there is a negative cost directed cycle,

and the distances computed by the algorithm may be wrong.

4.3 The Simplex algorithm

Having proved that an optimal value to an LP problem, if it exists, is

always attained in a vertex, an algorithm that examines the vertices of

the feasible polyhedron sounds like a good idea for solving the given LP

problem. And in fact such an algorithm exists, thanks to Danzig. This

algorithm is the famous Simplex algorithm, about which several books

have been written. I will give a short description of the algorithm, and

why it works, some discussion on complexity and average number of

iterations, and then suggest some alternative methods for solving LP

problems.

4.3.1 Basic idea

The basic idea idea of the Simplex algorithm is that since the optimal

solution of the LP problem is attained in a vertex, we can look at only the

vertices of our feasible region, if any. Now finding a vertex of the feasible

region is not necessarily easy, but if we have found one vertex, finding

an adjacent one is no problem. Remember that a point is a vertex of the

polyhedron if and only if it satisfies to equality a number of the linear

independent inequalities equal to the dimension n of the space. Then

moving from one vertex to an adjacent one is done by exchanging one of
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those equalities with another of the inequalities currently not satisfied

to equality, by moving along the n − 1 equalities until the boundary of

another halfspace is encountered. Now choosing to always travel in a

direction in which the objective function is nondecreasing (taking care

not to go back to the same vertex twice) will eventually lead to a vertex

with the optimal value of the objective function! Doing all this sounds

like a lot of book­holding, but all this is beautifully kept track of by the

Simplex algorithm, as we shall see.

4.3.2 Basic and non­basic variables

Let’s consider the problem min{cTx : Ax ≤ b,x ≥ 0}, where A is an

m × n matrix, i.e. x ∈ Rn, and there are m + n inequalities (m from

the matrix, and n from requiring non­negativity of x). Now obviously

expressing a point x can be done with n basis vectors. However the

simplex algorithm introduces m extra ones, so that there is one xi, i =
1, . . . , n for each dimension and one xi, i = n + 1, . . . , n +m for each

inequality. Now xi = 0 means that inequality i is satisfied to equality,

thus making it easy to see which ones are. For example x1 = 0 means

that the first coordinate of x is 0, and xm+n = 0 means that the last

inequality from the matrix A is satisfied to equality. Note that since the

extra variables xn+1, . . . , xn+m are a measure of how far from equality

equation m is, these variables are also called slack variables. Now an

example will certainly help clear things up. Consider the following LP:

min{cTx : Ax ≤ b,x ≥ 0}

c =




5

−4

3


A =




2 3 1

4 1 2

3 4 2


b =




5

11

8




Here we will use x1, x2, x3 as the basis vectors of R3, and the vectors

x4, x5, x6 for each of the three inequalities in A, by transforming the

problem into the following, equivalent problem:

min{cTx : x′ = b −Ax,x, x′ ≥ 0}where x′ =



xn+1

. . .

xn+m




Another equivalent problem which we will use when dealing with the

matrix notation for LP problems is the following:

min{c′Tx′ : A′x′ = b,x′ ≥ 0}where x′ =




x1

. . .

xn+m


 , c′ =

[
c

0

]
, A′ = [A I]
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Written out the first formulation of the problem looks like:

minimize: f = 5x1 − 4x2 + 3x3

subject to: x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

x ≥ 0

Now the book­holding of the Simplex algorithm is done by assuming that

all the variables appearing on the first line, i.e. x1, x2, x3 in this case,

are all 0. This means we are in fact looking at the point (0,0,0) ∈ R3,

since x1, x2, x3 correspond to the basis vectors of R3. Now this makes

it very easy to check the value of the objective function: It is 0. These

variables are called the non­basic variables. Now checking the value of

the variables x4, x5, x6, we see that they are 5,11,8 respectively, and

so they are all greater than or equal to 0, and we see that our point is

feasible. Now this might not always be the case in the starting set­up

like here, but there are ways to deal with that. The variables appearing

on the left hand side of the equations, in this case x4, x5, x6, are called

the basic variables.

Having seen that we are in fact at a feasible point of our LP we can

begin looking for a new vertex that improves the value of the objective

function. Looking at the expression f = 5x1 − 4x2 + 3x3 we see that

increasing x1, x3 would lead to an increase in f , whereas increasing x2

would in fact lead to a decrease in f ! Now let’s try to do exactly this.

How we will do this is to exchange x2 with one of the basic variables,

making x2 basic and setting the other variable to 0. This is called a

pivot. To do this we see that we already have each of the basic variables

expressed as linear functions of the non­basic variables, and it is then

easy to find an expression also for a non­basic variable in terms of the

other non­basic variables and one basic one. Then after choosing a non­

basic and a basic variable we can simply substitute all occurrences of

the non­basic variable with its expression in terms of the chosen basic

and the other non­basic variables. Now the point is to choose the right

variable to exchange x2 with. We see that increasing x2 will lead to a

decrease in all of the basic variables, and taking into consideration that

each of them must still be non­negative after the pivot, we see that we

can check which one of the basic variables first becomes 0 as we are

increasing x2. In this example we see that x4 will be 0 when x2 is
5
3
,

which is the smallest value of x2 that will make any of the basic variables

equal to 0, so the variable we must pivot on is thus x4. Looking at the

expression x4 = 5 − 2x1 − 3x2 − x3 we see that we can express x2 as
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x2 =
1
3
(5 − 2x1 − x4 − x3). We then substitute each of the occurrences

of x2 by this expression and obtain the following:

minimize: f = −20

3

23

3
x1 + 4

3
x4 + 13

3
x3

subject to: x4 = 5
3

− 2
3
x1 − 1

3
x4 − 1

3
x3

x5 = 28

3
− 10

3
x1 + 1

3
x4 − 5

3
x3

x6 = 4

3
− 1

3
x1 + 4

3
x4 − 2

3
x3

x ≥ 0

Now all the non­basic variables appear with positive signs in front, mean­

ing that increasing any of them above 0 will make the objective function

greater. In other words we have already obtained an optimal solution,

which is f = −20

3
, and the point in which this value is attained is x1 = 0,

being a non­basic variable, x2 =
5

3
, being a basic variable, and x3 = 0,

again being a non­basic variable. Or (0, 5
3
,0) in short.

Now in general we can expect to have several non­basic variables with

negative sign in the objective function, and choosing which one should

enter the basis can be done in several ways. One common method is sim­

ply to choose the variable with the greatest negative coefficient, and if

there are ties, just choose one of them. This is known as the greatest co­

efficient rule. Now to determine the variable leaving the basis when there

are ties, a common method is the lexicographical pivot rule in which each

of the slack variables are increased by a arbitrarily small value at the

start of the algorithm. We define

0 < ǫn+m << ǫn+m−1 << · · · << ǫn+1 << all other data

and for each slack variable xi we add ǫi to the right hand side of the

equation determining xi. Using this perturbation our starting dictionary

in the problem above would look like this:

minimize: f = 5x1 − 4x2 + 3x3

subject to: x4 = 5+ ǫ1 − 2x1 − 3x2 − x3

x5 = 11+ ǫ2 − 4x1 − x2 − 2x3

x6 = 8+ ǫ3 − 3x1 − 4x2 − 2x3

x ≥ 0

Now the idea here is that this perturbation of the original problem is

so small that it does not change the solution, and can thus be removed

again when an optimal dictionary is found, but that it makes the choices

of leaving variables during the algorithm unambiguous, thus preventing

the algorithm from going in circles.
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4.3.3 Correctness and complexity

Without going into details on this, it can be shown that the Simplex

algorithm (with proper pivot rules) terminates for a given LP problem,

and that it finds an optimal solution to the given problem if one exists.

Otherwise it determines if the problem is either unbounded or infeasible.

The complexity analysis will not be done properly here, but in short it

is believed that there is no variant of the Simplex algorithm that has

better worst­case time than exponential. However the average running

time of the algorithm is rather good. Using n and m as a measure of

the size of an LP problem we see that in general we must expect nm

updates for each pivot, as we can expect all the equations to be affected

by the pivot, and these contain nm variables in total. Now the number

of pivots is the hard part to analyze thoroughly, but we can imagine

a worst case scenario where all the vertices of the feasible domain are

visited once. Since the number of vertices can be exponentially large in

n, this could potentially be bad for the algorithm. In practice however an

expected number of pivots is no more than O(m), which is rather good.

Although polynomial time algorithms for solving LP problems exists,

they are often outperformed by the Simplex algorithm in practice.

4.4 Matrix notation, bases

As mentioned above it is also possible to give a formulation of both an

LP problem and of the Simplex algorithm that looks like

min{cTx : Ax = b,x ≥ 0} (18)

where the matrix A contains the identity matrix as a submatrix as in the

example. This way of working with the problem will be used in the work

with the Tree­Simplex algorithm.

The Simplex algorithm works by choosing which m of the m + n vari­

ables are basic variables. Now let us split A into two parts: B containing

the columns that correspond to the basic variables and N containing the

columns corresponding to the non­basic variables. After possibly rear­

ranging the columns of A and the rows of x, c, b we can then rewrite:

A = [B N] (19)

x =

[
xB
xN

]
(20)
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Our constraints are then

Ax = [B N]

[
xB
xN

]
= BxB +Nxn = b (21)

We also partition the cost vector and the objective function:

cTx =

[
cB
cN

]T [
xB
xN

]
= cTBxB + c

T
Nxn (22)

Now the fact that the basic variables can be written as functions of the

non­basic variables corresponds to the matrix B being invertible in (21),

and we get:

xB = B
−1b − B−1Nxn (23)

Now the algorithm consist of keeping track of which variables are basic

and which are non­basic, updating the values of xB and the objective

function, and pivoting on chosen variables. The computationally heavy

part is solving the set of equations involving B, as B changes each time

a pivot is performed. Note that mathematically this is exactly the same

as the above approach to the Simplex algorithm.

4.5 Network flow

As promised we return to the problem of network flow, and will here

look at how to solve such a problem. Letting A be the incidence matrix

of the given digraph, the network flow problem is

min{lTx : 0 ≤ x ≤ c,Ax = −b}

To solve this we will first look at the problem with the simplification that

we are ignoring the capacities, i.e.

min{lTx : 0 ≤ x,Ax = −b}

What makes the network flow problem interesting is the special form of

the matrix B which is used for the basic variables here. It can be shown

that the matrix A has rank m − 1. We delete one row from A to obtain

a new matrix A′ and the corresponding entry from b to get b′. We call

the node corresponding to the deleted row the root node. The following

theorem contains the main idea for the network Simplex algorithm:

Theorem 4.5 A square submatrix of A′ is a basis if and only if its columns

correspond to arcs forming a spanning tree in the network.
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For a proof refer to [5]

Now solving the set of equations BxB = −b′ actually is very simple.

It corresponds to fulfilling the flow balance equations at each node of

the graph, assuming all non­tree arcs have 0 flow. The following is an

efficient method of calculating the flow along the spanning (basis) tree

arcs:

Pick a leaf node. The flow along all arcs entering and leaving this node

are known, except one. The supply of the node is also known. Calculate

the flow along the last arc, and remove the node and this arc from the

spanning tree, producing a smaller tree. Repeat the process until the

tree is empty.

Of course the matrix B must have properties that allow us to solve the

set of equations in the same way, and we can verify this by examining it

closer. In fact we never have to do neither multiplications nor divisions,

which speeds things up a bit in a computer.

Now doing a pivot in the tree simplex algorithm corresponds to choosing

a non­basic arc to enter the basis, as usual. Adding this arc to the tree

results in exactly one (undirected) cycle in the tree, and we then update

the flows along only the arcs of this cycle as we increase the flow along

the chosen non­basic arc. Which arc to leave the basis is determined by

which arc has the least potential for change, as usual.

To add the capacity constraints along the arcs to our problem we use

the trick of introducing some extra nodes and arcs to our graph. Assume

we have vertices vi, vj with the arc aij having a capacity cij, cost lij. To

enforce the capacity constraint on the flow along aij we can introduce

an extra node vk and replace aij by aik and ajk. Here we let aik have

cost lik = dij and ajk has cost ljk = 0. In addition we increase the

supply of vj by cij and give the new node vk a supply of −cij. Now we

are again in the situation of a network without capacities, but one that

corresponds to the original one with capacities. To recover the solution

of the original network flow problem, simply take the f(aik) to be f(aij)

of the original problem, ignoring the f(ajk) arc. Since the cost cjk = 0

the two problems will also have the same cost. The operation on the

matrix A is less complicated:

Add a new column for the new arc ajk (and just keep the aij as aik).

Add a new row expressing

f(aik)+ f(ajk) = cij

Subtract this row from the row

· · · + f(aik)+ · · · = −bj
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to obtain

· · · − f(ajk)+ · · · = −bj − cij

4.5.1 Multi­commodity flows

The situation we have looked at so far with network flows has had only

one kind of flow commodity. In practice we often encounter problems

where there is not one kind of commodity, but several. These problems

are called multi­commodity flow problems, and are a rather straightfor­

ward generalization of the single­commodity flow problem, as we shall

see now.

Instead of having a single commodity with sources and sinks, we now

have several commodities, each with its own supply in each vertex of the

network. The difference now is that it is not irrelevant which commodity

ends up where, but the flow balance property must hold individually for

each commodity. Let the n commodities be defined by the index set I,

such that the functions bi(v) : V → R defines the magnitude of com­

modity i at vertex v , and fi(a) : A→ R+ denotes the flow of commodity

i along arc a. Then we require that

∑

a∈δout(v)

fi(a) = bi(v)+
∑

a∈δin(v)

fi(a) ∀i ∈ I, ∀v ∈ V

And to satisfy the capacity constraints, we must also require that

∑

i∈I

fi(a) ≤ c(a) ∀a ∈ A

as well as assuming non­negativity

fi(a) ≥ 0 ∀i ∈ I, a ∈ A

If we wish to minimize the total cost of our flow, which is given by

∑

a∈A


l(a)

∑

i∈I

fi(a)




we se that this problem is in fact an LP­problem, and we can thus solve

it by the tools we have for these. The Tree­Simplex algorithm no longer

works, but the general one does, and can thus be used for solving these

problems rather efficiently, even for quite large networks with many

commodities.
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4.5.2 Maximum flows

Another approach to network flow is not finding the minimum cost flow

satisfying some supplies/demands, but finding the maximum flow be­

tween a pair of vertices s, t. That is the flow with the greatest value. Let

G = (V ,A) be a graph, with a length function l : A → R and a capacity

function c : A → R+. We assume G has no negative cost directed cycles.

Let f : A → R+ be a flow in G. We then construct the residual graph Gf
of f as follows:

For each arc a = uv with f(a) > 0 add a residual arc a−1 = vu with

length l(a−1) = −l(a) and capacity c(a−1) = f(a). Then reduce the ca­

pacity of a to c(a) − f(a), and if the new capacity equals 0 remove a

from Gf .

We are ready to formulate the flow augmenting algorithm of Ford

and Fulkerson (or the Successive Shortest Path algorithm since we are

choosing shortest paths in the algorithm). The algorithm is based on

calculating flows g in the residual graph Gf , and then augment the ex­

isting flow f with the new flow, resulting in a flow f + g with a greater

value. This process is repeated until the residual graph no longer con­

tains any s − t­paths, at which point we have a maximum value flow.

We choose to augment the existing flow along the shortest path in the

residual graph.

Initialization f = 0

Loop while true:

P ← shortest s − t­path in Gf
if l(P) = ∞ STOP

µ ←mina∈P{c(a)}
g ← g(a) =

{
µ : a ∈ P ∩A, −µ : a ∈ P ∩A−1, 0 : a ∉ P

}

f ← f + g

It can be shown [1] that the algorithm terminates when the capacities

c(a) are rational, and that the resulting flow is maximal. But since we

chose to augment the existing flow along a shortest path in each itera­

tion of the algorithm, we can show even more: The algorithm computes

a maximum flow with a minimal cost, and in fact each flow f during the

course of the algorithm is minimum cost among all flows with the same

value! This deserves a theorem:

Theorem 4.6 The Ford­Fulkerson algorithm with shortest augmenting paths

(or the Successive Shortest Path algorithm) computes for each step a flow

which is minimum cost among all flows with the same value, and termi­
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nates with a maximum value flow if the capacities c(a) are rational. If c

is integer and bounded byM the algorithm has running timeO(M|E||A|).

For a proof refer to [1].

Figure 6: The same graph as in figure (2.1.4), and the residual graph

corresponding to the flow in that example. Negative, or residual, arcs

are dashed.

43



5 Analysis

In this section I will examine the problems posed in section 3. I will look

at simplifications and special cases in an attempt to gain some insight

into the problems, and to see which problems are solvable and how good

solution methods we have for each of them.

This is done first for the static problems, and then I will go on and study

the connection between the system optimum and the user equilibrium

in the static setting, and actually present an algorithm that makes the

system optimum a user equilibrium!

In the last part of this section I take a closer look at the dynamic system

optimum problem. First by the rather intuitive approach of discretizing

the time dimension of the dynamic network. And then by the less intu­

itive, but computationally faster and more compact, approach of chain

decomposition of flow; flows that exist during certain time intervals.

5.1 Special cases and simplifications

When faced with a large problem in mathematics one often looks at spe­

cial cases of the problem at hand to see if some useful results might

be found for the special case, and then perhaps generalized back to the

original problem. In this subsection I look at special cases of static net­

works in the system optimum and user equilibrium problems.

5.1.1 Number of commodities

In all original problems we had several commodities making up the total

flow along each arc. These commodities represented different origin­

destination pairs, and were indexed with the set I. It is clear that reduc­

ing the number of commodities greatly reduces the size of our problem,

as the number of unknown variables is proportional to |I|. As we shall

see having just a single commodity, together with some other simplifi­

cations, could allow for some more specialized algorithms to be used.

The first thing I will do here is to reduce the number of needed com­

modities to represent our problem. As stated we had one commodity for

each origin­destination pair. But we can do with less! Treating all flow

from the same source s but to different sinks ti as one flow is possible.

To do this we have to add a universal sink node Ts to our graph. For

each sink ti of the OD­pairs that have s as a source, we then add an arc

tiTs with capacity equal to b(ti) and cost 0. This ensures that the correct

amount of flow goes from s to each sink ti without altering the flow in
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any other way. Using this we can expect to reduce the number of com­

modities by a great amount. In a graph where all vertices are sources

of flow to all other vertices, this trick would reduce the number of com­

modities to the square root of the original amount. And in a graph with

only one source the number of commodities would be reduced to just

one!

Alternatively we could treat all flow going to the same sink t as one flow

Figure 7: A network with several sinks for the same commodity is shown

to the left. To the right is shown a network with the same routing prob­

lems, but with only one sink and thus only one commodity.

by adding a universal source in the same way as above. And in a specific

problem we might chose which of the two approaches to use based on

the number of sinks vs. sources. Let us summarize this:

Observation 5.1 To reduce the number of commodities it is possible to

treat all flow with a common source (or sink) as one flow.

5.1.2 Special latency functions

Remember that the total travel time of all commuters was given as

∑

a∈A

xala(xa)

where

xa =
∑

i

fi(a)
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This was also the objective function of the static system optimality prob­

lem, whereas the user equilibrium objective function was

∑

a∈A

∫ xa

0
la(x)dx

One of the simplifications we can do is restricting the latency functions

on each arc of our graph to certain kinds. This can lead to problems that

are solvable by more specialized and faster algorithms than what are

needed for the general convex optimization case. The simplest choice

for a latency function is the constant function

la(x) = la, la ∈ R
+

Inserting this expression in the static system optimality objective we

obtain the following objective function

∑

a∈A

xala (24)

which is linear. As we already stated the feasible domain of this problem

is a polyhedron, due to the linear inequalities (5 ­ 7), and we recognize

the current simplification to be an LP problem since the objective func­

tion is now also linear. We can then use the Simplex method to solve

this efficiently, and this is a huge improvement compared to the rather

slow approximation methods used for general convex optimization.

Note that assuming constant latency functions as exactly the same

effect on the user equilibrium object (8), and the objective function for

the two problems coincide in this case.

If we also assume that we have just a single commodity our problem

becomes exactly the minimum cost network flow problem described in

section 2, with capacities. We can then use the even faster Network

Simplex algorithm to solve our problem, or alternatively the successive

shortest path algorithm.

It is important that we do not drop the capacity constraints on the

arcs in this case, as doing so would simplify the whole problem to find­

ing the shortest path from the source to the sink, and then routing all

flow along this path. Although very simple to solve, this problem would

probably not reflect the real world problem very well. This also applies

to the multi commodity case with constant latency functions. This prob­

lem, without capacities, would decompose to finding a shortest path for

each OD­pair like in the single commodity case.
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Observation 5.2 In the case when our latency functions are constant the

objective function of both the system optimum and the user equilibrium

problems become linear, allowing the use of the Simplex algorithm. If

we also have only a single commodity we can use the Network Simplex

algorithm or the successive shortest path algorithm to find the solutions.

A note on discontinuous latency functions might be needed. We de­

fined the user equilibrium as a situation in which all utilized paths had

equal cost, or latency. With latency functions of the kind la(x) = la this

might clearly be impossible to satisfy. If the network has only two paral­

lel arcs a,b with la < lb, and c(a), c(b) finite, then we cannot really find

a user equilibrium flow. What we could do in this situation is to think of

the latency functions as increasing very rapidly at exactly the capacity

of the edge, so adding just an infinitesimal flow over the capacity causes

an infinitely expensive flow. This justifies the existence of the user equi­

librium also in this graph.

Note also that the argument that minimizing the user equilibrium objec­

tive (8) corresponds to satisfying Wardrop’s first principle is still valid,

as it only required the latency functions to be non­decreasing.

5.1.3 Simplified networks

Another type of special cases we can look at is when the network graph

itself has special properties. I will also look for simplifications that can

be done without altering the solution, like the commodity number re­

duction above.

It is clear that any vertex v with no supply b(v) = 0 and with a single

entering arc a and a single leaving arc b can be removed, joining the two

arcs a, b to a new arc c. The latency is then summed together

lc(x) = la(x)+ lb(x)

and the capacity is the minimum of the two

c(c) =min{c(a), c(b}

We could also try joining two parallel arcs a,b to form one arc c with

the same source and target as a and b. It is then clear that the capacity

of the new arc would be the sum of the capacities of the two original,

c(c) = c(a) + c(b). Unfortunately finding the latency function of the

new arc is a bit harder, and is actually influenced by whether we want to

find the user equilibrium or the system optimum.
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If we want the user equilibrium we should make the assumption that

flow xc is spread between the two arcs a and b in such a way that

la(xa) = lb(xb)

For a given cost L this means

xa = l
−1
a (L), xb = l

−1
b (L)

Since

xc = xa + xb

this implies

l−1
c (L) = l

−1
a (L)+ l

−1
b (L)

which finally gives the expression

lc(x) =
(
l−1
a (x)+ l

−1
b (x)

)−1

The problem with this expression for lc is that in many cases l−1
a or

l−1
b might not be defined. Take for instance la(x) = la, a constant la­

tency function. Then l−1
a is not defined. But even though we found

a way of working around this problem, which I’m sure we could, find­

ing inverses can be a problem in itself. And on top of that many func­

tions which could result from adding l−1
a and l−1

b don’t even have ex­

pressible inverses! Assume for instance la(x) = x, lb(x) = x2, then

lc(x) =
(
x + x

1
2

)−1

which to the best of my knowledge is not express­

ible.

If we want the system optimum we should assume the flow xc spread

between a and b in a way that minimizes the total cost of using those

two arcs. As shown below this is equivalent to

(xala(xa))
′ = (xblb(xb))

′

Pursuing the same idea as above we get from this that

[
(xlc(x))

′]−1
=
[
(xla(x))

′]−1
+
[
(xlb(x))

′]−1

With the identification

f ′−1 =
1

f ′

this is then
1

(xlc(x))
′ =

1

(xla(x))
′ +

1

(xlb(x))
′
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Since xlc(x) = 0 when x = 0 we then finally get

lc(x) =
1

x

∫ x

0

1
1

(yla(y))
′ +

1

(ylb(y))
′

dy

or without the identification above

lc(x) =
1

x

∫ x

0

([(
yla(y)

)′]−1
+
[(
ylb(y)

)′]−1
)−1

dy

Unfortunately this is even more impractical than in the user equilibrium

case.

5.1.4 Alternative optimality criteria

The way we defined the two problems of user equilibrium and system

optimality in the static network were very different. The user equilib­

rium problem was initially stated as finding a flow such that for origin­

destination pair s, t all paths in use from s to t were of equal cost. This

in turn led to a minimization problem with the objective function

∑

a∈A

∫ xa

0
la(y)dy

which then turned out to be a convex optimization problem.

For the system optimality problem the initial formulation was that of

minimizing the total travel time of all traffic, given by

∑

a∈A

xala(xa) (25)

This problem also has a formulation similar to that of the user equilib­

rium, expressed locally on each s − t­path for each origin­destination

pair.

Let P be an s−t­path and let xP be the flow along this path. Then I claim

the following:

Theorem 5.1 (System optimality condition) Minimizing the system op­

timality objective function (25) is equivalent to requiring that

LP =
d

dxP


∑

a∈P

xala(xa)




is equal for all used paths P and equal or less than for any unused path.

49



Proof. →: Let P,Q be two s − t­paths with LP < LQ, and let AP be the

arcs in P not in Q and similarly for AQ. Then shifting a flow of value δx

from Q to P changes the value of (25) by
∑

a∈AP

((xa + δx)la(xa + δx)− xala(xa))−
∑

a∈AQ

(xala(xa)− (xa − δx)la(xa − δx))

But this expression is just the same as

∑

a∈AP

∫ xa+δx

xa

d

dx

(
xla(x)

)
dx −

∑

a∈AQ

∫ xa

xa−δx

d

dx

(
xla(x)

)
dx

which is negative for small enough δx, since we have assume that LP <
LQ.

←: We have assume that each latency function la(x) is convex and non­

decreasing in the interval 0 ≤ x ≤ c(a). Then

(
xla(x)

)′
= la(x)+ xl

′
a(x)

is non­decreasing in the same interval, for each arc a. Thus each LP is

also non­decreasing as a function of xP . Assume LP is equal for each

used path P and less than or equal for any unused path, for some flow

x. Say LP = Lx . Then any other flow y for which the same holds,

with Ly < Lx, must have yP < xP for all paths P . But since the total

value of the flow is
∑
P yP this means that the value of y is less than the

value of x, so y cannot be feasible. Likewise we cannot have a flow y

for which the incremental equality condition hold, but for which Ly >

Lx . So let y be another flow with the same value as x satisfying the

incremental equality condition, and for which Ly = Lx. It is clear that

we can transform x to y by a series of flow shifts of values ∆x from

one path P used more by x to another path Q used more by y , such

that LP = LQ. And then this does not change the value of the objective

function. So x and y have exactly the same cost, and then so do all

flows that satisfy the incremental equality condition. Since minimizing

the objective function produces such a flow, we finally get that all flows

satisfying the incremental equality condition also minimize the objective

function!

5.2 System optimal vs. user equilibrium

As an example of the relation between the system optimal and the user

equilibrium solutions to the traffic assigment problem in the static case,

consider the following example.
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We have a network as shown in figure 8, where la(x) = 1, a constant

latency function, and lb(x) = x, a linear one. This means that the first

arc has the same travel time regardless of how much flow is assigned to

it, while the other arc has a travel time directly proportional to the flow.

Now assume we are to route a flow of value 1 from s to t. The objective

Figure 8: A small network with two arcs. Both arcs have unlimited ca­

pacity, and latencies are shown in the figure.

function for the system optimal solution is

τs = xa + x
2
b

Differentiating this and using the relation xa = 1− xb we get

τ′s = −1+ 2xb

And we see that τs has a minimum at xb =
1
2
, which gives τs =

3
4

While

the total travel time is given by the same function here, the objective

function for the user equilibrium is

τu = xa +
1

2
x2
b

Differentiated this is

τ′u = −1+ xb

And we see that τu has a minimum at xb = 1, which gives τs = 1. So the

user equilibrium has in this case
4

3
of the total travel time of the system

optimal solution. None of the users accept that any other can travel

faster than themselves, and thus everyone end up on the same road b,
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worsening the travel time for all the other commuters, and ultimately

themselves.

How bad great can the difference between the system optimal and

user equilibrium solutions be? It has been shown [3] that for linear la­

tency functions the relation is never greater than
4

3
. But with arbitrary

latency functions, even convex ones, we can get arbitrarily large differ­

ence. Replacing lb(x) = x with lb(x) = xn we can do the same analysis

again.

τs = xa + x
n+1
b

τ′s = −1+ (n+ 1)xnb

xb0 =

(
1

n+ 1

) 1
n

And the optimal solution is 1−xb0+x
n+1
b0

= 1−xb0

(
1− 1

n+1

)
which gets

arbitrarily small with a sufficiently large choice of n.

For the user equilibrium we get

τu = xa +
1

n+ 1
xn+1
b

τ′u = −1+ xnb

xb0 = 1

And the total travel time is again 1. Comparing with the system optimal

we see that the quotient becomes arbitrarily large with sufficiently large

n!

Theorem 5.2 The quotient of the total travel time of the user equilibrium

and the system optimal solution may be arbitrarily large for arbitrary

latency functions.

The other extreme case to consider is when all latency functions are

constant. Then we see that the terms in the objective functions for the

system optimal and user equilibrium problems coincide:

xl(x) = xl0 =

∫ x

0
l0dx

′ =

∫ x

0
l(x′)dx′

And we therefore get that the system optimal and the user equilibrium

problems are exactly the same!

Theorem 5.3 The user equilibrium and the system optimal solutions co­

incide if all latency functions are constant functions.
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Usually the latency functions are somewhere in between the two ex­

tremes, and it is meaningful to work with both cases.

How is it possible to force the user equilibrium and the system opti­

mum to coincide? In the first example above we could guess at adding a

toll of value
1

2
to the road with the linear latency function, thus replacing

lb(x) = x with lb(x) = x +
1

2
. Here the constant factor is not actually

time delay, but rather a tax you would have to pay to drive along that

road. This should work because the two arcs would then have the same

cost with the system optimal flow, and this should then also be a user

equilibrium flow. Repeating the analysis we get

τu = xa +
1

2
x2
b +

1

2
xb

τ′u = −1+ xb +
1

2
= −

1

2
+ xb

And we see that the minimum is now at xb =
1

2
, which is indeed the

system optimal solution! What about the general case?

Remember Wardrop’s characterization of a user equilibrium; that all

paths from s to t that are in use have the same cost, and cost equal to

or less than that of any unused path. In a system optimum this is not

necessarily the case. I want to introduce taxes to some of the arcs in a

given network such that the cost incurred by the travelers along arc a is

l(a)+ T(a) where T : A→ R+ is the tax function. Then there is a system

optimal solution that minimizes the total travel cost fs , and there is

also a user equilibrium Fu corresponding to the new tax modified cost

functions. Let it be absolutely clear that these taxes do not directly affect

the latency along the arcs, but are only perceived by the travelers some

generalized cost which they want to minimize together with travel time.

Then I claim that if these taxes are chosen appropriately we can force

the system optimum fs and the user equilibrium fu to coincide! To solve

the problem of choosing an appropriate tax function I came up with the

following:

Theorem 5.4 Given an acyclic graph G, a length function l : A → R and

vertices s with in­degree 0 and t with out­degree0 it is possible to find a

function T : A → R+ such that all s − t­paths have equal length when

considering the length function l+T , and such that the length of all these

equal the length of the longest s − t­path when considering only l. This

can be done in time O(|A|).

Proof. Since G is acyclic and s, t have in­ and out­degrees 0 respectively

we can find a topological ordering v0, v1, . . . , vn of G where v0 = s and
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vn = t, and where all arcs are of the form vivj, i < j. This can be done

in time O(|A|).
Let Pvi denote all vi − t­paths and let Lvi = max{l(P) : P ∈ Pvi . I will

prove by induction that for any vertex vi we can find T(a) such that

(l− T)(P) = Lvi ∀P ∈ Pvi

for all outgoing arcs a from vi. For vi = t the claim is trivial.

Now assume that the hypothesis holds for all vj, j > i. Consider an

outgoing arc vivj from vi. Then the claim holds for vj , and thus all

vi−t­paths passing through vj are of equal l−T ­length Lvj+l(a)+T(a)
with Lvj + l(a) ≤ Lvi . Now setting T(a) = Lvi−Lvj − l(a) for all outgoing

arcs a makes the hypothesis true for vi.

Each arc is examined exactly once, so the time usage follows.

Corollary 5.1 The tax function T above also makes all vi − vj­paths

equally long when considering the length function l+ T .

Proof. This follows immediately from the theorem, as any concatenation

of a vi−vj­path and a vj − t­path results in a vi− t­path. Then since all

vi− t­paths and all vj − t­paths have equal l+T ­length all vi−vj­paths

must also have equal l+ T ­length.

Let us return to the problem of making the system optimum fs of

latency function l and the user equilibrium fu of generalized cost func­

tion l + T coincide in the graph G. We could try to accomplish this by

considering the subgraph Gfs ⊂ G consisting of only those arcs used by

fs , with length function lfs(a) = la
(
fs(a)

)
. Since fs is system optimal

and la
(
f(a)

)
≥ 0 we can assume that Gfs is acylic. Then we can find the

tax function T such that all s − t­paths in Gfs are of l + T ­length equal

to Ls . And adding this same tax function to the arcs in the original G

we see that all s − t­paths in use by fs have equal l + T ­length under

fs ! However some path not used by fs might be shorter than Ls , and fs
then fails to be a user equilibrium for the whole graph G. Now let PLs

denote all s − t­paths in G with l­length less than or equal to Ls . Now

including all arcs in these paths in Gfs might cause Gfs to no longer be

acyclic. Thus we just have to take extra care when calculating T for our

graph G and system optimal flow fs , to ensure T really causes fs to be a

user equilibrium under when considering l+ T .

The following algorithm solves our problem of finding a tax function

T for a graph G with a system optimal s− t­flow fs considering latencies

l such that fs also becomes a user equilibrium when considering l + T .

Let Ls be the length of the longest path in use by fs .
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Algorithm for finding optimal tolls first in Gfs and then in all of G.

Lv ← −1 ∀v ∈ V
Lt ← 0

call findMaxDistance(s)

call unusedTolls()

function findMaxDistance(v)

if Lv ≥ 0 return Lv
Lv ←max{call findMaxDistance(u)+la

(
fs(a)

)
: a = vu ∈ δout(v), fs(a) > 0}

T(a) ← Lv − Lu − la
(
fs(a)

)
, ∀a = vu ∈ δout(v), fs(a) > 0}

return Lv

function unusedTolls()

d(v) ← Ls − Lv ∀v
U ← V

while U ≠∅
v ← u ∈ U s.t. d(u) is minimal

if d(v) > Ls BREAK

U ← U \ {v}

for a = vw ∈ δout(v)
if Lw = −1 d(w) ←min{d(v)+ la

(
fs(a)

)
, d(w)}

else T(a) ←max{d(w)− d(v)− la
(
fs(a)

)
,0}

Here the findMaxDistance function works within the acyclic subgraph

Gfs consisting of the arcs used by fs and finds tolls such that all s − t­
paths used by fs become equally long. This is the part of the algorithm

that corresponds to Theorem equalizer. The vertices v covered by fs
get Lv > −1. Then the unusedTolls function searches for shortest paths

(Dijkstra­Prim based) with length less than or equal to Ls in the whole

graph G, and assigns a correction toll to such paths each time it finds

one, such that all these paths get cost at least Ls . Note that when a cor­

rection toll is assigned to an arc already in use by fs , and thus with a tax

already assigned to it, the new assignment equals the old, so no changes

are done. So at the end all s − t­paths in use by fs have l+ T ­length Ls ,
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and all other paths have l+ T ­length greater than or equal to Ls .

Note that we could actually have chosen any acyclic flow f in the

algorithms above, not just the system optimal fs , as the theorem (5.4)

only requires the graph to be acyclic. So we see that we can make any

flow a user equilibrium by proper taxation! But for me, of course, the

system optimum makes the most sense.

What about the case when there is no longer just one commodity? We

can also solve the more general multi commodity problem by calculating

a set of tolls for each commodity. Then we would require knowledge of

the origin and destination of each traveler in the network. Although this

is currently impractical for real world traffic uses, it is an interesting

theoretical result. And with the ever increasing importance of computer

networks in our daily life, it might be possible to implement successfully

in the future.

It could also be possible to find a way of calculating just one tax function

for several commodities, such that the system optimum becomes a user

equilibrium when including taxes. Alas I have not been able to solve this

problem. I end this subsection with an example calculation of a static

Figure 9: An example graph with one source/sink pair and with latencies

and capacities as given on the arcs.
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system optimal solution and corresponding taxes. Consider the graph

shown in figure (5.2). We are to route a flow of value 2 from s to t. To find

the system optimal solution I will use the alternative optimality criterion

derived in the previous subsection. Let P1 be the path P1 = s − u − t,
P2 = s −u−v − t, P3 = s −v − t, P4 = s− t along the arc with cost 6 and

P5 = s− t along the arc with cost 7. Then x1+x2+x3+x4+x5 = 2. And

L1 = 2(x1 + x2)+ 4

L2 = 2(x1 + 3x2 + x3)+ 1

L3 = 2(x2 + x3)+ 4

L4 = 6

L5 = 7

Let us assume that x5 = 0. We will see later that this is a correct as­

sumption. Then the equalities above constitute a linear set of equations.

Solving this we get

x1 = x2 = x3 = x4 =
1

2

The corresponding flow is shown in figure (5.2), with the latencies in

parenthesis.

Using the latencies, or costs, in this graph, we run the taxing algorithm

on the graph shown in figure (5.2), where the resulting taxes are shown

as +T on each arc. Adding these taxes to the original graph we finally

get the graph in figure (5.2), where the latencies and taxes add up to

form the new costs along each edge. We easily check that the flow x1 =
x2 = x3 = x4 =

1

2
makes all s − t­paths in use equally expensive when

considering both latencies and taxes. And we also know that this flow

reduces the total travel time, since it was the solution to the system

optimality problem we started with.

Out of curiosity we can also find the user equilibrium in the original

problem in the same way as we found the system optimum. This turns

out to be

x1 = x3 =
1

3
, x2 =

4

3

The total cost of the user equilibrium flow is then
34
3
= 136

12
, whereas the

system optimal flow has cost
39

4
= 117

12
.
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Figure 10: The system optimal flow of this graph, along with latencies

corresponding to this particular flow fs .
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Figure 11: The graph Gfs after computing taxes. Total arc costs l+T are

latencies + taxes on each arc.
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Figure 12: The original graph, with necessary taxes added along the arcs.

The user equilibrium when considering latencies + taxes is now the same

as the system optimum when considering only the latencies.
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5.3 The dynamic case, simplified latency model

One interesting special case of network models was the one where there

are absolute capacities on the arcs, and where the travel time (or cost)

along each arc remains constant with regard to loading. For a vehicle

traffic situation this seems a bit unrealistic, but for e.g. information flow

in networks these assumptions might very well be acceptable. In fact,

the deterministic queue model [2] exhibits exactly this behavior, under

the assumption that there are no queues! In this case very much is

known about our graph, and computing shortest paths, minimum cost

flows, maximum flows etc. is all possible with well known polynomial

time algorithms. Perhaps we might derive some useful results from this

already well established area?

5.3.1 System optimal planning

A dynamic system optimal solution to a route and departure time plan­

ning problem is one which minimizes the total cost of all users, defined

in section 3. Assume we bottleneck with an absolute capacity and de­

sired through­flow greater than this capacity for a certain time interval.

This could be a graph with just two nodes s, t and one arc a = st. We

assume the deterministic queue model for this arc, that is

d

dt
la
(
xa, t

)
=
xa(t)

c(a)
− 1 (26)

if there is already a queue, or one is forming, or

la(xa, t) = la (27)

if there is no queue, and the inflow xa(t) not is great enough for one to

form.

Let us also assume the departure deviation cost function g(t) = 0 to be

zero, and the arrival deviation cost function to be h(t) = 1
2
|t|.

In this case a system optimal solution will consist of a constant inflow

equal to the capacity of the bottleneck, such that the bottleneck is max­

imally utilized, but also such that no queues arise. The arrival time in­

terval will, for a dynamic flow of value V , be [− V
2c(a)

, V
2c(a)

], which causes

the departure time interval to be [− V
2c(a)

− la,
V

2c(a)
− la].

The dynamic user equilibrium is again such that the total cost expe­

rienced by each traveller s equal.So the dynamic system optimum above

certainly differs from the user equilibrium in that several of the travel
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agents could have done better by choosing a departure time that would

bring their arrival time closer to their desired arrival time t = 0. But in

doing so they would have caused all later entrants to be delayed by the

time it would have taken themselves to pass the bottleneck, and thus

a queue would have arisen, increasing the total cost of all later travel

agents. Here the dynamic flow that causes all travel agents to experi­

ence the same cost has a queue that starts to form at time t = V
2c(a)

− la
and grows at a rate such that

l′a(xa, t) = −h
′
(
la(xa, t)+ t

)

until the time when la(xa, t) = 0, at which the queue starts to shrink

again at a rate such that

l′a(xa, t) = −h
′
(
la(xa, t)+ t

)

The dynamic inflow that satisfies this is

xa(t) =

{
2c(a) : − V

2c(a)
− la ≤ t < −

V
4c(a)

− la
2
3
c(a) : − V

4c(a)
− la ≤ t <

V
2c(a)

− la

Comparing the two solutions we see that the inflow happens during ex­

actly the same time interval, but in the user equilibrium case the inflow

is great enough to cause a queue, so that none of the later travelers get

a lower total cost than the very first ones.

In the rest of the treatment on dynamic flows I will, however, assume

there are no queues. We see that adding a time dependent toll

ξ(t) =
V

2c(a)
−

1

2
|t + la|

at the entrance to the bottleneck would cause the dynamic system opti­

mal flow to be a user equilibrium! And I expect it to be easy to find some

tolls that can be used to make the system optimal flow a user equilib­

rium, also in the more general case. The crudest approach could just

be to add tolls at the sink of a flow, equal to some constant minus the

arrival deviation cost function for the flow arriving at that sink, and pos­

sibly also negate the departure deviation cost in the same way. Thus the

rest of this section will focus on constant latency function networks. No

queues!

5.3.2 Existence and uniqueness of the system optimal solution

The system optimal solution being the one that minimizes the total

cost incurred by all users of the network, its existence is not hard to
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prove. Since the total cost function is a continuous function into R with

a bounded minimum this minimum is attained by some dynamic flow.

In general it might be hard to say whether the system optimal solution

is unique or not, but in the case of the constant latency simplification

we can see that it is not necessarily unique, but convex: Let f1 and f2

be two system optimal solutions with no queues, and with total costs

C1 = C2 = C. Both these are governed by (27), since there are no queues.

Consider a convex combination f3 = λf1 + (1 − λ)f2, λ ∈ [0,1]. Then

along each arc in f1 the flow is always less than or equal to the capacity

of that arc, and the same for f2, so a convex combination of flows along

each arc will again never exceed the capacity of that arc. Thus there will

not be any congestion in f3 either. Now since the latency of each arc

is constant with regard to flow, if Ca,i is the total cost associated with

using arc a in solution fi, then Ca,3 = λCa,1 + (1 − λ)Ca,2, and thus the

total cost of f3 is just C3 = λC + (1 − λ)C) = C, so S3 is also system

optimal.

5.3.3 The time discrete graph

Finding flows with various properties is a well established area in graph

theory. Optimal peak routing is one example of an application of this

to real life problems, where we solve the problem of routing a given

flow of traffic through a network of available roads. This is exactly the

static system optimality problem we have studied already. But again

this is just a snapshot of the traffic situation throughout the whole day,

or throughout the time of the day where congestion is a problem. If

we wish to route traffic not only through different routes, but also at

different times, the problem becomes a bit harder.

One way of transforming this problem into an already well known

and solvable problem is to discretize the time dimension of the problem

and make a graph where the vertices of the new graph are the vertices

of the original graph at different times. The arcs then go from a vertex

to vertices that are reachable from that vertex in the original graph, but

with a later time coordinate. Let the original graph G have vertices V and

arcs A, and let the time discretization be T = {tn}. We assume that the

latency functions la are all positive and integer, i.e. la : A→ N. Then the

vertices of the augmented graph G = (V×T , A×T ) are (v, tn) and there

is an arc from (v, tn) to (w, tm) if there is an arc a from v to w and the

travel time l(a) is equal to tm − tn, and the cost of this arc is equal to

the original travel time plus any fixed cost of that arc (tolls etc.), while

the capacity is the same as that of the original arc a multiplied by the
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time discretization unit ∆t. There are also arcs from (v, tn) to (v, tn+1)

with cost equal to tn+1 − tn, representing waiting one time unit at node

v .

In addition there are two nodes for each origin destination pair; one

representing the origin at all time steps, the universal origin su, and one

representing the destination at all time steps, the universal destination

tu. Let (s, tn) be the original origin node in each time step, then there

are arcs from su to (s, tn) with cost equal to the departure deviation cost

at time tn, and similarly for the destinations. The universal origins and

destination are sources and sinks respectively with supply equal to the

total amount of traffic that must pass from the origin to the destination

in the original graph. An example of this construction is shown in figures

(5.3.7) ­ the original graph ­ and (5.3.7) ­ the augmented graph.

My claim is that finding a system optimal travel plan is equivalent to

finding a minimum cost flow through the augmented graph, that satis­

fies the source and sink constraints at the origins and destinations. This

can be seen by letting the time discretization steps go towards 0. Then

the total cost of the multi­commodity flow in the augmented graph ap­

proaches the dynamic system optimality objective function, as the sums

over all time steps approach the integrals. And since we minimize the

cost of the multi­commodity flow in the augmented graph, we also min­

imize the dynamic system optimality objective function.

Proposition 5.1 A minimum cost (multi­commodity) flow in the augmented

graph is an approximate solution to the minimum cost (multi­commodity)

dynamic flow in the dynamic network.

We then see immediately that this model has good flexibility in several

aspects: varying capacity with time, using any kinds of departure and

arrival specific cost, time varying toll functions.

5.3.4 System optimal planning by use of the augmented graph

The system optimal solution is one which minimizes the total cost in­

curred by all travel agents. Since the cost of following a path from su via

(s, tn) and (t, tm) to tu in the augmented graph is the same as the cost

that a travel agent departing at time tn and arriving at time tm incurs,

then a minimum cost flow through the augmented graph must be the

same as a system optimal solution in the continuous case. This is with

the reservation that all time dependent cost functions are piecewise con­

stant in the time discrete graph, but may be continuous in the original
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problem. But by choosing a fine enough discretization we can get arbi­

trarily close to the original continuous cost functions. This will, however,

lead to a graph with an arbitrarily huge number of nodes, something we

do not want, and thus choosing a fine enough but also not too fine dis­

cretization will be important.

Thus the problem of finding a system optimal flow in a network where

we assume constant travel time and absolute capacities on the arcs can

be approximated by finding a minimum cost flow in the augmented

graph. This results in a dynamic flow that is really a different static

flow for different time steps. But since it is a feasible flow for each of

these, the concatenation of each of these static flows result in a feasible

dynamic flow. So by finding a minimum cost static flow that satisfies

the constraints of the augmented graph, we have really found a dynamic

flow that satisfies the dynamic constraints (14 ­ 17).

It is also possible to solve the multi­commodity minimum cost problem

by use of linear programming, and thus we can even approximate sys­

tem optimal solutions to networks with several origin destination pairs!

5.3.5 Variable preferred arrival time

Something the first outline of our time discrete graph did not allow for

was the option of having different preferred arrival times (or departure

times). I will give a solution to this for the arrival time case. The depar­

ture one is treated similarly.

By introducing some extra nodes and altering the arcs that enter the uni­

versal sink we get a graph where different choices of paths the last two

arcs correspond to different arrival time preferences. Let t be the orig­

inal destination node and (t, tn) its time discretization as usual. Then

instead of having arcs from each of the (t, tn) to tu we introduce an ex­

tra set of nodes, δhk , between these, such that each of these extra nodes

correspond to a different arrival deviation cost function hk. From (t, tn)

to δhk there are arcs with unlimited capacity and cost equal to hk(tn),

i.e. the cost of arriving at time tn with cost function hk. And from each

of the δhk to tu there are arcs with capacity equal to the amount of travel

agents having hk as their arrival time cost function.

We see immediately that this allows for different preferences in arrival

time, as this is just the same as translating the cost function along the

time axis. But it also allows for any different kinds of cost functions!
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5.3.6 Properties of the augmented graph

As the augmented graph is a special construction, we expect it to have

some properties that might be of use when solving the minimum cost

flow problem in it.

Proposition 5.2 The augmented graph has no directed cycles.

Proof. All nodes of the graph are one of the following types:

• Universal origin/destination. These only have arcs exiting/entering,

and can thus not be part of any cycle.

• Departure/arrival cost nodes. These only have arcs entering from/exiting

to the universal origin/destination, and can therefore not be part

of any cycles either, as such a cycle then would have to include the

universal origin/destination.

• Time discretization nodes. Since all arcs representing time dis­

cretizations of original arcs have a positive travel time, it is impos­

sible to depart from any time discretization node and return to this

node within the same time step.

In fact the graph is not only acyclic, but in the case when the latency

and capacity functions are constant over time, which is the case we are

the most interested in, it contains a plethora of equal paths from say

(s, tn) to (t, tm), and then also from (s, tn+k) to (t, tm+k) with k ∈ Z.

We might expect that if one of these is used, then so will many of the

other equal paths be. Unfortunately this information is not utilized by

the Simplex algorithms. In the algorithm in the last part of this section I

do utilize this information, to find a much faster solution method than

this augmented graph method. This comes at the cost of the loss of

flexibility in time varying latencies and capacities.

5.3.7 Examples of the augmented graph

I will demonstrate how to create and use the augmented graph by pre­

senting a small example. The network we will use is rather simple, con­

sisting only of an origin vertex and a destination vertex, and two dif­

ferent arcs between these. One of the arcs has a shorter length than

the other, and also greater capacity, but as the desired flow through the
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Figure 13: A sample network we discretize and do some calculations

with.

graph exceeds the time unit capacity of the shorter arc we expect that

both arcs will be used. The original graph is drawn in figure 5.3.7.

In the first example I will show the first approach to our time dis­

crete graph, that is allowing only one arrival cost function. The time dis­

cretization is done here by choosing ∆t = 1, and by using 6 time steps

tn, i = −1, . . . ,4. The arrival cost function h(t) used here is piecewise

linear, with h(t) = −0.5t, t < 3 and h(t) = 2t, t > 3, and the departure

cost is g(t) = 0. Thus the costs along the arcs from the universal origin

su to the time discretizations (s, tn) of the origin node are all zero, and

the capacities are infinite, and the arcs from the time discretizations of

the destination node (t, tn) to the universal destination tu have costs

h(tn) and infinite capacities. And also, the arcs from (s, tn) to (t, tn+1)

have cost 1 and capacity 10, and the arcs from (s, tn) to (t, tn+2) have

costs 2 and capacity 5. The resulting graph is shown in figure 5.3.7.

Solving the problem of a minimum cost flow of value 60 we end up

with fully utilizing all the arcs marked in blue and cyan (dashed) colors,

and we also see that we could have used the green arcs (dotted) at the

expense of the cyan ones, something which would not make any differ­

ence to the total cost. Interpreting this we see that the faster arc will

be used over a greater time interval than the slower one, but that both

of them will indeed be used. Adding together the cost of the different

components of the flow, we get a total cost of 122.5. Now the way we

have defined the cost along the arcs that correspond to arrival costs, we

have assumed everyone arrives at exactly the same time, i.e. we have

chosen l
(
(t, tn)tu

)
= h(tn). This is of course slightly wrong. We could

67



Figure 14: An augmentation of the sample graph, with time discretiza­

tion unit 1. A minimum cost flow is shown in thick blue and cyan

(dashed) lines. The green (dotted) arcs have the same cost as the cyan,

and could have been used as well.
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instead have used the average cost of the flow with average arrival time

tn, and this will henceforth be used. Now since h is piecewise linear

this actually gives the same cost everywhere except where h has a break

point. In this example h only has one break point, namely at t = 3,

and the cost l
(
(t,3)tu

)
here becomes

5

8
instead. Recalculating the total

cost then gives 131
7

8
, which is indeed the cost of this flow when viewed

continuously as well.

Solving analytically we get that the faster arc will be in full use in the

time interval that causes arrivals in the interval (−26
30
, 119

30
) and the slower

arc in the time interval that causes arrivals in the interval (34
30
, 104

30
). In­

tegrating the flow cost terms here we get a total cost of 123
5

6
. We see

that we here have a better solution that the one we got by using the

augmented graph, which gave a solution that was roughly 6.5% more ex­

pensive. But remember that in the solution of the minimum cost flow

problem we had several equally expensive choices for routing the most

expensive part of the flow. If we had chosen do divert some flow to each

of them, we should expect to get a better result than we did. This is

again because the cost along the arrival cost arcs are based on arrival at

the mean time of the time interval represented by that arc, and if we had

only used a bit of that interval, we could have chosen the cheaper part

of it, thus obtaining a lower cost than our graph model shows.

Pursuing this idea I tried moving the desired arrival time from t = 3

to t = 2.5, which then changes only the costs along the last arcs in the

graph. Solving the minimum cost flow problem here gives a flow with

value 60 and cost only 125, or less than 1% more than the optimal cost!

This solution is shown in figure 5.3.7. We see that here we have no al­

ternative choices of arcs that would give the same total cost. Now the

optimal solution would still use some of the unused arcs to a very small

extent, at the expense of the most expensive choices here, but I think we

are pretty close, and with a rather simple discretization. We see, how­

ever, that we could also have bad luck when choosing our discretization.

An upper bound on the error of the cost obtained could be nice.

Now for the case with different arrival cost functions. Assume three

different arrival cost functions h1, h2, h3 with h2 as the cost function h

used above, with desired arrival time t = 3, and with h1(t) = h2(t + 1)

and h3(t) = h2(t − 1). The amount of traffic that has each cost function

is 20, 30 and 10 respectively. The augmented graph is set up above,

except for the last arcs. These now go to the three different vertices

for the different arrival cost functions, and then there are arcs from

each of these to the universal destination vertex. The graph is shown in
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Figure 15: The same graph augmented, but with the time discretization

translated
1
2

time unit. This results in a much cheaper minimum cost

flow, in thick blue.
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figure 5.3.7. Again the solution to the minimum cost flow problem with

a flow of value 60 is shown with the arcs in blue being fully utilized. The

solution has a total cost of 105.

Figure 16: Again the same graph, but with three different arrival cost

functions. The thick blue lines indicate again the minimum cost flow.

5.3.8 Multi­commodity planning

Having dealt with the case of routing a flow from an origin to a desti­

nation in a network across different times, we see that there’s a fairly

obvious generalization we should look at, and which we have already

mentioned: Dynamic networks with several origin/destination pairs.

How to construct the augmented graph in this case is rather straightfor­

ward: Just add universal origins and destinations (or sinks and sources),

possibly with corresponding departure or arrival cost nodes, for each

of the sources and sinks in the original network. Thus we get several

universal sources and sinks that will be used as the sources and sinks of

our new multi­commodity flow problem in the time discrete graph.
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To solve the multi­commodity flow problem we need only solve the LP

problem we get from formulating the graph’s flow constraints and costs,

like in the static multi commodity case.

Thus we see that practically any dynamic system optimality problem can

be solved this way, but possibly resulting in a large graph for which the

multi­commodity flow problem takes long time to solve. Both the num­

ber of unknowns and constraints is proportional to both the number

of commodities and vertices. In the brief time analysis of the Simplex

algorithm we used the dimensions n,m of the constraint matrix as a

measure of problem size. Here n,m ∈ O(|T ||I|). We get slightly better

results for the single commodity case, but the time discretization can

still be a problem if the network already is large.

5.4 Chain decomposable flows

As we saw in the previous section we could use a time augmented graph

to solve the dynamic system optimal problem, assuming all latency func­

tions were constant with regard to flow. Although problems are solvable

by this method, the size of the augmented graph can be a problem, as

the number of arcs and nodes are proportional to the number of time

discretization steps. Recent work on dynamic flows [4] has been a break­

through in this area, and Hoppe has come up with an algorithm to solve

several dynamic flow problems in true polynomial time, regardless of

the time discretization chosen! The problems solved in this fashion are

• The dynamic flow problem: Finding a dynamic flow from one source

to one sink satisfying a given supply within a certain time interval.

• Quickest dynamic flow problem: Finding a dynamic flow in as short

a time as possible. Uses the above algorithm with binary search for

smallest possible time interval.

• Lexicographical maximum dynamic flow problem: Maximizing the

flow between source/sink pairs in a prescribed order of importance

during a given time interval.

• The dynamic transshipment problem: Finding a dynamic flow sat­

isfying given supplies for several source/sink pairs within a certain

time interval. Modifies the network so the problem is solvable by

the above algorithm.
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• Quickest dynamic transshipment problem: Finding a dynamic trans­

shipment flow in as short a time as possible. Uses the above algo­

rithm with binary search for smallest possible time interval.

The algorithms devised by Hoppe build on the rather simple successive

shortest path algorithm for finding a maximum s−t­flow in a graph with

capacities, but include considerations regarding the time discretization.

Instead of only assigning flow along the computed shortest paths of the

augmented graph, the flows are assigned during a maximal time interval;

starting from the source at time step 0 and ending so that the last part

of the flow reaches the sink in the terminal time step T . The work in [4]

assumes an integer time discretization of the original graph, and thus

integer latency functions, as this makes some theoretical results easier.

I try to work with arbitrary positive latency functions.

5.4.1 System optimal solution with chain flows

Let us now reconsider the dynamic system optimal planning in the con­

stant latency setting. To summarize we have a network consisting of a

graph G with several origin­destination vertex pairs (si, ti), each with a

supply/demand. Each arc a has a constant latency function la(x) = la
and a capacity c(a), c : A → Q+. Each commodity also has a departure

cost function gi(t) and and arrival cost function hi(t) applying when

flow leaves the source or enters the sink.

Looking back at the general form of the system optimal planning prob­

lem (11 ­ 17) we see that the constant latency functions simplify the ob­

jective function slightly and the constraints massively. This is because

we no longer have the complicated relation between inflow and outflow

to each arc. We denote the inflow to arc a at time t by xa(t), and the

outflow at time t + la is then equal to xa(t).

We still have the objective function split in two parts. This really is just

like in the augmented graph above, but from a slightly different view­

point, as we no longer make a time discretization. The total travel time

is now:
∑

a∈A

∫ T

0
xa(t)ladt (28)

And the total departure and arrival time deviation cost is:

∑

i

∫ T

0
bi(si, t)gi(t)− bi(ti, t)hi(t)dt (29)
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The constraints apply just as before, but with the much simpler relation

between inflows and outflows.

If we choose to optimize with regards to the travel time only our

problem really simplifies. Since the total travel time is also the integral

over all traffic of the travel time experienced by each travel agent, it is

clear that minimizing the travel time of each infinitesimal piece of flow

minimizes the total travel time. But this is just the same as calculating

a shortest path through the graph, and routing traffic only along this

path until all the supply is satisfied! Of course this might lead to a

really long time during which traffic flows in the graph, and commuters

might be almost arbitrarily late (or early) for work. Thus minimizing

the total travel time alone makes little sense in the dynamic setting. On

the other hand optimizing only with regard to the departure and arrival

costs we try to find a cheapest (and thus shortest) possible set of time

intervals in which flow leaves the sources and enters the sinks. This is

close to the quickest dynamic flow problem for one origin/destination

pair, or the quickest transshipment problem with several pairs [4]. And

as we remember these problems are now solvable in polynomial time

with chain decomposition! But since travel time is not regarded at all,

disproportionally slow routes may be utilized, leading to a solution that

is not system optimal in the full sense. It is again not good enough

to consider only one part of the objective function. However using the

ideas pursued by Hoppe we might hope to devise a faster way of solving

the full dynamic system optimality problem by eliminating the use of

the time­augmented graph!

We still assume that all latency functions are constant, and that we

have capacity constraints on the arcs of our graph. We also assume that

all traffic shares the same convex departure and arrival cost function

g(t), h(t). I’ll start with the case of a single commodity, or dynamic s−t­
flow. What I propose is that the following Dynamic System Optimality

algorithm solves the system optimality problem with these assumptions.

This algorithm is based on the Successive Shortest Path algorithm in

section 4.5.2.

Let us first define a chain (flow):

Definition 5.1 A chain Fi in network G with source s and sink t is a

quadruple Fi = (Pi, ci, t
s
i , t

e
i ). Here Pi is an s − t­path in the undirected

underlying graph of G. ci is a real number denoting the constant amount

of flow along Pi, such that Fi sends flow of value ci along arcs included

in Pi with their positive direction, and canceling flow of value −ci along

arcs included in Pi with their negative direction. And finally there are two
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reals denoting the time interval in which flow runs along Pi; the starting

time tsi at source s and the ending time tei at sink t.

Let F = {Fi} be a set of chains, and let li = l(Pi) be the length of Pi for

compactness. Then the total dynamic flow F : A × R → R induced by F

is the sum of all chains in F , and the total amount of flow

ftot =
∑

i

ci
(
tei − t

s
i − li

)

We also denote the static flow induced by the k first elements of F by fk.

Let fdemand be the total amount of flow needed from s to t. Let Cmax be

the maximum individual cost associated with the current flow, and let

Coldmax, C
new
max be lower and upper bounds on Cmax . Let Gfi be the residual

graph associated with G and the static flow fi. Let also

Hi(t) = li + g(t − li)+ h(t)

Hi(τ) is then the total cost incurred by a traveler using path Pi at a time

such that she arrives at t at time τ. We assume that each Hi(t) has a

minimum for some t.
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Dynamic System Optimum algorithm

Coldmax, C
new
max ← 0

F ←∅
G′0 ← G
i← 0

while ftot < fdemand
i← i+ 1

Pi ← shortest path in G′i−1

if !∃Pi
Cnewmax ←∞
BREAK

else

ci ← capacity of Pi
Cnewmaxmin{Hi(t)}
tsi ←min{t : Hi(t + li) = Cnewmax}
tei ←max{t : Hi(t) = Cnewmax}

for j = 1, . . . , i− 1

tsj ←min{t : Hj(t + lj) = Cnewmax}

tej ←max{t : Hj(t) = Cnewmax}

if ftot ≥ fdemand
BREAK

else

F ← F ∪ {(Pi, ci, t
s
i , t

e
i )}

Gfi ← Gfi−1
updated with flow ci along Pi

Coldmax ← C
new
max

find Cmax ∈ [Coldmax, C
new
max] s.t. ftot = fdemand

when tsi , t
e
i is updated accordingly to Cmax

F induces a system optimal dynamic flow F

The idea behind this algorithm is simple enough: Find a shortest path

in the residual graph and determine the minimum cost for anyone using

it, and the time at which this minimum is attained. Use this path ini­

tially at only the minimum cost time. Then increase the time interval for

which this path is in use, until some other path (possible with negative

arcs, meaning a modification to already existing flow) becomes equally

expensive at its minimum cost time. Then increase the time interval for
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which both these paths are in use, until a third path becomes equally

expensive. And so on.

The chains are chosen and updated such that no infinitesimal chain in

use is more expensive than any not in use, and such that no infinitesi­

mal chain in use has cost greater than Cnewmax . In addition all infinitesimal

chains with cost less than or equal to Coldmax is in use at the start of each

loop iteration, so the Cmax that gives a feasible total flow is always in

the interval [Coldmax, C
new
max .

The total cost of the dynamic flow is the same as the sum of the costs

of each of the chains. So a chain with flow along negative arcs takes into

account the modification done to already existing static flow, and these

chains are then chosen in such a way that the total cost is always the

lowest. Note also that the total cost of dynamic flow F induced by F can

be much more compactly given with the chain representation. The total

cost of chain Fi is ∫ tei
tsi+li

Hi(t)dt

=

∫ tei−li
tsi

g(t)dt +

∫ tei
tsi+li

h(t)dt + (tei − t
s
i − li)li

Notice that which arcs the chains use are of no direct importance, as the

total cost is fully determined by outflow from the source and inflow to

the sink.

Before proving correctness of the algorithm, let’s look at an example

application. The graph we consider is shown in figure (17). Here the

departure and arrival deviation cost functions are

g(t) = −
1

2
t

h(t) =
1

2
t + |t|

The first chain found by the algorithm follows path P1 = (s −u− v − t)
which has total latency l1 = 3 and capacity c1 = 3. We see that H1(t) =
9

2
+ |t| which is minimal at t = 0. Thus F1 =

(
(s −u− v − t),3,−3,0

)
is

added to F at the end of the first loop iteration, with Coldmax =
9

2
.

The residual graph G′1 resulting from f1 is shown in figure (18). The

shortest path in G′1 is P2 = (s − v − u − t) with total latency l2 = 5 and

capacity c2 = 1. This gives H2(t) =
15

2
+ |t| which is minimal at t = 0.

Thus Cnewmax is raised to
15

2
, which increases the time interval of use of F1

to ts1 = −6, te1 = 3. This gives a total flow of 3
(
3 − (−6) − 3

)
= 18 < 26,
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Figure 17: An example constant latency graph, with latencies and capac­

ities shown on each edge, and the total supply shown in the terminal

vertices.
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so F2 =
(
(s − v −u− t),1,−5,0

)
is added to F at the end of the second

iteration, with Coldmax =
15

2

In the third iteration the only s − t­path in G′2 is the slow arc st. We

get P3 = (s − t) with latency l3 = 7 and capacity c3 = 2. This gives

H3(t) =
21

2
+|t|which is minimal at t = 0 with minimum value

21

2
. Raising

Cnewmax to
21

2
we increase the intervals of use of F1, F2 to ts1 = −9, te1 = 6 and

ts2 = −8, te2 = 3 which gives a total flow of 3
(
6− (−9)−3)+ 1

(
3− (−8)−

5
)
= 42 > 26. Thus we break the loop and search for a Cmax ∈ [

15

2
, 21

2
]

that gives the correct amount of total flow. Since we have piecewise

linear cost functions in this example we quickly find that Cmax =
17
2

gives the intervals ts1 = −7, te1 = 4 and ts2 = −6, te2 = 1 resulting in exactly

26 total flow.

Figure 18: The residual graph G′1. We see that the shortest s − t­path is

now (svut).

The resulting dynamic flow is shown in 12 time snaps in figure (19).

Here F1 is shown in light green (full­drawn) and F2 is shown in red (dot­

ted). Note that F2 starts flowing from u before it reaches v , which is

before u in P2. This is of course because it travels along uv in the nega­

tive direction, with negative travel time. This results in a flow of value 2

along uv when both chains use the arc, and 3 when only F1 uses it. The

arcs unique to F1 are not affected by F2.

The rest of this section will be an attempt to prove the following

theorem:
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Figure 19: The system optimal dynamic flow shown at 12 different time

steps. Green (full drawn) represents the chain F1, while red (dotted)

represents F2.

The numbers inside the vertices is the number of the slice they belong

to (Definition 5.3 below).
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Theorem 5.5 The Dynamic System Optimum algorithm above find a dy­

namic s − t­flow that is feasible and minimum cost.

Proving that this theorem is correct will be some work. First let’s show

that it produces a dynamic flow that is feasible at all times. For this we

need the following lemma:

Lemma 5.1 Suppose f is a minimum cost static flow in G, and let static

flow g augment f along a shortest s − t­path in residual graph Gf . Then

(1) f + g is a minimum cost static flow in G and (2) for any vertex v the

distance from s to v in Gf is less than or equal to the distance in Gf+g, or

df (s, v) ≤ df+g(s, v), and df (v, t) ≤ df+g(v, t).

For a proof refer to [4].

If we denote the static flows induced by ∪ki=1Fi, the first k elements of F ,

by fk for each k it is clear that all these are feasible minimum cost static

flows or their respective values, as these are calculated exactly as in the

Successive Shortest Path algorithm [1].

If we can show that for each vertex v the time intervals τFim(v) in which

each Fim cover v is ordered with regard to inclusion we must therefore

have that all constraints are satisfied at all vertices (and arcs) at all times.

Lemma 5.2 For any vertex v and any chains Fi, Fj, j < i covering v at

time intervals τFi(v), τFj(v) we have

τFi(v) ⊂ τFj(v)

Proof. For the source and sink vertices this is easy to show, as for each

Fi we have

Hi(t
s
i + li) = Cmax = H(t

e
i )

So for the starting times we have

g(tsi )+ h(t
s
i + li)+ li = g(t

s
i−1)+ h(t

s
i−1 + li−1)+ li−1

By assumption on h we have h′(t) ≥ −1 which gives

g(tsi−1)+ h(t−1i
s + li−1)+ li−1 ≤ g(t

s
i−1)+ h(t

s
i−1 + li)+ li

Now since tsi is such that

g(tsi )+ h(t
s
i + li)+ li = Cmax

where the left hand side is non­increasing, and since

g(tsi )+ h(t
s
i + li) ≤ g(t

s
i−1)+ h(t

s
i−1 + li)
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we can conclude that

tsi ≥ t
s
i−1

Similarly, with the assumption that g′(t) ≤ 1, we get that

g(tei − li)+ h(t
e
i ) ≤ g(t

e
i−1 − li)+ h(t

e
i−1)

and again tei is such that

g(tei − li)+ h(t
e
i ) = Cmax

where the left hand side is non­decreasing. So we also get

tei ≤ t
e
i−1

So the inclusion holds at the terminal nodes.

Now assume Pi is a shortest path in G′i−1, and consider any vertex

v covered by Fi at some time. Assume that Fi reaches v before some

Fj, j < i, and let Qi,Qj be the s − v­path components of Pi, Pj respec­

tively. Since tj,s ≤ ti,s this means that l(Qi) < l(Qj). NowQi is a shortest

s − v­path in G′i−1. If it wasn’t then a shorter s − v­path could be com­

bined with the v − t­component of Pi to make a shorter s − t­path than

Pi, which contradicts Pi being a shortest s − t­path in G′i−1. Similarly Qj

is a shortest s − v­path in G′j−1. Then we have

l(Qi) = dfi(s, v) < dfj(s, v) = l(Qj)

This contradicts lemma (5.1), and thus Fi can not reach any vertex v be­

fore any Fj, j < i.

Similarly we prove that each chain Fi leaves each vertex v before each

Fj, j < i. So the interval in which each chain covers each vertex is or­

dered by inclusion, and thus all constraints are satisfied at all vertices

(and arcs) at all times, and the dynamic flow is at all times feasible.

What remains is to show that the dynamic flow F is minimum cost

of all dynamic flows with the same value, when considering both travel

time and arrival deviation costs. This is of course the tricky part.

Let the dynamic flow found by the algorithm be F and let Z be a

minimum cost dynamic flow with the same value. What I want to show

is that the cost of Z if equal to the cost of F . My strategy for proving

this is to first split the difference Z −F between the two dynamic flows

up into smaller, independent parts, and then show that for each of these

parts the total cost is non­negative. Then since the difference Z − F is

the sum of all the smaller parts, we also get that the cost of Z − F is

non­negative, which implies that F is also minimum cost.

I will need some lemmas for this second part of the proof. First a

definition.
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Definition 5.2 A static s−t­flow f is extreme if it is minimum cost among

all static s − t­flows with the same value.

So all flows in the Successive Shortest Path algorithm, and also the static

flows in this algorithm, are extreme. There is a useful characterization

of an extreme flow:

Lemma 5.3 A flow f is extreme if and only if the residual graph Gf con­

tains no negative cost cycles (or circulations).

A proof can be found in [1].

This is only valid for static flows and networks, whereas my network

is dynamic. I want to prove the similar claim that the dynamic resid­

ual graph GF contains no negative length cycle. To do this I intro­

duce the concept of a slice. In the proof of feasibility above we saw

that for a vertex v the time intervals τFim(v) for which chains Fim cov­

ers v is ordered by inclusion. Then we can look at the time inter­

vals in which each vertex v sees the residual graph Gfj , that is the

time intervals in which Fim , im ≤ j cover v , but no Fim, im > j cover

v . (Note that the residual graphs Gfj seen by vertex v will be the

same for i = im, . . . im+1 − 1, but we still consider them separately.)

Then the (possibly empty) time intervals in which vertex v sees resid­

ual graph Gfj is T 1
j (v) =

[
tsj + dfj−1

(s, v), tsj+1 + dfj(s, v)
)

and T 2
j (v) =(

tej+1−lj+1+dfj(s, v), t
e
j−lj+dfj−1

(s, v)
]

for j < K, and for j = K the time

interval will be T 1
K (v) = T

2
K (v) =

[
tsj + dfj−1

(s, v), tej − lj + dfj−1
(s, v)

]
.

Also define ts0 = −∞, t
e
0 = ∞. Then we define the slice:

Definition 5.3 The j­th slice is the union

∪v∈Vv ×T
1
j (v)

of all vertices v at their respective time intervals T 1
j (v), the (2K − j)­th

slice is the union

∪v∈Vv ×T
2
j (v)

of all vertices v at their respective time intervals T 2
j (v).

And with this we can prove the important lemma:

Lemma 5.4 It is impossible to go from an i­th slice to a j­th slice with

j < i in the dynamic residual graph GF .
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Proof. Look at (v, t) in the i­th slice. Then either (1) t ∈
[
tsi+dfi−1

(s, v), tsi+1+
dfi(s, v)

)
or (2) t ∈

(
tei+1 − li+1 + dfi(s, v), t

e
i − li + dfi−1

(s, v)
]

or (3) if

i = K then t ∈
[
tsi + dfi−1

(s, v), tei − li + dfi−1
(s, v)

]
.

(2) Look at vertex u. Then by traveling within the i­th slice the earliest

we can get to u is

t + dfi(v,u) ≥ t
e
i+1 − li+1 + dfi(s, v)+ dfi(v,u)

But we know that

dfi(s, v)+ dfi(v,u) ≥ dfi(s, u)

so this leads to

t + dfi(v,u) ≥ t
e
i+1 − li+1 + dfi(s, u)

which is also in the i­th slice.

(1,3) Look at vertex u. Then by traveling within the i­th slice the earliest

we can get to u is

t + dfi(v,u) ≥ t
s
i + dfi−1

(s, v)+ dfi(v,u)

Now assume

dfi−1
(s, v)+ dfi(v,u) < dfi−1

(s, u)

Let Psv be a shortest s − v­path in Gfi−1
and Pvu a shortest v − u­path

in Gfi . Then clearly Pvu ∩ P
−1
i ≠ ∅, since Fi must have made a shorter

path from v to u possible. With Pvu = a1a2 . . . am let w be such that i

is maximal when ai = yw ∈ Pvu ∩ P
−1
i for some vertex y , and let x be

such that i is minimal when ai = zx ∈ Pvu ∩ P
−1
i for some vertex z. Let

Pwx be thew−x­component of Pi and Pxw the x−w­component of Pvu.

Then we must have

l(Pxw)+ l(Pwx) = 0 (30)

. Clearly it cannot be greater, as Pxw can be no longer than P−1
wx, and if it

was less then a flow of value ǫ along Pwx and back along Pxw would be

a negative cost circulation, contradicting the fact that fi−1 is extreme.

We can rewrite the assumption above as

l(Psv)+ l(Pvu) < l(Psu) (31)

Now since Fi only affects Pvu along Pxw we can split Pvu in Pvx, Pxw , Pwu
where the first and last ones are paths in Gfi−1

. It is clear that

l(Psw)+ l(Pwu) ≥ l(Psu) (32)
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But then (32) and (31) together with the splitting of Pvu become

l(Psw)+ l(Pwu) > l(Psv)+ l(Pvx)+ l(Pxw)+ l(Pwu) (33)

Together with (30) we finally get

l(Psw)+ l(Pwx) > l(Psv)+ l(Pvx) (34)

which contradicts Pi being a shortest s − t­path in Gfi−1
!

Thus

tsi + dfi−1
(s, v)+ dfi(v,u) ≥ t

s
i + dfi−1

(s,u)

which is again in the i­th slice.

So it is impossible to get to an earlier slice by traveling within one slice

(or one static residual graph). Now it could be possible to get to some

j­th slice with j < i from a k­th slice, with k > i. But since there is a last

slice, the (2K)­th slice, we see by induction that this is also impossible.

From this it is clear that a negative length cycle in the dynamic residual

graph must stay within one slice. But a negative cost cycle within one

slice would imply a negative cost cycle in the static residual graph corre­

sponding to that slice, which contradicts the fact that all the static flows

are extreme. Thus we have:

Corollary 5.2 The dynamic residual graphGF contains no negative length

cycles.

Another result we get is

Corollary 5.3 All shortest (1) s−t­paths and (2) t−s­paths in the dynamic

residual graph stay within one slice.

Proof. (1) A path ending at t in the i­th slice can leave s in the i­th

slice, but not later. (2) Similarly a path starting from t in the j­th slice

must follow a flow from s to t, all of which follows paths of length

0 ≤ l ≤ dfj−1
(s, t). Thus this flow cannot have started from s before the

j­th slice.

Note that the second statement is equivalent to saying that the slowest

flows in use by F are not slow enough to fall through to later time slices.

I am finally ready to prove Theorem 5.5.

Proof. [Theorem 5.5] Let F be the dynamic flow found by the algorithm

and let Z be a minimum cost dynamic flow with the same value. Then the

difference between the two dynamic flows Z−F can be written as a sum
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of non­canceling dynamic circulations, possibly with non­constant flow

values, and including waiting at vertices. By non­canceling I mean that if

a dynamic circulation y has positive flow along arc a at time t then no

other dynamic circulation x can have negative flow along a (or positive

flow along a−1) at time t that cancels the flow of y . This independence is

important because we then know that each of these dynamic circulations

have to be feasible when added together with F , which again means that

any positive flow in such a circulation y has to be feasible together with

flow in F , and any negative flow in y can only cancel flow in F .

Now remember that the total cost of F was determined fully by outflow

from s and inflow to t. Consider the cost of an infinitesimal piece of one

of the circulations y , with constant travel time ly and unit value. If this

circulation contains neither s nor t the cost is 0. If it contains only s,

and leaves s at time τ the cost is

g(τ)− g(τ + ly)+ ly

If it contains only t, and leaves t at time τ the cost is

−h(τ)+ h(τ + ly)+ ly

In both these cases we see that for this cost to be negative we must have

ly < 0, because of the assumptions g′(τ) ≤ 1, h′(τ) ≥ −1. But we have

already proven in Corollary 5.2 that this is impossible.

If it contains both s and t, leaves s at τs , travels to t along a path of

length l+y , leaves t at τt and travels to s again along a path of length l−y
the cost is

g(τs)+ h(τs + l
+
y)+ l

+
y − h(τt)− g(τt + l

−
y)+ l

−
y

In this case we can consider the infinitesimal dynamic circulation as two

separate chains y+, y−, where y+ comes in addition to F , and y− can­

cels some part of F . Let the costs of these two chains be Cy+ , Cy− . Now

we already know that −Cy− ≤ Cmax . So for the total cost of y to be neg­

ative we need Cy+ < Cmax . y+ has minimum cost if it follows a shortest

path in the dynamic residual graph. Then look at a shortest path Pj in

the i­th slice, with cost function Hj(t) as in the algorithm. Then for

t ∈ R \ τFj(t) we have Hj(t) ≥ Cmax since Hj is convex with a minimum

in τFj(t) and because of the way tsj , t
e
j are selected in the algorithm. So

Cy+ ≥ Cmax , and we finally have that Cy− + Cy+ ≥ 0, and again that

Cz−f ≥ 0. And this means that F is also minimum cost!
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6 Summary

In this paper I have studied system optimal and user equilibrium flows

in static and dynamic networks, and how to find these in both general

and more specific situations. Of most interest are the alternative char­

acterization of static system optimal flows, the algorithm for turning a

static system optimal flow into a user equilibrium by taxes along the

arcs, and the chain flow algorithm for solving the dynamic system op­

timality problem with the assumption of constant latency functions on

the arcs. I will summarize these here.

• Alternative static system optimality criterion

The definition of the user equilibrium was defined locally on each

s − t­path. Each s − t­path in use has equal cost and cost less than

or equal to that of s − t­path. We saw that it was possibly to for­

mulate this also as a minimization problem that turned out to be a

convex optimization problem.

The system optimum was defined globally as a minimization prob­

lem, also a convex optimization problem. What I showed in section

5.1.4 was that in this case there was also an equivalent path­local

definition, similar to that of the user equilibrium. Each s − t­path

in use has incremental cost

LP =
d

dxP


∑

a∈P

xala(xa)




that is equal, and equal to or less than that of any unused s−t­path.

• Optimal taxing in a static network

I then went on in section 5.2 to find a way of turning a system opti­

mal flow into a user equilibrium by adding taxes along the arcs of

the network. This came from the idea that any static flow fs gives

rise to certain latencies along each arc in the graph G. Using the

fixed graph Gfs consisting of the arcs used by this flow and with

latencies caused by this flow, we can find constant taxes for each

arc in Gfs such that each s − t­path in Gfs has equal length. Then

adding these taxes to the original graph G, with non­constant la­

tencies, causes exactly the flow fs to be a user equilibrium in G, as

each s − t­path in G then has equal length exactly with fs .

I also pointed out that any flow fs can be turned into a user equilib­

rium by this process, but choosing the system optimal flow makes

the most sense in my case.
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I have also programmed this algorithm, and tested it for some sim­

ple graphs. The code is found in the appendix.

• Dynamic system optimum algorithms

Although I showed in section 5.3 that it is possible to compute the

dynamic system optimal solution by making a time discretization

of the problem, this will often be impractical due to the sheer size

of the discretized optimization problem, even though the problem

is such that the Simplex algorithm, or even the Network Simplex

algorithm, can be used to solve it.

For the single commodity case I found an algorithm in section 5.4

that works by gradually increasing the number of paths used and

the time intervals of use of each of these. This is done such that

we always add flow at the lowest possible cost. The result of this

is a dynamic flow with the desired value, and with minimum total

cost, represented as a set of chains. Each chain is a path, possibly

with negative arcs, a value of constant flow along this path, and

a time interval during which the flow is present along this path.

Adding all the chains together gives the total dynamic flow. The

algorithm runs in a time polynomial to the number of vertices and

arcs, and proportional to the total supply, assuming the capacities

are integer. This is a huge improvement compared to the time dis­

cretization approach!

Although I only had time to develop the algorithm for the single

commodity case, I also think it would be possible to develop a sim­

ilar algorithm for the multi­commodity case, based on algorithm

presented here and the quickest transshipment problem in [4].

It should also be mentioned that although the time discretization

approach might be slow, it is however capable of solving more gen­

eral problems. It handles with ease time varying capacities, arbi­

trary departure/arrival deviation cost functions and multiple com­

modities. I also programmed code for turning a directed graph

with supplies and departure/arrival cost functions into a time dis­

cretized graph, removing unused vertices and arcs. I also wrote

some code for converting the graph to a format readable by a

graph drawing program, and more importantly for formulating the

LP problem of finding the dynamic system optimal flow through

the graph in the AMPL language. This code is also found in the

appendix.
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7 Appendix

Below follow the .java files containing the code I have written for han­
dling these graphs on the computer.

Arc represents an arc used in the graph implementation.

package trafficGraphs;

public class Arc {
private double length, capacity, toll, flow;
private Vertex source, target;
private String name;

public Arc(String name, double length, double capacity, double toll,
Vertex source, Vertex target) {

// this.name = name;
this.name = source.getName() + target.getName() + (length + toll);
this.length = length;
this.capacity = capacity;
this.toll = toll;
this.source = source;
this.target = target;
source.getOutArcs().add(this);
target.getInArcs().add(this);

}

public Arc(String name, double length, double capacity, Vertex source,
Vertex target) {

this(name, length, capacity, 0, source, target);
}

public Arc(String name, double length, Vertex source, Vertex target) {
this(name, length, Double.POSITIVE_INFINITY, source, target);

}

public double getCapacity() {
return capacity;

}

public double getCost() {
return length + toll;

}

public double getLength() {
return length;

}

public String getName() {
return name;

}

public String getQuotedName() {
return "\"" + name + "\"";

}

public Vertex getSource() {
return source;

}

public Vertex getTarget() {
return target;

}

public double getToll() {
return toll;

}

public double getFlow() {
return flow;

}

public void setToll(double toll) {
this.toll = toll;

}

public void setFlow(double flow) {
this.flow = flow;

}
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public String toGraphString() {
return source.getQuotedName() + " ­> " + target.getQuotedName()

+ " [label = \""
+ (capacity == Double.POSITIVE_INFINITY ? "­" : capacity)
+ ", " + getCost() + "\"]";

}

public String toTextFileString() {
return "A " + name + " " + length + " " + capacity + " " + toll + " "

+ source.getName() + " " + target.getName();
}

}

AugementedGraph extends Graph, and represents the time discretiza­
tion of the original graph.

package trafficGraphs;

import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.*;

public class AugmentedGraph extends Graph {
protected HashMap<String, Vertex[]> augVertices;
protected double step;
protected int max;

public AugmentedGraph(int max, double step) {
super();
this.max = max;
this.step = step;
augVertices = new HashMap<String, Vertex[]>();

}

public void toGraphFile(String filename) {
PrintWriter writer;
try {

writer = new PrintWriter(filename + ".dot");
} catch (FileNotFoundException e) {

System.err.println("The file was not found!");
e.printStackTrace();
return;

}
writer.println("digraph {\nrankdir = LR\nsplines = false\n");
for (Vertex[] vertexs : augVertices.values()) {

writer.println("{\nrank = same;\n");
for (Vertex vertex : vertexs)

if (vertex != null)
writer.println(vertex.getQuotedName());

writer.println("}\n");
}
for (Vertex vertex : vertices.values())

writer.println(vertex.getQuotedName());
writer.println();
for (Arc arc : arcs.values())

writer.println(arc.toGraphString());

writer.println("}");
writer.close();

}

public void removeVertex(Vertex vertex) {
super.removeVertex(vertex);
String[] vinfo = vertex.getName().split(",");
augVertices.get(vinfo[0])[(int) (Double.parseDouble(vinfo[1]) / step)] = null;

}

public AugmentedGraph augment() {
throw new GraphAlreadyAugmentedException();

}

public class GraphAlreadyAugmentedException extends RuntimeException {
private static final long serialVersionUID = ­1;

}
}

CostFunction is used to represent an arrival or departure cost function.

package trafficGraphs;

90



public abstract class CostFunction {
public abstract double getCost(double time, double step);

public static final CostFunction nullFunction = new CostFunction() {
public double getCost(double time, double step) {

return 0;
}

};

public static CostFunction makeCostFunction(final String format) {
if (format.equals("null"))

return nullFunction;
if (format.split(" ").length == 3)

return new CostFunction() {
private double a, b, t;
{

String[] s = format.split(" ");
a = Double.parseDouble(s[0]);
b = Double.parseDouble(s[1]);
t = Double.parseDouble(s[2]);

}

public double getCost(double time, double step) {
double lower = time ­ 0.5 * step;
double upper = time + 0.5 * step;
lower = (t ­ lower > 0 ? Math.min((t + 0.5 * step ­ lower)

/ step, 1) : 1)
* costAt(lower);

upper = (t ­ upper < 0 ? Math.min((­t + 0.5 * step + upper)
/ step, 1) : 1)
* costAt(upper);

return 0.5 * (lower + upper);
}

private double costAt(double time) {
return time < t ? ­a * (time ­ t) : b * (time ­ t);

}
};

return makeCostFunction("0.5 2 5");
}

}

CostVertex extends Vertex, and is used for vertices with supplies, and
therefore cost functions.

package trafficGraphs;

public class CostVertex extends Vertex {
private CostFunction function;
private double magnitude;

public CostVertex(String name, CostFunction function) {
super(name);
this.function = function;

}

public CostVertex(String name, double magnitude, CostFunction function) {
super(name);
setMagnitude(magnitude);
this.function = function;

}

public CostFunction getCostFunction() {
return function;

}

public double getCost(double time, double step) {
return function == null ? 0 : function.getCost(time, step);

}

public String toGraphString() {
return getQuotedName()

+ (magnitude != 0 ? " [style = doublecircle, label = \""
+ getName() + " : " + magnitude + "\"]" : "") + ":";

}

public String toTextFileString() {
return "C" + super.toTextFileString() + " " + magnitude + " ";

}

public double getMagnitude() {
return magnitude;
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}

public void setMagnitude(double magnitude) {
this.magnitude = magnitude;

}

public boolean isRemovable() {
return super.isRemovable() && magnitude == 0;

}
}

Graph is the main class for representing a graph. It uses most of the
other classes here, and also contains the code that performs the dis­
cretization.

package trafficGraphs;

import java.util.*;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;

public class Graph {
protected HashMap<String, Vertex> vertices;
protected HashMap<String, Arc> arcs;

public Graph() {
vertices = new HashMap<String, Vertex>();
arcs = new HashMap<String, Arc>();

}

public Graph(String filename) {
this();
fromTextFile(filename);

}

/**
* Reads a graph from a text file.
*
* Assumes all vertices first, format: ’V’ name ’CV’ name magnitude [cost
* function]
*
* Then arcs, format: ’A’ name length [capacity [toll]] source target
*
*
* @param filename
*/

protected void fromTextFile(String filename) {
Scanner scanner;
try {

scanner = new Scanner(new File(filename + ".txt"));
} catch (FileNotFoundException e) {

System.err.println("The file was not found!");
e.printStackTrace();
return;

}
String type;
int linen = 0;
while (scanner.hasNextLine()) {

try {
type = scanner.next();
if (type.equals("V")) {

addVertex(new Vertex(scanner.next()));
} else if (type.equals("CV")) {// TODO: Fixit cost function.

addVertex(new CostVertex(scanner.next(), scanner.nextDouble(),
CostFunction.makeCostFunction(scanner.nextLine().trim())));

} else if (type.equals("A")) {
String[] line = scanner.nextLine().trim().split(" ");
switch (line.length) {
case 4:

addArc(new Arc(line[0], Double.parseDouble(line[1]),
vertices.get(line[2]), vertices.get(line[3])));

break;
case 5:

addArc(new Arc(line[0], Double.parseDouble(line[1]),
Double.parseDouble(line[2]),
vertices.get(line[3]), vertices.get(line[4])));

break;
case 6:

addArc(new Arc(line[0], Double.parseDouble(line[1]),
Double.parseDouble(line[2]),
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Double.parseDouble(line[3]),
vertices.get(line[4]), vertices.get(line[5])));

break;
default:

System.err.println("Wrong number of arguments for arc "
+ line[0]);

}

}
} catch (Exception e) {

System.err.println("Error at line " + linen);
}
linen++;

}
scanner.close();

}

public void toAMPLFile(String filename) {
PrintWriter writer;
try {

writer = new PrintWriter(filename + ".dat");
} catch (FileNotFoundException e) {

System.err.println("The file was not found!");
e.printStackTrace();
return;

}

writer.print("set Arcs := ");
for (Arc arc : arcs.values())

writer.print(arc.getQuotedName() + " ");
writer.println(";\n");

writer.print("set Vertices := ");
for (Vertex vertex : vertices.values())

writer.print(vertex.getQuotedName() + " ");
writer.println(";\n");

writer.println("param:\td\tc\t:=");
for (Arc arc : arcs.values())

writer.println(arc.getQuotedName() + " " + arc.getCost() + " "
+ (arc.getCapacity() == Double.POSITIVE_INFINITY ?

"Infinity" : arc.getCapacity()));
writer.println(";\n");

writer.println("param:\tm\t:=");
for (Vertex vertex : vertices.values())

writer.println(vertex.getQuotedName() + " "
+ vertex.getMagnitude());

writer.println(";\n");

writer.println("set Entering :=");
for (Vertex vertex : vertices.values()) {

// writer.printf("(%s, *)", vertex.getQuotedName());
for (Arc arc : vertex.getInArcs())

writer.print(" " + vertex.getQuotedName() + " "
+ arc.getQuotedName());

writer.println();
}
writer.println(";\n");
writer.println("set Leaving :=");
for (Vertex vertex : vertices.values()) {

// writer.printf("(%s, *)", vertex.getQuotedName());
for (Arc arc : vertex.getOutArcs())

writer.print(" " + vertex.getQuotedName() + " "
+ arc.getQuotedName());

writer.println();
}
writer.println(";\n");
/*
* for (Vertex vertex : vertices.values()) { writer.printf("set
* Entering%s := ", vertex.getName()); for (Arc arc :
* vertex.getInArcs()) writer.print(arc.getName() + "\t");
* writer.println(";\n");
*
* writer.printf("set Leaving%s := ", vertex.getName()); for (Arc arc :
* vertex.getOutArcs()) writer.print(arc.getName() + "\t");
* writer.println(";\n"); }
*/

writer.close();

try {
writer = new PrintWriter(filename + ".mod");
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} catch (FileNotFoundException e) {
System.err.println("The file was not found!");
e.printStackTrace();
return;

}

writer.println("set Vertices;");
writer.println("set Arcs;");

writer.println("set Entering within {Vertices, Arcs};");
writer.println("set Leaving within {Vertices, Arcs};");
/*
* for (Vertex vertex : vertices.values()) { writer.printf("set
* Entering%s;%n", vertex.getName()); writer.printf("set Leaving%s;%n",
* vertex.getName()); }
*/

writer.println("\nparam d {Arcs} >= 0;");
writer.println("param c {Arcs} > 0;");
writer.println("param m {Vertices};");

writer.println("\nvar f {a in Arcs} >= 0, <= c[a];");
writer.println("\nminimize Cost: sum {a in Arcs} f[a] * d[a];");
writer.println("\nsubject to Flow {v in Vertices}: m[v] + "

+ "sum {(v, a) in Entering} f[a] = sum {(v, a) in Leaving} f[a];");
/*
* for (Vertex vertex : vertices.values()) { writer.printf("subject to
* Flow%s: sum {a in Entering%s} = m[%s] + sum {a in Leaving%s};\n",
* vertex.getQuotedName(), vertex.getQuotedName(),
* vertex.getQuotedName(), vertex.getQuotedName()); }
*/

writer.close();
}

public void toTextFile(String filename) {
PrintWriter writer;
try {

writer = new PrintWriter(filename + ".txt");
} catch (FileNotFoundException e) {

System.err.println("The file was not found!");
e.printStackTrace();
return;

}
for (Vertex v : vertices.values())

writer.println(v.toTextFileString());
for (Arc a : arcs.values())

writer.println(a.toTextFileString());
// TODO: To file.

writer.close();
}

public void toGraphFile(String filename) {
PrintWriter writer;
try {

writer = new PrintWriter(filename + ".dot");
} catch (FileNotFoundException e) {

System.err.println("The file was not found!");
e.printStackTrace();
return;

}
writer.println("digraph {\nrankdir = LR\nsplines = false\n");
for (Vertex vertex : vertices.values())

writer.println(vertex.getQuotedName());
writer.println();
for (Arc arc : arcs.values())

writer.println(arc.toGraphString());

writer.println("}");
writer.close();

}

public void addVertex(Vertex vertex) {
vertices.put(vertex.getName(), vertex);

}

public void addArc(Arc arc) {
arcs.put(arc.getName(), arc);

}

public void removeArc(Arc arc) {
arc.getSource().getOutArcs().remove(arc);
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arc.getTarget().getInArcs().remove(arc);
arcs.remove(arc.getName());

}

public void removeVertex(Vertex vertex) {
for (Arc arc : vertex.getOutArcs()) {

arc.getTarget().getInArcs().remove(arc);
arcs.remove(arc.getName());

}
for (Arc arc : vertex.getInArcs()) {

arc.getSource().getOutArcs().remove(arc);
arcs.remove(arc.getName());

}
vertices.remove(vertex.getName());

}

public void removeArc(String arcName) {
removeArc(arcs.get(arcName));

}

public void removeVertex(String vertexName) {
removeVertex(vertices.get(vertexName));

}

public AugmentedGraph augment(int max, double step) {
AugmentedGraph aug = new AugmentedGraph(max, step);

// Create new vertices and arcs.
for (Vertex v : vertices.values()) {

Vertex[] vs = new Vertex[max];
String vn = v.getName();
for (int i = 0; i < max; i++) {

vs[i] = new Vertex(vn + "," + (i * step), i * step);
aug.addVertex(vs[i]);
if (i > 0)

aug.addArc(new WaitArc(vs[i ­ 1].getName()
+ vs[i].getName(), step, vs[i ­ 1], vs[i]));

}
aug.augVertices.put(vn, vs);

// Vertex is source or sink.
if (v instanceof CostVertex) {

CostVertex cv = (CostVertex) v;
CostVertex uv = new CostVertex(vn, null);
aug.addVertex(uv);
uv.setMagnitude(cv.getMagnitude());
int it = cv.getMagnitude() > 0 ? 0 : 1;
Vertex[] sts = new Vertex[] { uv, null };
for (Vertex av : vs) {

sts[1] = av;
aug.addArc(new Arc(vn + av.getName(), 0,

Double.POSITIVE_INFINITY, cv.getCost(av.getTime(),
step), sts[it], sts[1 ­ it]));

}
}

}

// Add arcs from the old graph.
for (Vertex v : vertices.values()) {

Vertex[] vs = aug.augVertices.get(v.getName());
for (Arc a : v.getOutArcs()) {

Vertex u = a.getTarget();
int l = (int) (a.getLength() / step);
double cap = a.getCapacity() * step

* (l * step + 1 ­ a.getLength());
double carry = a.getCapacity() * step

* (a.getLength() ­ l * step);
Vertex[] us = aug.augVertices.get(u.getName());
for (int i = 0; i + l < max; i++)

// TODO: Kanskje fjern carry igjen?
if (Math.abs(cap) > 1e­6)

aug.addArc(new Arc(vs[i].getName()
+ us[i + l].getName(), a.getLength(), cap,
a.getToll(), vs[i], us[i + l]));

for (int i = 0; i + l + 1 < max; i++)
if (Math.abs(carry) > 1e­6)

aug.addArc(new Arc(vs[i].getName()
+ us[i + l + 1].getName(), a.getLength(),
carry, a.getToll(), vs[i], us[i + l + 1]));

}
}

// Remove superfluous vertices and arc.
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LinkedList<Vertex> removables = new LinkedList<Vertex>();
for (Vertex v : aug.vertices.values())

if (v.isRemovable())
removables.add(v);

while (!removables.isEmpty()) {
Vertex v = removables.poll();
aug.removeVertex(v);
for (Arc arc : v.getInArcs())

if (arc.getSource().isRemovable())
removables.add(arc.getSource());

for (Arc arc : v.getOutArcs())
if (arc.getTarget().isRemovable())

removables.add(arc.getTarget());
}
return aug;

}

public static void test(String filename, int max, double step) {
Graph g = new Graph(filename);
g.toGraphFile(filename);
AugmentedGraph aug = g.augment(max, step);
aug.toGraphFile(filename + "aug");
aug.toAMPLFile(filename + "aug");

}

public static void main(String[] argh) {
test("grafenminja", 30, 0.5);

}
}

TollFinder has the code for finding tolls to make all paths from a given
vertex s to a given vertex t equally expensive. It assumes an acyclic
graph. This code is no longer correct, as I discovered an error in the
theory around this algorithm, but didn’t have time to rewrite the code.

package trafficGraphs;

import java.util.Collection;
import java.util.HashMap;

public class TollFinder {
private Collection<Arc> used;
private HashMap<Vertex, VertexWrapper> wraps;

private TollFinder(Collection<Arc> used) {
this.used = used;
wraps = new HashMap<Vertex, VertexWrapper>();

}

public static void findTolls(Vertex s, Vertex t, Collection<Arc> used) {
TollFinder tf = new TollFinder(used);
tf.makeSubgraphOfUsedArcs(s, t);
tf.calculateTolls(tf.wraps.get(s));

}

private void makeSubgraphOfUsedArcs(Vertex s, Vertex t) {
putInSubgraph(s);
wraps.get(t).distance = 0;

}

private void putInSubgraph(Vertex v) {
if (wraps.containsKey(v))

return;
VertexWrapper vw = new VertexWrapper(v);
wraps.put(v, vw);
for (Arc a : vw.v.getOutArcs())

if (used.contains(a))
putInSubgraph(a.getTarget());

}

private double calculateTolls(VertexWrapper vw) {
if (vw.distance >= 0)

return vw.distance;
if (vw.distance == ­2)

throw new RuntimeException("The graph was not acyclic! " + vw.v
+ " encountered while active.");

vw.distance = ­2;
double maxd = 0;
for (Arc a : vw.v.getOutArcs())

if (used.contains(a))
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maxd = Math.max(maxd, calculateTolls(wraps.get(a.getTarget()))
+ a.getLength());

for (Arc a : vw.v.getOutArcs())
if (used.contains(a))

a.setToll(maxd ­ wraps.get(a.getTarget()).distance
­ a.getLength());

return vw.distance = maxd;
}

private class VertexWrapper {
private Vertex v;

private double distance;

private VertexWrapper(Vertex v) {
this.v = v;
distance = ­1;

}
}

public static void main(String[] args) {
Vertex s = new Vertex("s");
Vertex t = new Vertex("t");
Vertex u = new Vertex("u");
Vertex v = new Vertex("v");
Vertex w = new Vertex("w");
Arc su = new Arc("su", 1, s, u);
Arc uv = new Arc("uv", 3, u, v);
Arc vt1 = new Arc("vt1", 1, v, t);
Arc vt2 = new Arc("vt2", 2, v, t);
Arc uw = new Arc("uw", 1, u, w);
Arc wt = new Arc("wt", 1, w, t);
Collection<Arc> used = new java.util.HashSet<Arc>();
used.add(su);
used.add(uv);
used.add(vt1);
used.add(vt2);
used.add(uw);
used.add(wt);

findTolls(s, t, used);
for (Arc a : used)

System.out.format(
"%s: Total length: %.0f, of which %.0f is toll.\n",
a.getName(), a.getCost(), a.getToll());

}
}

Vertex represents vertices in the graph.

package trafficGraphs;

import java.util.HashSet;
import java.util.Collection;

public class Vertex {
private HashSet<Arc> inArcs, outArcs;
private double time;
private String name;

public Vertex(String name, double time) {
this.name = name;
this.time = time;
inArcs = new HashSet<Arc>();
outArcs = new HashSet<Arc>();

}

public Vertex(String name) {
this(name, Double.NaN);

}

public String getName() {
return name;

}

public double getTime() {
return time;

}

public double getMagnitude() {
return 0;

}
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public Collection<Arc> getInArcs() {
return inArcs;

}

public Collection<Arc> getOutArcs() {
return outArcs;

}

public String getQuotedName() {
return "\"" + name + "\"";

}

public boolean isRemovable() {
return inArcs.size() * outArcs.size() == 0;

}

public String toTextFileString() {
return "V " + name;

}
}

WaitArc extends Arc, and represents the arcs that are actually just wait­
ing at the same vertex some one time step.

package trafficGraphs;

public class WaitArc extends Arc {
public WaitArc(String name, double length, Vertex source, Vertex target) {

super(name, length, source, target);
}

public String toGraphString() {
return getSource().getQuotedName() + " ­> "

+ getTarget().getQuotedName()
+ " [label = \"\", constraint = false]";

// " [label = \"­, " + getCost() + "\", constraint = false]";
}

}
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