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Abstract

In the present paper the numerical method for three dimensional run-
up, given in Johnsgard and Pedersen, [4], is extended to include wave
breaking. In the fundamental problem of run-up of a uniform bore we
compare our model to analytical solutions from the literature. The numer-
ical solutions converges, but very slowly. This is not due to the numerical
model, but rather to the structure of the solutions themself. Numerical re-
sults for two realistic, but simplified Tsunami cases are also presented. In
the first case we make two-dimensional simulations concerning the run-up
of a Tsunami in Portugal, in the second case we study the three dimen-
sional wave pattern generated after a slide in Tafjord, Norway, in 1931. A
discussion of different aspects of the model 1s summarized at the end of
the paper.

1 Introduction

The study of wave breaking during run-up is important for two reasons. First,
it it occurs in many practical situations, and influences both run-up heights and
the destructive potential of the waves. Second, wave breaking may be hidden
in numerical solutions for shallow water equations. Hopefully the reader of this
paper will gain improved understanding of when such breaking may occur, and
how to identify it.

A full description of wave breaking is a very complicated problem, and the
kind of turbulence modeling that is needed, is still not available. A common
approach, that is valid in the long wave limit, is to view the bore that is formated
during breaking as a discontinuity. The key feature for this approach is that no
mass and momentum are lost during breaking, and methods used for acoustic
shock waves may be adapted. Such methods may be based on a patching of
fluxes for mass and momentum at the bore discontinuity. A more sophisticated
use of analytical expressions is made in Gudonovs method, where the surface
profile is approximated by a piecewise constant function, and the solution on an
advancing time step is found after solving a series of Riemann problems. A large
family of techniques have been developed from this basis. A simpler approach
is to include some kind of artificial diffusion, either implicitly inherited in the



numerical scheme, or stated explicitly. For refined grids and vanishing artificial
diffusion all these methods converge towards the same limit, as long as care is
taken so that mass and momentum are conserved.

In the present paper I generalize the method developed by Johnsgard and
Pedersen [4], to include wave breaking. 1 am not focusing on the shock treat-
ment itself, but rather on the processes involved when shocks are interacting
with moving shorelines. Hence the simplest possible treatment of the bore has
been selected: an artificial diffusion stated directly in the numerical scheme.
We notice that the slow convergence that is reported in this paper is not due
to this particular selection of shock treatment.

Hibberd and Peregrine [3], made a related study of bore tun-up as in the
present paper. Two new features are added here: the Lagrangian description,
that makes the run-up calculations more accurate, and the capacity of solving
three dimensional problems.

Classical analytical theory, that is discussed in section 3, shows an extremely
fast bore development near the free tip, and the outcome of this process has
substantial influence on the run-up heights. This gives rise to two fundamen-
tal problems. First, extremely dense grid is needed to get converged results.
Second, since real world bores have finite length, the bore development near
the shore may not be physically relevant. A discussion of these questions, also
including a bottom drag, will be given in this paper.

The numerical simulation of two simplified, but realistic Tsunami cases has
also been included. The coastal and bottom topography has been selected
simple enough to make it possible to identify the different physical processes
that are involved, and see how they are handled.

2 The model.

Gravity waves in inviscid and incompressible fluids are considered. Typical
lengths of the waves and scales for bottom variations are sufficiently long for
a hydrostatic pressure distribution to apply. The governing equations are the
Airy equations, which forms a fully nonlinear, non-dispersive wave model (see
for instance Peregrine [6]). Lagrangian coordinates are introduced to enable a
tracking of moving shorelines. A simple model of slide events is included into
the model through a time dependent bottom topography.

2.1 Governing equations.

Following Johnsgard and Pedersen, [4], we now introduce Lagrangian enumer-
ation co-ordinates a and b, marking vertical columns of water. Since the label
coordinate system may be curvilinear the computional domain in the a, b plane
will be a fixed rectangle. The continuity equation is

d(x,y)
d(a,b)

=Vi(a,b), (1)
where H = h + 7 is the total water depth and V' = H(a,b,0) g((z’z))h:o has

interpretation of volume density per. area in the (a, b) plane. The z—component




of the momentum equation may be written
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where H,, = maxz(H,n). Selecting n > 0 will remove the unphysical singularity
in the expression for bottom drag. The y— component takes a similar form.
Introducing a horizontal and a vertical length scale, [, and [, respectively,

we find that the governing equations may be written in nondimensional form
simply by replacing ¢ with 1 and C'p and v with Cp = %CD and ¥ = %7

2.2 Numerical equations.

We denote a discrete approximation to a function f, at @ = tAa, b = jAb and
t =pAt, by f= fi(z;). Following Johnsgard and Pedersen, [4], we now discretize
the governing equation on an Arakawa B grid, where the primary unknowns
are
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The numerical equations takes the same form as in Johnsgard and Pedersen
[4], except for the inclusion of new terms in the momentum equations, the z—
component reads
b
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Here 6, and 7((1) denote a central difference and average operators, and v = At
This closed set of equations for §;a is solved with a split step method. The y—
component is treated similarly.

We notice that the strength of the diffusion term is reduced as the grid is
refined, while the number of grid points within a bore will be held at a fixed
level. If 3 is to large the bore becomes to wide, if 3 is to small the numerical
solution becomes contaminated by grid noise. Care has been taken so that the
optimal choice has been selected for each case.

3 Run-up of a bore on a uniform slope.

The numerical method by Johnsgard and Pedersen, [4], that forms the basis
for this model, has been extensively tested. I still found it necessary to include
a test in the present work where numerical and analytical solutions concerning
bore interacting with shorelines were compared. A suitable analytical theory
is then the one concerning run-up of uniform bores on uniform slopes. This
theory, that was developed in the early sixties, is based on the present gov-
erning equations, although we have the possibility to include bottom drag. A
short review of this theory will be given, then we turn to the presentation and
discussion of the numerical solution.



3.1

Bore run-up, existing theory.

The bore run-up may be divided into several phases:

e On the surf period the bore propagates from the edge of the sloping region

to the initial shoreline. A differential equation for the bore velocity as
function of the layer thickness in front of the shock was found by Keller et
al. [5], by combinations of characteristic expressions behind the bore and
bore conditions. The main feature of the solution of this equation is that
the bore vanishes as it approaches the shoreline, while the bore strength
relative to the layer thickness in front of the shock goes to infinity. There is
an almost explosively fast bore development near the shore. For instance,
for an initally bore-height of 0.25 times the layer thickness in front of the
bore, we find that the particle velocity behind the bore increase from 1.325
to 1.659 during the last 1/5000 fraction of the slope. A good numerical
representation of this phenomenon requires extremely dense grid. As we
shall see, the run-up heights depend crucially upon the outcome of this
process. Off course the physical relevancy of this is highly questionable.

The next phase is the bore run-up. Analytical results for this process are
given by Shen and Meyer [7]. They transformed the governing equations
to a linear set by using canonical variables, and showed that the shoreline
particle is insensitive to other wave motions. Its position is a quadratic
function of time, and the run-up height is given by R = u2/g where ug is
the velocity behind the bore as the bore arrives the shore-line. The layer
thickness near the free tip is extremely thin, given by H = (z —x4)%/9gt?,
where t denotes the time after the bore has arrived at the shoreline.

The theory developed by Shen and Meyer [7] also predicts the generation
of a landward facing bore during back-wash. An almost stationary bore is
formed. The effect of this bore is to bring the rapid fluid particles during
backwash to nearly rest, and the bore diminishes when the free tip has
reached the bore. The water level near the shore will be twice the height
of the incident bore, the reflected wave that now has been formed will
break, and a seaward facing bore, propagating seawards, with low, gentle
waves behind it, will be formed.

3.2 Model set-up.

The selected bottom profile is a linear slope in the near-shore region connected
to a deep, flat bottom. The equations are put into nondimensional form by
selecting the slope length and the depth in the flat region before the bore arrives
as horizontal and vertical length scale respectively. A uniform bore with height
0.25 and initial position 1.1 is now incident on the slope, see figure 1 a). As in
Johnsgard and Pedersen ??, we employ a variable initial grid, where the grid

size is proportional to v/h.

Figure 1 shows that the phases of the bore run-up predicted by the analytical

theory is reproduced, at least qualitatively. Figure 2 a) shows the shoreline



elevation for different grids, and the corresponding analytical solution by Meyer.
The slow convergence is due to the heavy costs of resolving the inner part of
the slope, where the bore develops fast, and are not due to the particular choice
of shock treatment. The fluid layer near the free tip is extremely thin. If we
redefine the inundation length to be the position where the layer thickness is,
say, 10% of the initial shock height, we find much better convergence, figure 2
b).

An improved physical description of the thin fluid film is achieved by intro-
ducing bottom drag into the model. Figure 2 ¢) and 2 d) shows results for two
different values for C’D. The correct value of C’D depends on the ratio between
the horizontal and vertical scales, for Cp = 0.001 the two cases correspond to
[/, = 10 and [, /l, = 100 respectively. We note that for the first case we have
convergence towards roughly the same limit as for the case with Cp =0 and
a redefined inundation length. For the second case we have faster convergence,
and towards a lower limit.

We note that n = 0 for the runs presented in this section. The singularity
in the expression for bottom drag did not lead to unreasonable results. This is
not always the case, as will be demonstrated subsequently.

4 Run-up of the 1969 Gorringe Bank Tsunami.

In this section we study the run-up and breaking of a tsunami at the coast
of Portugal. The initial profile is extracted from a two-dimensional numerical
solution of the Boussinesq equation, reported by Gjevik et al [1], at a simulation
time where I expect that the dispersive effects may be neglected, and breaking
may occur. The actual bottom topography is simplified substantially to consist
of a linear slope, bkm wide, connected to a flat bottom, 20m deep, further out.
The bottom topography and initial wave profile is shown in figure 3, upper
panel. To enable a discussion of some principal aspects of this situation I have
also made runs for a more shallow case, with depth 10m. The bottom drag is
assumed to be given by C'p = 0.003, and n = 0.5m, runs for Cp =0 and n =0
are also reported.

4.1 Results.

Converged numerical results showing the development of the surface profile dur-
ing surf and run-up is demonstrated in figure 3. We notice that no amplification
takes place over the slope. The convergence for the shoreline particle is demon-
strated in figure 4 a). Figure 4 b) demonstrates that no convergence seems to
take place during back-wash when the singularity in the expression for bottom
stress is not removed. Of course the singularity is not physical, and we may
conclude that an improved physical description of the thin film of fluid leads to
better convergence. The same conclusion may be drawn from the results of the
inclusion of the bottom friction term itself.

Figure 4 ¢) and d) show similar results for the shallow case (maximum depth
10m). We notice that the curves have similar shapes as for the standard case.
Now the waves have been damped during shoaling.
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Figure 1: Surface profiles for bore run-up. Average
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a) Free tip elevation. b) Modified run-up definition.
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Figure 2: Grid refinement tests. Curve legends denote the average initial grid
size. Right panels: curve legends given in left panels.




Figure 4 e) shows that the bottom stress is vital to avoid slow convergence.
As for the previous case we may speed up the convergence by redefine the
inundation length, in figure 4 f) we track the position where the layer thickness
is 0.25m.

5 A simple model of the Tafjord event.

A numerical study of the slide and tsunami event at Tafjord was given by
Harbitz et. al, 93, with a linear and non-dispersive model. Probably both
nonlinearity and dispersion should be considered. Here we study the effect of
nonlinearity and wave breaking for a simplified fjord geometry, where the scales
for the fjord and slide geometry is taken from Harbitz et. al. [2].

The bottom topography is assumed to be parabolic across and uniform along
the fjord. The slide is 2B, wide, the frontal length is Ls and the slide is uniform
behind the front. The slide height is denoted A.

We now introduce a Cartesian coordinate system with z- axis across the
fjord and y-axis along the beach where the slide is impinging. The slide center
starts at (20,0) and travels a distance R, in a time T'r, along a line perpendicular
to the initial shoreline. The bottom topography is then given by

M, y,t) = hppagda (L — 2) /L = h(z — 2,(1), y),

where h defines the shape of the slide and z,(t) = xo + R(sin(tr/2TR)) is the
position of the center of the slide. For ¢t > Tg the slide remains at rest. The
slide body is described by the function

) cos* (27,

h(s,p) = Acos*( o7 5B

2L
for 0 < s< Lg, =B, < p< Bg,

h(s,p) = Acos’(F),

for s <0, —Bs; < p < By,

and h = 0 elsewhere.

In the present case we have selected A = 7hm, L = 1200m, h, 4 = 180m,
Ly =B, =133m, xg = —133m, R = 528m, Tr = 16.6s and C'p = 0.003.

5.1 Results.

The generation of waves due to the slide is demonstrated in figure 5. We notice
that a nearly semi-circular bore propagates away from the slide area and runs
up on the opposite beach. Figure 6 shows grid refinement tests. We notice
that the breaking is almost impossible to identify for the coarse grid. For the
finest grid the results seem to have converged, except near the shoreline, this
is consistent to the results from the previous two-dimensional cases. We also
notice that the model seems to handle the situation with an obliquely incident
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bore on a shore. Finally, runs for Cp = 0 showed that this parameter had
no substantial impact on the present result. For very dense grid we expect
the parameter to be important near the shore. The parameter would be more
important for a more shallow fjord.

Summary.

A numerical model for three dimensional run-up of long waves has been gener-
alized to include wave breaking. Comparison with analytical solutions showed
convergence during grid refinement. The convergence was very slow, the reason
why is the high grid density needed to resolve the details in the almost explo-
sive bore development near the shoreline. The slow convergence is confined to
a region near the free tip where the fluid layer is very thin during run-up and
back-wash. An introduction of a bottom drag term, improving the physical
description of the movement in this layer, speeded up the convergence substan-
tially. This phenomenon was most pronounced for very shallow cases, where
bottom drag must be accounted for anyway. It was necessary to remove the
singularity in the expression for bottom drag to achieve fast convergence even
for deep back-wash.

Many types of numerical diffusion, smoothening and filtering will impact
wave breaking in a similar manner as the present method. For coarse grids the
bores that are developed will, in general, be wide, and there is a good possibility
that the breaking is not recognized. Figure 6, upper left panel, demonstrates
this phenomenon. Grid refinements, linked to a reduction in numerical diffusion,
will clear up the picture, as in the right panel.
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Figure 5: Time evolution of slide generated waves at Tafjord, 400 grid points
across the fjord. Contour increments 5m, thick lines for elevation.
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Time profiles of the surface elevation at fjord centre and oposite beach, curve
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