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Abstract

We consider a matrix approximation problem arising in the study of entanglement
in quantum physics. This notion represents a certain type of correlations between
subsystems in a composite quantum system. The states of a system are described
by a density matrix, which is a positive semidefinite matrix with trace one. The
goal is to approximate such a given density matrix by a so-called separable density
matrix, and the distance between these matrices gives information about the degree
of entanglement in the system. Separability here is expressed in terms of tensor
products. We discuss this approximation problem and show that it can be written as
a convex optimization problem with special structure. We investigate related convex
sets, and suggest an algorithm for this approximation problem which exploits the
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tensor product structure in certain subproblems. Finally some computational results
and experiences are presented. AMS classification: 15A90, 15A69 , 52A41, 90C25.

Keywords: Density matrix, entanglement, tensor product, matrix approximation,
positive semidefinite, convex sets.

1 Introduction

A current problem in physics is to give a precise characterization of entan-
glement in a quantum system. This describes types of correlations between
subsystems of the full quantum system that go beyond the statistical cor-
relations that can be found in a classical composite system. The interest is
motivated by ideas about utilizing entanglement to perform communication
and computation in qualitative new ways.

Although a general quantitative definition of the degree of entanglement of
a composite system does not exist, there is a generally accepted definition
that distinguishes between quantum states with and without entanglement.
The non-entangled states are referred to as separable states, and they are
considered to only contain classical correlations between the subsystems. In
addition, for some special cases a generally accepted quantitative measure of
entanglement exists.

The standard mathematical formulation of a composite quantum system is in
terms of density matrices. These describe the quantum states of either the full
system or one of its subsystems, and correspond to hermitian, positive semi-
definite operators that act on a complex vector space, either finite or infinite
dimensional. The density matrices also satisfy a normalization condition so
that they form a compact convex set in the vector space of hermitian matrices.
For a composite system the separable states form a subset of the density
matrices that is also compact and convex.

The physical interpretation of a density matrix is that it contains information
about the statistical distribution over measurable values for any observable
of the quantum system. Such an observable is represented by a hermitian
matrix A, with the eigenvalues corresponding to the possible outcomes of
a measurement. In particular, for a given quantum state represented by a
density matrix p, the expectation value of the observable A is defined by
the trace of the product, tr(Ap). A density matrix that is a projection on a
single vector is referred to as representing a pure state, while other density
matrices are representing mized states. A mixed state can be interpreted as
corresponding to a statistical distribution over pure states, and in this sense
includes both quantum uncertainty (through the pure states) and classical



uncertainty (through the statistical distribution).

To identify whether a state, i.e., a density matrix, is entangled or not is for
a general quantum state considered to be a hard problem [6]. However, some
general results exist concerning the separability problem, in particular a sim-
ple sufficient condition for entanglement has been found [12], and also general
schemes to test separability numerically have been suggested [4,10]. Other re-
sults refer to more special cases, for matrices of low dimensions or for restricted
subsets of density matrices [9]. There have also been attempts to more general
approaches to the identification of separability by use of the natural geometri-
cal structure of the problem, where the Euclidean metric (Hilbert-Schmidt or
Frobenius norm) of the hermitian matrices can be used to give a geometrical
characterization of the set of separable matrices [15,13].

In the present paper we focus on the geometrical description of separability and
consider the problem of finding the closest separable state (in the Frobenius
norm) to any given state, either entangled or non-entangled. We consider the
case of a quantum system with two subsystems, where the full vector space
is the tensor product of the vector spaces of the subsystems, and where the
vector spaces are finite-dimensional. The distance to the closest separable
state can be used as a measure of the degree of entanglement of the chosen
state, although there are certain conditions a good measure of entanglement
should satisfy, that are not obviously satisfied by the Euclidean norm, see [11].
However, beyond this question it seems that an efficient method to identify
the nearest separable state should be useful in order to identify the boundary
between the separable and entangled states.

In Section 2 we present the mathematical framework for our investigations.
The approach to the problem discussed in this paper is divided in two parts. In
the first part (Section 3) we use spectral methods to find a best approximation
to the closest separable state, where the separable state is constrained to a
certain form defined by the spectral decomposition of the given density matrix
(the DA-VA algorithm). In this case the evaluation of the approximate closest
separable state is straightforward, and an error bound can be found for the
estimated closest distance. In the second part (Sections 4,5 and 6) we consider
a systematic, iterative method to approach the closest separable state (the DA-
FW algorithm). This is a two step algorithm, where the first step is to optimize
the convex combination of a set of tensor product matrices. The second step
is to find a best new tensor product matrix to add to the existing set. These
two steps are implemented iteratively so that the expansion coefficients are
optimized each time a new product matrix is included and a new optimal
product matrix is found after optimization of the previous set.

In the case of the DA-FW algorithm we cannot give stringent limits on errors
or general bounds on convergence. However, we give some numerical examples



where the algorithm is used to find the closest separable state and to efficiently
identify the boundary between the separable and entangled states. We consider
this second part of the paper as the most interesting one, due to the lack of
efficient methods to identify entanglement.

To simplify the discussion we shall in this paper consider only real matrices,
with the density matrices restricted to be symmetric. However, the algorithms
to be discussed can equally well be applied to complex matrices, which are
more relevant for the application to quantum theory.

2 Formulation of the problem

We introduce first the mathematical framework needed to formulate the prob-
lem to be investigated. This includes a summary of the properties of density
matrices and separable density matrices as expressed through the definitions
and theorems given below. We end the section by formulating the problem to
be investigated, referring to this as the density approximation problem (DA).

To explain the notation used, we consider the usual Euclidean space IR" of
real vectors of length n equipped with the standard inner product and the
Euclidean norm denoted by || - ||. Vectors are treated as column vectors, and
the transpose of a vector z is denoted by x?. The convex hull of a set S is
the intersection of all convex sets containing S, and it is denoted by conv(S).
Some recommended references on convexity are [16] and [1]. We let I denote
the identity matrix (of order m, where n should be clear from the context).
The unit ball in R" is B, = {zx € R" : ||z| = 1}.

Let 8™ denote the linear space consisting of all the real symmetric n x n
matrices. This space has dimension n(n + 1)/2. In 8™ we use the standard
inner product

<A, B> = tI‘(AB) = Zaijbij (A, B e Sn)
0,7

Here tr(C) = > ¢;; denotes the trace of a matrix C. The associated matrix
norm is the Frobenius norm |[Allr = (3, ; a?j)l/ 2 and we use this norm for
measuring distance in the matrix approximation problem of interest. A matrix
A € 8" is positive semidefinite provided that 27 Az > 0 for all z € IR", and
this will be denoted by A = 0. We define the positive semidefinite cone

S'={AeS":A=0}



as the set of all symmetric positive semidefinite matrices of order n. St is
a full-dimensional closed convex cone in 8", so \jA; + A\ Ay € S) whenever
Ay, Ay € 87 and Ay, Ay > 0. For more about positive semidefinite matrices we
refer of the excellent book in matrix theory [7]. A density matriz is a matrix
in S with trace 1. We let 7" denote the set of all density matrices of order
n, so

Tr={AeS" tr(A) =1}.

The set 7" is convex and we can determine its extreme points. Recall that a
point = in a convex set C' is called an extreme point when there is no pair of
distinct points 1, 29 € C with = (1/2)xy + (1/2)z2.

Theorem 2.1 The set 1" of density matrices satisfies the following:

(1) T} is the intersection of the positive semidefinite cone ST and the hyper-
plane H ={A e 8" : (A, I) =1}.

(ii) T is a compact convex set of dimension n(n+1)/2 — 1.

(iii) The extreme points of T" are the symmetric rank one matrices A = xa™
where x € IR" satisfies ||x|| = 1. Therefore

T = comv({zz” : x € R", ||z| = 1}.

Proof. Property (i) follows from the definition of 77" as (A,1) = >, a; =
tr(A). So H is the solution set of a single linear equation in the space S”
and therefore H is a hyperplane. Thus, 7" is the intersection of two closed
convex sets, and this implies that 7" is also closed and convex. Moreover,
7" is bounded as one can prove that each A € 7" satisfies —1 < a;; < 1
for 1 < 4,5 < n (This follows from the facts that tr(A) = 1, el Ae; > 0
and (e; + e;)7 A(e; + ej) > 0 where e; denotes the i’th unit vector in IR".)
Since 77" lies in the hyperplane H, 7}" has dimension at most dim(S") — 1 =
n(n+1)/2 — 1. Consider the matrices (1/2)(e; +e;)(e; +e;)T (1 <i<j<n)
and e;el (1 < i < n). One can check that these n(n + 1)/2 matrices are
affinely independent (in the space &™) and they all lie in 77". It follows that
dim(7}) = n(n +1)/2 — 1. This proves Property (ii).

It remains to determine the extreme points of 7". Let A € 7". Since A is real
and symmetric it has a spectral decomposition

A=VDVT

where V' is a real orthogonal n x n matrix and D is a diagonal matrix with



the eigenvalues \q, Ao, ..., A\, of A on the diagonal. By partitioning V' by its
columns vy, vy, ..., v,, where v; is the eigenvector corresponding to \;, we get

i=1

Since A is positive semidefinite, all the eigenvalues are nonnegative. Moreover,
> Ai = tr(A) = 1. Therefore, the decomposition (1) actually represents A as
a convex combination of rank one matrices v;vl where ||v;]] = 1 (as V is
orthogonal). From this it follows that all extreme points of 7" are rank one
matrices 2T where ||z|| = 1. One can also verify that all matrices of this kind
are indeed extreme points, but we omit the details here. Finally, from convexity
theory (see [16]) the Krein-Milman theorem says that a compact convex set
is the convex hull of its extreme points which gives the final property in the
theorem. N

The theorem shows that the extreme points of the set of density matrices 7"
are the symmetric rank one matrices A, = zz? where ||z|| = 1. Such a matrix
A, is an orthogonal projector (so A2 = A,, and A, is symmetric) and A,y is
the orthogonal projection of a vector y onto the line spanned by .

Remark. The spectral decomposition (1) is interesting in this context. First,
it shows that any matrix A € 7" may be written as a convex combina-
tion of at most n extreme points. This improves upon a direct application of
Carathéodory’s theorem (see [16]) which says that A may be represented using
at most dim(7™)+1 = n(n+1)/2 extreme points. Secondly, (1) shows how we
can decompose A as a convex combination of its extreme points by calcula-
tion eigenvectors and corresponding eigenvalues of A. Finally, we remark that
the argument above based on the spectral decomposition also shows the well-
known fact that the extreme rays of the positive semidefinite cone correspond
to the symmetric rank one matrices.

We now proceed and introduce a certain subset of 7" which will be of main
interest below. Recall that if A € IRP*P and B € IR?*? then the tensor product
A ® B is the square matrix of order pg given by its (7, j)’th block a;;B (1 <
i,7 < p). A general reference on tensor products is [8].

For the rest of this section we fix two positive numbers p and ¢ and let n =
pg. We call a matrix A € R™" separable if A can be written as a convex
combination

N
A=)\ B;®C;

J=1

for some positive integer N, matrices B; € 77, C; € T (j < N) and nonneg-



ative numbers \; (j < N) with Z;yzl Aj = 1. Let 7% denote the set of all
separable matrices of order n. Note that n = pq, but p and ¢ are suppressed
in our notation. For sets U and W of matrices we let U ® W denote the set
of matrices that can be written as the tensor product of a matrix in U and

a matrix in W. The following theorem summarizes important properties of
e,

Theorem 2.2 The set T,"® of separable matrices satisfies the following:
: n,& n

(1) T € T7.

(ii) TV is a compact convex set and T,"® = conv(T? @ T7).

(i4i) The extreme points of T."% are the symmetric rank one matrices

A=(z@y)(zey)"

where x € IRP and y € IR? both have Fuclidean length one. So

T = com({(z @ y)(x @y)" 1w € By,y € By}

Proof. (i) Let B € 77 and C € T}, and let A = B ® C. Then, AT =
(B (O = BT@CT = B C = A, so A is symmetric. Moreover, A is
positive semidefinite as both B and C' are positive semidefinite (actually, the
eigenvalues of A are the products of eigenvalues of B and eigenvalues of C,
see e.g. [8]). Finally, tr(A) = tr(B)tr(C) = 1, so A € 7}". Since a separable
matrix is a convex combination of such matrices, and 7" is convex, it follows
that every separable matrix lies in 7"

(ii) By definition the set 7;"% is the set of all convex combinations of matrices
in 7P ® 7. From a basic result in convexity (see e.g. [16]) this means that
7" coincides with the convex hull of 77 ® 7. Consider now the function
g:TPxT7— 8" given by g(B,C) = B&C where B € §” and C' € §7. Then
g(TF x T}) = TP ® T and the function g is continuous. Therefore 7;"% is
compact as 7F x T} is compact (and the convex hull of a compact set is again
compact, [16]).

(iii) Let A be an extreme point of 7,". Then A = B&C for some B € TF and
C € T} (for a convex combination of more than one such matrix is clearly not
an extreme point). From Theorem 2.1 we have that B = 377", )\jxjx;‘r and C' =
Yh—1 MYy, for suitable vectors x; € IRP and y, € IR? with ||z;|| = [lye]| = 1,
and nonnegative numbers \; (j < m) and p (K <) with 35, A = > e = 1.



Using basic algebraic rule for tensor products we then calculate

A=BaC= (X" \ejal) ® Yoy iyl
=3k A2 ) @ (ki)
=ik A5 @ yi) (2] @y )
= 3k A (5 @ yi) (25 @ yi) T

Since >; ,, Ajux = 1 this shows that A can be written as a convex combination
of matrices of the form (z ® y)(z ® y)T where ||z]| = ||y|| = 1. Since A is an
extreme point we have m = r = 1 and we have shown the desired form of
the extreme points of 7,"%. Finally, one can verify that all these matrices are
really extreme points, but we omit these details. a

We now formulate the following density approzimation problem (DA), which
we shall examine further in subsequent sections of the paper,

(DA)  Given a density matriv A € T find a separable density matriz
X € TV which minimizes the distance || X — Al|p.

Separability here refers to the tensor product decomposition n = pq, as dis-
cussed above.

3 An approach using spectral methods

In this section we consider a vector approximation problem (VA) involving
tensor products which is related to (DA), and explain how this problem may
be used to find an approximate solution to (DA). These methods are based on
spectral decomposition and the singular value decomposition. We refer to [14]
for a treatment of the problem of approximating a given matrix by a tensor
product (in fixed dimensions). This problem is more general than (VA) and it
may also be solved using the singular value decomposition, see [14].

Let p and ¢ be fixed positive integers and let n = pq. It will be useful to
represent a vector z € IR" by a ¢ X p matrix in the following way: partition z
into p consecutive subvectors z¢ of length ¢ as follows



and let M(z) = [zl 22 ... zl’] be the ¢ x p matrix with columns 2!, 22,.. ., 2”.

Consider now a given vector b € B, so b € IR" and ||b|| = 1, and consider the
following vector approximation problem

(VA) min{le @y —b] : ¢ € B,y € B,}. (2)

This problem may be solved using the singular value decomposition (SVD) as
the following theorem shows.

Theorem 3.1 Let M(b) = USVT be a SVD of the q¢ x p matriz M(b). Let
o1(b) be the largest singular value of M(b) and uy and vy the corresponding
left and right singular vectors, i.e., the first column in U resp. V. Then

min{|[z @y —b|| : x € B,,y € By} =1/2(1 — 01(D))

and the minimum is attained for x = vy and y = uy.

Proof. Let x € By, y € B, and define r = min{p, ¢}. Let the singular values
of M(b) be

01209220

T

so 01 = oy(b). Partition b into p consecutive subvectors b’ of length ¢ (as done
for z above). Using the fact that the Frobenius norm is unitarily equivalent
and with a change of variables # = VZx, §j = Uy, we calculate
h(z,y) = [z @y —b]* = iy [lzsy — U'|1* = [lya” — M(b)|%

= [|UT (y2" — MO)V|7 = [(UTy)(VT2)" - Zff

= 1927 — X} = i (3755) + Zimy (@8 — 04)?

= 205 (%9;)? + Xy 07 — 2300, 0%

=2-2301 0%y

We have here used the facts that ||Z|| = |[UTz|| = ||z|| = 1 and ||g|| = [|VTy| =
Iyl = 1 and that S, 0% = [[M@®)3 = [b]® = 1. Since {UTz : ]| = 1}
(resp. {VTy : |ly|]| = 1}) is the unit ball, this proves that minimizing h(z,y)
for vectors x and y of unit length is equivalent to the problem

max{)_ o:%:7; : [|Z]] = |7l = 1}.
i=1



We now prove that this maximum equals ;. Using the Cauchy-Schwarz in-
equality we obtain

r T
Y oitigi < oy |z < oullZ|[|g] = o

i=1 i=1

and we have equality here if  and g are equal to the first coordinate vector e;
(in the respective spaces). This shows that the minimum of h(x,y) for ||z|| =
|ly]| = 1 equals 2 — 207 and that this minimum is attained for z = Ve; = vy
and y = Ue; = u; and the proof is complete. a

For each b € B,, we define
d() = min{llr @y — ]| : 7 € Byyy € By} = 21— 1 (8))

as the distance from b to the set of tensor products of vectors in B, and B,.
The minimum distance d(b) is clearly 0 (let b be a tensor product of unit
vectors). More interestingly, based on Theorem 3.1, we may also determine
the maximum distance.

Corollary 3.2 Let r = min{p, q}. Then

max{d(b) : b € B,} =/2 — %

This maximum distance is attained by the vector b € B,, with its nonzeros in
positions i +q(i — 1) (1 =1,2,...,r) and all these entries are equal to 1/+/r.

Proof. For each i < r let 0;(b) denote the ith largest singular value of the
matrix M (b). From Theorem 3.1 we see that

max{d(b) : b € B,} = max{y/2 — 20,(b) : b € B, }.

Now, when ||b]| = 1 we have 3!_,(0;(b))? = ||b||* = 1. The maximum above is
therefore obtained when all the singular values are equal, i.e., o;(b) = 1//r
(¢ < r). Thus the maximum is obtained when M (b) = ¥ where ¥ = [oy;] is
the ¢ x p matrix with entries o;; = 0;(b) (i < r) and 0;; = 0 for i # j. This
gives the desired vector b. N

The vector approximation problem (VA) is related to the density approxima-
tion problem (DA). We now describe a method based on (VA) for finding an
approximate solution to (DA). Although this method may not produce a best

10



approximation, it is fast in practice and also gives insight into the structure of
the approximation problem. The idea is to consider the spectral decomposi-
tion of A and approximate each eigenvector by a tensor product. We call the
method the DA-VA algorithm and it may be described as follows

The DA-VA algorithm.
1. Find a spectral decomposition of A given by A = VDVT where V

contains n orthonormal eigenvectors vy, vo, ..., v, as its columns and
D is a diagonal matrix with the eigenvalues Ay, A9, ..., A, on the
diagonal.

2. For i < n solve the (VA) problem of finding a best approximation
U; = x; ® y; to the eigenvector v; where z; € B, and y; € B,.
3. Let the approximation A to A be given by A = 7 | \j0,07 .

The matrix A found here is a separable density matrix because the eigenvalues
are nonnegative and sum to one (as A is positive semidefinite and >; \; =
tr(A) = 1). The main work in this algorithm is to find a spectral decomposition
of A and (as discussed above) to find the SVD of each of the matrices M (v;)
(i <mn).

The following theorem analysis the quality of the approximation A found by
the DA-VA algorithm. The error estimate is expressed in terms of the spectral

properties of the given matrix A.

Theorem 3.3 The DA-VA algorithm finds a separable density matriz A with
approzimation error bounded as follows

IA = Allr <> N
i=1
where \; (i < n) are the eigenvalues of A, €; = 2(1 — o1(v;) + /2 — 201 (v;))
and where o1(v;) is the largest singular value of the matriz M (v;) for i < n.

Proof. We first consider an approximation x + e to a vector x € B, and
estimate the approximation error for the associated outer product matrices:

I + €)@ + )T — 227|| = [lea” + ze” + ee |

< llelllzll + lzlllell + llell* = 2llell + llell*.

Let ©; = x; ® y; be the best tensor product approximation to the eigenvector
v; found in Step 2 of the DA-VA algorithm. Using the bound just calculated

11



and the bound in Theorem 3.1 we now obtain

1A = Allp = | 2 Mi(vio]” — 007 |lp < 5 Aol — 007 | r < TPy e

where ¢; is as described in the theorem. 0

4 An approach based on projection

In this section we study the (DA) problem and show that it may be viewed
as a projection problem associated with the convex set Tf’® introduced in
Section 2. This leads to a projection algorithm for solving (DA).

The (DA) problem is to find the best approximation (in Frobenius norm) to a
given density matrix A € 7)" in the convex set 7" @ consisting of all separable
density matrices. This corresponds to the optimization problem

inf{||X — A||r: X € T]"®}. (3)

In this problem the function to be minimized is f : S} — IR given by f(X) =
| X — Al . Now, f is strictly convex (on the underlying space S™) and therefore
continuous. Moreover, as shown in Theorem 2.2, the set 7" ® is compact and
convex, so the infimum is attained. These properties imply the following fact,
see also [1], [2], [16].

Theorem 4.1 For given A € T the approzimation problem (3) has a unique
optimal solution X*.

The unique solution X* will be called the projection of A onto 7;"®, and we
denote this by X* = Proj(A).

The next theorem gives a variational inequality characterization of the pro-
jection X* = Projg(A). Let Ext(7]"®) denote the set of all extreme points
of T,"®; these extreme points were found in Theorem 2.2. The theorem is
essentially the projection theorem in convexity, see e.g. [1]. We give a proof
following the lines of [1] (except that we consider a different inner product
space). The ideas in the proof will be used in our algorithm for solving (DA)
below.

Theorem 4.2 Let A € T and X € T"®. Then the following three state-

12



ments are equivalent:

(i) X = Projy(A).
(ii) (A= XY —X)<0 foralY € T%. (4)
(i) (A= XY — X) <0 forallY € Ext(T,"®).

Proof. Assume first that (ii) holds and consider Y € 7,®. Then we have

[A=Y|E =[(A-X)— (Y = X)[%
= A= X[F+ Y - X[ -2(4- XY - X)
> [|A = XIF + IV - X%
> [ A= X%

So, [|[A— X||p < |[A=Y||p for all Y € T® and therefore X = Proj(A) and
(i) holds.

Conversely, assume that (i) holds and let Y € 7;"®. Let 0 < A < 1 and
consider the matrix X(\) = (1 — A)X + AY. Then X(\) € 7,"® as 7" is
convex. Consider the function

g(A) = [[A = XWN[IF = (1= M)A = X) + MA=Y)|E
= (1= N4 = X[3+N[A—-Y[3 4+ 201 - \{A - X, A-Y).

So g is a quadratic function of A and its (right-sided) derivative in A = 0 is
G (0) = 24— X2+ 24— X, A—Y) = —2(A— XY — X)

and this derivative must be nonnegative as X(0) = X = Projgy(A). But this

gives the inequality (A — X,Y — X)) <0 so (ii) holds.

To see the equivalence of (ii) and (iii) recall from Theorem 2.2 that each
Y € Tf’® may be represented as a convex combination Y = 23‘:1 A;Y; where
Aj >0 (j <t)and }; \; = 1 and each Y} is a rank one matrix of the form
described in the theorem. Therefore

=Y M(A- XY - X),

from which the desired equivalence easily follows. N

13



We remark that the variational inequality characterization given in (4) is the
same as the optimality condition one obtains when formulation (DA) as the
convex minimization problem

min{(1/2)|A — X|%: X € T"}.

In fact, the gradient of f(X) = (1/2)||X — A]|% is Vf(X) = X — A and the
optimality characterization here is (Vf(X),Y — X) > 0 for all Y € 7", and
this translates into (4). In the next section we consider an algorithm for (DA)
that is based on the optimality conditions we have presented above.

5 The Frank-Wolfe method

We discuss how Theorem 4.2 may be the basis for an algorithm for solving the
(DA) problem. The algorithm is an adaption of a general algorithm in con-
vex programming called the Frank- Wolfe method (or the conditional gradient
algorithm), see [2]. This is an iterative algorithm where a decent direction is
found in each iteration by linearizing the objective function.

The main idea is as follows. Let X € 7;"® be a candidate for being the
projection Projg(A). We check if X = Projg(A) by solving the optimization
problem

(X)) :=max{{A - X,Y — X): Y € Ext(7;"%)}. (5)

We discuss how this problem can be solved in the next section.
The algorithm for solving (DA) may be described in the following way.

The DA-FW algorithm.

1. Choose an initial candidate X € 7,"%.

2. Optimality test: solve the corresponding problem (5).

3. If v(X) <0, stop; the current solution X is optimal. Otherwise, let
Y™ be an optimal solution of (5). Determine the matrix X’ which is
nearest to A on the line segment between X and Y™*.

4. Replace X by X’ and repeat Steps 1-3 until an optimal solution has
been found.

We now discuss this algorithm in some detail. Consider a current solution
X € T)"® and solve (5) as in Step 2. There are two possibilities. First, if
7¥(X) <0, then, due to Theorem 4.2, we must have that X = Proj(A). Thus,
the (DA) problem has been solved. Alternatively, v(X) > 0 and we have found

14



Y* € Ext(T{"®) such that (A—X,Y*—X) > 0. This means that ¢, (0) < 0 for
the function ¢ introduced in the proof of Theorem 4.2: g(A\) = |4 — X (\)||%
where X(\) = (1 — A\)X + AY*. Let A* be an optimal solution in the (line
search) problem min{g(\) : 0 < A < 1}. Since g is a quadratic function in one
variable, this minimum is easy to find analytically. Since ¢’ (0) < 0, we have
that \* > 0. The corresponding matrix X’ = X (A*) is the projection of A
onto the line segment between X and Y*, and (by convexity) this matrix lies
in 7". In the final step we replace our candidate matrix X by X’ and repeat
the whole procedure for this new candidate.

The convergence of this Frank-Wolfe method for solving (DA) is assured by
the following theorem (which follows from the general convergence theorem in

Chapter 2 of [2]).

Theorem 5.1 The DA-FW algorithm produces a sequence of matrices { X ¥}
that converges to Projg(A).

Note here, however, that the method is based on solving the subproblem (5)
in each iteration. We discuss this subproblem in the next section.

6 The projection subproblem

The DA-FW algorithm is based on solving the subproblem (5). This is the
optimality test of the algorithm. We now discuss an approach to solving this
problem.

Consider problem (5) for a given X (and A, of course). Letting B = A — X
and separating out the constant term (B, X) we are lead to the problem

n(B) := max{(B,Y) : Y € Ext(7*%)}. (6)

Based on Theorem 2.2 we know that the extreme points of 7" are the rank
one separable density matrices (z ® y)(z ® y)T where z € IR? and y € IR?
satisfy ||z|| = |ly|| = 1. So problem (6) becomes

max{g(z,y) - ||zl = [lyl = 1}

where we define

g(z,y) = (B, (z@y)(z®y)").

This function g is a multivariate polynomial of degree 4, i.e. it is a sum of terms
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of the form ¢;;kz;2;y,y. One can verify that ¢ may not be concave (or convex).
Therefore it seems difficult to find a global maximum of g subject to the two
given equality constraints. However, the function g has a useful decomposable
structure in the two variables x and y which leads to a practical and fast
algorithm for finding a local maximum of g.

The idea is to use a block coordinate ascent approach (also called the nonlinear
Gauss-Seidel method, see [2]) to the maximization of g. This iterative method
consists in alternately fixing x and y and maximize with respect to the other
variable. We now show that the corresponding subproblems (when either x or
y is fixed) can be solved by eigenvalue methods.

First, by the mixed-product rule for tensor products, that

Yll o }/lp
Y=oy (zoy" = @) o (yy") = :
Y;ﬂ ' Y;Jp

where Yi; = zz;(yy") € R (4,5 < p). Partition the fixed matrix B con-
formly as

By - Blp
B = :
Bpl ' Bpp

where each B;; is a ¢ x ¢ matrix. Note here that B;; = B}-; (1,7 < p)as B is
symmetric. With this block partitioning we calculate

9(@,y) = (B,Y) =3 j<,(Bij, Yij)
= Zi,j§p<Bl’j7 T;xj (ny»
=2 ij<p (B, ny>xj
= 2" B(y)x

where B(y) = [bi;(y)] is a p x p matrix with entries by;(y) = (B, yy”) =

y” B;jy. The matrix B(y) is symmetric.
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Next we find another useful expression for g(x,y).

g(z,y) = 2T B(y)x
=2 ij<p Z;ij (y)z;
=Yii<p ! Bijy - wix;

= yT<Zi,j§p xiijij)y = yTB(:c)y

where we define the matrix B(z) by B(z) = ¥
matrix is symmetric as B;; = B;‘.Fi .

ij<p TiTjBij. Note that this

We now use these calculations to solve the mentioned subproblems where x
respectively y is fixed.
Theorem 6.1 The following equations hold

n(B) = max,, g(z,y)

) : Myl =1}
(@) : [zl = 15

= max{)\max(é
(B

= max{ Az

Moreover, for given x, max, g(x,y) is attained by a normalized eigenvector of
B(z), and for fived y, max, g(x,y) is attained by a normalized eigenvector of

B(y).

Proof. From equations (7) and (8) we get

n(B) = max,, g(z,y)
= MaX|y|=1 MAX]||z|=1 fo?(y)x

= Max||=1 maxjy|=1 y" B(z)y.

We now obtain the theorem from the following general fact: for every real
symmetric matrix C' we have that maxj, |-, 202z = Mnaz(C) and that a max-
imizing z is a normalized eigenvector of C' corresponding to A, (C). N

Due to this theorem the block coordinate ascent method applied to the pro-
jection subproblem (5) gives the following scheme.
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Algorithm: Eigenvalue maximization.
1. Choose an initial vector y of length one.
2. Repeat the following two steps until convergence (or g no
longer increases).
2a. Let x be a normalized eigenvector corresponding to the largest
eigenvalue of the matrix B(y).
2b. Let y be a normalized eigenvector corresponding to the largest
eigenvalue of the matrix B(z).

We now comment on the convergence issues for this algorithm. The con-
structed sequence of vectors {(z*), y*))} must have a convergent subsequence.
Moreover, the sequence {g(z*),y*))} is convergent. These facts follow from
standard compactness/continuity arguments since the direct product of the
unit balls is compact, g is continuous, and the sequence {g(z®),y*))} is non-
decreasing. If we assume that each of the coordinate maxima found by the al-
gorithm is unique (which seems hard to verify theoretically), then it is known
that every limit point of {(z®, y*))} will be a local maximum of g (see Propo-
sition 2.7.1 in [2]).

It should be remarked here that there are some remaining open questions
concerning convergence of our method. However, in view of the hardness of
the DA problem (shown to be NP-hard in [6]) one can expect that solving
the projection subproblem (5) is also hard. We should therefore not expect
anything more than local maxima in general, although we may be lucky to
find a global maximum of ¢ in certain cases. We refer to Section 8 for some
preliminary computational results for our methods.

A final remark is that it may also be of interest to consider other numerical
approaches to the problem of maximizing g than the one proposed here. We
have not tried this since the described eigenvalue approach seems to work
quite well.

7 Improvement of the DA-FW algorithm

The DA-FW algorithm, as described in Section 5, turns out to show very slow
convergence. In this section we discuss a modification of the method which
improves the convergence speed dramatically.

The mentioned slow convergence of the DA-FW algorithm may be explained
geometrically as follows. Assume that the given matrix A is non-separable,
and that the current separable matrix X is not on the boundary of the set
Tf’® of separable matrices. To find a separable matrix closer to A, in this case,
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a good strategy would be to move in the direction A— X until the boundary is
reached. The algorithm moves instead in a direction Y — X which is typically
almost orthogonal to A— X, because the product matrix Y (an extreme point)
will typically be far away from X.

The basic weakness of the algorithm is that from iteration k to k+ 1 it retains
only the current best estimate X, throwing away all other information about
X. An alternative approach, which turns out to allow a much faster conver-
gence, is to retain all information, writing X explicitly as a convex combination
of the previously generated product matrices Yy,

where A\, > 0 and >, A\, = 1. After generating the next product matrix Y,
as a solution of the optimization problem (5) we find a new best convex com-
bination varying all the coefficients A\, r =1,... k4 1.

An obvious modification of this scheme is to throw away in each iteration
every Y, getting a coefficient A\, = 0. This means in practice that the number
of product matrices retained does not grow too fast.

Thus, we are faced with the quadratic programming problem to minimize the
squared distance ||[A — X||? as a quadratic polynomial in the coefficients .
We have implemented a version of the conjugate gradient method (see [5]) for
this problem. Theoretically, in the absence of rounding errors and inequality
constraints, this method converges in a finite number of steps, and it also works
well if the problem is degenerate, as is likely to happen here. The algorithm
was adapted so it could handle the linear constraints \; > 0 for each ¢ and
> A = 1, but we omit describing the implementation details here. (Several
fast algorithms for quadratic optimization with linear inequality constraints
are available. )

8 Computational results

In this section we present preliminary results for the modified DA-FW algo-
rithm as described in Section 7. Moreover we present some results and experi-
ences with the eigenvalue maximization algorithm (see Section 6), and, finally,
we discuss an application which may serve as a test of our methods.

We have also implemented the DA-VA algorithm (see Section 3), but find that
the first approximation it gives is no better than the approximation obtained
after the first iteration of the DA-FW algorithm. We conclude that the DA-VA
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algorithm is not useful as a numerical method for solving the approximation

problem (DA).

8.1 FEigenvalue mazximization

We have tested the performance of the eigenvalue maximization algorithm on
a number of randomly generated matrices, and on some special matrices used
in other calculations. We ran the algorithm for each input matrix a number of
times with random starting vectors x and y, comparing the maximum values
and maximum points found.

For completely random matrices we often find only one maximum. Sometimes
we find two maximum points with different maximum values. In certain sym-
metric cases it may happen that two or more maximum points have the same
maximum value. Thus, we are not in general guaranteed to find a global max-
imum, but we always find a local maximum.

One possible measure of the speed of convergence of the algorithm is the
absolute value of the scalar product (z ® y,z’ ® '), where z,y are input
vectors and z’,y’ output vectors in one iteration. It takes typically about 5
iterations before this overlap is about 107 from unity (when p = ¢ = 3),
which means that the convergence to a local maximum is fast. The algorithm
involves the diagonalization of one p X p matrix and one ¢ X ¢ matrix for each
iteration, and in addition it may happen that more iterations are needed when
the dimensions increase.

8.2 Results with the present program version

In Table 1 we show the performance of the modified DA-FW algorithm for
different dimensions of the problem. We use the maximally entangled matri-
ces in the given dimensions, as we know the distance to the closest separable
matrix in these special cases. The number of iterations of the main algorithm
is set to 1000, and the fixed number of iterations used in the eigenvalue max-
imization algorithm (see Section 6) is set to 20. The tabulated time ¢ is the
total execution time on one computer, and the tabulated error is the difference
between the calculated distance and the true distance.

The main conclusion we may draw is that the accuracy obtained for a fixed
number of iterations decreases with increasing dimension. It should be noted
that the rank one matrices used here are somewhat special, and that higher
rank matrices give less good results. We want to emphasize that this is work in
progress, and some fine tuning remains to be done. Nevertheless, we conclude
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p,qg m=pqg t(s) error

2 4 312 3-10713
3 9 155 3-10712
4 16 127 3-10°8
5 25 773 1-1076
6 36 2122  5-1076
7 49 3640 1.0-107°
8 64 4677 1.5-107°
9 81 5238 22.107°

10 100 6566 3.5-107°
Table 1
Performance of the modified DA-FW algorithm

at this stage that the method can be used for quite large matrices, giving
useful results in affordable time.

8.8 An application

In the special cases p = ¢ = 2 and p = 2, ¢ = 3 there exists a simple necessary
and sufficient criterion for separability (see [12], [9]). We have checked our
method against this criterion for p = g = 2.

Figure 1 shows a two-dimensional cross section of the 15 dimensional space
of complex 4 x 4 density matrices. The section is defined by three matrices:
a maximally entangled matrix, called a Bell matrix; the normalized unit ma-
trix 1 /4; and a rank one product matrix. The plot shows correct distances
according to the Frobenius norm.

The algorithm finds the minimal distance from a given matrix A to a separable
matrix. We choose an outside matrix A and gradually mix it with (1/4)7
(where [ is the identity matrix of order 4), until we find an A" = AA + (1 —
A)(1/4)I, with 0 < X < 1, for which the distance is less than 5 - 107°. Then
we plot A’ as a boundary point.

When we start with A outside, the closest separable matrix does not in general
lie in the plane plotted here. Hence, we may certainly move in the plotting
plane as much as the computed distance without crossing the boundary we
are looking for. In this way we get very close to the boundary, approaching it
from the outside, in very few steps.
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Fig. 1. The boundary of the set of separable matrices.

In Figure 1, the curved line is generated from the necessary, and in this case
sufficient, condition for separability. All matrices below this line are separable,
while the others are not. The 6 plotted boundary points are computed by our
algorithm. The matrices to the right of the vertical straight line and below the
skew straight line are positive definite, and the Bell matrix is located where
the two lines cross.
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