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ON A TWO–SIDEDLY DEGENERATE CHEMOTAXIS MODEL
WITH VOLUME–FILLING EFFECT

M. BENDAHMANE, K. H. KARLSEN, AND J. M. URBANO

Abstract. We consider a fully parabolic model for chemotaxis with volume-
filling effect and a nonlinear diffusion that degenerates in a two-sided fashion.

We address the questions of existence of weak solutions and of their regularity

by using, respectively, a regularization method and the technique of intrinsic
scaling.

1. Introduction

Chemotaxis is a property of certain living organisms to be repelled or attracted
to chemical substances. In [16, 17], Keller and Segel introduced a model for aggre-
gation of the cellular slime mold Dictyostelium discoideum due to cyclic Adenosine
Monophosphate (cAMP), which is an attractive chemical signal for the amoebae.

In this paper, we study the following model for chemotactic movement:

(1.1)

{
∂tu− div (a(u)∇u− χuf(u)∇v) = 0 in QT ,

∂tv − d∆v = g(u, v) in QT ,

where QT := Ω× (0, T ), T > 0 is a fixed time, and Ω is a bounded domain in RN ,
with smooth boundary ∂Ω and outer unit normal η.

We augment (1.1) with no-flux boundary conditions on ΣT := ∂Ω× (0, T ),

(1.2) a(u)
∂u

∂η
= 0,

∂v

∂η
= 0,

and initial distributions in Ω:

(1.3) u(x, 0) = u0(x), v(x, 0) = v0(x).

In the chemotaxis model above, u = u(x, t) represents the density of the cell-
population, v = v(x, t) represents the chemoattractant (repellent) concentration,
a(u) is a density-dependent diffusion coefficient, and d is a constant. Furthermore,
f(u(x, t)) is a density dependent probability that a cell in position x at time t
finds space in its neighboring location. The cells are attracted by the chemical and
χ denotes their chemotactic sensitivity. The function g(u, v) describes the rates of
production and degradation of the chemoattractant; here, we assume it is the linear
function

g(u, v) = αu− βv, α, β ≥ 0.
This assumption has also been used in related literature (see, e.g., [12]).
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In this work, we assume at first that there exists a maximal density of cells,
the threshold um, such that f(um) = 0. Intuitively, this amounts to a switch to
repulsion at high densities, sometimes referred to as volume–filling effect or preven-
tion of overcrowding (see [11]). Secondly, we assume that the density-dependent
diffusion coefficient a(u) degenerates for u = 0 and u = um. This means that there
is no diffusion when u approaches values close to the threshold (see [20]) and in the
absence of cell-population. This interpretation was proposed in [4] where the diffu-
sion coefficient takes the form a(u) = εu(1− u), for ε > 0. The main advantages of
this nonlinear diffusion model seem to be related to the finite speed of propagation
(which is more realistic in biological applications than infinite speed) and the as-
ymptotic behavior of solutions (see [4], for a discussion of this and related aspects of
the model). The threshold condition has a clear biological interpretation: the cells
stop to accumulate at a given point of Ω after their density attains certain threshold
values and the chemotactic cross diffusion h(u) = χuf(u) vanishes identically when
u ≥ um.

Defining new variables through

ũ =
u

um
, ṽ = v,

we have ũm = 1. After performing this linear transformation, we may thus omit
the tildes in the notation and assume from now on, without loss of generality, that
um = 1. A typical example of f in this case is

f(u) = 1− u.

More generally, in this work we assume that the function f in (1.1) satisfies

(1.4) f ∈ C2([0, 1]) and f(1) = 0.

Regarding the nonlinear diffusion coefficient a, we assume that

a ∈ C1([0, 1]), a(0) = a(1) = 0 and a(s) > 0 for 0 < s < 1.(1.5)

This assumption will be used to prove the existence of weak solutions. To ensure
that the weak solutions are Hölder continuous, further assumptions on a will be
needed, namely that there exists a number δ ∈ (0, 1/2) such that for some constants
1 < C0 ≤ C1

C0φ1(s) ≤ a(s) ≤ C1φ1(s), for all s ∈ [0, δ],

C0φ2(1− s) ≤ a(s) ≤ C1φ2(1− s), for all s ∈ [1− δ, 1],
(1.6)

where φ1(s) = sp1 and φ2(s) = sp2 for some 0 < p1 < p2. A typical example of a
function satisfying (1.6) is provided by any a ∈ C1 for which

a(s) = Csp1 for s ∈ [0, δ] and a(s) = C(1− s)p2 for s ∈ [1− δ, 1],

for some constant C > 1.
The case when a ≡ 1, f ≡ 1 in (1.1) has been the object of extensive research;

the existence and uniqueness of solutions, as well as their asymptotic behavior,
have been studied by several authors. In [27], the author obtained the local in
time existence of a unique, positive, classical solution, together with results on the
blow-up behavior of solutions. In [22], the existence of an exponential attractor is
proved for the corresponding dynamical system. In [10], the authors proved in the
case Ω ⊂ R2 is a disk, u0, v0 are radial functions, and ‖u0‖L1 is sufficiently large,
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that ‖u(t)‖L2 blows up in finite time, hence that (1.1) does not admit a global
solution in this case.

Assuming that a is degenerate only at one point (u = 1), existence and unique-
ness results were established recently by Laurençot and Wrzosek [20] using the
abstract theory developed in [2]. To contrast with the work [20], we prove herein
the existence of weak solutions for the degenerate system (1.1)-(1.3), which has a
two-point degeneracy (u = 0, 1), using a Schauder fixed-point argument on a reg-
ularized problem and the compactness method. Additionally, we prove that these
weak solutions are in fact Hölder continuous.

Before stating our main results, we give the definition of a weak solution.

Definition 1.1. A weak solution of (1.1)-(1.3) is a pair (u, v) of functions satisfying
the following conditions:

0 ≤ u(x, t) ≤ 1 and v(x, t) ≥ 0, for a.e. (x, t) ∈ QT ,

u ∈ Cw(0, T, L2(Ω)), ∂tu ∈ L2(0, T ; (H1(Ω))′), u(0) = u0,

A(u) :=
∫ u

0

a(s) ds ∈ L2(0, T ;H1(Ω)),

v ∈ L∞(QT ) ∩ Lp(0, T ;W 2,p(Ω)) ∩ C(0, T, L2(Ω)), for all p > 1,

∂tv ∈ L2(QT ), v(0) = v0,

and, for all ϕ,ψ ∈ L2(0, T ;H1(Ω)),∫ T

0

〈∂tu, ϕ〉 dt+
∫∫

QT

a(u)∇u · ∇ϕdx dt−
∫∫

QT

χuf(u)∇v · ∇ϕdx dt = 0,∫∫
QT

∂tv ψ dx dt+
∫∫

QT

d∇v · ∇ψ dx dt =
∫∫

QT

g(u, v)ψ dx dt,

where Cw(0, T, L2(Ω)) denotes the space of continuous functions with values in (a
closed ball of) L2(Ω) endowed with the weak topology, and 〈·, ·〉 denotes the duality
pairing between H1(Ω) and (H1(Ω))′.

Our first result is the following existence theorem for weak solutions.

Theorem 1.1. Assume (1.4) and (1.5) hold. If u0, v0 ∈ L∞(Ω) with 0 ≤ u0 ≤ 1
and v0 ≥ 0 a.e. in Ω, then there exists a weak solution to the degenerate system
(1.1)-(1.3) in the sense of Definition 1.1.

A major difficulty for the analysis of the system (1.1)-(1.3) is the strong degener-
acy of the diffusion term. To handle this difficulty, we replace the original diffusion
term a(u) by aε(u) = a(u)+ε and consider, for each fixed ε > 0, the non-degenerate
problem

∂tuε − div (aε(uε)∇uε − χuεf(uε)∇vε) = 0 in QT ,

∂tvε − d∆vε = g(uε, vε) in QT ,

aε(uε)
∂uε

∂η
= 0,

∂vε

∂η
= 0 on ΣT ,

uε(x, 0) = u0(x), vε(x, 0) = v0(x) for x ∈ Ω.

(1.7)

To prove Theorem 1.1 we first prove existence of solutions to the non-degenerate
problem (1.7) by applying the Schauder fixed-point theorem (in an appropriate
functional setting). Then we send the regularization parameter ε to zero to produce
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a weak solution of the original system (1.1)-(1.3) as the limit of a sequence of such
approximate solutions. Convergence is achieved by means of a priori estimates and
compactness arguments.

Our second result is the following regularity theorem for weak solutions.

Theorem 1.2. Under assumptions (1.4)-(1.6), any weak solution u of the system
(1.1)-(1.3) is locally Hölder continuous.

The proof of Theorem 1.2 is based upon the use of intrinsic scaling, a powerful
technique in the framework of regularity theory for degenerate and singular PDEs.
Continuity results for weak solutions follow from a fine analysis of the behaviour
of their oscillation in a sequence of nested and shrinking cylinders, namely showing
that it converges to zero. When it is possible to determine quantitatively how this
happens a modulus of continuity is derived. Intrinsic scaling amounts to analyze
each equation in a geometrical framework related to its structure, in the sense
that the iteration process just described must be developed in cylinders whose
dimensions have to be rescaled according to the degeneracies of the PDE. This will
reflect the fact that the diffusion processes in the equation evolve in a time scale
determined instant by instant by the solution itself, so that, loosely speaking, it
can be regarded as the heat equation in its own intrinsic time-configuration. For
a modern account of the theory and related matters, see the updated survey [7];
recent applications in the context of the modelling of phase transitions or the porous
media equation with variable exponent of nonlinearity are to be found in [8] and
[9], respectively.

The same type of two-sided degeneracy treated here occurs in a model for the
flow of two immiscible fluids in a porous medium (cf. [1] and the references therein).
The results obtained build upon the analysis developed in [26] for this model, where
it is shown that weak solutions are locally Hölder continuous if a(·) decays like a
power at both degeneracies. The novelty in this work is the additional lower-order
term div (χuf(u)∇v). It is shown that this term satisfies the appropriate growth
conditions due to its special form and the available regularity for v.

We have not been able to prove uniqueness for our model because of the presence
of a nonlinear degenerate diffusion term and a nonlinear transport term. For their
one-point degenerate model, Laurençot and Wrzosek overcome this kind of difficulty
in [20] by imposing the following condition:

(1.8) (f(u) + uf ′(u))2 ≤ C2a(u), ∀u > 0, for some constant C2 > 0.

In this case, uniqueness can be proved using a duality approach. As already men-
tioned, in [20] the diffusion term a vanishes only at the threshold value u = 1, and
typical examples of a and f are

a(s) = (1− s)n and f(s) = s(1− s)m,

for m ≥ 1 + n/2 and m ≥ 2.
A successful technique for proving uniqueness of (entropy weak) solutions to

degenerate parabolic equations is based on Kružkov’s method [23] for obtaining
the L1 contraction property of scalar conservation laws, see Carrillo [5] and also
[14, 3]. Related to this approach we want to mention that in [4] the authors prove,
among other things, a uniqueness result for a degenerate parabolic-elliptic system
set in an unbounded domain. The method used in [4], which relies on a continuous
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dependence estimate from [14], does not apply to our problem, because it is difficult
to bound ∆v in L∞(QT ) due to the parabolic nature of the v-equation in (1.1)-(1.3).

The plan of the paper is as follows: In Section 2 we prove existence of solutions
to the non-degenerate problem. The main results are proved in Section 3 (Theorem
1.1) and Section 4 (Theorem 1.2).

2. Existence of solutions for the non-degenerate problem

In this section we prove, for each fixed ε > 0, the existence of solutions to the
non-degenerate problem (1.7), by applying the Schauder fixed-point theorem. For
this purpose, we introduce the following closed subset of the Banach space L2(QT ):

K = {u ∈ L2(QT ) : 0 ≤ u(x, t) ≤ 1, for a.e. (x, t) ∈ QT }.

In this section, we omit the dependence of the solutions on the parameter ε.

2.1. Weak solution to the non-degenerate problem. With u ∈ K fixed, let v
be the unique solution of the parabolic problem

(2.1)

∂tv − d∆v = g(u, v), in QT ,
∂v

∂η
= 0 on ΣT , v(x, 0) = v0(x) for x ∈ Ω.

Given the function v, let u be the unique solution of the quasilinear parabolic
problem

(2.2)

 ∂tu− div (aε(u)∇u− χuf(u)∇v) = 0, in QT

aε(u)
∂u

∂η
= 0 on ΣT , u(x, 0) = u0(x) for x ∈ Ω.

In (2.1) - (2.2), v0 and u0 are functions satisfying the hypothesis of Theorem 1.1.
Note that for any fixed u ∈ K, problem (2.1) is uniformly parabolic, so we have

immediately the following lemma (see [18]).

Lemma 2.1. If v0 ∈ L∞(Ω), then (2.1) has a unique solution v ∈ L∞(QT ) ∩
Lp(0, T ;W 2,p(Ω)) ∩ C(0, T ;L2(Ω)), for all p > 1, satisfying in particular

‖v‖L∞(QT ) + ‖v‖L∞(0,T ;L2(Ω)) ≤ C,

‖v‖L2(0,T ;H1(Ω)) ≤ C,

‖∂tv‖L2(QT ) ≤ C,

(2.3)

where C > 0 is a constant which depends only on ‖v0‖L∞(Ω), α, β, and meas(QT ).

Regarding the quasilinear problem (2.2) we have the following lemma (see [18]):

Lemma 2.2. If u0 ∈ L∞(Ω), then, for any ε > 0, there exists a unique weak
solution u ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) to problem (2.2).

We establish in the next subsection a fixed-point theorem for (2.1)-(2.2) by in-
troducing a map Θ : K → K such that Θ(u) = u, where u solves (2.2), i.e., Θ is
the solution operator of (2.2) associated with the coefficient u and the solution v
coming from (2.1).
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2.2. The fixed-point method. By using the Schauder fixed-point theorem, we
prove that the map Θ has a fixed point. First, let us show that Θ is a continuous
mapping. Let (un)n be a sequence in K and u ∈ K be such that un → u in L2(QT )
as n → ∞. Define un = Θ(un), i.e., un is the solution of (2.2) associated with un

and the solution vn of (2.1). The objective is to show that un converges to Θ(u) in
L2(QT ). We start with the following lemma:

Lemma 2.3. The solutions un to problem (2.2) satisfy

(i) 0 ≤ un(x, t) ≤ 1, for a.e. (x, t) ∈ QT .
(ii) The sequence (un)n is bounded in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)).
(iii) The sequence (un)n is relatively compact in L2(QT ).

Proof. (i) We introduce the function h(s) = sf(s), for s ∈ R, and choose a Lipschitz
continuous extension h̃ of h satisfying

h̃(s) = sf(s) if 0 ≤ s ≤ 1, h̃(s) = h(0) = 0 if s ≤ 0, and h̃(s) = h(1) = 0 if s ≥ 1.

We then replace the equation in (2.2) by

(2.4) ∂tun − div (aε(un)∇un − χh̃(un)∇vn) = 0, in QT .

Multiplying (2.4) by −u−n = un−|un|
2 and integrating over Ω, we get

1
2
d

dt

∫
Ω

∣∣u−n ∣∣2 dx+
∫

Ω

aε(un)∇u−n · ∇u−n dx = χ

∫
Ω

h̃(un)∇vn · ∇u−n dx.

Since h̃(s) = 0 for s ≤ 0 and according to the positivity of the second term of the
left-hand side, we obtain

1
2
d

dt

∫
Ω

∣∣u−n ∣∣2 dx ≤ 0.

Next, we multiply (2.4) by (un − 1)+ and integrate over Ω. The result is
1
2
d

dt

∫
Ω

∣∣(un − 1)+
∣∣2 dx+

∫
Ω

aε(un)∇(un − 1)+ · ∇(un − 1)+ dx

= χ

∫
Ω

h̃(un)∇vn · ∇(un − 1)+ dx.
(2.5)

Since h̃(s) = 0 for s ≥ 1, we obtain from (2.5)
d

dt

∫
Ω

∣∣(un − 1)+
∣∣2 dx ≤ 0.

Using that u0 ≤ 1 in Ω, we conclude from this un(t, ·) ≤ 1 in Ω for all t ∈ (0, T ).
(ii) We multiply the equation (2.4) by un and integrate over Ω to obtain

(2.6)
1
2
d

dt

∫
Ω

|un|2 dx+
∫

Ω

aε(un) |∇un|2 dx = χ

∫
Ω

unf(un)∇vn · ∇un dx.

An integration by parts, exploiting the zero Neumann boundary condition for v and
the boundedness of u, reveals that the right-hand side is bounded independently of
n, so that

1
2
d

dt

∫
Ω

|un|2 dx+ ε

∫
Ω

|∇un|2 dx ≤ C,

for some constant C independent of n. This completes the proof of (ii).
Finally, (iii) is a consequence of (ii) and the uniform boundedness of (∂tun)n in

L2(0, T ; (H1(Ω))′). �
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The following lemma contains a classical result (see [18]).

Lemma 2.4. There exists a function v ∈ L2(0, T ;H1(Ω)) such that the sequence
(vn)n converges strongly to v in L2(0, T ;H1(Ω)).

Summarizing our findings so far, from Lemmata 2.2, 2.3 and 2.4, there exist
functions u, v ∈ L2(0, T ;H1(Ω)) such that, up to extracting subsequences if neces-
sary,

un → u in L2(QT ) strongly, vn → v in L2(0, T ;H1(Ω)) strongly,

and from this the continuity of Θ on K follows.
We observe that, from Lemma 2.3, Θ(K) is bounded in the set

(2.7) W =
{
u ∈ L2(0, T ;H1(Ω)) : u ∈ L2(0, T ; (H1(Ω))′)

}
.

By the results of [25], W ↪→ L2(QT ) is compact, thus Θ is compact. Now, by
the Schauder fixed point theorem, the operator Θ has a fixed point uε such that
Θ(uε) = uε. This implies that there exists a solution (uε, vε) of∫ T

0

〈∂tuε, ϕ〉 dt+
∫∫

QT

aε(uε)∇uε · ∇ϕdx dt

−
∫∫

QT

χuεf(uε)∇vε · ∇ϕdx dt = 0,
(2.8)

∫∫
QT

∂tvε ψ dx dt+
∫∫

QT

d∇vε · ∇ψ dx dt =
∫∫

QT

g(uε, vε)ψ dx dt,(2.9)

for all ϕ,ψ ∈ L2(0, T ;H1(Ω)).

3. Existence of weak solutions

We have shown in Section 2 that the non-degenerate problem (1.7) admits a
solution (uε, vε). The goal in this section is to send the regularization parameter
ε to zero in sequences of such solutions to obtain weak solutions of the original
system (1.1)-(1.3). Note that, for each fixed ε > 0, we have shown the existence of
a solution (uε, vε) to (1.7) such that

(3.1) 0 ≤ uε(x, t) ≤ 1 and 0 ≤ vε(x, t),

for a.e. (x, t) ∈ QT .
First, using the second equation of (1.7) and (3.1), it is easy to see that the first

two estimates of (2.3) are independent of ε:

‖vε‖L∞(QT ) + ‖vε‖L∞(0,T ;L2(Ω)) ≤ C,

‖vε‖L2(0,T ;H1(Ω)) ≤ C,
(3.2)

where C > 0 is a constant not depending on ε.
Note that, from (3.1) and (3.2), the right-hand side of the second equation in

the system (1.7) is bounded. Therefore, from classical results on Lp regularity, we
have

‖∂tvε‖Lp(QT ) + ‖vε‖Lp(0,T ;W 2,p(Ω)) ≤ C, 1 ≤ p <∞,

where C > 0 is a constant independent of ε.
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Let Aε(s) = A(s) + εs and A(s) =
∫ s

0
A(r) dr. Taking ϕ = Aε(uε) as a test

function in (2.8), we obtain

sup
0≤t≤T

∫
Ω

A(uε)(x, t) dx+
∫∫

QT

|∇A(uε)|2 dx dt

+ ε sup
0≤t≤T

∫
Ω

|uε(x, t)|2

2
dx+ ε

∫∫
QT

|∇uε|2 dx dt ≤ C,

(3.3)

for some constant C > 0 independent of ε, where we have used (3.2) and the uniform
L∞ bound on uε.

Let ϕ ∈ L2(0, T ;H1(Ω)). Using the weak formulation (2.8), (3.2), and (3.3), we
obtain ∣∣∣∣∣

∫ T

0

〈∂tuε, ϕ〉 dt

∣∣∣∣∣
≤ ‖∇A(uε)‖L2(QT ) ‖∇ϕ‖L2(QT ) +

∥∥√ε∇uε

∥∥
L2(QT )

‖∇ϕ‖L2(QT )

+ χ ‖uεf(uε)‖L∞(QT ) ‖∇vε‖L2(QT ) ‖∇ϕ‖L2(QT ) ≤ C ‖ϕ‖L2(0,T ;H1(Ω)) ,

(3.4)

for some constant C > 0 independent of ε. From this we deduce the bound

(3.5) ‖∂tuε‖L2(0,T ;(H1(Ω))′) ≤ C.

Therefore, by (3.2) and (3.3)-(3.5) and standard compactness results (see [25]) we
can extract subsequences, which we do not relabel, such that, as ε goes to 0,

(3.6)



uε → u and vε → v weakly-? in L∞(QT ),
A(uε) → Γ1 weakly in L2(0, T ;H1(Ω)),
√
εuε → 0 weakly in L2(0, T ;H1(Ω)),

vε → v weakly in L2(0, T ;H1(Ω)),
∂tuε → ∂tu weakly in L2(0, T ; (H1(Ω))′),
∂tvε → ∂tv weakly in L2(QT ).

From the compact embedding L∞(Ω) ⊂ (H1(Ω))′ and according to Corollary 4 of
[25]), we also have that uε is a Cauchy sequence in C(0, T ; (H1(Ω))′).

It is easy to see that A(uε) is uniformly bounded in W, where W is defined in
(2.7). Then, from the compact imbedding W ⊂ L2(QT ) we deduce that there exists
a subsequence of uε such that

A(uε) → Γ1 strongly in L2(QT ).

But as A is monotone, we have A(u) = Γ1 (see [21]). Thus,

A(uε) → A(u) strongly in L2(QT ) and a.e. in QT .

Furthermore, as A−1 is well-defined and continuous, we apply the dominated con-
vergence theorem to uε = A−1(A(uε)) to obtain

uε → u strongly in L2(QT ) and a.e. in QT .

With this and the weak-? convergence of uε to u in L∞(QT ), we obtain

uε → u strongly in Lp(QT ) for 1 ≤ p <∞.

Similarly, vε → v strongly in Lp(QT ) for 1 ≤ p <∞.
To pass to the limit in (2.8) as ε→ 0, we need the following lemma.
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Lemma 3.1. The sequence (vε)ε converges strongly to v in L2(0, T ;H1(Ω)).

Proof. Subtracting the relations satisfied by (uε, vε) and (u, v), we have

(3.7)

{
∂t(vε − v)− d(∆vε −∆v) = g(uε, vε)− g(u, v) in QT ,
∂vε

∂η = ∂v
∂η = 0 on ΣT , (vε − v)(x, 0) = 0, for x ∈ Ω.

Taking vε − v as test function in the equation (3.7) to deduce

d

dt

∫
Ω

|vε − v|2 dx+d
∫

Ω

|∇(vε − v)|2 dx

=
∫

Ω

(
g(uε, vε)− g(u, v)

)
(vε − v) dx.

(3.8)

Now using the definition of g and Young’s inequality, we deduce from (3.8)

d

dt

∫
Ω

|vε − v|2 dx+d
∫

Ω

|∇(vε − v)|2 dx

≤ α

2

∫
Ω

|uε − u|2 dx+
(α

2
+ β

)∫
Ω

|vε − v|2 dx.
(3.9)

Integrating the inequality (3.9) over (0, T ) we obtain

d

∫∫
QT

|∇(vε − v)|2 dx dt ≤ α

2

∫∫
QT

|uε − u|2 dx dt

+
(α

2
+ β

)∫∫
QT

|vε − v|2 dx dt.
(3.10)

Finally using the strong convergence in L2(QT ) of uε and vε to u and v, respectively,
we deduce from (3.10) the strong convergence of the sequence (∇vε)ε to ∇v in
L2(QT ). This completes the proof. �

With the above convergences we are ready to identify the limit (u, v) as a (weak)
solution of (1.1)-(1.2). Let ϕ ∈ L2(0, T ;H1(Ω)) be a test function in (2.8). By (3.6)
it is clear that as ε→ 0 ∫ T

0

〈∂tuε, ϕ〉 dt→
∫ T

0

〈∂tu, ϕ〉 dt

and ∫∫
QT

aε(uε)∇uε · ∇ϕdx dt→
∫∫

QT

a(u)∇u · ∇ϕdx dt.

Since h(uε) = uεf(uε) is bounded in L∞(QT ) (h is continuous), and, by Lemma
3.1, vε → v in L2(0, T ;H1(Ω)), we also have that, as ε→ 0,∫∫

QT

χuεf(uε)∇vε · ∇ϕdx dt→
∫∫

QT

χuf(u)∇v · ∇ϕdx dt,

We have thus identified u as the first component of a solution of (1.1)-(1.2). Along
the same lines, we would identify v as the second component of a solution.



10 M. BENDAHMANE, K. H. KARLSEN, AND J. M. URBANO

4. Hölder continuity of weak solutions

We will concentrate our attention on the interior regularity of u; the regularity
of v follows from the classical theory of parabolic PDEs. The results extend to the
parabolic boundary through standard adaptations of the method [6, 7].

Recalling the definition of the Steklov average of a function w ∈ L1(QT )

wh =


1
h

∫ t+h

t

w(·, τ) dτ if t ∈ (0, T − h]

0 if t ∈ (T − h, T )

, 0 < h < T ,

the definition of local weak solution for u can be cast in the following formulation,
which is technically more convenient and involves the discrete time derivative:

for every subset K of Ω,

(4.1)
∫

K×{t}

{
∂t(uh) ϕ+ [a(u)∇u]h · ∇ϕ− χ [uf(u)]h∇v · ∇ϕ

}
dx = 0 ,

for all ϕ ∈ H1
0 (K) and 0 < t < T − h.

Here, v is treated as a given function in its existence class so all the terms in the
above expression have a meaning.

4.1. The intrinsic geometry. We study the regularity at the origin (0, 0), that
we assume to be contained in QT . The result will hold, by translation, for any
point (x0, t0) in the interior of QT . Given a point x0 ∈ RN , Bρ(x0) denotes the
N -dimensional ball with centre at x0 and radius ρ:

Bρ(x0) :=
{
x ∈ RN : |x− x0| < ρ

}
;

given a point (x0, t0) ∈ RN+1, the cylinder of radius ρ and height τ > 0, with vertex
at (x0, t0), is

(x0, t0) +Q(τ, ρ) := Bρ(x0)× (t0 − τ, t0) .
We start with the description of the appropriate geometric setting. Consider a

small positive number ε > 0 and R > 0 such that Q((2R)2−ε, 2R) ⊂ QT and define

µ− := ess inf
Q((2R)2−ε,2R)

u ; µ+ := ess sup
Q((2R)2−ε,2R)

u ; ω := ess osc
Q((2R)2−ε,2R)

u = µ+−µ− .

Construct the cylinder

Q(θR2, R) , with θ−1 = φ1

( ω

2m

)
,

where the number m will be chosen large later in the proof, independently of ω.
We can take, if need be, µ+ = 1 and µ− = 0, since the other possibilities are clearly
more favorable.

We may assume that Q(θR2, R) ⊂ Q((2R)2−ε, 2R), which means that

(4.2) −θR2 ≥ −(2R)2−ε ⇔ θ−1 ≥ 2ε−2Rε .

If this does not hold then we have φ1

(
ω
2m

)
< CRε, and then the oscillation would

go to zero with R and there would be nothing to prove. We then have the relation

(4.3) ess osc
Q(θR2,R)

u ≤ ω
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which will be the starting point of the iteration process leading to the result.
Note that we had to consider the cylinder Q((2R)2−ε, 2R) and assume (4.2), so

that (4.3) would hold for the rescaled cylinder Q(θR2, R). This is in general not
true for a given cylinder since its dimensions would have to be intrinsically defined
in terms of the essential oscillation of the function within it. Observe also that when
the oscillation ω is small, and for m very large, then the cylinder Q(θR2, R) is very
long in the t direction. It is this feature that will allow us to accommodate the two
degeneracies in the problem. We will also assume, without loss of generality, that
ω < δ, where δ is the number introduced in (1.6).

We now consider subcylinders of Q(θR2, R) of the form

Qt∗

R ≡ (0, t∗) +Q

(
R2

φ2(ω
4 )
, R

)
, with t∗ < 0 .

They are contained in Q(θR2, R) if θR2 ≥ −t∗ + R2

φ2(
ω
4 ) , which holds if φ1( ω

2m ) ≤
φ2(ω

4 ) and t∗ is chosen such that

(4.4) t∗ ∈
(

R2

φ2(ω
4 )
− R2

φ1( ω
2m )

, 0
)
.

The result follows from the analysis of an alternative: either there exists a cylin-
der of the type Qt∗

R where u is essentially away from its infimum or such a cylinder
can not be found. If the former holds then going down to a smaller cylinder the
oscillation decreases by a small factor that we can exhibit and that does not de-
pend on the oscillation. In the latter situation then u is essentially away from its
supremum in all cylinders of that same type and we can add up this information
to reach the same conclusion as in the previous case.

Throughout this section, the letter C denotes a constant that depends only on
the data. The same C will be used to denote different constants.

4.2. The alternative. Assume that, for a constant ν0 ∈ (0, 1), that will be de-
termined depending only on the data, there exists a cylinder of the type Qt∗

R for
which

(4.5)
∣∣∣{(x, t) ∈ Qt∗

R : u(x, t) > 1− ω

2

}∣∣∣ ≤ ν0

∣∣∣Qt∗

R

∣∣∣ .
We start by showing that if (4.5) holds then u is away from the degeneracy at 1 in
a smaller cylinder of the same type. The next lemma specifies what this means.

Lemma 4.1. There exists a constant ν0 ∈ (0, 1), depending only on the data, such
that if (4.5) holds then

u(x, t) < 1− ω

4
a.e. (x, t) ∈ Qt∗

R
2
.

Proof. Let uω ≡ min{u, 1− ω
4 }. Take the cylinder for which (4.5) holds, define

Rn =
R

2
+

R

2n+1
, n = 0, 1, . . . ,

and construct the family of nested and shrinking cylinders

Qt∗

Rn
= BRn

×
(
t∗ − R2

n

φ2(ω
4 )
, t∗
)
.
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Consider piecewise smooth cutoff functions 0 < ξn ≤ 1, defined in these cylinders,
and satisfying the following set of assumptions

ξn = 1 in Qt∗

Rn+1
; ξn = 0 on ∂pQ

t∗

Rn

|∆ξn| ≤
22(n+1)

R2
; |∇ξn| ≤

2n+1

R
; 0 ≤ ∂tξn ≤ 22(n+1)

φ2(ω
4 )

R2
,

where ∂p stands for the parabolic boundary, and let

kn = 1− ω

4
− ω

2n+2
, n = 0, 1, . . . .

Choose as test function in (4.1) ϕ = [(uω)h − kn]+ ξ
2
n and integrate in time over(

t∗ − R2
n

φ2(
ω
4 ) , t

)
for t ∈

(
t∗ − R2

n

φ2(
ω
4 ) , t

∗
)

with K = BRn . To simplify the notation,
we put

τn ≡ t∗ − R2
n

φ2(ω
4 )

,

and omit, from here on, dx and dt in all integrals.
We start with the lower order term since it encompasses the main novelty with

respect to [26]. After passing to the limit in h, using the convergence properties of
the Steklov average and Young’s inequality, we obtain

χ

∫ t

τn

∫
BRn

uf(u)∇v ·
{
ξ2n∇(uω − kn)+ + 2(uω − kn)+ξn∇ξn

}
≤ 1

2
φ2

(ω
4

)∫ t

τn

∫
BRn

|ξn∇(uω − kn)+|2 +
1

2φ2

(
ω
4

)M2

∫ t

τn

∫
BRn

|∇v|2χ{uω≥kn}

+2M
∫ t

τn

∫
BRn

|∇v||∇ξn|
(ω

4

)
χ{uω≥kn}

since (uω − kn)+ ≤ ω
4 , and defining M := ‖χuf(u)‖L∞(QT ). Using again Young’s

inequality, we arrive at

≤ 1
2
φ2

(ω
4

)∫ t

τn

∫
BRn

|ξn∇(uω − kn)+|2 +
M2 + 2M
2φ2

(
ω
4

) ∫ t

τn

∫
BRn

|∇v|2χ{uω≥kn}

+M
22(n+1)

R2

(ω
4

)2

φ2

(ω
4

)∫ t

τn

∫
BRn

χ{uω≥kn} .

We conclude with the bound∫ t

τn

∫
BRn

|∇v|2χ{uω≥kn} ≤ ‖∇v‖
2
Lp(QT )

{∫ t

τn

∣∣∣A+
kn,Rn

(σ)
∣∣∣ dσ}1− 2

p

where A+
kn,Rn

(σ) := {x ∈ BRn
: u(x, σ) > kn} and p is chosen sufficiently large.

This is possible since v ∈ Lq
(
0, T ;W 2,q(Ω)

)
, for all q > 1.

The other terms are treated as in [26]; we repeat the main calculations here for
the sake of completeness. The first term gives∫ t

τn

∫
BRn

∂t{uh} [(uω)h − kn]+ ξ2n =
1
2

∫ t

τn

∫
BRn

∂t

{
[(uω)h − kn]2+

}
ξ2n

+
(
1− ω

4
− kn

) ∫ t

τn

∫
BRn

∂t

{([
u− (1− ω

4
)
]
+

)
h

}
ξ2n .
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Next, integrate by parts and let h→ 0. We get
1
2

∫
BRn×{t}

(uω − kn)2+ ξ2n −
1
2

∫
BRn×{τn}

(uω − kn)2+ ξ2n

−
∫ t

τn

∫
BRn

(uω − kn)2+ ξn∂tξn +
(
1− ω

4
− kn

) {∫
BRn×{t}

[
u− (1− ω

4
)
]
+
ξ2n

−
∫

BRn×{τn}

[
u− (1− ω

4
)
]
+
ξ2n − 2

∫ t

τn

∫
BRn

[
u− (1− ω

4
)
]
+
ξn∂tξn

}
= (∗) .

Since the second and the fifth terms vanish, due to the fact that ξn was chosen such
that it vanishes on the parabolic boundary of Qt∗

Rn
, and the fourth term is positive,

we get, using the other assumptions on ξn,

(∗) ≥ 1
2

∫
BRn×{t}

(uω − kn)2+ ξ2n − φ2

(ω
4

) 22(n+1)

R2

(ω
4

)2
∫ t

τn

∫
BRn

χ{uω≥kn}

−2φ2

(ω
4

) 22(n+1)

R2

(ω
4

)2
∫ t

τn

∫
BRn

χ{u≥1−ω
4 } = (∗∗) .

Observe that 1 − ω
4 − kn ≤ ω

4 and
[
u− (1− ω

4 )
]
+
≤ ω

4 . Finally, remarking that
u ≥ 1− ω

4 ⇒ uω ≥ kn, we obtain

(∗∗) ≥ 1
2

∫
BRn×{t}

(uω − kn)2+ ξ2n − 3φ2

(ω
4

) 22(n+1)

R2

(ω
4

)2
∫ t

τn

∫
BRn

χ{uω≥kn} .

Concerning the diffusion term, we first pass to the limit in h, obtaining∫ t

τn

∫
BRn

(a(u)∇u)h · ∇
{
[(uω)h − kn]+ ξ

2
n

}
−→

∫ t

τn

∫
BRn

a(u)∇u ·
{
ξ2n∇(uω − kn)+ + 2(uω − kn)+ξn∇ξn

}
=
∫ t

τn

∫
BRn

a(u) |ξn∇(uω − kn)+|2 + 2
∫ t

τn

∫
BRn

a(u)(uω − kn)+ξn ∇u · ∇ξn = (∗) .

Next, we estimate the second term:∣∣∣∣∣2
∫ t

τn

∫
BRn

a(u)(uω − kn)+ξn ∇u · ∇ξn

∣∣∣∣∣
≤ 2

∫ t

τn

∫
BRn

|a(u)| (uω − kn)+ ξn |∇ξn| | ∇(uω − kn)+|

+

∣∣∣∣∣2(1− ω

4
− kn

)∫ t

τn

∫
BRn

ξn ∇

{(∫ u

1−ω
4

a(s) ds

)
+

}
· ∇ξn

∣∣∣∣∣
≤ C1φ2

(ω
2

){
ε

∫ t

τn

∫
BRn

|ξn∇(uω − kn)+|2 +
1
ε

∫ t

τn

∫
BRn

(uω − kn)2+ |∇ξn|2
}

+2
(ω

4

) ∣∣∣∣∣−
∫ t

τn

∫
BRn

(∫ u

1−ω
4

a(s) ds

)
+

(
|∇ξn|2 + ξn∆ξn

)∣∣∣∣∣
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≤ C1εφ2

(ω
2

)∫ t

τn

∫
BRn

|ξn∇(uω − kn)+|2+
C122(n+1)φ2(ω

2 )
εR2

(ω
4

)2
∫ t

τn

∫
BRn

χ{uω≥kn}

+2
(ω

4

)
2
22(n+1)

R2
φ2

(ω
4

)(ω
4

)∫ t

τn

∫
BRn

χ{uω≥kn} ,

since (∫ u

1−ω
4

a(s) ds

)
+

≤ φ2

(
1− (1− ω

4
)
)(

1− (1− ω

4
)
)
.

Observing that ∇(uω − kn)+ is only nonzero in the set {kn < u < 1− ω
4 }, and that

in this set

a(u) ≥ C0 φ2(1− u) ≥ C0 φ2

(
1− (1− ω

4
)
)

= C0 φ2

(ω
4

)
,

we conclude, choosing ε =
(C0 − 1)φ2(ω

4 )
C1φ2(ω

2 )
, that∫ t

τn

∫
BRn

a(u) ∇u · ∇
[
(uω − kn)+ξ2n

]
≥ φ2

(ω
4

)∫ t

τn

∫
BRn

|ξn∇(uω − kn)+|2

−

{ [
C1φ2(ω

2 )
]2

(C0 − 1)φ2(ω
4 )

+ 4φ2

(ω
4

)} 22(n+1)

R2

(ω
4

)2
∫ t

τn

∫
BRn

χ{uω≥kn} .

Now, putting the three estimates together, we arrive at

ess sup
τn≤t≤t∗

∫
BRn×{t}

(uω − kn)2+ ξ2n + φ2

(ω
4

)∫ t∗

τn

∫
BRn

|ξn∇(uω − kn)+|2

≤ 2

{ [
C1φ2(ω

2 )
]2

(C0 − 1)φ2(ω
4 )

+ (7 +M)φ2

(ω
4

)} 22(n+1)

R2

(ω
4

)2
∫ t∗

τn

∫
BRn

χ{uω≥kn}

+
M2 + 2M
φ2

(
ω
4

) ‖∇v‖2Lp(QT )

{∫ t∗

τn

∣∣∣A+
kn,Rn

(σ)
∣∣∣ dσ}1− 2

p

.

Next we perform a change in the time variable, putting t = (t − t∗)φ2(ω
4 ), and

define
uω(·, t) = uω(·, t) and ξn(·, t) = ξn(·, t) ,

to obtain the simplified inequality

(4.6)
∥∥(uω − kn)+ ξn

∥∥2

V 2
0 (Q(R2

n,Rn))

≤ 2

{
C2

1

(C0 − 1)

[
φ2(ω

2 )
φ2(ω

4 )

]2
+ 7 +M

}
22(n+1)

R2

(ω
4

)2

An

+(M2 + 2M)‖∇v‖2Lp(QT )

[
φ2

(ω
4

)] 2
p−2

A
1− 2

p
n ,

defining, for each n,

An =
∫ 0

−R2
n

∫
BRn

χ{uω≥kn}dx dt .

Next, observe that the following estimates hold

(4.7)
1

22(n+2)

(ω
4

)2

An+1 ≤ |kn+1 − kn|2 An+1
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≤ ‖(uω − kn)+‖22,Q(R2
n+1,Rn+1)

≤
∥∥(uω − kn)+ξn

∥∥2

2,Q(R2
n,Rn)

≤ C
∥∥(uω − kn)+ξn

∥∥2

V 2
0 (Q(R2

n,Rn))
A

2
N+2
n

≤ 2C

{
C2

1

(C0 − 1)

[
φ2(ω

2 )
φ2(ω

4 )

]2
+ 7 +M

}
22(n+1)

R2

(ω
4

)2

A
1+ 2

N+2
n

+C(M2 + 2M)‖∇v‖2Lp(QT )

[
φ2

(ω
4

)] 2
p−2

A
1− 2

p + 2
N+2

n .

In fact, the first and the third inequalities are obvious; the second one holds due
to the fact that kn < kn+1; the fourth inequality is a consequence of a well known
imbedding theorem (see, e.g., corollary 3.1 on chapter I of [6]) and the last one
follows from (4.6). Next, define the numbers

Xn =
An

|Q(R2
n, Rn)|

; Zn =
A

1/p
n

|BRn |
,

divide (4.7) by
∣∣Q(R2

n+1, Rn+1)
∣∣ and obtain the recursive relation

Xn+1 ≤ γ 42n

{
X

1+ 2
N+2

n +X
2

N+2
n Z1+κ

n

}
, n = 0, 1, 2, . . .

where κ = p− 3 > 0 and

γ = C max

{
C2

1

(C0 − 1)

[
φ2(ω

2 )
φ2(ω

4 )

]2
+ 7 +M ;

(ω
4

)−2 [
φ2

(ω
4

)] 2
p−2

RNκ

}
.

A similar reasoning leads to

Zn+1 ≤ γ 42n
{
Xn + Z1+κ

n

}
, n = 0, 1, 2, . . .

We can now use a lemma on the fast geometric convergence of sequences (see lemma
4.2 on chapter I of [6]) to conclude that if

(4.8) X0 + Z1+κ
0 ≤ (4γ)−

1+κ
θ 4

−2(1+κ)
θ2 ≡ ν0 , θ = min

{
2

N + 2
;κ
}

then

(4.9) Xn, Zn −→ 0 .

But (4.8) follows from the assumption (4.5) of the lemma and the conclusion is a
consequence of (4.9). In fact, observe that

Rn ↘
R

2
and kn ↗ 1− ω

4
,

and since (4.9) implies that An → 0, we conclude that∣∣∣∣{(x, t) ∈ Q
((

R
2

)2
,
R

2

)
: uω(x, t) ≥ 1− ω

4

}∣∣∣∣
=
∣∣∣{(x, t) ∈ Qt∗

R
2

: u(x, t) ≥ 1− ω

4

}∣∣∣ = 0

and the lemma is proved.
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It remains to show that ν0, i.e., γ, is independent of ω, which is crucially related
to the fact that φ2 is a power. In fact, we have

φ2(ω
2 )

φ2(ω
4 )

=
(ω

2

)p2
(

4
ω

)p2

= 2p2 .

On the other hand, we can assume, without loss of generality, that(ω
4

)−2 [
φ2

(ω
4

)] 2
p−2

RNκ ≤ 1 .

Otherwise, we would have ω < CRα, with α = Nκp
2p+2pp2−2p2

> 0, and the result
would be trivial.

�

Our next aim is to show that the conclusion of Lemma 4.1 holds in a full cylinder
of the type Q(τ, ρ). The idea is to use the fact that at the time level

(4.10) −t̂ := t∗ −
(

R
2

)2
φ2

(
ω
4

)
the function u(x) is strictly below the level 1 − ω

4 in the ball BR
2

and look at this
time level as an initial condition to make the conclusion hold up to t = 0, eventually
shrinking the ball. Again this is a sophisticated way of showing that somehow the
equation behaves like the heat equation. As an intermediate step we need the
following lemma.

Lemma 4.2. Given ν1 ∈ (0, 1), there exists s1 ∈ IN , depending only on the data,
such that ∣∣∣{x ∈ BR

4
: u(x, t) ≥ 1− ω

2s1

}∣∣∣ ≤ ν1

∣∣∣BR
4

∣∣∣ , ∀t ∈ (−t̂, 0) .

The proof uses logarithmic estimates and the differences with respect to what is
done in [26] are of the same nature as the ones described in the previous lemma. For
that reason it will be omitted as well as the proof of the next result, that establishes
the conclusion of the first alternative.

Proposition 4.3. There exist constants ν0 ∈ (0, 1) and 1 < s1 ∈ IN , depending
only on the data, such that if (4.5) holds then

u(x, t) < 1− ω

2s1+1
, a.e. (x, t) ∈ Q

(
t̂,
R

8

)
.

Corollary 4.4. There exist constants ν0, σ0 ∈ (0, 1), depending only on the data,
such that if (4.5) holds then

(4.11) ess osc
Q(bt, R

8 )
u ≤ σ0 ω .

Proof. We can use Proposition 4.3 to obtain s1 ∈ IN such that

ess sup
Q(bt, R

8 )

u ≤ 1− ω

2s1+1
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and from this we get

ess osc
Q(bt, R

8 )
u = ess sup

Q(bt, R
8 )

u− ess inf
Q(bt, R

8 )
u ≤ 1− ω

2s1+1
− 0 =

(
1− 1

2s1+1

)
ω

and the corollary follows with σ0 =
(
1− 1

2s1+1

)
.

�

The conclusion of the second alternative is entirely similar, the analysis being
performed near the degeneracy at 0, and we refer the reader to [26] for the details.
The proof of Theorem 1.2 now follows from Corollary 4.4, and its alternative coun-
terpart, through the usual method (cf. [7]) of defining recursively a sequence of
nested and shrinking cylinders Qn and a sequence ωn converging to zero such that

ess osc
Qn

u ≤ ωn .

We stress that the Hölder continuity is obtained since σ0 in Corollary 4.4 is inde-
pendent of the oscillation ω.
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[24] S. N. Kružkov, Results concerning the nature of the continuity of solutions of parabolic

equations, and some of their applications, Mat. Notes, 6 (2002), 517–523.
[25] J. Simon, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl. (4) 146 (1987),

65–96.

[26] J.M. Urbano, Hölder continuity of local weak solutions for parabolic equations exhibiting two
degeneracies, Adv. Differential Equations 6 (2001), 327–358.

[27] A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis, Math. Japon., 45

(1997), 241–265.

(Mostafa Bendahmane)

Centre of Mathematics for Applications

University of Oslo
P.O. Box 1053, Blindern, N–0316 Oslo, Norway

E-mail address: mostafab@math.uio.no

URL: http://math.uio.no/~mostafab/

(Kenneth H. Karlsen)

Centre of Mathematics for Applications
University of Oslo

P.O. Box 1053, Blindern, N–0316 Oslo, Norway

and
Department of Scientific Computing

Simula Research Laboratory

P.O.Box 134, N–1325 Lysaker, Norway
E-mail address: kennethk@math.uio.no

URL: http://www.math.uio.no/~kennethk/
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