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1. Introduction

The number of germplasm accessions conserved in ex situ genebanks has grown to a
total of about 7.5 million. However, the lack of characterization and evaluation (C&E)
data continues to be reported as one major limitation to the use of these plant genetic
resources (FAO, 2010). Traditional C&E methods cannot catch up with this growing
number of accessions. Even less data are available for crop wild relative (CWR)
populations conserved in situ and for on-farm managed landraces (LRs). In situ C&E is
not a routine activity of protected area managers or an integral part of on-farm
conservation, as their implementation is complex and resource intensive (Guarino et
al., 2002). Biodiversity conservationists and managers of protected areas generally
see the conservation as the end goal and will not focus on collecting the C&E data
which is needed for systematic utilization of this material in breeding programmes.
Farmer-based selection (on farm), in contrast, is generally less formal and both less
dependent on availability of C&E data, and less likely to generate such data. Additional
methods for characterization of populations, accessions, collections and conservation
sites are required to enhance the utilization of plant genetic resources in situ and ex
situ. Predictive characterization approaches, which build on geographical location and
agro-ecological data, can optimize the search for populations and accessions with
adaptive traits and characteristics.

1.1 Predictive characterization

C&E of CWR and LRs—essential for enhancing their conservation and use—has
nearly always involved an element of prediction. In practice, breeders rarely choose
accessions for field C&E randomly. Where possible, they select accessions they
believe are likely to contain the desired traits. Advances in molecular and
Geographical Information System (GIS) analysis techniques mean that predictions of
which accessions are likely to contain desired traits are now significantly more
objective (evidence-based) than previously. Collectively, the approaches that involve
GIS analysis are referred to as predictive characterization and they present a more
cost effective approach than traditional phenotypic C&E of the complete germplasm
collection. They build on the hypothesis that the different environments exert divergent
selective pressures on plant populations, and thus spatial genetic differentiation. CWR
populations growing in a specific environment, or LRs that developed within a given
environment, will possess a suite of adaptive traits shaped by selection pressures
unique to these environments.

Predictive characterization methods are predictive in the sense that they assign the
potential of trait presence to uncharacterized germplasm (either ex situ or in situ) using
() matching of biotic and abiotic characteristics associated with a collecting site;
(i) ecogeographical information associated with a collecting site; and (iii) previously
recorded C&E data of trait occurrence associated with a set of locations different from
those where the germplasm being examined has been collected. In each case a
predictor is used to build a hypothesis that germplasm from a particular location will
be genetically differentiated. The methods are represented in Schema 1.1 and are
compared with the traditional characterization methods. Predictive characterization
does not replace actual field trials, but considerably reduces the size of the field trials
by reducing the set of candidate accessions which the breeder needs to screen before
finding novel alleles for a target trait. This is achieved through the less expensive pre-
screening against an environmental profile. The predictive methods therefore help to
more efficiently utilize the limited and costly land area and human working time for the
field screening.
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1.2 Focused Identification of Germplasm Strategy

One of the first systematic applications of finding a predictive link between a
resistance trait and a set of environmental parameters, named the Focused
Identification of Germplasm Strategy (FIGS) (Mackay and Street, 2004; Street et al.,
2008), used biotic and abiotic matching techniques. FIGS was developed at the
International Centre for Agricultural Research in the Dry Areas (ICARDA) based on
early work by Michael Mackay in the 1980s and 1990s (Mackay 1986, 1990, 1995).
The first FIGS studies were based on using scientific expert knowledge for matching
environmental profiles that were known to be suitable for adaptations leading to the
target trait properties in LRs growing in such locations. Areas that have high levels of
aphids are likely to have higher levels of aphid resistance. Environmental profiles
supportive of high aphid populations were used to identify resistance in the wheat
crop to this pest (El Bouhssini et al,, 2011). The biotic matching method applies a
series of filters based on expert knowledge to identify germplasm material with pest
resistances by filtering out locations with environmental profiles suitable for the
respective pest. The method can be illustrated using the work on Sunn pest resistance
in wheat by El Bouhssini and co-workers (2009). Starting with 16,000 wheat LRs from
different genebank collections, germplasm material collected in China, Pakistan and
India was excluded based on expert knowledge and the reasoning that Sunn pest has
only recently been reported here, providing too little time for adaptive resistance in the
germplasm to evolve. This reduced the candidate set down to 6,328 LRs. The next
filter excluded environments that are too dry for the Sunn pest insects to thrive (less
than 280 mm precipitation per year), and environments with too low winter
temperatures (below 10°C) reducing the candidate set further down to 1,502 LRs. In
the final derived set of 534 LRs, 9 new and formerly uncharacterized resistant LRs
were identified by ICARDA in field experiments during 2007 and 2008. Previous
extensive series of field experiments conducted at ICARDA from 2000 to 2006
including more than 2,000 wheat LRs had not been able to identify wheat LRs with
resistances. Khazaei and co-workers (2013) recently validated the FIGS prediction
against actual and independent evaluation trial data for drought resistance in faba
bean. Further studies using FIGS are summarized in Box 1.1.

FIGS methods have mainly been applied to major crops, in particular wheat and
barley (Box 1.1). Building upon the foundation of the FIGS approach, studies that use
ecogeographical information or previously recorded C&E data have also been
developed and were tested for their applicability to CWR and LRs of minor crops
within the context of the PGR Secure project ‘Novel characterization of CWR and LR
resources as a basis for improved crop breeding‘ (http://www.pgrsecure.org/)
(Thormann, 2012). These studies have explored the ecogeographical filtering method
and the calibration method, which are the focus of these guidelines.


http://www.pgrsecure.org/
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Box 1.1. Examples of predictive association studies and identification of pest and
pathogen resistant and drought tolerant material through the use of FIGS

e Powdery mildew resistance in wheat (Bhullar et al., 2009; Kaur et al., 2008)

e Sources of wheat resistance to Sunn pest, Eurygaster integriceps (El
Bouhssini et al., 2009)

¢ Predictive association between trait data and ecogeographical data for
Nordic barley landraces (Endresen, 2010)

e Sources of resistance in bread wheat to Russian wheat aphid, Diuraphis noxia
(El Bouhssini et al., 2011)

¢ Predictive association between biotic stress traits and ecogeographical data
for wheat and barley (Endresen et al. 2011)

o Wheat stem rust resistance linked to environmental variables (Bari et al.,
2012)

¢ Resistance to stem rust (Ug99) in bread wheat and durum wheat (Endresen et
al., 2012)

¢ Traits identified related to drought adaptation in Vicia faba genetic resources
(Khazaei et al., 2013)

o Wheat yellow stripe rust resistance linked to environmental variables (Bari et
al., 2014)

1.3 Ecogeographical filtering method

The ecogeographical filtering method combines the spatial distribution of the target
taxon on an ecogeographical land characterization map (ELC) (Parra-Quijano, lriondo
and Torres, 2012; Parra-Quijano et al., 2012) with the ecogeographical
characterization of those environments that are likely to impose selection pressure for
the adaptive trait investigated, to filter occurrence records. In the predictive
characterization context it uses a taxon-specific ELC map that is developed based on
the variables most relevant for adaptation and for determining the species’
distribution. This map aims at representing the adaptive scenarios that are present
over the territory studied.

As a first step in this method, the ecogeographical categories from the ELC map
are assigned to each occurrence record according to its coordinates and the records
are then grouped according to their ELC map category. After all georeferenced
occurrences have been ecogeographically characterized, the second step is to select
occurrences from each group that comply with specific environmental requirements
related to the traits of interest: the specific ecogeographical variables (geophysical,
edaphic or bioclimatic) that best describe and delimit the environmental profile likely
to impose selection pressure for the adaptive trait of interest. These are then used for
further filtering to obtain a final subset of occurrences.

The filtering method only requires coordinates from collecting sites and can be
applied to in situ CWR and LR occurrences as well as to ex situ accessions. Ideally it
is applied at taxon level, but can also be used for a group of related taxa.
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1.4 Calibration method

The calibration method uses existing C&E data for the trait of interest, together with
ecogeographical data specific to the environment at collecting sites from where these
accessions were collected, to identify existing relationships between the trait and the
environment. Based on these relationships, it calibrates a prediction model.

This prediction model is then applied to other non-evaluated accessions to identify
those that, according to this model, are likely to have a higher probability of genetic
adaptation for a target trait property. The model therefore aims to identify a subset
that is more likely to show the target trait property than a subset merely selected
randomly. The calibration method can be used when availability of evaluation data is
not a limiting factor. The calibration method is used here only to provide a model that
relates the target trait and the environment data, but does not provide biological
explanations for any trait occurrence and expression. Cases exist where for example
an identified pest resistance cannot be related to specific environments. In such
cases, the calibration method might not be suitable for identification of any useful
predictive relationship between the trait and any set of environmental variables. One
example is the Rhizomania resistance in wild beet from Denmark. Resistance was
found in accessions from an area in Denmark where the pathogen does not occur
(Lothar Frese pers. comm.) and no disease incidence has been reported. In this case
resistance to the pest cannot be the result of any adaptation to the pest. Another
unrelated morphological or physiological trait might confer resistance to this
pathogen. The use of the calibration method has been described in recent studies on
morphological and agricultural traits in barley (Endresen 2010; Endresen et al., 2011),
wheat stem rust (Endresen et al., 2011; Bari et al., 2012; Endresen et al., 2012).

1.5 Structure and application of guidelines

These guidelines follow the logical sequence of steps that need to be carried out to
implement the ecogeographical filtering and the calibration method. They first address
the compilation, quality assessment and improvement of the baseline data that are
required for the application of both methods. The implementation of the respective
methods is then dealt with in two subsequent chapters.

The choice of which method to use depends mainly on the trait of interest and the
availability of data related to that trait. The lack of evaluation data frequently
represents a bottleneck, and, depending on the taxon and target trait, is often not
available at all or not available in sufficient quantity. This might be particularly the case
for CWRs. The choice of the method will therefore default to ecogeographical filtering
if no or insufficient evaluation data are available.

The taxonomic level at which the two methods are usually applied is the species or
related-species group level, because the pattern of genetic diversity for adaptive traits
may vary between species found across a range of ecogeographical constraints. The
methods are based on the assumption that there are relationships between traits and
environmental conditions determined by abiotic and biotic factors that determine
population adaptation, and different species even within the same genus might react
differently to the same conditions.

In particular for the calibration method, which is modelling an environment based
on evaluation and climate data, it might be useful to study each specific taxon by
separately calibrated prediction models, in order to exclude additional multi-taxon
noise in the model. However, a potential use at genus level is provided by the ecogeo-
graphical filtering method when, for instance, occurrences are sought for a particular
environmental condition that is supposed to generate potential resistances, like
growing on soils with low pH and low organic matter content, where aluminum
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concentration might be high and species thriving there might have specific traits that
tolerate high aluminium concentration. The stronger the biotic or abiotic selection
pressure in any locality, the more likely that populations present in that locality will
have evolved mechanisms to mitigate the pressure and underpin population success
in the face of that pressure.

The ecogeographical filtering method requires developing and using an ELC map.
The ecogeographical region under study will most often be a coherent region, either a
country, a part of a (very large and diverse) country or several contiguous countries.
ELC maps can be prepared at the genus level to be applicable to a range of
congeneric species. The calibration method looks at a specific trait that has already
been identified in a specific species and seeks to model the relationship with the
environment. Evaluation data can be available from different geographical regions and
can be used for the modelling exercise. It is to be noted that these methods do not
investigate any biological pathways or explanations for any identified relationship.

An example data set for each of the methods is available for download from the
web sites indicated in the document. Both methods are implemented in R, an open
source language and environment for statistical computing and graphics. Example R
scripts are provided in the guidelines. The user can copy the R scripts into their
working environment and test the functionalities of the script with the example data
sets provided.

The CAPFITOGEN Program (http://www.planttreaty.org/capfitogen) for the
Strengthening of the Capacities of the National Programmes on Plant Genetic
Resources in Latin America, funded by the Spanish Government and implemented by
the International Treaty on Plant Genetic Resources for Food and Agriculture
(ITPGRFA), has developed a series of tools that improve, adapt and facilitate the use
of methodologies for ecogeography and GIS (Parra-Quijano et al., 2014;
http://www.capfitogen.net/en/). These guidelines make use of the tools ‘GEOQUAL’
for the quality assessment of georeferenced passport data, and ‘ELCmapas’ for the
generation of ELC maps.

1.6 Software requirements
e Spreadsheet software (e.g. Excel™)
e A web browser

¢ DIVA-GIS - a program for mapping and geographical data analysis (can be
downloaded free of charge from http://www.DIVA-GIS.org/download)

¢ R - alanguage and environment for statistical computing and graphics. You can
either work directly in the R-console or use the graphical user interface provided
by RStudio

o Download R from http://www.r-project.org/
o Download RStudio from http://www.rstudio.com/

e CAPFITOGEN tools - series of tools that improve, adapt and facilitate the use of
methodologies for ecogeography and GIS. Instructions for download and
installation are provided at http://www.capfitogen.net/en/access/download-
from-internet/.


http://www.planttreaty.org/capfitogen
http://www.capfitogen.net/en/
http://www.diva-gis.org/download
http://www.r-project.org/
http://www.rstudio.com/
http://www.capfitogen.net/en/access/download-from-internet/
http://www.capfitogen.net/en/access/download-from-internet/
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2. Data preparation

The application of the ecogeographical filtering and the calibration method requires
the thorough compilation of taxon passport data. As predictive characterization
involves GIS analysis the passport data of accessions or populations must contain
georeferences or a georeferencable location description, so that environmental data
can be associated with the specific locations where the taxon occurs.

The data preparation section first addresses the compilation and cleaning of the
taxon occurrence records. Subsequently, the geographical location data contained in
the taxon occurrence records need to be assessed, and if necessary, occurrences
need to be georeferenced, and the quality of the coordinates need to be evaluated.
The quality and comprehensiveness of the occurrence and location data are essential
for the subsequent analyses. It is anticipated that the compilation of the occurrence
data and the validation and quality improvement of the location data may require a
substantial number of days, depending on the quantity and quality of the source data.
Other types of data such as environmental data or evaluation data are compiled
depending on the method to be applied and are described accordingly in the
corresponding chapters addressing the method. As the calibration method can only
be used if evaluation data are available, the availability of evaluation data should be
checked at an early stage, to decide if the use of this method can be considered.

2.1. Data compilation

Passport data about genebank accessions, herbarium specimens and field
observations provide information about taxon occurrences. Table 1 provides
examples of national and international online information systems from where
occurrence data can be downloaded. The table includes the Germplasm Resources
Information Network (GRIN) of the United States Department of Agriculture
http://www.ars-grin.gov/npgs/acc/acc_queries.html as one example of a national
online genebank database, and the online genebank database of the German Leibniz
Institute for Plant Genetics and Crop Plant Research (IPK) as an example of an
institutional online system. Several other national and institutional online databases
exist and their number is growing. A list of online databases is provided, for example,
by the European Cooperative Programme for Plant Genetic Resources (ECPGR) at
http://www.ecpgr.cgiar.org/germplasm_databases/national_multicrop_databases.
html. Also crop-specific online databases are available and a list of European crop
databases is provided on the Web site of the ECPGR at
http://www.ecpgr.cgiar.org/germplasm_databases.html. The resources listed here are
examples. It is not within the scope of these guidelines to provide a comprehensive
list of online databases, and such a list would quickly be outdated.


http://www.ars-grin.gov/npgs/acc/acc_queries.html
http://www.ecpgr.cgiar.org/germplasm_databases/national_multicrop_databases.html
http://www.ecpgr.cgiar.org/germplasm_databases/national_multicrop_databases.html
http://www.ecpgr.cgiar.org/germplasm_databases.html
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Table 2.1. Examples of online resources for taxon occurrence data

Genesys — Gateway to genetic
resources

Genebank accession passport data
provided by the CGIAR genebanks,
GRIN and EURISCO.

https://www.genesys-pgr.org/welcome

EURISCO - Catalogue of
European ex situ plant
collections

Genebank accession data of European
genebanks from 43 countries.

http://eurisco.ecpgr.org/

GBIF - Global Biodiversity
Information Facility

Herbaria, natural history museum
collections, botanical garden

http://www.gbif.org/

collections and genebank accession
passport data — worldwide global
coverage.

Genebank accession data of US ex situ
collections.

GRIN - Germplasm Resources
Information Network of the
United States Department of
Agriculture

http://www.ars-
grin.gov/npgs/acc/acc_queries.html

GBIS-IPK — Genebank
Information System of the IPK
Gatersleben, Germany

Genebank accession data of the
German genebank at the IPK

http://gbis.ipk-gatersleben.de/GBIS_I/

Passport data for the taxon of interest are compiled from online resources such as
those presented in Table 2.1, or from other regional or national online databases. or
both, that cover the taxon and geographical area of interest. Usually these online
databases have a download function, through which the data can be downloaded in
tab- or comma-delimited files (.txt or .csv files) or directly as an MS Excel™
spreadsheet. If no online data are available, the online databases do not cover
adequately the taxon or geographical area under study, or do not have a data
download function, you need to get in direct contact with database curators of those
databases from which you need further data, or with institutes that can be expected to
have taxon occurrence data. When downloading data or requesting data not available
online, you should make sure that all available data fields describing the geographical
location are included, as well as all available fields describing the origin and identity of
the occurrence, and the time and details about the collecting or observation event.
Fields describing the geographical location include the country of origin, latitude,
longitude, altitude, administrative units at various levels and the site description. They
are important for georeferencing (Section 2.4) and quality assessment of coordinates
(Section 2.5). Fields describing the identity and origin of the occurrence are
particularly important when you need to screen your data for duplicate records
(Section 2.2).

When data are obtained from more than one resource, the various datasets need to
be merged. Data sources often provide varying amounts of data fields and these
might be in a different column order. This needs to be adjusted for when merging
datasets.

Records that provide no geographical information, i.e. lack coordinates as well as
location description, are deleted from the dataset. A numeric ID is then assigned to
each record to uniquely identify it for further reference.

The result of this first step is a unique table with available occurrence data that
includes latitude+longitude or location description, or both, for each record. Each
record is uniquely identified by an ID for later reference and identification of records.



https://www.genesys-pgr.org/welcome
http://eurisco.ecpgr.org/
http://www.gbif.org/
http://www.ars-grin.gov/npgs/acc/acc_queries.html
http://www.ars-grin.gov/npgs/acc/acc_queries.html
http://gbis.ipk-gatersleben.de/GBIS_I/
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2.2 Data cleaning

When data are compiled from various sources, the resulting data set is likely to
contain duplicate records, which need to be removed. Duplicate records can be of
two types. The first type of duplicates that should be removed are database records
downloaded or obtained from different databases, e.g. from GBIF and Genesys
(Figure 2.1), but which refer to the same genebank accession, herbarium specimen or
in situ occurrence record. These can be identified through duplicate accession
numbers. If the duplicate records do not contain exactly the same data, because not
exactly the same data fields are available from each data source, or one record is
more up-to-date than the other, it needs to be carefully judged which record to
maintain. The second type of duplicates that should be identified are spatial
duplicates, i.e. two rows with equal coordinates indicating the same presence or
collecting site. Spatial duplicates are not necessarily errors in a database, as, for
example, more than one LR might have been collected from the same site, but for the
predictive characterization approaches it is required that a single accession or
occurrence represent the collecting site and its spatial duplicates. It is therefore
necessary to remove spatial duplicates.

A [ ¢ ) ( (& e Q [ AQ ae M AR AS AT~
1 INUMICE » |INSTCC = ACCENUME |7 COLLNL = COLLEd ACCEN, « ORIGCY + |ADMI (= SAMPS » DATAsourcs = LATOEC = LONDE « SUITQUAL |+ LOCAU
1081 12717 GBROO  BOST3 4311612 867 A Isele GBIF 3503333 14.01567 2
1082 12716 GBR0O3  BOST4 3 11612 Blen ITA Isole GBIF 3503333 1401667 x
1083 12705 GBRUO3  BOSTH 3917612 BIG676 T4 Isole GBIF 3791333 1366867 2
1084 12607 GBROO3  BOGT 100 17613 B6TE T4 Isole GBIF 37.81313 1871667 x
1083 12¢08 GOROO)  DOSTY 101 17G23 L7 B Isole GRIF 1780303 18,71667 x
1085 12649 GURCO)  DOAS1 104 11G13 Boesl ITA 15¢la Goir 1512047 147010 P
1087 12629 GORCOY  DOSES 1 Bl6%6 114 150l (10 17.85513 183 2
1088 12601 GBRUO3  BOSE9 17 11612 Ble3s ITA Isole GBIF 377 1411687 x
1089 12327 GBR0O3  BON7 8 ITG24 BON7 T4 Isole GBIF 39.36667 9.566667 r
10%0 2 BT 1 E5617 By S Sur GBIF 35085 45 2
1091 2782 GBROO3  BOTTR 3 B5617 807 s GRIF R8I a5 x
1092 b2 H BETA 2070 £5812 P, valgaels Cult. Lef BETA St GRIF NS 3500 P
1093 818 DETA 2071 542 . valgiris cult. Lot g Ghir 4123001 141667 2
109 2461 DEUIAE  BETA N0 p. valgaris cult. Lo BE Esp Norceste GBIF 4110806 52830 »
1055 10754 DEVISE  BETA 1138 p. vuigaris cult. Leaf Boet GRC Voreda i 300 ELRISCO 3935 29 »
1056 10756 WK BETA 1138 ubsp. vulgaeis cult Leaf Beet GRC Voreia Elada GBIF 39.35 23 rol
1057 10752 DEV1AG  BETA 1203 Bets vulgaris L subsp, vugaels (Roth) Aellen GRC Voreia Bt 300 ELRISCO 39.35 239 X
1058 10753 9% BETA 203 Beta wulgans L subsp, waigaels (Roth) Asllen GRC Vorew Elbds GBIF 39.3% 29 x
109 242 00U BETA 28 Bsin Beta vulgans L subsp, valgaeis cylt. Les! BETA 1285 E5P Norceste GRr 4)4 406887 2
1100 B658 DEVISE  BETA 1359 Bata vulgans L subsp. volgaeis cult. Lo Bast GRC 300 EURISCO 35.06687 24.78333 x
1101 8660 < BETA 1358 Sata vulgaris L subsp. vulgaris cult. Leaf Baot GRC GBIF 35.06667 24.78333 .y
1102 12204 DEVULAE  BETA 1330 2ata wulgaris L subsp. vuigaris cult. Leaf BETA 13801TA Centro GBIF AL66472 1356523 x
1103 8555 DEULAS  BETA 1351 202 vulganis L subsp, vulgaris cult, Leaf Baet GRC 300 EURISCO 35 13 20
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Figure 2.1. Example of duplicate records in merged downloads from GBIF and EURISCO.

If data are downloaded at genus level or for a taxon that can occur both as wild
and under cultivation, it is necessary to identify LR or CWR records, or both,
depending on the purpose of the study. The following approach can be used to filter
for the desired material, as many source databases now follow, at least partially,
agreed standards such as the Multi-crop Passport Descriptors v.2 (MCPD) (Alercia,
Diulgheroff and Mackay, 2012). The MCPD descriptor for improvement status called
SAMPSTAT is used to distinguish between LR and CWR.

¢ Landraces If working at genus level, select those species in the genus that are
known to be cultivated. In the subspecies field, all subspecies, cultivars or
varieties associated with cultivation are selected. If working at a species level,
start directly with the check on the subspecies field. From these first selections,
in both cases, only LRs (identified through the MCPD data field SAMPSTAT with
value 300) and those records with a blank in the SAMPSTAT field are
considered. Breeding material and advanced cultivars (SAMPSTAT = 400 to 500)
are excluded.


http://www.bioversityinternational.org/index.php?id=19&user_bioversitypublications_pi1%5bshowUid%5d=6901
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¢ Wild populations If working at genus level, select the wild populations identified
by SAMPSTAT = 100, 200 or 999 of those species known to occur in the wild as
well as cultivated, together with all records of species that only occur in the wild.
It can help to narrow the data set initially to exclude all known cultivated
material, as well as all records with SAMPSTAT values of 300, 400 or 500. In the
subspecies field, all species, cultivars, varieties and hybrids associated with
cultivation are discarded.

o If working at species level with a species for which cultivated and wild
occurrences exist, discard all subspecies, varieties and cultivars known to exist
only in cultivation. From the remaining records for taxon levels for which both
wild and cultivated records could be available, select those identified by
SAMPSTAT = 100, 200 or 999. For those species known to occur only in the
wild, all records are included.

¢ If you decide to apply a conservative approach, records where the species name
is not provided and the field contains “sp.”, the name of the genus or “?” are
discarded.

The resulting dataset will contain records of LRs or CWR of the species or group of
species of interest, which include the required minimum of location data, and with a
minimum number of duplicates.

2.3 Geographical location data assessment

The quality and quantity of coordinates and the need for georeferencing needs to be
assessed. Records should first be sorted into subsets based on the type of
coordinates they contain:

o Subset a: Coordinates in sexagesimal format (e.g. 30°15'55"N);
e Subset b: Coordinates in decimal format (e.g. 30.265°); or

e Subset c: Records without coordinates or with low precision coordinates
(degree level for sexagesimal format or without fraction for decimal format).

The following steps should then be carried out, depending on the data formats
found in the data set:

(1) Coordinates in sexagesimal format (subset a) should be converted into
coordinates in decimal format to read them with GIS software. The following formula
can be used:

DC =h*(d + m/60 + s/3600)

where DC is the coordinate in decimal format; d is the degrees (°), m the minutes (),
and s the seconds (") of the sexagesimal (base 60) system; h = 1 for the northern and
eastern hemispheres and h =-1 for the southern and western hemispheres. For
example, 30°30°0”S = -30.500. These calculations can be carried out in a spreadsheet
program. Degrees, minutes, seconds and the hemisphere need to be separated into
single columns without the respective symbols °, * and ”. Also, DIVA-GIS can be used,
using the Geo-calculator under its Tools menu, but it requires checking coordinates
one by one.

(2) Location description in all subsets should be distributed in separate hierarchical
fields (ORIGCTY, ADM1, ADM2, ADM3, ADM4 and COLLSITE) (GADM, 2012). Not all
databases contain all these single location fields, and location information is
sometimes lumped into the COLLSITE field containing the location description. It is
therefore often necessary to extract administrative information (ADM1, ADM2, ADMS,
ADM4) from COLLSITE when this field contains all location data. The division of the
location information into the appropriate fields is required to carry out the quality
check of the coordinates described in Section 2.5 below. The passport data template
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used in the GEOQUAL tool is available from
http://www.capfitogen.net/en/MCDpassportFormat_FAO_Bioversity_2012_modified.xls.
It is adapted from the MCPD and provides for each country and each administrative
level (ADM1 to ADM4) the corresponding ADM name according to the GADM
database of Global Administrative Areas (GADM, 2012).

(3) The decimal coordinates (i.e. converted subsets a and b) can be checked for
errors with DIVA-GIS. DIVA-GIS has a ‘check coordinates’ facility under its data menu
(Figure 2.2) that can help spot coordinates that contain errors. While some errors are
easily spotted when plotting occurrences on a map, such as an occurrence falling in
the middle of the ocean, other mistakes are not as easily spotted just by looking at the
map, such as points not lying within the country of origin or within the administrative
units provided in the data. The check coordinate function uses a method developed
by Hijmans and co-workers (1999) to identify those potential errors. For further details
refer to Section 3.9 in the DIVA-GIS manual, available from http://www.DIVA-
GIS.org/docs/DIVA-GIS5_manual.pdf (accessed 1 August 2014).
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Figure 2.2. DIVA-GIS check coordinate option under its data menu. The map shows the distribution of
wild Beta accessions in Europe with unchecked coordinates.


http://www.capfitogen.net/en/MCDpassportFormat_FAO_Bioversity_2012_modified.xls
http://www.diva-gis.org/docs/DIVA-GIS5_manual.pdf
http://www.diva-gis.org/docs/DIVA-GIS5_manual.pdf
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2.4 Georeferencing occurrences with location data

The use of predictive characterization methods requires that all occurrences included
in the analysis are properly georeferenced and latitude and longitude are provided in
decimal degrees. Those occurrences, for which only the location description but no
geographical coordinates are provided, and those that have very low quality
coordinates (i.e. subset ¢ in Section 2.3 above) need to be georeferenced.

Georeferencing (Chapman and Wieczorek, 2006) can be done using GEOLocate
(http://www.museum.tulane.edu/geolocate/). It analyses the collecting site
descriptions to provide coordinates, together with an estimate of coordinate precision.
Long lists of location descriptions can be georeferenced at once with the GEOLocate
software, but it is recommended to check assigned coordinates as explained in the
users manual (http://www.museum.tulane.edu/geolocate/standalone/manual_ver2_0.pdf).
Gazetteers and online mapping tools such as Google Maps (Google Inc., 2014) are
also useful for georeferencing. Gazetteers can be downloaded from the DIVA-GIS web
site at http://www.DIVA-GIS.org/gdata.

2.5 Quality evaluation of coordinates

All existing coordinates should be checked for quality and be assigned a quality rank
through applying the geo-referencing quality evaluation procedure developed by
Parra-Quijano and co-workers (2014). As predictive characterization methods build on
the link between plant adaptation and environmental conditions of the collecting or
occurrence site, the quality of coordinates becomes a key factor, since the higher the
quality of coordinates, the higher the precision of the extracted ecogeographical
information.

The georeferencing quality evaluation procedure is implemented in the
CAPTIFOGEN tool GEOQUAL (see Sections 1.5 and 1.6) and examines and classifies
coordinates and location description data according to three parameters,
COORQUAL, SUITQUAL and LOCALQUAL, and then summarizes those in a final
parameter TOTALQUAL.

COORQUAL assesses precision of coordinates and locality descriptions based on
latitude and longitude, other fields that contain any coordinate quality information, and
the collecting or observation date (if available). This parameter determines the intrinsic
quality of the coordinates contained in the passport data, using a 0 to 20 scale, where:

e (0 =no coordinates

e 10 = coordinates at minute-level precision, with locality description at
municipality level and collected between 1995 and 2000 (medium probability of
GPS use)

e 20 = coordinates at second-level precision, with locality description below
municipality level and collected after 2000 (maximum probability of GPS use)

SUITQUAL assesses occurrence at sites suitable for plants, assigning a quality
value to coordinates according to how appropriate the collection site is for plant
growth, based on land use maps. It differentiates the nature of the accession (wild or
cultivated according to the SAMPSTAT descriptor). The range of values assigned is
from 0 to 20:

¢ 0 =no coordinates

e 5 = points on inland or marine water

e 10 = points on wetlands

e 15 = points on bare or scarce vegetation or urban areas
e 20 = points on suitable areas


http://www.museum.tulane.edu/geolocate/
http://www.museum.tulane.edu/geolocate/standalone/manual_ver2_0.pdf
http://www.diva-gis.org/gdata

Data preparation 13

LOCALQUAL estimates concordance between locations described by passport
data and locations derived from coordinates. Locality descriptions (at Country,
State/Region, Province and Municipality levels) of occurrence data from the compiled
database are compared with those extracted from coordinates by GIS. This process is
based on a sequence of letter-comparing processes that are run in R.

¢ 0 =no coordinates

e 10 = coincidence only at Country level, without coincidence at State/Region,
Province or Municipality levels

e 15 = coincidence at Country, State/Region and Province levels without
coincidence at Municipality level

e 20 = fully coincidence (Country, State/Region, Province and Municipality).

TOTALQUAL is the final quality parameter, representing the sum of the results of
COORDQUAL, SUITQUAL and LOCALQUAL evaluations. According to the range of
possible values of these parameters, TOTALQUAL values range from 0 to 60. In order
to facilitate the GEOQUAL results interpretation, the 0 to 60 scale is converted into a 0
to 100 scale and the new values are included in the TOTALQUAL100 parameter.
Therefore in the case of TOTALQUAL100 parameter, values close to 0 are indicating
poor georeferencing quality and values about 100 the best possible georeferencing.

GEOQUAL allows the user to upload a file with occurrence data, the quality of the
coordinates is assessed and the file is returned to the user including additional
columns reporting the values for COORQUAL, SUITQUAL, LOCALQUAL and
TOTALQUAL. The occurrence data need to be formatted according to the MCPD. The
columns in the file that is uploaded need to follow a certain sequence. A template is
provided with the GEOQUAL tool, which can be used to prepare the data and which
also indicates which data are obligatory and which data are recommended to be
included in addition to the obligatory fields. The manual provided with the
CAPFITOGEN tools contains additional useful details and instructions about the
application. The template is also available from
http://www.capfitogen.net/en/MCDpassportFormat_FAQO_Bioversity_2012_modified.xls.

Assigning a coordinate quality rank to each record in your dataset will allow use of
TOTALQUAL values as thresholds to exclude from further analyses records with poor
geographical indications. As excluding poor quality coordinates can result in a very
low number of records for the analysis, the threshold for including or excluding
coordinates may need to be balanced with the number of resulting records.

The result of this exercise is a passport data set of known occurrences of the target
taxon, with a minimum of duplicate records, and all with verified geographical
coordinates.


http://www.capfitogen.net/en/MCDpassportFormat_FAO_Bioversity_2012_modified.xls
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3. Application of the ecogeographical filtering method

The ecogeographical filtering method has been developed and tested by working with
abiotic traits, e.g. drought resistance or aluminum toxicity. Possible uses with biotic
traits such as pest resistance are outlined in Section 3.4, together with considerations
of the relevant data requirements.

In addition to the compilation of the occurrence data sets, the ecogeographical
fitering method requires the identification of appropriate variables that characterize
the environmental profile of sites in which the adaptive trait of interest is likely to
develop in the target taxon and an ecogeographical land characterization (ELC) map,
the development of which is discussed in Section 3.1 below.

As a first step in this method, the ecogeographical categories from the ELC map
are assigned to each occurrence record according to its coordinates and the records
are then grouped according to their ELC map category. After all georeferenced
occurrences have been ecogeographically characterized, the second step is to select
from each group occurrences that comply with specific environmental requirements
related to the trait of interest. The specific ecogeographical variables that best
describe and delimit the environmental profile likely to impose selection pressure for
the adaptive trait of interest (see Section 3.2) are used for this filtering, which
generates an ecogeographical core set. To obtain the final subset the ecogeo-
graphical variable of interest is used to rank the ecogeographical core set, based on
an identified threshold value, and to select the records with the highest or lowest
values of the variable of interest.

3.1 Ecogeographical land characterization map

ELC maps offer an objective and reproducible strategy for defining useful ecogeo-
graphical categories to identify potential variants in plant adaptation. The groups of
variables used to construct ELC maps, i.e. climatic, edaphic and geophysical
variables, are factors that might generate local adaptation. An ELC map delineates
areas with similar environmental characteristics and aims at representing the adaptive
scenarios that are present over the territory studied (Parra-Quijano, Iriondo and Torres,
2012). It is prepared for a specific country or region and can be developed also for a
specific species or group of related species. Parra-Quijano, Iriondo and Torres (2012),
for example, developed an ELC map for Spain and the Balearic Islands. The PGR
Secure project (http://www.pgrsecure.bham.ac.uk/) developed genus-specific ELC
maps at European level for Avena, Brassica and Medicago. An ELC map for Beta was
developed in the AEGRO project (http://aegro.jki.ound.de/aegro/). It has been shown
that ELC maps can be applied both to CWR and LR germplasm. They are particularly
useful when developed for single-species or related-species groups (e.g. related grass
or legume species (Parra-Quijano et al., 2012).

Generic ELC maps developed for a specific territory try to structure the diversity of
environmental conditions that is found in the territory that might be relevant to plants
in general. ELC maps that are built specifically for particular species (crop)—like the
ELC maps generated within the PGR Secure project—take into consideration the
requirements, limitations and vulnerabilities of the taxon and represent the
environmental adaptive scenarios occurring across the territory.

It should be noted here that the study could use pre-existing ecogeographical
maps that may have been generated for other purposes, provided that they have an
appropriate scale (the ecogeographical units could be too coarse or too small) and
that they respond to the main factors that condition plant life. There are several types
of maps that try to describe ecosystems, ecoregions or life zones. Most of them were
built using diverse criteria (including anthropogenic factors) and specific crop or CWR


http://www.pgrsecure.bham.ac.uk/
http://aegro.jki.bund.de/aegro/
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adaptive conditions probably were not considered. For this reason, the use of
purpose-made ELC maps is recommended for the ecogeographical filtering method.

The steps that are generally required for the production of an ELC map are
summarized below and more details are provided by Parra-Quijano, Iriondo and
Torres (2012) and Parra-Quijano et al. (2014). They are implemented in the
CAPFITOGEN tool ELCmapas, which is used here to generate ELC maps at country
level.

¢ Environmental variables that are considered to be meaningful in terms of plant
adaptation are compiled — and if necessary converted - in layers using DIVA-
GIS, ArcGIS, QGIS or similar GIS tools.

e Variables selection process starts, trying to avoid highly correlated and/or
collinear variables within each group (edaphic, geophysical and bioclimatic
variables).

¢ For taxon-specific ELC maps, those variables that mainly influence adaptation of
the taxon and therefore shape their distribution are identified.

e The selected variables are subjected to a cluster analysis. This clustering
procedure will determine ecogeographical similarity among all the cells
considered in the work frame. Then an objective process will establish the
number of final clusters to maximize intergroup and minimize intragroup
variation. There are two different methods available to determine the optimal
number of groups in ELCmapas tool (CAPFITOGEN program), the elbow
(Ketchen and Shook, 1996) and medoides (Kaufman and Rousseeuw, 1987;
Rousseeuw, 1987). Both approaches can be implemented in R (Parra-Quijano et
al.,, 2014). Another alternative for clustering and optimal number of groups
determining is the use of the Two Step Clustering (TSC) associated with the
Bayesian Information Criterion in SPSS software (Parra-Quijano, Iriondo and
Torres, 2012).

e The clusters generated for each group are combined to generate the ecogeo-
graphical categories.

¢ The map of ecogeographical units is generated as an ASCII file (.asc). The final
ELC map shows each ecogeographical category in a different color. Each
category from any ELC map can be defined in terms of means (for quantitative)
or mode (for categorical) of the original ecogeographical variables (i.e.
precipitation, temperature, soil type, slope, etc.).

As a first step, the environmental variables most relevant for adaptation and for
determining the species’ distribution need to be carefully selected. These are required
to generate the ELC map and need to be determined prior to using the ELCmapas
tool.

The identification of the variables that influence adaptation of the taxon and
therefore shape the distribution, is a critical step in the development of the ELC map in
order to distinguish and represent correctly the adaptive scenarios on the map. They
are commonly identified based on a literature review and consultation with experts.

A literature search identifies scientific and technical publications that report
environmental factors that influence, determine or limit the distribution of the taxon.

Experts working on the taxon should be identified and contacted to obtain their
knowledge about factors that shape distribution of the species. Although it introduces
some element of subjectivity, it supports the selection of the most important variables
for the ELC map creation.

The factors identified often need to be matched to an available ecogeographical
variable in order to support the development of the map.
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ELC map categories
Brassica oleracea

Figure 3.1. ELC map generated in the PGR Secure project for Brassica species
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Once the list of potential variables has been developed, it is necessary to assess
for each group of variables (edaphic, geophysical and bioclimatic) whether there are
variables that could contribute redundant information. Those should be checked for
co-linearity and correlations, and if significant correlation or co-linearity values are
found, only one of the variables should be included. If all possible variables of one
group are quantitative, a principal component analysis could help to understand the
relationship among variables and help to select the most significant one.

Not more than five variables per edaphic, geophysical and bioclimatic variables

group should be selected. ELCmapas includes a total of 105 variables among the
three groups.

Figure 3.1 shows the ELC map for
Brassica species developed during the
PGR Secure project. The environmental

Table 3.1. Environmental variables used to
generate the ELC map for Brassica species
during the PGR Secure project

variables used to generate the map are
shown in Table 3.1.
ELCmapas generates maps that can |BIOCLIM1 | Topsoil texture Latitude
be opened and read with DIVA-GIS. You (T_Texture)
need to convert the map into ASCIl |BIOCLM2 }’%Sﬁi'ﬁz%) LemEiftet
format with the function Export Gridfile in BIOCLIM 6 To_tal e_xchan eable Global irradiation
the DIVA-GIS Data menu in order to bases in topsoll on an optimal
make the ELC map available for the R (T_TEB) inclination
script used in Section 3.3. (SOLARDOP)
The result of this step is a taxon- |P2OCHM 1T | Topeclsainty Northness
group-specific ELC map available in 55672 [Topsoil organic carbon | Eastness
DIVA-GIS readable format and in ASCII (T_OC)
format. PRECIP5 Slope degree
(SLOPEDG)

3.2 Environmental profile

For the selection of LR or CWR occurrence subsets with potential interest for breeders
and researchers working on specific abiotic resistances or tolerances, it is necessary
to describe the specific environmental profiles in which the selected traits may have
evolved in the taxon of interest. This requires identifying the most appropriate
variables that characterize those environments. In addition, threshold values need to
be identified for each variable, above or below which a specific site should be taken
into consideration. Table 3.2 provides examples for traits, related variables and
threshold values.

Table 3.2. Examples from the PGR Secure project for traits and variables for the project’s
target genera Avena, Beta, Brassica and Medicago

Avena Aluminium toxicity Soil pH; <pH5.5
Soil organic carbon content T_OC <1.2% T_OC
Beta Drought De Martonne aridity index (De Martonne, <10
1926), calculated based on temperature
and precipitation of the three driest months
(July, August and September in the
Northern Hemisphere).
Brassica Drought De Martonne aridity index <10
Salinity Topsoil salinity (TSS) measured as electrical | > 4 dS/m
conductivity in dS/m (deciSiemens/metre) | Highest values in
records with TSS > 4
Mean temperature values for the driest
months
Medicago Frost BIOCLIM 11 colder than -2°C
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The relevant environmental variables and their threshold values that can
characterize environments where the trait of interest can evolve are mainly determined
through literature searches and consultation with experts working on the taxon and/or
trait of interest. Scientific and technical literature about the trait of interest within the
taxon and geographical area of study can provide indications of the environment
where the trait was found. Breeders and researchers working on the taxon and the
trait should also be consulted, to obtain expert views on relevant variables as well as
on evaluation. As an example, the selection of environmental variables relevant for
drought stress in Beta is described as an example in detail in Box 3.1.

Box 3.1 Drought resistance in Beta — results from the PGR Secure project

An important trait in Beta crops is drought resistance. To identify CWR occurring in
sites where drought resistance traits are likely to develop, appropriate variables
were needed to identify the sites. Simple precipitation values do not explain plant
water availability. For instance, low annual precipitation in a particular location
does not necessarily mean that plants may be subject to selective pressures for
drought resistance. It will depend on how precipitation is distributed throughout the
plant life cycle, the ability of the soil to retain water and on the distribution of
temperatures throughout the period considered. Higher demand for water is
expected during the growing stages and when temperatures are higher, i.e. when
evapotranspiration values increase. Aridity indices are one way of bringing together
precipitation and temperature (using temperature as a measure to estimate
evapotranspiration) and the De Martonne index (lar; De Martonne, 1926) was
identified as the most appropriate for the ecogeographicalal filtering method.
Following the De Martonne index, aridity can be classified as follows:

Classification of zones according to De Martonne
index

0-5 | Extremely arid (desert)
5-10 | Arid (steppic)
10-20 | Semi-arid (Mediterranean)
20-30 | Sub-humid
30-60 |Humid
>60 |Per-humid

Source: Adapted from Almorox Alonso, 2003.

For the 1596 available georeferenced Beta CWR occurrences in Europe the De
Martonne aridity index was calculated using the temperature and precipitation of
the three driest months (July, August and September).

lar-DM = 12*P/(tmi+10), where P; is the mean precipitation of month i and tm; is
the mean temperature of month i in Celsius degrees.

Habitats for CWR likely to contain genetic diversity for resistance to drought
would correspond to those with De Martonne aridity values below 10, including
both the arid and extremely arid categories. Using the De Martonne aridity index
and the identified threshold value when applying the ecogeographical filtering
method to the Beta CWR data set, 31 occurrences were identified as growing or
collected in habitats with an aridity index below 10.
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Once the variable(s) have been identified, the values for each variable need to be
extracted for each location and added to the occurrence data set, as they will be
required for the R script. These variables can be geophysical, edaphic and bioclimatic
variables and are extracted from relevant data sources such as those listed below. If
you work at a national or sub-national scale, geographical or environmental national
agencies, weather stations and meteorological services might provide additional, more
detailed or more up-to-date layers.

Note that sometimes the most appropriate parameters helping in the selection of
the subset might have to be calculated from other variables. That is the case, for
example, for the De Martonne aridity index, which has been identified as more
appropriate than precipitation alone to describe drought-prone environments (see
Box 3.1). Once this new parameter is calculated, it has to be added to the occurrence
data set with which you are working.

Geophysical data

Geophysical data such as elevation can be downloaded as layers from the Digital
Elevation Model (DEM) (SRTM data version 4, http://srtm.csi.cgiar.org/). Data for each
site can then be extracted from the layers with DIVA-GIS or other GIS software. Other
variables, such as slope, aspect, northness and eastness', can be derived from
elevation layer (DEMs) using aspect, slope, Cos and Sin functions from the ArcGIS /
Arc toolbox.

Edaphic data

Edaphic data can be downloaded from the Harmonized World Soil Database at
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-
database/HTML/HWSD_Data.html?sb=4

Bioclimatic data

Climate data specific to the locations in the occurrence data set can be extracted with
the ‘Extract data by Point from climate data’ function in the DIVA-GIS Data menu.
Global current climate data sets in DIVA-GIS-compatible format can be downloaded
from the DIVA-GIS Web site at http://www.diva-gis.org/climate in 10, 5 and 2.5 minute
resolution. If you require climate data at higher resolution, you can download climate
data directly from WorldClim.

WorldClim — Global Climate Data (http://www.worldclim.org/) (Hijmans et al., 2005)
provides a set of global climate layers with a maximum spatial resolution of 30
seconds (about 1 square kilometre). It provides generic grids (raster files) which can
be imported into most GIS applications, and ESRI grids which can be used in ArcMap,
Arcinfo and ArcView. The site allows you to choose the appropriate resolution (30
seconds, 2.5 minutes, 5 minutes or 10 minutes) and the precipitation, temperature and
BioClim variables you need (Figure 3.2).

" Northness and eastness are calculated from the aspect layers, which are obtained from the DEM or elevation layer:
northness = cos(aspect); eastness = sin(aspect).


http://srtm.csi.cgiar.org/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
http://www.diva-gis.org/climate
http://www.worldclim.org/
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If you require the highest resolution (30 arc-seconds [~1 km]), data are also
available for download by tile (Figure 3.3).

See Section 4.2 for some examples on how to download and extract environment
layers for your occurrence locations using the R software platform.

The identified variables and threshold values are included in the dataset to be used
together with the ELC map to extract the final subsets for the target taxon from your
data set.

3.3 Selection of occurrence set

The R environment is used to assign the ecogeographical category to each
occurrence point and to generate the ecogeographical core set and subsequently the
final occurrence subset, based on the ELC map and the threshold value of the critical
environmental variable. An example R script, which uses Avena data and maps
generated in the PGR Secure project, is provided below. The URLs from where the
example Avena occurrence datasets, ELC map and raster file for the environmental
variable can be downloaded are included in the script. You will need to adapt the
working directory to the place where you download the files. Further adaption is
required throughout the script to run it with your own occurrence data set,
environmental variables and maps.

The following steps are executed within the R script:

e The ELC map is overlaid with the occurrence points of your dataset and the
frequency of points that belong to each ecogeographical unit are obtained.

e Then, the number of samples to be taken from each ecogeographical unit is
determined. The R script gives the choice to select a proportional allocation
approach, a uniform allocation approach or a combination of both through the
parameter a (see R-script), which ranges from 0 to 1 (0: for total uniform
allocation; and 1: for total proportional allocation).

e The records belonging to each ecogeographical unit are ranked according to the
environmental variable identified in Section 3.2 used to look for adaptation for
the particular abiotic stress tolerance, and those records that better comply with
this variable are selected, according to the allocation numbers generated in the
previous step.

e The sum of these records produces an optimized ecogeographical core set.

e To obtain the final subset of interest, the ecogeographical core set is ranked
based on the environmental profile variables and either all records above or
below the previously determined threshold value are selected, or the 100 (or any
other number defined by the user) highest ranking records are selected.

You should copy the example R script provided below into your R environment and
adapt it to the respective file and folder names of your working environment as well as
to your selected environmental variable(s). The example script (Code box 3.1) includes
explanations and indications where you need to modify it.

The files you need to place in your R working folder are the following:

¢ Baseline data set as tab-delimited text file (.ixt). Make sure that the values for
the selected environmental profile variables are included.

o The ELC map or any existing ecogeographical map as an ASCII layer (.asc).

e The ASCII layer of your environmental profile variables, but only if you wish to
plot the occurrences included in the final subset on the map showing this
variable.

The R script generates a text file containing the identified final set of occurrences.
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## CODE BOX 3.1
# Example R-script for the ecogeographical filtering method

setwd ("G:/PredictiveCharacterization/Data") # sets the working directory

# Adjust this to the address of your working folder (“./your path/data”)

Install.packages ("raster") # install this package if it is not part of your installed
R-packages yet

library (raster)

# Download demo data

download.file ("http://trait-mining.googlecode.com/svn/trunk/data/avena/AvenaCWR.txt",
"./AvenaCWR. txt")

download.file ("http://trait-mining.googlecode.com/svn/trunk/data/avena/AvenalR.txt",
"./AvenalR.txt")

download.file ("http://trait-mining.googlecode.com/svn/trunk/data/avena/elcmap AvenaSativa.zip",
"./elcmap AvenaSativa.zip")

download.file ("http://trait-mining.googlecode.com/svn/trunk/data/avena/t ph w84.zip",
"./t_ph w84.zip")

# Read Avena demo data set into R
baseline <- read.delim("./AvenaCWR.txt", header=TRUE, dec=".")

# AvenaCWR.txt contains the table with all occurrence data and the necessary ecogeo-
graphical information for Avena crop wild relatives. You can use AvenalR.txt and
modify the code accordingly to run the script with the example data for Avena
landraces

# unzip the raster and read
unzip ("./elcmap AvenaSativa.zip")

elc<-raster ("./elcmapAvena.asc")
# elcmapAvena.asc contains the ELC map for Avena

ecogeo <-extract (elc,baseline[,c ("LONDEC", "LATDEC")])

# ecogeo extracts from the ecogeographical map the ecogeographical units that
correspond to each occurrence point

baseline2<-cbind (baseline, ecogeo)

# baseline2 adds the column ecogeo with the ecogeographical units to the baseline
table,this will only work if all occurrence data contain coordinates

FAVENA<-table (baseline2$ecogeo)

FAVENA <- cbind (names (FAVENA) ,as.vector (FAVENA))

# The function 'table' obtains the frequencies of occurrences in each ecogeographical
unit

# cbind combines the names of the ecogeographical units with their corresponding
frequencies

# The ecogeographical units are usually numbered, e.g. from 1 to 78 in ELC map for
Avena created in the PGR-Secure project

# Here, aluminium toxicity is the target trait for Avena, and we use the following
variables as proxy for aluminum content: T PH H20 and T OC. Values for these
variables are included in our occurrence data set

i <- order(baseline2ST PH H20)
baseline2 <- baseline2 [i,]

# We order the subset according to the variable of our choice creating an index(i).


http://trait-mining.googlecode.com/svn/trunk/data/avena/elcmap_AvenaSativa.zip
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n <- 1000

# n is the number of records we want to have in our optimized ecogeographical core
set

nc <- dim(FAVNEA) [1]
# nc is the number of ecogeographical units that have occurrences
# The dim function provides the dimension of the object (l:rows; 2:columns)

f <- as.numeric (FAVENA[,2])

# f provides the frequency of each ecogeographical unit

prop <- f/sum(f)

# Provides the proportional value of each frequency
even <- pmin (prop,rep(l/nc, times=nc))

even <- even/sum(even)

# even object provides the minimum value between the proportional value and the even
share

# In the second row it is adjusted to sum a total frequency of 1.

a <- .5
samples <- (a*prop + (l-a)*even) * n

# Samples is the number of samples that are to be selected from each ecogeographical
unit

# It combines the proportional and the even allocation approaches through the
parameter "a"

# a=1 provides a complete proportional allocation

# a=0 provides a truncated even allocation (even for those values where proportional
is greater than even)

samples([is.na (samples)] <- 0
# Provides 0 value to samples if na is obtained from log(0) in the previous step
samples <- pmax (round(samples), £>0)

# Rounds the values of samples and provides values of at least 1 for those
frequencies that are greater than zero

i <- order(baseline2$ST PH H20,decreasing=FALSE)
baseline2 <- baseline2 [i,]
# Reorders the whole subset according to the T PH H20 variable in ascending order.

# Change it to decreasing=TRUE if you wished to reverse the order

baseline?2 <- baseline2 [!is.na(baseline2$ecogeo), ]

# Eliminates the records that have na values for the field ecogeo. For T PH H20 na=na
and is not -9999, like in BIOCLIM variables.

baseline2 <- subset (baseline2, !is.na(baseline2$T PH H20))

# Eliminates the records that have no data for the variable of interest for selection

egreg <- unique (baseline2$ecogeo)
egreg <- egreglorder (egreqg) ]

# egreg provides an ordered rank of the values of the ecogeographical units

bss <- NULL

# Creates a new object with empty values

for(j in 1l:nc)

{
bs <- subset (baseline2, ecogeo == egregl[j])

# Selects one by one (through the loop) the records of each ecogeographical unit
bss <- rbind(bss, bs[l:samples([j]l,])

# Adds to bss the number of records assigned to each ecogeographical unit

}
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i <- order (bss$T_PH H20,decreasing=FALSE)
bss <- bss[i,]

# It reorders bss (the ecogeographical core set) according to the variable of
interest

hist (bss$T PH H20)

# Provides the results of the ecogeographical core set in a histogram according to
the variable of interest

semifinalsubset<-subset (bss, T PH H20<=5.5)

# Selects a semifinal subset by setting a threshold in the variable of interest, here
topsoil pH below 5.5)

finalsubset<-subset (semifinalsubset, T OC<=1.2)

# Selects from all the records in semi finalsubset (which are all those that meet the
first criteria of having a PH below the threshold)

# Those that have in addition an organic carbon content below 1.2%.

write.table(finalsubset, file = "taxonl finalsubset PHbelow55 TOCbelowl2.txt", sep =
"\t", col.names = NA, gmethod = "double")

# If desired you can create a list of the 100 "best" records
Best100<-bss[1:100,]

# Selects a second final subset with the first best 100 records according to the
variable of interest T PH H20

# This could include - in theory - also records where the variable is above our
threshold - if there were less than 100 occurrences with PH<5.5

# In the case of Avena we work with two variables and need to add to the selection of
the 100 best records the additional criteria t OC < 1.2

# Therefore exclude from bss all records with T OC > 1.2% and then reorder first on
PH and then on T OC.

# Instead of bestl00<-bss[1:100,] you use the following script as we have two
variables:

bss2<-subset (bss, T_0C<=1.2)

i <- order(bss2$T PH H20,decreasing=FALSE)
bss3 <- bss2[i,]
finalbest100<-bss3[1:100,]

write.table(finalbest100, file = "taxonl 100best PHbelow55 TOCbelowl2.txt", sep =
"\t", col.names = NA, gmethod = "double")

# Plotting the sub sets:

xmin<-min (finalsubset $LONDEC) -4
xmax<-max (finalsubset $LONDEC) +4
ymin<-min (finalsubset S$LATDEC) -2
ymax<-max (finalsubset S$LATDEC) +4

# Provides the margins for the extent of the territory to cover in the map taking
into account the distribution of points of the final subset

# The most extreme points of the distribution are provided and then we add some
degrees to make it a bit larger

# Adjust the margins of the map by changing the number you add or subtract
Extent<-extent (xmin, xmax, ymin, ymax)

# Defines the extent of the map

# unzip the raster and read
unzip("./t_ph w84.zip")
pH H20 <-raster("./t ph w84.asc")

# Obtains the map of the variable of interest.
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PH_H20 <-raster("G:/PredictiveCharacterization/Data/t_ph w84.asc")

# Obtains the map of the variable of interest. This needs to be placed in your
working folder

pH H20 <-crop (pH H20,Extent)

# Crops the map of the variable of interest to the extent defined

par (mfrow =c(1,2))

# Prepares a figure with two maps left and right. If you prefer printing maps
separately, skip that step.

pH H20 <-crop (pH_H20,Extent)

plot (pH_HZ20)

points (finalsubset[,c ("LONDEC", "LATDEC") ], pch=20,cex=.1)

# Plots the map with the variable of interest and the distribution of the figs points

elc <-crop(elc,Extent)
plot (elc)
points (finalsubset [, c ("LONDEC", "LATDEC") ],pch=20,cex=.1)

# Plots the map with the ecogeographical map and the distribution of final subset
points

3.4 Use with biotic resistance traits as variables

The ecogeographical filtering method can be used also with biotic resistance traits,
e.g. pest resistances, if detailed occurrence data of a pest of interest is available, or if
the environmental niche of a pest is known.

In the simplest case, taxon occurrences could be classified as co-occurring with
the pest or not, and those occurrences co-occurring with the pest be selected for
further evaluation and research.

If pest occurrence data are available with density information, the taxon
occurrences could be classified as falling within a high, medium or low density area.
This classification could be used as variable to generate an optimized ecogeo-
graphical core subset and the final subset.

Another possibility can be to calculate a predicted distribution for the pest based
on ecological niche modelling methods, such as Maxent. The predicted distribution
could be applied using the resulting habitat suitability index as variable to generate the
optimized ecogeogrpahical core subset. Locations with habitat suitability values
above a particular value would be selected as final subset.

If the environmental niche of the pest is known, variables delimiting this niche can
be used to generate the optimized ecogeographical core set and define the final
subset.
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4. Application of the calibration method

The calibration method for predictive characterization can be used when you have
access to a training set with characterization or evaluation data for your trait of
interest. This training set (with known trait measurements) is required to calibrate a
predictive model that can be used to calculate an estimate for the respective trait for
other similar accessions not yet tested for this trait. Calibration of such predictive
models can easily lead to very specific models that are over-fitted to the training set.
This issue demands careful attention to find a balance for the appropriate model
fitting. Even if the model has good predictive performance on the training set, it may
not perform well on other similar accessions. The problem of over-fitting may often be
that the model is too complex and too closely fitted to the training set. To find an
appropriate model complexity the iterative model calibration should be stopped when
a generic pattern is identified. To evaluate if the model is sufficiently generic to
perform well on other similar accessions we need a test set of similar accessions with
known trait data. It is highly recommended to use an independent test set and not just
perform a simple data splitting on the training set. However, a separate and
independent test set may not be available, and creating a test set by data splitting
may for many experiments be the only practical option available.

This chapter provides example R code to perform a predictive characterization
study using the calibration method for classification. For trait measurement values on
a continuous scale you may want to use a regression algorithm (which is not covered
in the demonstration example here). The demonstration example explores a prepared
data set with occurrence and trait data for stem rust made available by USDA GRIN?
(public domain), and environment data from the WorldClim data set® (“freely available
for academic and other non-commercial use”). This is the same stem rust data and
modelling approaches that was used by Endresen et al. (2011) and Bari et al. (2012).
The example data set used in these examples can be downloaded from:
http://goo.gl/’Xp2dwq*. The R code presented in this Chapter 4 is from an R script
made available at: http://goo.gl/FwZMZB®.

For the examples presented in these guidelines, we use algorithms such as the
Random Forest (Breiman, 2001) for calibration of the model, one of the methods that
had performed well in previous FIGS studies (Bari et al., 2012). The use of other
algorithms, such as KNN and Boosted Regression Trees (BRT), should also be
explored when conducting a practical study.

4.1 Installation of required R packages

In the examples below, some of the R code instructions require specific R-packages
to be installed and loaded. The additional packages that are required are indicated
using a comment at the end of the respective R code lines. To install the packages,
use the graphical user interface (GUI) of RStudio or issue the command line as is
described in Code box 4.1. When the package is installed, you only need to load it
before using its functions and features in an R script.

2 http://www.ars-grin.gov/cgi-bin/npgs/html/desc.pl?65049

3 http://www.worldclim.org/current

4 http://trait-mining.googlecode.com/svn/trunk/data/stemrust/stem_rust_set.txt
5 http://trait-mining.googlecode.com/svn/trunk/R/stem_rust_example.R


http://www.ars-grin.gov/cgi-bin/npgs/html/desc.pl?65049
http://www.worldclim.org/current
http://trait-mining.googlecode.com/svn/trunk/data/stemrust/stem_rust_set.txt
http://trait-mining.googlecode.com/svn/trunk/R/stem_rust_example.R
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## CODE BOX 4.1
install-packages (c ("maps", “mapdata”))

install-packages ("randomForest")

(
(

install-packages ("raster")
(

install-packages ("rgbif")
library (maps) # we will use this R-package to plot a world map

(
library(raster) # spatial raster data management
library (rgbif) # download species occurrences from GBIF
(

require (randomForest) # this example will use the Random Forest algorithm

4.2 Addition of climate data

The calibration method works preferably with climate data. Relatively fine-scale
climate data at a 1 km (30 second) grid resolution would often improve accuracy of
the models. However, it requires sufficient computing capacity and it is a large
quantity of data to be downloaded. For data download of climate data and extraction
of climate data for occurrence points see Section 3.2.

Climate data can also be extracted during the application process of the calibration
method, including the necessary code in the R script.

The GBIF portal provides occurrence data for most of the CWR species. The following
example illustrates how you can download occurrence data from the GBIF portal
(Chamberlain et al., 2014) and link these to environment layers from WorldClim using
R (Hijmans, 2014). You can sKip this example if you already have all the occurrence
data you need.

## CODE BOX 4.2

# GBIF, http://www.gbif.org # rgbif, http://cran.r-project.org/package=rgbif

key <- name backbone (name='Beta vulgaris')$speciesKey # taxonKey=5383920

# Example here is limited to 1000 (maximum limit is 1 million records per search)
bv <- occ search(taxonKey=key, return='data', hasCoordinate=TRUE, 1imit=1000)

xy <- cbind('species'=bv$name, 'lon'=bv$decimalLongitude, 'lat'=bv$decimalLatitude);

You may want to check the occurrence data downloaded from GBIF for duplicates
and/or combine the occurrences with data from other sources.

Uncomment the line below to write your occurrence data to a tab-delimited file
write.table(xy, file="bv_ set.txt", sep="\t", col.names=NA, gmethod="double")
Uncomment the line below to read corrected occurrence data back into R

xy <- read.delim("./YOUR PATH/bv_set.txt", header=TRUE, dec=".")

map ('world') # R-package: maps and mapdata
points (xy$lon, xy$lat, col='red') # plot points

# WorldClim, http://www.worldclim.org/
env <- getData('worldclim', var='bio', res=10) # (pkg raster)

Xbio <- extract(env, xy); # extract environment to points (pkg raster)

plot (env, 1) # plot the first bioclim layer
points (xy$lon, xy$lat, col='red') # plot points onto bioclim map
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4.3 Trait data compilation

Characterization or evaluation data for traits of interest for the target taxon may be
contained in the databases listed in Section 2.1, or may require contacting data
curators, breeders or crop experts. The more evaluation data that are available, the
better the calibration will work.

Trait evaluation data can have different formats in different databases. All trait
scores for different variables can be listed in the same column, one after the other, as
is used in GRIN, while other data sources have the variables distributed in different
columns. It is recommended to follow the GRIN format when building a trait database,
but you should prepare a cross-table with each variable in a separate column before
using the calibration method.
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Figure 4.1. Evaluation data for Avena from the European Avena Database. Evaluation data in different
columns are for different traits of one accession.
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18 |PI 258566 Pl 2538566 8 BYDV OAT.BYDV.URBANA.85 WIR4735 Avenasativa Greece COLLECTEI 36.2 27.95

19 |PI I ZSESSSIIPI 258566 S CRUSTREACT_264A OAT.CROWNRUST.AMES. WIR 4795 Avenasativa Greece COLLECTEI 36.2 27.95

20 |P1 258566 Pl 258566 S CRUSTREACT_264B OAT.CROWNRUST.AMES. WIR 4795 Avenasativa Greece COLLECTEI 36.2 27.95

21 [PI 258566 Pl 258566 5 CRUSTREACT_MULTIPLI OAT.CROWNRUST.AMES.i WIR 4795 Avena sativa Greece  COLLECTEI 36.2 27.95

22 |P1 258566 Pl 258566 S CRUSTREACT OAT.CROWNRUST.AMES.IWIR 4735 Avenasativa Greece  COLLECTEI 36.2 27951

23 |P1 258566 Pl 258566 S CRUSTREACT OAT.CROWNRUST.AMES. WIR 4795 Avenasativa Greece COLLECTEI 36.2 27.95 0

24 Pl 258566 Pl 258566 S CRUSTREACT OAT.CROWNRUST.AMES. WIR 4795 Avenasativa Greece COLLECTEI 36.2 27.95 1

25 [PI 258580 PI 258580 M5-5 CRUSTREACT OAT.CROWNRUST.STPAU WIR 10204 Avena sativa Greece  COLLECTEl 35.06667 24.93333 =
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Figure 4.2. Evaluation data from GRIN. Evaluation data for different traits for one accession are in the
same column.

It is important to understand how the evaluation data have been generated and
which measurement protocols have been followed if evaluation data from different
sources are used. Trait data compiled from different sources are often grouped into
standardized categories following the Bioversity descriptor list recommendations
(Gotor et al.,, 2008) when used for computer modelling (for more details see
Section 4.4 below), and values from different sources need to be correctly assigned to
categories.

If you have evaluation data from different sources, the data source could be coded
and included as one of the explanatory (independent) variables as input to the model.
This will allow one to see to what extent the source itself influences the results of the
model (by exploring the loading plot or similar statistics). Trait data compiled from
different sources might follow slightly different measurement protocols. If these
differences harm the analysis of these data together in one compiled data set, adding
the experiment year and site as part of the explanatory variables might enable the
computer model to incorporate these differences in the model and reduce the harmful
effect from the different measurement practices.

Trait evaluation results are often a range within a scale of scores from several
degrees of susceptibility to several degrees of resistance. When using classification
algorithms, a better predictive performance can often be obtained by re-scaling the
trait scores into fewer response category levels, e.g. into two or three category levels.
These new categories can be included in the spreadsheet containing the data set or
be calculated using R.
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4.4 Preparation of training and test set

The trait data need to be combined with the occurrence data. Based on the accession
number, the R script example in Code box 4.3 takes those records from the
occurrence data set for which trait data exist, to create the training set for the
calibration method.

## CODE BOX 4.3
# Write down "YOUR PATH", "YOUR GENUS NAME" and "YOUR SPECIES NAME"

# Set the working directory

setwd ("./YOUR PATH/Data")

# Prepare traitfile.txt and masterfile.txt and copy to your working directory
trait<-read.delim("./YOUR PATH/traitfile.txt")

# To correct the trait dataset for Beta we need to remove rows with missing ACCENUMB
trait <- subset (trait, ACCENUMB!="")

masterfile<-read.delim("./YOUR PATH/masterfile.txt")

unitable<-merge (trait, masterfile, by.x = "ACCENUMB", by.y = "ACCENUMB", all.x=T)
# Creating an index and selecting only matching records

unitable <- unitable[!is.na (unitable$NUMCAT), ]

# Deleting records from other genus (e.g. other than “Beta”)
unitable<-subset (unitable, GENUS=="YOUR GENUS_ NAME")

# Deleting records from other species (e.g. other than “wvulgare”)
unitable<-subset (unitable, SPECIES=="YOUR SPECIES NAME")

# You may want to export the resulting merged table as tab-delimited text

write.table (unitable, file = "unitable.txt", sep = "\t", col.names = NA, gmethod =
"double")

The example script uses the accession or catalogue number as the link between
the occurrence and the trait evaluation data set. If you work with occurrence data sets
that include data for more than one taxon, the merge could return records for
accessions with the same alphanumeric accession number, but from different taxa
(i.e. the evaluation data of accession xyz of taxon A has been merged correctly with
passport data of accession xyz of taxon A and wrongly with an accession of taxon B
that carries the same accession number xyz). It is therefore good practice in these
cases to check for double records and ensure that the evaluation data has been linked
to the correct accession. The best practice is, of course, to always use globally unique
and persistent identifiers for all the accessions and occurrence data. Unfortunately
such persistent identifiers are not yet commonly available for germplasm accessions.

The resulting data set for the calibration method usually represents a subset of the
available occurrence data set, as it includes only those records for which trait
evaluation data are available.

As mentioned above, calibration and testing require two separate data sets. The
ideal test set contains evaluation data for the same trait as the calibration set, but with
the training and test sets respectively from two completely independent evaluation
trials. If your data set is sufficiently large and a combined set that includes evaluation
data from at least two independent and unrelated sources, it is advisable to use the
data from one of the independent sources as an independent test set. Another option
could be to split the trait data set into the respective training set and test set based on
the trial year or trial site. This splitting approach assumes that different accessions are
measured in different trial years or at different trial sites — as is common for C&E data
sets (and as is the situation for the stem rust demonstration set). If the trait data set
includes replications where the same accession is measured for each trial year and/or
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trial location, this splitting approach will normally not be appropriate.

When you lack an independent test set, data splitting can be used as a second-
best option. The data set is split in two parts, a training and a test set. Records can be
assigned in a random way or in a systematic way to the two sets. The test set can, for
example, be generated to include at least one-fifth to one-third of the samples in the
working data set (Roy, Leonard and Roy, 2008). In our example we have split
approximately half of the records to the training set and half to the test set. The
training set is used to calibrate the model; the test set is used to test the model.

Two independent occurrence + trait data sets are created. Alternatively, a single
occurrence + trait data set is available to be split into training and test sets.

4.5 Model calibration

The first step in the application of the calibration method is to load the data set into R.
In our example (Code box 4.4) we have used a demonstration data set with accession
occurrence and trait data from USDA GRIN, prepared and linked to environment data
from WorldClim (Hijmans et al., 2005).

## CODE BOX 4.4

# DEMO EXAMPLE : Download stem rust demo data set
# [the following command is one line in your script]

download.file ("http://trait-mining.googlecode.com/svn/trunk/data/stemrust/stem rust set.txt",
"./stem rust/stem rust set.txt")

# Read stem rust demo data set into R

sr <- read.delim("./stem rust/stem rust set.txt", header=TRUE, dec=".")

# "s3" has the stem rust trait scores reclassified as three levels:
# 1 = resistant, 2 = intermediate, and 3 = susceptible germplasm accessions.
# [the following command is one line in your script]

Xbio <-
sr[c("s3","biol", "bio2","bio3", "bio4", "bio5","bio6", "bio7", "bio8", "bio9", "biol0", "bio
11","biol2","biol3", "biol4d", "biol5", "biol6", "biol7", "biol8","biol9") ]

You may want to preview the occurrences of the data set on a map. R provides
numerous ways to open and display spatial map data. You may want to load a
shapefile, such as by using the readShapePoly() function from the maptools R-
package. Here we will just load a simple wireframe with country borders using the
maps R-package (Code box 4.5).

## CODE BOX 4.5

map ('world') # R-package: maps
points (src("longitude","latitude")], col='red') # plot wheat set


http://trait-mining.googlecode.com/svn/trunk/data/stemrust/stem_rust_set.txt
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The model ascertains an ecogeographical profile of the collecting sites of the
training set and then - using statistical methods, i.e. random forest in this case -
selects untested accessions from environments that are statistically similar to the
training set environments.

When assessing the prediction Table 4.1. Confusion matrix (2-by-2 contingency
performance for a categorical (or binary) table)

response variable we can use a
confusion table (also called confusion

matrix) to calculate the performance

. . True positive (TP) | False positive (FN)
metrics. The confusion table can be

collapsed to a 2 by 2 table to calculate (FFa;e negative True negative (TN)
true positives, false positives, false

negatives and true negatives (Table 4.1).

## CODE BOX 4.6
# Xbio [array] includes trait scores followed by the environment layers

# Autoscale = center around the mean, and divide by standard deviation.

scale (Xbio[,2:20], center=TRUE, scale=TRUE)

# Splitting into training and test sets

# An independent test set is highly recommended!!!

Xcal <- Xbio[1:3445,] # training set - for model calibration

Xtest <- Xbio[3446:6890,] # test set - to validate model performance

# Calibrate model using the training set
rf <- randomForest (as.factor(s3) ~ ., data=Xcal, ntr=50)

plot (rf) # preview

# Read the confusion table from the model object
conf <- rf$confusion

TP <- conf[l,1]

FP <- conf[2,1] + conf[3,1]

FN <- conf[l,2] + conf[l, 3]

TN <- conf[2,2] + conf[2,3] + conf[3,2] + conf[3,3]

# Calculate calibration performance metrics

PO _cal <- (TP + TN) /sum (TP, FP,FN, TN) # proportion of observed agreement

PA cal <- (2*TP)/(2*TP+FP+FN) # proportion of observed positive agreement
PPV _cal <- TP/ (TP + FP) # positive predictive value

LRpos_cal <- (TP/(TP + FN)/(FP/(FP+TN))) # pos diagnostic likelihood ratio
Sensitivity cal <- TP/ (TP + FN)

Specificity cal <- TN/ (TN + FP)

The modelling of biotic resistance traits aims to detect germplasm with higher
likelihood to contain adaptive genetic variation for resistances; i.e. it is more
concerned with the identification of resistant samples than with an accurate
classification of susceptible samples. Resistance to biotic stresses is generally a rare
property with many more germplasm accessions susceptible to a given biotic stress.
The distribution of the target trait property is often very skewed and this has
implications for the prediction performance indicators we choose. If the distribution of
the trait scores is indeed strongly skewed with few resistant samples, is
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recommended to use a so-called “positive” prediction performance indicator in the
calibration of the prediction models (Endresen et al., 2011), as in these very skewed
data sets it may provide a much better calibration approach (Table 4.2). This model
calibration strategy of using so-called positive prediction metrics during model
calibration will improve the tendency of the prediction model to correctly identify the
target genetic diversity for biotic resistance. If a neutral prediction performance
indicator is chosen, equal weight is given to correct identification of either the target
resistant samples or the susceptible samples. With few resistant samples available,
the model is not “punished” very much for prediction errors for these samples
compared with the “reward” for predicting the susceptible samples correctly.

Some indicators that can be used to assess calibration performance of the model
are listed in Table 4.2 (Endresen et al., 2011). These are included in the R-script (Code
box 4.6).

Table 4.2. Indicators to assess calibration performance

PO Proportion of observed agreement (TP + TN)/(TP+FP+FN+TN)

PA Proportion of positive agreement (2*TP)/(2*TP+FP+FN)

PPV Positive predictive value TP/(TP + FP)

Prevalence Number or proportion of disease-resistant samples in relation to all TP//(TP+FP+FN+TN)
samples.

LR+ Positive predictive likelihood ratio (measures how much more likely itis | (TP/(TP + FN)/(FP/(FP+TN})))
for the model to predict a LR to be resistant in the group of LR observed
to be resistant compared to making this prediction in the LR group
observed to be susceptible).

Gain Improved predictive performance compared with a random selection. PPV/prevalence

KEY: TP = True positive; TN = True negative; FP = false positive; FN = false negative

The different prediction performance indicators have some different properties that
can be useful to keep in mind. The positive predictive value (PPV) provides a number
between 0 and 1 making it easy to compare the numeric values where a higher
number closer to 1 indicates a better prediction performance. However, it is important
to remember that the PPV score is dependent on the prevalence, so great care should
be taken when comparing PPV scores for trait data sets that can have different
prevalence. Thus, if one data set includes 20% resistant samples, and another data
set includes 10% resistant samples, care should be made when comparing the PPV
scores. For these cases, the LR+ ratio is a useful indicator in that the numeric value is
not inherently dependent on the prevalence in the same way. The LR+ provides
numeric values not limited by 0 and 1 so it can be more difficult to directly assess the
prediction performance for a single trait data set based on a single LR+ score. The
LR+ indicator is useful when comparing the prediction performance between different
trait data sets, and has particular merits when these trait data sets have different
prevalence.

4.6 Model testing

Once the model has been calibrated with the training set, it can be validated by
applying it to the independent data set before it is used to generate a subset from the
accessions of interest (Code box 4.7). The model will predict the trait scores for the
independent data set. As the real scores of the independent data set are already
known, the predicted scores can be compared with the real scores to assess the
quality of the predictions. Without availability of the independent test set, validation
can still be carried out using the test set with results from the data splitting. However,
the evidence for model performance generated in this way is weaker, because the
general bias patterns in the training and the test set are the same.
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The model prediction performance metrics can be evaluated against a statistical
significance level. Statistical significance is the probability that the effect is not likely to
be due to chance alone. It is common to choose either the 0.05, 0.01 or 0.001 levels.
At the 0.05 significance level, the null hypothesis that the effect is due to chance alone
is incorrectly rejected in 5% cases. This means that when repeating the experiment 20
times, a pure random effect will on average be statistically significant in one of the
experiments. With scripting it is very easy to run the same modelling experiment many
times. It is therefore important to be careful and critical when evaluating statistical
significance for your predictive model. Remember to keep the test set separate during
the entire model calibration phase, and choose the final model complexity before
evaluating the prediction performance with the test set.

## CODE BOX 4.7

# Xbio [array] includes trait scores followed by the environment layers
# Recall the test set, Xtest was produced in code box 4.6 as:
Xtest <- Xbio[3445:6890,] # test set - to validate model performance

# Predict scores for the test set
prediction <- predict(rf, Xtest) # pkg stats

hist (Xtest$s3)) # preview classification histogram

# Read the confusion table from the model object
conf <- table (Xtest$s3, prediction)

TP <- conf[l,1]

FP <- conf[2,1] + conf[3,1]

FN <- conf[1l,2] + conf[l, 3]

TN <- conf[2,2] + conf[2,3] + conf[3,2] + confl[3, 3]

# Calculate prediction performance metrics

PO test <- (TP + TN)/sum(TP,FP,FN,TN) # proportion of observed agreement

PA test <- (2*TP) / (2*TP+FP+FN) # proportion of observed positive agreement
PPV_test <- TP/ (TP + FP) # positive predictive value

LRpos_test <- (TP/(TP + FN)/(FP/(FP+TN))) # pos diagnostic likelihood ratio
Sensitivity test <- TP/ (TP + FN)

Specificity test <- TN/ (TN + FP)

#LRpos_test<- Sensitivity test / (1-Specificity test)

The Statistics Calculator® from the Centre for Evidence-Based Medicine (CEBM,
2014) provides useful calculations including the 95% confidence intervals for the
model prediction metrics in our case study presented here. The formulae used by this
online calculator are captured in the R code below (Code box 4.8) — but be aware that
this code has not yet been fully tested in practical modelling studies. The R code can
be used as a guide, but the accuracy of the calculated confidence intervals should of
course always be critically evaluated when making your own studies.

The value of the prediction can vary from situation to situation. For a modelling
point of view, you can look at the 95% confidence interval (as calculated in the
example R code in Code box 4.8 for the prediction performance metrics and say that
the prediction is statistically significant at the 0.05 level when the prediction metric is
between the estimated lower and upper boundaries of the confidence interval for the
respective performance indicator.

6 http://ktclearinghouse.ca/cebm/toolbox/statscalc


http://ktclearinghouse.ca/cebm/toolbox/statscalc
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You may also create a completely random test set by re-ordering the response
column (column s3 in the demonstration data set) randomly while keeping the
environment layers constant (permutation). Such a permutation treatment should
remove any signal between the target trait and the environment layers. If the
confidence interval for the respective performance indicator is not overlapping
between the test set and this modified randomized test set, then you have reasonable
evidence that the model prediction metric for the test set is statistically significant. In a
script you could repeat the permutation many times and use the average values. This
approach simulates a random sampling from the test data set.

## CODE BOX 4.8
Evaluation of prediction metrics

Calculation of lower and upper 95% confidence interval limits

TP = true positives, FP = false positives

HH FH FH

TN = true negatives, FN = false negatives

z = 1.959964

Sens <- TP/ (TP + FN)

Sens_low <- ((2*TP)+z*2-z*sqrt ((4*TP*FN/ (TP+FN))+z*2))/ ((2* (TP+FN) )+ (2*z*2))
Sens_upp <- ((2*TP)+z*2+z*sqrt ((4*TP*FN/ (TP+FN))+z*2))/ ((2* (TP+FN) )+ (2*z*2))
Spec <- TN/ (TN + FP)

Spec_low <- ((2*TN)+z*2-z*sqrt ((4*TN*FP/ (FP+TN))+z*2))/ ((2* (FP+TN) )+ (2*z*2))

Spec_upp <- ((2*TN) +z*2+z*sqrt ( (4*TN*FP/ (FP+TN) ) +z*2) )/ ((2* (FP+TN) )+ (2*z*2))

PPV <- TP/ (TP + FP) # positive predictive value

PPV _low <- ((2*TP)+z*2-z*sqrt ((4*TP*FP/ (TP+FP))+z*2))/ ((2* (TP+FP))+(2*z*2))
PPV _upp <- ((2*TP)+z*2+z*sqrt ((4*TP*FP/ (TP+FP))+z*2))/ ((2* (TP+FP)) +(2*z*2))
LRpos <- (TP/(TP + FN)/(FP/(FP+IN))) # pos diagnostic likelihood ratio

LR low <-exp (log(((FP+TIN)*TP)/ ((TP+FN) *FP)
z*sqrt ( (EN/ (TP* (TP+FN) ) )+ (TN/ (FP* (FP+TN) )

)
LR upp <-exp (log(((FP+TN)*TP)/ ((TP+FN) *FP)
z*sqrt ( (EN/ (TP* (TP+FN) ) )+ (TN/ (FP* (FP+TN) ) )

A similar approach can compare prediction performance between different models
(such as when using different algorithms). When the confidence intervals for different
models or algorithms are not overlapping, they have statistically significant different
(better or worse) prediction performance. And when the confidence interval is
overlapping, we can conclude that there is not sufficient statistical evidence (at the
chosen significance level, e.g. 0.05) to claim that one model is performing better or
worse than another model.
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4.7 Selection of occurrence set

The final step is to apply the model to make predictions for accessions not yet tested
for the respective trait. The objective is to identify a subset of accessions with a
greater probability of having the target trait, and to bring these accessions further into
a field screening experiment. The predictive calibration approach is successful if the
field trials based on accessions in the subset give a higher hit-rate for accessions with
the target trait scores than the prevalence of the target trait in the complete prediction
set.

## CODE BOX 4.9

Final step: predictions for accessions with unknown trait scores
Extract the exact same environmental layers for these accessions
Note, exact same environment columns as used for the training set

Xpred <- CLIMATE VARIABLES

HH FH FH

# The example below will use the 19 BioClim variables

# Tab-delimited pred accessions input with columns "longitude" and "latitude"
pred <- read.delim("./YOUR_PATH/pred_accessions.txt", header=TRUE, dec=".")
xy pred <- pred[c("longitude","latitude")]

# WorldClim, http://www.worldclim.org/ (See also CODE BOX 4.1)

env <- getData ('worldclim', var='bio', res=10)

Xpred <- extract(env, xy pred); # extract environment to points (pkg raster)

# Predict scores for the new set

prediction <- predict(rf, Xpred) # pkg stats

table (prediction) # how many predicted to each class

# Note that the real trait scores are not available here, and prediction

# metrics can thus not be calculated (before after the final field trials are made) .
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5. Final remarks

The guidelines here presented are deliberately called Version 1. We hope that wider
use of these guidelines for species with different breeding systems, different extents
of distribution ranges, for a variety of traits and in different ecogeographical realitie,
will allow the generation of a body of experience and results that will allow refinement
and extension of the guidelines.

The calibration method may be said to have an advantage over the ecogeo-
graphical method in that the former is an evidence-based approach, the evidence
being the explicit link to past C&E data, as it does take into account the genetic
fixation of adaptive traits. So if there is only a partial relationship between site locality
and presence of adaptive traits, it should be more successful at predicting sites with
the desired adaptive traits than the ecogeographical method. Obviously where the
basic assumption of predictive characterization is false and there is no correlation
between site localities and patterns of genetic diversity for adaptive traits, both
methods will be equally likely to fail in predicting localities where populations with
desired adaptive traits might be found.

Some general important aspects of the two predictive characterization methods are
the following:

e Accurate georeferenced information for all occurrences is important to allow
proper extraction of climatic, edaphic and geophysical data.

¢ Increasing number and improved quality of environmental variables that are
made available globally will make the methods more accurate.

e ELC maps and calibration models need to correctly reflect the assumption that
is implemented in these methods (i.e. that different environmental conditions
generate different selective pressures and genetic differentiation of adaptive
value).

¢ The environmental profiles that promote target traits in LRs or CWRs need to be
carefully described with environmental variables for which we have data in the
territory.

e The methods are not appropriate for modern cultivars as they are not expected
to show this association between traits and the environment. This is because
their traits have not arisen as a result of natural selection but have been
artificially selected to provide a high yield under a wide range of environmental
conditions.

e The ecogeographical filtering method is the method better suited for CWR, as it
is very unlikely that a sufficient number of C&E data records for a specific CWR
species required to implement the calibration method will be available.

The predictive characterization methods here presented have not been tested with
genetic data as variables. Further research is required to know how the inclusion of
genetic diversity data might support predictive characterization. The relationship
between neutral genetic marker diversity and population fitness, as well as heritability
of quantitative traits, has found to be very weak (Reed and Frankham, 2001; McKay
and Latta, 2002), and low differentiation at neutral markers does not necessarily mean
corresponding lack of adaptive differentiation (Conner and Hartl, 2004). It therefore
should not be used as predictor variable for adaptive genetic differentiation, but its
use in the development of ELC maps or the generation of the ecogeographical core
set might be investigated. Data about adaptive genetic diversity or diversity of loci
linked to quantitative traits could probably serve as variable in the calibration method
in a similar way in which C&E data are used, or support the description of
environmental profiles. Considering the decreasing costs for genotyping and the
continuous improvement of technologies, more data are expected to be generated
that can be used in this research.
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