
Substation Location in Offshore Wind Farms –

A Planar Multi-Facility Location-Routing Problem

Thomas Amland
Department of Informatics

University of Bergen

March 14, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30831005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 2

2 Background 4
2.1 The Hop-indexed formulation 4

2.1.1 Branching . 5
2.2 LRP Formulation . 6
2.3 The Big Square–Small Square method 6

3 The Planar Multi-facility Location-routing Problem 8
3.1 Branching . 9
3.2 Planarity Constraints . 11
3.3 Choosing the Starting Polygon 12
3.4 Local Improvement in Location 13
3.5 The Algorithm . 15
3.6 Computational Results . 16
3.7 Relaxation . 16

3.7.1 Termination . 17
3.7.2 Heuristics . 17
3.7.3 Strengthening the Lower Bound 18
3.7.4 Computational Results 19

4 A Branch-and-cut Algorithm for the LRP 21
4.1 Obtaining Feasible Solutions 21
4.2 Maximum Increase in LP . 22
4.3 The Algorithm . 24
4.4 Memory Constraints . 24
4.5 Computational Results . 26
4.6 Observations . 27

5 Concluding Remarks and Future Work 29

A Solution Data 32

1

Chapter 1

Introduction

In offshore wind farms, two important parts of the design are to determine
locations for substations and a cabling layout that connects every turbine
to a substation. These problems are interconnected, as the cable layout
depends on the choice of location for the substation. In this thesis we inves-
tigate how to set the location of substations such that the total cable cost
is minimized.

The Substation Location Problem is defined as follows: given the turbine
positions, cable capacity and number of substations to install; determine the
locations for the substations and the cable layout minimizing the total cable
cost such that the number of turbines per cable do not exceed the capacity,
and no cables cross each other. The problem of finding the cable layout has
been described as the Offshore Wind Farm Array Cable Layout (OWFACL)
[1] and amounts to the Open Vehicle Routing Problem (OVRP) with the
additional constraint that routes do not cross each other. The Substation
Location amounts to a facility location problem taking into account aspects
of vehicle routing. In the literature, this is known as the Location-routing
problem (LRP). The LRP is NP-hard, as both the routing- and location
subproblems are NP-hard. Most of the literature deals with discrete location
problems, while little work have been done for continuous space [2]. Work
in continuous LRP includes a local search algorithm [3], and for the single
facility instance, a method using self-organizing map [4] and hierarchical
search method [3]. To the best of our knowledge, exact methods have not
been studied for the continuous problem.

In order to relate to existing literature, terminology from location anal-
ysis and vehicle routing is used.

A detailed description of the problem is given in Chapter 2 as well as a
proposed method known as the The Big Square-Small Square. In Chapter
3 this method is adapted for the LRP and multi-facility problems, and im-
provements such as using quads instead of squares and the use of local search
is introduced. Furthermore, the performance is improved by the use of re-

2

laxed bounds. Lastly, a branch-and-cut approach for the LRP is introduced,
and is the topic of Chapter 4.

Test Instances

Test instances are created from publicly available data for three Offshore
Wind Farm (OWF) installations: Barrow [5], Walney 1 [6] and Sheringham
Shoal [7], consisting of 30, 51 and 88 turbines, and 1, 1 and 2 installed
substations respectively. For each OWF capacity is set between 5 and 10,
and number of substations between 1 and 2 yielding 36 test instances. The
instances are denoted as b30-cX, b51-cX and s88-cX with X indicating the
capacity. Instances with two substations are prefixed m2.

3

Chapter 2

Background

2.1 The Hop-indexed formulation

The formulation used to model the OWFACL is based on [1]. This model
is chosen as it is easy to implement and can be solved to optimality for the
OWFACL instances within a reasonable time.

Parameters:

Vc : The set of clients

Vd : The set of depots

C : Maximum number of clients per route

pi : Coordinates for the vertices

Variables:

xhij =

{
1 if (i, j) is used and i is the hth node in the route

0 otherwise.
(2.1)

4

min
∑
i∈V

∑
j∈V

C−1∑
h=0

cijx
h
ij (2.2)

s.t.
∑
i∈V

C−1∑
h=0

xhij = 1 ∀j ∈ Vc (2.3)∑
i∈V

xh−1ij −
∑
k∈V

xhjk ≥ 0 ∀j ∈ Vc, h = 1, ..., C − 1 (2.4)

x0ij = 0 ∀i ∈ Vc, j ∈ Vc (2.5)

xhij = 0 ∀i ∈ Vd, j ∈ Vc, h = 1, ..., C − 1

(2.6)

xhij ∈ {0, 1}∀i, j ∈ V ;h = 0, ..., C − 1 (2.7)

C−1∑
h=0

xhij + xhji + xhuv + xhvu ≤ 1 ∀i, j, u, v ∈ V | pipj and pupv intersect

(2.8)

Equation (2.3) ensure every client is visited. (2.4) counts the number
of clients in a route ensuring the index is incremented for each hop, (2.5)
and (2.6) that routes start from a depot. Equation (2.8) are the planarity
constraints. This set is large so we resort to constraint generation.

2.1.1 Branching

In this model, branching on a single variable gives a poor balance as most
of the variables will be 0. Alternative branching methods include:

Decide whether an edge should be at the beginning or end (given by
index H) in the routes:

∑
i∈V

H∑
h=0

xhij = 1 or
∑
i∈V

C−1∑
h=H+1

xhij = 1 j ∈ Vc, H ∈ {0, . . . , C} (2.9)

whether vertex i should connect to j:

C−1∑
h=1

xhij = 0 or
C−1∑
h=1

xhij = 1 i, j ∈ Vc (2.10)

whether i and j are connected in either direction:

C−1∑
h=1

xhij = 1 or
C−1∑
h=1

xhji = 1 or
C−1∑
h=1

xhij + xhji = 0 i, j ∈ Vc (2.11)

5

(2.10) showed the most promising results and is the branching scheme
used. The cut with value closest to 0.5 is chosen.

2.2 LRP Formulation

With basis in the Hop-indexed model we formulate the Location-routing
problem (LRP) as a non-linear mixed integer problem.

Additional parameters:

pi, i ∈ Vc : Coordinates for the clients

Additional variables:

pi, i ∈ Vd : Coordinates of the depots

min
x

∑
i∈V

∑
j∈V

C−1∑
h=0

xhij‖pi − pj‖ (2.12)

s.t.(2.3) – (2.8) (2.13)

Recall from the Hop-indexed model that depots will always be the first
vertex of a route. The objective (2.12) can be simplified and split into two
parts: variables corresponding to edges connecting clients to other clients
and those connected the depots to clients:

min
x

∑
i∈Vc

∑
j∈Vc

C−1∑
h=1

‖pi − pj‖xhij +
∑
i∈Vd

∑
j∈Vc

‖pi − pj‖x0ij (2.14)

2.3 The Big Square–Small Square method

The Big Square-Small Square (BSSS) [8] and The Generalized Big Square
Small Square (GBSSS) [9] have been suggested as a general method for
solving planar single facility location problems. The method is applicable
to problems that can be formulated as a function of the distances G(D(x))
where x is the location of the facility and D the distance vector for this
location. The generalized minisum location problem is stated as

min
x∈R2

F (x) = G(D(x)) (2.15)

6

The idea behind the BSSS method is to split the region of feasible points
into rectangles. In a branch and bound manner, rectangles are either pruned
or split into smaller rectangle by evaluating a lower bound for each rectangle.
Feasible solutions are found by evaluating F for the center of each new
rectangle.

Since F is a function of the distances a lower bound on the distance vector
D for a rectangle R can be transformed into a lower bound on the objective.
A lower bound on the distance vector here means a bound on the distances
G can take for any possible location in a rectangle R. Surely, if the facility
must be located inside of R, the distance from point y to the facility is at
least the shortest distance from y to R.

Definition 1. Let d(R, y) be the shortest distance between point y and rect-
angle R. Formally, d(R, y) = minz∈R ‖y − z‖

A lower bound LF (R) can then be stated as

LF (R) = G(D(R)) (2.16)

where D is the vector of d for demand points yi.

7

Chapter 3

The Planar Multi-facility
Location-routing Problem

In this chapter, we use the formulation of the generalized minisum and the
BSSS as a basis for a method for the planar multi-facility location-routing
problem.

A general continuous multi-facility location problem with m facilities can
be stated as:

min
s∈(S

m)
F (s) (3.1)

where S is the set of feasible locations, and
(
S
m

)
the set of subsets of S

with cardinality 2.
The LRP is obtained by setting:

F (pi) = min
x

∑
i∈Vc

∑
j∈Vc

C−1∑
h=1

d(pi, pj)x
h
ij +

∑
i∈Vd

∑
j∈Vc

d(pi, pj)x
0
ij (3.2)

s.t. (2.3) – (2.8) (3.3)

and

LF (Ri) = min
x

∑
i∈Vc

∑
j∈Vc

C−1∑
h=1

d(pi, pj)x
h
ij +

∑
i∈Vd

∑
j∈Vc

d(Ri, pj)x
0
ij (3.4)

s.t. (2.3) – (2.8) (3.5)

where dij is the L2-norm and d the shortest distance. Evaluating F and
LF amounts to solving the routing problem to optimality for the distance
vector given by the locations of the facilities pi and rectangles Ri.

8

Perhaps the biggest challenge of applying the BSSS method as is, is the
difficulty of this routing problem. The algorithm relies on evaluating F and
LF a large number of times. Therefore, they should be relatively easy to
compute. For some of the largest OWFACL instances, the first iteration
alone, i.e. solving F (y) for the center point y may take more than an hour.
We expect only to be able to solve some of the smaller instances to near
optimality in any reasonable time.

3.1 Branching

Branching for the multi-facility problem is best illustrated by assigning to
each depot its own rectangle such that they can be considered independently.
Then rectangles are split either one at a time (alternating by always choos-
ing the largest, or by some other criteria) or simultaneously the same way
as the single-facility problem. Splitting each rectangle in 4 simultaneously
gives 4m new rectangles and 4m possible combination of locations for m
facilities. While its efficiency can be doubted, even for small m, it seems
worth considering for the OWF instance as we restrict ourself to only two
substations.

The high branching factor can be reduced by reducing the number of sub-
rectangles each rectangle is split into. For instance, rectangles can be split in
half along the shortest bimedian (effectively alternating between horizontal
and vertical). In general, a splitting operation generating l sub-rectangles
gives a branching factor of lm. For instance, dividing rectangles in two with
two facilities will generate 4 subproblems (see Figure 3.1 branch (2)). The
same is true for single-facility problems achieving a branching factor of 2 by
splitting in half.

For the VRP there is no distinction between the depots so the number of
subproblems can be reduced even further by considering the cases when the
depots are located in the same rectangle. This is illustrated in Figure 3.1
as the root node. Observe that (2) has the same solution as its (1) (the
only difference is the rectangle assigned). The new problems that need to
be solved are (a) and (b).

9

Figure 3.1: Depots are illustrated by dots and colored areas are the associ-
ated bounding rectangle. Node (1): branching when depots are located in
the same rectangle. Node (2): branching when depots are fixed to different
rectangles. m = l = 2

The same holds for any l, giving
(
l
m

)
+ l new problems when the as-

signed rectangles are the same. However, at node (2) in Figure 3.1, each
depot is already fixed to different parts of the plane for the entire sub-tree.
Additionally, since there are no constraints on the number of vehicles or
capacity on the depots in the OWFACL, it is not optimal to place multiple
depots in the same neighborhood. For simplicity, the case seen in node (2)
can instead be extended to the root node by duplicating the rectangle, as
initially explained. Then the depots are fixed to different rectangles (of the
hyper-plane).

Splitting in half as illustrated in Figure 3.1 proved a much more efficient
strategy for the 2-facility instances and is the method of choice. For the
single-facility the original method of split in four was kept.

10

3.2 Planarity Constraints

Formulating the planarity constraint for LF requires some additional con-
siderations. The constraints (2.8) depend on the coordinates pi, but the
depot locations pi, i ∈ Vd are not known other than to be in Ri.

The client points pi, i ∈ Vc remain fixed and edges between the clients
can be treated as normally. Two edges incident to one depot cannot cross
each other and need not be considered. Two edges incident to different
depots need not be considered either as connecting clients to depots in such
a configuration is not optimal.

The remaining are depot-client edges crossing client-client edges. A pla-
narity inequality is valid for rectangle R if a depot edge is crossing some
client edges for all depot locations inside R. Otherwise, there is a depot
location that does not violate this particular planarity constraint and the
inequality is not valid. An example of this is illustrated in Figure 3.2a where
a section of the right hand side would be a feasible location not violating
the planarity constraint. In other words, valid inequalities for the planarity
constraint are given by: (i) an edge intersecting for all possible depot lo-
cations (Figure 3.2b) and (ii) a path of edges together intersecting for all
depot locations (Figure 3.2c).

(a) (b) (c)

Figure 3.2: Different cases that can arise when the depot location is relaxed.
Dashed lines are drawn to 4 possible depot locations. (a): allowed. (b) and
(c) not allowed.

Note that (ii) will eventually become redundant when branching on lo-
cation. As R is reduced to a point the possible edges from R may be treated
as a single edge. Because of this we generate constraints only for singe
edges (3.2b) in addition to the normal client-client edges. Since R is convex
these cuts are easily found as the edges required to be intersected can be
restricted to those with end point at each of the 4 corners of R, as illustrated
in Figure 3.2.

11

3.3 Choosing the Starting Polygon

While the BSSS method uses squares or rectangles, this can obviously be
generalized to other convex shapes. Some observations for the OWF in-
stances:

• The optimal location is within the convex hull of the client points.

• Solving the routing problem for locations outside the convex hull proved
much harder than for locations inside.

• For Walney and Sheringham Shoal the convex hull are exactly quadri-
laterals, and for Barrow there is only a small cutoff at two of the
corners (see Figure 3.3).

A variation using triangles has previously been suggested [10]. The main
advantages noted for using triangles is the elimination of feasibility tests and
reduction of the feasible region to exactly the convex hull by triangulating
the demand points. The former does not apply to our problem since all
points are considered feasible. A triangulation of the demand points will
lead to at least n − 2 triangles. For the Delaunay triangulation the worst
case is 2n−5. This is the number of starting nodes, as every triangle is used
as a root. It is easy to see that staring from a single initial region can poten-
tially reduce the overall number of evaluations needed by discarding larger
areas given sufficiently bounds. In general, the only other difference between
squares, triangles and other shapes is how the distances are calculated. It
does not seem important to the problems we are applying the method to
as solving the routing problem will dominate any minor difference is such
calculations.

From the above observations, we decided to use the minimum bounding
quad as the starting region to take advantage of the reduction of the feasible
area. The minimum circumscribing k-gon can be found in time O(n2) [11].
Implementing such a method is out of the scope of this thesis, so we resort
to a simple approximation as follows:

(i) Staring from the convex hull: For every 3 consecutive edges extend
the first and third edge forming a triangle with the middle edge.

(ii) Take the smallest candidate triangle and replace the 3 old edges with
the 2 new extended edges in the convex hull.

(iii) Continue with (i) until 4 edges remain.

Another possibility is to use the minimum oriented bounding box [12] to
get around the rotated nature of the convex hull. The results of both are
shown in Table 3.1 and Figure 3.3. While the oriented box seems to provide
a good approximation for the Barrow and Walney instance, it naturally

12

performs poorly for the rhomboid shaped Sheringham Shoal OWF. The
quad approximation performs well giving the optimal quad for all instances.

Figure 3.3: Normal- and oriented bounding box (black), quad (red), convex
hull (colored area) for Barrow, Walney, and Sheringham Shoal respectively.

Instance Convex hull Box Oriented Quad

b30 1.0000 1.9495 1.0249 1.0247
w51 1.0000 2.0441 1.3337 1.0000
s88 1.0000 2.3243 1.8153 1.0000

Table 3.1: Size of the different bounding polygons relative to the convex
hull.

The shortest distance d between a point and any simple polygon can be
easily calculated by computing the point-line segment distance for each line
segment of the polygon.

Similar to rectangles, the center of a quad here refers to the intersection
point of the two bimedians.

3.4 Local Improvement in Location

Salhi and Nagy [3] introduced a local search procedure for the continuous
multi-depot location-routing problem. The idea behind the method is to,
given a fixed routing, simply move the depot to the best position without
changing the routing. That is, a pure location problem is constructed from
the routing problem by taking the first and last client of each route as the
demand point, i.e. every client incident to the depot, and minimize the asso-
ciated cost. For the open routing problem only the first client of each route

13

is considered. This set is referred to as the end-points. Minimize the total
distances to these points amounts to finding the geometric median, which is
approximated with the well-known Weiszfeld procedure. The algorithm pro-
ceeds by solving the routing problem for the new depot locations iteratively
alternating between the two until there is no improvement.

One difficulty that arises are the planarity constraints. While the initial
depot location will not have crossing edges, since it is feasible, moving the
depot may lead to depot edges crossing with client-to-client edge. Because
of this, the Weiszfeld procedure may return an infeasible solution. Salhi and
Nagy [3] present a similar problem, that is, maximum cost allowed for routes,
and propose two solutions: either iteratively assign non-uniform weights to
infeasible location, or immediately output the last feasible location when the
new becomes infeasible. The problem with using the Weiszfeld procedure
is that the last feasible location may not have the desired precision if the
previous step size was large. We propose a simple hill-climbing method
with fixed step size as an alternative, and instead handle infeasible steps by
incrementally reducing the step size.

Algorithm 1 LocationOpt(Vc ∪ Vd, routing R)

1: for i ∈ Vd do
2: s ← the set of clients incident to i in R
3: Apply method for the geometric median to i with demand points s
4: Update i to the new location

The local search is applied once for every routing found. Continuing
with a re-routing step seem unnecessary as BSSS is the method of choice
for the location problem. Additionally, it is computationally very expensive.
The purpose of the search is to quickly obtain locally optimal solutions that
may otherwise require a large number of iterations, or in fact may not be
found at all given the time constraint. Given that the BSSS method rely on
sampling values for F we argue that employing a local search is important
to obtaining good solutions fast. In Table 3.2, the improvement obtained
with LocationOpt during the run of Algorithm 2 for some of the instances,
is given.

14

Instance Min. Avg. Max.

b30-c5 0.04 177.26 1559.61
b30-c6 0.67 104.85 898.73
b30-c7 0.19 101.41 1035.09
b30-c8 0.00 113.93 618.33
b30-c9 1.46 101.51 615.71
b30-c10 0.00 85.42 487.30
w51-c5 3.50 492.17 3437.62
w51-c6 0.56 285.95 3266.48
w51-c7 0.37 239.64 1995.62
w51-c8 0.35 187.07 1705.92

Table 3.2: Improvement obtained with LocationOpt. In metre.

3.5 The Algorithm

Algorithm 2 (Vc, m number of depots)

1: OPT ← ∞
2: Initialize an empty queue Q
3: Compute a bounding quad H of Vc, and add {H} to Q
4: loop
5: S ← select and remove the set with lowest lower bound from Q
6: if LF (S)(1 + ε) ≥ OPT then
7: Stop. The optimal value is approximated by sufficient precision
8: else
9: Si ← split(S)

10: for all Si do
11: s ← the set of center points of Si
12: Evaluate F (s) and apply LocationOpt to the routing
13: if F (s) < OPT then
14: OPT ← F (s)

15: Evaluate the lower bound LF (Si)
16: if LF (Si) > OPT then
17: Discard Si
18: else
19: Add Si to Q

Line 9 is one of several methods of branching on a set of rectangles as dis-
cussed in Section 3.1. Termination relies on LF converging as the rectangles
are cut into smaller rectangles; which is true as LF (S) = F (S) when the
size of all s ∈ S approach 0.

15

3.6 Computational Results

The underlying OWFACL problem was modeled and solved with the CPLEX
MIP solver. Generation of planarity constraints was implemented with
CPLEX library as well, such that each evaluation of F and LF amounts
to invoking the solver with a new distance vector. All other code were de-
veloped in Scala. Experiments were performed on a personal computer with
2.85GHz processor running CPLEX 12.5 with default setting and OpenJDK
7 with an available heap space of 6GB. The computational results are given
in Table 3.3.

Instance LB UB Abs. Rel. (%) Tree size Time

b30-c5 16524.88 16688.99 164.12 0.99 895 275
b30-c6 16236.40 16398.76 162.36 1.00 1609 814
b30-c7 16008.54 16168.58 160.04 1.00 1147 1495
b30-c8 15383.11 15536.55 153.44 1.00 635 420
b30-c9 15159.97 15310.73 150.76 0.99 713 393
b30-c10 15157.81 15309.15 151.34 1.00 1071 702
w51-c5 42273.91 42691.63 417.72 0.99 483 2017
w51-c6 40855.48 41262.22 406.75 1.00 863 6273
w51-c7 39932.54 40331.14 398.60 1.00 1009 14267
w51-c8 39278.76 39789.68 510.92 1.30 944 20000
w51-c9 38614.99 39351.94 736.95 1.91 553 20000
w51-c10 38165.85 39104.51 938.66 2.46 439 20000
s88-c5 49166.29 77832.88 28666.58 58.31 14 20000
s88-c6 46513.39 72133.01 25619.62 55.08 11 20000
s88-c7 44663.95 68491.44 23827.48 53.35 13 20000

Table 3.3: Computational results of Algorithm 2.

The target precision ε was set to 1%, and time limit to 20000 seconds.
While some of the smallest instances could to some degree be solved with-
ing reasonable time, the limitation of the method becomes apparent when
looking at the tree size for larger instance: for s88-c7 the tree size is 13,
meaning, a depth of only 3.

3.7 Relaxation

To improve the performance, we propose to (i) relax the integrality con-
straint (2.7) for LF and (ii) replace F with heuristics. Evaluating LF (R)
for some R then amounts to solving the linear program (LP) as opposed
to the ILP. This should dramatically improve the number of nodes in the
search tree that can be explored. Since we only look for near optimality the

16

idea is that this relaxation may give good enough bounds, or even improve
on the exact method given the time constraint.

F and LF can be viewed as general upper- and lower bounds for the real
objective and need not be an LP relaxation.

3.7.1 Termination

A problem with this relaxations is that the optimality gap between LF
and F may no longer converge to ε. In many cases one cannot use the
optimality gap as stopping criteria, as the obtainable upper and lower bound
will depend on the strength of LF and F . An additional stopping criteria
is needed.

A simple alternative is to use an absolute criteria as originally suggest
by Hansen et al. [8], i.e. only branch when the rectangle is larger than some
fixed size. As pointed out by Plastria [9], measuring “optimality” in terms
of spatial size is not without issues. A rectangle being “small” does not
mean one can conclude that a near optimal solution is found, as optimality
is always measured in the objective. From a practical standpoint however,
it seems one can safely assume that a small increase in the distance vector
will consistently give a small increase of the objective. Since we limit ourself
to the OWF instances, we can choose a limit that seems adequate. From
experiments we have found that the neighborhood of a depot locations in
which a routing remains optimal tends to be quite large. An area where the
optimal routing does not change is in terms of the LRP objective function
a neighborhood that is locally convex. This is an important observation as
it means finding the routing and locally optimal location is sufficient to find
the optimal solution in that area, and there is no point continuing.

3.7.2 Heuristics

Bauer and Lysgaard [1] have suggested an adaption of the Clarke and Wright
heuristic for the OWFACL showing good results for the same test instances.
Two different saving heuristics are used: POS1 and POS2, and an exchange
heuristics RouteOpt, taking the best of the two. While RouteOpt improves
the routing when the depot is fixed, exchanging depot connected edges after
it has been relocated may yield a different result. To avoid creating (globally)
worse solution, LocationOpt is applied to routes with and without RouteOpt
returning the best of the four.

17

Algorithm 3 POS’(Vc ∪ Vd, E)

1: R1 ← LocationOpt(POS1(Vc ∪ Vd, E))
2: R2 ← LocationOpt(POS2(Vc ∪ Vd, E))
3: R3 ← LocationOpt(RouteOpt(POS1(Vc ∪ Vd, E)))
4: R4 ← LocationOpt(RouteOpt(POS2(Vc ∪ Vd, E)))
5: return min(c(R1), c(R2), c(R3), c(R4))

3.7.3 Strengthening the Lower Bound

For large rectangles, the shortest distance used in calculation of the lower
bound LF may be a significant underestimate of what the actual minimum
distance will be. For instance: If two clients are located at the opposite
sides of a rectangle, the minimum distance needed for using these two edges
is underestimated by at least the length of the side. To improve the bound
on minimum distance we introduce a new continuous variable yij to the
hop-indexed model representing the length of the edge going from depot i
to client j. The objective can then be written as:

min
∑
i∈Vc

∑
j∈Vc

C−1∑
h=1

dijx
h
ij +

∑
i∈Vd

∑
j∈Vc

yij (3.6)

s.t. yij ≥ d(Ri, pj)x
0
ij ∀i ∈ Vd, j ∈ Vc (3.7)

(2.3) – (2.8) (3.8)

By the triangle inequality we get the following constraints:

yij + yik ≥ (xij + xik − 1)d(pj , pk) ∀i ∈ Vd, j, k ∈ Vc (3.9)

The constraints (3.9) are very weak for fractional x and will have less
effect as the size of R is reduced. In practice, we found that these constraints
made both the ILP and the LP for this model significantly more difficult
while providing little improvement. It proved more efficient to branch 1-2
additional times to reach a similar bound.

18

3.7.4 Computational Results

Instance LB UB Abs. Rel. (%) Tree size Time

b30-c5 16343.18 16690.25 347.07 2.12 613 7
b30-c6 15927.92 16396.98 469.07 2.94 941 13
b30-c7 15657.48 16216.34 558.86 3.57 1229 23
b30-c8 15282.98 15542.29 259.31 1.70 917 22
b30-c9 15087.25 15309.27 222.03 1.47 805 26
b30-c10 15087.25 15309.27 222.03 1.47 1057 42
w51-c5 41991.44 43527.48 1536.04 3.66 1305 53
w51-c6 40441.87 41593.00 1151.14 2.85 1661 99
w51-c7 39611.16 40425.25 814.09 2.06 2105 183
w51-c8 39063.28 40249.41 1186.13 3.04 3445 404
w51-c9 38750.62 39679.41 928.79 2.40 3873 578
w51-c10 38592.78 39206.98 614.19 1.59 3949 717
s88-c5 75940.15 83779.16 7839.01 10.32 2557 539
s88-c6 70349.73 77414.76 7065.03 10.04 3005 1098
s88-c7 66444.11 73280.90 6836.79 10.29 3389 1857
s88-c8 63961.43 70494.46 6533.03 10.21 3741 2702
s88-c9 62301.88 67561.41 5259.52 8.44 3805 3409
s88-c10 61180.35 65735.22 4554.87 7.44 3957 4379

b30-c5-m2 14139.06 14581.94 442.88 3.13 44582 587
b30-c6-m2 14138.66 14580.98 442.33 3.13 99362 1536
b30-c7-m2 13890.02 14215.73 325.72 2.34 48410 935
b30-c8-m2 13890.02 14215.73 325.72 2.34 55092 1327
b30-c9-m2 13890.02 14215.73 325.72 2.34 59042 1699
b30-c10-m2 13890.02 14215.73 325.72 2.34 61838 2241
w51-c5-m2 37589.87 38341.77 751.90 2.00 89850 5405
w51-c6-m2 37131.37 37688.98 557.60 1.50 242119 20000

Table 3.4: Computational results with the added relaxations.

The minimum size required for an area to be further divided was set to
100m2. Recall that the purpose of the relaxation was to see if the method
can still be used to find a good solution, not necessarily to prove optimality.
This limit was set to a small value to ensure we find the solution that could
be found using the heuristics. The results are given in Table 3.4. While
the lower bound found obviously can be improve by splitting rectangles
further, doing so comes at a very high cost in running time. For most of the
instances the target precision of 1% could not be reached regardless. For
instance, running b30-c6 down to a size of 0.01m2 took 4450 second and the
relative gap was still 1.06% while giving no improvement in UB.

19

For several of the instances, the size limit could be set higher while
retaining the upper bound found, but was kept the same for comparison.

As can be seen from the table, the obtained relative optimality gap
tend to decrease as the capacity increase. The minimum number of routes
required to satisfy the capacity constraint is d nC e. As the number of depot
edges used increase, the total underestimate of distances increases and is
affecting the strength of the lower bound. For these low capacities, it is
usually optimal to use what is available, resulting in a number of routes
close the minimum required.

20

Chapter 4

A Branch-and-cut Algorithm
for the LRP

One of the problems with the BSSS method in general is that no knowledge
of the underlying problem it is applied to is used. When applied to the LRP
the result is a location-first routing-second type of procedure where the only
information used in the location phase is the lower bound on the routing
problem to guide where to try next. That is; after a region has been bounded
all information about the routing that was found is discarded. This is very
inefficient. A better approach is to solve location and routing simultaneously
as a single problem.

Starting with the linear program (LP) that amount to LF (H) as defined
in Section 3.7 with H being the initial bounding region, one can view routing
and location as each a possible branch in a branch and bound tree. That
is, at each subproblem LP (Ri) given by the rectangle Ri, either branch on
location by dividing the bounding region to solve the location problem; or
on integrality by branching a variable to solve the routing. The idea behind
this method is two part: (i) by branching on integer infeasibility before
the location is determined, one can benefit from a stronger lower bound.
Similarly, if the LP gives a sufficient bound, it can quickly be pruned. (ii)
LP solutions can be reused to quickly solve subproblems.

4.1 Obtaining Feasible Solutions

An important difference from the BSSS method is how solutions are ob-
tained. As we have seen, the two-part procedure of evaluating lower bounds
and upper bounds independently is not very efficient. Instead, we use a tra-
ditional branch and cut approach of incrementally creating “less fractional“
problems until a feasible solutions is found. It will of course not be possible

21

to obtain solutions directly through branching since it still takes infinitely
many steps to reduce a rectangle to a point.

Ignoring the planarity constraint for a moment, let x(R) be an integer
feasible solution for LP (R). Observe that x(R) is also feasible for all p ∈ R.
Thus, a feasible solution to the LRP can be obtained when an integer feasible
lower bound is found. It of course only make sense to do so when it yields
a good solution, e.g. when x is also optimal for F (p). In other words: a
good solution is found when the increase in distance between p and R is
sufficiently small such that the optimal routing does not change.

The purpose of trying to identify when the routing does not change is
to finally use this to take a diving step in the search tree and obtain the
optimal solution within the rectangle as early as possible, while keeping the
number of iterations required for re-optimization as low as possible.

Another possibility is to create an additional branch for the center point
p of R when splitting R. p can be considered a subproblem as it is not
defined for any finite depth sub-rectangles of R. The main difficulty with
this approach is that many unnecessary and hard nodes a created with no
obvious good node selection strategy.

4.2 Maximum Increase in LP

When reducing the size of the rectangles, the distances vector d necessarily
increases. We devise a bound on the increase in the objective function
from such increase in distance, that will be used for branching and diving
strategies.

Let x∗(R) be the optimal solution for LP (R) and z(R) the objective
value for this solution. Observe that when splitting R into the set of sub-
rectangles Ri, x

∗(R) is a feasible solution for LP (Ri). The increase in the
distance vector cannot be more than the longest diagonal of R, here denoted
as L. Then maximum increase is:

maxIncrease (LP (Ri)) =
∑
i∈Vd

∑
j∈Vc

Lx∗0ij (4.1)

Reformulating (4.1) as the maximum objective value:

z (Ri) ≤ zmax(Ri) =
∑
i∈Vc

∑
j∈Vc

C−1∑
h=1

dijx
∗h
ij +

∑
i∈Vd

∑
j∈Vc

Lx∗0ij (4.2)

The bound holds for all Ri ⊆ R. By the triangle inequality the increase
in distance can be strengthen to:

22

zmax(Ri) =
∑
i∈Vc

∑
j∈Vc

C−1∑
h=1

dijx
∗h
ij +

∑
i∈Vd

max
y∈Ri

∑
j∈Vc

d(y, j)x∗0ij

 (4.3)

The maximization problem of (4.3) amounts to the maxisum problem
on the plane bounded by the convex polygon R and the optimal values is at
one of the extreme points [13].

Regarding branching strategies we have made the following observations:

1. Except for the very small rectangles, branching on locations generally
gives a much better increase in lower bound.

2. There is no obvious benefit from fixing variables long before the loca-
tion is decided.

The solution we proposed is to require the increase in zmax to be low,
that is (zmax(Ri)− z(Ri)) /z(Ri) ≤ L1 for some parameter L1. It can be
viewed as an alternative to the size criteria used in Section 3.7.1, but taking
into account changes in objective value. There a still two important cases
where one would want to branch on variables, namely:

3. If there is a good chance of finding a better solution than current best.

4. If branching on location will not give a sufficient bound.

We propose to branch on variable when zmax(R) ≤ OPT (1 + L2). A
parameter L2 is added as zmax is still likely an overestimate of the increase
that can be expected.

23

4.3 The Algorithm

Algorithm 4 (Vc, m number of depots)

1: OPT ← ∞
2: Initialize an empty queue Q
3: Compute a bounding quad H of Vc, and add {H} to Q
4: loop
5: S ← select and remove the set with lowest lower bound from Q
6: δ ← (zmax(S)− z(S)) /z(S)
7: if x∗(S) is infeasible then
8: Discard S
9: else if z(S)(1 + ε) ≥ OPT then

10: Stop. OPT is approximated with sufficient precision
11: else if x∗(S) contains crossings then
12: Add violated cuts
13: else if x∗ not integer and δ ≤ L1 and zmax ≤ OPT (1 + L2) then
14: Branch on variable
15: else
16: Branch on location
17: if x(S) is integer and δ ≤ L1 then
18: Let S′ be the set of center points of S
19: Solve LP (S′) to integrality
20: Apply LocationOpt to S′ and update OPT if necessary
21: Prune all S ∈ Q where z(S) ≥ OPT

4.4 Memory Constraints

Taking advantage of fast re-optimization when cuts are added to the prob-
lem is essential to achieve good performance. Memory quickly becomes a
constraint when using the hop-indexed model as there are O((n + m)2C)
variables that needs to be stored for every node. In an attempt to reduce
the need for recompute LPs, a basis pool is implemented as a priority queue
that discards the basis with the highest lower bound first.

A garbage collection step is performed by immediately discarding nodes
that can be pruned by bound every time a new solution is found (Line 21 in
Algorithm 4). In addition, since the algorithm terminates when a sufficient
precision is reached, not only when Q is empty, all nodes with a sufficient
bound can be discarded as long as the lowest lower bound is recorded. I.e all
S ∈ Q where z(S)(1 + ε) ≥ OPT .

Despite these improvements the available memory proved insufficient for
the computational results in Section 4.5. For instances s88-c6 to s88-c10,
b30-c5-m2, b30-c6-m2 and w51-c5-m2 to s88-c10-m2, one or more LPs had

24

to be recomputed because of insufficient memory.

25

4.5 Computational Results

Instance LB UB Abs. Rel. (%) Tree size Time

b30-c5 16520.81 16685.48 164.66 1.00 1663 8
b30-c6 16234.69 16396.98 162.29 1.00 7520 43
b30-c7 16003.18 16163.10 159.92 1.00 13116 95
b30-c8 15383.23 15535.99 152.76 0.99 952 13
b30-c9 15161.68 15309.27 147.59 0.97 792 16
b30-c10 15158.21 15309.15 150.94 1.00 1116 29
w51-c5 42251.09 42668.48 417.39 0.99 1038 21
w51-c6 40853.47 41261.66 408.20 1.00 20748 544
w51-c7 39926.81 40326.03 399.23 1.00 26310 1061
w51-c8 39392.02 39785.93 393.91 1.00 40326 2365
w51-c9 38941.12 39330.45 389.33 1.00 9904 821
w51-c10 38654.78 39041.31 386.53 1.00 5388 717
s88-c5 76996.28 77766.24 769.96 1.00 104866 5479
s88-c6 70724.69 - - - 112478 20001
s88-c7 66847.24 - - - 80974 20001
s88-c8 64269.22 - - - 67036 20000
s88-c9 62562.80 - - - 56811 20013
s88-c10 61434.15 - - - 49539 20002

b30-c5-m2 14437.57 14581.94 144.37 1.00 787133 18193
b30-c6-m2 14361.64 14581.41 219.77 1.53 747494 20000
b30-c7-m2 14074.98 14215.73 140.75 1.00 225764 1561
b30-c8-m2 14074.98 14215.73 140.75 1.00 276550 3128
b30-c9-m2 14074.98 14215.73 140.75 1.00 311666 4309
b30-c10-m2 14074.98 14215.73 140.75 1.00 336456 5202
w51-c5-m2 37962.15 38341.77 379.62 1.00 384537 9252
w51-c6-m2 37297.02 37671.90 374.88 1.01 511222 20000
w51-c7-m2 36889.45 37258.34 368.89 1.00 383747 17709
w51-c8-m2 36681.06 37258.69 577.63 1.57 345150 20000
w51-c9-m2 36484.52 37175.13 690.61 1.89 277864 20000
w51-c10-m2 36357.15 37009.28 652.13 1.79 242376 20000
s88-c5-m2 62133.35 63597.66 1464.30 2.36 184497 20000
s88-c6-m2 59568.73 61248.04 1679.31 2.82 101405 20001
s88-c7-m2 57872.13 60069.52 2197.39 3.80 98820 20001
s88-c8-m2 57156.85 - - - 43488 20001
s88-c9-m2 56313.00 - - - 30382 20001
s88-c10-m2 55846.33 - - - 24174 20001

Table 4.1: Computational results for Algorithm 4.

26

The results for Algorithm 4 are given in Table 4.1. L1 was set to 0.001
and L2 to 0.05. The values were chosen through experimentation. For s88,
L2 was reduced to 0.025 as too many iteration were used for solving the
fixed-point problem (line 19 in Algorithm 4).

4.6 Observations

The average number of diving steps taken across all instances (where UB is
provided) was 2.5 with an average number of iteration of 2.1 suggesting the
parameters L1 is sufficiently low such that feasible solutions can be obtained
almost immediately.

The new algorithm provide a significant improvement to the previous
results. For all b30 and w51 the LB and UB from the initial results are
retained, while keeping a comparable running time to the method using
heuristic. In some cases even improving. Additionally, w51 with capacity 8
through 10, and s88 with capacity 5, which could not previously be solved
within the time limit, have been solved to the target precision of 1% with
low running time and a better solution given. For s88-c5-m2, s88-c6-m2 and
s88-c7-m2, while not solved to the desired precision, near-optimal solutions
have been found. However, some of the largest instances remain unsolved.
As typical to best-bound searches, the algorithm may fail to find any solution
regardless of target precision unless sufficient time and memory is given.
This is something that limits the range of near-optimality the method can be
used for. To improve the method’s capability of determining upper bound,
taking diving steps in both location and variable integrality, as opposed to
only location, should be explored. Alternatively, integrating the routing
heuristics in the algorithm to at least provide the same upper bound as in
Table 3.4.

Following the observations made in Chapter 3; the underestimate in the
lower bound is still high. E.g. for b30 the smallest rectangle encountered
range from 67m (c5) to 135m (c10), and they are not solved to integrality,
suggesting the optimality gap can be reduced significantly simply by the
increase given by the integrality constraint and the distances.

27

Instance Old New Saving (m) Saving (%)

b30-c5 20739 16685.48 4053.52 19.55
b30-c6 18375 16396.98 1978.02 10.76
b30-c7 17781 16163.10 1617.9 9.10
b30-c8 16566 15535.99 1030.01 6.22
b30-c9 16553 15309.27 1243.73 7.51
b30-c10 16317 15309.15 1007.85 6.18
w51-c5 43539 42668.48 870.52 2.00
w51-c6 41587 41261.66 325.34 0.78
w51-c7 40789 40326.03 462.97 1.14
w51-c8 40242 39785.93 456.07 1.13
w51-c9 39752 39330.45 419.55 1.06
w51-c10 39541 39041.31 499.69 1.26
s88-c5-m2 64828 63597.66 1230.34 1.90
s88-c6-m2 62031 61248.04 782.96 1.26
s88-c7-m2 60667 60069.52 597.48 0.98

Table 4.2: Saving for best known solutions

Saving for the new substation location and cable layout compared to the
optimal cable layout for the installed substations (not the installed cable
layout), is given in Table 4.2, showing improvement in all instances where a
solution was found. For exact location of the substations and cable layout,
see Table A.1, Table A.2 and Figures in Appendix A.

28

Chapter 5

Concluding Remarks and
Future Work

Classical problems in branch-and-cut, such as determining branching rules
and node selection strategy, remains to be studied. For the underlying
OVRP we have used a straight-forward formulation and branching strategy
that is easy to implement. It remains open whether other formulations and
cutting planes, such as [14], can be used and improve the LRP branch-and-
cut.

Plastria [9] introduced a second phase to the BSSS method for deter-
mining a region of near-optimality, i.e. a region where no locations objective
value exceeds a certain value. It is argued that “the determination of a
region of near-optimality is crucial in location problems [. . .] any solution
method for continuous location problems should be able to generate such
near-optimality information in order to be useful in practice to a decision
maker.” Identifying the optimal value as has been the topic of this thesis
is a first step. How the planarity constraint can be formulated for such
upper-bound region remain unresolved.

Based on the proposed BSSS method we provided the extension to multi-
facility problems and important improvements such as elimination of non-
feasible area and the use local search. The method was tried but was very
slow even for the small instances. An ad-hoc approach for finding solutions
to the Substation location problems by the use of heuristics and relaxations
was tried. Finally, we proposed a different approach for the LRP by the way
of a branch-and-cut algorithm. We have provided near-optimal solution for
both single- and multi-facility instances showing branch-and-cut as a feasible
technique for small to medium sized problems.

29

Bibliography

[1] J. Bauer and J. Lysgaard. Offshore wind farm array cable layout
problem. J Oper Res Soc, pages –. ISSN 0160-5682. URL http:

//dx.doi.org/10.1057/jors.2013.188.

[2] Gabor Nagy and Said Salhi. Location-routing: Issues, models
and methods, March 2007. URL http://ideas.repec.org/a/eee/

ejores/v177y2007i2p649-672.html.

[3] Säıd Salhi and Gábor Nagy. Local improvement in planar facility lo-
cation using vehicle routing. Annals of Operations Research, 167(1):
287–296, 2009. ISSN 0254-5330. doi: 10.1007/s10479-007-0223-z. URL
http://dx.doi.org/10.1007/s10479-007-0223-z.

[4] Martin Schwardt and Jan Dethloff. Solving a continuous location-
routing problem by use of a self-organizing map. International
Journal of Physical Distribution & Logistics Management, 35(6):
390–408, 2005. URL http://www.emeraldinsight.com/10.1108/

09600030510611639.

[5] Barrow offshore wind farm. URL http://www.bowind.co.uk/pdf/

Barrow_coordinates.pdf.

[6] Walney 1 offshore wind farm, 2010. URL http://www.dongenergy.

com/Walney/News/data/Documents/WOW_I_grid.pdf.

[7] Sheringham shoal offshore wind farm, 2012. URL http://www.scira.

co.uk/construction/foundationsmap.php.

[8] Pierre Hansen, Dominique Peeters, Denis Richard, and Jacques-
Francois Thisse. The minisum and minimax location problems revisited.
Operations Research, 33(6):pp. 1251–1265, 1985. ISSN 0030364X. URL
http://www.jstor.org/stable/170636.

[9] Frank Plastria. Gbsss: The generalized big square small square
method for planar single-facility location. European Journal of Op-
erational Research, 62(2):163 – 174, 1992. ISSN 0377-2217. doi: 10.

30

1016/0377-2217(92)90244-4. URL http://www.sciencedirect.com/

science/article/pii/0377221792902444.

[10] Zvi Drezner and Atsuo Suzuki. The big triangle small triangle method
for the solution of nonconvex facility location problems. Operations Re-
search, 52(1):128–135, 2004. doi: 10.1287/opre.1030.0077. URL http:

//pubsonline.informs.org/doi/abs/10.1287/opre.1030.0077.

[11] Alok Aggarwal, MariaM. Klawe, Shlomo Moran, Peter Shor, and
Robert Wilber. Geometric applications of a matrix-searching algo-
rithm. Algorithmica, 2(1-4):195–208, 1987. ISSN 0178-4617. doi: 10.
1007/BF01840359. URL http://dx.doi.org/10.1007/BF01840359.

[12] Godfried Toussaint. Solving geometric problems with the rotating
calipers. In Proc. IEEE MELECON ’83, pages 10—02, 1983. doi: 10.1.
1.40.2140. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.40.2140.

[13] E. Melachrinoudis and T.P. Cullinane. Locating an obnoxious facility
within a polygonal region. Annals of Operations Research, 6(5):137–
145, 1986. ISSN 0254-5330. doi: 10.1007/BF02026821. URL http:

//dx.doi.org/10.1007/BF02026821.

[14] Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new
branch-and-cut algorithm for the capacitated vehicle routing prob-
lem. Math. Program., 100(2):423–445, June 2004. ISSN 0025-5610.
doi: 10.1007/s10107-003-0481-8. URL http://dx.doi.org/10.1007/

s10107-003-0481-8.

31

Appendix A

Solution Data

Location data and layout for best known solutions.

Instance E N

b30-c5 480001.297228 5983127.078478
b30-c6 480193.475510 5982983.992996
b30-c7 479803.995895 5983779.199905
b30-c8 479180.864944 5983461.082077
b30-c9 479463.008331 5983646.217041
b30-c10 479828.982452 5983315.064850
w51-c5 466645.000305 5988342.997528
w51-c6 466512.261246 5988653.808975
w51-c7 466923.986847 5988093.003632
w51-c8 466668.507614 5988585.895157
w51-c9 465528.141861 5989344.325302
w51-c10 465528.141861 5989344.325302
s88-c5 376177.286865 5888853.260498

Table A.1: Substation location

32

Instance E1 N1 E2 N2

b30-c5-m2 479496.000170 5982581.499250 481074.015398 5983221.534807
b30-c6-m2 479496.000170 5982581.500164 481621.491270 5982725.283962
b30-c7-m2 478695.278387 5982983.164217 479726.016863 5984118.495260
b30-c8-m2 478695.278387 5982983.164217 479726.016863 5984118.495260
b30-c9-m2 478695.278387 5982983.164217 479726.016863 5984118.495260
b30-c10-m2 478695.278387 5982983.164217 479726.016863 5984118.495260
w51-c5-m2 465028.745361 5987917.491211 467578.507050 5988886.894440
w51-c6-m2 466738.124359 5986199.745544 467200.528976 5989321.129532
w51-c7-m2 464162.575653 5988892.525452 468009.600632 5988794.368332
w51-c8-m2 464162.575653 5988892.525452 466892.524750 5989795.343414
w51-c9-m2 464162.575653 5988892.525452 466892.524750 5989795.343414
w51-c10-m2 463801.116074 5988373.660934 465216.601410 5991296.367889
s88-c5-m2 374237.325730 5890585.359449 377612.693847 5887034.437072
s88-c5-m2 374454.405807 5890854.002335 377366.866211 5887715.846008
s88-c5-m2 374798.149216 5890368.296799 377143.338409 5886776.949890

Table A.2: Substation locations

C5

C4

C3

C2

C1

B7

B8

A7

B5

B4

B6

C7

D8

C6

D1

D2

D3

D4

D5

D6

D7

A4

A3

A2

B3

A1

A5

B1

A6

B2

Figure A.1: b30-c5

C5

D5

C3

C2

C4

C1

B7

B8

A7

B5

A5

B6

C7

D8

C6

D1

D2

D3

D4

D6

D7

A4

A3

A2

B4

B3

A1

B1

A6

B2

Figure A.2: b30-c6

33

C5

C4

C3

C2

C1

D2

B7

B8

B5

B4

B6

C7

D8

C6

D1

D3

D4

D5

D6

D7

A4

A3

A2

B3

A1

A7

B1

A6

A5

B2

Figure A.3: b30-c7

C5

C4

C3

C2

C1

B7

B6

B8

A7

B5

B4

C7

C6

D1

D2

D3

D4

D5

D6

D7

D8

A4

A3

A2

B3

A1

B1

A6

A5

B2

Figure A.4: b30-c8

C5

C4

C3

C2

C1

B7

B6

B8

A7

B5

B4

C7

D8

C6

D1

D2

D3

D4

D5

D6

D7

A4

A3

A2

B3

A1

B1

A6

A5

B2

Figure A.5: b30-c9

C5

C4

C3

C2

C1

B7

B8

A7

B5

B4

B6

C7

D8

C6

D1

D2

D3

D4

D5

D6

D7

A4

A3

A2

B3

A1

B1

A6

A5

B2

Figure A.6: b30-c10

34

B09

B10

D06

D07

B07

B08

E06

D04

E03

B05

A06

D05

B06

A07

E02

B03

B02

B04

D08

B01

E01

A02

C01

A11

E07

E05

F04

E04

F03

F05

F06

F01

F02

C02

C03

C04

C05

C06

C07

C08

C09

A04

A03

A01

D01

A08

A09

D03

D02

A05

A10

Figure A.7: w51-c5

B09

B10

D06

E05

B07

B08

D07

D04

D03

B05

B04

D05

E04

B06

A07

E02

E03

B03

B02

D08

B01

E01

C01

D01

E06

E07

F04

F05

F03

F01

F06

F02

C02

C03

C04

C05

C06

C07

C08

C09

A04

A03

A02

A11

A01

A08

A09

D02

A06

A05

A10

Figure A.8: w51-c6

B09

B10

D06

D07

B07

B08

D08

D04

E03

B05

A06

D05

B06

E02

F01

B03

B04

A05

E07

B01

B02

E01

C01

E06

E05

E04

F03

F05

F06

F04

F02

C02

C03

C04

C05

C06

C07

C08

C09

A04

A03

A02

A11

A01

D01

A08

A09

A07

D03

D02

A10

Figure A.9: w51-c7

B09

B10

D06

B07

B08

D07

D04

E03

B05

B04

D05

E04

B06

A07

E02

E01

B03

B02

D08

B01

F01

C01

D01

A11

E06

E07

E05

F05

F04

F02

F06

F03

C02

C03

C04

C05

C06

C07

C08

C09

A04

A03

A02

A10

A01

D02

A08

A06

D03

A05

A09

Figure A.10: w51-c8

B09

B10

D06

D05

B07

B06

D07

E06

B08

D04

D03

B05

B04

E02

E01

B03

A05

D08

E07

B01

B02

F01

C01

A11

E05

E04

E03

F05

F04

F03

F02

F06

C02

C03

C04

C05

C06

C07

C08

C09

A04

A03

A02

A10

A01

D01

A08

A07

A06

D02

A09

Figure A.11: w51-c9

B09

B10

D06

D05

B07

B06

D07

E06

B08

D04

D03

B05

B04

E02

E01

B03

A04

D08

E07

B01

B02

C01

A11

E05

E04

E03

F05

F04

F03

F01

F06

F02

C02

C03

C04

C05

C06

C07

C08

C09

A03

A02

A10

A01

D01

A08

A07

A06

D02

A05

A09

Figure A.12: w51-c10

35

J8

K8

J7

K7

J6

K6

E4

D4

E5

D5

E2

D2

E3

D3

E8

F8

E6

D7

E7

F7

F4

F3

F2

G1

F1

K3

K4

K1

K2

J3

K5

I4

J4

I3

J2

I6

I5

J5

C7

B8

C8

D8

D1

C1

C2

C3

C4

C5

D6

A4

A3

A2

A1

A8

A7

B6

A6

E1

A5

I7

I8

B2

J1

B1

H4

H3

I2

H2

I1

H1

G2

B4

G8

H8

B3

B7

B5

C6

H7

H5

H6

F6

F5

G4

G5

G6

G7

G3

Figure A.13: w88-c5

C5

C4

C3

C2

C1

B7

B8

B5

B6

C7

C6

D1

D2

D3

D4

D5

D6

D7

D8

A4

A5

A3

A2

B4

B3

A1

B1

A7

A6

B2

Figure A.14: b30-c5-m2

C5

C4

C3

C2

C1

B7

B8

B5

B6

C7

C6

D1

D2

D3

D4

D5

D6

D7

D8

A4

A5

A3

B4

A2

A1

B1

A7

A6

B3

B2

Figure A.15: b30-c6-m2

C5

C4

C3

C2

C1

B7

B6

B8

B5

B4

C7

C6

D1

D2

D3

D4

D5

D6

D7

D8

A4

A3

A2

B3

A1

B1

A7

A6

A5

B2

Figure A.16: b30-c7-m2

36

C5

C4

C3

C2

C1

B7

B6

B8

B5

B4

C7

C6

D1

D2

D3

D4

D5

D6

D7

D8

A4

A3

A2

B3

A1

B1

A7

A6

A5

B2

Figure A.17: b30-c8-m2

C5

C4

C3

C2

C1

B7

B6

B8

B5

B4

C7

C6

D1

D2

D3

D4

D5

D6

D7

D8

A4

A3

A2

B3

A1

B1

A7

A6

A5

B2

Figure A.18: b30-c9-m2

C5

C4

C3

C2

C1

B7

B6

B8

B5

B4

C7

C6

D1

D2

D3

D4

D5

D6

D7

D8

A4

A3

A2

B3

A1

B1

A7

A6

A5

B2

Figure A.19: b30-c10-m2

B09

B10

D06

D07

B07

B08

D08

D04

D03

B05

C04

D05

B06

E02

E01

B03

B02

B04

B01

C01

E06

E07

E05

F04

E04

E03

F05

F03

F01

F06

F02

C02

C03

C05

C06

C07

C08

C09

A04

A03

A02

A11

A01

D01

A08

A09

A07

D02

A06

A05

A10

Figure A.20: w51-c5-m2

37

B09

B10

D06

D07

B07

B08

D08

D04

D05

B05

B04

B06

C05

E02

E03

B03

B02

B01

E01

C01

C02

E06

E07

E05

E04

F05

F06

F04

F01

F02

F03

C03

C04

C06

C07

C08

C09

A04

A03

A02

A11

A01

D01

A08

A09

A07

D03

A06

A05

D02

A10

Figure A.21: w51-c6-m2

B09

B10

D06

D05

B07

B08

D07

D04

D03

B05

B06

E02

E01

B03

B02

B04

D08

C09

B01

C01

C02

E06

E05

E04

E03

F05

F04

F03

F01

E07

F06

F02

C03

C04

C05

C06

C07

C08

A04

A03

A02

A11

A01

D01

A08

A09

A07

D02

A06

A05

A10

Figure A.22: w51-c7-m2

B09

B10

D06

D05

B07

B08

D07

D04

D03

B05

B04

B06

E02

E01

B03

B02

D08

C09

B01

C01

C02

E06

E05

E04

E03

F05

F04

F03

F01

E07

F06

F02

C03

C04

C05

C06

C07

C08

A04

A03

A02

A11

A01

D01

A08

A09

A07

A06

D02

A05

A10

Figure A.23: w51-c8-m2

B09

B10

D06

D05

B07

B08

D07

D04

D03

B05

B04

B06

E02

E01

B03

B02

D08

C09

B01

C01

E06

E05

E04

E03

F05

F04

F03

F01

E07

F06

F02

C02

C03

C04

C05

C06

C07

C08

A04

A03

A02

A11

A01

D01

A08

A09

A07

A06

D02

A05

A10

Figure A.24: w51-c9-m2

38

B09

B08

D06

D05

B07

B06

D07

D04

D03

B05

B04

E02

E01

B03

B02

D08

B01

C01

B10

C09

E06

E05

E04

E03

F05

F04

F03

F01

E07

F02

C02

C03

C04

C05

C06

C07

C08

A04

A03

A02

A11

A01

D01

A08

A07

A06

D02

A05

F06

A10

A09

Figure A.25: w51-c10-m2

J8

K8

J7

K6

J6

K5

E4

F4

E5

D6

E2

F1

E3

F3

E8

D8

E6

F5

E7

D7

G3

F2

G2

G1

K3

K4

K1

K2

K7

J5

I4

J3

I3

J2

I6

I5

J4

C7

B8

C8

D1

C1

D2

E1

D3

D4

D5

C6

A4

B3

A3

A2

A1

A8

A7

A6

B6

A5

I7

I8

B2

J1

B1

H4

H3

I2

H2

I1

H1

C4

B5

G8

H8

C2

C3

B7

B4

C5

H7

H5

H6

F6

G4

F8

F7

G5

G6

G7

Figure A.26: s88-c5-m2

J8

K8

J7

K7

J6

K6

E4

F4

E5

D6

E2

F1

E3

F3

E8

F8

E6

E7

D8

G3

F2

G1

E1

K3

K4

J5

K1

K2

J2

K5

I4

J3

I3

I6

I5

J4

C7

B8

C8

D7

D1

C1

D2

C2

D3

C4

D4

C5

D5

C6

A4

B3

A3

A2

B1

A1

A8

A7

A6

B6

A5

I7

I8

B2

J1

H4

G4

H3

I2

H2

I1

H1

G2

B5

G8

H8

C3

B4

B7

H7

H5

H6

F6

F5

F7

G5

G6

G7

Figure A.27: s88-c6-m2

J8

K7

J7

K6

J6

K5

E4

D5

E5

D6

E2

F1

E3

F2

E8

D8

E6

F5

E7

F6

F4

F3

G2

G1

E1

K3

K4

J5

K1

K2

J2

K8

I4

J3

I3

H3

I6

I5

J4

C7

C8

D7

D1

C1

D2

C2

D3

C3

D4

C5

C6

A4

B3

A3

A2

A1

A8

B8

A7

A6

A5

B4

I7

I8

B2

J1

I2

B1

H4

H2

G3

H1

I1

C4

B5

G8

H8

B6

B7

H7

H5

H6

G5

G4

F8

F7

G6

G7

Figure A.28: s88-c7-m2

39

